图论及应用

合集下载

图论及其应用

图论及其应用

图论及其应用简介图论是计算机科学中的一个重要分支,研究的对象是由边与顶点组成的图形结构以及与其相关的问题和算法。

图论的应用广泛,涵盖了计算机科学、网络科学、物理学、社会学、生物学等多个领域。

本文将介绍图论的基本概念、常用算法以及一些实际的应用案例。

图的基本概念图由顶点(Vertex)和边(Edge)组成,记作G=(V, E),其中V为顶点的集合,E为边的集合。

图可以分为有向图和无向图两种类型。

有向图有向图中的边具有方向性,即从一个顶点到另一个顶点的边有明确的起点和终点。

有向图可以表示一种有序的关系,比如A到B有一条边,但B到A可能没有边。

有向图的表示可以用邻接矩阵或邻接表来表示。

无向图无向图中的边没有方向性,任意两个顶点之间都有相互连接的边。

无向图可以表示一种无序的关系,比如A与B有一条边,那么B与A之间也有一条边。

无向图的表示通常使用邻接矩阵或邻接表。

常用图论算法图论中有许多经典的算法,其中一些常用的算法包括:深度优先搜索(DFS)深度优先搜索是一种用于遍历或搜索图的算法。

通过从起始顶点开始,沿着一条路径尽可能深入图中的顶点,直到无法再继续前进时,返回上一个顶点并尝试下一条路径的方式。

DFS可以用于判断图是否连通,寻找路径以及检测环等。

广度优先搜索(BFS)广度优先搜索也是一种用于遍历或搜索图的算法。

不同于深度优先搜索,广度优先搜索逐层遍历顶点,先访问离起始顶点最近的顶点,然后依次访问与起始顶点距离为2的顶点,以此类推。

BFS可以用于寻找最短路径、搜索最近的节点等。

最短路径算法最短路径算法用于计算图中两个顶点之间的最短路径。

其中最著名的算法是迪杰斯特拉算法(Dijkstra’s A lgorithm)和弗洛伊德算法(Floyd’s Algorithm)。

迪杰斯特拉算法适用于没有负权边的图,而弗洛伊德算法可以处理带有负权边的图。

最小生成树算法最小生成树算法用于找到一个连通图的最小的生成树。

其中最常用的算法是普里姆算法(Prim’s Algorithm)和克鲁斯卡尔算法(Kruskal’s Algorithm)。

图论的基本概念和应用

图论的基本概念和应用

图论的基本概念和应用图论,顾名思义,是研究图的一门数学分支。

在计算机科学、网络科学、物理学等领域都有广泛的应用。

本文将从图的基本概念入手,介绍图论的基础知识和常见应用。

一、图的基本概念1.1 图的定义图是由若干点和若干边构成的。

点也被称为顶点,边也被称为弧或者线。

一个点可以与任意个点相连,而边则是连接两个点的线性对象。

一些有向边可以构成一棵树,而一些无向边则形成了一个回路。

1.2 图的表示图可以用一张二维平面图像表示。

这张图像由若干个点和连接这些点的线组成。

这种表示方式被称为图的平面表示。

图还可以用邻接矩阵、邻接表、关联矩阵等数据结构进行表示。

1.3 图的类型根据图的性质,可以将图分为有向图、无向图、完全图、连通图、欧拉图、哈密顿图等。

有向图:边有方向,表示从一个点到另一个点的某种关系。

无向图:边没有方向,表示两个点之间的某种关系。

完全图:任意两个点之间都有一条边,不存在自环。

\连通图:任意两个点之间都有至少一条通路,没有孤立的点。

欧拉图:一条欧拉通路是一条从一点开始经过所有边恰好一次后回到该点的通路。

哈密顿图:经过所有点恰好一次的通路被称为哈密顿通路。

二、图的应用2.1 最短路径问题图论在计算机算法中最常见的应用之一就是最短路径问题。

在一个有向图中,从一个点到另一个点可能有多条不同的路径,每条路径的长度也可能不同。

最短路径问题就是找到两个点之间长度最短的路径。

最短路径问题可以通过深度优先搜索、广度优先搜索等方法来解决,但是时间复杂度通常较高。

另外,使用Dijkstra算法、Floyd算法等优化算法可以大大缩短计算时间。

2.2 社交网络社交网络是图论应用的一个重要领域。

在社交网络中,人们之间的关系可以用图的形式表示。

例如,在微博网络中,每个用户和他/她所关注的人就可以形成一个有向图。

在这种图中,点表示用户,边表示一个人关注另一个人的关系。

通过对社交网络进行图论分析,可以研究用户之间的互动模式,了解到哪些用户之间联系较为紧密,哪些用户是网络中的“大咖”等。

图论思想在生活中的运用

图论思想在生活中的运用

图论思想在生活中的运用
图论思想在生活中的应用很多,例如:
1、交通出行:在城市的出行,经常会用到从一个地点到另一地点的最短路径,而解决此问题最好的方法就是使用图论,用最短路径算法来找到最优路线,比如驾车、打车、乘地铁等都会使用图论来算出最短路径。

2、网络传输:现在的互联网系统都是使用图论的方法来进行网络传输。

当多台计算机连接到网络时,都会形成一个图,通过图论,可以找到最佳的传输路径,以优化路径走向,从而提高网络的传输速度。

3、调度系统:调度系统中的人员调度及运输路线调度,也是依靠图论思想。

人员调度时,可以建立一个移动关系图,找到每一步最短路径,从而得到最佳的调动方案;而运输路线则可通过最短路线算法,计算出从一个点到另一点最短的路径,从而达到节约时间,提高工作效率的效果。

4、信息检索:在海量数据的环境下检索合适的信息,也是利用图论来解决的。

例如搜索引擎,会建立一个链接关系图,根据各页面间的链接关系来确定最优的信息检索结果。

图论及其应用综述

图论及其应用综述

图论综述一、简介图论是数学的一个分支。

它以图为研究对象。

图论中的图是由若干给定的点及连接两点的线所构成的图形,这种图形通常用来描述某些事物之间的某种特定关系,用点代表事物,用连接两点的线表示相应两个事物间具有这种关系。

图G=(V,E)是一个二元组(V,E)使得E⊆[V]的平方,所以E的元素是V的2-元子集。

集合V中的元素称为图G的定点(或节点、点),而集合E的元素称为边(或线)。

通常,描绘一个图的方法是把定点画成一个小圆圈,如果相应的顶点之间有一条边,就用一条线连接这两个小圆圈,如何绘制这些小圆圈和连线时无关紧要的,重要的是要正确体现哪些顶点对之间有边,哪些顶点对之间没有边。

