集合专题测试

合集下载

高中数学集合测试题(附答案和解析)

高中数学集合测试题(附答案和解析)

高中数学集合测试题(附答案和解析)一、单选题1.已知集合U =R ,{}2230A x x x =--<,则U A ( )A .{}13x x -<<B .{}13x x -≤≤C .{1x x ≤-或3}x ≥D .{1x x <-或3}x >2.已知集合(){}{}|20,|10M x x x N x x =-<=-<,则MN =( ) A .(),2-∞ B .(),1-∞ C .()0,1 D .()1,23.设全集U =R ,集合302x A x x ⎧⎫-=≤⎨⎬+⎩⎭,集合{}ln 1B x x =≥,则()U A B =( ) A .()e,3 B .[]e,3 C .[)2,e - D .()2,e - 4.设集合{}()(){}|32,|130A x x B x x x =-<<=+-≤,则A B =( ) A .{}|12x x -≤< B .{}|33x x -<≤ C .{}|32x x -<≤ D .{}|13x x -≤≤ 5.已知{}33U x x =-≤<,{}23A x x =-≤<,则图中阴影表示的集合是( )A .{}32x x -≤≤-B .][33,)-∞-⋃+∞(,C .{}0x x ≤D .{}32x x -≤<-6.集合{}220A x x x =--≤,{}10B x x =-<,则A B =( ) A .{}1x x ≥B .{}11x x -≤<C .{}1x x <-D .{}21x x -≤<7.已知集合{}|03A x x =<<,{}|14B x x =≤≤,则A B ⋃=( )A .{}|13≤<x xB .{}|04x x <≤C .{}|04x x <<D .{}3|1x x <<8.已知集合{}|21x A x =>,{}22B x y x x ==-∣,则A B =( ) A .()0,+∞ B .(]0,2 C .(]1,2 D .[)2,+∞9.已知集合{}28x A x =≤,{}16B x x =-≤≤,则A B ⋃=( ) A .(,6]-∞ B .[1,6]- C .[1,3]- D .(0,6]10.设全集{}*5U x N x =∈≤,集合{}1,2M =,{}2,3,4N =,则图中阴影部分表示的集合是( )A .{}2B .{}3,4C .{}2,3D .{}2,3,4 11.已知集合{}(5)0A x x x =-<,{}14B x x =-,则A B ⋃=( )A .[1,0)-B .[4,5)C .(0,4]D .[1,5)-12.设集合{}A x x a =>,{}2320B x x x =-+>,若A B ⊆,则实数a 的取值范围是( ).A .(),1-∞B .(],1-∞C .()2,+∞D .[)2,+∞ 13.设全集2,1,0,1,2U,{}2,1,2A =--,{}2,1,0,1B =--,则()U A B =( ) A .{}2,1- B .{}0,1 C .{}1,0,1- D .{}2,1,0,1--14.设集合{}*21230,1A x N x x B x R x ⎧⎫=∈--≤=∈≥⎨⎬⎩⎭∣∣,则A B =( ) A .0,1 B .{}1 C .(]0,1 D .{}0,1 15.下面五个式子中:①{}a a ⊆;②{}a ∅⊆;③{a }∈{a ,b };④{}{}a a ⊆;⑤a ∈{b ,c ,a };正确的有( )A .②④⑤B .②③④⑤C .②④D .①⑤二、填空题16.集合()(){}2140,A x x x ax x R =-++=∈中所有元素之和为3,则实数=a ________. 17.若集合406x A x x ⎧⎫-=<⎨⎬+⎩⎭,{}230B x x =+<,则()R A B ⋂=______. 18.已知集合(){}ln 2|A x y x ==-,{}2430|B x x x ≤=-+,则A B ⋃=____________19.若A ={}(,)21x y y x =-,B ={}2(,)x y y x =,则A B =____________ 20.已知函数2()43f x x x =-+,()52g x mx m =+-,若对任意的[]11,4x ∈,总存在[]21,4x ∈,使12()()f x g x =成立,则实数m 的取值范围是 ________.21.若{}31,2a ∈,则实数=a ____________.22.已知集合{}N 4sin ,02A x x θθπ=∈<≤≤,若集合A 中至少有3个元素,则实数θ取值范围为________23.某班有学生45人,参加了数学小组的学生有31人,参加了英语小组的学生有26人.已知该班每个学生都至少参加了这两个小组中的一个小组,则该班学生中既参加了数学小组,又参加了英语小组的学生有___________人.24.立德中学有35人参加“学党史知识竞赛”若答对第一题的有20人,答对第二题的有16人,两题都答对的有6人,则第一、二题都没答对的有___人.25.已知A ={x |2a <x ≤a +8},B ={x |x <-1或x >5},若A ∪B =R , 则a 的取值范围是________.三、解答题26.已知集合2111x A x x +⎧⎫=>-⎨⎬-⎩⎭,(){}222B x x m x m B =<-+,不为空集. (1)当1m =时,求()R A B ⋃;(2)若“x A ∈”是“x B ∈”的必要条件,求实数m 的取值范围.27.已知函数()f x =A ,函数()g x 的定义域为集合B ,(1)当0a =时,求A B ;(2)设命题:p x A ∈,命题:q x B ∈,p q 是的充分不必要条件,求实数a 的取值范围.28.已知集合{}37A x x =≤<,{}210B x x =<<,{}C x x a =<.(1)求A B ,()A B R ;(2)若A C ⋂≠∅,求a 的取值范围.29.已知集合{}12,,,n A a a a =⋅⋅⋅(120n a a a ≤<<⋅⋅⋅<,*n ∈N ,3n ≥)具有性质P :对任意,i j (1i j m ≤≤≤),i j a a +与j i a a -至少一个属于A .(1)分别判断集合{}0,2,4M =,与{}1,2,3N =是否具有性质P ,并说明理由;(2){}123,,A a a a =具有性质P ,当24a =时,求集合A ;(3)①求证:0A ∈;②求证:1232n n n a a a a a +++⋅⋅⋅+=.30.已知集合{}{}222,|540A xa a B x x x x =-≤+=-+≤≥∣. (1)当3a =时,求A B ;(2)若0a >,且“x A ∈”是“R x B ∈”的充分不必要条件,求实数a 的取值范围.【参考答案】一、单选题1.C【解析】【分析】根据补集的定义,结合一元二次不等式的解法进行求解即可.【详解】 因为集合{}2230{|13}A x x x x x =--<=-<<, 所以U A {1x x ≤-∣或3}x ≥. 故选:C.2.C 【解析】【分析】分别求出集合M 和集合N ,然后取交集即可.【详解】集合(){}{}|20|02M x x x x x =-<=<<,{}|1N x x =<,则MN ={}()|010,1x x <<=, 故选:C3.D【解析】【分析】求出集合A 、B ,利用交集和补集的定义可求得集合()U A B ∩.【详解】 因为{}30232x A x x x x ⎧⎫-=≤=-<≤⎨⎬+⎩⎭,{}{}ln 1e B x x x x =≥=≥,所以,{}e U B x x =<,因此,()()2,e U A B =-.故选:D.4.A【解析】【分析】首先解一元二次不等式求出集合B ,再根据交集的定义计算可得;【详解】解:由()()130x x +-≤,解得13x -≤≤,所以()(){}{}|130|13B x x x x x =+-≤=-≤≤,又{}|32A x x =-<<,所以{}|12A B x x ⋂=-≤<.故选:A5.D【解析】【分析】根据韦恩图,写出相应集合即可【详解】由图可知,阴影表示的集合为集合A 相对于全集U 的补集,即阴影表示的集合是U A ,所以{}32U A x x =-≤<-;故选:D6.B【解析】【分析】解不等式可求得集合,A B ,由交集定义可得结果.【详解】{}{}22012A x x x x x =--≤=-≤≤,{}{}101B x x x x =-<=<, {}11A B x x ∴⋂=-≤<.故选:B.7.B【解析】【分析】 根据集合的并集运算即可.【详解】因为{}|03A x x =<<,{}|14B x x =≤≤,所以{}|04A B x x =<≤.故选:B.8.B【解析】【分析】先求出集合A ,B ,再根据交集定义即可求出.【详解】因为{}|0A x x =>,{}|02B x x =≤≤,所以(]0,2A B =.故选:B.9.A【解析】【分析】先解出集合A ,再计算A B 即可.【详解】{}{}283x A x x x =≤=≤,故A B ⋃=(,6]-∞. 故选:A.10.B【解析】【分析】由Venn 图中阴影部分可知对应集合为N()U M ,然后根据集合的基本运算求解即可. 【详解】解:由Venn 图中阴影部分可知对应集合为N ()U M全集*{|5}{1U x N x =∈≤=,2,3,4,5},集合{1M =,2},{2N =,3,4},U M ={}3,4,5,N ()U M ={}3,4.故选:B .11.D【解析】【分析】由一元二次不等式的解法求出集合A ,再根据并集的定义即可求解.【详解】解:因为集合{}{}(5)005A x x x x x =-<=<<,{}14B x x =-,所以{}{}[05141,5)A B x x x x ⋃=<<⋃-=-.故选:D.12.D【解析】【分析】先求出集合B ,再由A B ⊆求出实数a 的范围.【详解】{}{23202B x x x x x =-+>=>或}1x <. 因为集合{}A x x a =>,A B ⊆,所以2a ≥.故选:D13.B【解析】【分析】先求U A ,再求()U A B ⋂即可.【详解】 U A ={0,1},()U A B ={0,1}. 故选:B.14.B【解析】【分析】先求出结合,A B ,再根据集合的交集运算,即可求出结果.【详解】 因为{}{}{}*2*N 230N 131,2,3A x x x x x =∈--≤=∈-≤≤=∣, {}1101B x x x x ⎧⎫=∈≥=∈<≤⎨⎬⎩⎭R R 所以{}1A B =.故选:B.15.A【解析】【分析】根据元素与集合,集合与集合之间的关系逐个分析即可得出答案.【详解】①中,a 是集合{a }中的一个元素,{}a a ∈,所以①错误;空集是任一集合的子集,所以②正确;{}a 是{},a b 的子集,所以③错误;任何集合是其本身的子集,所以④正确;a 是{},,bc a 的元素,所以⑤正确.故选:A.二、填空题16.2-【解析】【分析】由()()2140x x ax -++=得1231x x x a ++=-,即可求解参数. 【详解】由()()2140x x ax -++=得10x -=或240x ax ++=所以11x =或23x x a +=-依题意得12313x x x a ++=-=,得2a =-故答案为:2-.17.342x x ⎧⎫-≤<⎨⎬⎩⎭【解析】【分析】先求出集合A 和集合B 的补集,再求两集合的交集即可【详解】 依题意,{}40646x A x x x x ⎧⎫-=<=-<<⎨⎬+⎩⎭,{}32302B x x x x ⎧⎫=+<=<-⎨⎬⎩⎭, 则R 32B x x ⎧⎫=≥-⎨⎬⎩⎭, 故()R 342A B x x ⎧⎫⋂=-≤<⎨⎬⎩⎭. 故答案为:342x x ⎧⎫-≤<⎨⎬⎩⎭18.[)1,+∞ 【解析】【分析】先求出集合A 、B ,再求A B .【详解】集合(){}()2|2ln ,A x y x =+∞==-,{}[]2|1,3430B x x x =≤=-+, 所以()[][)2,1,31,A B +∞⋃=∞⋃+=.故答案为:[)1,+∞19.{(1,1)}【解析】【分析】由集合中的条件组成方程组求解可得.【详解】 将21y x =-代入2yx ,得2210x x -+=,解得1x =,则211y =-=,所以{(1,1)}A B =.故答案为:{(1,1)} 20.(,3][6,)-∞-⋃+∞【分析】根据对任意的[]11,4x ∈,总存在[]21,4x ∈,使得12()()f x g x =,可得两个函数值域的包含关系,进而根据关于m 的不等式组,解不等式组即可.【详解】因为()22()4321f x x x x =-+=--,所以函数()f x 的对称轴为2x =,对任意的[]11,4x ∈,记()[]1,3f x ∈-.记[]1,3A =-.由题意知,当0m =时不成立,当0m >时,()52g x mx m =+-在[]1,4上是增函数,所以[]()5,25g x m m ∈-+,记[]5,25B m m =-+由题意知,B A所以m m -≥-+≥⎧⎨⎩15253,解得6m ≥. 当0m <时,()52g x mx m =+-在[]1,4上是减函数,所以[]()25,5g x m m ∈+-,记[]25,5C m m =+-,由题意知,C A ⊇所以251{53m m +≤--≥,解得3m ≤-. 综上所述,实数m 的取值范围是(,3][6,)-∞-⋃+∞.故答案为: (,3][6,)-∞-⋃+∞【点睛】解决本题的关键是将问题转化为对任意的[]11,4x ∈,总存在[]21,4x ∈,使得12()()f x g x =, 可得两个函数值域的包含关系,进而分别求两个函数的值域.21.5##32【解析】【分析】根据题中条件,由元素与集合之间的关系,得到23a =求解,即可得出结果.【详解】因为{}31,2a ∈,所以23a =,解得32a =. 故答案为:32. 22.5,66ππ⎛⎫ ⎪⎝⎭【分析】分析可知元素0、1、2必属于集合A ,可得出1sin 2θ>,由[]0,2θπ∈可求得θ的取值范围. 【详解】要使集合A 中至少有3个元素,则元素0、1、2必属于集合A ,所以只需4sin 2θ>,即1sin 2θ>, 又[]0,2θπ∈,解得5,66ππθ⎛⎫∈ ⎪⎝⎭. 故答案为:5,66ππ⎛⎫ ⎪⎝⎭. 23.12【解析】【分析】设该班学生中既参加了数学小组,又参加了英语小组的学生有x 人,列方程求解即可.【详解】设该班学生中既参加了数学小组,又参加了英语小组的学生有x 人,则31264512x =+-=. 故答案为:12.24.5【解析】【分析】集合元素计算,只对第一题,只对第二题,二题都答对和二题都不对,总数为35人.【详解】设第一、二题都没答对的有x 人,则()()206166635x -+-++= ,所以5x =故答案为:525.13,2⎡⎫--⎪⎢⎣⎭ 【解析】【分析】由集合{|28}A x a x a =<+,{|1B x x =<-,或5}x >,A B R =,列出不等式组,能求出a 的取值范围.【详解】集合{|28}A x a x a =<+,{|1B x x =<-,或5}x >,A B R =,∴2185a a <-⎧⎨+⎩, 解得132a -<-.a ∴的取值范围为[3-,1)2-. 故答案为:[3-,1)2-. 三、解答题26.(1)12x x ⎧≤-⎨⎩或}1x ≥ (2)(]2,4-【解析】【分析】(1)分别求出集合,A B ,再根据并集和补集的定义即可得出答案;(2)根据“x A ∈”是“x B ∈”的必要条件,可得B A ⊆且B ≠∅,讨论m 的范围,从而可得出答案.(1)解:当1m =时,{}212112B x x x x x ⎧⎫=<+=-<<⎨⎬⎩⎭, {}211211x A x x x x +⎧⎫=>-=-<<⎨⎬-⎩⎭, 则112A B x x ⎧⎫⋃=-<<⎨⎬⎩⎭, 所以()12R A B x x ⎧⋃=≤-⎨⎩或}1x ≥; (2) 解:(){}()(){}222210B x x m x m x x m x =<-+=+-<, 因为“x A ∈”是“x B ∈”的必要条件,所以B A ⊆且B ≠∅,故2m ≠-, 当12m ->,即2m <-时,12m B x x ⎧⎫=<<-⎨⎬⎩⎭, 因为{}21A x x =-<<,所以A B =∅,不符合题意; 当12m -<,即2m >-时,12m B x x ⎧⎫=-<<⎨⎬⎩⎭, 则有222m m >-⎧⎪⎨-≥-⎪⎩,解得24m -<≤, 综上(]2,4m ∈-.27.(1)1{|03A B x x ⋂=-<≤或1}x =;(2)1a ≥或43a ≤-. 【解析】【分析】(1)求解分式不等式和一元二次不等式,解得集合,A B ,再求交集即可; (2)根据p q 是的充分不必要条件可知A 是B 的真子集,列不等式求a 的取值范围即可.(1)要使得()f x 有意义,则1031x x -≥+,得(1)(31)0310x x x -+≥⎧⎨+≠⎩,解得:113x ≤-<, 所以1|13A x x ⎧⎫=-<≤⎨⎬⎩⎭;当0a =时,()g x =()g x 有意义,则20x x -≥,解得:1x ≥或0x ≤, 所以{|1B x x =≥或0}x ≤, 故1{|03A B x x ⋂=-<≤或1}x =. (2)以为22(21)0x a x a a -+++≥,即[]()(1)0x a x a --+≥,解得:1x a ≥+或x a ≤, 所以{|1B x x a =≥+或}x a ≤,由题意可知A 是B 的真子集,所以1a ≥或113a +≤-(等号不同时成立), 得1a ≥或43a ≤-. 28.(1){}210A B x x ⋃=<<,R (){|23A B x x =<<或710}x ≤<;(2)()3,+∞.【解析】【分析】 (1)直接利用集合并集、交集和补集的定义求解;(2)分析A C ⋂≠∅即得解.(1)解:因为A ={x |3≤x <7},B ={x |2<x <10}, 所以{}210A B x x ⋃=<<.因为A ={x |3≤x <7},所以R {|3A x x =<或 7}x ≥则R (){|23A B x x =<<或710}x ≤<. (2)解:因为A ={x |3≤x <7},C ={x |x a <},且A C ⋂≠∅,所以3a >.所以a 的取值范围为()3,+∞.29.(1)集合M 具有,集合N 不具有,理由见详解(2)A {0,4,8}=(3)证明见详解【解析】【分析】(1)利用性质P 的定义判断即可;(2)利用33a a A +∉,330a A a -=∈可得10a =,又23a a A +∉,32a a A -∈,分析可得322a a a -=,即得解;(3)① 由 n n a a A +∉,0n n a A a -=∈,可证明; ② 由110n n n n n a a a a a a -≤<<⋅⋅⋅<---,以及n n i a a A -+∉,n n i a a A --∈可得121321,,,...,n n n n n n n n a a a a a a a a a a a a --=-=-=-=-,将等式左右两边相加可证明.(1)集合{}0,2,4M =具有性质P ,集合{}1,2,3N =不具有性质P 理由如下:对集合{}0,2,4M =,由于202,422,404,000,220,440M -=-=-=-=-=-=∈ 所以集合M 具有性质P ;对集合{}1,2,3N =,由于224N +=∉,故集合N 不具有性质P .(2)由于33333A a a a a a +>∴+∉,故330a A a -=∈10a ∴= 又23323,a a a A a a +>∴+∉,故32a a A -∈又3230<a a a -<,故322a a a -=322=8a a =∴因此集合A {0,4,8}=(3)①由于n n n n n A a a a a a +>∴+∉,故0n n a A a -=∈10a ∴= 0A ∴∈,故得证②由于120n a a a ≤<<⋅⋅⋅<故110n n n n n a a a a a a -≤<<⋅⋅⋅<---又(1,2,...,1)n n i n n n i a a a i n a a A --+>=-∴+∉n n i a a A -∴-∈121321,,,...,n n n n n n n n a a a a a a a a a a a a --∴=-=-=-=- 将各个式子左右两边相加可得:1232n n n a a a a a +++⋅⋅⋅+= 故得证30.(1){|11A B x x ⋂=-≤≤或}45x ≤≤(2)01a <<【解析】【分析】(1)求出集合,A B ,进而可得A B ; (2)根据包含关系列不等式求解即可.(1)∵当3a =时,{}{|15,|1A x x B x x =-≤≤=≤戓}4x ≥, ∴{|11A B x x ⋂=-≤≤或}45x ≤≤;(2)∵{|1B x x =≤或}4x ≥,∴{}|14R B x x =<<, 由“x A ∈”是“R x B ∈的充分不必要条件得A 是B R 的真子集且A ≠∅又{}()|220x A x a a a =-≤+>≤,∴2124a a ->⎧⎨+<⎩∴01a <<.。

集合测试题及答案

集合测试题及答案

集合测试题及答案一、选择题(每题2分,共10分)1. 集合A={1, 2, 3},B={2, 3, 4},那么A∩B(A与B的交集)是什么?A. {1}B. {2, 3}C. {4}D. {1, 2, 3}2. 如果集合C={x | x是偶数},那么5属于C吗?A. 是B. 否3. 集合D={x | x是小于10的自然数},D的元素个数是多少?A. 5B. 9C. 10D. 无穷多4. 集合E={x | x^2 - 5x + 6 = 0},E中元素的个数是?A. 0B. 1C. 2D. 35. 对于集合F={1, 2, 3},其幂集P(F)包含多少个元素?A. 3B. 4C. 7D. 8二、填空题(每题3分,共15分)6. 集合A={x | x是小于5的正整数},用描述法表示A为________。

7. 集合G={1, 2, 3},那么G的补集(相对于自然数集N)是________。

8. 若集合H={x | x是大于1且小于10的整数},H的并集(与集合G={2, 3, 4, 5})是________。

三、解答题(每题5分,共20分)9. 给定集合I={1, 2, 3, 4, 5},J={4, 5, 6, 7},求I∪J(I与J的并集)。

10. 集合K={x | x是偶数且x<10},L={x | x是3的倍数且x<10},求K∩L(K与L的交集)。

11. 如果集合M={x | x是大于0且小于10的整数},求M的子集个数。

12. 集合N={x | x是2的幂次方},求N的前5个元素。

答案一、选择题1. B. {2, 3}2. B. 否3. C. 104. C. 25. D. 8二、填空题6. A={1, 2, 3, 4}7. G的补集是{x | x属于自然数集N且x≠1, 2, 3}8. H∪G={1, 2, 3, 4, 5}三、解答题9. I∪J={1, 2, 3, 4, 5, 6, 7}10. K∩L={6}11. M的子集个数是2^5=3212. N的前5个元素是{1, 2, 4, 8, 16}这份测试题覆盖了集合的基本操作,包括交集、并集、补集、子集和幂集等概念,适合作为集合理论的复习材料。

集合专题训练(含答案)

集合专题训练(含答案)

集合专题训练(含答案)1.对集合中有关概念的考查在2020年校运动会中,集合A表示参加比赛的运动员,集合B表示参加比赛的男运动员,集合C表示参加比赛的女运动员。

那么下列关系正确的是()A。

A是B的子集B。

B是C的子集C。

A与B的交集等于CD。

B与C的并集等于A解析:根据题意,A包含了所有参加比赛的运动员,B只包含了男运动员,C只包含了女运动员。

因此,B是A的子集。

选项A正确。

点评:此题考查了集合的子集概念和集合运算,需要注意从元素的角度理解集合的含义。

2.对集合性质及运算的考查已知全集U={2,3,4,5,6,7},集合M={3,4,5,7},集合N={2,4,5,6},那么下列哪个选项是正确的?A。

M与N的交集为{4,6},N等于全集UB。

M与N的并集为{2,3,4,5,6,7},N等于全集UC。

(C并N)与M的并集等于全集UD。

(C并M)与N的交集等于N解析:根据题意,M与N的交集为{4,5},N不等于全集U;M与N的并集为{2,3,4,5,6,7},N不等于全集U;(C并N)与M的并集包含了全集U中的所有元素,因此选项C正确;(C并M)与N的交集为{4},不等于N。

因此选项D错误。

点评:此题考查了集合的并、交、补运算以及集合间的关系应用。

可以使用文氏图来帮助理解。

3.对与不等式有关集合问题的考查已知集合M={x|x+3<x-1},集合N={x|-3<x<1},那么集合{ x | x-1<x }等于哪个选项?A。

M并NB。

M交NC。

实数集RD。

(M交N)的补集解析:将集合M中的不等式化简得到-3<x,将集合N中的不等式化简得到-3<x<1,因此集合M交N等于{x|-3<x<1}。

而{x|x-1<x}等价于{x|x<1},因此选项C正确。

点评:此题考查了解不等式的知识内容,同时也考查了集合的运算。

需要注意参数的取值范围以及数形结合思想的应用。

高中数学集合测试题(附答案和解析)

高中数学集合测试题(附答案和解析)

