全等三角形专题2
专题02 全等三角形(专题详解)(解析版)
专题02 全等三角形专题详解专题02 全等三角形专题详解 (1)12.1 全等三角形 (2)知识框架 (2)一、基础知识点 (2)知识点1 全等形的概念及性质 (2)知识点2 全等形的定义和表示方法 (2)知识点3 全等三角形的性质与拓展 (2)知识点4 全等变换的保形性 (2)12.2三角形全等的判定 (3)知识框架 (3)一、基础知识点 (3)知识点1 全等三角形判定条件 (3)二、典型题型 (4)题型1 全等三角形的判定 (4)三、添加辅助线方法 (5)方法1 关于中点的辅助线 (5)方法2 作垂线构造全等求点的坐标 (12)方法3 截长补短法(往往需证2次全等) (14)12.3角平分线的性质 (17)知识框架 (17)一、基础知识点 (17)知识点1 角平分线的性质 (17)知识点2 角平分线的判定 (17)知识点3 三角形的内心和旁心 (17)二、典型题型 (17)题型1 角平分线的性质和定义的应用 (17)题型2 三角形内心的应用 (18)三、添加辅助线方法 (20)方法1 角平分线上的点向两边作垂线 (20)方法2 过边上的点向两边作垂线 (22)方法3 过平分线上的点作一条边平行线构造等腰三角形 (24)方法4 利用角平分线的性质,在角两边截长补短 (25)12.1 全等三角形知识框架一、基础知识点知识点1 全等形的概念及性质1)全等形:能够完全重合的两个图形2)全等形的性质:①形状相同;②大小相同注:①全等图形与其所在的位置无关(只要通过平移、旋转、翻折后能够使两个图形完成重合即可)。
对称图形要求更苛刻些。
②因两图形完全相等,故图形所有对应条件都相同(例:周长、面积、对应角角度等皆相等)知识点2 全等形的定义和表示方法1)全等三角形:能够完全重合的三角形(长得完全一样的三角形)2)表示方法:①△ABC≌△DEF(读作:三角形ABC全等于三角形DEF)②顶点需要一一对应(即长得一样的在描述中至于同等地位)③从书写中,我们根据一一对应的关系,可得:a.点A与点D为对应顶点,点B与点E为对应顶点,点C与点F为对应顶点;b.∠A与∠D为对应角,∠B与∠E为对应角,∠C与∠F为对应角;c.AB与DE为对应边,AC与DF为对应边,BC与EF为对应边。
人教版初二上数学全等三角形专题练习二(含解析)
全等三角形1.如图,已知△ABC中,∠ABC=45°,AC=4,H是高AD和BE的交点,则线段BH的长度为()A、6B、4C、23D、52.如图所示,∠E=∠F=90°,∠B=∠C,AE=AF,有以下结论:①EM=FN;②CD=DN;③∠FAN=∠EAM;④△ACN≌△ABM.其中正确结论的个数为()A.1个 B.2个 C.3个 D.4个3.如图,△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于点D,DE⊥AB,垂足为E,且AB=6cm,则△DEB的周长为()A.4cm B.6cm C.8cm D.10cm4.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和39,则△EDF的面积为()A.11 B.5.5 C.7 D.3.55.如图,已知在△ABC中,CD是AB边上的高线, BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的面积等于()A.10 B.7 C.5 D.46.如图,四边形ABCD中,AC、BD是对角线,△ABC是等边三角形,∠ADC=30°,AD =3,BD=5,则四边形ABCD的面积为_______.7.如图,在梯形ABCD中,AD∥BC,BE平分∠ABC交CD于E,且BE⊥CD,CE:ED=2:1.如果△BEC的面积为2,那么四边形ABED 的面积是.8.如图,A、B、C分别是线段A1B、B1C、C1A的中点,若△ABC的面积是2,那么△A1B1C1的面积是.9.如图,AB=AD,只需添加一个条件,就可以判定△ABC≌△ADE.10.如图点P是∠BAC的平分线AD上一点,PE⊥AC于点E.已知PE=3,则点P到AB的距离是.11.如图,∠A=90°,∠ABC的角平分线交AC于E,AE=3,则E到BC的距离为.12.如图,四边形ABCD中,AD∥BC,∠ABC=90°,AB=BC=4,O为AC的中点,OE⊥OD 交AB于点E.若AE=3,则OD的长为.13.如图,在△ACB中,∠ACB=90゜,CD⊥AB于D.(1)求证:∠ACD=∠B;(2)若AF平分∠CAB分别交CD、BC于E、F,求证:∠CEF=∠CFE.14.如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.(1)求证:△ACD≌△AED;(2)若∠B=30°,CD=1,求BD的长.15.(1)如图1,△ABC和△CDE都是等边三角形,且B,C,D三点共线,连接AD,BE 相交于点P,求证:BE = AD;(2)如图2,在△BCD中,∠BCD<120°,分别以BC、CD和BD为边在△BCD外部作等边三角形ABC、等边三角形CDE和等边三角形BDF,连接AD,BE和CF交于点P,下列结论正确的是(只填序号即可)①AD=BE=CF;②∠BEC=∠ADC;③∠DPE=∠EPC=∠CPA=60°;(3)如图2,在(2)的条件下,求证:PB+PC+PD=BE.16.已知:如图,E、F是□ABCD的对角线AC上的两点,AE=CF.求证:(1)△ABE≌△CDF;(2)BE∥DF.17.如图,在△ABC中,∠ACB=90°,AC=BC,AE为BC边上的中线,CD⊥AE于点F,BD⊥BC于点B.(1)试说明:AE=CD;(2)若AC=10cm,求线段BD的长.18.如图,四边形ABCD的对角线AC、BD交于点O,已知O是AC的中点,AE=CF,DF∥BE.(1)求证:△BOE≌△DOF;(2)若OD=12AC,则四边形ABCD是什么特殊四边形?请证明你的结论.19.如图,阅读下面的题目及分析过程,并按要求进行证明.已知:如图,E是BC的中点,点A在DE上,且∠BAE=∠CDE.求证:AB=CD.分析:证明两条线段相等,常用的一般方法是应用全等三角形或等腰三角形的判定和性质,观察本题中要要证AB=CD,必须添加适当的辅助线,构造全等三角形或等腰三角形请用二种不同的方法证明.20.如图,在△ABC中,AB=5,AD=4,BD=DC=3,且DE⊥AB于E,DF⊥AC于点F.(1)请写出与A点有关的三个正确结论;(2)DE 与DF在数量上有何关系?并给出证明.21.已知,如图,在▱ABCD中,延长DA到点E,延长BC到点F,使得AE=CF,连接EF,分别交AB,CD于点M,N,连接DM,BN.(1)求证:△AEM≌△CFN;(2)求证:四边形BMDN是平行四边形.22.如图,△ABC中,AB=AC,AD⊥BC,CE⊥AB,AE=CE.求证:(1)△AEF ≌△CEB ;(2)AF=2CD .23.在△ABC 中, ∠C=90°,BD 是△ABC 的角平分线,P 是射线AC 上任意一点(不 与A,D,C 三点重合),过P 作PQ ⊥AB,垂足为Q,交直线BD 于E.(1)如图①,当点P 在线段AC 上时,说明∠PDE=∠PED.(2)如图②,作∠CPQ 的角平分线交直线AB 于点F,则PF 与BD 有怎样的位置关系?24.已知:如图,CE ⊥AB ,BF ⊥AC ,CE 与BF 相交于D ,且BD=CD 。
专题2全等三角形的常见模型及其构造方法(原卷版)
专题2 全等三角形的常见模型及其构造方法(原卷版)类型一一线三等角模型(一)捕捉一线三等角模型1.(2023•南谯区校级一模)如图,在矩形ABCD中,E,F分别为BC,DC上一点,AE=EF,AE⊥EF,若BE=3,矩形ABCD的周长为26,则矩形ABCD的面积为.2.(2022秋•武汉期末)如图,在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠BAC =∠AEC=α,若DE=8,BD=2,求CE的长.3.(2023春•榆林期末)如图是一个工业开发区局部的设计图,河的同一侧有两个工厂A和B,AD、BC的长表示两个工厂到河岸的距离,其中E是进水口,D、C为两个排污口.已知AE=BE,∠AEB=90°,AD⊥DC,BC⊥DC,点D、E、C在同一直线上,AD=150米,BC=350米,求两个排污口之间的水平距离DC.(二)构造一线三等角模型4.(2022秋•武汉期中)如图,AC=AB=BD,∠ABD=90°,BC=8,则△BCD的面积为()A.8B.12C.14D.165.(2023春•和平区期中)如图,在平面直角坐标系中,点A的坐标是(4,0),点B的坐标是(0,3),把线段BA绕点B逆时针旋转90°后得到线段BC,则点C的坐标是()A.(3,4)B.(4,3)C.(4,7)D.(3,7)6.(2023•雁塔区校级开学)如图,直线l1∥l2∥l3,正方形ABCD的三个顶点A、B、C分别在直线l1、l2、l3上,点A到直线l2的距离是3,点C到直线l2的距离是6,则正方形ABCD的面积为.7.(2021秋•恩施市校级月考)如图1,OA=2,OB=4,以A点为顶点、AB为腰在第三象限作等腰Rt△ABC,(1)求C点的坐标;(2)如图2,P为y轴负半轴上一个动点,当P点向y轴负半轴向下运动时,以P为顶点,P A为腰作等腰Rt△APD(D点在第四象限),过D作DE⊥x轴于E点,求OP﹣DE的值.(1)捕捉手拉手模型8.(2023春•高碑店市校级月考)如图,在△AOB和△COD中,OA=OB,OC=OD,∠AOB=∠COD,AC,BD交于点M,关于结论Ⅰ,Ⅱ,下列判断正确的是()结论Ⅰ:AC=BD;结论Ⅱ:∠CMD>∠CODA.Ⅰ对,Ⅱ错B.Ⅰ错,Ⅱ对C.1,Ⅱ都对D.Ⅰ,Ⅱ都错9.(2021秋•十堰期中)在等腰△OAB和等腰△OCD中,OA=OB,OC=OD,连接AC、BD交于点M.(1)如图1.若∠AOB=∠COD=40°.则AC与BD的数量关系为;∠AMB的度数为;(2)如图2,若∠AOB=∠COD=90°,判断AC与BD之间存在怎样的关系?并说明理由;10.已知:在△ABD和△ACE中,AD=AB,AC=AE.(1)如图1,若∠DAB=∠CAE=60°,求证:BE=DC;(2)如图2,若∠DAB=∠CAE=n°,求∠DOB的度数.11.(2021秋•恩施市校级期末)在△ABC中,∠A=90°,AB=AC,D为BC的中点(1)如图1,E,F分别是AB,AC上的点,且BE=AF求证:△DEF为等腰直角三角形;(2)如图1,若AB=4,则四边形AEDF的面积为(直接写出结果);(3)如图2,若E,F分别为AB,CA延长线上的点,仍有BE=AF,其他条件不变,则△DEF是否仍为等腰直角三角形?证明你的结论.类型三半角模型12.已知:边长为1的正方形ABCD中,M、N分别是BC、CD上的点.(1)若MN=BM+ND,求证:∠MAN=45°;(2)若△MNC得周长为2,求∠MAN的度数.13.如图,点P为定角∠AOB的平分线上的一个定点,且∠MPN与∠AOB互补.若∠MPN在绕点P旋转的过程中,其两边分别与OA,OB相交于M,N两点,请猜想PM与PN的数量关系并说明理由.14.(2023春•连城县期末)(1)如图1,在四边形ABCD中,AB=AD,∠B=∠D=90°,E、F分别是边BC、CD上的点,且∠EAF=12∠BAD,线段EF、BE、FD之间的关系是;(不需要证明)(2)如图2,在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是边BC、CD上的点,且∠EAF=12∠BAD,(1)中的结论是否仍然成立?若成立,请证明.若不成立,请写出它们之间的数量关系,并证明.(3)如图3,在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是边BC、CD延长线上的点,且∠EAF=12∠BAD,(1)中的结论是否仍然成立?若成立,请证明.若不成立,请写出它们之间的数量关系,并证明.类型四倍长中线模型15.(2020•黄陂区期末)如图,在△ABC中,D为BC的中点,若AC=3,AD=4.则AB的长不可能是()A.5B.7C.8D.916.(2020秋•通河县期末)如图所示,AD为△ABC中线,D为BC中点,AE=AB,AF=AC,连接EF,EF=2AD.若△AEF的面积为3,则△ADC的面积为.类型五截长补短构造全等三角形17.阅读:探究线段的和.差.倍.分关系是几何中常见的问题,解决此类问题通常会用截长法或补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,使之与特定线段相等,再利用三角形全等的有关性质加以说明.(1)请完成下题的证明过程:如图1,在△ABC中,∠B=2∠C,AD平分∠BAC.求证:AB+BD=AC.证明:在AC上截取AE=AB,连接DE(2)如图2,AD∥BC,EA,EB分别平分∠DAB,∠CBA,CD过点E,求证:AB=AD+BC.类型六平行线+线段中点构造全等三角形18.如图,AC∥BD,E为CD的中点,AE⊥BE(1)求证:AE平分∠BAC,BE平分∠ABD;(2)线段AB、AC、BD有怎样的数量关系?请写出你的结论并证明.19.(2023春•博山区期末)如图,AB⊥BC于点B,AB⊥AD于点A,点E是CD中点,若BC=5,AD=10,BE=132,求AB的长.。
专题02 全等三角形重难点题型(解析版)-初中数学七年级上学期重难点题型分类高分必刷题(人教版)
专题02高分必刷题-全等三角形重难点题型分类(解析版)题型1:全等三角形的性质1.下列说法正确的是()A.两个等边三角形一定全等B.形状相同的两个三角形全等C.面积相等的两个三角形全等D.全等三角形的面积一定相等【解答】解:A、两个边长不相等的等边三角形不全等,故本选项错误;B、形状相同,边长不对应相等的两个三角形不全等,故本选项错误;C、面积相等的两个三角形不一定全等,故本选项错误;D、全等三角形的面积一定相等,故本选项正确.故选:D.2.如图,△ABC≌△DCB,△A=80°,△DBC=40°,则△DCA的度数为()A.20°B.25°C.30°D.35°【解答】解:△△ABC≌△DCB,∴∠D=△A=80°,△ACB=DBC=40°,∴∠DCB=180°﹣∠D﹣∠DBC=60°,∴∠DCA=△DCB﹣∠ACB=20°,故选:A.3.如图,△ABC≌△DEF,BE=7,AD=3,则AB=.【解答】解:△△ABC≌△DEF,∴AB=DE,∴AB﹣AD=DE﹣AD,即BD=AE,∵BE=7,AD=3,∴BD=AE==2∴AB=AD+DB=3+2=5.故答案为:5.题型2:添加一个条件,是两三角形全等4.如图,已知MB=ND,△MBA=△NDC,下列条件中不能判定△ABM≌△CDN的是()A.△M=△N B.AM∥CN C.AB=CD D.AM=CN【解答】解:A、△M=△N,符合ASA,能判定△ABM≌△CDN,故A选项不符合题意;B、AM∥CN,得出△MAB=△NCD,符合AAS,能判定△ABM≌△CDN,故B选项不符合题意.C、AB=CD,符合SAS,能判定△ABM≌△CDN,故C选项不符合题意;D、根据条件AM=CN,MB=ND,△MBA=△NDC,不能判定△ABM≌△CDN,故D选项符合题意;故选:D.5.如图,已知△ADB=△CBD,下列所给条件不能证明△ABD≌△CDB的是()A.△A=△C B.AD=BC C.△ABD=△CDB D.AB=CD【解答】解:在△ABD和△CDB中,,∴△ABD≌△CDB(AAS)∴选项A能证明;在△ABD和△CDB中,,∴△ABD≌△CDB(SAS),∴选项B能证明;在△ABD和△CDB中,,∴△ABD≌△CDB(ASA),∴选项C能证明;选项D不能证明△ABD≌△CDB;故选:D.6.如图,已知△1=△2,要使△ABC≌△CDA,还需要补充的条件不能是()A.AB=CD B.BC=DA C.△B=△D D.△BAC=△DCA 【解答】解:A、根据AB=CD和已知不能推出两三角形全等,错误,故本选项正确;B、△在△ABC和△CDA中∴△ABC≌△CDA(SAS),正确,故本选项错误;C、△在△ABC和△CDA中∴△ABC≌△CDA(AAS),正确,故本选项错误;D、△在△ABC和△CDA中∴△ABC≌△CDA(AAS),正确,故本选项错误;故选:A.题型三:尺规作图的依据7.如图,是用直尺和圆规作一个角等于已知角的示意图,则说明△A′O′B′=△AOB的依据是()A.SSS B.SAS C.AAS D.ASA【解答】解:由作法易得OD=O′D′,OC=O′C′,CD=C′D′,依据SSS可判定△COD≌△C'O'D',故选:A.8.工人师傅常用角尺平分一个任意角.做法如下:如图,△AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与点M,N重合,过角尺顶点C作射线OC.由此作法便可得△MOC≌△NOC,其依据是()A.SSS B.SAS C.ASA D.AAS【解答】解:∵在△ONC和△OMC中,∴△MOC≌△NOC(SSS),∴∠BOC=∠AOC,故选:A.9.如图,红红书上的三角形被墨迹污染了一部分,她根据所学的知识很快就画了一个与书上完全一样的三角形,那么红红画图的依据是()A.SSS B.SAS C.ASA D.AAS【解答】解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形.故选:C.题型4:角平分线的性质10.如图,在△ABC中,△C=90°,AC=BC,AD平分△CAB交BC于D,DE⊥AB于E,若AB=6cm,则△DBE的周长是()A.6 cm B.7 cm C.8 cm D.9 cm【解答】解:△AD平分△CAB,DE⊥AB,△C=90°,∴DE=CD,又△AC=BC,AC=AE,∴AC=BC=AE,∴△DBE的周长=DE+BD+EB=CD+BD+EB=BC+EB=AE+EB=AB,∵AB =6cm,∴△DBE的周长=6cm.故选:A.11.如图,△ABC中,△C=90°,AD是角平分线,AB=14,S△ABD=28,则CD的长为.【解答】解:如图,过D作DE⊥AB于E,∵∠C=90°,AD是角平分线,∴由角平分线的性质,得DE=CD.∵AB=14,S△ABD=28,∴×AB×DE=28,即×14×DE=28,解得DE=4,∴CD=4,故答案为:4.12.如图,BD是△ABC的平分线,DE⊥AB于E,S△ABC=36cm2,AB=18cm,BC=12cm,则DE=cm.【解答】解:过点D作DF⊥BC于点F,∵BD是△ABC的平分线,DE⊥AB,∴DE=DF,∵AB=18cm,BC=12cm,∴S△ABC=S△ABD+S△BCD=AB•DE+BC•DF=DE•(AB+BC)=36cm2,∴DE=2.4(cm).故答案为:2.4.题型五:全等三角形中档证明题考向1:重叠边技巧①短边相等+重叠边=长边相等②长边相等-重叠边=短边相等13.如图,点A、F、C、D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,△A=△D,AF=DC.求证:(1)△ABC≌△DEF;(2)BC∥EF.【解答】证明:(1)△AF=DC,∴AF+CF=DC+CF,∴AC=DF,∵在△ABC和△DEF中,∴△ABC≌△DEF(SAS);(2)△由(1)知△ABC≌△DEF,∴∠BCA=△EFD,∴BC∥EF.14.已知:如图,A、C、F、D在同一直线上,AF=DC,AB=DE,BC=EF,求证:AB∥DE.【解答】证明:△AF=DC,∴AF﹣FC=DC﹣CF,即AC=DF.在△ACB和△DFE中,∴△ACB≌△DFE(SSS),∴∠A=△D,∴AB∥DE.考向2:重叠角技巧重叠角技巧:①小角相等+重叠角=大角相等②大角相等-重叠角=小角相等15.如图,AB=AD,△C=△E,△1=△2,求证:△ABC≌△ADE.【解答】证明:△△1=△2,∴∠1+∠EAC=△2+∠EAC,即△BAC=△DAE,在△ABC和△ADE中,,∴△ABC≌△ADE(AAS).16.如图,△ABC和△ADE都是等腰三角形,且△BAC=90°,△DAE=90°,B,C,D在同一条直线上.求证:BD=CE.【解答】证明:△△ABC和△ADE都是等腰直角三角形,∴AD=AE,AB=AC,又△△EAC =90°+∠CAD,△DAB=90°+∠CAD,∴∠DAB=△EAC,∵在△ADB和△AEC中,∴△ADB≌△AEC(SAS),∴BD=CE.考向三:等角的余角相等技巧:∠1+∠2=90,∠2+∠3=90, ∠1=∠3技巧:把全等三角形中一个三角形的两个锐角分别随意标上∠1、∠2,再从第二个三角形的两个锐角中挑一个和∠1或∠2互余的角标上∠3。