图论本身是应用数学的一部份,因此,历史上图论曾经被好多位数学家各自独立地建立过。

关于图论的文字记载最早出现在欧拉1736年的论著中,他所考虑的原始问题有很强的实际背景。

目前,图论已形成很多分支:如随机图论、网络图论、代数图论、拓扑图论、极值图论等。

图论的应用已经涵盖了人类学、计算机科学、化学、环境保护、非线性物理、心理学、社会学、交通管理、电信以及数学本身等。

二、基本内容2.1 图的基本概念本章首先介绍了图的一些基本性质和一些不同模型的图,包括偶图,完全图和补图,引入了定点度的来描述图的性质。

其次介绍了子图的相关概念,介绍了图的一些基本运算规则,对图的路和连通性进行了阐释。

紧接着讲解了最短路算法,定义设G为边赋权图。

u与v是G中两点,在连接u与v的所有路中,路中各边权值之和最小的路,称为u与v间的最短路。

图的代数表示,包括图的邻接矩阵和图的关联矩阵。

最后对极图理论进行了简介,主要介绍了极值图论中的一个经典结论——托兰定理。

2.2 树本章主要介绍了树的概念与性质,阐述了生成树与最小生成树的基本概念与一些常用结论与定理。

树是不含圈的无圈图,也是连通的无圈图。

树是图论中应用最为广泛的一类图。

在理论上,由于树的简单结构,常常是图论理论研究的“试验田”。

图论及其应用

图论及其应用

图和子图 图和简单图图 G = (V, E), 其中 V = {νv v v ,......,,21} V ---顶点集, ν---顶点数E = {e e e 12,,......,ε}E ---边集, ε---边数例。

左图中, V={a, b,......,f}, E={p,q, ae, af,......,ce, cf} 注意, 左图仅仅是图G 的几何实现(代表), 它们有无穷多个。

真正的 图G 是上面所给出式子,它与顶点的位置、边的形状等无关。

不过今后对两者将经常不加以区别。

称 边 ad 与顶点 a (及d) 相关联。

也称 顶点 b(及 f) 与边 bf 相关联。

称顶点a 与e 相邻。

称有公共端点的一些边彼此相邻,例如p 与af 。

环(loop ,selfloop ):如边 l 。

棱(link ):如边ae 。

重边:如边p 及边q 。

简单图:(simple graph )无环,无重边 平凡图:仅有一个顶点的图(可有多条环)。

一条边的端点:它的两个顶点。

记号:νε()(),()().G V G G E G ==。

习题1.1.1 若G 为简单图,则εν≤⎛⎝ ⎫⎭⎪2 。

1.1.2 n ( ≥ 4 )个人中,若每4人中一定有一人认识其他3人,则一定有一 人认识其他n-1人。

同构在下图中, 图G 恒等于图H , 记为 G = H ⇔ V (G)=V(H), E(G)=E(H)。

图G 同构于图F ⇔ V(G)与V(F), E(G)与E(F)之间各存在一一对应关系,且这二对应关系保持关联关系。

记为 G ≅F 。

注 往往将同构慨念引伸到非标号图中,以表达两个图在结构上是否相同。

de f G = (V, E)y z w cG =(V , E )w cyz H =(V ’, E ’)’a ’c ’y ’e ’z ’F =(V ’’, E ’’)注 判定两个图是否同构是NP-hard 问题。