高中数学集合测试题(附答案和解析)一、单选题1.已知集合{}1,4,M x x =,{}21,N x =,若N M ⊆,则实数x 组成的集合为( ) A .{}0 B .{}2,2- C .2,0,2 D .2,0,1,22.已知集合{|A x y ==,{}0B x x =>,则A B ⋃=( ) A .{|3}x x ≤ B .{|1}x x ≥- C .{}|3x x > D .{}|0x x > 3.已知全集{}2,1,1,4U =--,{}2,1A =-,{}1,4B =,则()U A B ⋃=( ). A .{}2-B .{}2,1-C .{}1,1,4-D .{}2,1,1--4.已知集合{}21,A y y x x ==-∈Z ,{}25410B x x x =--≤,则A B =( ) A .{}1B .{}0,1C .{}0,1,2D .{}1,3,55.设集合{}2,1,0,1,2,3A =--,{|B x y ==,则A B =( ) A .{}2B .{}0,1C .{}2,3D .{}2,1,0,1,2-- 6.已知集合{1,1},{0,1}A B =-=,设集合{,,}C z z x y x A y B ==+∈∈∣,则下列结论中正确的是( )A .A C ⋂=∅B .AC A ⋃= C .B C B =D .A B C =7.已知集合{}35A x x =-≤<,{B x y ==,则()R A B ⋂=( )A .13,2⎡⎫--⎪⎢⎣⎭B .1,52⎛⎫- ⎪⎝⎭C .[)3,2--D .()2,5-8.已知集合{}1,0,1,2,|sin 02k A B k π⎧⎫=-==⎨⎬⎩⎭,则A ∩B =( ) A .{-1,1}B .{1,2}C .{0,2}D .{0,1,2}9.已知集合{|A x y ==,集合{|1}B x x =<,则A B =( ) A .[)1,1- B .(1,1)- C .(,1)-∞ D .(0,1)10.已知集合{}14A x x =-≤≤,{}260B x N x x =∈--≤ ,则A B =( ) A .[]1,3- B .[]2,4- C .{}1,2,3 D .{}0,1,2,311.已知函数()2ln 3y x x =-的定义域为A ,集合{}14B x x =≤≤,则()A B =R ( )A .{0,1,2,3,4}B .{1,2,3}C .[0,4]D .[1,3] 12.设集合{|12}A x x =-<<,{|2}B x a x a =-<<,若{|10}A B x x =-<<,则A B ⋃=( )A .(2,1)-B .(2,2)-C .(1,2)-D .(0,2)13.已知集合{}21A x x =-<<,{}03B x x =≤≤,则A B ⋃=( )A .{}01x x ≤<B .{}23x x -<≤C .{}13x x <≤D .{}01x x <<14.已知集合{}2|20,A x x x x R =--≤∈,{}|14,B x x x Z =-<<∈,则A B =( ) A .(1,2]-B .(1,2)-C .{}0,2D .{}0,1,2 15.已知集合{}1,0,1,2A =-,{}12B x x =-<<,则A B =( )A .{}1,0,1-B .{}0,1C .{}1,1,2-D .{}1,2二、填空题16.如图,设集合,A B 为全集U 的两个子集,则A B =____________.17.若全集U =R ,集合{}31A x x =-≤≤,{}32A B x x ⋃=-≤≤,则U B A =___________.18.某班有39名同学参加数学、物理、化学课外研究小组,每名同学至多参加两个小组.已知参加数学、物理、化学小组的人数分别为26,15,13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,则同时参见数学和化学小组有多少人__________.19.设全集R U =,集合{}3,1A =-,{}22,1B m m =--,且A B =,则实数m =______.20.已知集合A 与B 的关系如下图,则图中所示的阴影部分用集合表示为________.(要求用集合A 与B 的符号关系表示)21.已知集合{}2A x x =<,{}2,0,1,2B =-,则A B =_______.22.已知集合(){}2,M x y y x ==∣,(){},0N x y y ==,则M N =______.23.在下面的写法中:①∅ {}0;②{}{}00,1∈;③0∈∅;④{}{}0,11,0⊆;⑤{}0∅∈,错误..的写法的序号是______. 24.若全集{}0,1,2,3,4U =,{}012M =,,,{}2,3N =,则M N ⋂=______. 25.若集合{}|21A x x =-<≤,{}|13B x x =<≤,{}|2C x x =>,则()A B C =______.三、解答题26.已知集合{}37A x x =≤<,{}210B x x =<<,{}C x x a =<.(1)求A B ,()A B R ;(2)若A C ⋂≠∅,求a 的取值范围.27.已知集合{}3A x a x a =≤≤+,{1B x x =<-或5}x >.(1)若A B =∅,求a 的取值范围;(2)若A B A =,求a 的取值范围.28.设r 为正实数,若集合(){}22,4M x y x y =+≤,()()(){}222,11N x y x y r =-+-≤.当M N N =时,求r 的取值范围.29.设{}24,21,A a a =--,{}5,1,9B a a =--,已知{}9A B ⋂=,求a 的值.30.已知集合(){}2log 31A x x =->,22112y y B y -⎧⎫⎪⎪⎛⎫=<⎨⎬ ⎪⎝⎭⎪⎪⎩⎭. (1)分别求出集合A 、B ;(2)设全集为R ,求()R A B ⋂.【参考答案】一、单选题1.C【解析】【分析】若N M ⊆,所以2x x =或24x =,解出x 的值,将x 的值代入集合,检验集合的元素满足互异性.【详解】因为N M ⊆,所以2x x =,解得0x =,1x =或24x =,解得2x =±,当0x =时,{}1,4,0M =,{}1,0N =,N M ⊆,满足题意.当1x =时,{}1,4,1M =,不满足集合的互异性.当2x =时,{}1,4,2M =,1,4N,若N M ⊆,满足题意. 当2x =-时,{}1,4,2M =-,1,4N,若N M ⊆,满足题意.故选:C.2.B【解析】【分析】由分式不等式求得集合A ,再根据并集的原则求解即可.【详解】 对于集合A ,满足1033x x x +⎧≥⎪-⎨⎪≠⎩,即()()3103x x x ⎧-+≤⎨≠⎩, 解得13x -≤<,即{}13A x x =-≤<, 又{}0B x x =>,所以{}1A B x x ⋃=≥-,故选:B3.D【解析】【分析】由集合的补集运算求U B ,再利用集合的并集运算求()U A B 即可. 【详解】由题意得,{}U 2,1B =--,又{}2,1A =-,(){}{}{}U 2,12,12,1,1AB ==---=--,故答案为:D.4.A【解析】首先解一元二次不等式求出集合B ,再根据交集的定义计算可得;【详解】解:由25410x x --≤,即()()5110x x +-≤,解得115x -≤≤, 所以{}215410|15B x x x x x ⎧⎫=--≤=-≤≤⎨⎬⎩⎭, 又{}{}21,,3,1,1,3,5,A y y x x Z ==-∈=--,所以{}1A B ⋂=;故选:A5.C【解析】【分析】 根据偶次根式有意义及一元二次不等式的解法,再结合集合的交集的定义即可求解.【详解】由y =()()250x x --≥,解得25x ≤≤,所以{}|25B x x =≤≤,A B ={}{}{}2,1,0,1,2,3|252,3x x --≤≤=,故选:C.6.C【解析】【分析】 由题意得{1,0,1,2}C =-,再由交集和并集运算求解即可.【详解】由题意可知,{1,0,1,2}C =-,{1,1}A C ⋂=-,{}1,0,1,2A C C ⋃=-=,{0,1},{1,0,1}B C B A B C ⋂==⋃=-≠.故选:C7.A【解析】【分析】先求出集合B ,得出其补集,再由交集运算得出答案.【详解】由420x +≥,得21x ≥-,即集合1,2B ⎡⎫=-+∞⎪⎢⎣⎭, 所以R 1,2B ∞⎛⎫=-- ⎪⎝⎭.所以()R 13,2A B ⎡⎫=--⎪⎢⎣⎭. 故选:A8.C【分析】 先求{}2,B k k n n Z ==∈,再求交集即可.【详解】∵集合{}1,0,1,2A =-,{}sin 0?2,2k B k k k n n Z π⎧⎫====∈⎨⎬⎩⎭, 则{}0,2A B =.故选:C .9.A【解析】【分析】求出集合A ,根据集合的交集运算即可求得答案.【详解】由题意得:{|{|1}A x y x x ===≥-,故{|11}A B x x ⋂=-≤<,故选:A10.D【解析】【分析】由题知{}0,1,2,3B =,再根据集合交集运算求解即可.【详解】解:解不等式260x x --≤得23x -≤≤,所以{}{}2600,1,2,3B x N x x =∈--≤=, 因为{}14A x x =-≤≤所以A B ={}0,1,2,3故选:D11.D【解析】【分析】根据对数函数的性质,可知230x x ->,由此即可求出集合A ,进而求出A R ,再根据交集运算即可求出结果.【详解】由题意可知,230x x ->,所以0x <或3x >, 所以{}{}03A x x x x =<>,故{}03A x x =≤≤R ,所以()[]1,3R A B =.故选:D.12.B【解析】由{}10A B x x ⋂=-<<,求出0a =,{}20B x x =-<<,由此能求出A B .【详解】 集合{}12A x x =-<<,{}2B x a x a =-<<,{}10A B x x ⋂=-<<,0a ∴=,{}20B x x ∴=-<<,满足题意则(2,2)=-A B .故选:B .13.B【解析】【分析】根据集合的并集计算即可.【详解】{}21A x x =-<<,{}03B x x =≤≤{}|23A B x x ∴=-<≤,故选:B14.D【解析】【分析】解不等式后求解【详解】220x x --≤,解得[1,2]A =-,{0,1,2}A B ⋂=故选:D15.B【解析】【分析】利用交集概念及运算,即可得到结果.【详解】∵集合{}1,0,1,2A =-,{}12B x x =-<<,∴{}0,1A B =,故选:B二、填空题16.{}1,2,3,4,5【解析】【分析】由题知{}{}1,2,3,4,3,4,5A B ==,进而求并集即可.【详解】解:由题知{}{}1,2,3,4,3,4,5A B ==,所以{}1,2,3,4,5A B =.故答案为:{}1,2,3,4,517.{}12x x <≤##(]1,2【解析】【分析】由集合A ,以及集合A 与集合B 的并集确定出集合B ,以及求出集合A 的补集,再根据交集运算即可求出结果.【详解】因为{}31A x x =-≤≤,{}32A B x x ⋃=-≤≤,所以{3U x x A =<-或}1x >,{}{}1232x x x B x ⊆<≤⊆-≤≤,所以{}12U B A x x =<≤.故答案为:{}12x x <≤.18.5【解析】【分析】设参加数学、物理、化学小组的同学组成的集合分别为A ,B 、C ,根据容斥原理可求出结果.【详解】设参加数学、物理、化学小组的同学组成的集合分别为A ,B 、C ,同时参加数学和化学小组的人数为x ,因为每名同学至多参加两个小组,所以同时参加三个小组的同学的人数为0,如图所示:由图可知:20654939x x x -+++++-=,解得5x =,所以同时参加数学和化学小组有5人.故答案为:5.19.3或-1##-1或3【解析】【分析】根据集合相等得到223m m -=,解出m 即可得到答案.【详解】由题意,2233m m m -=⇒=或m =-1.故答案为:3或-1.20.()A B A B ⋃【解析】【分析】由集合的交并补运算求解即可.【详解】设全集为A B ,则阴影部分表示集合A 与B 交集的补集,即()A B A B ⋃ 故答案为:()A B A B ⋃21.{}0,1【解析】【分析】先求出集合A ,然后根据交集的定义求得答案.【详解】 由题意,{}22A x x =-<<,所以{}0,1A B =.故答案为:{}0,1.22.(){}0,0【解析】【分析】根据题意,得到两集合均为点集,联立20y x y ⎧=⎨=⎩求解,即可得出结果. 【详解】因为集合(){}2,M x y y x ==∣表示直线2y x 上所有点的坐标,集合(){},0N x y y ==,表示直线0y =上所有点的坐标,联立20y x y ⎧=⎨=⎩,解得00x y =⎧⎨=⎩ 则(){}0,0M N =.故答案为:(){}0,0.23.②③⑤【解析】【分析】根据集合与集合的关系,元素与集合的关系确定正确答案.【详解】①,空集是任何非空集合的真子集,①正确.②,集合与集合间是包含关系,不是“属于”,元素与集合之间是属于关系,②错误. ③,空集没有任何元素,③错误.④,根据集合元素的无序性可知④正确.⑤,集合与集合间是包含关系,不是“属于”,元素与集合之间是属于关系,⑤错误. 故答案为:②③⑤24.{}3【解析】【分析】由交集、补集的定义计算.【详解】 由题意{4,3}M =,所以M N ⋂={3}.故答案为:{3}.25.{}|23x x <≤【解析】【分析】先求得A B ,然后求得()A B C .【详解】{}23A B x x =|-<≤,()A B C ={}|23x x <≤.故答案为:{}|23x x <≤三、解答题26.(1){}210A B x x ⋃=<<,R (){|23A B x x =<<或710}x ≤<; (2)()3,+∞.【解析】【分析】(1)直接利用集合并集、交集和补集的定义求解;(2)分析A C ⋂≠∅即得解.(1)解:因为A ={x |3≤x <7},B ={x |2<x <10}, 所以{}210A B x x ⋃=<<.因为A ={x |3≤x <7},所以R {|3A x x =<或 7}x ≥则R (){|23A B x x =<<或710}x ≤<.(2) 解:因为A ={x |3≤x <7},C ={x |x a <},且A C ⋂≠∅,所以3a >.所以a 的取值范围为()3,+∞.27.(1)[]1,2-(2)()(),45,-∞-+∞【解析】【分析】(1)根据交集的定义,列出关于a 的不等式组即可求解;(2)由题意,A B ⊆,根据集合的包含关系列出关于a 的不等式组即可求解;(1) 解:∵{}3,{1A x a x a B x x =≤≤+=<-或5}x >,且A B =∅, ∴135a a ≥-⎧⎨+≤⎩,解得12a -≤≤, ∴a 的取值范围为[]1,2-;(2) 解:∵{}3,{1A x a x a B x x =≤≤+=<-或5}x >,且A B A =,∴A B ⊆,∴31a +<-或5a >,即4a或5a >, ∴a 的取值范围是()(),45,-∞-+∞.28.02r <≤-【解析】【分析】 确定集合的元素,由两位置关系可得.【详解】M N N =,则N M ⊆,集合M 表示以原点O 为圆心,2为半径的圆及圆内部分,集合N 表示以点C (1,1)为圆心,r 为半径的圆及内部,OC =2r OC -≥=02r <≤29.-3【解析】【分析】根据{}9A B ⋂=,分219a -=和29a =,讨论求解.【详解】解:因为{}24,21,A a a =--,{}5,1,9B a a =--,且{}9A B ⋂=,所以当219a -=时,解得5a =,此时{}{}4,9,25,0,4,9A B =-=-,不符合题意; 当29a =时,解得3a =或3a =-,若3a =,则{}{}4,52,9,9,,2B A =--=-,不成立;若3a =-,则{}{}4,7,9,8,4,9A B =--=-,成立;所以a 的值为-3.30.(1){}5A x x =>,{0B y y =<或}2y >(2)(){}R 5A B x x ⋂=≤【解析】【分析】(1)利用对数函数和指数函数的单调性可分别求得集合A 、B ;(2)求出A B ,利用补集的定义可求得集合()R A B ⋂. (1)解:(){}{}{}2log 31325A x x x x x x =->=->=>,{}{222112002y y B y y y y y y -⎧⎫⎪⎪⎛⎫=<=->=<⎨⎬ ⎪⎝⎭⎪⎪⎩⎭或}2y >. (2)解:由(1)可得{}5A B x x ⋂=>,因此,(){}R 5A B x x ⋂=≤.。

集合测试题及答案

集合测试题及答案

集合测试题及答案一、选择题1. 集合A和集合B的并集表示为:A. A∪BB. A∩BC. A-BD. A∪B答案:A2. 集合A中所有元素都属于集合B,则称集合A是集合B的:A. 子集B. 并集C. 交集D. 补集答案:A3. 若集合A={1, 2, 3},集合B={2, 3, 4},则A∩B的元素个数为:A. 1B. 2C. 3D. 4答案:B二、填空题1. 集合{1, 2, 3}的补集(相对于全集U={1, 2, 3, 4, 5})是________。

答案:{4, 5}2. 若A={x | x是偶数},B={x | x是3的倍数},则A∩B的元素包括所有________。

答案:6的倍数三、简答题1. 描述什么是集合的幂集,并给出一个具体的例子。

答案:集合的幂集是指一个集合的所有子集构成的集合,包括空集和该集合本身。

例如,集合A={1, 2}的幂集是{∅, {1}, {2}, {1, 2}}。

2. 解释什么是集合的差集,并给出一个例子。

答案:集合的差集是指属于集合A但不属于集合B的所有元素组成的集合。

例如,如果A={1, 2, 3},B={2, 3, 4},则A-B={1}。

四、计算题1. 给定集合A={1, 2, 3, 4}和集合B={3, 4, 5, 6},求A∪B,A∩B,A-B。

答案:A∪B = {1, 2, 3, 4, 5, 6}A∩B = {3, 4}A-B = {1, 2}2. 如果集合C={x | x是小于10的正整数},求C的幂集。

答案:C的幂集包含从空集到C本身的所有子集,即{∅, {1},{2}, ..., {1, 2, ..., 9}}。

五、论述题1. 讨论集合论在数学中的重要性,并给出至少两个应用领域的例子。

答案:集合论是现代数学的基础,它提供了一种形式化的方法来描述数学对象和它们之间的关系。

例如,在逻辑学中,集合论用于定义命题的真值;在计算机科学中,集合论的概念被用来设计数据结构和算法。

高中数学集合测试题(附答案和解析)

高中数学集合测试题(附答案和解析)

高中数学集合测试题(附答案和解析)一、单选题1.已知全集{}1,2,3,4,5U =,集合{}3,4,5A =,{}2,3,4B =,则()U AB =( )A .{}1,3,5B .{}1,2,5C .{}1,5D .{}2,5 2.设集合{}22M x Z x =∈-<,则集合M 的真子集个数为( )A .16B .15C .8D .7 3.如图,已知集合{A =1-,0,1,2},{|128}x B x N +=∈<≤,则图中的阴影部分表示的集合为( )A .{1,2}B .{1-,0,3}C .{1-,3}D .{0,1,2} 4.已知集合{}1,2,3A =,{}20B x x =-<,则A B =( )A .{}1B .{}1,2C .{}0,1,2D .{}1,2,3 5.设集合{}|3,A x x x R =<∈,{}1,2,3B =,则A B =( )A .{}1B .{}1,2,3C .{}1,2D .{}1,0,1-6.已知集合{}20A x x =-≤≤,{}21B x x =>,则A B ⋃=( ) A .[)2,1--B .[]()2,01,-⋃+∞C .(](),01,-∞⋃+∞D .[)2,1-7.已知集合{}21A x x =<,{}e 2x B x =<,则A B =( ) A .()1,1- B .()1,ln 2- C .()0,ln 2 D .()ln 2,1 8.已知集合(){}30A x x x =-<,{}0,1,2,3B =,则A B ( )A .{}0,1,2,3B .{}0,1,2C .{}1,2,3D .{}1,2 9.已知集合11A x x x ⎧⎫-=<⎨⎬+⎩⎭,{}log 4x y x =-,则A B =( ) A .{}41xx -<<∣ B .{}14x x -<< C .{}14x x << D .{}1x x ≥-10.已知集合{}21A x x =-<<,{}03B x x =≤≤,则A B ⋃=( )A .{}01x x ≤<B .{}23x x -<≤C .{}13x x <≤D .{}01x x <<11.已知集合1144A x x ⎧⎫=-<⎨⎬⎩⎭,12B x a x ⎧⎫=<<⎨⎬⎩⎭,若B A ⊆,则实数a 的取值范围是( )A .10,2⎛⎫ ⎪⎝⎭B .10,2⎛⎤ ⎥⎝⎦C .[)0,∞+D .[)1,+∞12.已知集合{}22280,03x A x x x B x x -⎧⎫=--≤=≤⎨⎬+⎩⎭,则A B ⋃=( ) A .{}42x x -≤≤B .{42x x -≤≤且3}x ≠-C .{}34x x -≤≤ D .{34}x x -<≤ 13.已知全集{}0,1,2,3,4,5U A B ==,(){}1,2,4U AB =,B =( ) A .{}0B .{}3,5C .{}0,3,5D .{}1,2,4 14.已知集合{|13}A x x =-<<,1,{}1,2B =-,则A B =( ) A .{}1,2B .{}1,1,2-C .{}0,1,2D .{}1,0,1,2,3- 15.下面给出的四类对象中,构成集合的是( ) A .某班视力较好的同学B .长寿的人C .π的近似值D .倒数等于它本身的数二、填空题16.已知(){}22,1,01M x y x y y =+=<≤,(){},,N x y y x b b R ==+∈,如果M N ≠∅,那么b 的取值范围是______.17.集合*83A x N N x ⎧⎫=∈∈⎨⎬-⎩⎭,用列举法可以表示为A =_________. 18.已知集合(){}(){},24,,5A x y x y B x y x y =-==+=∣∣,则A B 中元素个数为__________.19.某班有学生45人,参加了数学小组的学生有31人,参加了英语小组的学生有26人.已知该班每个学生都至少参加了这两个小组中的一个小组,则该班学生中既参加了数学小组,又参加了英语小组的学生有___________人.20.若集合{}2210A x x x =-+=,{}210B x x =-=,则A ______B .(用符号“⊂”“=”或“⊃”连接)21.若集合{}3cos23,x A x x x R π==∈,{}21,B y y y R ==∈,则A B ⋂=_______. 22.设α:()124R m x m m +≤≤+∈;β:13x ≤≤.若β是α的充分条件,则实数m 的取值范围为______.23.某学校开设校本课程,高一(2110)班确定了数学类、英语类、历史类三个类别校本课程供班上的40名学生选择参加,且40名学生全部参与选择.其中只选数学类的有8人,只选英语类的有8人,只选历史类的有8人,既选数学类又选英语类的有7人,既选数学类又选历史类的有11人,既选英语类又选历史类的有8人,则三类课程都选择参加的有___________人.24.若全集{}0,1,2,3,4U =,{}0,1,2,3A =,{}2,3,4B =,则A B ⋃=______.25.判断下列命题的真假:(1)集合{}1,2,3是集合{}1,2,3的真子集;( )(2){}1是集合{}1,2,3的元素;( )(3)2是集合{}1,2,3的子集;( )(4)满足{}{}00,1,2,3A 的集合A 的个数是322-个.( )三、解答题26.已知{}28200P x x x =--≤,非空集合{}11S x m x m =-≤≤+.若x P ∈是x S ∈的必要不充分条件,求实数m 的取值范围.27.已知集合{}26A x x =-≤≤,{}11,0B x m x m m =-≤≤+>.(1)若A B A ⋃=,求实数m 的取值范围;(2)若x A ∈是x B ∈的充分条件,求m 的取值范围.28.已知函数2()327mx n h x x +=+为奇函数,||1)3x m k x ﹣()=( ,其中R m n ∈、 . (1)若函数h (x )的图象过点A (1,1),求实数m 和n 的值;(2)若m =3,试判断函数11()+()()f x h x k x =在[3x ∈+∞,)上的单调性并证明; (3)设函数()()(),39,3h x x g x k x x ⎧≥⎪=⎨<⎪⎩,若对每一个不小于3的实数1x ,都恰有一个小于3的实数2x ,使得12g x g x ()=() 成立,求实数m 的取值范围.29.已知集合{}3A x a x a =≤≤+,{1B x x =<-或5}x >.(1)若A B =∅,求a 的取值范围;(2)若A B A =,求a 的取值范围.30.已知U =R ,{}2=160A x x -<,{}2=3180B x x x -++>,求A B ,A B .【参考答案】一、单选题1.B【解析】【分析】根据给定条件,利用交集、补集的定义直接计算作答.【详解】集合{}3,4,5A =,{}2,3,4B =,则{3,4}A B =,而全集{}1,2,3,4,5U =,所以(){1,2,5}U A B ⋂=. 故选:B2.D【解析】【分析】求出集合M 中的元素,再由子集的定义求解.【详解】由题意{|04}{1,2,3}M x Z x =∈<<=,因此其真子集个数为3217-=.故选:D .3.B【解析】【分析】由题知{}1,2,3B =,进而得{}1,2A B =,再求阴影部分表示的集合即可.【详解】解:解不等式128x <≤得03x <≤,所以{}1,2,3B =,因为{A =1-,0,1,2},所以{}1,2A B =所以,图中的阴影部分表示的集合为{}1,0,3-.故选:B4.A【解析】【分析】根据集合交集的概念及运算,即可求解.【详解】 由题意,集合{}{}202B x x x x =-<=<,又由{}1,2,3A =,根据集合交集的概念及运算,可得{}1A B ⋂=.故选:A.5.C【解析】【分析】求出集合A 的解集,取交集运算即可.【详解】因为{}|33A x x =-<<,{}1,2,3B =,所以{}1,2A B =.故选:C.6.C【解析】【分析】解不等式求得集合B ,由此求得A B .【详解】()()21,110x x x >+->,解得1x <-或1x >,所以()(),11,B =-∞-⋃+∞,所以(](),01,A B ⋃=-∞⋃+∞.故选:C7.B【解析】【分析】由已知,分别求解出集合A 、集合B 的范围,然后直接求解交集即可.【详解】 由已知,集合{}21A x x =<,即集合{}11A x x =-<<, 集合{}2x B x e =<,即集合{}ln 2B x x =<, 因为11ln ln 21ln e e-=<<=,所以A B ={}1ln 2x x -<<.故选:B.8.D【解析】【分析】先化简集合A ,继而求出A B .【详解】解:(){}{}30=03A x x x x x =-<<<,{}0,1,2,3B =,则A B ={}1,2.故选:D.9.B【解析】【分析】先求出集合A ,B ,再求两集合的交集即可【详解】 解:由11x x -<+得2101x x x ++>+, 因为210x x ++>恒成立,所以1x >-,即{}1A x x =>-.由函数2log y =4x <,即{}4B x x =<. 所以{}14A B x x ⋂=-<<.故选:B10.B【解析】【分析】根据集合的并集计算即可.【详解】{}21A x x =-<<,{}03B x x =≤≤{}|23A B x x ∴=-<≤,故选:B11.C【解析】【分析】解不等式求得集合A ,对a 进行分类讨论,根据B 是A 的子集列不等式,从而求得a 的取值范围. 【详解】1111111,,0,0,4444422x x x A ⎛⎫-<-<-<<<= ⎪⎝⎭,当12a ≥时,B =∅,满足B A ⊆. 当12a <时,由于B A ⊆,所以102a ≤<. 综上所述,a 的取值范围是[)0,∞+.故选:C12.D【解析】【分析】分别解一元二次不等式以及分式不等式得集合A ,B ,再进行并集运算即可.【详解】 因为{}{}228024A x x x x x =--≤=-≤≤,{}20323x B x x x x -⎧⎫=≤=-<≤⎨⎬+⎩⎭, 所以{}34A B x x ⋃=-<≤,故选:D.13.C【解析】【分析】根据条件可得1,2,4∈U B ,则1,2,4B ∉,结合条件即可得答案. 【详解】因为(){}1,2,4U A B =,所以1,2,4∈U B ,则1,2,4B ∉,又{}0,1,2,3,4,5U A B ==,所以0,3,5B ∈,即{}0,3,5B =.故选:C14.A【解析】【分析】根据交集运算求A B【详解】{|13}A x x =-<<,1,{}1,2B =-,{1,2}A B ∴=,故选:A15.D【解析】【分析】根据集合的定义分析判断即可.【详解】对于A ,视力较好不是一个明确的定义,故不能构成集合;对于B ,长寿也不是一个明确的定义,故不能构成集合;对于C ,π 的近似值没有明确近似到小数点后面几位,不是明确的定义,故不能构成集合;对于D ,倒数等于自身的数很明确,只有1和-1,故可以构成集合;故选:D.二、填空题16.(1,2⎤-⎦【解析】【分析】数形结合,进行求解.【详解】M 是以原点为圆心,1为半径的圆位于x 轴上方部分上的点,N 为直线y x b =+上的点,如图,当直线过点()1,0时,此时11b =-,当直线与半圆相切时,此时圆心到直线距离111bd ==+,解得:22b =±,因为直线与y 轴交点在y 轴正半轴,故22b =,由图可知:b 的取值范围是(1,2⎤-⎦.故答案为:(2-17.{1,2}##{2,1}【解析】【分析】根据集合元素属性特征进行求解即可.【详解】因为83N x *∈-,所以31,2,4,8-=x ,可得2,1,1,5=--x ,因为x N ∈,所以1,2x =,集合{1,2}A =.故答案为:{1,2}18.1【分析】利用交集的定义直接求解.【详解】∵集合(){},24A x y x y =-=∣,(){},5B x y x y =+=∣, ∴()(){}24,3,25x y A B x y x y ⎧⎫-=⎧⎪⎪⋂==⎨⎨⎬+=⎩⎪⎪⎩⎭, ∴A B 中元素个数为1.故答案为:1.19.12【解析】【分析】设该班学生中既参加了数学小组,又参加了英语小组的学生有x 人,列方程求解即可.【详解】设该班学生中既参加了数学小组,又参加了英语小组的学生有x 人,则31264512x =+-=. 故答案为:12.20.⊂【解析】【分析】先化简集合A 、B ,再去判断集合A 、B 间的关系即可解决.【详解】{}{}22101A x x x =-+==,{}{}2101,1B x x =-==-,则A B ⊂ 故答案为:⊂21.{}1【解析】【分析】易知{}1,1B =-,分别验证1,1-和集合A 的关系即可得结果.【详解】 因为{}{}21,1,1B y y y R ==∈=-,13cos 23π=,()13cos 23π--≠,即1A ∈,1A -∉, 所以{}1A B ⋂=,故答案为:{}1.22.102m -≤≤【解析】【分析】根据给定条件可得β所对集合包含于α所对集合,再利用集合的包含关系列式作答.令α所对集合为:{|124(R)}x m x m m +≤≤+∈,β所对集合为:{|13}x x ≤≤, 因β是α的充分条件,则必有{|13}{|124(R)}x x x m x m m ≤≤⊆+≤≤+∈,于是得11243m m +≤⎧⎨+≥⎩,解得102m -≤≤, 所以实数m 的取值范围为102m -≤≤. 故答案为:102m -≤≤ 23.5【解析】【分析】设三类课程都选择参加的学生有x 人,由题意得()()()83711840x x x x ⨯+-+-+-+=,解方程可求得结果【详解】设三类课程都选择参加的学生有x 人,由题意得()()()83711840x x x x ⨯+-+-+-+=,解得5x =.故答案为:524.{}0,1,4【解析】【分析】根据集合的运算法则计算.【详解】 由已知{4}A =,{0,1}B =,所以{0,1,4}A B =.故答案为:{0,1,4}.25. 假 假 假 真【解析】【分析】(1)利用真子集的定义即可判断.(2)由集合与集合的关系即可判断真假.(3)由元素与集合的关系即可判断真假.(4)由真子集的定义即可找到满足条件集合A 的个数.【详解】(1)因为{}1,2,3的真子集有{}{}{}{}{}{},1,2,3,1,2,1,3,2,3∅,所以{}1,2,3不是{}1,2,3真子集,命题为假命题.(2){}1是集合,因此不是{}1,2,3的元素,命题为假命题.(3)因为2是元素,因此不是{}1,2,3的子集,命题为假命题.(4)若{}0A ,所以集合A 中至少含有两个元素且其中一个必须为0,又因为{}0,1,2,3A ,所以集合A 可以从1,2,3中再选取一个元素、或者两个元素,所以满足条件的集合A 把∅和{}0,1,2,3去掉,所以满足条件集合A 的个数为322-个,命题为真命题. 故答案为:假;假;假;真三、解答题26.[]0,3.【解析】【分析】先解出集合P ,由x P ∈是x S ∈的必要不充分条件得出S P ,又S 为非空集合,解不等式求出m 的取值范围即可.【详解】由28200x x --≤,得210x -≤≤,∴{}210P x x =-≤≤.∵S 为非空集合,∴11m m -≤+,解得0m ≥. 又∵x P ∈是x S ∈的必要不充分条件,则S P , ∴12,110,m m -≥-⎧⎨+≤⎩且不能同时取等,解得3m ≤. 综上,m 的取值范围是[]0,3.27.(1)(0,3](2)[5,)+∞【解析】【分析】(1)根据A B A ⋃=,由B A 求解;(2)根据x A ∈是x B ∈的充分条件,由A B 求解.(1) 解:因为{}26A x x =-≤≤,{}11,0B x m x m m =-≤≤+>,且 A B A ⋃=,所以B A ,则01216m m m >⎧⎪-≥-⎨⎪+≤⎩, 解得03m <≤,所以实数m 的取值范围是(0,3];(2)因为x A ∈是x B ∈的充分条件,所以A B ,则01216m m m >⎧⎪-≤-⎨⎪+≥⎩, 解得5m ≥,所以m 的取值范围是 [5,)+∞.28.(1)30,0m n ==(2)单调递增,证明见解析(3)(0,6)【解析】【分析】(1)运用奇函数的定义可得0n =,再由()h x 图象经过点(1,1),解方程可得m ; (2)39()3x f x x x-=++在[3,)∞+递增.运用单调性的定义,结合因式分解和指数函数的单调性,即可得证;(3)求得当3x 时,2()()273273mx m g x h x x x x ===++;当3x <时,||1()9()9()3x m g x k x -==⋅;分别讨论0m ,03m <<,3m ,运用基本不等式和函数的单调性,求得m 的范围.(1) 函数2()327mx n h x x +=+为奇函数, 可得()()h x h x -=-,即22327327mx n mx n x x -++=-++,则0n =, 由()h x 的图象过(1,1)A ,可得h (1)1=,即130m n +=, 解得30m =,故30,0m n ==;(2)3m =,可得39()3x f x x x -=++,[3,)x ∈+∞,()f x 在[3,)+∞ 上递增.证明:设123x x <,则123312121299()()33x x f x f x x x x x ---=++--- 12331221129()33x x x x x x x x ---=-⋅+-, 由123x x <,可得210x x ->,129x x >,1233330x x ---<,则12())0(f x f x -<,即12()()f x f x <,可得()f x 在[3,)∞+递增;(3)当3x 时,2()()273273mx m g x h x x x x===++;当3x <时,||1()9()9()3x m g x k x -==⋅.①0m 时,13x ∀时,1111()()0273m g x h x x x ==+;23x ∀<时,2||221()9()9)30(x m g x k x -==>⋅不满足条件,舍去;②当03m <<时,13x ∀≥时,1111()()(0273mg x h x x x ==∈+,]18m , 23x ∀<时,2||0x m -≥,2||221()9()9()(03x m g x k x -==⋅∈,9], 由题意可得(0,](018m ⊆,9],可得918m ,即162m ; 综上可得03m <<; ③当3m 时,13x ∀≥时,1111()()(0273mg x h x x x ==∈+,]18m , 23x ∀<时,2||30x m m ->-,2||221()9()9()(03x m g x k x -==⋅∈,319())3m -⋅, 由题意可得(0,](018m ⊆,319())3m -⋅, 可得5318m m -<,可令5()318x x H x -=-,则()H x 在R 上递减,(6)0H =, 故由5318m m -<,可得6m <,即36m <, 综上可得06m <<,所以m 的取值范围是(0,6).【点睛】本题考查函数的奇偶性和单调性的定义和运用,考查分类讨论思想方法和化简整理的运算能力,属于难题.29.(1)[]1,2-(2)()(),45,-∞-+∞【解析】【分析】(1)根据交集的定义,列出关于a 的不等式组即可求解;(2)由题意,A B ⊆,根据集合的包含关系列出关于a 的不等式组即可求解;(1) 解:∵{}3,{1A x a x a B x x =≤≤+=<-或5}x >,且A B =∅, ∴135a a ≥-⎧⎨+≤⎩,解得12a -≤≤, ∴a 的取值范围为[]1,2-;(2) 解:∵{}3,{1A x a x a B x x =≤≤+=<-或5}x >,且A B A =,∴A B ⊆,∴31a +<-或5a >,即4a或5a >, ∴a 的取值范围是()(),45,-∞-+∞.30.{}=34A B x x ⋂-<<,{}=46A B x x ⋃-<<【解析】【分析】先化简集合A 、B ,再去求A B 、A B 即可解决.【详解】{}{}2=16044A x x x x -<=-<< {}{}2=318036B x x x x x -++>=-<< 则{}{}{}=443634A B x x x x x x ⋂-<<⋂-<<=-<< {}{}{}=443646A B x x x x x x ⋃-<<⋃-<<=-<<。