全等三角形判定(二)
例01.如图,已知:21∠=∠,43∠=∠. 求证:BCD ADC ∆≅∆.分析:ADC ∆与BCD ∆的对应边是DC 与DC ,AD 与BC ,AC 与BD . 对应角是1∠与2∠,ADC ∠与BCD ∠,DAC ∠与CBD ∠. 由条件已有一对应边DC 与DC ,和一对应角1∠和2∠相等,只需证明BCD ADC ∠=∠,就可以证明两三角形全等.证明:21∠=∠,43∠=∠(已知),∴ 4231∠+∠=∠+∠. 即BCD ADC ∠=∠ 在ADC ∆与BCD ∆中,⎪⎩⎪⎨⎧∠=∠=∠=∠)(12)()(已知公共边已证CD DC BCD ADC ∴ )(ASA BCD ADC ∆≅∆例02.已知:如图,21∠=∠,C B ∠=∠. 求证:COD BOE ∆≅∆.分析:欲证COD BOE ∆≅∆,已有两组条件,即C B ∠=∠和COD BOE ∠=∠. 因此,必须再具备一组对应边相等这一条件. BE 和CD 是在BOE ∆和COD ∆中,但直接证明CE BE =比较困难. 若证OE 和OD 相等或OB 和OC 相等,可以分别转化到证明AOD AOE ∆≅∆和AOC AOB ∆≅∆. 由已知条件,不难证出这两对三角形分别全等.证明:∵ 21∠=∠(已知),DOC EOB ∠=∠(对顶角相等), ∴ DOC EOB ∠+∠=∠+∠21. 即 AOC AOB ∠=∠. 在AOB ∆与AOC ∆中,⎪⎩⎪⎨⎧=∠=∠∠=∠)()()(公共边已证已知AO AO AOC AOB C B ∴ )(AAS AOC AOB ∆≅∆. ∴CO BO =在EOB ∆与COD ∆中⎪⎩⎪⎨⎧∠=∠=∠=∠)()()(已知已证对顶角相等C B CO BO COD EOB∴ COD BOE ∆≅∆(ASA )例03.如图,已知:AB 与CD 相交于点O ,且OD OC BD AC =,//,E 、F 为AB 上两点,且BF AE =.求证:DOF COE ∆≅∆.分析:欲证DOF COE ∆≅∆,已具备了两个条件,OD OC =和DOF COE ∠=∠. 所以只需证另一对角相等或证明OF OE =,即可. 证明另一对角相等,比较困难. 所以就证明OF OE =. 因为有BF AE =. 要证OF OE =只需证OB OA =即可. 由已知条件容易证得BOD AOC ∆≅∆,从而证明OB OA =.证明:∵BD AC //(已知)∴B A ∠=∠(两直线平行,内错角相等) 在AOC ∆与BOD ∆中,⎪⎩⎪⎨⎧=∠=∠∠=∠)()()(已知对顶角相等已证OD OC BOD AOC B A ∴)(AAS BOD AOC ∆≅∆∴BO AO =(全等三角形的对应边相等) ∵BF AE =(已知), ∴BF BO AE AO -=-. 即OF OE =在COE ∆与DOF ∆中,⎪⎩⎪⎨⎧=∠=∠=)()()(已证对顶角相等已知OE OE DOE COE DO CO ∴)(SAS DOF COE ∆≅∆例04.如图,已知:CE BD ACE ABD DAE BAC =∠=∠∠=∠,,. 求证:AE AD =.分析:欲证相等的两条线段AD ,AE 分别在ABD ∆和ACE ∆中,由于CE BD =,ACE ABD ∠=∠,所以只需再证CAE BAD ∠=∠即可,这由已知条件DAE BAC ∠=∠容易得到.证明:∵DAE BAC ∠=∠(已知) ∴DAC DAE DAC BAC ∠-∠=∠-∠ 即CAE BAD ∠=∠ 在ABD ∆与ACE ∆中,⎪⎩⎪⎨⎧∠=∠∠=∠=)()()(已证已知已知CAE BAD ACE ABD CE BD ∴)(AAS ACE ABD ∆≅∆∴AE AD =(全等三角形的对应边相等)例05.已知:(如图)21,∠=∠∠=∠D A . 求证:DO AD =分析:要证DO AD =,只要证DOC AOB ∆≅∆即可,在AOB ∆和DOC ∆中,已知D A ∠=∠,DOC AOB ∆=∆,只要再证一边对应相等即可,根据已知可得DCB ABC ∆≅∆,从而可证DC AB =,进而可证DO AO =,思路即为:DO AO =⇐DOC AOB ∆≅∆⇐DC AB =⇐DCB ABC ∆≅∆⇐“AAS ”证明:在ABC ∆和DCB ∆中⎪⎩⎪⎨⎧=∠=∠∠=∠)()()(21公共边已知已知CB BC D A ∴)(AAS DCB ABC ∆≅∆∴DC AB =(全等三角形的对应边相等)在AOB ∆和DOC ∆中⎪⎩⎪⎨⎧=∠=∠∠=∠)()()(已证已知对顶角相等DC AB D A DOC AOB ∴ )(AAS DOC AOB ∆≅∆∴ DO AO =(全等三角形的对应边相等)例06.求证:三角形的一边的两端到这边的中线或中线的延长线的距离相等.分析:这是一道了题,必须先根据题意画出图形,再结合题意写出已知,求证,再证明.已知:AD 是ABC ∆的中线. 如图,且AD CF ⊥于F ,AD BE ⊥的延长线于E , 求证:CF BE =证明:∵AD 为ABC ∆的中线(已知) ∴ CD BD =(中线定义)∵ AD BE ⊥ AD CF ⊥(已知)∴ ︒=∠=∠90CFD BED (等于定义) 在BED ∆与CFD ∆中⎪⎩⎪⎨⎧=∠=∠∠=∠)()(21)(已证对顶角相等已知CD BD CFD BED ∴CFD BED ∆≅∆(AAS )∴CF BE =(全等三角形对应边相等)说明 本题还可利用面积相等来证明,提示,过A 作BC AN ⊥于N ,希同学们自己来证明.例07.已知:如图,BC AD CD AB //,//, 求证:CD AB =.分析:因为四边形,我只学过三角形的有关知识,因此只要连结四边形的对角线从而把四边形的总是转化为三角形的总是来解决.证明:连结AC∵BC AD CD AB //,//(已知)∴43,21∠=∠∠=∠(两直线平行内错角相等)在ABC ∆和CDA ∆中⎪⎩⎪⎨⎧∠=∠=∠=∠)(43)()(21已证公共边已知CA AC∴ )(ASA CDA ABC ∆≅∆∴CD AB =(全等三角形的对应边相等)例08.已知:如图,AO CO DO BO ==,求证:OF OE =证明:在BOC ∆和DOA ∆中⎪⎩⎪⎨⎧=∠=∠=)()()(已知对顶角相等已知OA OC DOA BOC DO BO ∴ )(SAS DOA BOC ∆≅∆∴ D B ∠=∠(全等三角形的对应角相等) 在BOE ∆和DOF ∆中⎪⎩⎪⎨⎧∠=∠=∠=∠)()()(对顶角相等已知已证DOF BOE DO BO D B ∴)(ASA DOF BOE ∆≅∆∴OF OE =(全等三角形的对应边相等)说明 找到题目中的隐性条件并加以应用是关键.例09.如图,在ABC ∆和DBC ∆中,43,21∠=∠∠=∠,P 是BC 上任意一点, 求证:PD PA =.证明:在ABC ∆和DBC ∆中,⎪⎩⎪⎨⎧∠=∠=∠=∠)(43)()(21已知公共边已知BC BC ∴ )(ASA DBC ABC ∆=∆∴ DB AB =(全等三角形对应边相等) 在ABP ∆和DBP ∆中,⎪⎩⎪⎨⎧=∠=∠=)()(21)(公共边已知已证BP BP DB AB ∴ )(SAS DBP ABP ∆≅∆∴ PD PA =(全等三角形对应边相等)说明:本题也可通过DBC ABC ∆≅∆,得到DC AC =,从而证DCP ACP ∆≅∆,得到PD PA =.选择题(1)已知ABC Rt ∆与C B A Rt '''∆,︒=∠90C ,︒='∠90C ,B A '∠=∠.B A AB ''=.那么下列结论正确的是( )(A )C A AC ''= (B )C B BC ''= (C )C B AC ''= (D )以上答案都不对(2)在ABC ∆和C B A '''∆,甲:B A AB ''=;乙:C B BC ''=;丙:C A AC ''=;丁:A A '∠=∠;戊:B B '∠=∠;己:C C '∠=∠,则不能保证ABC ∆≌C B A '''∆成立的条件为( )(A )丙、丁、己 (B )甲、丙、戊 (C )甲、乙、戊 (D )乙、戊、己 (3)如图,已知ABD ∆和ACE ∆均为等边三角形,那么ADC ∆≌ABE ∆的根据是( )(A )ASA (B )SAS(C )AAS (D )以上都不对(4)如图,C 是BE 上一点,CD AB =,D A ∠=∠,E BCA ∠=∠,那么( )(A )ECD B ∠=∠ (B )C 是BE 的中点 (C )CD AB //(D )以上结论都正确参考答案:(1)C (2)B (3)B (4)D填空题(1)如图,已知:21∠=∠,D C ∠=∠. 求证:AD AC =.证明:在ACB ∆与ADB ∆中,⎪⎩⎪⎨⎧=∠=∠∠=∠) _______()()(21AB D C 已知已知 ∴ACB ∆≌ADB ∆( ) ∴AD AC =(2)如图,已知:BC AB ⊥,DC AD ⊥,垂足分别为B ,D .21∠=∠. 求证:AD AB =.证明:在ABC ∆与ADC ∆中,⎪⎩⎪⎨⎧=∠=∠∠=∠) ()(21)(AC AC ADC ABC ∴ ABC ∆≌ADC ∆( ) ∴AD AB =( )(3)如图,已知:CE AE =,C A ∠=∠.求证:ADE ∆≌CEB ∆.证明:在AED ∆与CEB ∆中,⎪⎩⎪⎨⎧==∠=∠) _____(______)()(已知CE AE C A ∴ AED ∆≌CEB ∆(ASA )(4)如图,已知:C B ∠=∠,AD AE =.求证:AEC ∆≌ADB ∆.证明:在AEC ∆与ADB ∆中,⎪⎩⎪⎨⎧=∠=∠∠=∠) ()()(AE AE C B A A 已知 ∴AEC ∆≌ADB ∆( )参考答案:(1)AB ;公共边;AAS ;全等三角形的对应边相等(2)垂直定义;已知;公共边;AAS ;全等三角形的对应边相等. (3)已知:AED ∠;CEB ∠;对顶角相等 (4)公共角;已知;AAS证明题1.如图,已知,21∠=∠,DCB ABC ∠=∠. 求证:DC AB =.2.如图,已知:E D ∠=∠,AM EM CN DN ===. 求证:点B 是线段AC 的中点.3.如图,已知:21∠=∠,AE AD =. 求证:OC OB =.4.如图,已知:在ABC ∆中,AD 是BAC ∠的平分线,AB DE ⊥于E ,AC DF ⊥于C ,求证:AF AE =.5.如图,已知:E 在AC 上,21∠=∠,43∠=∠. 求证:DE BE =.6.如图,已知:BC AD //,21∠=∠,43∠=∠,直线DC 过E 点交AD 于D ,交BC 于C .求证:AB BC AD =+.7.求证:三角形一边的两个端点到这边上的中线的距离相等. 8.如图,已知:DE AB =,直线AE ,BD 相交于点C ,︒=∠+∠180D B ,DE AF //,交BD 于F .求证:CD CF =.9.如图,已知:AB 与CD 相交于点O ,O 是AB ,CD 的中点,过点O 引直线EF 分别与AD ,BC 相交于E 、F 两点.求证:BF AE =.参考答案:1.证:由DCB ABC =∠,21∠=∠,可得ACB DBC ∠=∠.易证ABC ∆≌DCB ∆,∴ DC AB =2.证:易证DNB ∆≌EMB ∆,∴ EB DB =,由此可证:EA DC =.因此,可证DCB ∆≌EAB ∆.∴BC AB =,∴B 是AC 的中点.3.易证ABE ∆≌ACD ∆,∴C B ∠=∠,AC AB =,又∵AE AD =,∴CE BD =.由此可证BOD ∆≌COE ∆,∴OC OB =4.︒=∠=∠90AFD AED ,FAD EAD ∠=∠,AD AD =,∴AFD AED ∆≅∆,∴AF AE =.5.∵ 21∠=∠,AC AC =,43∠=∠,∴ABC ∆≌ADC ∆,∴AD AB =,又∵21∠=∠,AE AE =,∴ADE ABE ∆≅∆,∴DE BE =6.在AB 上取一点F ,使BF BC =,又∵43∠=∠,EB EB =,∴EC B EFB ∆≅∆,∴C EFB ∠=∠,又∵BC AD //,由此可推出D EFA ∠=∠.可证AFE ADE ∆≅∆,∴AF AD =,∴BC AD AB +=.7.已知:如图,AD 为ABC ∆的中线,AD BF ⊥于F ,AD CE ⊥于E . 求证:CE BF =.证:︒=∠=∠90BFD CED ,BDF CDE ∠=∠,BD CD =,∴ BFD CED ∆≅∆,∴ CE BF =8.证:∵ DE AF //, ∴AFC D ∠=∠,又∵︒=∠+∠180AFB AFC ,︒=∠+∠180D B ,∴ AFB B ∠=∠∴ DE AF AB ==,∴ 可证ECD ACF ∆≅∆,∴CD CF =9.证:BO AO =,BOC AOD ∠=∠,CO DO =,∴B O C A O D ∆≅∆,∴B A ∠=∠.而BOF AOE ∠=∠,BO AO =,∴BOF AOE ∆≅∆,∴ BF AE =能力:1、如图1,已知:AD 平分∠BAC ,AB=AC ,连接BD ,CD ,并延长相交AC 、AB 于F 、E 点.则图形中有( )对全等三角形.A 、2B 、3C 、4D 、5答案:C.2、如图2,已知:∠1=∠2,AB=DC ,图中全等三角形的对数是( )A 、0B 、1C 、2D 、3答案:A3、如图3,已知:△ABC 中,DF=FE ,BD=CE ,AF ⊥BC 于F ,则此图中全等三角形共有( )A 、5对B 、4对C 、3对 D2对答案:C.1、如图4,已知:在△ABC 中,AD 是BC 边上的高,AD=BD ,DE=DC ,延长BE 交AC 于F ,求证:BF 是△ABC 中边上的高. 图1 A B B 、E F D C AD B O C 1 2 图2 图3 D FE C AF C D B E 图4提示:关键证明△ADC ≌△BFC2、如图5,已知:∠D=∠E ,DN=EM ,AM=CN ,求证:点B 是线段AC 的中点.提示:欲证点B 是线段AC 的中点,只需证AB =BC.选择AB 、BC 所在的两个三角形,然后证这两个三角形△AMB ≌△CNB.由条件可得△EMB ≌△DNB ,所以得到∠EMB =∠DNB ,MB =NB由此易证△AMB ≌△CNB.3、如图6,已知:AB=CD ,∠A=∠D.求证:∠ABC=∠DCB提示:欲证∠ABC=∠DCB ,选择这两个角所在的三角形,只需证△ABC ≌△DBC由条件可知△ADC ≌△DAB ,所以得到∠DAC =∠ADB ,BD =AC ,加之条件利用边角边公理可证△ABC ≌△DBC4、如图7,已知:在△ABC 中,∠ACB=090,AC=BC ,AE 是BC 边上的中线过C 作CF ⊥AE ,垂足为F ,过B 作BD ⊥BC 交CF 的延长线于点D.(1)求证:AE=CD.(2)AC=12cm ,求BD 的长.提示:欲证AE=CD ,只需证△ACE ≌△CBD 由条件可知∠CAE =∠BCD (同角的余角相等)加之其它两个条件易证得结论.由E 是BC 的中点,EC =BE又BD =EC ,BC =AC 知BD =6 cm5、如图8,已知:在△ABC 中,AB=AC ,∠A=90,BD 平分∠ABC 交AC 于D ,CE ⊥BD 交BD 的延长线于E ,求证:BD=2CE提示:本题的关键是从结论BD=2CE 出发,想到构造线段CF =2CE ,再证BD =CFA M N E C DB 图5 A D BC 图6 O E ┛ ┓ ┏D A CF 图7 B A E C D 图8 F。
专题训练(二) 全等三角形判定方法的灵活选用
专题训练(二)全等三角形判定方法的灵活选用►类型一已知两边对应相等Ⅰ.已知两边对应相等找第三边对应相等,应用“SSS”证明三角形全等1.如图2-ZT-1所示,BC=DE,BE=DC.求证:(1)BCⅠDE;(2)ⅠA=ⅠADE.图2-ZT-1Ⅱ.已知两边对应相等找两边的夹角对应相等,应用“SAS”证明三角形全等2.如图2-ZT-2,点B在线段AD上,BC∥DE,AB=ED,BC=DB.求证:ⅠA=ⅠE.图2-ZT-23.如图2-ZT-3,DC⊥CA,EA⊥CA,CD=AB,CB=AE.求证:ⅠBCDⅠⅠEAB.图2-ZT-3►类型二已知一边一角对应相等Ⅰ.已知一边一角对应相等找另一角对应相等,应用“ASA”或“AAS”证明三角形全等4.如图2-ZT-4,在Rt△ABC中,∠ABC=90°,点D在边AB上,使DB=BC,过点D作EFⅠAC,分别交AC,CB的延长线于点E,F.求证:AB=BF.图2-ZT-4Ⅱ.已知一边一角对应相等找已知角的另一边对应相等,应用“SAS”证明三角形全等5.2019·武汉如图2-ZT-5,点C,F,E,B在一条直线上,∠CFD=ⅠBEA,CE=BF,DF=AE.写出CD与AB之间的关系,并证明你的结论.图2-ZT-56.如图2-ZT-6,AC=AD,∠BAC=ⅠBAD,点E在AB上.(1)你能找出________对全等的三角形;(2)请写出一对全等三角形,并证明.图2-ZT-6►类型三已知两角对应相等Ⅰ.已知两角对应相等找夹边对应相等,应用“ASA”证明三角形全等7. 如图2-ZT-7,已知Ⅰ1=Ⅰ2,∠3=Ⅰ4.求证:AD=AC.图2-ZT-7Ⅱ.已知两角对应相等找一角的对边对应相等,应用“AAS”证明三角形全等8.如图2-ZT-8,点E,F在BC上,BE=CF,∠A=ⅠD,∠B=ⅠC.求证:AB=DC.图2-ZT-8►类型四全等基本图形归纳(平移、旋转)9.如图2-ZT-9,在图Ⅰ中,点A,E,F,C在一条直线上,AE=CF,过点E,F 分别作DEⅠAC,BF⊥AC,BD与AC交于点G,且ABⅠCD.图2-ZT-9(1)求证:BD平分EF;(2)若将图Ⅰ变成图Ⅰ,其余条件不变,(1)中的结论是否仍成立?请说明理由.10.如图2-ZT-10,在ⅠABC和△ADE中,AB=AC,AD=AE,∠BAC=ⅠDAE=90°.(1)当点D在AC上时,如图Ⅰ,线段BD,CE有怎样的数量关系和位置关系?请证明你的猜想;(2)将图Ⅰ中的ⅠADE绕点A顺时针旋转角α(0°<α<90°),如图Ⅰ,线段BD,CE有怎样的数量关系和位置关系?图2-ZT-10详解详析1.[解析] 连接BD,可以得到两个三角形,并且是全等的三角形,利用全等我们就可以证明题目中的问题了.证明:(1)连接BD.在ⅠBCD 和ⅠDEB 中,⎩⎨⎧BC =DE ,BD =DB ,DC =BE ,∴△BCD ≌△DEB ,∴∠CBD =ⅠEDB ,∴BC ∥DE.(2)ⅠBCⅠDE ,∴∠A =ⅠADE.2.证明:ⅠBCⅠDE ,∴∠ABC =ⅠBDE.在ⅠABC 与ⅠEDB 中,⎩⎨⎧AB =ED ,∠ABC =ⅠBDE ,BC =DB ,∴△ABC ≌△EDB(SAS),∴∠A =ⅠE.3.证明:ⅠDCⅠCA ,EA ⊥CA ,∴ ∠C =ⅠA =90°.在ⅠBCD 和ⅠEAB 中,⎩⎨⎧ CD =AB ,∠C =ⅠA ,CB =AE ,∴△BCD ≌△EAB.4.证明:ⅠEFⅠAC ,∴∠F +ⅠC =90°.∵∠A +ⅠC =90°,∴∠A =ⅠF.又ⅠⅠABC =ⅠFBD ,BC =DB ,∴△ABC ≌△FBD ,∴AB =BF.5.解:CD =AB ,CD ∥AB.证明:ⅠCE =BF ,∴CF =BE在ⅠCDF 和ⅠBAE 中,∵⎩⎨⎧CF =BE ,∠CFD =ⅠBEA ,DF =AE ,∴△CDF ≌△BAE ,∴CD =AB ,∠C =ⅠB ,∴CD ∥AB.6.[解析] 由已知AC =AD ,∠BAC =ⅠBAD ,只需再满足一个条件就可得全等三角形.由题图可知,AB 是公共边,可得到3对全等三角形,分别是ⅠABCⅠⅠABD ,△AEC ≌△AED ,△BEC ≌△BED ,3对全等三角形均可用SAS 证明.解:(1)3(2)答案不唯一,如ⅠABCⅠⅠABD.证明:在ⅠABC 和ⅠABD 中, ∵⎩⎨⎧AC =AD ,∠BAC =ⅠBAD ,AB =AB ,∴△ABC ≌△ABD(SAS).7.证明:因为Ⅰ3=Ⅰ4,所以ⅠABD =ⅠABC.在ⅠABD 和ⅠABC 中,因为⎩⎨⎧Ⅰ1=Ⅰ2,AB =AB ,∠ABD =ⅠABC ,所以ⅠABDⅠⅠABC(ASA),所以AD =AC.8.证明:ⅠBE =CF ,∴BE +EF =CF +EF ,即BF =CE.在ⅠABF 与ⅠDCE 中,∵⎩⎨⎧ⅠA =ⅠD ,∠B =ⅠC ,BF =CE ,∴△ABF ≌△DCE ,∴AB =DC.9.解:(1)证明:ⅠBFⅠAC ,DE ⊥AC , ∴∠AFB =ⅠCED =90°.∵AF =AE +EF ,CE =CF +EF ,AE =CF , ∴AF =CE.∵AB ∥CD ,∴∠A =ⅠC ,∴△ABF ≌△CDE(ASA),∴BF =DE.又ⅠⅠCGB =ⅠAGD ,∠BGF =ⅠDGE , ∴△BGF ≌△DGE(AAS),∴FG =EG ,∴BD 平分EF.(2)成立.理由如下:∵BF ⊥AC ,DE ⊥AC ,∴∠AFB =ⅠCED =90°.∵AF =AE -EF ,CE =CF -EF ,AE =CF , ∴AF =CE.∵AB ∥CD ,∴∠A =ⅠC ,∴△ABF ≌△CDE(ASA),∴BF =DE.又ⅠⅠAGB =ⅠCGD ,∠BFG =ⅠDEG , ∴△DGE ≌△BGF(AAS),∴EG =FG ,∴BD 平分EF.10.解:(1)BD =CE ,BD ⊥CE.证明:延长BD 交CE 于点M.在ⅠABD 和ⅠACE 中,∵⎩⎨⎧AB =AC ,∠BAD =ⅠCAE ,AD =AE ,∴ⅠABDⅠⅠACE(SAS),∴BD =CE ,∠ABD =ⅠACE.∵∠ADB =ⅠMDC ,∴∠DMC =ⅠBAC =90°,∴BD ⊥CE.(2)BD=CE,BD⊥CE.。