完全图(complete graph) Kn空图(empty g.) ⇔ E = ∅ 。

数学中的图论及其应用

数学中的图论及其应用

数学中的图论及其应用图论是一门数学基础理论,用来描述事物之间的关联。

图论主要研究节点之间的连接关系和路径问题。

它的研究对象是图,图是由节点和边组成的,边表示节点之间的连接关系,节点表示事物。

图论是一种十分实用的数学工具,它是计算机科学、物理学、化学、生物学、管理学等领域的重要工具,也是人工智能和网络科学等领域的基础。

一、图论的基本概念1.1 图图是由节点和边组成的,表示事物之间的关系。

节点是图中的基本元素,用点或圆圈表示;边是连接节点的元素,用线或箭头表示。

1.2 有向图和无向图有向图是指边有方向的图,每一条边用有向箭头表示;无向图是指边没有方向的图,每一条边用线表示。

1.3 节点的度和邻居节点节点的度是指与节点相连的边的数量,具有相同度的节点称为同阶节点;邻居节点是指与节点相连的节点。

1.4 遍历和路径遍历是指从起点出发访问图中所有节点的过程;路径是指跨越边连接的节点序列,路径长是指路径中边的数量。

二、图论的应用2.1 网络科学网络科学是研究节点和边之间的关系,以及节点和边之间的动态演化的学科。

网络科学中的图模型是节点和边的结合体,其应用包括社会网络、生物网络和物理网络等。

社会网络是指人们之间的社交网络,它描述了人与人之间的关系。

社交网络可以用图模型表示,节点表示人,边表示人与人之间的互动关系,例如朋友关系、家庭关系等。

生物网络是指由生物分子构成的网络,例如蛋白质相互作用网络、代谢网络等。

在生物网络中,节点可以表示蛋白质或基因,边可以表示蛋白质或基因之间相互作用的联系,这些联系可以进一步探究生物进化和疾病发生的机理。

物理网络是指由物理粒子构成的网络,例如网络电子、量子态等。

在物理网络中,节点可以表示量子比特或电子,边可以表示色散力或超导电性等物理现象。

2.2 计算机科学图论在计算机科学中的应用非常广泛,例如数据结构、算法设计和网络安全等方面。

图论在计算机科学中的经典应用包括最短路径算法、最小生成树算法等。

范更华-图论及其应用

范更华-图论及其应用

旅行推销员问题
问题提出: 一个推销员从公司出发, 访问 若干指定城市, 最后返回公司,要求设计
最优旅行路线。(费用最小)
数学抽象: 城市作为点, 两点间有边相连, 如果对应的城市间有直飞航班。机票价作 为每条边的权。
旅行推销员问题
求解 : 在图中求一个圈过每点恰好一次 ,
且边的权之和最小。(最优哈密顿问题;比
在一个计算机光纤网络中,给传输信道 分配波长,两信道若有公共部分,必须得到 不同的波长。要求使用尽可能少的波长。
波长分配问题转化为图论问题
每条信道看作图的一个点。两点间有边
相连当且仅当它们对应的信道有公共部
分。波长问题等价于所构造图的点着色
问题:
给图的每个点着色,有边相连的点
须着不同的颜色。所用颜色尽可能少。
1735年, 欧拉(Euler) 证明哥尼斯堡七桥问题无 解, 由此开创了数学的一个新分支---图论. 欧拉将哥尼斯堡七桥问题转化为图论问题 : 求 图中一条迹 (walk), 过每条边一次且仅一次 . 后人将具有这种性质的迹称为欧拉迹,闭的欧拉 迹也称为欧拉回路.
欧拉定理 : 连通图存在欧拉迹当且仅当图中奇 度数的点的个数至多为 2( 若为 0, 则存在欧拉回 路,这种图称为欧拉图,也称为偶图)
图的例子
交通网
互联网
计算机处理器连接方式
集成电路板
分子结构图
分子间相互作用及信息传递
具体应用
大型高速计算机:处理器的连接方式
互联网:信息传输及控制管理
大规模集成电路:布局、布线 数据库技术:数据的存储、检索 理论计算机科学: 子图理论对计算机算法研究的应用
具体应用
DNA序列分析:图的欧拉回路问题 机器智能与模式识别:图的同构 通讯网络:连通性,可靠性 印刷电路板检测: 12万5千次降为4次(《美国科学》 Scientific American, 9 (1997), 92-94 )

图论及其应用1

图论及其应用1

推 论1.5.3: 设G (V1.V 2,• • •,Vm; E)是m部 图 ,p mk r
(0 r m), 则
q(G)
1 2
(
p2
m
k
2
2kr
r ),
等号
成立当且仅当
k G是 完 全m部 图
.
k1, •••, k1, k, •••k
r
mr
Байду номын сангаас
1.2图的定义
图(V(G),E(G),ψG )中 ①:V(G)称为顶点集,E(G)称为边集 ②:令p(G)=|V(G)|,q(G)=|E(G)|, 分别称为
图的阶和边数。边数。举例说明。 一个图(V(G),E(G),ψG )可以用平面上
的一个图形表示。明显的一个图可以有许多 形状不同的图形表示。
1.2图的定义
1.2图的定义
对于两个同构的图,有相同的结构,差异在 于顶点和名称不同,或形状不同,但我们主 要关注图的结构性质。
Ulam猜想:设G与H是两个阶数相同的图,若 存在这两个图的顶点序列的一个排序V(G)= {v1,v2,··,vp}和V(H)={u1,u2,··,up}, 使G-vi≌H-ui(i=1,2,3,···,p),则G≌H
1.3顶点的度
推论1.3.3:非负整数序列(d1, d2 ,, d p )是某个图的度序列
p
d
是偶数。
i

i 1

理1.3.4:





列(d
1
,
d
2
,贩,?d
p)(d
1
d
2
贩?
d
)
p
p

图论及其应用

图论及其应用

Prim算法及思想
• • • • • 首先我们将V分成两部分U,S U∩S=∅ U∪S=V 一开始S中只有任意以个节点 每次我们枚举每条U,S之间的边权最小的边S中 这条边的端点 删除并加入U • 我们可以每次更新S中点的这个值不需要每次枚 举边复杂度O(n^2) • 如果使用堆优化可以做到O(nlogn+nlogm)
tarjan算法
tarjan算法
拓扑排序
• 每次选择一个入度为0的点加入队列,然后 删掉这个点的所有出度
小试身手
• APIO2009 atm • 有一个城市有若干条有向道路 • 一个小偷从一个点出发想偷这个城ATM机, 他从一个点出发,最后偷完之后需要到一 个酒吧庆祝,给定道路情况,每个路口atm 的钱数和有没有酒吧,求最多能偷多少钱。 • n<=100000
小试身手
对于n<=1000我们依然可以直接暴力建出图 来进行Dijsktra算法但是对于n<=10000的测 试点,所有边一共有10^10条,我们无法存下 来但是我们发现,只有x坐标相邻和y坐标相 邻的边才有意义(为什么?),然后就可以建出 图来用堆优化的Dij或者spfa过掉
小试身手
• 给你一个n个点的图,小Q有q个询问,每次 询问任意两点之间的最短路 • n<=200,q<=4000000
Байду номын сангаас
最短路算法
• 如果我们需要知道所有的点对之间的最短 路,可以使用floyed的传递闭包方法。 • floyed算法思想: • 我们每次选择一个中间点,然后枚举起点 和终点,用通过中间点的最短路径更新起 点和终点之间的最短路径时间复杂度O(n^3)
floyed代码实现
• 代码非常简单 • 注意枚举顺序

图论及其应用—典型图

图论及其应用—典型图
定理4.3.1:若G是Hamilton图,则对V(G)的每 一个非空真子集S,均有w(G\S)≤|S|(必要条 件)
4.3Hamilton图
定理4.3.2:设G是p(G)≥3的图,如果G中任意 两个不相邻的顶点u和v,均有 dG(u)+dG(v)≥p(G), 则G是若G是Hamilton图。
推论4.3.3:若G是具有p(≥3)个顶点的简单图, 且每个顶点的度至少是p/2,则G是Hamilton图 。
定理5.2.5:对k≥1,2k-正则图G有2-因子。 注:若H是G的k-正则生成子图,则称H是G的 k-因子。
5.3二分图最大对集算法
匈牙利算法。
k
w(C)定 义 为 w(ei)。 i 1
w(C)包 含 两 部 分 权 和 ,
一 部 分 是 w(C),即 每 条 边 的 和 ; eE (G)
另 外 一 部 分 是 重 复 走 的街 道E E(G),即 w(e)。 eE
因 此 , 对 于G的 人 一 个 环 游C, w(C) w(C), eE (G )
图论及其应用—典型图
4.1Euler环游 4.2中国邮路问题 4.3Hamilton图 4.4旅行售货员问题 5.1对集 5.2二分图的对集 5.3二分图最大对集算法
4.1Euler环游
定义4.1.1:经过G的每条边的迹称为G的Euler迹,如
果这条迹是闭的,则称这条迹为G的Euler环游。 一般情况下,我们把不是Euler环游的迹称为G的Euler 通路,而把含有Euler环游的图称为Euler图。
推论4.3.9:设图G的度序列为(d1,d2,…,dp) ,d1≤d2≤…≤dp,p≥3。若对任何k,1≤k<(p-1)/2 ,均有dk>k,若p为奇数,更有d(p+1)/2>(p-1)/2, 则G是Hamilton图。