高一数学集合测试题

高一数学集合测试题

高一数学集合测试题一、选择题1. 集合A={x | x是2的正整数次幂,x<32},则集合A的元素个数是()。

A. 4B. 5C. 6D. 72. 若集合B={x | x是3的正整数次幂,x<30},则集合B中的元素之和是()。

A. 13B. 14C. 15D. 163. 集合C={x | x是小于20的正整数,且x是5或7的倍数},则集合C的所有元素之积是()。

A. 2160B. 2520C. 3080D. 33604. 设集合D={x | x是4的正整数次幂},则集合D中,第一个大于100的元素是()。

A. 256B. 1024C. 4096D. 163845. 若集合E={x | x是小于100的正整数,且x与5的和是完全平方数},则集合E的元素之和是()。

A. 295B. 305C. 315D. 325二、填空题6. 集合F={x | x是小于50的正整数,且x能被3或5整除},集合F 中元素的总和是______。

7. 设集合G={x | x是小于100的正整数,且x是3或4的倍数},集合G中所有元素的最大公约数是______。

8. 集合H={x | x是小于1000的正整数,且x的各位数字之和是7},集合H中元素的个数是______。

9. 若集合I={x | x是小于100的正整数,且x的平方根是整数},则集合I的元素按照从小到大的顺序排列,第10个元素是______。

三、解答题10. 定义集合J={x | x是小于200的正整数,且x与8的余数是1或2},请列出集合J的所有元素。

11. 设集合K={x | x是小于1000的正整数,且x的各位数字之积是9},求集合K中所有元素的总和。

12. 集合L={x | x是小于100的正整数,且x与10的余数是3或4},证明集合L中所有元素的平方和等于16600。

13. 设集合M={x | x是小于100的正整数,且x能被2整除,但不能被4整除},请证明集合M中所有元素的倒数之和等于______。

集合测试题及答案

集合测试题及答案

集合测试题及答案一、选择题1. 以下哪个选项不是集合的基本概念?A. 元素B. 子集C. 并集D. 函数2. 集合A={1, 2, 3},集合B={2, 3, 4},A与B的交集是什么?A. {1}B. {2, 3}C. {1, 2, 3}D. {2, 3, 4}3. 如果集合A={1, 2, 3},那么A的幂集有多少个元素?A. 3B. 4C. 7D. 84. 集合A={1, 2, 3},集合B={3, 4, 5},A与B的差集是什么?A. {1, 2}B. {1, 2, 3}C. {3, 4, 5}D. {4, 5}5. 对于任意集合A,以下哪个命题是正确的?A. A是A的子集。

B. A是A的真子集。

C. A是A的交集。

D. A是A的并集。

二、填空题6. 集合的三要素包括:________、________、________。

7. 如果集合A={x | x > 0},那么A的补集在实数集R中表示为________。

8. 集合A={1, 2, 3},集合B={2, 3, 4},A与B的并集是________。

三、简答题9. 请解释什么是集合的笛卡尔积,并给出两个集合A={1, 2}和B={a, b}的笛卡尔积。

10. 请描述如何确定一个元素是否属于一个集合。

四、计算题11. 给定集合A={1, 2, 3},B={2, 3, 4},C={3, 4, 5},请计算A∪B∩C。

12. 如果集合D={x | x^2 - 5x + 6 = 0},请找出D的所有元素。

答案:一、选择题1. D2. B3. D4. A5. A二、填空题6. 确定性、无序性、互异性7. R - A = {x | x ≤ 0 或 x > 0 且x ≠ 1, 2, 3}8. {1, 2, 3, 4}三、简答题9. 集合的笛卡尔积是指两个集合中元素的有序对的集合。

对于A和B,笛卡尔积是A×B = {(1, a), (1, b), (2, a), (2, b)}。

高中数学集合测试题(附答案和解析)

高中数学集合测试题(附答案和解析)

高中数学集合测试题(附答案和解析)一、单选题1.已知集合{}3,5,7,9,11,13,17A =,{}41,B x x n n Z ==+∈,则A B =( ) A .{}5,9,11 B .{}5,9,11,17 C .{}5,13,17D .{}5,9,13,172.已知集合{}2,0,1M =-,{}220N x x ax =+-=,若N M ⊆,则实数a =( )A .2B .1C .0D .-13.设集合{}()(){}|32,|130A x x B x x x =-<<=+-≤,则A B =( )A .{}|12x x -≤<B .{}|33x x -<≤C .{}|32x x -<≤D .{}|13x x -≤≤4.若集合{}220A x x x =--<,{}21B x x =<,则A B =( )A .AB .BC .()1,0-D .()0,25.集合{|13}A x x =-<<,集合{}24B xx =<∣,则A B =( ) A .(-2,2)B .(-1,2)C .(-2,3)D .(-1,3)6.已知集合{123}M =,,,{134}N =,,,则M N ⋂等于( ) A .{13},B .{1234},,, C .{24},D .{134},,7.已知集合{}1,2M =,{}2,3N =,那么M N ⋂等于( ) A .∅B .{}1,2,3C .{}2D .{}38.已知集合{}1A x x =>,()(){}150B x x x =+-≤,则A B =( ) A .(]1,5-B .(]1,5C .[]1,5-D .[]1,59.已知函数()2log f x x =,()2g x a x =-,若存在[]12,1,2x x ∈,使得()()12f x g x =,则实数a 的取值范围是( ) A .()(),25,-∞⋃+∞ B .(][),25,-∞⋃+∞ C .()2,5 D .[]2,5 10.已知集合{}{}1101A B =-=,,,,则A B =( ) A .{0}B .{1}C .{2}D .∅11.已知集合{}82A xx =-<<∣,{}1B x x =≤-,则()R A B ⋂=( ) A .{}1x x <- B .{}12x x -<< C .{}8x x >-D .{}28x x <≤12.设集合{}220A x x x =-≤,{}1,2,3B =,{}2,3,4C =,则()A B C =( )A .{}2B .{}2,3C .{}1,2,3,4D .{}0,1,2,3,413.已知集合{{24},A xx B x y =<==∣∣,则A B ⋃=( ) A .[)2,+∞ B .[)3,4 C .[]3,4 D .[)3,+∞14.已知集合{}1A x x =≥-,{}12B x x =-<,则A B ⋃=( ) A .{}13x x -<< B .{}1x x >- C .{}13x x -≤<D .{}1x x ≥-15.设集合{}*21230,1A x N x x B x Rx ⎧⎫=∈--≤=∈≥⎨⎬⎩⎭∣∣,则A B =( ) A .0,1B .{}1C .(]0,1D .{}0,1二、填空题16.已知平面上两个点集(){},112,,M x y x y x y x R y R =++++->∈∈,(){},11,,N x y x a y x R y R =-+-≤∈∈,若M N ⋂=∅,则实数a 的取值集合是___________.17.设非空数集M 同时满足条件:①M 中不含元素1,0,1-;②若a M ∈,则11aM a+∈-,则下列结论不正确的个数是__________个. (1)集合M 中至多有2个元素; (2)集合M 中至少有4个元素; (3)集合M 中有且仅有4个元素; (4)集合M 中至多有4个元素.18.已知集合{}|04A x x =<≤,集合{}|B x x a =<,若A B ⊆,则实数a 的取值范围是_____.19.设集合{1,2,3,4,6}M =,12,,,k S S S 都是M 的含有两个元素的子集,则k =______;若满足:对任意的{,}i i i S a b =,{,}j j j S a b ={}(,,1,2,3,,)i j i j k ≠∈都有,i i j j a b a b <<,且ji i ja ab b ≠,则k 的最大值是__________. 20.已知函数()()()2sin 0,0g x x ωϕωϕπ=+><<的部分图象如图所示,将函数()g x 的图象向右平移6π个单位长度,得到函数()f x 的图象,若集合()3512A x y f x f π⎧⎫⎪⎪⎛⎫==-⎨⎬⎪⎝⎭⎪⎪⎩⎭,集合{}0,1,2B =,则A B =______.21.已知集合{}2,1,0,1A =--,{}|3B x N x =∈<,则A B =_____.22.若集合{}3cos23,xA x x x R π==∈,{}21,B y y y R ==∈,则A B ⋂=_______. 23.已知集合{}{}214,0,1,2,4A x x B =≤<=,则A B ⋂=___________.24.从集合M={}1,2,3,4,,2021中去掉所有3的倍数和5的倍数,则剩下的元素个数为______25.设集合{}2,3,4U =,对其子集引进“势”的概念;①空集的“势”最小;②非空子集的元素越多,其“势”越大;③若两个子集的元素个数相同,则子集中最大的元素越大,子集的“势”就越大.最大的元素相同,则第二大的元素越大,子集的“势”就越大,以此类推.若将全部的子集按“势”从小到大顺序排列,则排在第6位的子集是_________.三、解答题26.已知集合2{|23}A x a x a =≤≤+,{|14}B x x =-≤≤,全集U =R . (1)当1a =时,求U ()A B ;(2)当A =∅时,求实数a 的取值范围;(3)若“x A ∈”是“x B ∈”的充分条件,求实数a 的取值范围.27.已知集合2111x A xx +⎧⎫=>-⎨⎬-⎩⎭,(){}222B x x m x m B =<-+,不为空集. (1)当1m =时,求()RA B ⋃;(2)若“x A ∈”是“x B ∈”的必要条件,求实数m 的取值范围.28.已知全集U R =,集合{|A x =213x -<,123}3x x -≤-,{|13}B x x =-≤≤.(1)求A ,A B ⋃,UB(2)如图①,阴影部分表示集合M ,求M . (3)如图②,阴影部分表示集合N ,求N .29.设n 是不小于3的正整数,集合12{()|{01}12}n n i S a a a a i n =⋯∈=⋯,,,,,,,,,对于集合Sn 中任意两个元素1212()()n n A a a a B b b b =⋯=⋯,,,,,,,.定义()1122 n n A B n a b a b a b =--+-++-.若·0A B =,则称A ,B 互为相反元素,记作A B =或B A =.(1)若n =3,A =(0,1,0),B =(1,1,0),试写出A ,B ,以及A ·B 的值; (2)若n A B S ∈,,证明: A B A B n +=;(3)设k 是小于n 的正奇数,至少含有两个元素的集合n M S ⊆,且对于集合M 中任意两个不同的元素1212 ()()n n A a a a B b b b =⋯=⋯,,,,,,,,都有·A B n k =-,试求集合M 中元素个数的所有可能的取值.30.已知集合2{|40}A x x =-≥,集合{|1}B x m x m =<<-. (1)求A .(2)求A B A ⋃=,求m 的取值范围.【参考答案】一、单选题 1.D 【解析】 【分析】根据交集的定义计算即可. 【详解】因为集合{}3,5,7,9,11,13,17A =,{}41,B x x n n Z ==+∈, 所以{5,9,13,17}A B =, 故选:D. 2.B【解析】 【分析】对于集合N ,元素x 对应的是一元二次方程的解,根据判别式得出必有两个不相等的实数根,又根据韦达定理以及N M ⊆,可确定出其中的元素,进而求解. 【详解】对于集合N ,因为280a ∆=+>, 所以N 中有两个元素,且乘积为-2, 又因为N M ⊆,所以{}2,1N =-, 所以211a -=-+=-.即a =1. 故选:B. 3.A 【解析】 【分析】首先解一元二次不等式求出集合B ,再根据交集的定义计算可得; 【详解】解:由()()130x x +-≤,解得13x -≤≤, 所以()(){}{}|130|13B x x x x x =+-≤=-≤≤, 又{}|32A x x =-<<,所以{}|12A B x x ⋂=-≤<. 故选:A 4.B 【解析】 【分析】由题知{}12A x x =-<<,{}11B x x =-<<,再求交集即可. 【详解】解:解不等式220x x --<得12x -<<,故{}12A x x =-<<, 解不等式21x <得11x -<<,故{}11B x x =-<<, 所以A B ={}11x x B -<<=. 故选:B 5.B 【解析】 【分析】先求集合B ,进一步求出答案. 【详解】集合{}24B xx =<∣{22}x x =-<<∣,{13}A x x =-<<∣, ∴{12}A B xx ⋂=-<<∣. 故选:B.6.A 【解析】 【分析】根据交集的定义计算可得; 【详解】解:因为{}1,2,3M =,{}1,3,4N =,所以{}1,3M N ⋂=; 故选:A 7.C 【解析】 【分析】由交集的定义直接求解即可 【详解】因为{}1,2M =,{}2,3N = 所以{}2M N =,故选:C 8.B 【解析】 【分析】化简集合B ,然后利用交集的定义运算即得. 【详解】∵集合()(){}{}15015B x x x x x =+-≤=-≤≤,{}1A x x =>, ∴(]1,5A B ⋂=. 故选:B. 9.D 【解析】 【分析】根据条件求出两个函数在[1,2]上的值域,结合若存在[]12,1,2x x ∈,使得12()()f x g x =,等价为两个集合有公共元素,然后根据集合关系进行求解即可. 【详解】当12x ≤≤时,22log 1()log 2f x ≤≤,即0()1f x ≤≤,则()f x 的值域为[0,1], 当12x ≤≤时,4()2a g x a -≤≤-,则()g x 的值域为[4,2]a a --, 因为存在[]12,1,2x x ∈,使得12()()f x g x =, 则[4,2][0,1]a a --≠∅ 若[4,2][0,1]a a --=∅, 则14a <-或02a >-, 得5a >或2a <,则当[4,2][0,1]a a --≠∅时,25a ≤≤,即实数a 的取值范围是[2,5],A ,B ,C 错,D 对. 故选:D . 10.B 【解析】 【分析】根据集合的交集运算,直接求得答案. 【详解】集合{}{}1101A B =-=,,,, 则{1}A B ⋂=, 故选:B 11.B 【解析】 【分析】根据补集的运算,求得{}R |1B x x =>-,结合交集的概念及运算,即可求解. 【详解】由题意,集合{}1B x x =≤-,可得{}R |1B x x =>-又由{}82A xx =-<<∣,所以(){}R 12A B x x ⋂=-<<. 故选:B. 12.C 【解析】 【分析】先求出集合A ,再按照交集并集的运算计算()A B C 即可. 【详解】{}{}22002A x x x x x =-≤=≤≤,{}(){}1,2,1,2,3,4A B A B C ==.故选:C. 13.A 【解析】 【分析】求出集合A 、B ,利用交集的定义可求得集合A B . 【详解】解:{}[)2424A x x =≤<=,,{[)3,B x y ∞===+,因此,[)2,A B =+∞. 故选:A. 14.D 【解析】 【分析】求出集合B ,利用并集的定义可求得集合A B .【详解】因为{}{}{}1221213B x x x x x x =-<=-<-<=-<<,因此,{}1A B x x ⋃=≥-. 故选:D. 15.B 【解析】 【分析】先求出结合,A B ,再根据集合的交集运算,即可求出结果. 【详解】因为{}{}{}*2*N 230N 131,2,3A x x x x x =∈--≤=∈-≤≤=∣, {}1101B x x x x ⎧⎫=∈≥=∈<≤⎨⎬⎩⎭R R所以{}1A B =. 故选:B.二、填空题 16.{}1-【解析】 【分析】结合点到直线距离公式可知M 表示到直线10x y ++=与10x y +-=的,可得可行域;N 是以(),1a 的正方形及其内部的点集,采用数形结合的方式可确定a 的取值. 【详解】由112x y x y ++++->>则M 表示到直线10x y ++=与10x y +-=直线10x y ++=与10x y +-=之间的距离d =则集合()10,10x y M x y x y ⎧⎫+->⎧=⎨⎨⎬++<⎩⎩⎭,则其表示区域如阴影部分所示(不包含10x y ++=与10x y +-=上的点);集合N 是以(),1a 若M N ⋂=∅,则,M N 位置关系需如图所示,由图形可知:当且仅当1a =-时,M N ⋂=∅, ∴实数a 的取值集合为{}1-.【点睛】思路点睛:本题考查集合与不等式的综合应用问题,解题基本思路是能够确定集合所表示的点构成的区域图形,进而采用数形结合的方式来进行分析求解. 17.3 【解析】 【分析】 由题意可求出11,,11,1a a a a a a -+--+都在M 中,然后计算这些元素是否相等,继而判断M 的元素个数的特点. 【详解】因为若a M ∈,则11aM a +∈-,所以1111111a a M a a a ++-=-∈+--,111111a a M a a--=∈++, 则11211211a a a a M a a -++==∈--+; 当1,0,1a ≠-时,4个元素11,,11,1a a a a a a -+--+中,任意两个元素都不相等, 所以集合M 中至少有4个元素.故可判断出(1)错误,(2)正确,(3)错误,(4)错误, 故答案为:3.18.4a >【解析】 【分析】结合数轴图与集合包含关系,观察即可得到参数的范围. 【详解】在数轴上表示出集合A ,B ,由于A B ⊆,如图所示,则4a >. 19. 10 6 【解析】 【分析】列举M 的2个元素子集数个数即可;利用,i i j j a b a b << ,再结合ji i ja ab b ≠进行排除其他的即为答案. 【详解】M 的两元素子集有{1,2}{1,3}{1,4}{1,6}{2,3}{2,4}{2,6}{3,4}{3,6}{4,6}、、、、、、、、、,所以共有10个,因此k =10;因为前面的列举方式已经保证,i i j j a b a b <<,只需要再增加条件ji i ja ab b ≠即可,所以{1,2}{2,4}、、{3,6}保留一个,{1,3}{2,6}、保留一个,{2,3}{4,6}、只能保留一个,所以以上10个子集需要删去4个,还剩下6个,所以则k 的最大值是6.故max 6k .故答案为:10;6.20.{}0【解析】 【分析】根据图像求出g (x )的解析式,再求出f (x )解析式,求出A 集合,根据集合交集运算法则计算即可. 【详解】由图可知()g x 周期52=1212T πππ⎛⎫=⨯+⎪⎝⎭,∴22T πω==. 由212πg ⎛⎫-= ⎪⎝⎭得22122k ππϕπ⎛⎫⨯-+=+ ⎪⎝⎭,∴223k πϕπ=+,k ∈Z , ∵0ϕπ<<,∴k 取0,23ϕπ=, ∴()22sin 23g x x π⎛⎫=+ ⎪⎝⎭, ∴()22sin 22sin 2633f x x x πππ⎡⎤⎛⎫⎛⎫=-+=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, ∴35352sin 22sin 611212363f ππππππ⎛⎫⎛⎫⎛⎫=⨯+=-+=⎪ ⎪⎪⎝⎭⎝⎭⎝⎭. ∴()35150sin 22221232636f x f x k x k πππππππ⎛⎫⎛⎫-≥⇔+≥⇔+≤+≤+⎪ ⎪⎝⎭⎝⎭,k ∈Z , ∴,124A x k x k k ππππ⎧⎫=-≤≤+∈⎨⎬⎩⎭Z ,∴{}0A B ⋂=.故答案为:{}0﹒21.{}0,1【解析】 【分析】由题知{}0,1,2B =,再根基集合交集运算求解即可. 【详解】解:因为{}{}|30,1,2B x N x =∈<=,{}2,1,0,1A =-- 所以A B ={}0,1 故答案为:{}0,122.{}1【解析】 【分析】易知{}1,1B =-,分别验证1,1-和集合A 的关系即可得结果. 【详解】因为{}{}21,1,1B y y y R ==∈=-,13cos 23π=,()13cos 23π--≠,即1A ∈,1A -∉,所以{}1A B ⋂=, 故答案为:{}1.23.{}1【解析】 【分析】根据集合的交集的定义进行求解即可 【详解】当0x =时,不等式214x ≤<不成立, 当1x =时,不等式214x ≤<成立, 当2x =时,不等式214x ≤<不成立, 当4x =时,不等式214x ≤<不成立, 所以{}1A B ⋂=, 故答案为:{}1 24.1078 【解析】 【分析】剔除集合中是3的倍数,5的倍数的元素,即可得出结果. 【详解】集合M 中,3的倍数有20216733⎡⎤=⎢⎥⎣⎦个,5的倍数有20214045⎡⎤=⎢⎥⎣⎦个,15的倍数有202113415⎡⎤=⎢⎥⎣⎦个, 则剩下的元素个数为2021(673404134)1078-+-=个. 故答案为:1078.25.{}2,4【解析】 【分析】根据题意依次按“势”从小到大顺序排列,得到答案. 【详解】根据题意,将全部的子集按“势”从小到大顺序排列为:∅,{}2,{}3,{}4,{}2,3,{}2,4,{}3,4,{}2,3,4.故排在第6的子集为{}2,4. 故答案为:{}2,4三、解答题26.(1)[)1,1-; (2)()(),13,∞∞--⋃+; (3)()1,3,2∞∞⎛⎤-⋃+ ⎥⎝⎦.【解析】 【分析】(1)根据集合的补运算和交运算,求解即可;(2)根据题意,求解关于a 的一元二次不等式,即可求得范围; (3)根据集合之间的关系,列出不等关系,求解即可. (1)当1a =时,{|15}A x x =≤≤,{|14}B x x =-≤≤, 故U ()A B {|1x x =<或{}5}|14{|11}x x x x x >⋂-≤≤=-≤<.即U ()A B [)1,1=-.(2)若A =∅,则223a a >+,即()()310a a -+>,解得1a <-或3a >, 故实数a 的取值范围为:()(),13,∞∞--⋃+. (3)若“x A ∈”是“x B ∈”的充分条件,则A B ⊆, ①A =∅时,1a <-或3a >满足题意;②A ≠∅,则13234a a -≤≤⎧⎨+≤⎩,得1-12a ≤≤综上所述,实数a 的取值范围为()1,3,2∞∞⎛⎤-⋃+ ⎥⎝⎦.27.(1)12x x ⎧≤-⎨⎩或}1x ≥(2)(]2,4- 【解析】 【分析】(1)分别求出集合,A B ,再根据并集和补集的定义即可得出答案;(2)根据“x A ∈”是“x B ∈”的必要条件,可得B A ⊆且B ≠∅,讨论m 的范围,从而可得出答案. (1)解:当1m =时,{}212112B x x x x x ⎧⎫=<+=-<<⎨⎬⎩⎭,{}211211x A x x x x +⎧⎫=>-=-<<⎨⎬-⎩⎭, 则112A B x x ⎧⎫⋃=-<<⎨⎬⎩⎭,所以()12RA B x x ⎧⋃=≤-⎨⎩或}1x ≥; (2)解:(){}()(){}222210B x x m x m x x m x =<-+=+-<,因为“x A ∈”是“x B ∈”的必要条件, 所以B A ⊆且B ≠∅,故2m ≠-, 当12m->,即2m <-时,12m B x x ⎧⎫=<<-⎨⎬⎩⎭,因为{}21A x x =-<<, 所以A B =∅,不符合题意; 当12m-<,即2m >-时,12m B x x ⎧⎫=-<<⎨⎬⎩⎭,则有222m m >-⎧⎪⎨-≥-⎪⎩,解得24m -<≤,综上(]2,4m ∈-. 28.(1)3{|2}2A x x =≤<,{|13}AB x x ⋃=-≤≤,UB {|1x x =<-或3}x >;(2)3{|12M x x =-≤<或23}x ≤≤; (3){|1M x x =<-或3}x >. 【解析】【分析】(1)求解不等式组解得集合A ,再根据集合的并运算和补运算即可求得结果; (2)根据阴影部分可知M =()B A B ⋂,根据已知集合求解即可; (3)根据阴影部分可知M =()UAB ,根据已知集合求解即可.(1){|A x =213x -<,1323}{|2}32x x x x -≤-=≤<,{|13}A B x x ⋃=-≤≤,UB {|1x x =<-或3}x >.(2)因为3{|2}2A B x x ⋂=≤< 根据题意可得M =()BA B ⋂3{|12x x =-≤<或23}x ≤≤. (3)因为{|13}A B x x ⋃=-≤≤, 根据题意可得M =()UAB {|1x x =<-或3}x >.29.(1)(101)(001)2A B A B ===,,,,,, (2)证明见解析(3)集合M 中元素的个数只可能是2 【解析】 【分析】(1)根据定义直接求解即可;(2)设121212()()()n n n A a a a B b b b A x x x =⋯=⋯=⋯,,,,,,,,,,,,进而结合题意得1122||n n a x a x a x n +++=---,112i i x a i n ==⋯-,,,,,再计算 A B A B +即可;(3)假设121212() ()()n n n A a a a B b b b C c c c ===,,,,,,,,,,,为集合M 中的三个不相同的元素,进而结合题意,推出矛盾,得出假设不成立,即集合M 中至多有两个元素,且{(1,1,,1,0,0,,0),(0,0,,0)}k n k M -=个个时符合题意,故集合M 中元素的个数只可能是2(1)解:因为若·0A B =,则称A ,B 互为相反元素,记作A B =或B A =, 所以(101)(001)A B ==,,,,,, 所以()30111002A B =--+-+-=. (2)解:设121212()()()n n n A a a a B b b b A x x x =⋯=⋯=⋯,,,,,,,,,,,, 由{01}12i i i a b x i n ∈=⋯,,,,,,,,可得||112i i a x i n ≤=⋯-,,,, 所以1122||n n a x a x a x n ++⋯+≤---,当且仅当||112i i a x i n ==⋯-,,,,,即112i i x a i n ==⋯-,,,,时上式“=”成立 由题意可知1122·()0n n A A n a x a x a x =--+-++-=即1122n n a x a x a x n -+-++-=所以112i i x a i n ==⋯-,,,, 12[|||(1)|]ni i i i i A B A B n a b a b =+=--+--∑12[|1||0|]ni i i n b b ==--+-∑12(1)ni i i n b b ==--+∑2n n =-n =(3)解:解法1:假设121212() ()()n n n A a a a B b b b C c c c ===,,,,,,,,,,,为集合M 中的三个不相同的元素. 则1122(||||||)n n A B n a b a b a b n k =--+-++-=-即1122||||||n n a b a b a b k -+-++-=又由题意可知||0i i a b =-或1,i =1,2,,n 1122||,||,,||n n a b a b a b ---恰有k 个1,与n -k 个0设其中k 个等于1的项依次为1122,,,k k m m m m m m a b a b a b --- n -k 个等于0的项依次为1122,,,k k k k n n m m m m m m a b a b a b ++++---由题意可知1122(||||||)n n A C n a c a c a c n k =--+-++-=-所以11||||i i jj knm m m m i j k a c ac k ==+-+-=∑∑, 同理11||||i i jj k nm m m m i j k b c bc k ==+-+-=∑∑所以1111||||||||2i i j ji i j jkn kn m m m m m m m m i j k i j k a c a c b c b c k ==+==+⎛⎫⎛⎫-+-+-+-= ⎪ ⎪⎝⎭⎝⎭∑∑∑∑ 即111(||||)||||2i i i i jj jj knnm m m m m m m m i j k j k a c b c ac bc k ==+=+-+-+-+-=∑∑∑因为11221k k m m m m m m a b a b a b -=-==-=由(2)可知1(||||)i i i i km m m m i a c b c k =-+-=∑因为11220k k k k n n m m m m m m a b a b a b ++++-=-==-=所以11||||jj jj nnm m m m j k j k ac bc =+=+-=-∑∑,设11||||jj jj nnm m m m j k j k ac bc p =+=+-=-=∑∑,由题意可知p N ∈.所以2 2k p k +=,得2k p =与k 为奇数矛盾所以假设不成立,即集合M 中至多有两个元素 当{(1,1,,1,0,0,,0),(0,0,,0)}k n k M -=个个时符合题意所以集合M 中元素的个数只可能是2解法2:假设121212() ()()n n n A a a a B b b b C c c c ===,,,,,,,,,,,为集合M 中的三个不相同的元素.则1122(||||||)n n A B n a b a b a b n k =--+-++-=-即1122||||||n n a b a b a b k -+-++-=又由题意可知||0112i i a b i n ==⋯-或,,,, 1122||,||,,||n n a b a b a b ---恰有k 个1,与n -k 个0设其中k 个等于1的项依次为1122,,,k k m m m m m m a b a b a b --- n -k 个等于0的项依次1122,,,k k k k n n m m m m m m a b a b a b ++++---由题意可知1122(||||||)n n A C n a c a c a c n k =--+-++-=-所以11||||i i jj knm m m m i j k a c ac k ==+-+-=∑∑① 同理11||||i i jj k nm m m m i j k b c bc k ==+-+-=∑∑②因为11220k k k k n n m m m m m m a b a b a b ++++-=-==-=所以11||||jj jj nnm m m m j k j k ac bc =+=+-=-∑∑,①—②得1(||||)0i i i i km m m m i a c b c =---=∑又因为111(||||)(|1||0|)2i i i i i i i k k km m m m m m m i i i a c b c c c k c ===---=---=-∑∑∑为奇数与1(||||)0i i i i km m m m i a c b c =---=∑矛盾所以假设不成立,即集合M 中至多有两个元素 当{(1,1,,1,0,0,,0),(0,0,,0)}k n k M -=个个时符合题意所以集合M 中元素的个数只可能是2. 【点睛】关键点点睛:本题第三问解题的关键在于利用反证法证明当121212() ()()n n n A a a a B b b b C c c c ===,,,,,,,,,,,为集合M 中的三个不相同的元素时,结合题意推出2k p =与k 为奇数矛盾,进而得集合M 中至多有两个元素,再举例当{(1,1,,1,0,0,,0),(0,0,,0)}k n k M -=个个时符合题意即可.30.(1){|22}A x x =-≤≤ (2)[1,)-+∞ 【解析】【分析】(1)由不等式240x -≥,求得22x -≤≤,即可求解; (2)由A B A ⋃=,得到B A ⊆,列出不等式组,即可求解. (1)解:由240x -≥,即24x ≤,可得22x -≤≤,可得集合{|22}A x x =-≤≤. (2)解:因为{|22}A x x =-≤≤,且集合{|1}B x m x m =<<-, 又因为A B A ⋃=,即B A ⊆, 当B =∅时,即1m m ≥-,可得12m ≥,此时满足B A ⊆; 当B ≠∅时,则满足2121m m m m≥-⎧⎪-≤⎨⎪<-⎩,解得112m -≤<,综上可得,1m ≥-,即实数m 的取值范围[1,)-+∞.。

高中数学集合测试题(附答案和解析)

高中数学集合测试题(附答案和解析)