专题02 全等三角形模型解题九年级数学中考复习专题训练模型解题高分攻略(教师版)
专题二全等三角形模型解题解题模型一平移模型针对训练1.(2018•桂林)如图,点A、D、C、F在同一条直线上,AD=CF,AB=DE,BC=EF.(1)求证:△ABC≌△DEF;(2)若∠A=55°,∠B=88°,求∠F的度数.解题模型二对称模型针对训练2.(2018•南充)如图,已知AB=AD,AC=AE,∠BAE=∠DAC.求证:∠C=∠E.3.(2018•广州)如图,AB与CD相交于点E,AE=CE,DE=BE.求证:∠A=∠C.图示:图示:4.(2018•乐山)如图,已知∠1=∠2,∠3=∠4,求证:BC=BD.5.(2018•武汉)如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C,AF与DE交于点G,求证:GE=GF.6.(2017•郴州)已知△ABC中,∠ABC=∠ACB,点D,E分别为边AB、AC的中点,求证:BE=CD.7.(2018•泰州)如图,∠A=∠D=90°,AC=DB,AC、DB相交于点O.求证:OB=OC.8.(2018•镇江)如图,△ABC中,AB=AC,点E,F在边BC上,BE=CF,点D在AF的延长线上,AD=AC.(1)求证:△ABE≌△ACF;(2)若∠BAE=30°,则∠ADC=°.解题模型三旋转模型针对训练8.(2018•昆明)如图,在△ABC和△ADE中,AB=AD,∠B=∠D,∠1=∠2.求证:BC=DE.10.(2018•柳州)如图,AE和BD相交于点C,∠A=∠E,AC=EC.求证:△ABC≌△EDC.11.(2017•常州)如图,已知在四边形ABCD中,点E在AD上,∠BCE=∠ACD=90°,∠BAC=∠D,BC=CE.(1)求证:AC=CD;(2)若AC=AE,求∠DEC的度数.图示:12.(2017•恩施州)如图,△ABC、△CDE均为等边三角形,连接BD、AE交于点O,BC与AE交于点P.求证:∠AOB=60°.解题模型四平移+旋转模型针对训练13.(2018•菏泽)如图,AB∥CD,AB=CD,CE=BF.请写出DF与AE的数量关系,并证明你的结论.14.(2018•铜仁)已知:如图,点A、D、C、B在同一条直线上,AD=BC,AE=BF,CE=DF,求证:AE∥FB.15.(2017•孝感)如图,已知AB=CD,AE⊥BD,CF⊥BD,垂足分别为E,F,BF=DE,求证:AB∥CD.图示:16.(2018•怀化)已知:如图,点A,F,E,C在同一直线上,AB∥DC,AB=CD,∠B=∠D.(1)求证:△ABE≌△CDF;(2)若点E,G分别为线段FC,FD的中点,连接EG,且EG=5,求AB的长.解题模型五角平分线模型针对训练17.(2016•咸宁)证明命题“角的平分线上的点到角的两边的距离相等”,要根据题意,画出图形,并用符号表示已知和求证,写出证明过程,下面是小明同学根据题意画出的图形,并写出了不完整的已知和求证.已知:如图,∠AOC=∠BOC,点P在OC上,.求证:.请你补全已知和求证,并写出证明过程.图示:解题模型六三垂直模型针对训练18.在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E,求证:DE=AD+BE.19.如图,将等腰直角三角形ABC的直角顶点置于直线l上,且过A,B两点分别作直线l的垂线,垂足分别为D,E,请你在图中找出一对全等三角形,并写出证明它们全等的过程.图示:解题模型一平移模型针对训练1.(2018•桂林)如图,点A、D、C、F在同一条直线上,AD=CF,AB=DE,BC=EF.(1)求证:△ABC≌△DEF;(2)若∠A=55°,∠B=88°,求∠F的度数.【分析】(1)求出AC=DF,根据SSS推出△ABC≌△DEF.(2)由(1)中全等三角形的性质得到:∠A=∠EDF,进而得出结论即可.【点睛】本题考查了全等三角形的性质和判定的应用,注意:全等三角形的对应角相等.解题模型二对称模型图示:针对训练2.(2018•南充)如图,已知AB=AD,AC=AE,∠BAE=∠DAC.求证:∠C=∠E.【分析】由∠BAE=∠DAC可得到∠BAC=∠DAE,再根据“SAS”可判断△BAC≌△DAE,根据全等的性质即可得到∠C=∠E.【点睛】本题考查了全等三角形的判定与性质:判断三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应角相等,对应边相等.图示:3.(2018•广州)如图,AB与CD相交于点E,AE=CE,DE=BE.求证:∠A=∠C.【分析】根据AE=EC,DE=BE,∠AED和∠CEB是对顶角,利用S AS证明△ADE≌△CBE即可.【解答】证明:在△AED和△CEB中,,∴△AED≌△CEB(SAS).∴∠A=∠C(全等三角形对应角相等).【点睛】此题主要考查学生对全等三角形的判定与性质这一知识点的理解和掌握,此题难度不大,要求学生应熟练掌握.4.(2018•乐山)如图,已知∠1=∠2,∠3=∠4,求证:BC=BD.【分析】由∠3=∠4可以得出∠ABD=∠ABC,再利用ASA就可以得出△ADB≌△ACB,就可以得出结论.【点睛】本题考查了等角的补角相等的性质的运用,全等三角形的判定与性质的运用,解答时证明三角形全等是关键.5.(2017•郴州)已知△ABC中,∠ABC=∠ACB,点D,E分别为边AB、AC的中点,求证:BE=CD.【分析】由∠ABC=∠ACB可得AB=AC,又点D、E分别是AB、AC的中点.得到AD=AE,通过△ABE≌△ACD,即可得到结果.【点睛】本题考查了等腰三角形的性质,全等三角形的判定与性质,熟记定理是解题的关键.6.(2018•武汉)如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C,AF与DE交于点G,求证:GE=GF.【分析】求出BF=CE,根据SAS推出△ABF≌△DCE,得对应角相等,由等腰三角形的判定可得结论.【解答】证明:∵BE=CF,∴BE+EF=CF+EF.∴BF=CE.在△ABF和△DCE中,[来源:]∴△ABF≌△DCE(SAS).∴∠GEF=∠GFE.∴EG=FG.【点睛】本题考查了全等三角形的判定与性质,等腰三角形的判定,熟练掌握三角形全等的判定方法是解题的关键.7.(2018•泰州)如图,∠A=∠D=90°,AC=DB,AC、DB相交于点O.求证:OB=OC.【分析】因为∠A=∠D=90°,AC=BD,BC=BC,知Rt△BAC≌Rt△CDB(HL),所以AB=CD,证明△ABO 与△CDO全等,所以有OB=OC.【点睛】此题主要考查了全等三角形的判定,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.8.(2018•镇江)如图,△ABC中,AB=AC,点E,F在边BC上,BE=CF,点D在AF的延长线上,AD=AC.(1)求证:△ABE≌△ACF;(2)若∠BAE=30°,则∠ADC=75°.【分析】(1)要证明△ABE≌△ACF,由题意可得AB=AC,∠B=∠ACF,BE=CF,从而可以证明结论成立;(2)根据(1)中的结论和等腰三角形的性质可以求得∠ADC的度数.【点睛】本题考查全等三角形的判定与性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.¥解题模型三旋转模型针对训练9.(2018•柳州)如图,AE和BD相交于点C,∠A=∠E,AC=EC.求证:△ABC≌△EDC.【分析】依据两角及其夹边分别对应相等的两个三角形全等进行判断.【解答】证明:∵在△ABC和△EDC中,图示:,∴△ABC≌△EDC(ASA).【点睛】本题主要考查了全等三角形的判定,两角及其夹边分别对应相等的两个三角形全等.10.(2018•昆明)如图,在△ABC和△ADE中,AB=AD,∠B=∠D,∠1=∠2.求证:BC=DE.【点睛】本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等.11.(2017•常州)如图,已知在四边形ABCD中,点E在AD上,∠BCE=∠ACD=90°,∠BAC=∠D,BC=CE.(1)求证:AC=CD;(2)若AC=AE,求∠DEC的度数.【分析】(1)根据同角的余角相等可得到∠3=∠5,结合条件可得到∠1=∠D,再加上BC=CE,可证得结论;(2)根据∠ACD=90°,AC=CD,得到∠2=∠D=45°,根据等腰三角形的性质得到∠4=∠6=67.5°,由平角的定义得到∠DEC=180°﹣∠6=112.5°.【点睛】本题主要考查全等三角形的判定,掌握全等三角形的判定方法是解题的关键,即SSS、SAS、ASA、AAS和HL.12.(2017•恩施州)如图,△ABC、△CDE均为等边三角形,连接BD、AE交于点O,BC与AE交于点P.求证:∠AOB=60°.【分析】利用“边角边”证明△ACD和△BCE全等,可得可得∠CAE=∠CBD,根据“八字型”证明∠AOP=∠PCB=60°即可.【点睛】本题考查等边三角形的性质、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.解题模型四平移+旋转模型针对训练13.(2018•菏泽)如图,AB∥CD,AB=CD,CE=BF.请写出DF与AE的数量关系,并证明你的结论.【分析】结论:DF=AE.只要证明△CDF≌△BAE即可;【解答】解:结论:DF=AE.理由:∵AB∥CD,∴∠C=∠B.∵CE=BF,图示:∴CF=BE.又∵CD=AB,∴△CDF≌△BAE(SAS).∴DF=AE.【点睛】本题考查全等三角形的判定和性质,解题的关键是正确寻找全等三角形全等的条件,属于中考常考题型.14.(2017•孝感)如图,已知AB=CD,AE⊥BD,CF⊥BD,垂足分别为E,F,BF=DE,求证:AB∥CD.[来源:Z|xx|]【分析】根据全等三角形的判定与性质,可得∠B=∠D,根据平行线的判定,可得答案.【点睛】本题考查了全等三角形的判定与性质,利用等式的性质得出BE=DF是解题关键,又利用了全等三角形的判定与性质.15.(2018•铜仁)已知:如图,点A、D、C、B在同一条直线上,AD=BC,AE=BF,CE=DF,求证:AE∥FB.【分析】可证明△ACE≌△BDF,得出∠A=∠B,即可得出AE∥BF;【点睛】本题考查了全等三角形的判定及性质以及平行线的判定问题,关键是SSS证明△ACE≌△BDF.16.(2018•怀化)已知:如图,点A,F,E,C在同一直线上,AB∥DC,AB=CD,∠B=∠D.(1)求证:△ABE≌△CDF;(2)若点E,G分别为线段FC,FD的中点,连接EG,且EG=5,求AB的长.【分析】(1)根据平行线的性质得出∠A=∠C,进而利用全等三角形的判定证明即可;(2)利用全等三角形的性质和中点的性质解答即可.【解答】证明:(1)∵AB∥DC,∴∠A=∠C.在△ABE与△CDF中,,∴△ABE≌△CDF(ASA).(2)∵点E,G分别为线段FC,FD的中点,∴ED=CD.∵EG=5,∴CD=10.∵△ABE≌△CDF,∴AB=CD=10.【点睛】此题考查全等三角形的判定和性质,关键是根据平行线的性质得出∠A=∠C.解题模型五角平分线模型针对训练17.(2016•咸宁)证明命题“角的平分线上的点到角的两边的距离相等”,要根据题意,画出图形,并用符号表示已知和求证,写出证明过程,下面是小明同学根据题意画出的图形,并写出了不完整的已知和求证.已知:如图,∠AOC=∠BOC,点P在OC上,.求证:.请你补全已知和求证,并写出证明过程.【分析】根据图形写出已知条件和求证,利用全等三角形的判定得出△PDO≌△PEO,由全等三角形的性质可得结论.【点睛】本题主要考查了角平分线的性质和全等三角形的性质及判定,利用图形写出已知条件和求证是解图示:答此题的关键.解题模型六三垂直模型针对训练18.在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E,求证:DE=AD+BE.【分析】先证明∠BCE=∠CAD,再证明△ADC≌△CEB,可得到AD=CE,DC=EB,等量代换,可得出DE=AD+BE.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.证明两线段的和等于一条线段常常借助三角形全等来证明,要注意运用这种方法图示:19.如图,将等腰直角三角形ABC的直角顶点置于直线l上,且过A,B两点分别作直线l的垂线,垂足分别为D,E,请你在图中找出一对全等三角形,并写出证明它们全等的过程.【分析】分析图可知,全等三角形为:△ACD≌△CBE.根据这两个三角形中的数量关系选择ASA证明全等.【点睛】本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.。
八年级数学上册专题02 全等三角形(原卷版)
2022-2023学年人教版数学八年级上册压轴题专题精选汇编专题02 全等三角形考试时间:120分钟试卷满分:100分姓名:__________ 班级:__________考号:__________题号一二三总分得分评卷人得分一.选择题(共10小题,满分20分,每小题2分)1.(2分)如图,在△ABC中,AB>AC,AD是△ABC的角平分线,点E在AC上,过点E作EF⊥BC于点F,延长CB至点G,使BG=2FC,连接EG交AB于点H,EP平分∠GEC,交AD的延长线于点P,连接PH,PB,PG,若∠C=∠EGC+∠BAC,则下列结论:①∠APE=∠AHE;②PE=HE;③AB=GE;④S△P AB=S△PGE.其中正确的有()A.①②③B.①②③④C.①②D.①③④2.(2分)如图,在Rt△ABC中,∠ABC=90°,以AC为边,作△ACD,满足AD=AC,E为BC上一点,连接AE,∠CAD=2∠BAE,连接DE,下列结论中:①∠ADE=∠ACB;②AC⊥DE;③∠AEB=∠AED;④DE=CE+2BE.其中正确的有()A.①②③B.③④C.①④D.①③④3.(2分)如图,Rt△ACB中,∠ACB=90°,△ABC的角平分线AD、BE相交于点P,过P作PF⊥AD交BC的延长线于点F,交AC于点H,则下列结论:①∠APB=135°;②BF=BA;③PH=PD;④连接CP,CP平分∠ACB.其中正确的是()A.1个B.2个C.3个D.4个4.(2分)如图,在△ABC和△ADE中,∠CAB=∠DAE=36°,AB=AC,AD=AE.连接CD,连接BE并延长交AC,AD于点F,G.若BE恰好平分∠ABC,则下列结论错误的是()A.∠ADC=∠AEB B.CD∥AB C.DE=GE D.CD=BE5.(2分)如图,已知AB∥CD,AB+CD=BC,点G为AD的中点,GM⊥CD于点M,GN⊥BC于点N,连接AG、BG.张宇同学根据已知条件给出了以下几个结论:①∠BGC=90°;②GM=GN;③BG平分∠ABC;④CG平分∠BCD.其中正确的个数有()A.1个B.2个C.3个D.4个6.(2分)如图,在Rt△ABC中,∠A=90°,M为BC的中点,H为AB上一点,过点C作CG∥AB,交HM 的延长线于点G,若AC=8,AB=6,则四边形ACGH周长的最小值是()A.24B.22C.20D.187.(2分)习题课上,张老师和同学们一起探究一个问题:“如图,在△ABC中,D、E分别是AC、AB上的点,BD与CE相交于点O,OB=OC,添加下列哪个条件能判定△ABC是等腰三角形?”请你判断正确的条件应为()A.AE=BE B.BE=CD C.∠BEO=∠CDO D.∠BEO=∠BOE8.(2分)如图,在△ABC中,AB=AC,点D是OABC外一点,连接AD、BD、CD,且BD交AC于点O,在BD上取一点E,使得AE=AD,∠EAD=∠BAC,若∠ABC=62°,则∠BDC的度数为()A.56°B.60°C.62°D.64°9.(2分)在如图所示的3×3网格中,△ABC是格点三角形(即顶点恰好是网格线的交点),则与△ABC有一条公共边且全等(不含△ABC)的所有格点三角形的个数是()A.4个B.3个C.2个D.1个10.(2分)如图,在Rt△ABC中,∠CBA=90°,∠CAB的角平分线AP和∠MCB的平分线CF相交于点D,AD交CB于点P,CF交AB的延长线于点F,过点D作DE⊥CF交CB的延长线于点G,交AB的延长线于点E,连接CE并延长交FG于点H,则下列结论:①∠CDA=45°;②AF﹣CG=CA;③DE=DC;④CF=2CD+EG;其中正确的有()A.②③B.②④C.①②③④D.①③④评卷人得分二.填空题(共10小题,满分20分,每小题2分)11.(2分)已知:如图,△ABC中,E在BC上,D在BA上,过E作EF⊥AB于F,∠B=∠1+∠2,AE=CD,BF=,则AD的长为.12.(2分)如图,在△ABC中,AB=BC,BE、CF分别是AC、AB边上的高,在BE上取点D,使BD=CA,在射线CF上取点G,使CG=BA,连接AD、AG,若∠DAE=38°,∠EBC=20°,则∠GAB=°.13.(2分)如图,在△ABC中,AB=AC,D为BC上的一点,∠BAD=28°,在AD的右侧作△ADE,使得AE=AD,∠DAE=∠BAC,连接CE,DE,DE交AC于点O,若CE∥AB,则∠DOC的度数为.14.(2分)如图,已知四边形ABCD中,AB=10cm,BC=8cm,CD=12cm,∠B=∠C,点E为AB的中点.如果点P在线段BC上以3cm/s的速度沿B﹣C﹣B运动,同时,点Q在线段CD上由C点向D点运动.当点Q的运动速度为cm/s时,能够使△BPE与△CQP全等.15.(2分)如图,在Rt△ABC中,∠C=90°,两锐角的角平分线交于点P,点E、F分别在边BC、AC上,且都不与点C重合,若∠EPF=45°,连接EF,当AC=6,BC=8,AB=10时,则△CEF的周长为.16.(2分)如图,在Rt△ABC中,∠ACB=90°,BD平分∠ABC,E是AB上一点,且AE=AD,连接DE,过E作EF⊥BD,垂足为F,延长EF交BC于点G.现给出以下结论:①EF=FG;②CD=DE;③∠BEG =∠BDC;④∠DEF=45°.其中正确的是.(写出所有正确结论的序号)17.(2分)如图,在△ABC中,∠ACB=90°,BE⊥CE于点E,AD⊥CE于点D,请你添加一个条件,使△BEC≌△CDA(填一个即可).18.(2分)如图,E是△ABC的边AC的中点,过点C作CF∥AB,过点E作直线DF交AB于D,交CF 于F,若AB=9,CF=6.5,则BD的长为.19.(2分)如图,在正方形方格中,各正方形的顶点叫做格点,三个顶点都在格点上的三角形称为格点三角形.图中△ABC是格点三角形,请你找出方格中所有与△ABC全等,且以A为顶点的格点三角形.这样的三角形共有个(△ABC除外).20.(2分)如图,Rt△ABC中,∠C=90°,AC=8cm,BC=15cm,AB=17cm,∠CAB与∠CBA的角平分线相交于点O,过点O作OD⊥AB,垂足为点D,则线段OD的长为cm.评卷人得分三.解答题(共8小题,满分60分)21.(8分)综合与探究如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,CE的延长线交BD于点F.(1)求证:△ACE≌△ABD.(2)若∠BAC=∠DAE=50°,请直接写出∠BFC的度数.(3)过点A作AH⊥BD于点H,求证:EF+DH=HF.22.(8分)在△ABC中,点D、E分别在AB、AC边上,设BE与CD相交于点F.(1)如图①,设∠A=60°,BE、CD分别平分∠ABC、∠ACB,证明:DF=EF.(2)如图②,设BE⊥AC,CD⊥AB,点G在CD的延长线上,连接AG、AF;若∠G=∠6,BD=CD,证明:GD=DF.23.(6分)如图①:△ABC中,AC=BC,延长AC到E,过点E作EF⊥AB交AB的延长线于点F,延长CB到G,过点G作GH⊥AB交AB的延长线于H,且EF=GH.(1)求证:△AEF≌△BGH;(2)如图②,连接EG与FH相交于点D,若AB=4,求DH的长.24.(8分)在Rt△ABC中,∠ABC=90°,点D是CB延长线上一点,点E是线段AB上一点,连接DE.AC =DE,BC=BE.(1)求证:AB=BD;(2)BF平分∠ABC交AC于点F,点G是线段FB延长线上一点,连接DG,点H是线段DG上一点,连接AH交BD于点K,连接KG.当KB平分∠AKG时,求证:AK=DG+KG.25.(9分)在直线m上依次取互不重合的三个点D,A,E,在直线m上方有AB=AC,且满足∠BDA=∠AEC=∠BAC=α.(1)如图1,当α=90°时,猜想线段DE,BD,CE之间的数量关系是;(2)如图2,当0<α<180时,问题(1)中结论是否仍然成立?如成立,请你给出证明;若不成立,请说明理由;(3)拓展与应用:如图3,当α=120°时,点F为∠BAC平分线上的一点,且AB=AF,分别连接FB,FD,FE,FC,试判断△DEF的形状,并说明理由.26.(6分)如图,线段AB上两点C,D,AC=BD,∠A=∠B,AE=BF,连结DE并延长至点M,连结CF并延长至点N,DE、CF交于点P,MN∥AB.求证:△PMN是等腰三角形.27.(6分)如图,△AOB≌△COD,OD与AB交于点G,OB与CD交于点E.(1)∠AOD与∠COB的数量关系是:∠AOD∠COB;(2)求证:△AOG≌△COE;(3)若OA=OB,当A,O,C三点共线时,恰好OB⊥CD,则此时∠AOB=°.28.(9分)如图,在△ABC中,AC=BC,∠ACB=90°,点D为△ABC内一点,且BD=AD.(1)求证:CD⊥AB;(2)∠CAD=15°,E为AD延长线上的一点,且CE=CA.①求证:DE平分∠BDC;②若点M在DE上,且DC=DM,请判断ME、BD的数量关系,并给出证明;③若N为直线AE上一点,且△CEN为等腰三角形,直接写出∠CNE的度数.11/ 1212/ 12。