图论基础:图的基本概念和应用

图论基础:图的基本概念和应用

图论基础:图的基本概念和应用图论是数学中的一个分支领域,研究的是图的性质和图上的问题。

图被广泛应用于计算机科学、电子工程、运筹学、社交网络分析等领域。

本文将介绍图论的基本概念和一些常见的应用。

一、图的基本概念1. 顶点和边图是由顶点和边组成的,顶点代表图中的元素,边则代表元素之间的关系。

通常顶点表示为V,边表示为E。

2. 有向图和无向图图可以分为有向图和无向图。

在无向图中,边是没有方向的,顶点之间的关系是双向的;而在有向图中,边是有方向的,顶点之间的关系是单向的。

3. 权重在一些应用中,边可能具有权重。

权重可以表示顶点之间的距离、成本、时间等概念。

有权图是指带有边权重的图,而无权图则是指边没有权重的图。

4. 路径和环路径是指由一系列边连接的顶点序列,路径的长度是指路径上边的数量。

环是一种特殊的路径,它的起点和终点相同。

5. 度数在无向图中,顶点的度数是指与该顶点相关联的边的数量。

在有向图中分为出度和入度,出度是指从该顶点出去的边的数量,入度是指指向该顶点的边的数量。

二、图的应用1. 最短路径问题最短路径问题是图论中的一个经典问题,它研究如何在图中找到两个顶点之间的最短路径。

这个问题有许多实际应用,例如在导航系统中寻找最短驾驶路径,或者在电信网络中找到最短的通信路径。

2. 最小生成树最小生成树是指一个连接图中所有顶点的无环子图,并且具有最小的边权重之和。

这个概念在电力网络规划、通信网络优化等领域有广泛的应用。

3. 路由算法在计算机网络中,路由算法用于确定数据包在网络中的传输路径。

图论提供了许多解决路由问题的算法,如最短路径算法、Bellman-Ford 算法、Dijkstra算法等。

4. 社交网络分析图论在社交网络分析中起着重要的作用。

通过构建社交网络图,可以分析用户之间的关系、信息传播、社区发现等问题。

这些分析对于推荐系统、舆情监测等领域具有重要意义。

5. 电路设计图论在电路设计中也有应用。

通过将电路设计问题转化为图论问题,可以使用图论算法解决电路布线、最佳布局等问题。

数学中的图论理论及其应用

数学中的图论理论及其应用

数学中的图论理论及其应用图论是一门研究图形和网络的数学理论,它是数学中的一个分支,也是计算机科学中的一个重要领域。

图论的不断发展使其应用越来越广泛,尤其在计算机网络、社交网络、交通路线等方面有着广泛的应用。

一、图论的定义与性质图论中的“图”指的是一个有限的节点集合和与这些节点相关的边集合。

在图中,节点被称为顶点,边被称为边缘。

在一个无向图中,每条边连接两个节点,没有方向性;在有向图中,每条边都有一个方向,从一个节点指向另一个节点。

图所具有的一些性质,如连通性、路径、环等,可以用来研究现实世界中的许多问题。

例如,人际关系可以用图来表示,而在图中找到最短路径可以用来表示最小成本行程的问题。

二、图的表示方法图可以通过矩阵和链表两种方式进行表示。

矩阵表示法是将图中的节点和边分别用矩阵的元素表示,由于矩阵的性质,这种方法适用于表示边的权重,但对于节点的增加和删除比较麻烦。

链表表示法是将图中的节点和边分别用链表的形式表示,这种方法适用于动态改变图的结构。

三、最短路径算法最短路径算法是图论中的一个重要问题,它是计算图中两个节点之间最短路径的算法。

最短路径算法可以采用Dijkstra算法或Floyd算法进行计算。

Dijkstra算法是一种贪心算法,通过构建带权重的图来计算两个节点之间最短距离。

该算法的基本思想是从起点出发,按照距离最近的顺序找到与该节点相邻的节点,然后根据这些节点的权重更新起点到别的节点的距离,直至找到终点。

由于该算法使用优先队列来存储节点,因此对于大规模的节点数或边数较多的图,具有较好的计算效率。

Floyd算法是一种动态规划算法,通过构建带权重的图来计算两个节点之间最短距离。

该算法的基本思想是先计算任意两个节点之间的距离,然后再使用动态规划的思想,从中间节点出发更新两个节点之间的距离,直至找到终点。

由于该算法需要计算所有的两点之间的距离,因此对于较小规模的图具有优势。

四、最小生成树算法最小生成树算法是图论中另一个重要的问题,它是用来找到给定的无向联通图的一棵生成树,使得生成树中的边权和最小。

图论及其应用

图论及其应用
-16-
图论及其应用第一章
图论相关的交叉研究
代数图论 化学图论 随机图论 超图
拓扑图论 算法图于其它学科, Gowers将图论和组合数学中的Ramsey理论 应用于泛函分析的研究,获得了1998年的 Fields奖。
-17-
图论及其应用第一章
内容提要 图的基本概念 图的基本概念;二部图及其性质;图的同构;关联矩 阵与邻接矩阵。路、圈与连通图;最短路问题。树及 其基本性质;最小生成树。 图的连通性 割点、割边和块;边连通与点连通;连通度; Whitney 定理;可靠通信网络的设计。 匹配问题 匹配与最大匹配;完美匹配;二部图的最大匹配。
值是个公开的难题。
-9-
图论及其应用第一章
Ramsey数R(p,q)
-10-
图论及其应用第一章
Ramsey数的计算
• Ramsey数的计算是对人类智 力的挑战!例如R(4,5)=25 (1993年计算机11年的计算 量)
• Erdös用如下比喻说明其困难 程度:一伙外星人入侵地球, 要求一年内求得R(5,5),否 则将灭绝人类!那么也许人类 能集中所有计算机和专家来求 出它以自保;但如果外星人问 的是R(6,6) ,那么人类将别 无选择,只能拼死一战了。
2. 任意的9个人中,总有3个人互相认识或有4个人互不认 识。
3. 问题:
4.
对任意的自然数k和t,是否存在一个最小的正整
数r(k,t),使得每个至少有r(k,t)个人的团体,总有k个
人互相认识或有t个人互不认识。
5.
拉姆瑟(F.P. Ramsey)在1930年证明了这个数
r(k,t)是存在的,人们称之为 Ramsey数。确定其精确
Hamilton问题源于1856年,英国数学家Hamilton设计 了一个名为周游世界的游戏:他用一个正十二面体的二十 个端点表示世界上的二十座大城市(见图),提出的问题 是要求游戏者找一条沿着十二面体的棱通过每个端点恰好 一次的行走路线。反映到图论上就是判断一个给定的图是 否存在一条含所有顶点的回路。