高中数学集合测试题(附答案和解析)一、单选题1.设集合(){}=10,A x x x x -<∈R ,{}2,B x x x =≤∈R ,则()R A B ⋂=( ) A .∅B .[]1,2C .(],0-∞D .(][],01,2-∞2.已知集合(){}ln 2A x y x ==-,集合1,32xB y y x ⎧⎫⎪⎪⎛⎫==>-⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,则A B =( )A .∅B .()2,8C .()3,8D .()8,+∞ 3.已知全集{}1,2,3,4,5U =,集合{}3,4,5A =,{}2,3,4B =,则()U A B =( )A .{}1,3,5B .{}1,2,5C .{}1,5D .{}2,54.设I 为全集,1S 、2S 、3S 是I 的三个非空子集且123S S S I ⋃⋃=.则下面论断正确的是( )A .()123I S S S ⋂⋃=∅B .()123I I S S S ⊆⋂C .123I I I S S S ⋂⋂=∅D .()123I I S S S ⊆⋃5.集合{}06A x Z x =∈<<,集合{}ln 1B x x =>,求A B ( ) A .{}6x e x << B .{}1,2,3e e e +++ C .{}3,4,5D .{}2,3,4,56.已知集合{}13A x N x =∈≤≤,{}2650B x x x =-+<,则A B =( )A .∅B .{}1,2,3C .(]1,3D .{}2,37.已知集合,P Q 均为R 的子集,且()R Q P R ⋃=,则( ) A .P Q R ⋂= B .P Q ⊆ C .Q P ⊆ D .P Q R = 8.已知集合{|3251}A x x =-<-<,2{|20}B x x x =-->,则A B =( ) A .{|23}x x <<B .{|13}x x -<<C .{|2}x x >D .{|1}x x >-9.设全集U =R ,集合(){}ln 1|M x y x ==-,2{|4}N x y x ==-,则下面Venn 图中阴影部分表示的集合是( )A .()1,2B .(]1,2C .(2,)+∞D .[2,)+∞10.已知集合11A xx x ⎧⎫-=<⎨⎬+⎩⎭,{}2log 4x y x =-,则A B =( ) A .{}41xx -<<∣ B .{}14x x -<< C .{}14x x <<D .{}1x x ≥-11.如图,已知全集U =R ,集合{}1,2,3,4,5A =,()(){}120B x x x =+->,则图中阴影部分表示的集合中,所包含元素的个数为( )A .1B .2C .3D .412.设全集U =R .集合{(2)(1)}A x y x x ==-+∣,则UA( )A .()(),12,-∞-+∞ B .[]1,2- C .(][),12,-∞-⋃+∞D .()1,2-13.集合A ={x |y =log 2(x +12)},B ={y |y =x 2-2x ,x ∈[0,2]}.则A ∩B =( )A .1,02⎡⎤-⎢⎥⎣⎦B .1,02⎛⎤- ⎥⎝⎦C .1,02⎡⎫-⎪⎢⎣⎭D .(102-,) 14.设集合{}*5,,5m M x x C m N m ==∈≤,则M 的子集个数为( )A .8B .16C .32D .6415.设集合{}2430A x x x =-+≥,{}3log 1B x N x =∈≤,则集合A B =( )A .(0,1][3,)⋃+∞B .(0,1]C .{1,2}D .{1,3}二、填空题16.已知全集为{19,}I xx x N =≤≤∈∣,{3,6,9}A =,{2,4,6,8}B =,则A B =_______. 17.已知集合(){}ln 2|A x y x ==-,{}2430|B x x x ≤=-+,则A B ⋃=____________18.已知集合{}2|210A x ax x =+-=,若集合A 中只有一个元素,则实数a 的取值的集合是______19.若{}31,3,a a ∈-,则实数a 的取值集合为______.20.已知{}3A x a x a =≤≤+,{}15b x x =-<<,A B =∅,则实数a 的取值范围是______21.方程组13x y x y -=⎧⎨+=⎩的解集..为_____.22.已知集合{}1,2,3A =,{}1,0,1B =-,则A B ⋃=___________.23.已知集合{}02A x x =<≤,集合{}12B x x =-<<,则A B ⋃=__________. 24.已知(1,2)A =-,(1,3)B =,则A B =________25.若{}231,13a a ∈--,则=a ______.三、解答题26.已知{}1,{|A x x a B x y =->==(1)若a =2,求A B(2)已知全集U =R ,若()()U U A B ⊆,求实数a 的取值范围27.设全集U =R ,集合{}15A x x =≤<,非空集合{}212B x x a =≤≤+,其中a R ∈. (1)若“x A ∈”是“x B ∈”的必要条件,求a 的取值范围; (2)若命题“x B ∃∈,x A ∈R ”是真命题,求a 的取值范围.28.已知函数2()327mx n h x x +=+为奇函数,||1)3x m k x ﹣()=( ,其中R m n ∈、 . (1)若函数h (x )的图象过点A (1,1),求实数m 和n 的值; (2)若m =3,试判断函数11()+()()f x h x k x =在[3x ∈+∞,)上的单调性并证明; (3)设函数()()(),39,3h x x g x k x x ⎧≥⎪=⎨<⎪⎩,若对每一个不小于3的实数1x ,都恰有一个小于3的实数2x ,使得12g x g x ()=() 成立,求实数m 的取值范围.29.设全集U =R ,集合{}|32A x a x a =≤≤+,1|284xB x ⎧⎫=<<⎨⎬⎩⎭.(1)当1a =-时,求()U A B ⋃; (2)若A ∩B =A ,求实数a 的取值范围.30.设Y 是由6的全体正约数组成的集合,写出Y 的所有子集.【参考答案】一、单选题 1.D 【解析】 【分析】根据集合的交集与补集运算法则求解即可. 【详解】由条件,(){}()=10,=0,1A x x x x -<∈R , ∴()(][)R ,01,=-∞⋃+∞A ,又∵{}2,B x x x =≤∈R 因此()(][]R ,01,2B A ⋂=-∞⋃. 故选:D 2.B 【解析】 【分析】先求出集合,A B ,然后直接求A B 即可. 【详解】集合(){}{}ln 22A x y x x x ==-=>,集合{}1,3082xB y y x y y ⎧⎫⎪⎪⎛⎫==>-=<<⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,()2,8A B =, 故选:B . 3.B 【解析】 【分析】根据给定条件,利用交集、补集的定义直接计算作答. 【详解】集合{}3,4,5A =,{}2,3,4B =,则{3,4}A B =,而全集{}1,2,3,4,5U =, 所以(){1,2,5}UA B ⋂=.故选:B4.C 【解析】 【分析】画出关于123S S S I ⋃⋃=且含7个不同区域的韦恩图,根据韦恩图结合集合的交并补运算确定各选项中对应集合所包含的区域,并判断包含关系. 【详解】将123S S S I ⋃⋃=分为7个部分(各部分可能为空或非空),如下图示:所以1A B D E S =⋃⋃⋃、2A B C F S =⋃⋃⋃、3S A C D G =⋃⋃⋃, 则1I S C F G =⋃⋃,2I S D E G =⋃⋃,3I S B E F =⋃⋃,所以23S S A B C D F G ⋃=⋃⋃⋃⋃⋃,故()123I S S S F G ⋂⋃=⋃,A 错误;23I I S S E ⋂=,故231I I S S S ⋂⊆,B 错误; 123II I S S S ⋂⋂=∅,C 正确;23II S S B D E F G ⋃=⋃⋃⋃⋃,显然1S 与23I I S S ⋃没有包含关系,D 错误.故选:C 5.C 【解析】 【分析】先化简出结合,A B ,然后再求交集. 【详解】由{}1,2,3,4,5A =,ln 1x > 则x e >,所以集合(),B e =+∞ 所以{}3,4,5A B = 故选:C 6.D 【解析】 【分析】本题考查集合的交集,易错点在于集合A 元素是自然数,集合B 的元素是实数. 【详解】∵{}{}131,2,3A x N x =∈≤≤=,{}{}265015B x x x x x =-+<=<<,∴{}2,3A B ⋂=.故选:D . 7.C 【解析】 【分析】利用韦恩图,结合集合的交集、并集和补集的运算,即可求解. 【详解】如图所示,集合,P Q 均为R 的子集,且满足()R Q P R ⋃=, 所以Q P ⊆. 故选:C.8.A 【解析】 【分析】解不等式求出集合,A B ,从而求出交集. 【详解】3251x -<-<,解得:13x <<,故{13}A xx =<<∣,220x x -->,解得:2x >或1x <-,故{2B x x =>或}1x <-,所以{23}A B xx ⋂=<<∣. 故选:A 9.A 【解析】 【分析】由对数函数性质,二次根式定义确定集合,M N ,然后确定Venn 图中阴影部分表示的集合并计算. 【详解】由题意{|10}{|1}M x x x x =->=>,2{|4}{|2N x x x x =≥=≤-或2}x ≥,{|22}UN x x =-<<,Venn 图中阴影部分为(){|12}U M N x x =<<.故选:A . 10.B 【解析】先求出集合A ,B ,再求两集合的交集即可 【详解】解:由11x x -<+得2101x x x ++>+, 因为210x x ++>恒成立,所以1x >-,即{}1A x x =>-.由函数2log y =4x <,即{}4B x x =<. 所以{}14A B x x ⋂=-<<. 故选:B 11.B 【解析】 【分析】求出集合B ,分析可知阴影部分所表示的集合为()U A B ∩,利用交集的定义可求得结果. 【详解】因为()(){}{1201B x x x x x =+->=<-或}2x >,则{}12U B x x =-≤≤, 由题意可知,阴影部分所表示的集合为(){}1,2UA B =.故选:B. 12.D 【解析】 【分析】根据二次根式的性质,结合一元二次不等式的解法、补集的定义进行求解即可. 【详解】因为{[2,)(,1]A x y ===+∞-∞-∣, 所以UA()1,2-,故选:D 13.B 【解析】 【分析】分别解出A 、B 集合,再求交集即可. 【详解】 集合A :11022x x +>⇒>-; 集合B :222(1)1,[0,2]y x x x x =-=--∈, [1,0]y ∈-所以:1(,0]2A B -=故选:B.本题考查集合的交集运算.属于基础题.正确解出A 、B 集合是本题的基础. 14.A 【解析】 【分析】根据组合数的求解,先求得集合M 中的元素个数,再求其子集个数即可. 【详解】因为*5,,5m x C m N m =∈≤,由14555C C ==,235510C C ==,551C =,故集合M 有3个元素,故其子集个数为328=个. 故选:A. 15.D 【解析】 【分析】分别求出集合A 、B ,即可求出A B . 【详解】集合{}{24303A x x x x x =-+≥=≥或}1x ≤,{}{}3log 11,2,3B x N x =∈≤=,所以A B ={1,3}. 故选:D二、填空题16.{}3,9【解析】 【分析】首先求I 和B ,再求A B . 【详解】{}1,2,3,4,5,6,7,8,9I =,{3,6,9}A =,{2,4,6,8}B =, {}1,3,5,7,9B =,所以{}3,9A B =. 故答案为:{}3,917.[)1,+∞【解析】 【分析】先求出集合A 、B ,再求A B . 【详解】集合(){}()2|2ln ,A x y x =+∞==-,{}[]2|1,3430B x x x =≤=-+,所以()[][)2,1,31,A B +∞⋃=∞⋃+=.故答案为:[)1,+∞18.{}0,1-【解析】 【分析】分0a =和0a ≠两种情况保证方程2210ax x 只有一个解或重根,求出a 的值即可. 【详解】当0a =时,2210ax x 只有一个解12x =, 则集合2{|210}A x ax x =+-=有且只有一个元素,符合题意; 当0a ≠时,若集合A 中只有一个元素, 则一元二次方程2210ax x 有二重根, 即440a ∆=+=,即 1.a =-综上,0a =或1-,故实数a 的取值的集合为{}0,1.- 故答案为:{}0,1.-19.{}0,1,3【解析】 【分析】根据元素的确定性和互异性可求实数a 的取值. 【详解】因为{}31,3,a a ∈-,故1a =-或3a =或3a a =,当1a =-时,31a =-,与元素的互异性矛盾,舍; 当3a =时,327a =,符合;当3a a =时,0a =或1a =±,根据元素的互异性,0,1a =符合, 故a 的取值集合为{}0,1,3. 故答案为:{}0,1,3 20.4a ≤-或5a ≥ 【解析】 【分析】由3a a <+可得A ≠∅,根据题意可得到端点的大小关系,得到不等式,从而可得答案. 【详解】由题意 3a a <+,则A ≠∅要使得A B =∅,则31a +≤-或5a ≥ 解得4a ≤-或5a ≥ 故答案为:4a ≤-或5a ≥21.{(2,1)}【解析】 【分析】利用加减消元法求得方程组的解集. 【详解】依题意13x y x y -=⎧⎨+=⎩,两式相加得24,21x x y ==⇒=, 所以方程组的解集为{(2,1)}. 故答案为:{(2,1)}22.{}10123-,,,, 【解析】 【分析】根据并集的定义可得答案. 【详解】{}1,2,3A =,{}1,0,1B =-,∴{}10123A B ⋃=-,,,,.故答案为:{}10123-,,,,. 23.{|12}x x -<≤##(-1,2] 【解析】 【分析】根据两集合的并集的含义,即可得答案. 【详解】因为集合{}02A x x =<≤,集合{}12B x x =-<<, 所以1|}2{A B x x =-<≤ , 故答案为:{|12}x x -<≤ 24.(1,2)##{}12,x x x R <<∈ 【解析】 【分析】根据集合交集的定义可得解. 【详解】由(1,2)A =-,(1,3)B =根据集合交集的定义,()1,2A B ⋂=. 故答案为:(1,2)25.4-【解析】 【分析】结合元素与集合的关系,利用集合的互异性分类讨论即可求解. 【详解】若13a -=,则4a =,此时,2113a a -=-,不合题意,舍去; 若2133a -=,则4a =-或4a =,因为4a =不合题意,舍去.故答案为:4-.三、解答题26.(1)(3,4][1,1)-;(2)(5,)(,2)+∞-∞-.【解析】【分析】(1)根据解绝对值不等式的方法,结合二次根式的性质、集合交集的定义进行求解即可; (2)根据解绝对值不等式的方法、集合补集的定义,结合子集的性质进行求解即可.(1)当a =2时,因为(3,)(,1)A =+∞-∞,[1,4]B =-,所以(3,4][1,1)A B =-;(2)(1,)(,1)A a a =++∞-∞-,[1,4]B =-因为()()U U A B ⊆,所以B A ⊆,因此有11a +<-或14a ->,解得2a <-或5a >,因此实数a 的取值范围为(5,)(,2)+∞-∞-.27.(1)1,22⎡⎫⎪⎢⎣⎭(2)[)2,+∞【解析】【分析】(1)由题意得出B A ⊆,从而列出不等式组,求a 的范围即可,(2)由题意R BA ≠∅,列出不等式,求a 的范围即可.(1)解:若“x A ∈”是“x B ∈”的必要条件,则B A ⊆,又集合B 为非空集合, 故有122125a a +⎧⎨+<⎩,解得122a <, 所以a 的取值范围1,22⎡⎫⎪⎢⎣⎭, (2) 解:因为{}15A x x =≤<,所以{|1R A x x =<或5}x ,因为命题“x B ∃∈,x A ∈R ”是真命题,所以R B A ≠∅,即125a +,解得2a .所以a 的取值范围[)2,+∞.28.(1)30,0m n ==(2)单调递增,证明见解析【解析】【分析】(1)运用奇函数的定义可得0n =,再由()h x 图象经过点(1,1),解方程可得m ; (2)39()3x f x x x -=++在[3,)∞+递增.运用单调性的定义,结合因式分解和指数函数的单调性,即可得证;(3)求得当3x 时,2()()273273mx m g x h x x x x ===++;当3x <时,||1()9()9()3x m g x k x -==⋅;分别讨论0m ,03m <<,3m ,运用基本不等式和函数的单调性,求得m 的范围.(1) 函数2()327mx nh x x +=+为奇函数,可得()()h x h x -=-,即22327327mx nmx nx x -++=-++,则0n =,由()h x 的图象过(1,1)A ,可得h (1)1=,即130m n+=,解得30m =,故30,0m n ==;(2)3m =,可得39()3x f x x x -=++,[3,)x ∈+∞,()f x 在[3,)+∞ 上递增.证明:设123x x <,则123312121299()()33x x f x f x x x x x ---=++--- 12331221129()33x x x x x x x x ---=-⋅+-,由123x x <,可得210x x ->,129x x >,1233330x x ---<,则12())0(f x f x -<,即12()()f x f x <,可得()f x 在[3,)∞+递增;(3)当3x 时,2()()273273mxmg x h x x x x===++;当3x <时,||1()9()9()3x m g x k x -==⋅.①0m 时,13x ∀时,1111()()0273m g x h x x x ==+; 23x ∀<时,2||221()9()9)30(x m g x k x -==>⋅不满足条件,舍去;②当03m <<时,13x ∀≥时,1111()()(0273mg x h x x x ==∈+,]18m,23x ∀<时,2||0x m -≥,2||221()9()9()(03x m g x k x -==⋅∈,9],由题意可得(0,](018m ⊆,9],可得918m ,即162m ; 综上可得03m <<; ③当3m 时,13x ∀≥时,1111()()(0273mg x h x x x ==∈+,]18m , 23x ∀<时,2||30x m m ->-,2||221()9()9()(03x m g x k x -==⋅∈,319())3m -⋅, 由题意可得(0,](018m ⊆,319())3m -⋅, 可得5318m m -<,可令5()318x x H x -=-,则()H x 在R 上递减,(6)0H =, 故由5318m m -<,可得6m <,即36m <, 综上可得06m <<,所以m 的取值范围是(0,6).【点睛】本题考查函数的奇偶性和单调性的定义和运用,考查分类讨论思想方法和化简整理的运算能力,属于难题.29.(1){|1x x ≤或3}x ≥ (2)2(,1)(1,)3-⋃+∞ 【解析】【分析】(1)化简集合B ,根据补集、并集的运算求解;(2)由条件转化为A ⊆B ,分类讨论,建立不等式或不等式组求解即可.(1)当1a =-时,{}3|1A x x =-≤≤,{}1|28|234x B x x x ⎧⎫=<<=-<<⎨⎬⎩⎭, {||2U B x x x ∴=≤-或3}x ≥,(){|1U B x x A =≤∴或3}x ≥.(2)由A ∩B =A ,得A ⊆B ,当A =∅时,则3a >a +2,解得a >1,当A ≠∅时,则32231a a a >-⎧⎪+<⎨⎪≤⎩,解得213a -<<, 综上,实数a 的取值范围是2(,1)(1,)3-⋃+∞. 30.答案见解析【解析】【分析】首先写出6的正约数,即可得到集合Y ,再用列举法列出Y 的所有子集;【详解】解:因为6的正约数有1、2、3、6,所以{}1,2,3,6Y =,所以Y 的子集有:∅、{}1、{}2、{}3、{}6、{}1,2、{}1,3、{}1,6、{}2,3、{}2,6、{}3,6、{}1,2,3、{}1,2,6、{}1,3,6、{}2,3,6、{}1,2,3,6共16个;。

高中数学集合测试题(附答案和解析)

高中数学集合测试题(附答案和解析)

高中数学集合测试题(附答案和解析)一、单选题1.已知集合{}1,2,3,4A =,2{|log ,}B y y x x x A ==-∈,则A B =( ) A .{}1,2B .{}1,3C .{}1,2,3D .{}1,3,42.已知集合{A xy =∣,{}0,1,2,3B =,则A B =( ) A .{3} B .{2,3} C .{1,2,3} D .{0,1,2,3}3.已知集合{}1,2,3A =,{}21,B y y x x A ==-∈,则A B =( ) A .{}1,2 B .{}1,2,3 C .{}1,3D .{}1,2,3,54.已知集合{}2|8120A x x x =-+<,{|14}B x Z x =∈<<,则A B =( )A .{1,2}B .{}2,4C .{3}D .∅5.已知集合{}N 15A x x =∈≤≤,{}05B x x =<<,则A B =( ) A .{}2,3,4B .{}1,2,3,4C .{}15x x ≤≤D .{}15x x ≤<6.已知R 为实数集,集合{}{}2340,ln(1)A x x x B x y x =--≤==-,则R A B ⋃=( )A .{}14x x <≤B .{}11x x -≤≤C .{}1x x ≥-D .{}4x x ≤7.已知集合{}{}2230,1A x x x B x x =--<=≤,则R()A B ⋂=( )A .(,1][1,)∞∞--⋃+B .(,1](1,)-∞-⋃+∞C .(]1,1-D .[1,1)- 8.已知集合{}{}|2,|(1)0A x x B x x x =>=->,则A B ⋃=( ) A .(-∞,0) B .()(),01,-∞⋃+∞ C .()(),02,-∞⋃+∞D .(2,+∞)9.设集合(){}ln 2A x y x ==-,{}13B x x =≤≤,则A B ⋃=( ) A .(]2,3 B .[)1,+∞ C .()2,+∞D .(],3-∞10.已知集合{|12}A x x =-<≤,{}2,1,0,2,4B =--,则()R A B ⋂=( ) A .∅B .{}1,2-C .{}2,4-D .{}2,1,4--11.已知函数()2log f x x =,()2g x a x =-,若存在[]12,1,2x x ∈,使得()()12f x g x =,则实数a 的取值范围是( ) A .()(),25,-∞⋃+∞ B .(][),25,-∞⋃+∞ C .()2,5D .[]2,512.已知集合(){},M x y y x ==,(){}22,|1N x y xy =+=,M N A ⋂=,则A 中元素个数为( )个. A .1B .2C .3D .4 13.设全集{}0,1,2,3,4U =,集合{}1,2,4A =,{}2,3B =,则()U A B ⋂=( ) A .{}2B .{}2,3C .{}0,3D .{}314.集合N A x x ⎧⎫=∈⎨⎬⎭⎩31,()}{N log B x x =∈+≤211,S A ⊆,S B ⋂≠∅,则集合S 的个数为( ) A .0B .2C .4D .815.设集合{}260A x x x =--≤,{}20B x x a =+≤,且{}21A B x x ⋂=-≤≤,则=a ( ) A .4-B .2-C .2D .4二、填空题16.如图,四个棱长为1的正方体排成一个正四棱柱,AB 是一条侧棱,()1,2,,8i P i =是上底面上其余的八个点,()1,2,,8i i x AB AP i =⋅=则用集合列举法表示i x 组成的集合______.17.如图,用集合符号表述下列点、直线与平面之间的关系.(1)点C 与平面β:___________; (2)点A 与平面α:___________;(3)直线AB 与平面α:___________; (4)直线CD 与平面α:___________.18.若集合{}{}1,2,3,4,|23A B x x ==≤≤﹐则A B =_________. 19.已知集合{}1,2,3,4,A =,{}1,4,7,10,B =,下有命题:①{} 2,3,5,6,8,9,AB =;②若f 表示对二个数乘以3减去2的运算,则对应:f A B →表示一个函数; ③A 、B 两个集合元素个数相等; ④n A ∀∈,22n n ≥. 其中真命题序号是______.20.已知{}3A x a x a =≤≤+,{}15b x x =-<<,A B =∅,则实数a 的取值范围是______ 21.集合(){},A x y y a x ==,(){},B x y y x a ==+,C AB =,且集合C 为单元素集合,则实数a 的取值范围是________.22.已知[]x 表示不超过x 的最大整数.例如[2.1]2=,[ 1.3]2-=-,[0]0=,若{[]}A y y x x ==-∣,{0}∣=≤≤B y y m ,yA 是yB ∈的充分不必要条件,则m 的取值范围是______.23.已知集合{1,2,3}A =,则满足A B A ⋃=的非空集合B 有_________个.24.已知集合{}1,0,1A =-,{}220B x x x =-=,则A B ⋃=______.25.写出集合{1,1}-的所有子集______.三、解答题26.(1)已知全集{}|510,Z U x x x =-≤≤∈,集合M ={|07,Z x x x ≤≤∈},N ={|24,Z x x x -<∈≤},求()U N M (分别用描述法和列举法表示结果);(2)已知全集{}0,1,2,3,4,5,6,7,8,9,10U A B =⋃=,若集合{}2,4,6,8UA B =,求集合B ;(3)已知集合2{|210,R,R}P x ax ax a x =++=∈∈,当集合P 只有一个元素时,求实数a 的值,并求出这个元素.27.函数()()sin 22sin cos 1a x f x a x x +=+-.(1)若1a =,,02x π⎡⎫∈-⎪⎢⎣⎭,求函数()f x 的值域;(2)当,02x ⎡⎤∈-⎢⎥⎣⎦π,且()f x 有意义时,①若(){}0y y f x ∈=,求正数a 的取值范围; ②当12a <<时,求()f x 的最小值N .28.已知集合2111x A x x +⎧⎫=<⎨⎬-⎩⎭,{(1)(2)0}B x x x m =-+<. (1)当1m =时,求A B ;(2)已知“x A ∈”是“x B ∈”的必要条件,求实数m 的取值范围.29.已知集合{|lg(3)A x y x ==-,2{|9200}B x x x =-+≤,{|121}C x a x a =+≤<-.若()C A B ⊆,求实数a 的取值范围.30.已知U =R ,{}2=160A x x -<,{}2=3180B x x x -++>,求A B ,A B .【参考答案】一、单选题 1.A 【解析】 【分析】根据对数的运算求出集合B ,再根据交集的定义可求出结果. 【详解】当1x =时,21log 11y =-=, 当2x =时,22log 21y =-=, 当3x =时,23log 3y =-, 当4x =时,24log 42y =-=, 所以2{1,2,log 3}B =, 所以A B ={1,2}. 故选:A 2.C 【解析】 【分析】先由y =A ,再根据集合交集的原则即可求解.【详解】对于集合A ,10x -≥,即1≥x ,则{}1A x x =≥, 所以{}1,2,3A B =, 故选:C 3.C 【解析】 【分析】根据题意求出集合B ,在和集合A 取交集即可. 【详解】因为集合{}1,2,3A =,{}21,B y y x x A ==-∈, 所以{}1,3,5B =,所以{}1,3A B =, 故选:C. 4.C 【解析】 【分析】解出不等式28120x x -+<,然后可得答案. 【详解】因为{}{}2|8120|26A x x x x x =-+<=<<,{}{}142,3B x Z x =∈<<=所以{}3⋂=A B , 故选:C 5.B 【解析】 【分析】由集合的交运算求A B 即可. 【详解】由题设,集合{}1,2,3,4,5A =,{}05B x x =<<, 所以{}1,2,3,4A B ⋂=. 故选:B 6.D 【解析】 【分析】首先解一元二次不等式求出集合A ,再根据对数型函数的定义域求出集合B ,最后根据补集、并集的定义计算可得; 【详解】解:由2340x x --≤,即410x x ,解得14x -≤≤,即{}{}234014A x x x x x =--≤=-≤≤,又(){}{}ln 11B x y x x x ==-=,所以{}|1R B x x =≤,所以{}4R A B x x ⋃=≤; 故选:D 7.B 【解析】 【分析】解一元二次不等式求集合A 、解绝对值不等式求集合B ,再应用集合的交补运算求R()A B .【详解】由题设,{|13},{|11}A x x B x x =-<<=-≤≤, 所以1{|1}A B x x =-<≤,则R(){|1A B x x ⋂=≤-或1}x >.故选:B 8.B 【解析】 【分析】首先解一元二次不等式求出集合B ,再根据并集的定义计算可得; 【详解】解:由(1)0x x ->,解得1x >或0x <,所以{}|(1)0{|1B x x x x x =->=>或0}x <,又{}|2A x x =>,所以()(),01,A B ⋃=-∞⋃+∞;故选:B 9.B 【解析】 【分析】根据对数型函数的性质,结合集合并集的定义进行求解即可. 【详解】因为(2,)A =+∞,{}13B x x =≤≤, 所以A B ⋃=[)1,+∞, 故选:B 10.D 【解析】 【分析】 利用补集定义求出A R,利用交集定义能求出()A B R .【详解】解:集合{|12}A x x =-<≤,{}2,1,0,2,4B =--, 则R{|1A x x =≤-或2}x >,(){}R 2,1,4A B ∴⋂=--. 故选:D 11.D【分析】根据条件求出两个函数在[1,2]上的值域,结合若存在[]12,1,2x x ∈,使得12()()f x g x =,等价为两个集合有公共元素,然后根据集合关系进行求解即可. 【详解】当12x ≤≤时,22log 1()log 2f x ≤≤,即0()1f x ≤≤,则()f x 的值域为[0,1], 当12x ≤≤时,4()2a g x a -≤≤-,则()g x 的值域为[4,2]a a --, 因为存在[]12,1,2x x ∈,使得12()()f x g x =, 则[4,2][0,1]a a --≠∅ 若[4,2][0,1]a a --=∅, 则14a <-或02a >-, 得5a >或2a <,则当[4,2][0,1]a a --≠∅时,25a ≤≤, 即实数a 的取值范围是[2,5],A ,B ,C 错,D 对. 故选:D . 12.B 【解析】 【分析】联立方程,解方程组,考察方程组的解的组数,即为集合A 的元素个数; 【详解】联立方程得221y x x y =⎧⎨+=⎩,解得x y ⎧=⎪⎪⎨⎪=⎪⎩x y ⎧=⎪⎪⎨⎪=⎪⎩所以集合M 与N 的交集A 中的元素个数为2个; 故选:B. 13.D 【解析】 【分析】利用补集和交集的定义可求得结果. 【详解】 由已知可得{}0,3UA =,因此,(){}U 3AB ⋂=,故选:D. 14.C 【解析】 【分析】根据分式不等式和对数不等式求出集合A 和B ,利用交集的定义 和集合的包含关系即可求解.由x31,得03x <≤, 所以}{N,,A x x ⎧⎫=∈=⎨⎬⎭⎩31123. 由()log x +≤211,得11x -<≤. 所以()}{}{N log ,B x x =∈+≤=21101.由S A ⊆,S B ⋂≠∅,知S 中必含有元素1,可以有元素2,3.所以S 只有{}1,{}12,,{}13,,{}123,,,即集合S 的个数共4个. 故选:C. 15.B 【解析】 【分析】先求出集合,A B ,再根据交集的结果求出a 即可. 【详解】由已知可得{}23A x x =-≤≤,2a B x x ⎧⎫=≤-⎨⎬⎩⎭又∵{}21A B x x ⋂=-≤≤,∴12a-=, ∴2a =-. 故选:B .二、填空题 16.{}1【解析】 【分析】由空间向量的加法得:i i AP AB BP =+,根据向量的垂直和数量积得221AB AB ==,0i AB BP ⋅=计算即可.【详解】由题意得,()2i i i i x AB AP AB AB BP AB AB BP =⋅=⋅+=+⋅又AB ⊥平面286BP P P ,i AB BP ∴⊥,则0i AB BP ⋅=,所以221i i x AB AB BP AB =+⋅==, 则()1,2,,81i i x AB AP i =⋅==,故答案为:{}117. C β∉ A α AB B α⋂= CD α⊂【分析】根据元素与集合,集合与集合之间的关系,由图可写出答案 【详解】(1)C 为元素,平面β为集合,所以,由图可得C β∉.(2)A 为元素,平面α为集合,所以,由图可得A α.(3)直线AB 为集合,平面α为集合,所以,由图可得AB B α⋂=. (4)直线CD 为集合,平面α为集合,所以,CD α⊂.故答案为:①C β∉;②A α;③AB B α⋂=;④CD α⊂; 18.{2,3}##{3,2} 【解析】 【分析】 由交集的运算求解 【详解】{}{}1,2,3,4,|23A B x x ==≤≤,则{2,3}A B =故答案为:{2,3} 19.①②③ 【解析】 【分析】①由补集定义直接判断;②按照函数定义进行判断;③元素一一对应即可判断;④3n =时,不成立. 【详解】因为{}{}**,32,A n n N B n n k k N =∈==-∈,故②正确,又{ 31AB n n k ==-或}*3,n k k N =∈,故①正确;A 、B 两个集合元素一一对应,元素个数相等,故③正确;当3n =时,3223<,故④错误. 故答案为:①②③. 20.4a ≤-或5a ≥ 【解析】 【分析】由3a a <+可得A ≠∅,根据题意可得到端点的大小关系,得到不等式,从而可得答案. 【详解】由题意 3a a <+,则A ≠∅要使得A B =∅,则31a +≤-或5a ≥ 解得4a ≤-或5a ≥ 故答案为:4a ≤-或5a ≥21.[1,1]-【解析】 【分析】由题意可得集合A ,B 表示的曲线有一个交点,可得a x x a =+有一个根,当0a =时,符合题意,当0a ≠时,1x x a =+,分别作出y x =与1xy a=+的图象,根图象求解即可 【详解】因为C A B =,且集合C 为单元素集合, 所以集合A ,B 表示的曲线有一个交点, 所以a x x a =+有一个根 当0a =时,符合题意, 当0a ≠时,1x x a =+,分别作出y x =与1xy a=+的图象, 由图象可知11a ≥或11a≤-时,两函数图象只有一个交点, 解得01a <≤或10a -≤<, 综上,实数a 的取值范围是[1,1]-, 故答案为:[1,1]-22.[)1,+∞【解析】 【分析】由题可得{[]}[0,1)A yy x x ==-=∣,然后利用充分不必要条件的定义及集合的包含关系即求. 【详解】∵[]x 表示不超过x 的最大整数,∴[]x x ≤,[]01x x ≤-<,即{[]}[0,1)A yy x x ==-=∣, 又y A 是y B ∈的充分不必要条件,{0}∣=≤≤B y y m ,∴A B ,故m 1≥,即m 的取值范围是[)1,+∞. 故答案为:[)1,+∞.23.7 【解析】 【分析】由A B A ⋃=可得B A ⊆,所以求出集合B 的所有非空子集即可 【详解】因为A B A ⋃=,所以B A ⊆, 因为{1,2,3}A =,所以非空集合{}1B =,{}2,{}3,{}1,2,{}1,3,{}2,3,{}1,2,3, 所以非空集合B 有7个, 故答案为:724.{1,0,1,2}-【解析】 【分析】根据给定条件求出集合B ,再利用并集的定义直接计算作答. 【详解】解方程220x x -=得:0x =或2x =,则{}0,2B =,而{}1,0,1A =-, 所以{1,0,1,2}A B =-. 故答案为:{1,0,1,2}- 25.∅,{}1-,{1},{1,1}- 【解析】 【分析】利用子集的定义写出所有子集即可. 【详解】由子集的定义,得集合{1,1}-的所有子集有:∅,{}1-,{1},{1,1}-.故答案为:∅,{}1-,{1},{1,1}-.三、解答题26.(1){}|47,Z x x x ≤≤∈,{}4,5,6,7;(2){}0,1,3,5,7,9,10;(3)1a =,元素为1-. 【解析】 【分析】(1)根据补集和交集的定义直接计算作答. (2)利用补集的定义直接计算作答. (3)利用元素与集合的关系推理计算作答. 【详解】(1)由{}|510,Z U x x x =-≤≤∈,N ={|24,Z x x x -<∈≤}, 得:{|52U N x x =-≤<-或410,Z}x x ≤≤∈,而{|07,Z}M x x x =≤≤∈, 所以{}()|47,Z U N M x x x =≤≤∈{}4,5,6,7=.(2)由{}0,1,2,3,4,5,6,7,8,9,10U A B =⋃=,{}2,4,6,8UA B =,得{2,4,6,8}UB =,所以{}()0,1,3,5,7,9,10U U B B ==. (3)当0a =时,P =∅,不符合题意,当0a ≠时,因集合P 只有一个元素,则方程2210ax ax ++=有等根,2440a a ∆=-=, 此时1a =,集合P 中的元素为1-, 所以1a =,这个元素是1-.27.(1)(,2-∞-(2)①2a ≥;②)21N a=【解析】 【分析】(1)当1a =时,求得()sin 22sin cos 1x f x x x +=+-,令[)sin cos 1,1t x x =+∈-,令[)12,0m t =-∈-,()()22h m f x m m==++,利用双勾函数的单调性可得出函数()h m 在[)2,0-上的值域,即可得解;(2)①分析可知210a a --≤≤,可得出2a ≥,分1a =、1a ≠两种情况讨论,化简函数()221at ap t at +-=-的函数解析式或求出函数()f x 的最小值,综合可得出正实数a 的取值范围;②令[]11,1n at a a =-∈---,则1n t a +=,可得出()()21122a a p t n n a n ϕ⎡⎤+-=++=⎢⎥⎣⎦,分析可得出101a a --<<-<法可求得N . (1)解:当1a =时,()sin 22sin cos 1x f x x x +=+-,因为,02x π⎡⎫∈-⎪⎢⎣⎭,则,444x πππ⎡⎫+∈-⎪⎢⎣⎭,令[)sin cos 1,14t x x x π⎛⎫=+=+∈- ⎪⎝⎭,则212sin cos 1sin 2t x x x =+=+,可得2sin 21x t =-, 设()()211t g t f x t +==-,其中11t -≤<,令1m t =-,则()22111221m t m t m m+++==++-,令()22h m m m=++,其中20m -≤<,下面证明函数()h m 在2,⎡-⎣上单调递增,在()上单调递减,任取1m 、[)22,0m ∈-且12m m <,则()()1212122222h m h m m m m m ⎛⎫⎛⎫-=++-++ ⎪ ⎪⎝⎭⎝⎭()()()()12121212121222m m m m m m m m m m m m ---=--=,当122m m -≤<<122m m >,此时()()12h m h m <,当120m m <<,则1202m m <<,此时()()12h m h m >, 所以,函数()h m在2,⎡-⎣上单调递增,在()上单调递减,则()(max 2h m h ==-因此,函数()f x 在,02π⎡⎫-⎪⎢⎣⎭上的值域为(,2-∞-. (2)解:因为,02x ⎡⎤∈-⎢⎥⎣⎦π,则,444x πππ⎡⎤+∈-⎢⎥⎣⎦,令[]sin cos 1,14t x x x π⎛⎫=+=+∈- ⎪⎝⎭,设()()222211a a t at a a f x p t at at -⎛⎫+ ⎪+-⎝⎭===--, ①若(){}0y y f x ∈=,必有210aa--≤≤,因为0a >,则2a ≥,当1a =时,即当1a =()110p t t t a =+==,可得1t =,合乎题意;当1a≠2a ≥且1a ≠()min 0p t =,合乎题意. 综上所述,2a ≥;②令[]11,1n at a a =-∈---,则1n t a+=, 则()()22121122n a a a a a a p t n n n a n ϕ⎡⎤+-⎛⎫+⎢⎥ ⎪⎝⎭⎡⎤+-⎢⎥⎣⎦==++=⎢⎥⎣⎦, 令()()20qs x x q x=++>,下面证明函数()s x在(上单调递减,在)+∞上为增函数,任取1x、(2x ∈且12x x <,则120x x -<,120x x q <<, 所以,()()()()()()121212121212121212220q x x x x x x q q qs x s x x x x x x x x x x x ---⎛⎫⎛⎫-=++-++=--=> ⎪ ⎪⎝⎭⎝⎭,所以,()()12s x s x >,故函数()s x在(上单调递减, 同理可证函数()s x在)+∞上为增函数,在(,-∞上为增函数,在()上为减函数,因为12a <<,则()()2212121,2a a a +-=--+∈,且()()22121220a a a a a +---=->10a >->, 又()22212120a a a a +----=-<,1a ∴--<,101a a ∴--<<-由双勾函数的单调性可知,函数()n ϕ在1,a ⎡--⎣上为增函数,在()上为减函数,在(]0,1a -上为减函数, 当[)1,0x a ∈--时,()((max 120n aϕϕ==-<, ()2101a a ϕ-=>-,()((22111a a a ϕϕ⎡⎤---=+⎢⎥⎣⎦- (())())()21142214210111a a a a a a a a a a +------=≥=>---,由双勾函数性质可得()()min 21f x a ϕ=-=,综上所述())min 21f x N a==.【点睛】关键点点睛:在求解本题第二问第2小问中,要通过不断地换元,将问题转化为双勾函数的最值,结合比较法可得出结果. 28.(1){21}x x -<<; (2)[2,4]∈-m . 【解析】 【分析】(1)当1m =时,解分式不等式化简集合A ,解一元二次不等式化简集合B ,再利用并集的定义计算作答.(2)由给定条件可得B A ⊆,再借助集合包含关系列式计算作答. (1) 由2111x x +<-,得201x x +<-,解得21x -<<,则{21}A x x =-<<, 当1m =时,()()1{1210}12B x x x x x ⎧⎫=-+<=-<<⎨⎬⎩⎭,所以{21}A B x x ⋃=-<<. (2)因为“x A ∈”是“x B ∈”的必要条件,则B A ⊆, 当12m ->,即2m <-时,{1}2mB x x =<<-,B A ⊄,不符合题意,当12m-=,即2m =-时,B =∅,符合题意, 当12m -<,即2m >-时,12m B x x ⎧⎫=-<<⎨⎬⎩⎭,则212m -≤-<,解得24m -<≤,综上得:24m -≤≤,所以实数m 的取值范围[2,4]∈-m .29.(,3]-∞【解析】 【分析】求函数定义域得93,2A ⎛⎤= ⎥⎝⎦,解不等式得[4,5]B =,进而得(3,5]A B =,再结合题意,分C =∅和C ≠∅两种情况求解即可.【详解】解:由30920x x ->⎧⎨-≥⎩,解得932x <≤,所以93,2A ⎛⎤= ⎥⎝⎦,因为()()2920450x x x x -+=--≤,解得45x ≤≤,所以[4,5]B =所以(3,5]A B = 因为()C A B ⊆,所以,当C =∅时,121a a +≥-,解得2a ≤C ≠∅时,可得12113215a a a a +<-⎧⎪+>⎨⎪-≤⎩,解得:23a <≤综上可得:实数a 的取值范围是(,3]-∞ 30.{}=34A B x x ⋂-<<,{}=46A B x x ⋃-<< 【解析】 【分析】先化简集合A 、B ,再去求A B 、A B 即可解决. 【详解】{}{}2=16044A x x x x -<=-<<{}{}2=318036B x xx x x -++>=-<<则{}{}{}=443634A B x x x x x x ⋂-<<⋂-<<=-<<{}{}{}=443646A B x x x x x x ⋃-<<⋃-<<=-<<。