专题2 全等模型——一线三等角(K字)
初中数学 ︵一线三等角 ︶培优篇全等三角形在中考数学几何模块中占据着重要地位,也是必须掌握的一块内容,本专题就全等三角形中的重要模型(一线三等角(K 字)模型)进行梳理及对应试题分析,方便掌握.【模型解读】在某条直线上有三个角相等,利用平角为180°与三角形内角和为180°,证得两个三角形全等.【常见模型及证法】 同侧型一线三等角(常见):锐角一线三等角 直角一线三等角(“K 型图”) 钝角一线三等角 条件:A CED B + CE=DE证明思路:,A B C BED +任一边相等⇒△BED ≅△ACE例1.(1)如图1,已知:在△ABC 中,90BAC AB AC ,,直线m 经过点A ,BD 直线m ,CE 直线m ,垂足分别为点D 、E .证明:DE BD CE .(2)如图2,将(1)中的条件改为:在△ABC 中,AB AC ,D 、A 、E 三点都在直线m 上,并且有BDA AEC BAC ,其中α为任意钝角,请问结论DE =BD +CE 是否成立?如成立,请你给出证明;若不成立,请说明理由.初中数学 ︵ 一线三等角 ︶培优篇例2.在直线m 上依次取互不重合的三个点D 、A 、E ,在直线m 上方有AB AC ,且满足BDA AEC BAC .(1)如图1,当90 时,猜想线段,,DE BD CE 之间的数量关系是____________; (2)如图2,当0180 时,问题(1)中结论是否仍然成立?如成立,请你给出证明;若不成立,请说明理由;初中数学 ︵ 一线三等角 ︶培优篇 例3.如图(1)AB =9cm ,AC ⊥AB ,BD ⊥AB ,AC =BD =7cm ,点P 在线段AB 上以2cm /s 的速度由点A 向点B 运动,同时,点Q 在线段BD 上由点B 向点D 运动,它们运动的时间为t (s ).(1)若点Q 的运动速度与点P 的运动速度相等,当t =1时,△ACP 与△BPQ 是否全等,请说明理由;(2)在(1)的前提条件下,判断此时线段PC 和线段PQ 的位置关系,并证明; (3)如图(2),将图(1)中的“AC ⊥AB ,BD ⊥AB ”为改“∠CAB =∠DBA =50°”,其他条件不变.设点Q 的运动速度为xcm /s ,是否存在实数x ,使得△ACP 与△BPQ 全等?若存在,求出相应的x 、t 的值;若不存在,请说明理由.初中数学 ︵ 一线三等角 ︶培优篇【模型解读】在某条直线上有三个角相等,利用平角为180°与三角形内角和为180°,证得两个三角形全等.【常见模型及证法】 异侧型一线三等角:锐角一线三等角 直角一线三等角 钝角一线三等角条件:FAC ABD CED + 任意一边相等证明思路:,A B C BED +任一边相等⇒△BED ≅△ACE例1.老师在上课时,在黑板上写了一道题:“如图,ABCD 是正方形,点E 在BC 上,DF ⊥AE 于F ,请问图中是否存在一组全等三角形?”小杰同学经过思考发现:△ADF ≌△EAB .理由如下:因为ABCD 是正方形(已知)所以∠B =90°且AD =AB 和AD ∥BC 又因为DF ⊥AE (已知)即∠DF A =90°(垂直的意义) 所以∠DF A =∠B (等量代换)又AD ∥BC 所以∠1=∠2(两直线平行,内错角相等)在△ADF 和△EAB 中12DFA B AD AB所以△ADF ≌△EAB (AAS )小胖却说这题是错误的,这两个三角形根本不全等.初中数学 ︵ 一线三等角 ︶培优篇 你知道小杰的错误原因是什么吗?我们再添加一条线段,就能找到与△ADF 全等的三角形,请能说出此线段的做法吗?并说明理由.初中数学 ︵ 一线三等角 ︶培优篇 例2.过正方形ABCD (四边都相等,四个角都是直角)的顶点A 作一条直线MN .(1)当MN 不与正方形任何一边相交时,过点B 作BE MN 于点E ,过点D 作DF MN 于点F 如图(1),请写出EF ,BE ,DF 之间的数量关系,并证明你的结论.(2)若改变直线MN 的位置,使MN 与CD 边相交如图(2),其它条件不变,EF 、BE 、DF 的关系会发生变化,请直接写出EF 、BE 、DF 的数量关系,不必证明;(3)若继续改变直线MN 的位置,使MN 与BC 边相交如图(3),其它条件不变,EF 、BE 、DF 的关系又会发生变化,请直接写出EF 、BE 、DF 的数量关系,不必证明.初中数学 ︵ 一线三等角 ︶培优篇1.如图,在△ABC 中,AB =AC =9,点E 在边AC 上,AE 的中垂线交BC 于点D ,若∠ADE =∠B ,CD =3BD ,则CE 等于( )A .3 B.22.如图,桌面上竖直放置着一个等腰直角三角板面的距离分别为AD 、BE .(1)求证:ADC CEB △≌△3.(1)【问题发现】如图1,△ABC 与△CDE 中,∠B =∠E =∠ACD =90°,AC =CD ,B 、C 、E 三点在同一直线上,AB =3,ED =4,则BE =_____.(2)【问题提出】如图2,在Rt △ABC 中,∠ABC =90°,BC =4,过点C 作CD ⊥AC ,且CD =AC ,求△BCD 的面积.初中数学 ︵ 一线三等角 ︶培优篇4.已知:CD是经过∠BCA 的顶点C 的一条直线,CA =CB ,E 、F 是直线CD 上两点,∠BEC =∠CF A =∠α.(1)若直线CD 经过∠BCA 的内部,∠BCD >∠ACD .①如图1,∠BCA =90°,∠α=90°,写出BE ,EF ,AF 间的等量关系: . ②如图2,∠α与∠BCA 具有怎样的数量关系,能使①中的结论仍然成立?写出∠α与∠BCA 的数量关系 .(2)如图3.若直线CD 经过∠BCA 的外部,∠α=∠BCA ,①中的结论是否成立?若成立,进行证明;若不成立,写出新结论并进行证明.初中数学 ︵ 一线三等角 ︶培优篇。
第12章全等三角形重难点专题2:半角模型(课件)八年级数学上册(人教版)
模型 展示
正方形含 45°
120°等腰三 角形含 60°
模型 AB=AC,∠BAC=90°,
∠BDC=120°,
∠BAD=90°,∠EAF=45°
特点 ∠DAE=45°
∠E DF =60°
等腰直角三角形含 45°
模型 展示
正方形含 45°
1ห้องสมุดไป่ตู้0°等腰三角 形含 60°
①△A E D≌△A E F ;
N
∴MN=EN,
∴ DN-BM=MN
已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针 旋转,它的两边分别交CB,DC(或它们的延长线)于点M、N.
(2)当∠MAN绕点A旋转到BM≠DN时,线段BM、DN和MN之间 有怎样的数量关系?写出猜想,并加以证明.
解:(2)延长MB到E,使BE=DN,连接AE,
在△AND与△AEB中,
结论 ②△CEF 为直角三角形;
③BD2+CE2=DE2
①△A E F ≌△A E G; ①△DE F ≌△DGF ;
②△AGF 为等腰直角三角形; ②E F =B E +CF
③E F =B E +DF
(1)以上三种半角模型均可通过旋转一定角度将另外两个角拼接在 一起,构造三角形与半角所在的三角形全等,得出线段的数量关 系;
如图,在菱形 ABCD 中,∠B=60°,点 E、F 分别在 AB、AD 上, 且∠ECF=60°.求证:△ECF 是等边三角形.
证明:如解图,连接 AC, ∵四边形 ABCD 是菱形, ∴AB=BC=CD=AD. ∵∠B=60°, ∴△ABC 和△ACD 是等边三角形, ∴∠ACB=∠ACD=∠CAD=60°,BC=AC. ∴∠BCE+∠ACE=60°.
八年级数学上册专题(二) 全等三角形的基本模型(选用)
模型三 旋转型 模型解读:将三角形绕着公共顶点旋转一定角度后,两个三角形能够完全 重合,则称这两个三角形为旋转型三角形.识别旋转型三角形时,如图①, 涉及对顶角相等;如图②,涉及等角加(减)公共角的条件.
3.如图,AB⊥CD于B,CF交AB于E,CE=AD,BE=BD.求证:CF⊥AD.
解:∵AB⊥CD,∴∠EBC=∠DBA=90°.在 Rt△CEB 与 Rt△ADB 中
4.(阿凡题
1070217)如图,AD⊥AB于A,BE⊥AB于B,点C在AB上,且
CD⊥CE,CD=CE.求证:AB=AD+BE.
解:∵AD⊥AB,BE⊥AB,CD⊥CE,∴∠DAC=∠CBE=∠DCE=90 °, 又∵∠DCB=∠D+∠DAC=∠DCE+∠ECB, ∴∠D=∠ECB.在△ACD ∠D=∠ECB, 与△BEC 中,∠A=∠B, ∴△ACD≌△BEC(AAS),∴AC=BE,CB= DC=CE, AD,∴AB=AC+CB=AD+BE
八年级上册人教版数学 第十二章 全等三角形
专题(二) 全等三角形的基本模型(选用)
模型一 平移型 模型解读:把△ABC沿着某一条直线l平行移动,所得到△DEF与△ABC称为 平移型全等三角形.图①,图②是常见的平移型全等三角形.
1.如图,AB∥DE,AC∥DF,BE=CF,求证:AB=DE.
解:∵BE=CF,∴BE+EC=CF+EC,即 BC=EF,∵AB∥DE,AC∥ ∠B=∠DEF, DF,∴∠B=∠DEF,∠ACB=∠F,在△ABC 与△DEF 中,BC=EF, ∠ACB=∠F, ∴△ABC≌△DEF(ASA),∴AB=DE
CE=AD, ∴Rt△CEB≌Rt△ADB(HL),∴∠C=∠A,又∵∠C+∠CEB= BE = BD ,
人教八上:专题二--全等三角形的性质与判定(含解析)
专题二全等三角形的性质与判定一、单选题1.下面四个三角形中,与图中的△ABC全等的是()..23A.50°B.59°C.69°D.71°4.如图,点E、F在BC上,AB=CD,AF=DE,AF、DE相交于点G,添加下列哪一个条件,可使得△ABF≌△DCE()A.∠B=∠C B.AG=DG C.∠AFE=∠DEF D.BE=CF5.尺规作图中蕴含着丰富的数学知识和思想方法.如图,为了得到∠MBN=∠PAQ,在用直尺和圆规作图的过程中,得到△ACD≌△BEF的依据是().A.SAS B.SSS C.ASA D.AAS6.已知,如图所示的两个三角形全等,则∠1=()A.72°B.60°C.48°D.50°7.用三角尺可按下面方法画角平分线:在已知的∠AOB的两边上,分别取OM=ON,再分别过点M,N作OA,OB的垂线,交点为P,画射线OP,则OP平分∠AOB.做法中用到证明△OMP与△ONP全等的判定方法是()A.SAS B.SSS C.ASA D.HL8.如图,点E、F在BC上,AB=DC,∠B=∠C.添加一个条件后,不能证明△ABF≌△DCE,这个条件可能是()A.∠A=∠D B.BE=CF C.BF=CE D.AF=ED9.已知图中的两个三角形全等,则∠1等于( )A.72°B.60°C.58°D.50°10.如图,已知∠ABC=∠BAD,添加下列条件还不能判定△ABC≌△BAD的是()A.AC=BD B.∠CAB=∠DBA C.∠C=∠D D.BC=AD11.如图,已知∠CAB=∠DBA,老师要求同学们补充一个条件使△ABC≌△BAD,以下是四个同学补充的条件,其中错误的是()A.AC=BD B.CB=DA C.∠C=∠D D.∠ABC=∠BAD12.用直尺和圆规作一个角等于已知角,如图,能得出∠AOB=∠A′O′B′的依据是()A.SSS B.SAS C.ASA D.AAS13.如图,AB=4厘米,BC=6厘米,∠B=∠C,如果点P在线段BC上以2厘米/秒的速度由B点向C 点运动,同时,点Q从C点出发沿射线CD运动.若经过t秒后,△ABP与△CQP全等,则t的值是()A.1B.1.5C.1或1.5D.1或214.已知图中的两个三角形全等,则∠1的度数是()A.50°B.54°C.60°D.76°15.如图,点E、F在BC上,BE=CF,∠B=∠C,添加一个条件,不能证明△ABF≌△DCE的是( )A.∠A=∠D B.∠AFB=∠DEC C.AB=DC D.AF=DE16.如图,点B、E、C、F在一条直线上,AB=DE,∠B=∠DEF,要使得△ABC≌△DEF,不能添加的条件是()A.∠A=∠D B.AC=DF C.BE=CF D.AC∥DF17.已知图中的两个三角形全等,图中的字母表示三角形的边长,则∠1的大小是()A.64°B.65°C.51°D.55°18.如图,工人师傅设计了一种测量零件内径AB的卡钳,卡钳交叉点O为AA′、BB′的中点,只要量出A′B′的长度,就可以知道该零件内径AB的长度.其依据的数学基本据实是()A.两边及其夹角分别相等的两个三角形全等B.两角及其夹边分别相等的两个三角形全等C.等角对等边D.两点之间线段最短19.如图,在等腰Rt△ABC中,AC=BC,∠ACB=90°,点A(0,a),B(b,0),C(−4,4),其中b<a<0,则a,b之间的数量关系是()A.a+b=−4B.a−b=4C.a+b=−8D.a−b=820.用尺规作图作一个角等于已知角的示意图如图所示,则说明∠A′O′B′=∠AOB的依据是()A.SAS B.ASA C.HL D.SSS21.如图,点E、F在BC上,AB=DC,AF=DE,AF、DE相交于点G,要使得△ABF≌△DCE,添加下列哪一个条件()A.∠B=∠C B.GE=GF C.∠AFE=∠DEF D.BF=CE 22.阅读以下作图步骤:①在OA和OB上分别截取OC,OD,使OC=OD;②③23A.∠A=∠C B.AD=CB C.BE=DF D.AD∥BC 24.如图,△ACB≌△A′CB′,∠BCB′=30°,则∠ACA′的度数为()A.20°B.30°C.35°D.40°25.如图,已知∠CAB=∠DAB,则添加下列一个条件不一定能使△ABC≌△ABD的是( )A.BC=BD B.∠C=∠D C.AC=AD D.∠ABC=∠ABD26.已知:如图,AC=CD,∠B=∠E=90°,AC⊥CD,则不正确的结论是()A.∠A+∠D=90°B.∠A=∠2C.△ABC≌△CED D.∠1=∠227.如图,已知ΔABC,下面甲、乙、丙、丁四个三角形中,与ΔABC全等的是()A.甲B.乙C.丙D.丁二、填空题28.如图,点B、C、E三点在同一直线上,且AB=AD,AC=AE,BC=DE,若∠1+∠2+∠3=96°,则∠3的度数为.29.如图,三角形纸片中,AB=8cm,BC=6cm,AC=5cm.沿过点B的直线折叠这个三角形,使点C落在AB边上的点E处,折痕为BD,△ADE的周长为cm.30313233.已知:如图,∠B=∠C=90°,AF=DE,BE=CF.求证:AB=DC.34.如图,OA=OC,OB=OD,∠AOD=∠COB.求证:AB=CD.35.如图,四边形ABCD中,∠B=90°,AB∥CD,M是BC边上的一点,且AM平分∠BAD,DM平分∠ADC,求证:(1)BM=MC;(2)AM⊥MD.36.如图,在Rt△ABC中,∠ACB=90°,△ABC的角平分线AD、BE相交于点P,过点P作PF⊥AD 交BC的延长线于点F,PF交AC于点H,求证:(1)△ABP≌△FBP;(2)AH=AB−BD.37.如图,B、E、C、F在同一直线上,AB=DE,BE=CF,∠B=∠DEF,求证:AC=DF.38.如图,CD⊥AB,BE⊥AC,垂足分别为D、E,BE、CD交于点O,OB=OC.求证:∠1=∠2.39.如图,在△ABC中,AB=AC,D、E是BC边上的点,且BD=CE,求证:AD=AE.40.如图,在四边形ABCD中,AB∥CD,E为AD的中点,连接CE并延长交BA的延长线于点F.(1)求证:△CDE≌△FAE.(2)连接BE,当BE⊥CF时,CD=3,AB=2,求BC的长.41.如图,点D、E在△ABC的BC边上,AB=AC,AD=AE,求证:BD=CE.42.我们把两组邻边分别相等的四边形叫做“筝形”.如图,四边形ABCD是一个筝形,AD=CD,AB=CB,对角线AC交BD与点O.(1)请根据你学过的知识直接写出一组全等的三角形______;(2)求证:AC⊥BD.43.如图,AB=CD,AE⊥BC于E,DF⊥BC于F,若CE=BF.(1)求证:AE=DF;(2)求证:AB∥CD.44.如图,BE⊥AD,CF⊥AD,垂足分别为点E,F,AF=DE,∠B=∠C,求证:AB=CD.45.如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别为D,E.(1)求证:△ADC≌△CEB;(2)延长EB至点F,使得BF=DE,连接AF交CE于点G,若AD=5,BE=3,求DG的长.46.如图,AB=AE,∠B=∠AED,∠1=∠2,求证:AC=AD.47.如图,在△ABC和△BDE中,点C在边BD上,边AC交边BE于点F,若AC=BD,AB=ED,BC=BE.求证:∠AFB=2∠ACB.48.(变图形—平移型)如图,点C是AB的中点,AD=CE,CD=BE.求证:△ACD≌△CBE.49.如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C.求证:∠A=∠D.50.在Rt△ABC中,∠BAC=90°,AB=AC,过直角顶点A作直线MN,BD⊥MN于点D,CE⊥MN于点E.(1)如图1,当MN与BC边不相交时,判断BD,CE,DE之间的数量关系,并说明理由;(2)当MN与边BC相交时,请在图2中画出图形,并直接写出BD,CE,DE之间的数量关系.51.如图,CA=CD,∠1=∠2,BC=EC.求证:AB=DE.52.如图,AD与BC相交于点O,OA=OC,∠A=∠C,BE=DE.求证:OE垂直平分BD.53.如图,点B,E,C,F在同一直线上,相交于点E,AB=DE,AC=DF,∠A=∠D.求证:BE=CF.54.如图,点A、B、C、D在同一直线上,AE=DF,AB=CD,CE=FB.求证:AE∥DF.55.如图,已知AB=AC,BD=CD,DM⊥AB于M,DN⊥AC于N,求证:DM=DN56.如图,△ABC中,∠ACB=90°,AC=BC,将△ABC绕点C逆时针旋转角α.(0°<α<90°)得到△A1B1C1,连接BB1.设CB1交AB于D,A1B1分别交AB、AC于E、F.