图论的基本概念及其应用

图论的基本概念及其应用

图论的基本概念及其应用图论是离散数学中的一个重要分支,研究的是图的性质和图之间的关系。

图由节点和连接节点的边组成,以解决现实生活中的许多问题。

本文将介绍图论的基本概念,并探讨它在不同领域中的应用。

一、图的基本概念1. 节点和边图由节点(顶点)和边组成,节点代表某个实体或概念,边表示节点之间的关系。

节点和边可以有不同的属性,如权重、方向等。

2. 有向图和无向图有向图中,边有固定的方向,表示节点之间的单向关系;无向图中,边没有方向,节点之间的关系是相互的。

3. 连通图和非连通图连通图是指图中任意两个节点之间都存在路径;非连通图则存在至少一个节点无法到达其它节点。

4. 网络流每条边上有一个容量限制,网络流通过边传输,满足容量限制的条件下尽可能多地进行。

二、图论在计算机科学中的应用1. 最短路径通过图论中的最短路径算法,可以计算出两个节点之间的最短路径。

最短路径在无人驾驶、物流配送等领域中具有重要的应用价值。

2. 最小生成树最小生成树算法用于寻找连接图中所有节点的最小总权重的树形结构。

在通信网络、电力输送等领域中,最小生成树被广泛应用。

3. 网络流问题图论中的网络流算法可以用于解决诸如分配问题、路径规划等优化问题。

例如,在医疗资源调度中,网络流算法可以帮助医院优化资源分配。

三、图论在社交网络分析中的应用1. 社交网络社交网络可以用图模型来表示,节点代表个体,边表示个体之间的联系。

利用图论分析社交网络,可以发现用户群体、影响力传播等信息。

2. 中心性分析中心性分析用于评估节点在网络中的重要性,衡量指标包括度中心性、接近中心性等。

中心节点的识别对于广告投放、信息传播等决策具有指导意义。

3. 社团检测社团检测可以发现社交网络中具有紧密联系的节点群体,进一步分析社交群体的行为模式、用户偏好等。

四、图论在物流优化中的应用1. 供应链管理供应链中的各个环节可以用图模型表示,通过图论算法优化物流路径,提高物流效率。

2. 仓库位置问题通过图论中的最短路径算法和最小生成树算法,可以找到最佳的仓库位置,使物流成本最小化。

图论的基本定义和应用

图论的基本定义和应用

图论的基本定义和应用图论是一门数学分支,它以图这一数学结构为基础,研究各种图上的问题。

图是一种结构,包括顶点和边,顶点代表图中的元素,边描述元素之间的关系。

图论是研究图这一数学结构的性质和应用的学科。

图的基本定义在图论中,一个图由顶点集合V和边集合E组成,一般记为G = (V, E)。

其中,V是图中所有顶点的集合,E是图中所有边的集合。

如果边是由独立的顶点对构成的,就称这种图为无向图;如果边是由有序的顶点对构成的,就称这种图为有向图。

每条边都可以表示为(e,u,v),其中e是边的标识,u和v是与边相连的两个顶点。

图的结构在图论中,有些图具有特定的结构,这些结构可以被用于解决各种各样的问题。

下面是一些常见的图结构。

树型结构:树是一种无环连接的图,其中有一个特殊的顶点称为根。

在树中,从根到任意一个顶点所经过的边所构成的路径都是唯一的。

树是一种重要的数据结构,被广泛应用于计算机科学和其他领域。

环型结构:环也是一种无向图,但是它具有特定的环形结构,其中每个顶点都与它相邻的两个顶点相连。

环型结构被广泛应用于通信网络和其他领域的设计中。

网状结构:网状结构是由多个环型结构和其他结构组合而成的图,其中有多个顶点是连接到其他顶点上的。

网状结构在物流和电力等领域中被广泛应用。

图的应用图论被广泛应用于计算机科学、工程和管理学等领域。

下面是一些常见的图论应用。

路由算法:在通信网络中,路由算法被用来确定包从源节点到目标节点的最佳路径。

路由算法可以利用图的结构来计算最短路径或其他优化路径。

最优化问题:许多最优化问题可以被转换为图的形式,例如最短路径问题和最小生成树问题。

通过使用图的模型来解决这些问题可以提高效率和可靠性。

社交网络分析:社交网络可以用图的形式进行建模,每个人都是一个顶点,他们之间的关系可以表示为边。

通过社交网络分析,可以了解网络中的信息流动模式和社交结构。

总结图论是一门广泛应用于各种学科的数学分支,其基本定义包括顶点和边。

《图论及其应用》课件

《图论及其应用》课件

图像处理
探索图论在图像处理领域的应用,如图像分割 和模式识别。
七、总结
图论的重要性
强调图论在计算机科学和现实 世界中的重要性和广泛应用。
现实中的应用价值
讨论图论在实际问题中解决方 案的应用价值和优势。
对于未来的展望
探索图论在未来可能的发展方 向和应用领域,如人工智能和 物联网。
2
Floyd算法
介绍Floyd算法的原理和使用方法,用于计算图中所有节点之间的最短路径。
四、最小生成树算法
Prim算法
解释Prim算法的工作原理和应用,用于寻找图中的 最小生成树。
Kruskal算法
讨论Kruskal算法的概念和实现,用于生成图的最小 生成树。
五、网络流算法
1
最大流
介绍网络流问题和最大流算法,用于解
《图论及其应用》PPT课 件
本PPT课件将带您深入了解图论及其应用。图论是一门关于图的性质及其应用 的学科,将为您揭开图论的奥秘。
一、图论基础
图的定义及术语
介绍图的基本定义以及相关的术语,为后续内 容打下基础。
无向图与有向图
解释无向图和有向图的区别,并介绍它们之间 的关系和应用。
图的表示方法
讲解图的常用表示方法,如邻接矩阵和邻接表, 并比较它们的优缺点。
连通性和路径
讨论图的连通性概念以及如何找到两个节点之 间的最短路径。
二、图的遍历算法
1
广度优先搜索(BFS)
2
介绍广度优先搜索算法的工作原理和常 见应用。
深度优先搜索(DFS)
深入探讨深度优先搜索算法的原理和应 用场景。
三、最短路径算法
1
Dijkstra算法
详细讲解Dijkstra算法的步骤和应用,用于寻找图中两个节点间的最短路径。