集合测试题(带答案)

集合测试题(带答案)

集合 单元检测一、选择题(每题5分,共50分)1 .已知集合{0,1,2,3,4}M =,{1,3,5}N =,P MN =,则P 的子集共有( )A .2个B .4个C .6个D .8个2 .若{|1},{|1}P x x Q x x =<=>-,则( )A .P Q ⊆B .Q P ⊆C .R C P Q ⊆D .R Q C P ⊆3 .若集合{}20A x x x =-<,{}03B x x =<<,则AB 等于( )A .{}01x x <<B .{}03x x <<C .{}13x x <<D .∅4 .设全集R U =,集合}33|{≤≤-=x x A ,}52|{>-<=x x x B 或,那么,集合)(B C A U 等于( )A .}53|{<≤-x xB .}53|{≥≤x x x 或C .}23|{-<≤-x xD .{|23}x x -≤≤5 .设集合{}1,2,3,4U =,{}1,2,3,M ={}2,3,4,N =则()U MN =ð( )A .{}12,B .{}23,C .{}2,4D .{}1,46 .若全集{1,2,3,4,5,6},{2,3},{1,4}U M N ===,则集合{5,6}等于( )A .MN B.MN C .()()U U C M C N D .()()U U C M C N7 .已知集合{0,1}A =,{1,0,3}B a =-+,且A B ⊆,则a 等于( )A .1B .0C .2-D .3-8 .已知集合{1,2,1}A a =-,2{0,3,1}B a =+,若{2}A B ⋂=,则实数a 的值是 ( )A .1±B .1C .1-D .09 .设集合N N M ax x N x x x M =⋂=-==+-若},01|{},0158|{2,则实数a 的组成的集合Q是( )A .{3,5}B .{0,3,5}C .}5131{,D .}51310{,,10.设A={x|—1<x≤3},B={x|x>a},若B A ⊆则a 的取值范围是 ( )A .a≥3B .a≤-1C .a>3D .a<-1二、填空题(每题5分,共25分)11.集合{1,0,1}-的所有子集个数为_________.12.已知集合A={1,2,3,},B={2,m,4},A∩B={2,3},则m=____________13.设U={}0,1,2,3,A={}20x U x mx ∈+=,若}21{,A C U =,则实数m=_________.14.已知集合A={x|x=2n —l ,n∈Z},B={x|x 2一4x<0},则A ∩B=_____________.15.已知集合{}|1A x x =≤,{}|B x x a =≥,且A B R ⋃=,则实数a 的取值范围是______________________ . 三、解答题(共75分)16.已知 }{}{ ,32|,1|,<<-=<==x x B x x A R UA B C B A C B A B A U U )( ,)( , ,求17.设全集{010,}U x x x N +=<<∈,若{3}A B ⋂=,{1,5,7}U A C B ⋂=,()U C A ⋂()U C B{9}=,求A 、B .18.设集合{}25A x x =-≤≤,{}121B x m x m =+≤≤-,若B A ⊆,求实数m 的取值范围.19.已知{}d d A 21,1,1++=,{}2,,1q q B =,若B A =,求d 与q 的值,并求集合A20.已知集合A={}3|+≤≤a x a x ,B={}5.,1|>-<x x x 或(1)若φ=B A ,求实数a 的取值范围; (2)若B B A = ,求实数a 的取值范围。

高中数学 集合专项训练含答案

高中数学 集合专项训练含答案

高中数学 集合专项训练含答案一、单选题1.已知集合{}1,4,M x x =,{}21,N x =,若N M ⊆,则实数x 组成的集合为( )A .{}0B .{}2,2-C .2,0,2D .2,0,1,22.设全集{}1,2,3,4U =,{}1,3A =,{}4B =,则()U A B =( ) A .{}2,4B .{}4C .∅D .{}1,3,43.已知集合U =R ,{}2230A x x x =--<,则UA( )A .{}13x x -<<B .{}13x x -≤≤C .{1x x ≤-或3}x ≥D .{1x x <-或3}x >4.已知集合{}22A x x =-≥,集合{2,3,4,5}B =,那么集合A B =( ) A .[2,5] B .(3,5] C .{4,5}D .{2,3,4,5}5.已知集合*{|15,N }A x x x =-<<∈,{|03}B x x =≤≤,则A B =( ) A .[0,3]B .[1,5)-C .{1,2,3,4}D .{}1,2,36.若集合{A y y ==,{}3log 2B x x =≤,则A B =( ) A .(]0,9B .[)4,9C .[]4,6D .[]0,97.{}1,2,3A =,{}28xB x =<,则A B =( )A .∅B .{}1C .{}1,2D .{}1,2,38.若全集为R ,集合{2x A x=≤∣,{ln(2)0}B x x =-<∣,则()A B =R ( ) A .3,2⎛⎤-∞ ⎥⎝⎦B .30,2⎛⎤⎥⎝⎦C .3,22⎛⎫ ⎪⎝⎭D .()2,+∞9.已知集合{}28xA x =≤,{}16B x x =-≤≤,则A B ⋃=( )A .(,6]-∞B .[1,6]-C .[1,3]-D .(0,6]10.集合{}2{}|5,8,3100x x A B x =--≤=,则A B ⋂=R( )A .{}5B .{}8C .{}2,5,8-D .{}5- 11.已知集合{}2{63},3100S x x T x x x =∈-<<=--<Z∣∣,则S T ( ) A .{23}x x -<<∣ B .{1,0,1,2}- C .{52}xx -<<∣ D .{2,1,0,1,2}--12.已知集合{}24A x x =≤,{}2,B y y x x ==∈R ,则A B =( )A .[0,2]B .[0,4]C .[2,2]-D .∅13.已知集合{}{}|2|21A x x B x x =≥-=-≤≤,,则下列关系正确的是( ) A .A B =B .A B ⊆C .B A ⊆D .A B =∅14.设全集2,1,0,1,2U ,{}2,1,2A =--,{}2,1,0,1B =--,则()U A B =( )A .{}2,1-B .{}0,1C .{}1,0,1-D .{}2,1,0,1--15.已知集合{}2450A x x x =--≤,{}5B y y =>,则A B ⋃=( )A .∅B .[)1,-+∞C .[)1,5-D .()5,+∞二、填空题16.集合{}14A x x =-<≤,{}1,1,3B =-,则A B 等于_________.17.已知集合{}2Z,4A x x x =∈<,{}1,2B =-,则A B ⋃=_________.18.已知A ={x ∈R|2a ≤x ≤a +3},B ={x ∈R|x <-1或x >4},若A B ⊆,则实数a 的取值范围是________.19.已知集合A 与B 的关系如下图,则图中所示的阴影部分用集合表示为________.(要求用集合A 与B 的符号关系表示)20.已知集合{}2A x x =<,{}2,0,1,2B =-,则A B =_______. 21.满足{}1,2A ⊆的集合A 的个数是______________22.设集合(),5P =-∞,[),Q m =+∞,若P Q =∅,则实数m 的取值范围是______. 23.若实数2a =,集合{}|13B x x =-<<,则a 与B 的关系是______.24.已知A ={x |2a <x ≤a +8},B ={x |x <-1或x >5},若A ∪B =R , 则a 的取值范围是________.25.已知集合2{|2}30A x x x =--<,{|0}B x x a =-<,且B A ⊆,则a 的取值范围为________.三、解答题26.已知全集U =R ,{}34A x x =->,108x B xx +⎧⎫=>⎨⎬-⎩⎭.求集合A B ,UA ,()UA B .27.对于任意的*n N ∈,记集合{1,2,3,,}n E n =,,n n n P x x a E b E b ⎧⎫==∈∈⎨⎬⎩⎭,若集合A 满足下列条件:①n A P ⊆;②12,x x A ∀∈,且12x x ≠,不存在*N k ∈,使212x x k +=,则称A 具有性质Ω.如当2n =时,2{1,2}E =,222P ⎧=⎨⎩,112,x x P ∀∈,且12x x ≠,不存在*N k ∈,使212x x k +=,所以2P 具有性质Ω.(1)写出集合3P ,4P 中的元素个数,并判断3P 是否具有性质Ω. (2)证明:不存在A 、B 具有性质Ω,且A B =∅,使15E A B =⋃. (3)若存在A 、B 具有性质Ω,且A B =∅,使n P A B =⋃,求n 的最大值.28.如图所示阴影部分角的集合.29.著名的“康托尔三分集”是由德国数学家康托尔构造的,是人类理性思维的产物,其操作过程如下:将闭区间[]0,1均分为三段,去掉中间的区间段12,33⎛⎫⎪⎝⎭记为第一次操作;再将剩下的两个闭区间10,3⎡⎤⎢⎥⎣⎦,2,13⎡⎤⎢⎥⎣⎦分别均分为三段,并各自去掉中间的区间段,记为第二次操作;…,如此这样,每次在上一次操作的基础上,将剩下的各个区间分别均分为三段,同样各自去掉中间的区间段.操作过程不断地进行下去,以至无穷.每次操作后剩下的闭区间构成的集合即是“康托尔三分集”.例如第一次操作后的“康托尔三分集”为120,,,133⎧⎫⎡⎤⎡⎤⎨⎬⎢⎥⎢⎥⎣⎦⎣⎦⎩⎭.(1)求第二次操作后的“康托尔三分集”;(2)定义[],s t 的区间长度为t s -,记第n 次操作后剩余的各区间长度和为()*n a n N ∈,求4a ; (3)记n 次操作后“康托尔三分集”的区间长度总和为n T ,若使n T 不大于原来的110,求n 的最小值.(参考数据:lg 20.3010=,lg30.4771=)30.设R a ∈,关于x 的二次不等式2220ax x a -->的解集为A ,集合{}12B x x =<<,满足A B ⋂≠∅,求实数a 的取值范围.【参考答案】一、单选题 1.C 【解析】 【分析】若N M ⊆,所以2x x =或24x =,解出x 的值,将x 的值代入集合,检验集合的元素满足互异性. 【详解】因为N M ⊆,所以2x x =,解得0x =,1x =或24x =,解得2x =±, 当0x =时,{}1,4,0M =,{}1,0N =,N M ⊆,满足题意. 当1x =时,{}1,4,1M =,不满足集合的互异性. 当2x =时,{}1,4,2M =,1,4N ,若N M ⊆,满足题意. 当2x =-时,{}1,4,2M =-,1,4N ,若N M ⊆,满足题意.故选:C. 2.A 【解析】 【分析】根据补集的概念求出UA ,再根据并集运算即可求出结果.【详解】 由题意可知{}2,4UA =,又{}4B =,所以(){}2,4U A B =.故选:A. 3.C 【解析】 【分析】根据补集的定义,结合一元二次不等式的解法进行求解即可.因为集合{}2230{|13}A x x x x x =--<=-<<,所以UA{1x x ≤-∣或3}x ≥.故选:C. 4.C【解析】 【分析】解出不等式22x -≥,然后根据集合的交集运算可得答案. 【详解】因为{}{}224A x x x x =-≥=≥,{2,3,4,5}B =, 所以{4,5}A B =, 故选:C 5.D 【解析】 【分析】根据集合的交集的概念可求出结果. 【详解】 {1,2,3,4}A =, {1,2,3}A B ⋂=.故选:D 6.A 【解析】 【分析】先解出集合A 、B,再求A B . 【详解】因为{{}0A y y y y ===≥,{}{}3log 209B x x x x =≤=<≤,所以{}09A B x x ⋂=<≤.故选:A . 7.C 【解析】 【分析】先求出集合B ,再按照交集的定义计算即可. 【详解】由题意知:{}3B x x =<,故A B ={}1,2. 故选:C. 8.C 【解析】先求出集合A ,B ,再根据补集交集的定义即可求出. 【详解】 因为32A x x ⎧⎫=≤⎨⎬⎩⎭∣,{}12B x x =<<,所以()322R A B xx ⎧⎫⋂=<<⎨⎬⎩⎭∣. 故选:C . 9.A 【解析】 【分析】先解出集合A ,再计算A B 即可. 【详解】{}{}283x A x x x =≤=≤,故A B ⋃=(,6]-∞.故选:A. 10.B 【解析】 【分析】先求出集合B ,进而求出集合B 的补集,根据集合的交集运算,即可求出A B ⋂R.【详解】因为{}()(){}{}2310052025x x x x x B x x x ===--≤-+≤-≤≤,所以{5B x x =>R 或}2x <-, 所以{}8A B =R故选:B. 11.B 【解析】 【分析】求解一元二次不等式解得集合T ,再求S T 即可. 【详解】因为{63}S x x =∈-<<Z∣{}5,4,3,2,1,0,1,2=-----, {}23100T x x x =--<∣()(){}|520{|25}x x x x x =-+<=-<<,故S T {}1,0,1,2=-. 故选:B. 12.A 【解析】 【分析】解不等式得集合A ,求二次函数值域得集合B ,然后由集合的交集运算可得. 【详解】由24x ≤解得22x -≤≤,即{}22A x x =-≤≤,易知20y x =≥,即{|0}B y y =≥ 则{|02}A B x x =≤≤. 故选:A 13.C 【解析】 【分析】由子集的定义即可求解. 【详解】解:因为集合{}{}|2|21A x x B x x =≥-=-≤≤,, 所以根据子集的定义可知B A ⊆, 故选:C. 14.B 【解析】 【分析】 先求UA ,再求()UA B ⋂即可. 【详解】UA ={0,1},()U A B ={0,1}.故选:B. 15.B 【解析】 【分析】先解一元二次不等式,在根据并集定义计算. 【详解】∵{}{}[]2450151,5A x x x x x =--≤=-≤≤=-,{}()55,B y y ∞=>=+,∴[)1,A B =-+∞. 故选:B.二、填空题16.{}1,3【解析】 【分析】由交集定义直接得到结果. 【详解】由交集定义知:{}1,3A B =. 故答案为:{}1,317.1,0,1,2【解析】 【分析】求出集合A ,利用并集的定义可求得结果. 【详解】{}{}{}2Z,4Z,221,0,1A x x x x x x =∈<=∈-<<=-,因此,{}1,0,1,2A B ⋃=-.故答案为:1,0,1,2.18.a <-4或a >2【解析】 【分析】按集合A 为空集和不是空集两种情况去讨论即可求得实数a 的取值范围. 【详解】①当a >3即2a >a +3时,A =∅,满足A B ⊆;. ②当a ≤3即2a ≤a +3时,若A B ⊆,则有233124a a a a ≤+⎧⎨+-⎩或,解得a <-4或2<a ≤3综上,实数a 的取值范围是a <-4或a >2. 故答案为:a <-4或a >219.()A BAB ⋃【解析】 【分析】由集合的交并补运算求解即可. 【详解】设全集为A B ,则阴影部分表示集合A 与B 交集的补集,即()A BAB ⋃故答案为:()A BAB ⋃20.{}0,1【解析】 【分析】先求出集合A ,然后根据交集的定义求得答案. 【详解】由题意,{}22A x x =-<<,所以{}0,1A B =. 故答案为:{}0,1. 21.4 【解析】 【分析】利用集合的子集个数公式求解即可. 【详解】 ∵{}1,2A ⊆,∴集合A 是集合{}1,2的子集, ∴集合A 的个数为22=4, 故答案为:4.22.5m ≥【解析】 【分析】由交集和空集的定义解之即可. 【详解】(),5P =-∞,[),Q m =+∞ 由P Q =∅可知,5m ≥ 故答案为:5m ≥23.a B ∈【解析】 【分析】根据元素与集合关系即可判断. 【详解】因为2a =,满足123-<<,所以a B ∈. 故答案为:a B ∈.24.13,2⎡⎫--⎪⎢⎣⎭【解析】 【分析】由集合{|28}A x a x a =<+,{|1B x x =<-,或5}x >,A B R =,列出不等式组,能求出a 的取值范围. 【详解】集合{|28}A x a x a =<+,{|1B x x =<-,或5}x >,A B R =,∴2185a a <-⎧⎨+⎩, 解得132a -<-.a ∴的取值范围为[3-,1)2-.故答案为:[3-,1)2-.25.1a ≤【解析】 【分析】解一元二次不等式得集合A ,化简集合B ,再借助集合的包含关系即可求解作答.【详解】解2320x x --<,即2320x x -+>,解得1x <或2x >,则{|1A x x =<或2}x >,{|}B x x a =<,而B A ⊆,于是得1a ≤,所以a 的取值范围是:1a ≤. 故答案为:1a ≤三、解答题26.{}8A B x x ⋂=>,{}7UA x x =≤,(){}17UA B x x ⋃=-≤≤【解析】 【分析】分别求出集合,A B ,再根据交集、并集和补集的定义即可得出答案. 【详解】解:{}{}347A x x x x =->=>,()(){}{1018088x B x x x x x x x ⎧⎫+=>=+->=>⎨⎬-⎩⎭或}1x <-, 所以{}8A B x x ⋂=>,{}7UA x x =≤,{7A B x x ⋃=>或}1x <-,所以(){}17UA B x x ⋃=-≤≤.27.(1)3P ,4P 中的元素个数分别为9,14,3P 不具有性质Ω. (2)证明见解析 (3)14 【解析】 【分析】(1)由已知条件能求出集合3P ,4P 中的元素个数,并判断出3P 不具有性质Ω. (2)假设存在A ,B 具有性质Ω,且A B =∅,使15E A B =.其中15{1E =,2,3,⋯,15},从而1AB ∈,由此推导出与A 具有性质Ω矛盾.从而假设不成立,即不存在A ,B具有性质Ω,且A B =∅,使15E A B =.(3)当15n 时,不存在A ,B 具有性质Ω,且A B =∅,使n P A B =.14n =,根据1b =、4b =、9b =分类讨论,能求出n 的最大值为14.(1)解: 对于任意的*n N ∈,记集合{1n E =,2,3,⋯,}n ,,n n n P x x a E b E ⎧⎫=∈∈⎨⎬⎩⎭.当3n =时{}31,2,3E =,3P ⎧=⎨⎩;当4n =时{}41,2,3,4E =,413,22P ⎧⎫=⎨⎬⎩⎭,∴集合3P ,4P 中的元素个数分别为9,14,集合A 满足下列条件:①n A P ⊆;②1x ∀,2x A ∈,且12x x ≠,不存在*k N ∈,使212x x k +=,则称A 具有性质Ω,因为31P ∈,33P ∈,2132+=,*2∈N ,不符合题意,3P ∴不具有性质Ω.(2)证明:假设存在A ,B 具有性质Ω,且A B =∅,使15E A B =.其中15{1E =,2,3,⋯,15}.因为151E ∈,所以1A B ∈,不妨设1A ∈.因为2132+=,所以3A ∉,3B ∈.同理6A ∈,10B ∈,15A ∈.因为21154+=,这与A 具有性质Ω矛盾. 所以假设不成立,即不存在A ,B 具有性质Ω,且A B =∅,使15E A B =. (3)解:因为当15n 时,15n E P ⊆,由(2)知,不存在A ,B 具有性质Ω,且A B =∅,使n P AB =.若14n =,当1b =时,1414x x a E E ⎧⎫∈=⎨⎬⎩⎭, 取1{1A =,2,4,6,9,11,13},1{3B =,5,7,8,10,12,14}, 则1A ,1B 具有性质Ω,且11A B =∅,使1411E A B =.当4b =时,集合14x x a E ⎧⎫=∈⎨⎬⎩⎭中除整数外,其余的数组成集合为13513{,,,,}2222⋯, 令215911{,,,}2222A =,23713{,,}222B =, 则2A ,2B 具有性质Ω,且22A B =∅,使2213513{,,,,}2222A B ⋯=.当9b =时,集14x x a E ⎧⎫=∈⎨⎬⎩⎭中除整数外,其余的数组成集合12457810111314{,,,,,,,,,}3333333333, 令31451013{,,,,}33333A =,32781114{,,,,}33333B =. 则3A ,3B 具有性质Ω,且33A B =∅,使3312457*********{,,,,,,,,,}3333333333A B =.集合1414,,1,4,9C x x a E b E b ⎧⎫==∈∈≠⎨⎬⎩⎭中的数均为无理数, 它与14P 中的任何其他数之和都不是整数, 因此,令123A A A A C =,123B B B B =,则AB =∅,且14P AB =.综上,所求n 的最大值为14.28.{}45?18045?180,n n n Z αα-+≤≤+∈ 【解析】 【分析】观察图形, 按图索骥即可. 【详解】}{1|45?36045?360,S k k k Z αα︒︒︒︒=-+≤≤+∈, }{2|135?360225?360,S k k k Z αα︒︒︒︒=+≤≤+∈,{}12|452180452180S S S k k αα︒︒︒︒=+=-+≤≤+()(){}|45211804521180k k αα︒︒︒︒-++≤≤++()k ∈Z{}()|4518045180n n n Z αα︒︒︒︒=-+≤≤+∈ , 故答案为:{}()|4518045180n n n Z αα︒︒︒︒-+≤≤+∈.29.(1)1212780,,,,,,,1993399⎧⎫⎡⎤⎡⎤⎡⎤⎡⎤⎨⎬⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎩⎭(2)16()81t s - (3)6 【解析】 【分析】(1)根据“康托尔三分集”的定义,即可求得第二次操作后的“康托尔三分集”; (2)根据“康托尔三分集”的定义,分别求得前几次的剩余区间长度的和,求得其通项公式,即可求解;(3)由(2)可得第n 次操作剩余区间的长度和为23nn n b =,结合题意,得到21()310n ≤,利用对数的运算公式,即可求解. (1)解:根据“康托尔三分集”的定义可得:第一次操作后的“康托尔三分集”为120,,,133⎧⎫⎡⎤⎡⎤⎨⎬⎢⎥⎢⎥⎣⎦⎣⎦⎩⎭,第二次操作后的“康托尔三分集”为1212780,,,,,,,1993399⎧⎫⎡⎤⎡⎤⎡⎤⎡⎤⎨⎬⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎩⎭;(2)解:将定义[],s t 的区间长度为t s -,根据“康托尔三分集”的定义可得: 每次去掉的区间长后组成的数为以1()3t s -为首项,13为公比的等比数列,第1次操作去掉的区间长为1()3t s -,剩余区间的长度和为2()3t s -,第2次操作去掉两个区间长为1()9t s -的区间,剩余区间的长度和为4()9t s -,第3次操作去掉四个区间长为的区间1()27t s -,剩余区间的长度和为8()27t s -, 第4次操作去掉8个区间长为1()81t s -,剩余区间的长度和为16()81t s -,第n 次操作去掉12n -个区间长为1()3n t s -,剩余区间的长度和为2()3nn t s -,所以第4次操作后剩余的各区间长度和为416()81t s a -=; (3)解:设定义区间为[]0,1,则区间长度为1,由(2)可得第n 次操作剩余区间的长度和为23nn n b =,要使得“康托三分集”的各区间的长度之和不大于110, 则满足21()310n ≤,即21lg lg 1031n ≤=-,即11 5.679lg3lg 20.47710.3010n ≥=≈--, 因为n 为整数,所以n 的最小值为6.30.()(),22,∞∞--⋃+【解析】 【分析】由题意0a ≠,求出方程2220ax x a --=的两根,讨论a 的正负,确定二次不等式的解集A 的形式,然后结合数轴列出不等式求解即可得答案. 【详解】解:由题意0a ≠,令2220ax x a --=,解得两根为1211x x aa ==可知120,0x x <>,当0a >时,解集{}{}12||A x x x x x x =<>,因为120,1x x <>,所以A B ⋂≠∅的充要条件是22x <,即12a +<,解得2a >;当0a <时,解集{}12|A x x x x =<<,因为120,2x x <<,所以A B ⋂≠∅的充要条件是21>x ,即11a+,解得2a <-;综上,实数a 的取值范围为()(),22,∞∞--⋃+.。