(1)在图中不再添加其它任何线段的情况下,请你找出一对全等的三角形,并加以说明(△ABC与△A1 B1C全等除外);(2)当△BB1D是等腰三角形且BB1=BD时,求α的值.参考答案题号12345678910答案C C B D B C D D C A题号11121314151617181920答案B A C A D B A A D D题号21222324252627答案D A B B A D B1.C【分析】根据全等三角形的判定方法即可判断.【详解】解:由题可得∠A=180°−60°−54°=66°,∵A选项属于已知两边和其中一边的对角对应相等的情况,不能判定两个三角形全等,故不符合题意;∵B选项中66°角的对边不相同,不能判定两个三角形全等,故不符合题意;∵C选项中已知两边与其中一边的夹角对应相等,所以能判定全等,故C选项符合题意;∵D选项中两对应角的夹边不相等,不能判定两个三角形全等,故不符合题意;故选:C.【点睛】本题考查了全等三角形的判定,牢记判定方法以及正确找出对应边或对应角是解决本题的关键.2.C【分析】由作图可知直线MN为边AC的垂直平分线,再由BD=DC得到AD=DC=BD,利用等边对等角以及三角形内角和定理,进而得到∠B+∠C=90°.【详解】解:由作图可知,直线MN为边AC的垂直平分线,∴DC=AD,∴∠C=∠CAD,∵BD=DC,∴AD=BD,∴∠B=∠BAD,∵∠C+∠B+∠CAD+∠BAD=180°,∴∠B+∠C=90°.故选:C.3.B【分析】由全等三角形的对应角相等,结合三角形内角和定理即可得到答案.【详解】∵两个三角形全等,由全等三角形的性质可知,两幅图中边长为a、b的夹角对应相等,∴∠α=180°−50°−71°=59°,故选:B4.D【分析】根据全等三角形的判定条件逐一判断即可.【详解】解:A、由∠B=∠C,AB=CD,AF=DE,不能证明△ABF≌△DCE,不符合题意;B、由AG=DG,AB=CD,AF=DE,不能证明△ABF≌△DCE,不符合题意;C、由∠AFE=∠DEF,AB=CD,AF=DE,不能证明△ABF≌△DCE,不符合题意;D、由BE=CF即可证明BF=CE,AB=CD,AF=DE,可以由SSS证明△ABF≌△DCE,符合题意;故选D.【点睛】本题主要考查了全等三角形的判定,熟知全等三角形的判定定理是解题的关键,全等三角形的判定定理有SSS,SAS,AAS,ASA,HL.5.B【分析】此题考查了全等三角形的判定定理,三边对应相等的两个三角形全等,以及作一个角等于已知角,根据用尺规画一个角等于已知角的步骤,据此即可求解,正确理解题中的作图是解题的关键.【详解】解:根据做法可知:AC=BE,AD=BF,CD=EF,∴△ACD≌△BEF(SSS),∴∠MBN=∠PAQ,故选:B.6.C【分析】本题考查了全等三角形的性质,能熟记全等三角形的性质是解此题的关键,注意:全等三角形的对应边相等,对应角相等.【详解】解:∵DE=AB=a,DF=AC=c,又∵图中两个三角形全等,∴△ABC≌△DEF,∴∠D=∠A=180°−60°−72°=48°,∴∠1=48°,故选:C.7.D【分析】根据直角三角形全等的判定HL定理,可证△OPM≌△OPN.【详解】解:∵OM=ON,OP=OP,∠OMP=∠ONP=90°,∴△OPM≌△OPN所用的判定定理是HL.故选D.【点睛】本题考查学生的观察能力和判定直角三角形全等的HL定理,本题是一操作题,要会转化为数学问题来解决.8.D【分析】本题主要考查三角形全等的判定,根据SSS,ASA,SAS,AAS逐个判断即可得到答案;【详解】解:∵AB=DC,∠B=∠C,当∠A=∠D构成ASA,能得到△ABF≌△DCE,不符合题意,当BE=CF得到BF=CE构成SAS,能得到△ABF≌△DCE,不符合题意,当BF=CE构成SAS,能得到△ABF≌△DCE,不符合题意,当AF=ED不能得到三角形全等的判定,符合题意,故选:D.9.C【分析】本题主要考查了三角形内角和定理,全等三角形的性质,先根据三角形内角和为180度求出∠2的度数,再根据全等三角形对应角相等即可求出∠1的度数.【详解】解:如图所示,由三角形内角和定理得∠2=180°−50°−72°=58°,由全等三角形的性质可得∠1=∠2=58°,故选:C.10.A【分析】根据全等三角形的判定方法逐项判断即得答案.【详解】解:∵∠ABC=∠BAD,AB=BA,AC=BD,条件为边边角,∴不能证明△ABC≌△BAD,故A符合题意;∵∠ABC=∠BAD,AB=BA,∠CAB=∠DBA,条件为边角边,∴能证明△ABC≌△BAD,故B不符合题意;∵∠ABC=∠BAD,AB=BA,∠C=∠D,条件为角角边,能证明△ABC≌△BAD,故C不符合题意;∵∠ABC=∠BAD,AB=BA,BC=AD,条件为边角边,能证明△ABC≌△BAD,故D不符合题意,故选:A.【点睛】本题考查了全等三角形的判定,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.11.B【分析】本题考查全等三角形的判定,根据全等三角形的判定定理,逐项分析判断,即可求解.【详解】解:∵∠CAB=∠DBA,AB=BA,∴添加的条件是:AC=BD,根据SAS可证明△ABC≌△BAD,故选项A不符合题意;添加的条件是:CB=DA,无法判断△ABC≌△BAD,故选项B符合题意;添加的条件是:∠C=∠D,根据AAS可证明△ABC≌△BAD,故选项C不符合题意;添加的条件是:∠ABC=∠BAD,根据ASA可证明△ABC≌△BAD,故选项D不符合题意;故选:B12.A【分析】本题主要考查了基本作图、全等三角形的判定与性质等知识点,明确作图过程成为解答本题的关键.通过分析作图的步骤,发现△OCD与△O′C′D′的三条边分别对应相等,于是利用边边边判定△OCD≌△O′C′D′,根据全等三角形对应角相等得∠AOB=∠A′O′B′.【详解】解:作图的步骤:①以O为圆心,任意长为半径画弧,分别交OA、OB于点C、D;②作射线O′B′,以O′为圆心,OC长为半径画弧,交O′B′于点D′;③以D′为圆心,CD长为半径画弧,交前弧于点C′;④过点C′作射线O′A′.所以∠A′O′B′就是与∠AOB相等的角.在△O′C′D′与△OCD中,O′C′=OCO′D′=OD,C′D′=CD∴△OCD≌△O′C′D′(SSS),∴∠AOB=∠A′O′B′,即运用的判定方法是SSS.故选:A.13.C【分析】本题考查了全等的性质,解一元一次方程的应用.运用分类讨论的思想是解题的关键.由题意知,BP=2t,CP=6−2t,由△ABP与△CQP全等,分△ABP≌△PCQ,△ABP≌△QCP两种情况,列方程求解即可.【详解】解:由题意知,BP=2t,CP=6−2t,∵△ABP与△CQP全等,∴分△ABP≌△PCQ,△ABP≌△QCP两种情况求解;当△ABP≌△PCQ时,PC=AB,即6−2t=4,解得t=1;当△ABP≌△QCP时,BP=CP,即2t=6−2t,解得t=1.5;综上所述,t的值是1或1.5,故选:C.14.A【分析】本题考查了全等三角形的性质,根据全等三角形的对应边相等,对应角相等去判定对应关系后计算.熟练掌握对应角的判定方法是解题的关键.【详解】解:∵两个三角形全等,∠1是边a的对角,即边b、c夹角,∴∠1的度数是180°−54°−76°=50°.故选:A.15.D【分析】本题考查了全等三角形的判定定理,能熟记全等三角形的判定定理是解此题的关键,全等三角形的判定定理有SAS,ASA,AAS,SSS,两直角三角形全等还有HL等.根据BE=CF求出BF=CE,再根据全等三角形的判定定理进行分析即可.【详解】解:∵BE=CF,∴BE+EF=CF+EF,即BF=CE,∵∠B=∠C,∴当∠A=∠D时,利用AAS可得△ABF≌△DCE;当∠AFB=∠DEC时,利用ASA可得△ABF≌△DCE;当AB=DC时,利用SAS可得△ABF≌△DCE;当AF=DE时,无法证明△ABF≌△DCE;故选:D.16.B【分析】本题考查的是添加条件证明三角形全等,熟记全等三角形的判定方法是解本题的关键;本题根据已有的条件AB=DE,∠B=∠DEF,再逐一分析添加的条件结合ASA,SAS,AAS可得答案.【详解】解:∵AB=DE,∠B=∠DEF,∴补充∠A=∠D,可利用ASA证明△ABC≌△DEF,故A不符合题意;补充AC=DF,不能证明△ABC≌△DEF,故B符合题意;补充BE=CF,∴BC=EF,可利用SAS证明△ABC≌△DEF,故C不符合题意;补充AC∥DF,∴∠ACB=∠F,可利用AAS证明△ABC≌△DEF,故D不符合题意;故选B17.A【分析】本题考查的是全等三角形的性质,掌握全等三角形的对应角相等是解题的关键.【详解】解:∵两个三角形全等,∴∠1=64°,故选:A.18.A【分析】本题主要考查了三角形全等的判定和性质,解题的关键是熟练掌握两边及其夹角分别相等的两个三角形全等.【详解】解:O为AA′、BB′的中点,∴OA=OA′,OB=OB′,∵∠AOB=∠A′OB′(对顶角相等),∴在△AOB与△A′OB′中,OA=OA′,∠AOB=∠A′OB′OB=OB∴△AOB≌△A′OB′(SAS),∴AB=A′B′,故选:A.19.D【分析】本题考查坐标与图形性质,过点C作坐标轴的垂线,利用AAS证明△BCM≌△ACN,即可求解,解题的关键是构造全等三角形.【详解】解:过点C作x轴和y轴的垂线,垂足分别M和N,∵∠CMO=∠CNO=∠MON=90°,∴四边形CMON是矩形,∴∠MCN=90°,∴∠ACN+∠ACM=90°,∵∠ACB=90°,∠BCM+∠ACM=90°,∴∠BCM=∠ACN,在△BCM和△ACN中,∠BCM=∠ACN∠BMC=∠ANC,BC=AC∴△BCM≌△ACN(AAS),∴BM=AN,又∵点C坐标为(−4,4),∴点M坐标为(−4,0),点N坐标为(0,4).∴BM=−4−b,AN=4−a∴−4−b=4−a即a−b=8.故选:D.20.D【分析】此题主要考查对尺规作图作一个角等于已知角的理解,利用全等三角形的判定方法判断即【详解】解:由作法得OD=O′D′,OC=O′C′,CD=C′D′,在△COD和△C′O′D′中,OD=O′D′OC=O′C′,CD=C′D′∴△COD≌△C′O′D′(SSS),∴∠A′O′B′=∠AOB(全等三角形的对应角相等).故选:D.21.D【分析】本题考查了全等三角形的判定.根据全等三角形的判定方法依次进行判断即可.【详解】解:A、添加∠B=∠C,不能使得△ABF≌△DCE,不符合题意;B、添加GE=GF,不能使得△ABF≌△DCE,不符合题意;C、添加∠AFE=∠DEF,不能使得△ABF≌△DCE,不符合题意;D、添加BF=CE,利用SSS,可以使得△ABF≌△DCE,符合题意;故选:D.22.A【分析】由作图过程可得:OD=OC,CM=DM,再结合DM=DM可得△COM≌△DOM(SSS),由全等三角形的性质可得∠1=∠2即可解答.【详解】解:由作图过程可得:OD=OC,CM=DM,∵DM=DM,∴△COM≌△DOM(SSS).∴∠1=∠2.∴A选项符合题意;不能确定OC=CM,则∠1=∠3不一定成立,故B选项不符合题意;不能确定OD=DM,故C选项不符合题意,OD∥CM不一定成立,则∠2=∠3不一定成立,故D选项不符合题意.故选A.【点睛】本题主要考查了角平分线的尺规作图、全等三角形的判定与性质等知识点,理解尺规作图过程是解答本题的关键.【分析】利用全等三角形的判定依次证明即可.【详解】解:∵AE=CF,∴AE+EF=CF+EF.∴AF=CE.A.在△ADF和△CBE中,{∠A=∠CAF=CE∠AFD=∠CEB,∴△ADF≌△CBE(ASA),正确,故本选项不符合题意.B.根据AD=CB,AF=CE,∠AFD=∠CEB不能推出△ADF≌△CBE,错误,故本选项符合题意.C.在△ADF和△CBE中,{AF=CE∠AFD=∠CEBDF=BE,∴△ADF≌△CBE(SAS),正确,故本选项不符合题意.D.∵AD∥BC,∴∠A=∠C.由A选项可知,△ADF≌△CBE(ASA),正确,故本选项不符合题意.故选B.【点睛】本题考查了添加条件证明三角形全等,解题的关键是熟练运用判定三角形全等的方法.24.B【分析】本题考查了全等三角形的性质:全等三角形的对应边相等、对应角相等,找准对应角是解题的关键.根据全等三角形的对应角相等可知∠ACB=∠A′CB′,给等式的两边同时减去∠BCA′,可得到∠ACA′=∠BCB′=30°.【详解】解:∵△ACB≌△A′CB′,∴∠A′CB′=∠ACB,∵∠BCA′+∠BCB′=∠BCA′+∠A′CA,∴∠ACA′=∠BCB′,∵∠BCB′=30°,∴∠ACA′=30°.故选:B.25.A【分析】根据题目中的已知条件AB=AB,∠CAB=∠DAB,再结合题目中所给选项中的条件,利用全等三角形的判定定理进行分析即可.【详解】解;由图形可知:AB=AB,∠CAB=∠DAB,A.再加上条件BC=BD,不能证明△ABC≌△ABD,故此选项合题意;B. 再加上条件∠C=∠D,可利用AAS可证明△ABC≌△ABD,故此选项不合题意;C. 再加上条件AC=AD,可利用SAS可证明△ABC≌△ABD,故此选项不符合题意;D. 再加上条件∠ABC=∠ABD,可利用ASA可证明△ABC≌△ABD,故此选项不合题意.故选:A【点睛】本题考查全等三角形的判定定理,解题的关键是掌握全等三角形的判定定理.26.D【分析】本题主要考查全等三角形的性质.先根据角角边证明△ABC≌△CED,再根据全等三角形对应边相等,全等三角形的对应角相等的性质对各选项判断后,利用排除法求解.【详解】解:∵AC⊥CD,∴∠1+∠2=90°,∵∠B=90°,∴∠1+∠A=90°,∴∠A=∠2,在△ABC和△CED中,∠B=∠E=90°∠A=∠2,AC=CD∴△ABC≌△CED(AAS),故B、C选项正确,不符合题意;∵∠2+∠D=90°,∴∠A+∠D=90°,故A选项正确,不符合题意;∵AC⊥CD,∴∠ACD=90°,∠1+∠2=90°,但∠1不一定等于∠2,故D选项错误,符合题意.故选:D.27.B【分析】根据三角形全等的判定逐个判定即可得到答案.【详解】解:由题意可得,B选项符合边角边判定,故选B.【点睛】本题考查三角形全等的判定,解题的关键是熟练掌握三角形全等的几个判定.28.48°/48度,∴在∵∴29先长=∴∴【点睛】本题考查了翻折变换的性质,翻折变换保留原有图形的性质,而且可以使得原有的分散条件相对集中,从而有利于问题的解决.30.AB/BA【分析】本题主要考查全等三角形的判定与性质,证明△ABC≌△ADC是解题的关键.由AAS判断出△ABC≌△ADC即可得到答案.【详解】解:∵AB⊥BC,AD⊥DC,∴∠B=∠D=90°,在△ABC,△ADC中,∠1=∠2∠B=∠D,AC=AC∴△ABC≌△ADC(AAS),∴AD=AB.故答案为:AB.31.证明见解析【分析】根据平行得出∠B=∠DEF,然后用“边角边”证明△ABC≌△DEF即可.【详解】证明:∵AB//DE,∴∠B=∠DEF.∵BE=CF,∴BE+EC=CF+EC.∴BC=EF.在△ABC和△DEF中,AB=DE,∠B=∠DEF,BC=EF,∴△ABC≌△DEF.∴∠A=∠D.【点睛】本题考查了全等三角形的判定与性质,解题关键是熟练运用已知条件,推导证明出全等三角形判定所需条件,运用全等三角形判定定理证明.32.见解析【分析】利用AAS证明△ACO≌△DBO,即可得到结论.【详解】解:证明:在△ACO和△DBO中∠AOC=∠DOB∠A=∠DAC=DB∴△ACO≌△DBO(AAS).∴AO=DO,CO=BO.∴AO+BO=DO+CO∴AB=CD.【点睛】本题考查了全等三角形的判定与性质;熟练掌握全等三角形的判定方法是解题的关键.33.详见解析【分析】运用HL定理证明直角三角形全等即可.【详解】∵BE=CF,∴BF=CE在Rt△ABF与Rt△DCE中:{AF=DE BF=CE∴Rt△ABF≌Rt△DCE(HL)∴AB =DC【点睛】本题考查了直角三角形全等的判定与性质,熟练掌握HL定理是解题关键.34.见解析【分析】根据已知条件得出∠AOB=∠COD,进而证明△AOB≌△COD,根据全等三角形的性质即可得证.【详解】证明:∵∠AOD=∠COB,∴∠AOD−∠BOD=∠COB−∠BOD,即∠AOB=∠COD.在△AOB和△COD中,OA=OC,∠AOB=∠COD,OB=OD,∴△AOB≌△COD∴AB=CD.【点睛】本小题考查等式的基本性质、全等三角形的判定与性质等基础知识,考查几何直观、推理能力等,掌握全等三角形的性质与判定是解题的关键.35.(1)见详解(2)见详解【分析】(1)作NM⊥AD,根据角平分线的性质得到BM=MN,MN=CM,等量代换得到答案.(2)根据平行线的性质得到∠BAD+∠ADC=180°,根据角平分线的定义得到∠MAD+∠ADM=90°,根据垂直的定义得到答案;【详解】(1)作NM⊥AD交AD于N,∵∠B=90°,AB∥CD,∴BM⊥AB,CM⊥CD,∵AM平分∠BAD,DM平分∠ADC,∴BM=MN,MN=CM,∴BM=CM;(2)证明:∵AB∥CD,∴∠BAD+∠ADC=180°,∵AM平分∠BAD,DM平分∠ADC,∴2∠MAD+2∠ADM=180°,∴∠MAD+∠ADM=90°,∴∠AMD=90°,即AM⊥DM;【点睛】本题考查的是角平分线的性质,掌握平行线的性质和角的平分线上的点到角的两边的距离相等是解题的关键.36.(1)见详解(2)见详解【分析】(1)根据三角形内角和以及角平分线定义得出∠APB=135°,易得∠DPB=45°,可得∠BPF=135°,即可证明△ABP≌△FBP;(2)由(1)结论可得∠F=∠BAD,AP=PF,AB=BF,即可求得∠F=∠CAD,即可证明△APH≌△FPD,可得AH=DF,即可解题.【详解】(1)∵AD、BE分别平分∠BAC、∠ABC,∠ACB=90°,∴∠PAB+∠PBA=12(∠ABC+∠BAC)=45°,∴∠APB=135°,∴∠DPB=45°,∵PF⊥AD,∴∠BPF=135°,在△ABP和△FBP中,∠BPF=∠APB=135°BP=BP∠ABP=∠FBP∴△ABP≌△FBP(ASA);(2)∵△ABP≌△FBP,∴∠F=∠BAD,AP=PF,AB=BF,∵∠BAD=∠CAD,∴∠F=∠CAD,在△APH和△FPD中,∠F=∠CADAP=PF∠APH=∠FPD=90°∴△APH≌△FPD(ASA),∴AH=DF,∵BF=DF+BD,∴AB=AH+BD.∴AH=AB−BD.【点睛】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证△ABP≌△FBP和△APH≌△FPD是解题的关键.37.见解析【分析】由BE=CF可得BC=EF,即可判定ΔABC≌ΔDEF(SAS),再利用全等三角形的性质证明即可.【详解】∵BE=CF,∴BE+EC=EC+CF,即BC=EF,又∵AB=DE,∠B=∠DEF,∴在ΔABC与ΔDEF中,AB=DE∠B=∠DEF,BC=EF∴ΔABC≌ΔDEF(SAS),∴AC=DF.【点睛】本题主要考查了三角形全等的判定,熟练掌握三角形全等的判定定理是解决本题的关键. 38.见解析【分析】先证明ΔBDO≌ΔCEO(AAS),得到OD=OE,再根据角的平行线性质判定即可.【详解】证明:∵CD⊥AB于D点,BE⊥AC于点E,∴∠BDO =∠CEO =90∘,在ΔBDO 和ΔCEO 中,∠BDO =∠CEO ∠BOD =∠COE OB =OC,ΔBDO≌ΔCEO (AAS),∴OD =OE ,∵OD ⊥AB ,OE ⊥AC ,∴OA 平分∠BAC ,∴∠1=∠2.【点睛】本题考查了三角形全等的判定和性质,角的平分线的判定定理,熟练掌握三角形全等的判定和角的平分线的判定是解题的关键.39.见解析【分析】利用等腰三角形的性质可得∠B =∠C ,再由SAS 证明△ABD≌△ACE ,从而得AD =AE .【详解】证明:∵AB =AC ,∴∠B =∠C ,在△ABD 和△ACE 中,AB =AC ∠B =∠C BD =CE,∴△ABD≌△ACE (SAS ),∴AD =AE .【点睛】本题考查等腰三角形的性质,全等三角形的性质与判定,熟练掌握相关性质定理是解题的关键.40.(1)证明见解析(2)5【分析】此题主要考查全等三角形的判定和性质,解题关键是根据AAS 证明△CDE 和△FAE 全等.(1)根据 AAS 证明△CDE 和△FAE全等即可;(2)根据全等三角形的性质结合线段垂直平分线性质解答即可.