什么是图论及其应用

什么是图论及其应用

图论是数学中的一个分支,主要研究图及其相关的问题。

图由若干个节点和连接这些节点的边组成。

节点可以代表现实世界中的对象,而边则代表对象之间的关系。

图论的研究对象包括有向图、无向图、加权图等。

在图论中,节点常常被称为顶点,边则被称为弧或边。

图可以用各种方式表示,如邻接矩阵、邻接表等。

图论的研究内容主要包括图的遍历、最短路径、最小生成树、网络流以及图的染色等。

这些内容构成了图论的核心知识体系。

图论的应用非常广泛,涉及到许多领域。

在计算机科学中,图论被广泛应用于网络路由、图像处理、人工智能等领域。

例如,在网络路由中,图论可以用来寻找最短路径,以确定数据传输的最佳路径。

在图像处理中,图论可以用来进行图像分割,从而提取图像中的目标物体。

在人工智能中,图论可以用来构建知识图谱,从而实现知识的表示和推理。

除了计算机科学,图论还在物理学、生物学等领域中发挥着重要作用。

在物理学中,图论可以用来研究分子结构、粒子物理等问题。

例如,著名的色散关系图就是物理学中的一个重要概念,它描述了声波、电磁波等在介质中的传播特性。

在生物学中,图论可以用来研究蛋白质相互作用网络、基因调控网络等。

这些网络的研究有助于理解生物体内复杂的结构和功能。

此外,图论还在社交网络、交通规划、电路设计等领域中得到了广泛的应用。

在社交网络中,图论可以用来研究用户之间的连接关系,从而推荐好友、发现隐藏关系等。

在交通规划中,图论可以用来优化交通路径,减少拥堵现象。

在电路设计中,图论可以用来优化电路布线,提高电路的性能。

总而言之,图论是数学中一个重要的分支,有着广泛的应用领域。

它不仅在计算机科学中发挥着重要作用,还在物理学、生物学等领域中得到了广泛应用。

图论的发展不仅推动了数学理论的发展,也为各个领域的问题提供了有效的解决方法。

因此,学习和应用图论对于我们来说是非常重要的。

图论的基本概念和应用

图论的基本概念和应用

图论的基本概念和应用图论是数学中的一个分支,研究的是图的性质和图之间的关系。

图由节点和边组成,节点表示对象,边表示对象之间的关系。

图论的基本概念包括图的类型、图的表示方法、图的遍历算法等。

图论在计算机科学、网络分析、社交网络等领域有着广泛的应用。

一、图的类型图可以分为有向图和无向图两种类型。

有向图中的边有方向,表示从一个节点到另一个节点的关系;无向图中的边没有方向,表示两个节点之间的关系是相互的。

有向图和无向图都可以有权重,表示边的权值。

二、图的表示方法图可以用邻接矩阵和邻接表两种方式来表示。

邻接矩阵是一个二维数组,数组的行和列分别表示图中的节点,数组中的元素表示节点之间的边;邻接表是一个链表数组,数组的每个元素表示一个节点,链表中的每个节点表示与该节点相连的边。

三、图的遍历算法图的遍历算法包括深度优先搜索(DFS)和广度优先搜索(BFS)。

深度优先搜索从一个节点开始,沿着一条路径一直遍历到最后一个节点,然后回溯到上一个节点,再继续遍历其他路径;广度优先搜索从一个节点开始,先遍历与该节点相邻的所有节点,然后再遍历与这些节点相邻的节点,依次类推。

四、图论的应用1. 计算机科学:图论在计算机科学中有着广泛的应用。

例如,图可以用来表示计算机网络中的节点和连接关系,通过图的遍历算法可以实现网络路由和路径规划;图可以用来表示程序中的依赖关系,通过图的遍历算法可以实现代码的分析和优化。

2. 网络分析:图论在网络分析中有着重要的应用。

例如,社交网络可以用图来表示,节点表示用户,边表示用户之间的关系,通过图的遍历算法可以实现社交网络的分析和预测;互联网中的网页可以用图来表示,节点表示网页,边表示网页之间的链接关系,通过图的遍历算法可以实现搜索引擎的排名和推荐算法。

3. 运筹学:图论在运筹学中有着重要的应用。

例如,图可以用来表示物流网络中的节点和路径,通过图的遍历算法可以实现最短路径和最小生成树的计算;图可以用来表示任务调度中的依赖关系,通过图的遍历算法可以实现任务的优化和调度。

数学中的图论与应用

数学中的图论与应用

数学中的图论与应用数学中的图论是近年来受到广泛关注的研究领域。

在现代社会中,图论已经成为解决各种实际问题的有力工具,尤其在网络、通讯、计算机科学、运筹学等领域得到了广泛应用。

本文将介绍图论的基本概念和算法,并讨论其在实际中的应用。

一、图论的基本概念图论是一种研究边和点之间关系的数学工具。

图由顶点集和边集两个基本组成部分构成。

顶点是图中的基本元素,边连接两个顶点,表示它们之间的关系。

如果两个顶点之间有边相连,那么它们就是相邻的。

在图论中,有两种基本的图:有向图和无向图。

有向图中的边有方向,表示从一个顶点到另一个顶点的方向,而无向图中的边没有方向,表示两个顶点之间的关系是双向的。

图的表示方式有两种:邻接矩阵和邻接表。

邻接矩阵是一个二维矩阵,其中每一行和每一列表示一个顶点,矩阵中的元素表示相应的两个顶点之间是否有边相连。

邻接表是一种链表结构,每个顶点对应一个链表,在链表中存储该点的所有邻接点。

邻接表适用于表示稀疏图,而邻接矩阵适用于表示稠密图。

二、图的遍历算法在图中,从一个顶点出发,访问到这个图中所有的顶点,就称为图的遍历,其中包括深度优先遍历和广度优先遍历。

深度优先遍历的实现方案为:从图中的一个顶点开始,将其标记为已访问,然后访问其邻接点,对每个未访问的邻接点进行递归遍历。

直到所有与该顶点相邻的顶点都被访问完毕,才回溯到上一个未被访问的节点。

广度优先遍历的实现方案为:从图中的一个顶点开始,做宽度优先遍历,即先将该顶点所有的未被访问的邻接点全部入队,然后从队列中取出一个元素,标记为已经访问,访问其所有未被访问的邻接点,并将这些邻接点入队。