高中数学集合测试题(含答案和解析)

高中数学集合测试题(含答案和解析)

高中数学集合测试题(含答案和解析)一、单选题1.已知集合{}1,2A =,{}2,3,4B =,则A B =( )A .{}2B .{}3C .{}1,3D .{}1,22.已知集合{}260A x R x x =∈+-<,集合1133x B x R -⎧⎫=∈≥⎨⎬⎩⎭,则A B =( ) A .{}32x x -<<B .{}02x x <≤C .{}02x x ≤<D .{}3x x >-3.设M ,N ,U 均为非空集合,且满足M ⫋N ⫋U ,则()()U U M N ⋂=( ) A .MB .NC .u MD .u N 4.已知集合{|04,}P x x x Z =<<∈,且M P ⊆,则M 可以是( ) A .{1,2} B .{2,4} C .{0,2} D .{3,4} 5.设集合{}1A x x =>,{}2B x x =≤,则A B =( )A .∅B .{}12x x <≤C .{}12x x x ≤>或D .R6.已知集合2cos ,3n A x x n N π*⎧⎫==∈⎨⎬⎩⎭,{}2230B x x x =--<,则A B =( ) A .{}2,1-- B .{}2,1,1-- C .{}1,2 D .{}1,1,2- 7.已知集合{}2,3,6,8U =,{}2,3A =,{}2,6,8B =,则()U A B =( ) A .{6,8} B .{2,3,6,8} C .{2} D .{2,6,8} 8.已知集合{}1,2,3A =,{}20B x x =-<,则A B =( )A .{}1B .{}1,2C .{}0,1,2D .{}1,2,3 9.设集合{}2,3,4,5A =,{}3,4,6B =,则A B =( ).A .{}2B .{}2,3C .{}3,4D .{}2,3,410.设集合{}{}13,33A xx B x x =≤≤=-≤≤∣∣,则A B =( ) A .[]1,3 B .[]3,3- C .(]1,3 D .[]3,1-11.已知集合{}2{63},3100S x x T x x x =∈-<<=--<Z ∣∣,则S T ( )A .{23}x x -<<∣B .{1,0,1,2}-C .{52}xx -<<∣ D .{2,1,0,1,2}-- 12.已知集合{}1,0,1,2M =-,{}21x N x =>,则()R M N ⋂=( ) A .{}1-B .{}0x x ≤C .{}10x x -<≤D .{}1,0-13.已知集合{|12}A x x =-<≤,{}2,1,0,2,4B =--,则()R A B ⋂=( )A .∅B .{}1,2-C .{}2,4-D .{}2,1,4--14.若集合{}{}22,3,|560,A B x x x ==-+=则A B =( )A .{2,3}B .∅C .2D .2,315.给出下列关系:①13∈R ;Q ;③-3∉Z ;④∉N ,其中正确的个数为( )A .1B .2C .3D .4二、填空题16.设{1,2}{1,2,3,4}A =,则满足条件的集合A 共有________个.17.已知全集{1,2,3,4,5,6,7}U =,集合{}1,3,5,7A =,则U A ____________.18.已知(){},21A x y y x ==+,(){},3B x y y x ==+,则A B =___________.19.集合{}14A x x =-<≤,{}1,1,3B =-,则A B 等于_________.20.若集合(){}21420A x a x x =-+-=有且仅有两个子集,则实数a 的值是____. 21.已知全集为R ,集合()1,A =+∞,则A =__________.22.若集合{}|23A x x =-<<,{}|2B x x =>,则A B =______.23.若实数2a =,集合{}|13B x x =-<<,则a 与B 的关系是______.24.对于数集M 、N ,定义{},,M N x x a b a M b N +==+∈∈,,,a M N x x a M b N b ⎧⎫÷==∈∈⎨⎬⎩⎭,若集合{}1,2P =,则集合()P P P +÷中所有元素之和为___________.25.若集合{}3A x x =>,集合{}B x x a =≥,且B A ,则实数a 的取值范围是______. 三、解答题26.已知集合{}1|43280x x A x +=-⋅+,{}|2.B x x a =+< (1)当1a =时,求A B ;(2)若“x B ∈”是“x A ∈”的必要条件,求实数a 的取值范围.27.在①{}{}21,22,1,0a a a a ⊆-+-;②关于x 的不等式13ax b <+≤的解集是{}34x x <≤这两个条件中任选一个,补充在下面的问题(1)中并解答,若同时选择两个条件作答,以第一个作答计分.(1)已知______,求关于x 的不等式230ax x a -->的解集A ;(2)在(1)的条件下,若非空集合{}22B x k x k =<≤+,A B A ⋃=,求实数k 的取值范围.28.已知集合{}17U x x =≤≤,{}25A x x =≤<,{}37B x x =<≤.(1)求A B ;(2)求()U A B .29.设全集{2}U x x =≥-∣,{210}A x x =<<∣,{28}B x x =≤≤∣.求U A ,()U A B ⋂,A B ,()U A B30.已知集合{}4222x A x =<≤,{}122B x a x a =-<≤+(1)当0a =,求A B ;(2)若A B =∅,求a 的取值范围.【参考答案】一、单选题1.A【解析】【分析】根据集合的交集运算,即可求得答案.【详解】集合{}1,2A =,{}2,3,4B =,则{2}A B =,故选:A2.C【解析】【分析】本题首先通过解不等式260x x +-<得出{}32A x x =-<<,然后通过解不等式1133x -≥得出{}0B x x =≥,最后通过交集的相关性质即可得出结果.【详解】260x x +-<,()()320x x +-<,32x -<<,{}32A x x =-<<,1133x -≥,11x -≥-,0x ≥,{}0B x x =≥, 则{}02A B x x ⋂=≤<,故选:C.3.D【解析】【分析】利用()()()U U u M N M N ⋂=⋃,判断相互之间的关系.【详解】 ()()()U U u M N M N ⋂=⋃,M N N ⋃=,()u u M N N ⋃=.故选D.4.A【解析】【分析】化简集合P ,根据集合的包含关系确定M .【详解】因为{|04,}={1,2,3}P x x x Z =<<∈,又M P ⊆,所以任取x M ∈,则{1,2,3}x ∈, 所以M 可能为{2,3},A 对,又 0M ∉,4M ∉,∴ M 不可能为{2,4},{0,2},{3,4},B ,C ,D 错,故选:A.5.B【解析】【分析】根据交集的定义计算可得;【详解】 解:因为{}1A x x =>,{}2B x x =≤,所以{}12A B x x ⋂=<≤;故选:B6.C【解析】【分析】结合余弦型函数的周期性可得到{}1,1,2,2A =--,再得到2230x x --<的解集,进而求解.【详解】 因为2cos 3y x π=的最小正周期263T ππ==且1cos 32π=, 21coscos cos 3332ππππ⎛⎫=-=-=- ⎪⎝⎭,3cos 13π=-, 41coscos cos 3332ππππ⎛⎫=+=-=- ⎪⎝⎭,51cos cos 2cos 3332ππππ⎛⎫=-== ⎪⎝⎭, 6cos 13π=,71cos cos 2cos 3332ππππ⎛⎫=+== ⎪⎝⎭,, 所以{}*|2cos ,1,1,2,23n A x x n N π⎧⎫==∈=--⎨⎬⎩⎭, 又{}{}223013B x x x x x =--<=-<<, 所以{}1,2A B =,故选:C7.A【解析】【分析】由已知,先有集合U 和集合A 求解出U A ,再根据集合B 求解出()U A B ⋂即可. 【详解】因为{}2,3,6,8U =,{}2,3A =,所以{}6,8U A =,又因为{}2,6,8B =,所以(){}6,8U A B =.故选:A.8.A【解析】【分析】根据集合交集的概念及运算,即可求解.【详解】 由题意,集合{}{}202B x x x x =-<=<,又由{}1,2,3A =,根据集合交集的概念及运算,可得{}1A B ⋂=.故选:A.9.C【解析】【分析】依据交集定义即可求得A B【详解】{}{}{}2,3,4,53,4,63,4A B ⋂=⋂=故选:C10.A【解析】【分析】利用集合交集定义计算即可【详解】[1,3],[3,3],[1,3]A B A B ==-⋂=故选 :A11.B【解析】【分析】求解一元二次不等式解得集合T ,再求S T 即可.【详解】因为{63}S x x =∈-<<Z∣{}5,4,3,2,1,0,1,2=-----, {}23100T x x x =--<∣()(){}|520{|25}x x x x x =-+<=-<<,故S T {}1,0,1,2=-.故选:B.12.D【解析】【分析】先求出R N ,再结合交集定义即可求解.【详解】 由{}{}R 210x N x x x =≤=≤,得()R M N ⋂={}1,0- 故选:D13.D【解析】 【分析】利用补集定义求出A R ,利用交集定义能求出()AB R . 【详解】解:集合{|12}A x x =-<≤,{}2,1,0,2,4B =--,则R {|1A x x =≤-或2}x >,(){}R 2,1,4A B ∴⋂=--.故选:D14.A【解析】【分析】依据交集定义去求A B 即可.【详解】{}{}2|560=2,3B x x x =-+=则{}{}{}2,32,32,3A B ⋂=⋂=,故选:A .15.B【解析】【分析】根据数集的定义,即可得答案;【详解】13是实数,①②错误;-3是整数,③④正确.所以正确的个数为2.故选:B.二、填空题16.4【解析】【分析】根据并集的定义,列举集合A .【详解】由并集定义可知,集合A 中有元素3和4,所以满足条件的集合{}{}{}{}3,4,1,3,4,2,3,4,1,2,3,4A =共4个.故答案为:417.{}2,4,6【解析】【分析】由补集的定义即可求解.【详解】解:因为全集{1,2,3,4,5,6,7}U =,集合{}1,3,5,7A =,所以{}2,4,6U A =.故答案为:{}2,4,618.(){}2,5【解析】【分析】由方程组可求得交点坐标,由此可得交集.【详解】由213y x y x =+⎧⎨=+⎩得:25x y =⎧⎨=⎩,(){}2,5A B ∴=. 故答案为:(){}2,5.19.{}1,3【解析】【分析】由交集定义直接得到结果.【详解】由交集定义知:{}1,3A B =.故答案为:{}1,320.±1【解析】【分析】分析出集合A 有1个元素,对a 讨论方程解的情况即可.【详解】因为集合(){}21420A x a x x =-+-=有且仅有两个子集, 所以集合A 有1个元素.当a =1时,{}1|4202A x x ⎧⎫=-==⎨⎬⎩⎭,符合题意; 当a ≠1时,要使集合A 只有一个元素,只需()()244120a ∆=--⨯-=,解得:1a =-;综上所述: 实数a 的值是1或-1.故答案为:±1.21.(],1-∞【解析】【分析】直接利用补集的定义求解即可【详解】因为全集为R ,集合()1,A =+∞, 所以A =(],1-∞,故答案为:(],1-∞22.{}|23x x <<##()2,3【解析】【分析】由交集运算可直接求解.【详解】因为{}|23A x x =-<<,{}|2B x x =>,则{}|23A B x x =<<.故答案为:{}|23x x <<23.a B ∈【解析】【分析】根据元素与集合关系即可判断.【详解】因为2a =,满足123-<<,所以a B ∈.故答案为:a B ∈.24.232##11.5 【解析】【分析】根据定义分别求出()P P P +÷中对应的集合的元素即可得到结论.【详解】{1P =,2},{|P P x x a b ∴+==+,a P ,}{2b P ∈=,3,4},(){|2P P P x x ∴+÷==,3,4,1,3}2, ∴元素之和为323234122++++=, 故答案为:232. 25.3a >【解析】【分析】解不等式求得结合A ,根据B A 列不等式来求得a 的取值范围.【详解】3x >⇔3x <-或3x >,所以{|3A x x =<-或}3x >.由于B A ,所以3a >.故答案为:3a >三、解答题26.(1)(]3,2-(2)()3,0.-【解析】【分析】(1)化简集合A ,B ,再由并集的定义求解即可;(2)列出实数a 的不等式组,解之即可得出实数a 的取值范围.(1)由143280x x +-⋅+,得()()22240x x --,则224x ,则12x ,所以[]1,2A =, 由12x +<,可得31x -<<,则()3,1B =-,所以[]()(]=1,23,13,2A B ⋃⋃-=-(2)()2,2B a a =---,因为“x B ∈”是“x A ∈”的必要条件,所以A B ⊆ ,所以2122a a --<⎧⎨->⎩, 所以()3,0.a ∈-27.(1)条件选择见解析,12A x x ⎧=<-⎨⎩或}2x > (2)[)5,1,22∞⎛⎫--⋃ ⎪⎝⎭ 【解析】【分析】(1)若选①,分2122a a =-+和11a =-,求得a ,再利用一元二次不等式的解法求解; 若选②,根据不等式13ax b <+≤的解集为{}34x x <≤,求得a ,b ,再利用一元二次不等式的解法求解;(2)由A B A ⋃=,得到B A ⊆求解;(1)解:若选①,若2122a a =-+,解得1a =,不符合条件.若11a =-,解得2a =,则2222a a -+=符合条件.将2a =代入不等式230ax x a -->并整理得()()2210x x -+>,解得2x >或12x <-,故12A x x ⎧=<-⎨⎩或}2x >. 若选②,因为不等式13ax b <+≤的解集为{}34x x <≤,所以3143a b a b +=⎧⎨+=⎩,解得25a b =⎧⎨=-⎩. 将2a =代入不等式整理得()()2210x x -+>,解得2x >或12x <-.故12A x x ⎧=<-⎨⎩或}2x >. (2)∵A B A ⋃=,∴B A ⊆,又∵B ≠∅, ∴22122k k k +>⎧⎪⎨+<-⎪⎩或2222k k k +>⎧⎨≥⎩, ∴52k <-或12k ≤<, ∴[)5,1,22k ⎛⎫∈-∞-⋃ ⎪⎝⎭. 28.(1){}35x x << (2){12x x ≤<或}37x <≤【解析】【分析】根据集合间的运算直接得解.(1) 由{}25A x x =≤<,{}37B x x =<≤,得{}35A B x x ⋂=<<;(2) 由{}17U x x =≤≤,{}25A x x =≤<,得{12U A x x =≤<或}57x ≤≤, 故(){12U A B x x ⋃=≤<或}37x <≤.29.{22U A x x =-≤≤∣或10}x ≥,(){2}U A B =,{28}A B x x ⋂=<≤∣,(){22U A B x x ⋂=-≤≤∣或8}x >【解析】【分析】依据补集定义求得U A ,再依据交集定义求得()U A B ⋂;依据交集定义求得A B ,再依据补集定义求得()U A B . 【详解】{2}U x x =≥-∣,{210}A x x =<<∣,{28}B x x =≤≤∣,则{22U A x x =-≤≤∣或10}x ≥,则(){2}U A B = {28}A B x x ⋂=<≤∣,则(){22U A B x x ⋂=-≤≤∣或8}x > 30.(1){12}A B xx ⋂=<≤∣ (2)1,[5,)2⎛⎤-∞-⋃+∞ ⎥⎝⎦ 【解析】【分析】(1)首先求出集合,A B ,然后根据集合的交集运算可得答案; (2)分B =∅、B ≠∅两种情况讨论求解即可.(1)因为0a =,所以{12}B xx =-<≤∣ 因为{}4222{14}x A x x x =<≤=<≤∣, 所以{12}A B xx ⋂=<≤∣. (2)当B =∅,即122a a -≥+,3a ≤-时,符合题意当B ≠∅时可得12214a a a -<+⎧⎨-≥⎩或122221a a a -<+⎧⎨+≤⎩, 解得5a ≥或132a -<≤-. 综上,a 的取值范围为1,[5,)2⎛⎤-∞-⋃+∞ ⎥⎝⎦.。

高中数学集合测试题(含答案和解析)

高中数学集合测试题(含答案和解析)

高中数学集合测试题(含答案和解析)一、单选题1.已知集合{}{}22,1,0,2,3,4,|340A B x x x =--=--<,则A B =( )A .{}1,0,2,3,4-B .{}0,2,3,4C .{}0,2,3D .{}2,32.已知集合{}0,1,2,3,4A =,集合{}R 326xB x =∈<,则A B =( )A .{}0,1,2B .{}0,1,2,3C .{}0,1,2,3,4D .{}1,2,33.设集合{}1A x x =>,{}2B x x =≤,则A B =( ) A .∅B .{}12x x <≤C .{}12x x x ≤>或D .R4.若集合{}220A x x x =--<,{}21B x x =<,则A B =( )A .AB .BC .()1,0-D .()0,25.设集合{}0,1S =,{}0,3T =,则S T ⋃=( ) A .{}0 B .{}1,3 C .{}0,1,3D .{}0,1,0,36.已知R 为实数集,集合{}{}2340,ln(1)A x x x B x y x =--≤==-,则R A B ⋃=( )A .{}14x x <≤B .{}11x x -≤≤C .{}1x x ≥-D .{}4x x ≤7.已知集合{}{}234014P x x x Q x N x =--<=∈≤≤,,则=P Q ( )A .{1,2,3,4}B .{1,2,3}C .{1,2}D .{2,3,4}8.设全集U =R ,已知集合2|4A x x x >={},|B x y =={,则()UA B ⋂=( )A .[0,4]B .(,4]-∞C .(,0)-∞D .[0,)+∞9.设集合1|05x A x x -⎧⎫=>⎨⎬-⎩⎭,{}|13B x x =-≤≤,则()A B =R ( ) A .{}|35x x ≤< B .{}|15x x ≤< C .{}|15x x -≤<D .{}|13x x ≤≤10.已知集合{}1A x x =≤,B ={}02x x <<,则A B =( ) A .(]0,1B .[)1,2C .()0,1D .()0,211.已知集合50{|}A x x =<<-,{}41B x x =-≤≤,则A B ⋃=( ) A .AB .BC .(5,1]-D .[4,0)-12.已知集合{}13A x x =≤≤,集合{}24B x x =≤≤,则A B =( ) A .{}23x x ≤≤B .{}34x x <≤C .{}12x x <≤D .{|1x x <或}2x ≥13.若集合{}{}22,3,|560,A B x x x ==-+=则A B =( )A .{2,3}B .∅C .2D .2,314.设集合{}123A =,,,{}2|0B x R x x =∈-=,则A B ⋃=( ) A .{}1B .{}01,C .{}123,,D .{}0123,,,15.已知集合1|2,[,4]2xA xB a a ⎧⎫=>=+⎨⎬⎩⎭,若(]1,2A B =-,则=a ( )A .2B .1-C .2-D .5-二、填空题16.网络流行词“新四大发明’’是指移动支付、高铁、网购与共享单车.某中学为了解本校学生中“新四大发明”的普及情况,随机调查了100名学生,其中使用过移动支付或共享单车的学生共90名,使用过移动支付的学生共有80名,使用过共享单车的学生且使用过移动支付的学生共有60名,则该校使用共享单车的学生人数与该校学生总数比值的估计值为___________.17.设集合{}13A x x =<<,{}B x x a =<,若A B ⊆,则a 的取值范围是_________. 18.集合A ={2|x x -ax +2=0}的子集有两个,则实数a =______. 19.已知集合{}2,1,2A =-,{}1,B a a =+,且B A ⊆,则实数a 的值是___________.20.设全集{}0,1,2U =,集合{}0,1A =,在UA______21.方程组13x y x y -=⎧⎨+=⎩的解集..为_____. 22.已知集合A 与B 的关系如下图,则图中所示的阴影部分用集合表示为________.(要求用集合A 与B 的符号关系表示)23.已知集合(){}2,2A x y y xx ==-,()(){},21B x y y x ==+,则AB =___________.24.(1)已知集合{}2230A x x x =--=,{}20B x ax =-=,且B A ⊆,则实数a 的值为______.(2)若不等式23208kx kx +-<对一切实数x 都成立,则k 的取值范围为______.25.当x A ∈时,若有1x A -∉且1x A +∉,则称x 是集合A 的一个“孤元”,由A 的所有孤元组成的集合称为A 的“孤星集”,若集合{}1,2,3M =的孤星集是M ',集合{}1,3,4P =的孤星集是P ',则M P ''⋂=______.三、解答题26.已知集合A ={x |24x >},B ={x ||x -a |<2},其中a >0且a ≠1. (1)当a =2时,求A ∪B 及A ∩B ;(2)若集合C ={x |log ax <0}且C ⊆B ,求a 的取值范围.27.已知全集U R =,集合{|A x =213x -<,123}3x x -≤-,{|13}B x x =-≤≤.(1)求A ,A B ⋃,UB(2)如图①,阴影部分表示集合M ,求M . (3)如图②,阴影部分表示集合N ,求N .28.已知函数()()4log 526f x x x =--()g x x α=(α为常数),且()g x 的图象经过点(8,22P .(1)求()f x 的定义域和()g x 的解析式;(2)记()f x 的定义域为集合A ,()g x 的值域为集合B ,求()A B ⋂R .29.集合{}{}3621A x x B x m x m =<≤=≤≤+,. (1)若2m =,求,A B A B ;(2)若x B ∈是x A ∈的必要条件,求实数m 的取值范围.30.设集合{}4U x x =≤,{}12A x x =-≤≤,{}13B x x =≤≤.求:(1)A B ; (2)()U A B ; (3)()()U U A B ⋂.【参考答案】一、单选题 1.C 【解析】 【分析】先求出集合B ,再求两集合的交集即可 【详解】由2340x x --<,得(1)(4)0x x +-<,解得14x -<<, 所以{}14B x x =-<<, 因为{}2,1,0,2,3,4A =--, 所以A B ={}0,2,3, 故选:C 2.A 【解析】 【分析】根据指数函数的单调性,结合集合交集的定义进行求解即可. 【详解】由333262log 26log 273xx <⇒<<<=,因此A B ={}0,1,2, 故选:A 3.B 【解析】 【分析】根据交集的定义计算可得; 【详解】解:因为{}1A x x =>,{}2B x x =≤,所以{}12A B x x ⋂=<≤; 故选:B 4.B 【解析】 【分析】由题知{}12A x x =-<<,{}11B x x =-<<,再求交集即可. 【详解】解:解不等式220x x --<得12x -<<,故{}12A x x =-<<, 解不等式21x <得11x -<<,故{}11B x x =-<<, 所以A B ={}11x x B -<<=. 故选:B 5.C 【解析】 【分析】 由并集的概念运算 【详解】 S T ⋃={}0,1,3故选:C 6.D 【解析】 【分析】首先解一元二次不等式求出集合A ,再根据对数型函数的定义域求出集合B ,最后根据补集、并集的定义计算可得; 【详解】解:由2340x x --≤,即410x x ,解得14x -≤≤,即{}{}234014A x x x x x =--≤=-≤≤,又(){}{}ln 11B x y x x x ==-=,所以{}|1RB x x =≤,所以{}4R A B x x ⋃=≤;故选:D 7.B 【解析】 【分析】解不等式得到14{|}P x x =-<<,根据题意得到{1,2,3,4}Q =,再由集合交集的概念得到结果. 【详解】由集合{}234|0P x x x =--<,解不等式得到:14{|}P x x =-<<,又因为{1,2,3,4}Q =,根据集合交集的概念得到:{}1,2,3P Q ⋂=.8.D 【解析】 【分析】化简集合,A B ,先求出A B ,再求出其补集即可得解. 【详解】2|4A x x x >={}{|0x x =<或4}x >,|B x y ={{|4}x x =≤,所以{|0}A B x x =<, 所以()UA B ⋂={|0}x x ≥,即()UA B ⋂[0,)=+∞.故选:D9.D 【解析】 【分析】求解分式不等式的解集,再由补集的定义求解出A R,再由交集的定义去求解得答案.【详解】1015x x x ->⇒<-或5x >,所以{}15A x x =≤≤R , 所以得(){}13A B x x ⋂=≤≤R . 故选:D 10.A 【解析】 【分析】根据集合的交集概念即可计算. 【详解】∵{}1A x x =≤,B ={}02x x <<,∴A B =(]0,1. 故选:A ﹒ 11.C 【解析】 【分析】根据集合并集的概念及运算,正确运算,即可求解. 【详解】由题意,集合50{|}A x x =<<-,{}41B x x =-≤≤,根据集合并集的概念及运算,可得{|51}(5,1]A B x x =-<≤=-. 故选:C. 12.A 【解析】 【分析】由交集运算直接求出两集合的交集即可.由集合{}13A x x =≤≤,集合{}24B x x =≤≤ 则{}|23A B x x =≤≤ 故选:A 13.A 【解析】 【分析】依据交集定义去求A B 即可. 【详解】{}{}2|560=2,3B x x x =-+=则{}{}{}2,32,32,3A B ⋂=⋂=, 故选:A . 14.D 【解析】 【分析】先求出集合B ,再由并集运算得出答案. 【详解】由{}2|0B x R x x =∈-=可得{}0,1B =则{}0,1,2,3A B ⋃= 故选:D 15.C 【解析】 【分析】求出集合A 的解集,由(]1,2A B =-,列出满足题意的关系式求解即可得答案. 【详解】解:因为{}{}11|2|22|1(1,)2x x A x x x x -⎧⎫=>=>=>-=-+∞⎨⎬⎩⎭,[,4]B a a =+,又(1,2]A B ⋂=-,所以421a a +=⎧⎨≤-⎩,即2a =-,故选:C.二、填空题16.710##0.7 【解析】 【分析】利用韦恩图,根据题中的信息得出样本中使用共享单车和移动支付的学生人数,将人数除以100可得出所求结果. 【详解】根据题意,将使用过移动支付、共享单车的人数用如图所示的韦恩图表示,所以该校使用共享单车的学生人数与该校学生总数比值的估计值为6010710010+=. 故答案为:710. 17.[)3,+∞【解析】 【分析】根据A B ⊆列出不等式即可求解. 【详解】因为{}13A x x =<<,{}B x x a =<,A B ⊆,故只需3a ≥即可满足题意. 故答案为:[)3,+∞.18.22±【解析】 【分析】根据题意可得集合A 中仅有一个元素,则方程220x ax -+=只有一个解,从而有0∆=,即可得出答案. 【详解】解:因为A ={2|x x -ax +2=0}的子集有两个, 所以集合A 中仅有一个元素, 所以方程220x ax -+=只有一个解, 所以280a ∆=-=,解得22a =± 故答案为:22± 19.1 【解析】 【分析】由子集定义分类讨论即可. 【详解】因为B A ⊆,所以a A ∈1a A ∈, 当2a =-1a 无意义,不满足题意;当1a =12=,满足题意; 当2a =11=,不满足题意. 综上,实数a 的值1. 故答案为:120.{2}【解析】 【分析】利用集合的补运算求UA 即可.【详解】由{}0,1,2U =,{}0,1A =,则{2}UA =.故答案为:{2}.21.{(2,1)}【解析】 【分析】利用加减消元法求得方程组的解集. 【详解】依题意13x y x y -=⎧⎨+=⎩,两式相加得24,21x x y ==⇒=, 所以方程组的解集为{(2,1)}. 故答案为:{(2,1)}22.()A BAB ⋃【解析】 【分析】由集合的交并补运算求解即可. 【详解】设全集为A B ,则阴影部分表示集合A 与B 交集的补集,即()A BAB ⋃故答案为:()A BAB ⋃23.()1,1,2,62⎧⎫⎛⎫-⎨⎬ ⎪⎝⎭⎩⎭【解析】 【分析】解方程组直接求解即可 【详解】由()2221y x x y x ⎧=-⎪⎨=+⎪⎩得121x y ⎧=-⎪⎨⎪=⎩或26x y =⎧⎨=⎩,∴()1,1,2,62A B ⎧⎫⎛⎫⋂=-⎨⎬ ⎪⎝⎭⎩⎭.故答案为:()1,1,2,62⎧⎫⎛⎫-⎨⎬ ⎪⎝⎭⎩⎭24. 2a =-或23a =或0 30k -<≤ 【解析】 【分析】(1)分情况讨论,0,a B ==∅满足题意;当0a ≠时,{}220B x ax a ⎧⎫=-==⎨⎬⎩⎭,因为B A ⊆,故得到21a =-或23a=,解出即可;(2)分情况讨论,当0k =时,满足题意;当0k ≠时,只需要满足23Δ808k k k <⎧⎪⎨⎛⎫=-⨯-< ⎪⎪⎝⎭⎩解不等式组即可. 【详解】已知集合{}{}22301,3A x x x =--==-,{}20B x ax =-=当0,a B ==∅,满足B A ⊆; 当0a ≠时,{}220B x ax a ⎧⎫=-==⎨⎬⎩⎭,因为B A ⊆,故得到21a =-或23a= 解得2a =-或23a =; 不等式23208kx kx +-<对一切实数x 都成立,当0k =时,满足题意;当0k ≠时,只需要满足203Δ808k k k <⎧⎪⎨⎛⎫=-⨯-< ⎪⎪⎝⎭⎩解得30k -<< 综上结果为:30k -<≤. 故答案为:2a =-或23a =或0;30k -<≤ 25.∅【解析】 【分析】根据集合的新定义求解出集合M '和P ',再求解交集可得出答案. 【详解】根据“孤星集”的定义,1,112,2A A ∈+=∈ 所以1不是集合M '的元素同理2,3也都不是集合M '的元素M ∴'=∅,同理可得 {}1P '=所以M P '⋂'=∅.故答案为:∅.三、解答题26.(1)A ∪B ={x |x >0},A ∩B ={x |2<x <4};(2){a |1<a ≤2},【解析】【分析】(1)化简集合A ,B ,利用并集及交集的概念运算即得;(2)分a >1,0<a <1讨论,利用条件列出不等式即得.(1)∵A ={x |2x >4}={x |x >2},B ={x ||x -a |<2}={x |a -2<x <a +2},∴当a =2时,B ={x |0<x <4},所以A ∪B ={x | x >0},A ∩B ={x |2<x <4};(2)当a >1时,C ={x |log ax <0}={x |0<x <1},因为C ⊆B ,所以2021a a -≤⎧⎨+≥⎩,解得-1≤ a ≤2, 因为a >1,此时1<a ≤2,当0<a <1时,C ={x |log ax <0}={x |x >1},此时不满足C ⊆B ,综上,a 的取值范围为{a |1<a ≤2}.27.(1)3{|2}2A x x =≤<,{|13}AB x x ⋃=-≤≤,U B {|1x x =<-或3}x >; (2)3{|12M x x =-≤<或23}x ≤≤; (3){|1M x x =<-或3}x >.【解析】【分析】(1)求解不等式组解得集合A ,再根据集合的并运算和补运算即可求得结果; (2)根据阴影部分可知M =()B A B ⋂,根据已知集合求解即可; (3)根据阴影部分可知M =()U A B ,根据已知集合求解即可. (1){|A x =213x -<,1323}{|2}32x x x x -≤-=≤<, {|13}A B x x ⋃=-≤≤,U B {|1x x =<-或3}x >.(2)因为3{|2}2A B x x ⋂=≤< 根据题意可得M =()B A B ⋂3{|12x x =-≤<或23}x ≤≤. (3) 因为{|13}A B x x ⋃=-≤≤,根据题意可得M =()U A B {|1x x =<-或3}x >. 28.(1)()3,5;()12g x x =;(2)][)0,35,∞⎡⋃+⎣.【解析】【分析】(1)根据f (x )解析式即可求其定义域,根据()g x x α=过P 求出α即可求出g (x )解析式; (2)根据幂函数的性质求g (x )值域即B ,根据集合的补集和交集的运算方法求解即可.(1)5052603x x x x ⎧-><⎧⇒⎨⎨->>⎩⎩, ∴f (x )定义域为()3,5;∵()g x x α=过(P ,则()3132218222g x x ααα==⇒=⇒=; (2)()3,5A =,[)0,B ∞=+,][(),35,A ∞∞=-⋃+R ,()][)0,35,A B ∞⎡⋂=⋃+⎣R .29.(1){}35A B x x ⋂=<≤,{|26}x x AB ≤≤=; (2)5,32⎡⎤⎢⎥⎣⎦【解析】【分析】(1)将m 的值代入集合B ,然后根据交集与并集的定义即可求解;(2)由题意,可得A B ⊆,根据集合的包含关系列不等式组求解即可得答案.(1)解:当2m =时,{|25}B x x =≤≤,又{}36A x x =<≤, 所以{}35A B x x ⋂=<≤,{|26}x x AB ≤≤=;(2)解:因为x B ∈是x A ∈的必要条件,所以A B ⊆,即(3,6][,21]m m ⊆+,所以有3216m m ≤⎧⎨+≥⎩,解得532≤≤m , 所以实数m 的取值范围为5,32⎡⎤⎢⎥⎣⎦. 30.(1){|12}A B x x =≤≤;(2)(){|1U B x A x ⋃=<-或14}x ≤≤;(3)()(){|1U U x B x A ⋂=<-或34}x <≤.【解析】【分析】(1)由集合的交集运算可求得答案; (2)先算出U A ,再求()U A B ⋃; (3)先求U B ,再求()()U U A B ⋂. (1)解:∵{|12}A x x =-≤≤,{|13}B x x =≤≤, ∴{|12}A B x x =≤≤;(2)解:{|4}U x x =≤,{}12A x x =-≤≤,所以{|1U A x x =<-或24}x <≤. 又∵{|13}B x x =≤≤,∴(){|1U B x A x ⋃=<-或14}x ≤≤.(3)∵{|4}U x x =≤,{|13}B x x =≤≤,∴{|1U B x x =<或34}x <≤, ∴()(){|1U U x B x A ⋂=<-或34}x <≤.。