【详解】(1)证明:∵AB ∥CD ,∴∠DCE =∠F ,∵点E 是AD 中点,∴DE =AE ,在△CDE 和△FAE 中,∠DCE =∠F ∠CED =∠FEA DE =AE,∴△CDE≌△FAE (AAS);(2)由(1)知△CDE≌△FAE ,∴CE =FE ,CD =AF∵BE ⊥GF ,∴BE 垂直平分CF ,∴BC =BF ,∵CD =3,AB =2,∴AF =CD =3,∴BC =BF =AF +AB =3+2=5.41.证明见解析【分析】本题主要考查了三线合一定理,过点A 作AP ⊥B C 于P ,利用三线合一得到P 为DE 及BC 的中点,再根据线段之间的关系即可得证.【详解】证明:如图,过点A 作AP ⊥B C 于P .∵AB =AC ,∴BP =PC ;∵AD =AE ,∴DP =PE ,∴BP−DP =PC−PE ,∴BD =CE .42.(1)△ABD≌△CBD(2)证明见解析【分析】本题考查的是全等三角形的判定与性质,等腰三角形的性质;熟记等腰三角形的三线合一是解本题的关键.(1)直接利用SSS证明△ABD≌△CBD即可;(2)由△ABD≌△CBD可得∠ADB=∠CDB,再结合等腰三角形的性质可得结论.【详解】(1)解:△ABD≌△CBD,理由如下:在△ABD和△CBD中,AD=CDAB=CB,BD=BD∴△ABD≌△CBD(SSS);(2)∵△ABD≌△CBD,∴∠ADB=∠CDB,∵DA=DC,∴AD⊥AC.43.(1)证明见解析(2)证明见解析【分析】本题主要考查直角三角形的全等判定和性质,(1)根据题意得∠AEB=∠DFC=90°,由CE=BF得BE=CF,则有Rt△CDF≌Rt△BAE,结合全等的性质即可证明;(2)利用Rt△CDF≌Rt△BAE得到对应的角度相等,结合内错角相等两直线平行的判定即可证明;【详解】(1)证明:∵AE⊥BC于E,DF⊥BC于F,∴∠AEB=∠DFC=90°,∵CE=BF,∴CE−EF=BF−EF,∴BE=CF,在Rt△CDF与Rt△BAE中,CD=ABCF=BE,∴Rt△CDF≌Rt△BAE(HL)∴AE=DF,(2)由(1)可知Rt△CDF≌Rt△BAE(HL),∴∠C=∠B,∴AB∥CD.44.证明见解析【分析】本题考查了全等三角形的判定与性质等知识,证△AEB≌△DFC(AAS),即可得出结论.∴∵∴∴在∴∴45(2)((∴∴∠ACD+∠DAC=90°,∵∠ACB=90°,∴∠ACD+∠BCE=90°,∴∠DAC=∠ECB.在△ADC和△CEB中,∠ADC=∠CEB,∠DAC=∠ECB, AC=CB,∴△ADC≌△CEB (AAS)(2)由(1)得△ADC≌△CEB∴CE =AD =5,CD =BE =3,∴BF =DE =CE−CD =5−3=2,∴EF =BF +BE =2+3=5,∴EF =AD .∵AD ⊥CE ,BE ⊥CE ,∴∠FEG =∠ADG =90°在△FEG 和△ADG 中,∠FEG =∠ADG,∠FGE =∠AGD,FE =AD,∴△FEG≌△ADG (AAS),∴DG =EG =12DE =1.46.证明见解析【分析】本题考查三角形全等的判定,先证明∠BAC =∠EAD ,在用ASA 证明△ABC≌△AED 即可,掌握判定三角形全等是解题的关键.【详解】证明∵∠1=∠2,∴∠1+∠EAC =∠2+∠EAC∴∠BAC =∠EAD ,在△ABC 和△AED 中,∠B =∠AED AB =AE ∠BAC =∠EAD,∴△ABC≌△AED .∴AC =AD 47.见解析【分析】先根据SSS 定理得出△ABC≌△DEB (SSS ),故∠ACB =∠EBD ,再根据∠AFB 是△BFC 的外角,可知∠AFB =∠ACB +∠EBD ,可得出∠AFB =2∠ACB,故可得出答案.【详解】解:在△ABC和△BDE中,AC=BDAB=EDBC=BE∴△ABC≌△DEB(SSS)∴∠ACB=∠EBD;∵∠AFB=∠ACB+∠EBD,∴∠AFB=2∠ACB【点睛】此题考查全等三角形的判定和性质,同时涉及三角形外角和定理,掌握相关定理知识是解题的关键.48.见解析【分析】根据中点的定义得出AC=CB,即可根据SSS证明△ACD≌△CBE.【详解】证明:∵点C是AB的中点,∴AC=CB.在△ACD和△CBE中,AD=CECD=BE,AC=CB∴△ACD≌△CBE(SSS).【点睛】本题主要考查了的三角形全等的判定,解题的关键是掌握三边都相等的两个三角形全等.49.见解析【分析】由BE=CF可得BF=CE,再结合AB=DC,∠B=∠C可证得△ABF≌△DCE,问题得证.【详解】解∵BE=CF,∴BE+EF=CF+EF,即BF=CE.在△ABF和△DCE中,AB=DC∠B=∠CBF=CE∴△ABF≌△DCE,∴∠A=∠D.【点睛】本题考查了全等三角形的判定和性质,是中考中比较常见的知识点,一般难度不大,需熟练掌握全等三角形的判定和性质.50.(1)DE=BD+CE,见解析(2)见解析,CE−BD=DE或BD−CE=DE【分析】(1)由BD⊥MN于点D,CE⊥MN于点E,得∠BDA=∠AEC=∠BAC=90°,则∠DAB=∠ECA=90°−∠EAC,而AB=CA,即可证明△DAB≌△ECA,得BD=AE,AD=CE,则BD+CE=AE+AD=DE;(2)分两种情况讨论,一是MN与边BC相交且∠BAD<45°,同理可证△DAB≌△ECA,得BD=AE,AD=CE,则CE−BD=AD−AE=DE;二是MN与边BC相交且∠BAD>45°,同理可证△DAB≌△ECA,得BD=AE,AD=CE,则BD−CE=AE−AD=DE.【详解】(1)证明:∵BD⊥MN,CE⊥MN,∴∠ADB=∠CEA=90°,∵∠BAC=90°,∴∠BAD+∠CAE=90°,∵∠CAE+∠ACE=90°,∴∠BAD=∠ACE,在△ABD和△CAE中,∠ADB=∠CEA∠BAD=∠ACEAB=CA,∴△ABD≅△CAE(AAS);∴AD=CE,BD=AE,∵DE=AD+AE,∴DE=BD+CE;(2)解:CE−BD=DE或BD−CE=DE,理由:如图2,MN与边BC相交且∠BAD<45°,∵BD⊥MN于点D,CE⊥MN于点E,∴∠BDA=∠AEC=90°,∵∠BAC=90°,∴∠DAB=∠ECA=90°−∠EAC,在△DAB和△ECA中,∠DAB=∠ECA∠BDA=∠AEC,AB=CA∴△DAB≌△ECA(AAS),∴BD=AE,AD=CE,∴CE−BD=AD−AE=DE.如图3,MN与边BC相交且∠BAD>45°,∵BD⊥MN于点D,CE⊥MN于点E,∴∠BDA=∠AEC=90°,∵∠BAC=90°,∴∠DAB=∠ECA=90°−∠EAC,在△DAB和△ECA中,∠DAB=∠ECA∠BDA=∠AEC,AB=CA∴△DAB≌△ECA(AAS),∴BD=AE,AD=CE,∴BD−CE=AE−AD=DE.【点睛】此题重点考查直角三角形的两个锐角互余、同角的余角相等、全等三角形的判定与性质等知识,证明△DAB≌△ECA是解题的关键.51.见解析【分析】根据∠1=∠2,可得出∠ACB=∠DCE,然后利用SAS证明△ABC≌△DEC,继而可得出AB=DE.本题考查了全等三角形的判定与性质,熟练掌握SAS证三角形全等是解题的关键.【详解】证明:∵∠1=∠2,∴∠1+∠ECA=∠2+∠ECA,即∠ACB=∠DCE,在△ABC和△DEC中,CA=CD∠ACB=∠DCE,BC=EC∴△ABC≌△DEC(SAS),∴AB=DE.52.证明见解析【分析】先利用A S A证明△AOB≌△COD,得出OB=OD,根据线段垂直平分线的判定可知点O在线段BD的垂直平分线上,再由BE=DE,得出点E在线段BD的垂直平分线上,即O,E两点都在线段BD的垂直平分线上,从而可证明OE垂直平分BD.【详解】在△AOB与△COD中,∠A=∠C,OA=OC,∠AOB=∠COD,∴△AOB≌△COD(ASA),∴OB=OD,∴点O在线段BD的垂直平分线上,∵BE=DE,∴点E在线段BD的垂直平分线上,∴OE垂直平分BD.【点睛】本题考查了线段垂直平分线的判定:到一条线段两端距离相等的点在这条线段的垂直平分线上,同时考查了全等三角形的判定与性质.53.见解析【分析】根据题意可以证得△ABC≅△DEF,所以BC=EF,即可得到结论.【详解】根据题意,在△ABC和△DEF中,AB=DE∠A=∠D,AC=DF∴△ABC≅△DEF,∴BC=EF,∴BC−CE=EF−CE,∴BE=CF.【点睛】本题考查了全等三角形的判定及性质,熟练掌握全等三角形的判定及性质是解题的关键.54.见解析【分析】本题考查了全等三角形的判定和性质,平行线的判定,熟练掌握全等三角形的判定和性质定理是解题的关键.根据全等三角形的判定和性质定理和平行线的判定定理即可得到结论.【详解】证明:∵AB=CD,∴AB+BC=CD+BC,即:AC=BD,。
【八年级数学几何培优竞赛专题】专题2 全等三角形判定方法的选择【含答案】
专题2 全等三角形判定方法的选择知识解读三角形全等判定方法的选择已知条件可供选择的判定方法一边和这边邻角对应相等选边:只能选角的另一边(SAS )选角:可选另外两对角中任意一对角(AAS ,ASA )一边及它的对角对应相等只能再选一角:可选另外两对角中任意一对角(AAS )两边对应相等选边;只能选剩下的一边(SSS )选角:只能选两边的夹角(SAS )两角对应相等只能选边:可选三条边的任意一对对应边(AAS .ASA )典例示范一、从变换的角度理解“全等”1.轴对称变换例1如图1-2-1,点D 在AB 上,点E 在AC 上,BE 和CD 相交于点O ,且AB =AC ,∠B =∠C ,求证:BD =CE .【提示】从结论“BD =CE ”来看,有两种思路,思路一:通过证明△BOD ≌△COE 得到对应边相等;思路二:通过证明“△ACD ≌△ABE ”得到AD =AE ,然后运用等式性质证得.从题设看,由“AB =AC ,∠B =∠C ”加上公共角∠A ,可得△ACD ≌△ABE ,所以我们考虑使用思路二给出证明过程.图1-2-1B【技巧点评】哪些情况下,可考虑利用全等的性质来证明线段相等和角相等呢?本题中,这个图形很显然是轴对称图形,而BD 和CE 也是轴对称的,这时候就可以考虑把BD 和CE 置于一对轴对称的三角形中,且BD 和CE 恰好是一对对应边.跟踪训练1.如图1-2-2,已知AB =DC ,AE =DF ,CE =F B .求证:AF =DE .图1-2-22.旋转变换例2如图1-2-3,AD 是△ABC 的中线,在AD 及其延长线上截取DE =DF ,连接CE ,BF ,试判断△BDF 与△CDE 全等吗?BF 与CE 有何位置关系?【提示】若△BDF 与△CDE 全等,需要寻找三个相等的要素,题中已知一对对顶角相等,由中线可得到BD =CD ,加上DE =DF ,即可根据“SAS ”得到两个三角形全等.图1-2-3B【技巧点评】本题是一个简单的全等证明题,本题意在说明图中△BDF 与△CDE 是中心对称的图形.,其中一个三角形可以看作另一个三角形绕点D 旋转180°得到.从中心对称的角度寻找相等的线段和相等的角,可以为证明全等提供方便.跟踪训练2.如图1-2-4,AB =AE ,∠1=∠2,∠B =∠E ,求证:BC =E D .图1-2-4二、线段和角度相等,常考虑证全等例3如图1-2-5,AC 交BD 于点O ,AC =BD ,AB =CD ,求证:∠C =∠B .【提示】要证明∠C =∠B ,可考虑将∠C 和∠B 置于一对三角形中,证明两个三角形全等,由于本题图中△AOB 和ACOD 全等不容易证明,可考虑连接AD ,证明△ACD 与△DBA 全等.图1-2-5跟踪训练3.已知,如图1-2-6,AD ⊥DB ,BC ⊥CA ,AC ,BD 相交于点O ,且AC =BD ,求证:AD =B C .图1-2-6B【技巧点评】由于全等三角形的对应角相等,对应边相等,因此证明两个三角形全等是证明两个角相等和两条线段相等常用的方法.利用全等三角形证明线段相等和角相等的思路:对应边(角)相等→两个三角形全等→线段相等或者角相等,可以看出全等三角形类似于一个桥梁,建立起角度相等与线段相等、线段相等与另两条相等的线段、角相等与另一对相等的角之间的联系.跟踪训练4.如图1-2-7,A ,D ,B 三点在同一条直线上,△ADC ,△BDO 均为等腰三角形,AO ,BC 的大小关系和位置关系分别如何?证明你的结论.图1-2-7三、借助“同角的余角相等”寻找相等的角例4如图1-2-8,在△ABC 中,BD ⊥AC 于D ,CE ⊥AB 于E ,F 是BD 上一点,BF =AC ,G 是CE 延长线一点,CG =AB ,连接AG ,AF .(1)求证:∠ABD =∠ACE ;(2)探求线段AF ,AG 有什么关系,并证明.【提示】(1)∠ABD ,∠ACE 都和∠BAC 互余,根据“同角的余角相等”可证明∠ABD =∠ACE ;(2)由已知条件“BF =AC ”“CG =AB ” “∠ABD =∠ACE ”可证明△ABF ≌△GCA ,AF ,AG 恰好是这对全等三角形的对应边,所以这两条线段的大小关系是相等.又由于∠G =∠BAF ,∠G +∠GAE =90°,因此∠GAF =90°,所以AF 和AG 的位置关系是垂直.图1-2-8B 【技巧点评】(1)当已知两条边相等,要证明两个三角形全等时,“同角的余角相等”是常用的证明夹角相等的手段.(2)要证明两直线垂直,证明夹角等于90°也是常用思路,当夹角是由两个角的和组成的时候,常考虑证明这两个角的和等于90°.跟踪训练5.如图1-2-9,在△ABC 中,∠ACB =90°,CD ⊥AB 于点D ,点E 在AC 上,CE =BC ,过E 点作AC 的垂线,交CD 的延长线于点F .求证:AB =F C .图1-2-9A四、从等腰、等边、正方形中获取全等所需的元素例5如图1-2-10,在Rt △ABC 中,∠ACB =90°,AC =BC ,D 为BC 的中点,CE ⊥AD ,垂足为E ,BF ∥AC 交CE 的延长线于点F .求证:DB =BF .【提示】要证明DB =BF ,由于D 为BC 的中点,所以CD =BD ,因此本题可转证CD =BF ,将这两条线段放置到三角形中,可证明△ACD ≌△CBF .图1-2-10A【技巧点评】本题证明△ACD ≌△CBF 需要的三个要素AC =BC ,∠CAD =∠BCF ,∠ACD =∠CBF 都和△ABC 是等腰直角三角形相关.当题目中出现等边三角形、等腰三角形、正方形、菱形等条件时,往往图形中隐含着一对全等三角形,这对全等三角形的一对对应边往往和等边三角形、等腰三角形、正方形、菱形的边长相等有关.跟踪训练6.如图1-2-11,在Rt △ABC 中,∠BAC =90°,AC =2AB ,点D 是AC 的中点,将一块锐角为45°的直角三角板如图放置,使三角板斜边的两个端点分别与A ,D 重合,连接BE ,E C .试猜想线段BE 和EC 的数量关系和位置关系,并证明你的猜想.图1-2-11B拓展延伸五、AAS 华丽变全等例6 如图1-2-12,在△ABC 中,∠DBC =∠ECB =∠A ,求证:BE =CD .21ABCD E F【提示】要证明BE =CD ,一般考虑证明两个三角形全等,而△DCF 和△EBF 显然不全等,本题有三种构造全等的方法,如图1-2-13①②③.图1-2-12GFE D CBAHFE D CBAFE D CBAH G 【技巧点评】本题△BEF 和△CDF 虽然不全等,但是∠BFE =∠CFD ,加之可证FB =FC 以及待证的BE =CD ,可见这两个三角形虽然不全等,但也有3对相等的要素.构造全等三角形可将小三角形补上一部分,或者将大三角形截去一部分.跟踪训练7.如图1-2-14,OC 平分∠AOB ,点D 、E 分别在OA 、OB 上,点P 在OC 上,且有PD =PE ,求证:∠PDO =∠PEB .(有三种解法)P OD C BA E竞赛链接图1-2-13图1-2-14②③①例7 (全国初中数学竞赛浙江赛区题)如图1-2-15,在四边形ABCD 中,∠A =∠BCD =90°,BC =CD ,E 是AD 延长线上一点,若DE =AB =3cm ,CE =4cm ,则AD 的长是.2【提示】如图1-2-16,连接CA ,构造△BAC ≌△DEC ,利用勾股定理求出AE 的长.EDCB AAB CDE【技巧点评】勾股定理——如果直角三角形的两直角边长分别为a 、b ,斜边长为c ,那么a 2+b 2=c 2.跟踪训练8.(希望杯竞赛题)如图1-2-17,在四边形ABCD 中,AB ∥CD ,AD ∥BC ,AC 与BD 相交于O ,AE ⊥BD 于E ,CF ⊥BD 于F ,那么图中的全等三角形共有()A .5对B .6对C .7对D .8对F OABCDE 培优训练1.如图1-2-18,AC ,BD 交于点E ,且∠1=∠2,∠3=∠4,求证:AC =BD .4321ABCED2.如图1-2-19,已知AD =AE ,AB =AC .求证:BF =FC .图1-2-17图1-2-15图1-2-16图1-2-18ABCDEF3.如图1-2-20,已知△ABD 、△AEC 都是等边三角形,AF ⊥CD 于F ,AH ⊥BE 于H ,问:(1)BE 与CD 有何数量关系?为什么?(2)AF 、AH 有何数量关系?O HFEDCBA 4.如图1-2-21,△ACD 和△BCE 都是等腰直角三角形,∠ACD =∠BCE =90°,AE 交DC 于点F ,BD分别交CE ,AE 于点G ,H 试猜测线段AE 和BD 的位置关系和数量关系,并说明理由.DBCFH AE G 5.将两个全等的直角三角形ABC 和DBE 按图1-2-22①方式摆放,其中∠ACB =∠DEB =90°,∠A =∠D =30°,点E 落在AB 上,DE 所在直线交AC 所在直线于点F .(1)求证:AF +EF =DE ;(2)若将图1-2-22①中的△DBE 绕点B 按顺时针方向旋转角,且0°<<60°,其他条件不变,请在αα图1-2-22②中画出变换后的图形,并直接写出(1)中的结论是否仍然成立.AC BABCE FD①图1-2-19图1-2-20图1-2-21②图1-2-226.如图1-2-23,AD 是△ABC 的高,作∠DCE =∠ACD ,交AD 的延长线于点E ,点F 是点C 关于直线AE 的对称点,连接AF .(1)求证:CE =AF(2)在线段AB 上取一点N ,使∠ENA =∠ACE ,EN 交BC 于点M ,连接AM 请你判断∠B 与∠MAF 21的数量关系,并说明理由.DBEAF CN M直击中考7.★★(2017江苏常州)如图1-2-24,在四边形ABCD 中,点E 在AD 上,∠BCE =∠ACD =90°,∠BAC =∠D ,BC =CE .(1)求证:AC =CD ;(2)若AC =AE ,求∠DEC 的度数.ECDBA 8.(凉山州中考题)如图1-2-25,△ABO 与△CDO 关于O 点中心对称,点E 、F 在线段AC 上,且AF =CE .求证:FD =BE .FBECDAO9.(内江中考题)如图1-2-26,△ABC 和△ECD 都是等腰直角三角形,∠ACB =∠DCE =90°,D 为AB 边上一点.求证:AE =BD .图1-2-23图1-2-24图1-2-25CDEBA10.(重庆中考题)如图1-2-27,在△ABC 中,∠ACB =90°,AC =BC ,E 为AC 边的中点,过点A 作AD ⊥AB 交BE 的延长线于点D .CG 平分∠ACB 交BD 于点G ,F 为AB 边上一点,连接CF ,且∠ACF =∠CBG .求证:(1)AF =CG ;(2)CF =2DE .GCDFEBA挑战竟赛11.(希望杯竞赛题)如图1-2-28,在△ABC 中,∠ACB =60°,∠BAC =75°,AD ⊥BC 于D ,BE ⊥AC 于E ,AD 与BE 交于H ,则∠CHD =.HBCE ADBGF E ADC12.(希望杯竞赛题)如图1-2-29,在△ABC 中,∠BAC =90°,AD ⊥BC 于D ,∠BCA 的平分线交AD 于F ,交AB 于E ,FG ∥BC 交AB 于G .AE =4,AB =14,则BG =.图1-2-26图1-2-27图1-2-28图1-2-29。
第十三章 全等三角形 5.专项二 全等三角形的常见模型强化练
专项二 全等三角形的常见模型强化练
4. 新定义型阅读理解题 阅读材料,回答下列问题.筝形的定义:两组邻边 分别相等的四边形叫做筝形,几何图形的定义通常可作为图形的性质也可以作 为图形的判定方法.也就是说,如图,若四边形 ABCD 是一个筝形,则 DA=DC ,BA=BC;若 DA=DC,BA=BC,则四边形 ABCD 是筝形.如图,四边形 ABCD 是 一个筝形,其中 DA=DC,BA=BC.对角线 AC,BD 相交于点 O,过点 O 作 OE⊥AB,OF⊥BC,垂足分别为 E,F,求证:四边形 BEOF 是筝形.