重复这个过程,直到队列为空。

三、最短路径算法在图论中,最短路径算法可以用来解决许多实际问题。

其中,最为经典的算法是 Dijkstra 算法和 Floyd-Warshall 算法。

Dijkstra算法是一种单源最短路径算法,用于计算有向图或者无向图的最短路径。

算法的基本思想是,通过每一次“松弛”操作,在已访问的顶点集和未访问的顶点集之间,尽可能地减小各个顶点到起点之间的距离。

图论及应用剖析

图论及应用剖析
• 对任意 u,v,wV,d(u,v)是非负整数或+; d(u,v)0;d(u,v)=0 当且仅当 u=w; d(u,v)+d(v,w)d(u,w)(三角不等式,距离特性)
• 三角不等式的证明:若 d(u,v)=+ 或 d(v,w)=+, 结论显然成立.否则,有从 u 到 v 长度为 d(u,v) 的路径和从v到w长度为d(v,w)的路径,从而有从 u到w长度为d(u,v)+d(v,w)的路径.
kn.
距离的概念
• 图 G=V,E中,从结点 u 到 w 的最短路径(必为链) 的长度称为 G 的从 u 到 w 的距离,记为 d(u,w). 如果从 u 到 w没有路径,则令 d(u,w)=+.(注意: 在无向图中恒有 d(u,w)=d(w,u),而在有向图中 可能出现d(u,w)d(w,u).)
图论起源于18世纪,追朔到1736年瑞士数学家 L.Euler出版第一本图论著作,提出和解决著名 Konigsberg七桥问题.从那时以来,图论不仅在 许多领域,如计算机科学,运筹学,心理学等方 面得到了广泛的应用,而且学科本身也获得长 足发展,形成了拟阵理论,超图理论,代数图论, 拓扑图论等新分支.(8.5,8.8二节不讲)
②:由{(1,2),(3,2),(3,4),(1,4)}导出的子图(也是此4 点导出的子图); ③:由{1,2,4,5}导出的子图.
完全图与补图
• E=VV的有向图G=V,E称为有向完全图.n个结 点的无向简单图如果任二不同结点都相邻时, 称为n结点无向完全图,记为 Kn.完全图的例子 见图8.1-11.
注:① 两图同构是相互的: GG GG. ② 两图同构时不仅结点之间要有一一对应关系,
而且要求这种对应关系保持结点间的邻接关系. 对有向图同构还要求保持边的方向. ③ 寻求判断图同构的简单有效方法仍是图论待 解决的重要问题.
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
vi+1
u
v1
vi
vj-1 vj+1
P
vn-1
w
在 n 结点的图中任何链的长度都不大于 n-1;任何基本回路的长度都不大于 n
证:设任一链 P 的长度为k,则 P穿程于 k+1个结点:
P = v0e1v1e2v2ekvkvk.
因 v0,v1,,vk 两两不同,故 k+1n,从而 kn-1.
赋权图中的距离
应用广泛的赋权图是三重组:G=V,E,W,V,E 分别 为 G 的结点集和边集,W是从 E 到 R+的函数,边 e=(i,j)的函数值 W(e)=W(i,j)称为 e 的权. 赋权图 G的一条路径 P=(e1,…,ek)的长度定义为: W(P)=W(e1)+…+W(ek).从结点u到w的距离定义 为d(u,w)=min{W(P)|P为G中从u到w的路径},约 b 3 定:d(u,u)=0;d(u,w) c 2 =,当从u到w不可达. a 7 2 4 例如,对右边的图有 10 5 d d(a,c)=5; d(a,d)=9; e d(a,e)=7.
关于有 n 结点 m 边的(n,m)图度的定理
• 定理8.1-1 令 v1,…,vn为图的所有结点,则 i=1n deg(vi)=2m. (1) 证:对于公式(1)左边的和式,图的每条边贡献的 度数恰为2,从而结论成立. 注:对有向图(1)可写成 i=1n deg+(v)+i=1n deg-(v)=2m. 定理8.1-2 任何图中度为奇数的结点必为偶数个. 证: 因偶度点度的和为偶数,若奇度点为奇数个, 则奇度点度的和必为奇数.但偶数加奇数得奇 数,便与(1)式右边为偶数相矛盾.
图论简介
图论是数学的一个分支,以图为研究对象.这种图 由若干给定的点和连接两点的线构成,借以描 述某些事物之间的关系.用点代表事物,用连接 两点的线表示两个事物之间具有特定关系. 图论起源于18世纪,追朔到1736年瑞士数学家 L.Euler出版第一本图论著作,提出和解决著名 Konigsberg七桥问题.从那时以来,图论不仅在 许多领域,如计算机科学,运筹学,心理学等方 面得到了广泛的应用,而且学科本身也获得长 足发展,形成了拟阵理论,超图理论,代数图论, 拓扑图论等新分支.(8.5,8.8二节不讲)
8.1#4(c)简单无向图 G 必有2结点同度
证:令 G={v1,…,vn}.若 G 中没有孤立点,则 G 中 n个结点的度只取 n-1 个可能值: 1,2,…,n-1, 从而 G 中至少有两个结点的度相同. 否则,G中有孤立点,不妨设vk,vk+1,…,vn为全部 孤立点,则 v1,…,vk-1的度只取 k-2个可能值: 1,2,…,k-2,从而此 k-1个结点中至少有两个 同度点.
d
b
b
弱连通非单向连通 从a到b不可达且 从b到a不可达
有向图的强(单向,弱)连通分支
• 已知有向图 G 及其子图 G.若 G是强(单向,弱) 连通的,并且 G 中没有以 G为真子图的强(单向, 弱)连通子图,则称 G为 G 的强(单向,弱)连通分 支. • 注① 一个有向图的上述三种连通分支可能是 互不相同的,图8.2-4中的图就是这样. • ② 在有向图中可用‘属于同一强(弱)连通分 支’引入结点间的等价关系.但对单向连通分 支引入的关系不满足传递性,从而不是等价关 系(图8.2-5).
同理,长度为k的基本回路有 k 个不同结点,从而 kn.
距离的概念