高中数学集合测试题(含答案和解析)

高中数学集合测试题(含答案和解析)

高中数学集合测试题(含答案和解析)一、单选题1.已知集合{}2|4A x x =≤,{}2|log 1B x x =≥,则A B ⋃=( ) A .[]22-,B .{}2C .[)2+∞,D .[)2+-∞,2.已知集合{A x y =∣,{}0,1,2,3B =,则A B =( ) A .{3} B .{2,3} C .{1,2,3} D .{0,1,2,3}3.已知{}{||2},0A x Z xB x x N x =∈<=∈>∣∣∣,则A B =( ) A .{1} B .{0,1}C .{0,1,2}D .∅4.若集合{A y y ==,{}3log 2B x x =≤,则A B =( )A .(]0,9B .[)4,9C .[]4,6D .[]0,9 5.已知集合{}24A x N x =∈≤,{}1,B a =,B A ⊆,则实数a 的取值集合为( ) A .{}0,1,2 B .{}1,2 C .{}0,2 D .{}2 6.已知集合{}22A x x =-≤,{}1,2,3,4,5B =,则A B =( )A .{}1,2,3,4B .{}2,3,4,5C .{}1,2,3D .{}2,3,4 7.已知集合{1,1},{0,1}A B =-=,设集合{,,}C z z x y x A y B ==+∈∈∣,则下列结论中正确的是( )A .A C ⋂=∅B .AC A ⋃= C .B C B =D .A B C = 8.已知集合{}1,2,3A =,{}20B x x =-<,则A B =( )A .{}1B .{}1,2C .{}0,1,2D .{}1,2,39.已知集合{}2,3,4A =,{}28120B x Z x x =∈-+<,则A B 中元素的个数是( ) A .4B .5C .6D .7 10.已知集合2{|30}A x x x =-≥,集合{1234}B =,,,,则A B =( ) A .{01234},,,, B .{123},, C .[0,4] D .[1,3] 11.已知集合{}24A x x =≤,{}2,B y y x x ==∈R ,则A B =( ) A .[0,2] B .[0,4] C .[2,2]- D .∅ 12.已知集合{}1A x x =≤,B ={}02x x <<,则A B =( )A .(]0,1B .[)1,2C .()0,1D .()0,2 13.已知集合()(){}{}1460,7524||A x x x B x x =+--≤=-≤-≤,则A B ⋃=( ) A .1|12x x ⎧⎫⎨⎬⎩⎭≤≤ B .{}|26x x -≤≤C .1|52x x ⎧≤≤⎫⎨⎬⎩⎭D .{}|14x x ≤≤14.设全集{}{}{}10,2,3,5,0,3,5,9U n N n A B =∈≤==,则()U A B =( ) A .{2,6} B .{0,9} C .{1,9} D .∅15.设(){}2log 1A x y x ==+,{}24B x x =≥,则()R A B =( )A .()1,2-B .[)1,2-C .()2,+∞D .()1,-+∞二、填空题16.设集合A 为空间中两条异面直线所成角的取值范围,集合B 为空间中直线与平面所成角的取值范围,集合C 为二面角的平面角的取值范围,则集合A 、B 、C 的真包含关系是___________.17.集合{}{}23,12,1A B m m ==+,,且A B =,则实数m =________.18.将集合{220s t A t s =-≤<且,}s t Z ∈中所有的元素从小到大排列得到的数列记为{}n a ,则50a =___________(填数值).19.若集合(){}2381x A x ==,集合(){}23log 1B x x ==,则A B =_________. 20.已知{}12A x x =-<≤,{}20B x x =-≤<,A B =________________.21.若集合{}2210A x x x =-+=,{}210B x x =-=,则A ______B .(用符号“⊂”“=”或“⊃”连接)22.已知集合{}2280A x x x =--<,非空集合{}23B x x m =-<<+,若x B ∈是x A ∈成立的一个充分而不必要条件,则实数m 的取值范围是___________.23.已知集合{}1,2A =,{}21,B x =-.若{}1A B ⋂=,则x =___________. 24.已知集合{}1,2,4,8A =,集合B ={x x 是6的正因数},则A B ⋃=__________. 25.若集合A ={x ∈R|ax 2+ax +1=0}中只有一个元素,则a =________.三、解答题26.设全集U =R ,集合{}14A x x =-<≤,{}2log 1B x x =>(1)求()U A B ;(2)若集合{}123C x a x a =-<<+,满足B C B ⋃=,求实数a 的取值范围.27.已知p :|m -1|>a (a >0),q :方程22152x y m m +=--表示双曲线. (1)若q 是真命题,求m 的取值范围;(2)若p 是q 的充分不必要条件,求a 的取值范围28.已知集合{}3A x a x a =≤≤+,{1B x x =<-或5}x >.(1)若A B =∅,求a 的取值范围;(2)若A B A =,求a 的取值范围.29.已知集合{}2560A xx x =--≤∣,集合{}26510B x x x =-+>∣,集合09x m C x x m -⎧⎫=≤⎨⎬--⎩⎭∣. (1)求A B ;(2)若A C C =,求实数m 的值取范围.30.(1)已知全集U =R ,集合{}2A x x =≤,{}2|60B x x x =--<,求()U A B ⋂. (2)已知0a >,0b >,且21a b +=,若不等式21m a b+≥恒成立,求实数m 的最大值.【参考答案】一、单选题1.D【解析】【分析】先化简集合A 、B ,再去求A B【详解】{}{}2|4|22A x x x x =≤=-≤≤,{}{}2|log 1|2B x x x x =≥=≥ 则{}{}{}|22|2|2x x x B x A x x -≤≤⋃≥==≥-⋃故选:D2.C【解析】【分析】先由y =A ,再根据集合交集的原则即可求解.【详解】对于集合A ,10x -≥,即1≥x ,则{}1A x x =≥,所以{}1,2,3A B =,故选:C3.A【解析】【分析】首先列举表示集合A ,再求A B .【详解】由条件可知{}1,0,1A =-,{}0B x x N x =∈>,所以{}1A B ⋂=.故选:A4.A【解析】【分析】先解出集合A 、B,再求A B .【详解】因为{{}0A y y y y ===≥,{}{}3log 209B x x x x =≤=<≤,所以{}09A B x x ⋂=<≤.故选:A .5.C【解析】【分析】化简集合A ,根据B A ⊆求实数a 的可能取值,由此可得结果.【详解】 因为集合{}24A x N x =∈≤化简可得{0,1,2}A = 又{}1,B a =,B A ⊆,所以0a =或2a =,故实数a 的取值集合为{0,2},故选:C.6.A【解析】【分析】首先解绝对值不等式求出集合A ,再根据交集的定义计算可得;【详解】 解:由22x -≤,即222x -≤-≤,解得04x ≤≤,所以{}[]220,4A x x =-≤=, 又{}1,2,3,4,5B =,所以{}1,2,3,4A B =.故选:A7.C【解析】【分析】由题意得{1,0,1,2}C =-,再由交集和并集运算求解即可.【详解】由题意可知,{1,0,1,2}C =-,{1,1}A C ⋂=-,{}1,0,1,2A C C ⋃=-=,{0,1},{1,0,1}B C B A B C ⋂==⋃=-≠.故选:C8.A【解析】【分析】根据集合交集的概念及运算,即可求解.【详解】 由题意,集合{}{}202B x x x x =-<=<,又由{}1,2,3A =,根据集合交集的概念及运算,可得{}1A B ⋂=.故选:A.9.A【解析】【分析】求出集合B ,再根据并集的定义即可求出答案.【详解】{}()(){}{}{}28120260263,4,5B x Z x x x Z x x x Z x =∈-+<=∈--<=∈<<=, 所以{}2,3,4,5A B ⋃=.所以A B 中元素的个数是4.故选:A.10.B【解析】【分析】先求得{|03}A x x =≤≤,再根据交集的运算可求解.【详解】由已知{|03}A x x =≤≤,所以{}1,2,3A B =.故选:B .11.A【解析】【分析】解不等式得集合A ,求二次函数值域得集合B ,然后由集合的交集运算可得.【详解】由24x ≤解得22x -≤≤,即{}22A x x =-≤≤,易知20y x =≥,即{|0}B y y =≥则{|02}A B x x =≤≤.故选:A12.A【解析】【分析】根据集合的交集概念即可计算.【详解】 ∵{}1A x x =≤,B ={}02x x <<,∴A B =(]0,1.故选:A ﹒13.B【解析】【分析】化简集合A 和B ,根据集合并集定义,即可求得答案.【详解】()(){}140|6A x x x =+--≤{}{}2=|310=|(5)(02)0x x x x x x ---+≤≤∴{}|25A x x =-≤≤{}{}|=75241221|B x x x x =-≤-≤-≤-≤-∴1|62x x B ⎧⎫=≤⎨⎩≤⎬⎭∴{}{}1|25|6=|262A B x x x x x x ⎧⎫-≤⎨⎬⋃=≤≤⋃≤-≤⎩≤⎭故选:B.14.B【解析】【分析】根据集合的交运算和补运算求解即可.因为{}{}100,1,2,3,4,5,6,7,8,9,10U n N n =∈≤=,{2,3,5}A ,则{0,1,4,6,7,8,9,10},{0,3,5,9}U A B ==,故(){0,9}U A B =. 故选:B .15.A【解析】【分析】 根据函数定义域的求解,以及简单二次不等式的求解,解得集合,A B ,再根据集合的补运算和交运算,即可求得结果.【详解】 因为(){}2log 1A x y x ==+{}{}|101x x x x =+>=-,{}24B x x =≥{|2x x =≤-或2}x ≥,故B R {|22}x x =-<<,则()R A B ={}()|121,2x x -<<=-.故选:A.二、填空题16.A B C ##C B A【解析】【分析】根据空间中两条异面直线所成角的范围求出A ,根据空间中直线与平面所成角的取值范围求出B ,根据二面角的平面角的取值范围求出C ,根据A 、B 、C 角的范围即可判断它们的包含关系.【详解】集合A 为空间中两条异面直线所成角的取值范围,π(0,]2A ∴=, 集合B 为空间中直线与平面所成角的取值范围,π[0,]2B ∴=, 集合C 为直角坐标平面上直线的倾斜角的取值范围,[0,π]C ∴=,∴集合A 、B 、C 的真包含关系为:A B C .故答案为:A B C .17.1或3-##3-或1【解析】由题意可得223m m +=,求出m ,【详解】因为{}{}23,12,1A B m m ==+,,且A B =,所以223m m +=,由223m m +=,得2230m m +-=,解得1m =或3-故答案为:1或3-18.992【解析】【分析】列举数列的前几项,观察特征,可得出50a .【详解】由题意得10212032313012345622,22,22,22,22,22,,a a a a a a =-=-=-=-=-=-观察规律可得22s t -中,以2s 为被减数的项共有s 个,因为123945++++=,所以50a 是1022t -中的第5项,所以1055022992a =-=.故答案为:992.19.{1,2,33} 【解析】【分析】求解集合,根据集合的并集运算即可.【详解】(){}{}23812x A x ===,(){}231log 13,3B x x ⎧⎫===⎨⎬⎩⎭,则A B ={1,2,33}. 故答案为:{1,2,33}. 20.{}10x x -<<【解析】【分析】由交集运算求解即可.【详解】A B ={}{}{}122010x x x x x x -<≤⋂-≤<=-<< 故答案为:{}10x x -<<21.⊂【解析】【分析】先化简集合A 、B ,再去判断集合A 、B 间的关系即可解决.{}{}22101A x x x =-+==,{}{}2101,1B x x =-==-,则A B ⊂ 故答案为:⊂22.()5,1-【解析】【分析】根据逻辑条件关系与集合间的关系、一元二次不等式的解法即可求解.【详解】 由题意得,{}{}228024A x x x x x =--<=-<<,由x B ∈是x A ∈成立的一个充分而不必要条件,得B A , 即2334m m -<+⎧⎨+<⎩解得,51m -<<, 故答案为:()5,1-.23.±1【解析】【分析】根据给定条件可得1B ∈,由此列式计算作答.【详解】因集合{}1,2A =,{}21,B x =-,且{}1A B ⋂=,于是得1B ∈,即21x =,解得1x =±,所以1x =±.故答案为:±124.{1,2,3,4,6,8}【解析】【分析】先化简集合B ,再求两集合的并集.【详解】因为B ={x x 是6的正因数}{1,2,3,6}=,所以{1,2,3,4,6,8}A B =.故答案为:{1,2,3,4,6,8}.25.4【解析】【分析】集合A 只有一个元素,分别讨论当0a =和0a ≠时对应的等价条件即可【详解】解:2{|10}A x R ax ax =∈++=中只有一个元素,∴若0a =,方程等价为10=,等式不成立,不满足条件. 若0a ≠,则方程满足0∆=,即240a a -=,解得4a =或0a =(舍去).故答案为:4三、解答题26.(1)(4,)(,2]+∞-∞;(2)[3,)(,4]+∞-∞-.【解析】【分析】(1)利用对数函数的单调性化简集合B ,根据集合交集和补集的定义进行求解即可; (2)根据集合并集的运算性质进行求解即可.(1) 因为{}{}2log 12B x x x x =>=>,所以(2,4]A B ⋂=,因此()(4,)(,2]U A B =+∞-∞;(2)因为B C B ⋃=,所以C B ⊆,当123a a -≥+时,即4a ≤-时,C =∅,符合C B ⊆; 当123a a -<+时,即4a >-时,要想C B ⊆,只需:123a a -≥⇒≥,因为4a >-,所以3a ≥, 综上所述:实数a 的取值范围为:[3,)(,4]+∞-∞-. 27.(1)(-∞,2)(5⋃,)∞+;(2)[4,)∞+.【解析】【分析】(1)解不等式(5)(2)0m m --<即得解; (2)由题意可得:1p m a >+或1m a <-+,解不等式组12150a a a -+⎧⎪+⎨⎪>⎩即得解. (1)解:由题意可得(5)(2)0m m --<,解得2m <或5m >.故m 的取值范围为(-∞,2)(5⋃,)∞+.(2)解:由题意可得:1p m a >+或1m a <-+. 因为p 是q 的充分不必要条件,所以(-∞,1)(1a a -++⋃,)(+∞-∞,2)(5⋃,)∞+.所以12150a a a -+⎧⎪+⎨⎪>⎩,解得4a . 故a 的取值范围为[4,)∞+.28.(1)[]1,2-(2)()(),45,-∞-+∞ 【解析】【分析】(1)根据交集的定义,列出关于a 的不等式组即可求解; (2)由题意,A B ⊆,根据集合的包含关系列出关于a 的不等式组即可求解;(1) 解:∵{}3,{1A x a x a B x x =≤≤+=<-或5}x >,且A B =∅, ∴135a a ≥-⎧⎨+≤⎩,解得12a -≤≤, ∴a 的取值范围为[]1,2-;(2) 解:∵{}3,{1A x a x a B x x =≤≤+=<-或5}x >,且A B A =, ∴A B ⊆,∴31a +<-或5a >,即4a或5a >, ∴a 的取值范围是()(),45,-∞-+∞.29.(1)1|13x x ⎧-≤<⎨⎩或162x ⎫<≤⎬⎭; (2)(]3,1--.【解析】【分析】(1)根据一元二次不等式的解法求出集合A 、B ,即可求出A B ; (2)由A C C =,可知A C ⊆,得到不等式组,即得.(1)∵{}2560A xx x =--≤∣,{}26510B x x x =-+>∣, {|16}A x x ∴=-≤≤,1|3B x x ⎧=<⎨⎩或12x ⎫>⎬⎭, ∴1|13A B x x ⎧⋂=-≤<⎨⎩或162x ⎫<≤⎬⎭; (2)∵{|16}A x x =-≤≤,0{|9}9x m C x x m x m x m -⎧⎫=≤=≤<+⎨⎬--⎩⎭∣, 由A C C =,得A C ⊆,961m m +>⎧∴⎨≤-⎩,解得31m -<≤-, ∴实数m 的值取范围为(]3,1--.30.(1)()2,3U A B ⋂=;(2)9.【解析】【分析】(1)先求不等式解集,再利用集合的补集、交集运算即可 (2)转化为最值问题,由基本不等式求解【详解】(1)由已知{}()2602,3B x x x =--<=- ()2,U A =+∞,所以()()2,3U A B ⋂=,(2)()2121222559b a a b a b a b a b ⎛⎫+=+⋅+=++≥= ⎪⎝⎭, 且仅当13a b ==时取等号, 不等式21m a b +≥恒成立,则9m ≤,故m 的最大值为9.。

集合专题训练(含答案)

集合专题训练(含答案)

集合专题训练(带答案)1.对集合中有关概念的考查例1我校举办的2020年校运动会中,若集合A={参加比赛的运动员},集合B={参加比赛的男运动员},集合C={参加比赛的女运动员},则下列关系正确的是 ( )A .AB B .BC C .A ∩B=CD .B ∪C=A 分析:本例主要考查子集的概念及集合的运算.解析:易知选D .点评:本题是典型的送分题,对于子集的概念,一定要从元素的角度进行理解.集合与集合间的关系,寻根溯源还是元素间的关系.2.对集合性质及运算的考查例2.已知,,,则 ( ) A . B . C . D . 分析:本题主要考查集合的并、交、补的运算以及集合间关系的应用.解析:由,,,故选B .点评:对集合的子、交、并、补等运算,常借助于文氏图来分析、理解.高中数学中一般考查数集和点集这两类集合,数集应多结合对应的数轴来理解,点集则多结合对应的几何图形或平面直角坐标系来理解.3.对与不等式有关集合问题的考查例3.已知集合,则集合为 ( ) A . B . C . D .分析:本题主要考查集合的运算,同时考查解不等式的知识内容.可先对题目中所给的集合化简,即先解集合所对应的不等式,然后再考虑集合的运算.解析:依题意:,∴, ∴故选C .点评:同不等式有关的集合问题是高考命题的热点之一,也是高考常见的命题形式,且多为含参数的不等式问题,需讨论参数的取值范围,主要考查分类讨论的思想,此外,解决集合运算问题还要注意数形结合思想的应用.4.对与方程、函数有关的集合问题的考查例4.已知全集,集合, ,则集合中元素的个数为 ( )A .1B .2C .3D .4分析:本题集合A 表示方程的解所组成的集合,集合B 表示在集合A 条件下函数的值域,故应先把集合A 、B 求出来,而后再考虑. 解析:因为集合,所以,所以⊆⊆{}7,6,5,4,3,2=U {}7,5,4,3=M {}6,5,4,2=N {}4,6M N =M N U =U M N C u = )(N N M C u = )({}7,6,5,4,3,2=U {}7,5,4,3=M {}6,5,4,2=N {}30,31x M x N x x x ⎧+⎫=<=-⎨⎬-⎩⎭{}1x x M N M N ()R M N ()R M N {}{}31,3M x x N x x =-<<=-{|1}M N x x ⋃=<()R M N ={}1.x x {12345}U =,,,,2{|320}A x x x =-+={|2}B x x a a A ==∈,)(B A C U )(B A C U {}{}1,2,2,4A B =={}1,2,4A B =故选B .点评:在解决同方程、函数有关的集合问题时,一定要搞清题目中所给的集合是方程的根,或是函数的定义域、值域所组成的集合,也即要看清集合的代表元素,从而恰当简化集合,正确进行集合运算.【专题综合】1. 对新定义问题的考查例1.定义集合运算:设,,则集合的所有元素之和为 ( )A .0B .2C .3D .6分析:本题为新定义问题,可根据题中所定义的的定义,求出集合,而后再进一步求解.解析:由的定义可得:,故选D .点评:近年来,新定义问题也是高考命题的一大亮点,此类问题一般难度不大,需严格根据题中的新定义求解即可,切忌同脑海中已有的概念或定义相混淆.【专题突破】1.满足M {a 1, a 2, a 3, a 4},且M ∩{a 1 ,a 2, a 3}={a 1·a 2}的集合M 的个数是( )(A )1 (B)2 (C)3 (D)42.设集合,则( ) (A) (B)(C) (D)3.设集合,则的取值范围是(A) (B)(C) 或 (D) 或二.填空题:1.已知集合,,则= .2.已知集合,,若;则实数m 的取值构成的集合为3. 已知集合,,则.三.解答题:1.设,,问是否存在非零整数,使?若存在,请求出的值及{}()3,5.U C A B ={},,.A B z z xy x A y B *==∈∈{}1,2A ={}0,2B =A B **A B *A B *A B *{0,2,4}A B =⊆{}{}{}1,2,3,4,5,1,2,3,2,3,4U A B ===()U A B ={}2,3{}1,4,5{}4,5{}1,5{}|23,S x x =->{}|8,T x a x a S T R =<<+=a 13-<<-a 13-≤≤-a 3-≤a 1-≥a 3-<a 1->a {}(1)0P x x x =-≥Q ={})1ln(|-=x y x P Q }06{2=-+=x x x M }01{=-=mx x N M N ⊆______}{2x y y A ==}2{x y y B ==____AB =},12|),{(*N x x y y x A ∈-==},|),{(*2N x a ax ax y y x B ∈+-==a A B ≠∅a;若不存在,请说明理由答案:一.选择题:1.〖解析〗本小题主要考查集合子集的概念及交集运算。

集合测试题及答案

集合测试题及答案

集合测试题及答案一、选择题1. 集合A={1, 2, 3, 4, 5},集合B={4, 5, 6, 7, 8},则A与B的交集A∩B是:A. {1, 2, 3}B. {4, 5}C. {6, 7, 8}D. ∅2. 设集合C={x | x是质数},集合D={x | x是偶数},则C与D的并集C∪D是:A. {2, 3, 5, 7}B. {1, 2, 3, 4, 5}C. {2, 3, 5, 7, 9}D. ∅3. 若集合E={x | x是小于8的正整数},集合F={x | x是3的倍数},则E与F的补集∁_{U}(E∩F)在全集U={1, 2, 3, 4, 5, 6, 7, 8, 9}中表示为:A. {1, 2, 4, 5, 6, 7}B. {3, 6, 9}C. {1, 2, 4, 5, 6, 7, 8}D. {2, 4, 6, 8}二、填空题4. 设集合G={0, 1, 2},集合H={1, 3, 4},求G与H的对称差,即G△H = ______。

5. 集合K={x | x是小于10的正整数},集合L={x | x是2的整数幂},则K与L的交集不包括的元素是 ______。

6. 给定集合M={x | x是4的倍数},集合N={x | x是5的倍数},求M与N的差集,即M\N = ______。

三、简答题7. 描述集合的运算性质,并给出两个例子说明。

答:集合的运算性质包括交换律、结合律、分配律和德摩根律。

例如,交换律指的是集合的并集和交集不依赖于集合的顺序,如A∪B = B∪A,A∩B = B∩A。

结合律意味着并集和交集的运算可以分步进行,如(A∪B)∪C = A∪(B∪C),(A∩B)∩C = A∩(B∩C)。

德摩根律指的是补集的补集是原集合,如∁_{U}(∁_{U}(A)) = A。

8. 解释什么是集合的幂集,并给出一个例子。

答:集合的幂集是指原集合所有子集构成的集合。

例如,集合P={a, b}的幂集是{{a}, {b}, {a, b}, ∅},它包含了P的所有可能子集。

高中数学集合测试题(附答案和解析)

高中数学集合测试题(附答案和解析)