专项二 全等三角形的常见模型强化练
解:(1)证明:∵AB⊥DC,∴∠ABC=∠DBE=90°,在△ABC 和△DBE 中, AB=DB,∠ABC=∠DBE,BC=BE,∴△ABC≌△DBE(SAS),∴DE=AC;
(2)题图 2:由平移变换知 EF⊥BC,EF=BC,DF=AB. ∴∠ABC=∠DFE=90°.在△DFE 和△ABC 中,EF=CB,∠DFE=∠ABC,DF=AB, ∴△DFE≌△ABC(SAS),∴DE=AC.故在题图 2 中的结论仍然成立.题图3,4 中 可类似地推证出(1)的结论也成立.
专项二 全等三角形的常见模型强化练
解决图形变换问题需要抓住的三个特点:(1)变化前后的结论及说理过程对 变化前后的结论起到重要的作用;(2)在图形变化前后,明确哪些关系发生变化 ,哪些关系没有发生变化,变化前的等角、等线段在变化后是否还存在;(3)几 种变化图形之间,说理思路存在内在联系,变化后的说理思路可模仿与借鉴变化 前的结论与过程.变化后的结论有时发生变化,有时不发生变化.
ቤተ መጻሕፍቲ ባይዱ 专项二 全等三角形的常见模型强化练
解:(2)AF∥CD,理由如下:如图,作 AG⊥BF 于点 G,AH⊥CE 于点 H,由(1)知△ABD≌△ACE,∴ 易知 AG=AH.∵∠AGF=∠AHF=90°,AF=AF, 又易知∠HAF=∠AFD,∴△AGF≌△FHA;∴AG=HF,∴AH=HF,∴ 易知 ∠HFA=45°,∴∠AFD=45°,∵∠BDC=135°,∴∠FDC=45°,∴∠AFD=∠FDC, ∴AF∥CD.
专题02 全等三角形的性质与判定压轴题八种模型全攻略(解析版)
专题02全等三角形的性质与判定压轴题八种模型全攻略考点一全等三角形的概念考点二利用全等图形求正方形网格中角度之和考点三全等三角形的性质考点四用SSS证明三角形全等考点五用SAS证明三角形全等考点六用ASA证明三角形全等考点七用AAS证明三角形全等考点八用HL证明三角形全等考点一全等三角形的概念例题:(2021·福建·福州三牧中学八年级期中)有下面的说法:①全等三角形的形状相同;②全等三角形的对应边相等;③全等三角形的对应角相等;④全等三角形的周长、面积分别相等.其中正确的说法有() A.1个B.2个C.3个D.4个【答案】D【解析】【分析】先分别验证①②③④的正确性,并数出正确的个数,即可得到答案.【详解】①全等三角形的形状相同,根据图形全等的定义,正确;②全等三角形的对应边相等,根据全等三角形的性质,正确;③全等三角形的对应角相等,根据全等三角形的性质,正确;④全等三角形的周长、面积分别相等,正确;故四个命题都正确,故D为答案.【点睛】本题主要考查了全等的定义、全等三角形图形的性质,即全等三角形对应边相等、对应角相等、面积周长均相等.【变式训练】1.(2022·上海·七年级专题练习)如图,在△ABC和△A′B′C′中,已知AB=A′B′,∠A=∠A′,AC=A′C′,那么△ABC≌△A′B′C′.说理过程如下:把△ABC放到△A′B′C′上,使点A与点A′重合,由于=,所以可以使点B与点B′重合.又因为=,所以射线能落在射线上,这时因为=,所以点与重合.这样△ABC和△A′B′C′重合,即△ABC≌△A′B′C′.【答案】AB,A'B',∠A,∠A′,AC,A'C',AC=A'C',C,C'【解析】【分析】直接利用已知结合全等的定义得出答案.【详解】解:把△ABC放到△A′B′C′上,使点A与点A′重合,由于AB=A'B',所以可以使点B与点B′重合.又因为∠A=∠A′,所以射线AC能落在射线A'C'上,这时因为AC=A'C',所以点C与C'重合.这样△ABC和△A′B′C′重合,即△ABC≌△A′B′C′.故答案为:AB,A'B',∠A,∠A′,AC,A'C',AC=A'C',C,C'.【点睛】本题考查了全等三角形的判定,解答本题的关键是仔细读题,理解填空.考点二利用全等图形求正方形网格中角度之和例题:(2021·全国·八年级专题练习)如图为6个边长相等的正方形的组合图形,则∠1+∠3-∠2=()A.30°B.45°C.60°D.135°【答案】B【解析】【分析】首先利用SAS定理判定△ABC≌△DBE,根据全等三角形的性质可得∠3=∠ACB,再由∠ACB+∠1=∠1+∠3=90°,可得∠1+∠3-∠2.【详解】∵在△ABC 和△DBE 中AB BD A D AC ED ⎧⎪∠∠⎨⎪⎩===,∴△ABC ≌△DBE (SAS ),∴∠3=∠ACB ,∵∠ACB +∠1=90°,∴∠1+∠3=90°,∵∠2=45°∴∠1+∠3-∠2=90°-45°=45°,故选B .【点睛】此题主要考查了全等图形,关键是掌握全等三角形的判定,以及全等三角形对应角相等.【变式训练】1.(2022·山东·济南市槐荫区教育教学研究中心二模)如图,在44⨯的正方形网格中,求αβ+=______度.【答案】45【解析】【分析】连接AB ,根据正方形网格的特征即可求解.【详解】解:如图所示,连接AB∵图中是44⨯的正方形网格∴AD CE =,ADB AEC ∠=∠,DB AE =∴()ADB CEA SAS △≌△∴EAC ABD α∠=∠=,AB AC =∵90ABD BAD ∠+∠=︒∴90EAC BAD ∠+∠=︒,即90CAB ∠=︒∴45ACB ABC ∠=∠=︒∵BD CE ∥∴BCE DBC β==∠∠∵ABC ABD DBC αβ=+=+∠∠∠∴45αβ+=︒故答案为:45.【点睛】本题考查了正方形网格中求角的度数,利用了平行线的性质、同角的余角相等、等腰直角三角形的性质等知识点,解题的关键是能够掌握正方形网格的特征.2.(2020·江苏省灌云高级中学城西分校八年级阶段练习)如图,由4个相同的小正方形组成的格点图中,∠1+∠2+∠3=________度.【答案】135【解析】【分析】首先利用全等三角形的判定和性质求出13∠+∠的值,即可得出答案;【详解】 如图所示,在△ACB 和△DCE 中,AB DE A D AC DC ⎧=⎪∠=∠⎨⎪=⎩,∴()△△ACB DCE SAS ≅,∴3ABE ∠=∠,∴()12313459045135∠+∠+∠=∠+∠+︒=︒+︒=︒;故答案是:135︒.【点睛】本题主要考查了全等图形的应用,准确分析计算是解题的关键.考点三 全等三角形的性质例题:(2021·重庆大足·八年级期末)如图,ABC 和DEF 全等,且A D ∠=∠,AC 对应DE .若6AC =,5BC =,4AB =,则DF 的长为( )A .4B .5C .6D .无法确定【答案】A【解析】【分析】 全等三角形对应边相等,对应角相等,根据题中信息得出对应关系即可.【详解】∵ABC 和DEF 全等,A D ∠=∠,AC 对应DE∴ABC DFE ≅∴AB =DF =4故选:A .【点睛】本题考查了全等三角形的概念及性质,应注意①对应边、对应角是对两个三角形而言的,指两条边、两个角的关系,而对边、对角是指同一个三角形的边和角的位置关系②可以进一步推广到全等三角形对应边上的高相等,对应角的平分线相等,对应边上的中线相等,周长及面积相等③全等三角形有传递性.【变式训练】1.(2022·云南昆明·三模)如图,ABC DEF △≌△,若80,30A F ∠=︒∠=︒,则B 的度数是( )A .80°B .70°C .65°D .60°【答案】B【解析】【分析】 由ABC DEF △≌△根据全等三角形的性质可得30C F ∠=∠=︒,再利用三角形内角和进行求解即可.【详解】ABC DEF ≌,C F ∠=∠∴,30F ∠=︒,30C ∴∠=︒,80,180A A B C ∠=︒∠+∠+∠=︒,18070B A C ∴∠=︒-∠-∠=︒,故选:B .【点睛】本题考查了全等三角形的性质及三角形的内角和定理,熟练掌握知识点是解题的关键.2.(2022·上海·七年级专题练习)如图所示,D ,A ,E 在同一条直线上,BD ⊥DE 于D ,CE ⊥DE 于E ,且△ABD ≌△CAE ,AD =2cm ,BD =4cm ,求(1)DE 的长;(2)∠BAC 的度数.【答案】(1)6cm DE =;(2)90BAC ︒∠=【解析】【分析】(1)根据全等三角形的性质即可得到结论;(2)根据垂直的定义得到∠D =90°,求得∠DBA +∠BAD =90°,根据全等三角形的性质得到∠DBA =∠CAE 等量代换即可得到结论.(1)解:∵△ABD ≌△CAE ,AD =2cm ,BD =4cm ,∴AE =BD =4cm ,∴DE =AD +AE =6cm .(2)∵BD ⊥DE ,∴∠D =90°,∴∠DBA +∠BAD =90°,∵△ABD ≌△CAE ,∴∠DBA =∠CAE∴∠BAD +∠CAE =90°,∴∠BAC =90°.【点睛】本题主要考查了全等三角形的性质,垂直的定义,熟练掌握全等三角形的性质是解题的关键.考点四 用SSS 证明三角形全等例题:(2022·河北·平泉市教育局教研室二模)如图,BD BC =,点E 在BC 上,且BE AC =,DE AB =.(1)求证:ABC EDB ≌;(2)判断AC 和BD 的位置关系,并说明理由.【答案】(1)见解析(2)AC BD ,理由见解析【解析】【分析】(1)运用SSS 证明即可;(2)由(1)得DBE BCA ∠=∠,根据内错角相等,两直线平行可得结论.(1)在ABC ∆和EDB ∆中,BD BC BE AC DE AB =⎧⎪=⎨⎪=⎩,∴ABC EDB ∆≅∆(SSS );(2)AC 和BD 的位置关系是AC BD ,理由如下:∵ABC EDB ∆≅∆∴DBE BCA ∠=∠,∴AC BD .【点睛】本题主要考查了全等三角形的判定与性质,熟练掌握全等三角形的判定定理是解答本题的关键.【变式训练】1.(2021·河南省实验中学七年级期中)如图,在线段BC 上有两点E ,F ,在线段CB 的异侧有两点A ,D ,且满足AB CD =,AE DF =,CE BF =,连接AF;(1)B 与C ∠相等吗?请说明理由.(2)若40B ∠=︒,20∠=DFC °,AF 平分BAE ∠时,求BAF ∠的度数.【答案】(1)B C ∠=∠,理由见解析(2)60︒【解析】【分析】(1)由“SSS ”可证△AEB ≌△DFC ,可得结论;(2)由全等三角形的性质可得∠AEB =∠DFC =20°,可求∠EAB =120°,由角平分线的性质可求解.(1)解:B C ∠=∠,理由如下:∵CE BF =∴BE CF =在AEB △和DFC △中AB CD AE DF BE CF =⎧⎪=⎨⎪=⎩∴()SSS AEB DFC ≌△△∴B C ∠=∠(2)解:∵AEB DFC ≌∴20AEB DFC ∠=∠=︒∴180120EAB B AEB ∠=︒-∠-∠=︒∵AF 平分BAE ∠ ∴1602BAF BAE ∠=∠=︒ 【点睛】本题考查了全等三角形的判定和性质,掌握全等三角形的判定是本题的关键.2.(2022·山东济宁·八年级期末)如图,在四边形ABCD 中,CB AB ⊥于点B ,CD AD ⊥于点D ,点E ,F 分别在AB ,AD 上,AE AF =,CE CF =.(1)若8AE =,6CD =,求四边形AECF 的面积;(2)猜想∠DAB ,∠ECF ,∠DFC 三者之间的数量关系,并证明你的猜想.【答案】(1)48(2)∠DAB +∠ECF =2∠DFC ,证明见解析【解析】【分析】(1)连接AC ,证明△ACE ≌△ACF ,则S △ACE =S △ACF ,根据三角形面积公式求得S △ACF 与S △ACE ,根据S 四边形AECF =S △ACF +S △ACE 求解即可;(2)由△ACE ≌△ACF 可得∠FCA =∠ECA ,∠F AC =∠EAC ,∠AFC =∠AEC ,根据垂直关系,以及三角形的外角性质可得∠DFC +∠BEC =∠FCA +∠F AC +∠ECA +∠EAC =∠DAB +∠ECF .可得∠DAB +∠ECF =2∠DFC(1)解:连接AC ,如图,在△ACE 和△ACF 中AE AF CE CF AC AC =⎧⎪=⎨⎪=⎩∴△ACE ≌△ACF (SSS ).∴S △ACE =S △ACF ,∠F AC =∠EAC .∵CB ⊥AB ,CD ⊥AD ,∴CD =CB =6.∴S △ACF =S △ACE =12AE ·CB =12×8×6=24.∴S 四边形AECF =S △ACF +S △ACE =24+24=48.(2)∠DAB +∠ECF =2∠DFC证明:∵△ACE ≌△ACF ,∴∠FCA =∠ECA ,∠F AC =∠EAC ,∠AFC =∠AEC .∵∠DFC 与∠AFC 互补,∠BEC 与∠AEC 互补,∴∠DFC =∠BEC .∵∠DFC =∠FCA +∠F AC ,∠BEC =∠ECA +∠EAC ,∴∠DFC +∠BEC =∠FCA +∠F AC +∠ECA +∠EAC=∠DAB +∠ECF .∴∠DAB +∠ECF =2∠DFC【点睛】本题考查了三角形全等的性质与判定,三角形的外角的性质,掌握三角形全等的性质与判定是解题的关键.考点五 用SAS 证明三角形全等例题:(2022·福建省福州第十九中学模拟预测)如图,点O 是线段AB 的中点,∥OD BC 且OD BC =.求证:AOD OBC ≌.【答案】见解析【解析】【分析】根据线段中点的定义得到AO BO =,根据平行线的性质得到AOD OBC ∠=∠,根据全等三角形的判定定理即可得到结论.【详解】证明:∵点O 是线段AB 的中点,∴AO BO =,∵∥OD BC ,∴AOD OBC ∠=∠,在△AOD 与△OBC 中,AO BO AOD OBC OD BC =⎧⎪∠=∠⎨⎪=⎩,∴()AOD OBC SAS ≌.【点睛】本题考查了全等三角形的判定,平行线的性质,熟练掌握全等三角形的判定是解题的关键.【变式训练】1.(2022·云南普洱·二模)如图,ABC 和EFD 分别在线段AE 的两侧,点C ,D 在线段AE 上,AC DE =,//AB EF ,.AB EF =求证:BC FD =.【答案】见解析【解析】【分析】利用//AB EF ,得到A E ∠=∠,再用AC DE =,AB EF =,得到ABC ≌EFD △(SAS ),然后用三角形全等的性质得到结论即可.【详解】证明://AB EF ,A E ∴∠=∠,在ABC 和EFD △中AC DE A E AB EF =⎧⎪∠=∠⎨⎪=⎩,ABC ∴≌EFD △(SAS ),BC FD ∴=.【点睛】本题考查三角形全等的判定,平行线的性质,找到三角形全等的条件是解答本题的关键.2.(2022·四川省南充市白塔中学八年级阶段练习)如图,点B 、C 、E 、F 共线,AB =DC ,∠B =∠C ,BF =CE . 求证:△ABE ≌△DCF.【答案】证明见解析;【解析】【分析】根据两边和它们的夹角对应相等的两个三角形全等(简写成“边角边”或“SAS”);即可证明;【详解】证明:∵点B、C、E、F共线,BF=CE,∴BF+EF=CE+EF,∴BE=CF,△ABE和△DCF中:BA=CD,∠ABE=∠DCF,BE=CF,∴△ABE≌△DCF(SAS);【点睛】本题考查了全等三角形的判定;掌握(SAS)的判定条件是解题关键.考点六用ASA证明三角形全等例题:(2022·上海·七年级专题练习)已知:如图,AB⊥BD,ED⊥BD,C是BD上的一点,AC⊥CE,AB =CD,求证:BC=DE.【答案】见解析【解析】【分析】根据直角三角形全等的判定方法,ASA即可判定三角形全等.【详解】证明:∵AB⊥BD,ED⊥BD,AC⊥CE(已知)∴∠ACE=∠B=∠D=90°(垂直的意义)∵∠BCA+∠DCE+∠ACE=180°(平角的意义)∠ACE=90°(已证)∴∠BCA +∠DCE =90°(等式性质)∵∠BCA +∠A +∠B =180°(三角形内角和等于180°)∠B =90°(已证)∴∠BCA +∠A =90°(等式性质)∴∠DCE =∠A (同角的余角相等)在△ABC 和△CDE 中,A DCE AB CD B D ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABC ≌△CDE (ASA )∴BC =DE (全等三角形对应边相等)【点睛】本题考查了全等三角形的判定和性质;熟练掌握三角形全等的判定定理是解题的关键.【变式训练】1.(2022·广西百色·二模)如图,在△ABC 和△DCB 中,∠A =∠D ,AC 和DB 相交于点O ,OA =OD .(1)AB =DC ;(2)△ABC ≌△DCB .【答案】(1)证明见解析;(2)证明见解析【解析】【分析】(1)证明△ABO ≌△DCO (ASA ),即可得到结论;(2)由△ABO ≌△DCO ,得到OB =OC ,又OA =OD ,得到BD =AC ,又由∠A =∠D ,即可证得结论.(1)证明:在△ABO 与△DCO 中,A D OA ODAOB DOC ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABO ≌△DCO (ASA )∴AB =DC ;(2)证明:∵△ABO ≌△DCO ,∴OB =OC ,∵OA =OD ,∴OB +OD =OC +OA ,∴BD =AC ,在△ABC 与△DCB 中,AC BD A D AB DC =⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△DCB (SAS ).【点睛】此题考查了全等三角形的判定和性质,熟练掌握并灵活选择全等三角形的判定方法是解题的关键. 2.(2022·贵州遵义·八年级期末)如图,已知AB DE ∥,ACB D ∠=∠,AC DE =.(1)求证:ABC EAD ≅.(2)若60BCE ∠=︒,求BAD ∠的度数.【答案】(1)见解析(2)60︒【解析】【分析】(1)利用平行线的性质得CAB E ∠=∠,利用“角边角”即可证明ABC EAD ≅;(2)由邻补角的定义求出180120ACB BCE ∠=︒-∠=︒,进而得到120D ∠=︒,再利用两直线平行同旁内角互补求出BAD ∠.由两直线平行得(1)证明:AB DE ,CAB E ∴∠=∠,在ABC 和EAD中,CAB E AC DEACB D ∠=∠⎧⎪=⎨⎪∠=∠⎩, ABC EAD ∴≅.