高中数学集合测试题(附答案和解析)一、单选题1.已知集合U =R ,则正确表示集合U ,1{}1M =-,,{}²|0N x x x =+=之间关系的维恩图是( )A .B .C .D .2.设集合{}1,0,2,3A =-,139xB x ⎧⎫⎪⎪⎛⎫=<⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,则A B =( )A .{}2,3B .{}0,2C .{}0,2,3D .{}1,0,2,3- 3.已知复数a 、b 满足0ab ≠,集合{}{}22,,a b a b =,则a b +的值为( ) A .2 B .1 C .0 D .-14.已知集合A 是集合B 的真子集,下列关于非空集合A 、B 的四个命题:①若任取x A ∈,则x B ∈是必然事件.②若任取x A ∉,则x B ∈是不可能事件. ③若任取x B ∈,则x A ∈是随机事件.④若任取x B ∉,则x A ∉是必然事件. 其中正确的命题有( ).A .0个;B .1个;C .2个;D .3个. 5.已知集合{}35A x x =-≤<,{}42B x y x ==+,则()R A B ⋂=( ) A .13,2⎡⎫--⎪⎢⎣⎭ B .1,52⎛⎫- ⎪⎝⎭ C .[)3,2-- D .()2,5-6.已知R 为实数集,集合{}{}2340,ln(1)A x x x B x y x =--≤==-,则R A B ⋃=( )A .{}14x x <≤B .{}11x x -≤≤C .{}1x x ≥-D .{}4x x ≤ 7.已知集合{}1,2,3A =,{}20B x x =-<,则A B =( )A .{}1B .{}1,2C .{}0,1,2D .{}1,2,3 8.已知集合(){}2log 2A x y x ==-,{}2xB y y ==,则A B =( )A .()0,2B .()1,2C .[)1,2D .(),2-∞ 9.已知全集{}1,2,3,4,5U =,{}2,3,4A =,{}3,5B =,则()U A B =( ) A .{}1 B .{}3 C .{}2,4 D .{}1,2,4,5 10.正确表示图中阴影部分的是( )A .R M ∪NB .R M ∩NC .R (M ∪N )D .R (M ∩N )11.已知集合{},,A a b c =的所有非空真子集的元素之和等于12,则a b c ++的值为( )A .1B .2C .3D .412.已知集合*1|2cos ,,|2232x n A x x n B x π⎧⎫⎧==∈=≤≤⎨⎬⎨⎩⎭⎩N ,则A B =( ) A .{}1,1- B .{}0,1,2 C .{}1,1,2- D .1,0,1,213.已知集合{}82A xx =-<<∣,{}1B x x =≤-,则()R A B ⋂=( ) A .{}1x x <-B .{}12x x -<<C .{}8x x >-D .{}28x x <≤14.已知集合{}2log 1M x x =<,{}21N x x =≤,则M N ⋃=( ) A .(],1-∞B .(),2-∞C .[)1,2-D .(]0,115.设集合{}260A x x x =--≤,{}15B x x =≤<,则A B =( ) A .{}23x x -<<B .{}13x x ≤≤C .{}13x x ≤<D .{}23x x -≤≤二、填空题16.已知集合{}2430A x x x =-+=,{}30B x mx =-=,且B A ⊆,则实数m 的取值集合为___________.17.集合*83A x N N x ⎧⎫=∈∈⎨⎬-⎩⎭,用列举法可以表示为A =_________. 18.已知{}12A x x =-<≤,{}20B x x =-≤<,A B =________________.19.设函数()1ln12mx f x x+=-是定义在区间(),n n -上的奇函数(0m >,0n >),则实数n 取值范围为______.20.已知集合{}N 4sin ,02A x x θθπ=∈<≤≤,若集合A 中至少有3个元素,则实数θ取值范围为________21.若不等式x a <的一个充分条件为20x -<<,则实数a 的取值范围是___________.22.已知(1,2)A =-,(1,3)B =,则A B =________23.从集合M={}1,2,3,4,,2021中去掉所有3的倍数和5的倍数,则剩下的元素个数为______24.若a 、b 、R x ∈且a 、0b ≠,集合b a B x x a b ⎧⎫⎪⎪==+⎨⎬⎪⎪⎩⎭,则用列举法可表示为______. 25.当x A ∈时,若有1x A -∉且1x A +∉,则称x 是集合A 的一个“孤元”,由A 的所有孤元组成的集合称为A 的“孤星集”,若集合{}1,2,3M =的孤星集是M ',集合{}1,3,4P =的孤星集是P ',则M P ''⋂=______.三、解答题26.已知集合{}1|43280x x A x +=-⋅+,{}|2.B x x a =+< (1)当1a =时,求A B ;(2)若“x B ∈”是“x A ∈”的必要条件,求实数a 的取值范围.27.已知函数()f x =的定义域为集合A ,{|}B x x a =<. (1)求集合A ;(2)若“x ∈A ”是“x ∈B ”的充分条件,求a 的取值范围.28.已知集合{}12,,,n A a a a =⋅⋅⋅(120n a a a ≤<<⋅⋅⋅<,*n ∈N ,3n ≥)具有性质P :对任意,i j (1i j m ≤≤≤),i j a a +与j i a a -至少一个属于A .(1)分别判断集合{}0,2,4M =,与{}1,2,3N =是否具有性质P ,并说明理由;(2){}123,,A a a a =具有性质P ,当24a =时,求集合A ;(3)①求证:0A ∈;②求证:1232n n n a a a a a +++⋅⋅⋅+=.29.设p :()224300x ax a a -+<>,q :211180x x -+≤.(1)若命题“()1,2x ∀∈,p 是真命题”,求a 的取值范围;(2)若p 是q 的充分不必要条件,求a 的取值范围.30.已知函数()f x A ,关于x 的不等式2()(21)0x m x m --+≤的解集为B .(1)当m =2时,求()A B R ; (2)若x ∈A 是x ∈B 的充分条件,求实数m 的取值范围.【参考答案】一、单选题1.A【解析】【分析】先求得集合N ,判断出,M N 的关系,由此确定正确选项.【详解】∵{}{}2|1,00N x x x =-=+=,1{}1M =-,, ∴{1}M N ⋂=-,故A 正确,BCD 错误.故选:A.2.C【解析】【分析】先解指数不等式得集合B ,然后由交集定义可得.【详解】 由2139x x -=⎛⎪3⎫ ⎭<⎝,得12x >-,所以12B x x ⎧⎫=>-⎨⎬⎩⎭,所以{}0,2,3A B =. 故选:C .3.D【解析】【分析】由集合的性质可知a b ,22a a b b ⎧=⎨=⎩或22a b b a ⎧=⎨=⎩,且0ab ≠,进而求解即可. 【详解】 由题意,22a a b b ⎧=⎨=⎩或22a b b a ⎧=⎨=⎩, 因为0ab ≠,解得1212a b ⎧=-⎪⎪⎨⎪=-⎪⎩或1212b a ⎧=-⎪⎪⎨⎪=-⎪⎩, 所以1a b +=-,故选:D.4.D【解析】【分析】由随机事件、不可能事件、必然事件的定义逐一判断即可得出答案.【详解】因集合A 是集合B 的真子集,故A 中的任意一个元素都是B 中的元素,而B 中至少有一个元素不在A 中,因此①正确,②错误,③正确,④正确.故选:D .5.A【解析】【分析】先求出集合B ,得出其补集,再由交集运算得出答案.【详解】由420x +≥,得21x ≥-,即集合1,2B ⎡⎫=-+∞⎪⎢⎣⎭, 所以R 1,2B ∞⎛⎫=-- ⎪⎝⎭.所以()R 13,2A B ⎡⎫=--⎪⎢⎣⎭. 故选:A6.D【解析】【分析】首先解一元二次不等式求出集合A ,再根据对数型函数的定义域求出集合B ,最后根据补集、并集的定义计算可得;【详解】解:由2340x x --≤,即410x x ,解得14x -≤≤,即{}{}234014A x x x x x =--≤=-≤≤,又(){}{}ln 11B x y x x x ==-=,所以{}|1R B x x =≤,所以{}4R A B x x ⋃=≤; 故选:D7.A【解析】【分析】根据集合交集的概念及运算,即可求解.【详解】由题意,集合{}{}202B x x x x =-<=<,又由{}1,2,3A =,根据集合交集的概念及运算,可得{}1A B ⋂=.故选:A.8.C【解析】【分析】求出集合A 、B ,利用交集的定义可求得结果.【详解】对于函数2x y =,0x ≥,则0221x y =≥=,故[)1,B =+∞, (){}{}()2log 220,2A x y x x x ∞==-=->=-,因此,[)1,2A B =.故选:C.9.D【解析】【分析】利用交集和补集的定义可求得结果.【详解】由已知可得{}3A B ⋂=,所以,(){}1,2,4,5U A B ⋂=.故选:D.10.B【解析】【分析】根据韦恩图直接分析即可【详解】图中阴影部分为M 的补集与集合N 相交的部分,即 R M N ⋂,故选:B.【点睛】本题主要考查了韦恩图分析交并补集的问题,属于基础题11.D【解析】【分析】根据真子集的定义进行求解即可.【详解】因为集合{},,A a b c =的所有非空真子集为:{}{}{}{}{}{},,,,,,,,a b c a b a c b c ,所以有123()124a b c a b a c b c a b c a b c ++++++++=⇒++=⇒++=,故选:D12.C【解析】【分析】首先根据余弦函数的性质求出集合A ,再根据指数函数的性质求出集合B ,最后根据交集的定义计算可得;【详解】 解:因为2cos 3y x π=的最小正周期263T ππ==且1cos 32π=, 21coscos cos 3332ππππ⎛⎫=-=-=- ⎪⎝⎭,3cos 13π=-, 41coscos cos 3332ππππ⎛⎫=+=-=- ⎪⎝⎭,51cos cos 2cos 3332ππππ⎛⎫=-== ⎪⎝⎭, 6cos 13π=,71cos cos 2cos 3332ππππ⎛⎫=+== ⎪⎝⎭,, 所以{}*|2cos ,1,1,2,23n A x x n π⎧⎫==∈=--⎨⎬⎩⎭N ,由122x ≤≤512222x -≤≤,所以512x -≤≤,所以15|2|122x B x x x ⎧⎧⎫=≤≤=-≤≤⎨⎨⎬⎩⎩⎭,所以{}1,1,2A B =-; 故选:C13.B【解析】【分析】根据补集的运算,求得{}R |1B x x =>-,结合交集的概念及运算,即可求解.【详解】 由题意,集合{}1B x x =≤-,可得{}R |1B x x =>-又由{}82A xx =-<<∣,所以(){}R 12A B x x ⋂=-<<. 故选:B.14.C【解析】【分析】求出集合M ,N ,然后进行并集的运算即可.∵{}02M x x =<<,{}11N x x =-≤≤,∴[1,2)M N ⋃=-.故选:C .15.B【解析】【分析】先求出集合A 的解集,然后进行交集运算即可.【详解】 因为{}23A x x =-≤≤,{}15B x x =≤<,所以{}13A B x x ⋂=≤≤.故选:B.二、填空题16.{}0,1,3【解析】【分析】讨论0m =和0m ≠两种情况,根据包含关系得出实数m 的取值集合.【详解】{}{}24301,3A x x x =-+==∣当0m =时,B =∅,满足B A ⊆; 当0m ≠时,3B m ⎧⎫=⎨⎬⎩⎭,因为B A ⊆,所以31m =或33m =,解得3m =或1m = 即实数m 的取值集合为{}0,1,3.故答案为:{}0,1,317.{1,2}##{2,1}【解析】【分析】根据集合元素属性特征进行求解即可.【详解】 因为83N x*∈-,所以31,2,4,8-=x ,可得2,1,1,5=--x ,因为x N ∈,所以1,2x =,集合{1,2}A =.故答案为:{1,2}18.{}10x x -<<【解析】【分析】由交集运算求解即可.A B ={}{}{}122010x x x x x x -<≤⋂-≤<=-<< 故答案为:{}10x x -<<19.10,2⎛⎤ ⎥⎝⎦【解析】【分析】由奇函数的定义和对数的运算性质,解方程可得m ,再由对数的真数大于0解不等式,然后利用集合的包含关系即可求解.【详解】 解:因为函数1()ln 12mx f x x+=-是定义在区间(,)n n -上的奇函数(0,0)m n >>, 所以()()f x f x -=-,即1112lnln ln 12121mx mx x x x mx -+-=-=+-+, 所以112121mx x x mx--=++,即222114m x x -=-, 所以24m =,解得2m =±,又0m >, 所以2m =,此时,21()ln12x f x x +=-, 由21012x x +>-,解得1122x -<<, 所以()11,22,n n ⎛-⎫⊆- ⎪⎝⎭,又0n >, 所以实数n 取值范围为10,2⎛⎤ ⎥⎝⎦. 故答案为:10,2⎛⎤ ⎥⎝⎦. 20.5,66ππ⎛⎫ ⎪⎝⎭【解析】【分析】分析可知元素0、1、2必属于集合A ,可得出1sin 2θ>,由[]0,2θπ∈可求得θ的取值范围. 【详解】要使集合A 中至少有3个元素,则元素0、1、2必属于集合A ,所以只需4sin 2θ>,即1sin 2θ>, 又[]0,2θπ∈,解得5,66ππθ⎛⎫∈ ⎪⎝⎭. 故答案为:5,66ππ⎛⎫ ⎪⎝⎭.21.2a ≥【解析】【分析】根据含绝对值不等式的解法,求解不等式的解集,结合充分条件,列出关系式,即可求解.【详解】由不等式||x a <,当0a ≤时,不等式||x a <的解集为空集,显然不成立;当0a >时,不等式||x a <,可得a x a -<<,要使得不等式||x a <的一个充分条件为20x -<<,则满足{|20}{|}x x x a x a -<<⊆-<<, 所以2a -≥-,即2a ≥∴实数a 的取值范围是2a ≥.故答案为:2a ≥.22.(1,2)##{}12,x x x R <<∈【解析】【分析】根据集合交集的定义可得解.【详解】由(1,2)A =-,(1,3)B =根据集合交集的定义,()1,2A B ⋂=.故答案为:(1,2)23.1078【解析】【分析】剔除集合中是3的倍数,5的倍数的元素,即可得出结果.【详解】集合M 中,3的倍数有20216733⎡⎤=⎢⎥⎣⎦个,5的倍数有20214045⎡⎤=⎢⎥⎣⎦个,15的倍数有202113415⎡⎤=⎢⎥⎣⎦个, 则剩下的元素个数为2021(673404134)1078-+-=个.故答案为:1078.24.2,0,2【解析】【分析】分别讨论,a b 正负即可求出.【详解】当0,0a b <<时,112b a x a b =+=--=-,当0,0a b <>时,110b a x a b =+=-+=, 当0,0a b ><时,110b a x a b =+=-=, 当0,0a b >>时,112b a x a b=+=+=, 所以用列举法可表示为2,0,2. 故答案为:2,0,2.25.∅【解析】【分析】根据集合的新定义求解出集合M '和P ',再求解交集可得出答案.【详解】根据“孤星集”的定义,1,112,2A A ∈+=∈ 所以1不是集合M '的元素同理2,3也都不是集合M '的元素M ∴'=∅,同理可得 {}1P '=所以M P '⋂'=∅.故答案为:∅.三、解答题26.(1)(]3,2-(2)()3,0.-【解析】【分析】(1)化简集合A ,B ,再由并集的定义求解即可;(2)列出实数a 的不等式组,解之即可得出实数a 的取值范围.(1)由143280x x +-⋅+,得()()22240x x --,则224x ,则12x ,所以[]1,2A =, 由12x +<,可得31x -<<,则()3,1B =-,所以[]()(]=1,23,13,2A B ⋃⋃-=-(2)()2,2B a a =---,因为“x B ∈”是“x A ∈”的必要条件,所以A B ⊆ ,所以2122a a --<⎧⎨->⎩, 所以()3,0.a ∈-27.(1)A ={x |-2<x ≤3};(2)3a >.【解析】【分析】(1)由算术平方根的被开方数大于等于0,分式的分母不等于0可求得集合A ; (2)由已知得A ⊆B ,由此可得a 的取值范围.(1)解:函数()f x =3020x x -≥⎧⎨+>⎩, 解得23x -<≤,即A ={x |-2<x ≤3}.(2)解:因为A ={x |-2<x ≤3},B ={x |x <a },且“x ∈A ”是“x ∈B ”的充分条件,所以A ⊆B , 所以3a >.28.(1)集合M 具有,集合N 不具有,理由见详解(2)A {0,4,8}=(3)证明见详解【解析】【分析】(1)利用性质P 的定义判断即可;(2)利用33a a A +∉,330a A a -=∈可得10a =,又23a a A +∉,32a a A -∈,分析可得322a a a -=,即得解;(3)① 由 n n a a A +∉,0n n a A a -=∈,可证明;② 由110n n n n n a a a a a a -≤<<⋅⋅⋅<---,以及n n i a a A -+∉,n n i a a A --∈可得121321,,,...,n n n n n n n n a a a a a a a a a a a a --=-=-=-=-,将等式左右两边相加可证明.(1)集合{}0,2,4M =具有性质P ,集合{}1,2,3N =不具有性质P理由如下:对集合{}0,2,4M =,由于202,422,404,000,220,440M -=-=-=-=-=-=∈ 所以集合M 具有性质P ;对集合{}1,2,3N =,由于224N +=∉,故集合N 不具有性质P .(2)由于33333A a a a a a +>∴+∉,故330a A a -=∈10a ∴=又23323,a a a A a a +>∴+∉,故32a a A -∈又3230<a a a -<,故322a a a -=322=8a a =∴因此集合A {0,4,8}=(3)①由于n n n n n A a a a a a +>∴+∉,故0n n a A a -=∈10a ∴=0A ∴∈,故得证②由于120n a a a ≤<<⋅⋅⋅<故110n n n n n a a a a a a -≤<<⋅⋅⋅<---又(1,2,...,1)n n i n n n i a a a i n a a A --+>=-∴+∉n n i a a A -∴-∈121321,,,...,n n n n n n n n a a a a a a a a a a a a --∴=-=-=-=- 将各个式子左右两边相加可得:1232n n n a a a a a +++⋅⋅⋅+=故得证29.(1)2,13⎡⎤⎢⎥⎣⎦ (2)[]2,3【解析】【分析】(1)解不等式得到解集,根据题意列出不等式组,求出a 的取值范围;(2)先解不等式,再根据充分不必要条件得到(,3)a a 是[]2,9的真子集,进而求出a 的取值范围.(1)因为0a >,由22430x ax a -+<可得:3a x a <<,因为“()1,2x ∀∈,22430x ax a -+<”为真命题,所以()()1,2,3a a ⊆,即1,32,a a ≤⎧⎨≥⎩,解得:213a ≤≤. 即a 的取值范围是2,13⎡⎤⎢⎥⎣⎦. (2)因为0a >,由22430x ax a -+<可得:3a x a <<,21118029x x x -+≤⇔≤≤,因为p 是q 的充分不必要条件,所以(,3)a a 是[]2,9的真子集,所以2,39,a a ≥⎧⎨≤⎩(等号不同时取),解得:23a ≤≤, 即a 的取值范围是[]2,3.30.(1)1(,][3,)2-∞-⋃+∞; (2)(,2]-∞-.【解析】【分析】(1)求对数复合函数定义域、解一元二次不等式求出集合A 和B ,利用集合的并补运算求()A B R .(2)解含参一元二次不等式求集合B ,根据充分条件有A ⊆B ,列不等式求m 的范围即可.(1)由题设40210x x ->⎧⎨+>⎩得:142x -<<,即函数的定义域A =1(,4)2-,则R 1(,][4,)2A =-∞-⋃+∞, 当m =2时,不等式(4)(3)0x x --≤得:34x ≤≤,即B =[3,4],所以()A B R =1(,][3,)2-∞-⋃+∞. (2)由2()(21)0x m x m --+=得: x =m 2或x =21m -,又2221(1)0m m m -+=-≥,即221m m ≥-,综上,2()(21)0x m x m --+≤的解集为B =2[21,]m m -, 若x ∈A 是x ∈B 的充分条件,则A ⊆B ,即241212m m ⎧≥⎪⎨-≤-⎪⎩,得:2m ≤-, 所以实数m 的取值范围是(,2]-∞-.。

集合的测试题

集合的测试题

集合的测试题一、选择题(每题2分,共20分)1. 以下哪个选项不是集合的属性?A. 确定性B. 无序性C. 可数性D. 动态性2. 集合A={1, 2, 3},集合B={2, 3, 4},A和B的交集是什么?A. {1}B. {2, 3}C. {1, 2, 3}D. {2, 3, 4}3. 对于集合A={1, 2, 3, 4},以下哪个是A的子集?A. {1, 2}B. {5, 6}C. {1, 2, 5}D. {1, 2, 3, 5}4. 集合A={x | x > 0},B={x | x < 0},A和B的并集是什么?A. {x | x ≠ 0}B. {x | x > 0}C. {x | x < 0}D. {x | x ≤ 0}5. 集合A={1, 2, 3},集合B={3, 4, 5},A和B的差集是什么?A. {1, 2}B. {1, 2, 3}C. {3, 4, 5}D. {4, 5}6. 以下哪个是集合的运算?A. 求和B. 乘法C. 交集D. 除法7. 集合A={x | x是偶数},B={x | x是奇数},A和B的补集是什么?A. {x | x是奇数}B. {x | x是偶数}C. {x | x是实数}D. {x | x是整数}8. 集合A={1, 2, 3},集合B={3, 4, 5},A和B的对称差集是什么?A. {1, 2, 4, 5}B. {1, 2, 3, 4, 5}C. {1, 2, 3}D. {4, 5}9. 集合A={x | x是质数},A中元素的个数是多少?A. 有限个B. 无限个C. 0个D. 1个10. 以下哪个不是集合的表示方法?A. 描述法B. 列举法C. 符号法D. 维恩图法二、填空题(每题2分,共10分)11. 集合A={x | x是小于10的正整数},A的元素个数是_________。

12. 集合B={x | x是大于5的整数},B的补集是_________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

昆明西南联大研究院附属学校2017-2018学年高一数学《集合》检测卷第I 卷(选择题 共60分)一、选择题:本大题共12个小题,每小题5分,共60分.1.设集合M ={1,2,4,8},N ={x |x 是2的倍数},则M ∩N 等于( )A .{2,4}B .{1,2,4}C .{2,4,8}D .{1,2,8}2.若集合A ={x ||x |≤1,x ∈R },B ={y |y =x 2,x ∈R },则A ∩B 等于( )A .{x |-1≤x ≤1}B .{x |x ≥0}C .{x |0≤x ≤1}D .∅3.已知全集I ={1,2,3,4,5,6,7,8},集合M ={3,4,5},集合N ={1,3,6},则集合{2,7,8}是( )A .M ∪NB .M ∩NC .(∁I M )∪(∁I N )D .(∁I M )∩(∁I N )4.已知全集U =R ,集合M ={x |-2≤x -1≤2}和N ={x |x =2k -1,k =1,2,…}的关系的维恩(Venn)图如图所示,则阴影部分所示的集合的元素共有( )A .3个B .2个C .1个D .无穷多个5.设集合A ={x |2≤x <2a -1},B ={x |1≤x ≤6-a },若3∈A ∩B ,则实数a 的取值范围是( )A .a >2B .2≤a <3C .2≤a ≤3D .2<a ≤36.已知全集U =N *,集合M ={x |x =2n ,n ∈N *},N ={x |x =4n ,n ∈N *},则( )A .U =M ∪NB .U =(∁U M )∪NC .U =M ∪(∁U N )D .U =∁U (M ∩N )7.下列集合中,不同于另外三个集合的是( )A .{x |x =1}B .{y |(y -1)2=0}C .{x =1}D .{1}8.设集合A ={a ,b },集合B ={a +1,5},若A ∩B ={2},则A ∪B 等于( )A .{1,2}B .{1,5}C .{2,5}D .{1,2,5}9.集合A ={1,2,3,4},B A ,且1∈(A ∩B ),4∉(A ∩B ),则满足上述条件的集合B 的个数是( )A .1B .2C .4D .810.设全集U ={1,2,3,4,5},集合M ={1,4},N ={1,3,5},则N ∩(∁U M )等于( )A .{1,3}B .{1,5}C .{3,5}D .{4,5}11.设P 、Q 是非空集合,定义P ⊗Q ={x |x ∈(P ∪Q )且x ∉(P ∩Q )},现有集合M ={x |0≤x ≤4},N ={x |x >1},则M ⊗N 等于( )A .{x |0≤x ≤1或x >4}B .{x |0≤x ≤1或x ≥4}C .{x |1≤x ≤4}D .{x |0≤x ≤4}12设集合A ={4,5,7,9},B ={3,4,7,8,9},全集U =A ∪B ,则集合∁U (A ∩B )中的元素共有( )A .3个B .4个C .5个D .6个二、填空题(本大题共4小题,每小题5分,共20分)13.满足{a ,b }∪B ={a ,b ,c }的集合B 的个数是________.14.用列举法表示集合:=⎭⎬⎫⎩⎨⎧∈∈+=Z m Z m m M ,110|________________________. 15.已知集合{2x ,x +y }={7,4},则整数x =_____________________,y =________.16.有15人进家电超市,其中有9人买了电视,有7人买了电脑,两种都买了的有3人,则这两种都没买的有____人.第II 卷(非选择题 共70分)三、解答题(本大题共6小题,共70分)17.(10分)已知集合A ={x ∈R |ax 2-3x +2=0,a ∈R }.(1)若A 是空集,求a 的取值范围;(2)若A 中只有一个元素,求a 的值,并把这个元素写出来.18.(12分)已知集合A={a2,a+1,-3},B={a-3,2a-1,a2+1},若A∩B={-3},求a的值.19.(12分)若A={x|-3≤x≤4},B={x|2m-1≤x≤m+1},B⊆A,求实数m的取值范围.20.(12分)已知全集U=R,集合A={x|x<0或x>2},B={x|-1<x<3},C={x|3x-1>a}.求:(1)A∩B,A∪B;(2)B∩C.21.(12分)设集合A={x|2x2+3px+2=0},B={x|2x2+x+q=0},其中p、q为常数,x∈R,当A∩B={12}时,求p、q的值和A∪B.22.(12分)设集合A={x|x2-3x+2=0},B={x|x2-ax+a-1=0},若A∩B=B,求实数a所有可能的值组成的集合.第一章 集合答案1.C [因为N ={x |x 是2的倍数}={…,0,2,4,6,8,…},故M ∩N ={2,4,8},所以C 正确.]2.C [A ={x |-1≤x ≤1},B ={y |y ≥0},解得A ∩B ={x |0≤x ≤1}.]3.D [∵(∁I M )∩(∁I N )=∁I (M ∪N ),而{2,7,8}=∁I (M ∪N )].4.B [M ={x |-1≤x ≤3},M ∩N ={1,3},有2个.]5.D [∵3∈A ,∴2a -1>3.∴a >2.又3∈B ,∴6-a ≥3.∴a ≤3.]6.C [由于N M ,由Venn 图可知选C.]7.C [由集合的含义知{x |x =1}={y |(y -1)2=0}={1},而集合{x =1}表示由方程x =1组成的集合,故选C.]8.D [本题考查集合交、并集的运算及其性质,由A ∩B ={2}可知2∈B,2∈A ,∴a +1=2,a =1,b =2,A ={1,2},从而A ∪B ={1,2,5}.]9.C [由B A,1∈(A ∩B ),且4∉(A ∩B )知1∈B ,但4∉B ,∴集合B 中至少含有一个元素1, 至多含有3个元素1,2,3,故集合B 可以为{1},{1,2},{1,3},{1,2,3}.]10.C [∁U M ={2,3,5},N ={1,3,5},则N ∩(∁U M )={1,3,5}∩{2,3,5}={3,5}.]11.A12.A [∵A ={4,5,7,9},B ={3,4,7,8,9},∴A ∪B ={3,4,5,7,8,9},A ∩B ={4,7,9},∴∁U (A ∩B )={3,5,8},∴∁U (A ∩B )共有3个元素.]13.4个解析 B ={c },{a ,c },{b ,c },{a ,b ,c }.14.{-11,-6,-3,-2,0,1,4,9}解析 由10m +1∈Z ,且m ∈Z ,知m +1是10的约数,故|m +1|=1,2,5,10, 从而m 的值为-11,-6,-3,-2,0,1,4,9.15.2 5解析 由集合相等的定义知,2x =7,,x +y =4或2x =4,,x +y =7,解得x =72,,y =12或x =2,,y =5.又x ,y 是整数,所以x =2,y =5.16.2解析 结合Venn 图可知17.解 集合A 是方程ax 2-3x +2=0在实数范围内的解集.(1)A 是空集,即方程ax 2-3x +2=0无解,得Δ=(-3)2-8a <0,∴a >98.(2)当a =0时,方程只有一解,为x =23;当a ≠0且Δ=0,即a =98时,方程有两个相等的实数根,A 中只有一个元素为x =43,∴当a=0或a =98时,A 中只有一个元素,分别是23或43.18.解 由A ∩B ={-3},得-3∈B ,∴a -3=-3或2a -1=-3,即a =0或a =-1, 当a =0时,A ={0,1,-3},B ={-3,-1,1},此时A ∩B ={1,-3}与题意不符合,舍去.∴a =-1.19.解 ∵B ⊆A ,当B =∅时,得2m -1>m +1,m >2,当B ≠∅时,解得-1≤m ≤2.综上所述,m 的取值范围为m ≥-1.20.解 结合数轴:得(1)A ∩B ={x |-1<x <0或2<x <3},A ∪B =R.(2)C =x |x >a +13 当a +13≥3,即a ≥8时,B ∩C =∅,当-1≤a +13<3,即-4≤a <8时,B ∩C =x |a +13<x <3. 当a +13<-1,即a <-4时,B ∩C ={x |-1<x <3}.综上,a ≥8时,B ∩C =∅;-4≤a <8时,B ∩C =x |a +13<x <3;a <-4时,B ∩C ={x |-1<x <3}.21.解 ∵A ∩B ={12},∴12∈A .∴2×(12)2+3p ×(12)+2=0.∴p =-53.∴A ={12,2}.又∵A ∩B ={12},∴12∈B .∴2×(12)2+12+q =0.∴q =-1.∴B ={12,-1}.∴A ∪B ={-1,12,2}.22.解 因为A ∩B =B ,A ={1,2},B ⊆{1,2},所以B =∅或B ={1}或B ={2}或B ={1,2}. 若B =∅,则方程x 2-ax +a -1=0无解,而Δ=a 2-4(a -1)=(a -2)2≥0.所以B =∅不成立; 若B ={1},则方程x 2-ax +a -1=0有两个等根为1.所以B ={2}不成立;若B ={1,2},则方程的两根为1和2,得a =3.综上所述,a 所有可能的值组成的集合为{2,3}.。

相关文档
最新文档