(2)解:60BCE ∠=︒,180ACB BCE ∠+∠=︒,180120ACB BCE ∴∠=︒-∠=︒,120D ACB ∴∠=∠=︒,AB DE ,180∴∠+∠=︒D BAD ,180********BAD D ∴∠=︒-∠=︒-︒=︒.【点睛】本题考查平行线的性质、邻补角的定义、全等三角形的判定等知识,熟练掌握平行线的性质是解题的关键.平行线的性质:两直线平行,内错角相等;两直线平行,同位角相等;两直线平行,同旁内角互补.考点七 用AAS 证明三角形全等例题:(2022·上海·七年级专题练习)如图,已知BE 与CD 相交于点O ,且BO =CO ,∠ADC =∠AEB ,那么△BDO 与△CEO 全等吗?为什么?【答案】△BDO ≌△CEO (AAS );原因见解析【解析】【分析】根据AAS 证明△BDO 与△CEO 全等即可.【详解】解:△BDO 与△CEO 全等;∵∠BDO =180°﹣∠ADC ,∠CEO =180°﹣∠AEB ,又∵∠ADC =∠AEB ,∴∠BDO =∠CEO,∵在△BDO 与△CEO 中,BDO CEO BOD COE BO CO ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BDO ≌△CEO (AAS ).【点睛】本题主要考查了全等三角形的判定,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.【变式训练】1.(2022·福建省福州第一中学模拟预测)如图,已知A ,F ,E ,C 在同一直线上,AB ∥CD ,∠ABE =∠CDF ,AF =CE .求证:AB =CD .【答案】见详解【解析】【分析】根据全等三角形证明△ABE ≌△CDF ,再根据全等三角形的性质解答即可.【详解】证明:∵AB ∥CD ,∴∠ACD =∠CAB ,∵AF=CE ,∴AF+EF=CE+EF ,即AE =FC ,在△ABE 和△CDF 中,ACD CAB ABE CDF AE CF ∠∠⎧⎪∠∠⎨⎪⎩=== ∴△ABE ≌△CDF (AAS ).∴AB =CD .【点睛】此题主要考查了三角形全等的判定及性质,一般证明线段相等先大致判断两个线段所在三角形是否全等,然后再看证明全等的条件有哪些.2.(2022·全国·九年级专题练习)如图,D 是△ABC 的边AB 上一点,CF //AB ,DF 交AC 于E 点,DE=EF .(1)求证:△ADE ≌△CFE ;(2)若AB =5,CF =4,求BD 的长.【答案】(1)证明见解析(2)BD =1【解析】【分析】(1)利用角角边定理判定即可;(2)利用全等三角形对应边相等可得AD 的长,用AB ﹣AD 即可得出结论.(1)证明:∵CF ∥AB ,∴∠ADF =∠F ,∠A =∠ECF .在△ADE 和△CFE 中,A ECF ADE F DE FE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADE ≌△CFE (AAS ).(2)∵△ADE ≌△CFE ,∴AD =CF =4.∴BD =AB ﹣AD =5﹣4=1.【点睛】此题考查了全等三角形的判定及性质,熟记全等三角形的判定定理是解题的关键.考点八 用HL 证明三角形全等例题:(2022·四川省南充市白塔中学八年级阶段练习)如图,AB =CD ,AE ⊥BC 于E ,DF ⊥BC 于F ,且BF =CE.(1)求证AE=DF;(2)判定AB和CD的位置关系,并说明理由.【答案】(1)见解析∥,理由见解析(2)AB CD【解析】【分析】(1)只需要利用HL证明Rt△ABE≌Rt△DCF即可证明结论;∥.(2)根据Rt△ABE≌Rt△DCF即可得到∠B=∠C,即可证明AB CD(1)解:∵BF=CE,∴BF-EF=CE-EF,即BE=CF,∵AE⊥BC,DF⊥BC,∴∠AEB=∠DFC=90°,又∵AB=DC,∴Rt△ABE≌Rt△DCF(HL),∴AE=DF;(2)∥,理由如下:解:AB CD∵Rt△ABE≌Rt△DCF,∴∠B=∠C,∥.∴AB CD【点睛】本题主要考查了全等三角形的性质与判定,平行线的判定,熟知全等三角形的性质与判定条件是解题的关键.【变式训练】1.(2022·安徽安庆·八年级期末)如图,AD,BC相交于点O,AD=BC,∠C=∠D=90°.(1)求证:△ACB ≌△BDA ;(2)若∠CAB =54°,求∠CAO 的度数.【答案】(1)见解析(2)18°【解析】【分析】(1)根据HL 证明Rt △ABC ≌Rt △BAD ;(2)先求出∠ABC 的度数,即可利用全等三角形的性质求出∠BAD 的度数,由此即可得到答案.(1)证明:∵∠D =∠C =90°,∴△ABC 和△BAD 都是直角三角形,在Rt △ABC 和Rt △BAD 中,BC AD AB BA ⎧⎨⎩==, ∴Rt △ABC ≌Rt △BAD (HL );(2)解:在Rt △ABC 中,∠CAB =54°,∠ACB =90°,∴∠ABC =36°,∵Rt △ABC ≌Rt △BAD ,∴∠ABC =∠BAD =36°,∴∠CAO =∠CAB -∠BAD =54°-36°=18°.【点睛】本题主要考查了全等三角形的性质与判定,直角三角形两锐角互余,熟练掌握全等三角形的性质与判定条件是解题的关键.2.(2022·江西·永丰县恩江中学八年级阶段练习)如图,在△ABC 中,BC =AB ,∠ABC =90°,F 为AB 延长线上一点,点E 在BC 上,且AE =CF .(1)求证:Rt △ABE ≌Rt △CBF ;(2)若∠CAB =30°,求∠ACF 的度数.【答案】(1)证明见解析(2)60︒【解析】【分析】(1)由“HL ”可证Rt △ABE ≌Rt △CBF ;(2)由AB =CB ,∠ABC =90°,即可求得∠CAB 与∠ACB 的度数,即可得∠BAE 的度数,又由Rt △ABE ≌Rt △CBF ,即可求得∠BCF 的度数,则由∠ACF =∠BCF +∠ACB 即可求得答案.(1)∵∠ABC =90°,∴∠CBF =∠ABE =90°,在Rt △ABE 和Rt △CBF 中,AE CF AB BC=⎧⎨=⎩ ∴Rt △ABE ≌Rt △CBF (HL );(2)∵AB =BC ,∠ABC =90°,∴∠CAB =∠ACB =45°,∴∠BAE =∠CAB -∠CAE =45°-30°=15°。
专题02 全等三角形(课件)-上学期期末考试八年级数学备考黄金讲练
1 2
AC
CA
4 3
∴△ABC≌△CDA (ASA)
∴AB=CD.
例4 如图,△ABD≌△CBD,若∠A=80°,∠ABC=70°,则 ∠ADC的度数为 130° .
解:∵△ABD≌△CBD, ∴∠C=∠A=80°, ∴∠ADC=360°﹣∠A﹣∠ABC﹣∠C =360°﹣80°﹣70°﹣80° =130°.
A.AC∥DF B.∠A=∠D
C.AC=DF D.∠ACB=∠F
3.如图,在△ABC和△BDE中,点C在边BD上,边AC交边BE于点F.若
AC=BD,AB=ED,BC=BE,则∠ACB等于( C )
A.∠EDB
B.∠BED
C.∠AFB
D.2∠ABF
4.如图,四边形ABCD中,AC垂直平分BD,垂足为E,下列结论不一定
AD AD
∴△ABD≌△ACD(SAS).
例6 如图,点B、C、E、F在同一直线上,BC=EF,AC⊥BC于点C, DF⊥EF于点F,AC=DF. 求证:(1)△ABC≌△DEF;(2)AB∥DE.
证明:(1)∵AC⊥BC于点C,DF⊥EF于点F,∴∠ACB=∠DFE=90°,
BC EF
在△ABC和△DEF中 ACB DEF
∴△ACD≌△ECD(SAS),∴DA=DE.
3. 如图,已知:△ABC中,AB=AC,M是BC的中点,D、E分别是AB、 AC边上的点,且BD=CE.求证:MD=ME.
证明:△ABC中, ∵AB=AC,∴∠DBM=∠ECM, ∵M是BC的中点,∴BM=CM,
DB EC
在△BDM和△CEM中 DBM ECM
2.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,AD平分∠CAB. (1)求∠CAD的度数; (2)延长AC至E,使CE=AC,求证:DA=DE.
第12章全等三角形——证明题专题练习(二)人教版八年级数学上册
第12章全等三角形——证明题专题练习(二)1.如图,已知l1∥l2,射线MN分别和直线l1,l2交于A、B,射线ME分别和直线l1,l2交于C、D,点P在A、B间运动(P与A、B两点不重合),设∠PDB=α,∠PCA=β,∠CPD=γ.(1)试探索α,β,γ之间有何数量关系?说明理由.(2)如果BD=3,AB=9,AC=6,并且AC垂直于MN,那么点P运动到什么位置时,△ACP≌△BPD说明理由.(3)在(2)的条件下,当△ACP≌△BPD时,PC与PD之间有何位置关系,说明理由.2.如图,CD是经过∠BCA顶点C的一条直线,CA=CB,E、F分别是直线CD上两点,且∠BEC=∠CFA=α.(1)若直线CD经过∠BCA的内部,且E、F在射线CD上.①如图1,若∠BCA=90°,α=90°,则BE CF;②如图2,若0°<∠BCA<180°,请添加一个关于α与∠BCA关系的条件,使①中的结论仍然成立,并说明理由;(2)如图3,若线CD经过∠BCA的外部,α=∠BCA,请提出关于EF,BE,AF三条线段数量关系的合理猜想,并简述理由.3.如图,△ABC中,D为AB的中点,AD=5厘米,∠B=∠C,BC=8厘米.(1)若点P在线段BC上以3厘米/秒的速度从点B向终点C运动,同时点Q在线段CA 上从点C向终点A运动,①若点Q的速度与点P的速度相等,经1秒钟后,请说明△BPD≌△CQP;②点Q的速度与点P的速度不相等,当点Q的速度为多少时,能够使△BPD≌△CPQ;(2)若点P以3厘米/秒的速度从点B向点C运动,同时点Q以5厘米/秒的速度从点C 向点A运动,它们都依次沿△ABC三边运动,则经过多长时间,点Q第一次在△ABC的哪条边上追上点P?4.阅读并理解下面的证明过程,并在每步后的括号内填写该步推理的依据.已知:如图,AM,BN,CP是△ABC的三条角平分线.求证:AM、BN、CP交于一点.证明:如图,设AM,BN交于点O,过点O分别作OD⊥BC,OE⊥AC,OF⊥AB,垂足分别为点D,E,F.∵O是∠BAC角平分线AM上的一点(),∴OE=OF().同理,OD=OF.∴OD=OE().∵CP是∠ACB的平分线(),∴O在CP上().因此,AM,BN,CP交于一点.5.(1)如图①,已知:△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥m于D,CE⊥m于E,求证:DE=BD+CE;(2)拓展:如图②,将(1)中的条件改为:△ABC中,AB=AC,D、A、E三点都在直线m上,并且∠BDA=∠AEC=∠BAC=α,α为任意锐角或钝角,请问结论DE=BD+CE是否成立?如成立,请证明;若不成立,请说明理由;(3)应用:如图③,在△ABC中,∠BAC是钝角,AB=AC,∠BAD>∠CAE,∠BDA=∠AEC =∠BAC,直线m与BC的延长线交于点F,若BC=2CF,△ABC的面积是12,求△ABD与△CEF的面积之和.6.已知:如图,等腰直角三角形ABC中,∠ACB=90°,直线l经过点C,AD⊥l,BE⊥l,垂足分别为D,E.求证:△ACD≌△CBE.(以上两个不同的图形所得的结论相同.请你任选其中一个图形加以证明)7.如果将四根木条首尾相连,在相连处用螺钉连接,就能构成一个平面图形.(1)若固定三根木条AB,BC,AD不动,AB=AD=2cm,BC=5cm,如图,量得第四根木条CD=5cm,判断此时∠B与∠D是否相等,并说明理由.(2)若固定二根木条AB、BC不动,AB=2cm,BC=5cm,量得木条CD=5cm,∠B=90°,写出木条AD的长度可能取得的一个值(直接写出一个即可)(3)若固定一根木条AB不动,AB=2cm,量得木条CD=5cm,如果木条AD,BC的长度不变,当点D移到BA的延长线上时,点C也在BA的延长线上;当点C移到AB的延长线上时,点A、C、D能构成周长为30cm的三角形,求出木条AD,BC的长度.8.在Rt△ABC中,BC=AC,∠ACB=90°,点D为射线AB上一点,连接CD,过点C作线段CD的垂线l,在直线l上,分别在点C的两侧截取与线段CD相等的线段CE和CF,连接AE、BF.(1)当点D在线段AB上时(点D不与点A、B重合),如图1①请你将图形补充完整;②线段BF、AD所在直线的位置关系为,线段BF、AD的数量关系为;(2)当点D在线段AB的延长线上时,如图2①请你将图形补充完整;②在(1)中②问的结论是否仍然成立?如果成立请进行证明,如果不成立,请说明理由.9.已知:点O到△ABC的两边AB,AC所在直线的距离相等,且OB=OC.(1)如图1,若点O在边BC上,求证:AB=AC;(2)如图2,若点O在△ABC的内部,求证:AB=AC;(3)若点O在△ABC的外部,AB=AC成立吗?请画出图表示.10.如图,完成下列推理过程:如图所示,点E在△ABC外部,点D在BC边上,DE交AC于F,若∠1=∠3,∠E=∠C,AE=AC,求证:△ABC≌△ADE.证明:∵∠E=∠C(已知),∠AFE=∠DFC(),∴∠2=∠3(),又∵∠1=∠3(),∴∠1=∠2(等量代换),∴+∠DAC=+∠DAC(),即∠BAC=∠DAE,在△ABC和△ADE中∵∴△ABC≌△ADE().11.已知△ABC中,AB=AC,BE平分∠ABC交边AC于E.(1)如图(1),当∠BAC=108°时,证明:BC=AB+CE;(2)如图(2),当∠BAC=100°时,(1)中的结论还成立吗?若不成立,是否有其他两条线段之和等于BC,若有请写出结论并完成证明.12.感知:如图①,点B、A、C在同一条直线上,DB⊥BC,EC⊥BC,且∠DAE=90°,AD=AE,易证△DBA≌△ACE.探究:如图②,在△DBA和△ACE中,AD=AE,若∠DAE=α(0°<α<90°),∠BAC =2α,∠B=∠C=180°﹣α,求证:△DBA≌△ACE.应用:如图②,在△DBA和△ACE中,AD=AE,若∠DAE=70°,∠BAC=140°,∠B=∠C=110°,则当∠D=°时,∠DAC的度数是∠E的3倍.13.两块等腰直角三角尺AOB与COD(不全等)如图(1)放置,则有结论:①AC=BD②AC ⊥BD若把三角尺COD绕着点O逆时针旋转一定的角度后,如图(2)所示,判断结论:①AC=BD②AC⊥BD是否都还成立?若成立请给出证明,若不成立请说明理由.14.如图①,在△ABC中,∠ACB=2∠B,AD为∠BAC的角平分线,求证:AB=AC+CD 小明同学经过思考,得到如下解题思路:在AB上截取AE=AC,连接DE,得到△ADE≌△ADC,从而易证AB=AC+CD(1)请你根据以上解思路写出证明过程;(2)如图②,若AD为△ABC的外角∠CAE平分线,交BC的延长线于点D,∠D=25°,其他条件不变,求∠B的度数.15.阅读探索题:(1)如图1,OP是∠MON的平分线,以O为圆心任意长为半径作弧,分别交射线ON、OM 于C、B两点,在射线OP上任取一点A(点O除外),连接AB、AC.求证:△AOB≌△AOC.(2)请你参考以上方法,解答下列问题:如图2,在 Rt△ABC中,∠ACB=90°,∠A=60°,CD平分∠ACB,试判断BC和AC、AD 之间的数量关系并证明.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2010-2011道外区七年级下期末 已知点C是∠MAN平分线上一点,∠BCD的两 边CB、CD分别与射线AM、AN相交于B、D两 点,且∠BCD+∠MAN=180°,过点C作 CE⊥AB,垂足为E. (3)在(2)的条件下, 若∠MAN=60°,连接BD, 作∠ABD的平分线BF交AD 于点F,交AC于点O, 连接 DO并延长交AB于 点G.BG=2,DF=5, 求线段BD的长.
练习1、如图,AB∥DC, ∠BAC和∠ADC的平分线交于BC 上一点E. (1)求证:AD=AB+CD. (2)求证:BE=CE.
这两个结论是否还成立?
练习2、如图,在Rt△ABC中, AB=AC,∠BAC=90°,BD为△ABC 的角平分线,CE垂直于BD的延长 线于E.求证:BD=2CE.
(2)当∠C≠90°时 AB=10,FD=3. 求△ABF的面积.
练习3、如图,在△ABC中, ∠B=60°△ABC的角平分线AD和 CE相交于点O.求证:AE+CD=AC.
例2、如图,△ABC的角平分线BM 和CN相交于点P. 求证:AP平分∠BAC.
练习1、如图,OD平分∠AOB,DC 垂直于OA于C,∠A+∠B=180°. 求证:AO+BO=2CO.
例1、在△ABC中,AB>AC.
(1)当AP是∠BAC角平分线时, AP交BC于点P,如图1所示。 求证:AB-AC>BP-CP.
例1、在△ABC中,AB>AC.
(2)当AP是∠BAC外角平分线时, 连接PB和PC,如图2所示。 猜想AB+AC与BP+CP的大小关系, 并证明你的猜想。
练习1、如图,∠B=∠C=90°, ∠BAC和∠ADC的平分线交于BC 上一点E. (1)求证:AD=AB+CD. 012香坊区七年级下期末 已知在△ABC中,∠C=3∠B,AF 平分∠BAC交BC于点F,BD垂直于 AF,交AF的延长线于点D.
(1)当∠C=90°时 求证:BD=AC.
2011-2012香坊区七年级下期末 已知在△ABC中,∠C=3∠B,AF 平分∠BAC交BC于点F,BD垂直于 AF,交AF的延长线于点D.
2010-2011道外区七年级下期末 已知点C是∠MAN平分线上一点,∠BCD 的两边CB、CD分别与射线AM、AN相交于 B、D两点,且∠BCD+∠MAN=180°,过 点C作CE⊥AB,垂足为E. (1)当点E在线段AB上时, 求证:AB-AD=2BE.
2010-2011道外区七年级下期末 已知点C是∠MAN平分线上一点,∠BCD 的两边CB、CD分别与射线AM、AN相交于 B、D两点,且∠BCD+∠MAN=180°,过 点C作CE⊥AB,垂足为E. (2)当点E在线段AB的 延长线上时,请直接写 出线段AB、AD与BE 之间的数量关系: .