• 图 G=V,E中,从结点 u 到 w 的最短路径(必为链) 的长度称为 G 的从 u 到 w 的距离,记为 d(u,w). 如果从 u 到 w没有路径,则令 d(u,w)=+.(注意: 在无向图中恒有 d(u,w)=d(w,u),而在有向图中 可能出现d(u,w)d(w,u).) • 对任意 u,v,wV,d(u,v)是非负整数或+; d(u,v)0;d(u,v)=0 当且仅当 u=w; d(u,v)+d(v,w)d(u,w)(三角不等式,距离特性) • 三角不等式的证明:若 d(u,v)=+ 或 d(v,w)=+, 结论显然成立.否则,有从 u 到 v 长度为 d(u,v) 的路径和从v到w长度为d(v,w)的路径,从而有从 u到w长度为d(u,v)+d(v,w)的路径.
图的定义与记号
• 图G是一个二重组:G=V,E,其中V是非空有限集 合,它的元素称为结点, E 也是(可空)有限集合, 它的元素称为边. • 图G的边e是一个结点二重组:a,b,a,bV,e可 以是有序的,称为有向边,简称为弧,a称为弧e 的始点,b称为e的终点; e也可以是无序的,称 为无向边.e=a,b时,称e与a,b关联,或a,b与e 关联,或a与b相邻接;关联于同一结点的一条边 称为自回路. • 每条边都是无向边的图称为无向图;每条边都 是有向边的图称为有向图;我们仅讨论无向图 和有向图. (看图8.1-1和图8.1-2)
同构图举例
4 2 1 a c 3 1 2 3
G
4 a 5 d 6
H H’
b c e
G’
d b
f
G G’ 1a,2b,3c, 4 d
H H’ 1a,2b,3c, 4d,5e,6f
非同构图举例
存在结点数及每个结点对应度都相等的两个图 仍然不同构的情况.一个例子是图8.1-8;另一 例如下:(注意:两个4度点或邻接或不相邻接)
c b f a
6改5结论不成立
c b
a
路径与回路
• 图 G=V,E 的点边交替序列 P=v0e1v1e2v2envn 称为 G 的一条从v0 到vn的长为 n 的路径,其 中,ei=(vi-1,vi)E,i=1,…,n(对有向图要求 vi-1,vi为ei的始,终点). P 称为简单路径,如果 e1,,en 两两不同; P 称为基本路径(链),如果 v0,v1,,vn 两两不 同(易见链必为简单路径); P 称为回路,如果 v0= vn; 回路 P 称为简单(基本)回路,如果 e1,,en(v1,,vn)两两不同. • 路径 P 可只用边序列 e1e2en表示.若 G 为线图, 则路径 P 也可只用结点序列 v0v1vn 表示. • 例见图8.2-1.
• E=VV的有向图G=V,E称为有向完全图.n个结 点的无向简单图如果任二不同结点都相邻时, 称为n结点无向完全图,记为 Kn.完全图的例子 见图8.1-11. • n 结点线图G=V,E与H=V,E’称互为补图(记为 G=H’或H=G’),如果E’是n结点完全图的边集与E 的差集.下列二无向图G与H互为补图.
8.2#4无向图 G恰有的2个奇度结点可达
解1:令u,w为G恰有的2个奇度结点.考察u所在的 连通分支G’.因任何图的奇度点为偶数,故G’至 少还有另一奇度点.但G’的每个点在G和G’中有 相同的度,所以G’恰有2个奇度点而且就是u和w. 再由G’的连通性推出u到w可达. 解2:可一般地证明在无向图G中从任一奇度点u出 发的一条最长简单路的另一端点必为一个奇度 点,原因是从u出发的最长简单路不会终止在u 处(否则d(u)为偶数);也不会终止在任一偶度 点v处(否则d(v)为奇数).
G
G’
子图的概念
定义:给定两个无(有)向图 G=V,E,G=V,E. 若 VV 和 EE,则称 G是G的子图; 若 VV,EE,且 GG,则称 G是 G 的真子图; 若 V=V 和 EE,则称 G是 G 的生成子图; 若子图 G无孤立结点且G由E唯一确定,则称G是 由边集E导出的子图; 若对子图 G=V,E中任二结点 u,v,(u,v)E (u,v)E,则称 G是由结点集V导出的子图 (易见:V导出的子图G是以V为其结点集,所有 在G中同时关联于V中两点的边为其边集).
图的同构
定义:对给定两个图 G=V,E,G=V,E,若存在 双射 f:VV 使对任意a,bV, (a,b)E (f(a),f(b))E,并且(a,b)与 (f(a),f(b))有相同重数,则称 G 与 G同构,记 为 G G . 注:① 两图同构是相互的: GG GG. ② 两图同构时不仅结点之间要有一一对应关系, 而且要求这种对应关系保持结点间的邻接关系. 对有向图同构还要求保持边的方向. ③ 寻求判断图同构的简单有效方法仍是图论待 解决的重要问题.
G H
K4
8.1#13的用红,兰色给 K6边着色
命题:对任意一种着色方案的着色结果,或者有一 个红 K3,或者有一个兰 K3. 证:令a,b,c,d,e,f为K6的6结点.因过f的5条边必 有三边着为同色,不失一般性,设(a,f),(b,f), (c,f)已着红色.若(a,b),(a,c),(b,c)已着兰 色,则{a,b,c}导出的子图是一个兰K3,从而结 论成立. 否则此三边必有一边,例如(a,b)已着 红色,则{a,b,f}导出的的子图是红 K3.证毕. 推论:任何6人的人群中,或者有3人互相认识,或 者有3人彼此陌生.(当二人x,y互相认识,边 (x,y)着红色,否则着兰色.则6人认识情况对应 于K6边的一个二着色.由上述命题知或者有红K3 或者有兰K3.)
有向图的连通性
• 已知有向图 G,若它的底图是连通无向图,则 G 称为是弱连通的;若 G 的任二结点都相互可达, 则G称为是强连通的;若 G 的任二结点至少从一 个到另一个可达,则 G 称为是单向连通的. • 易见:强连通性 单向连通性 弱连通性; 但反之不真.反例如下:
a c a
强连通
单向连通非强连通 从a到b不可达
有向图子图举例(图8.1-10)
1 5 2 5
12Βιβλιοθήκη ①4 1 2 5 3 4 1 2

4 3

4
①:由{(1,2),(1,4),(5,1)}导出的子图; ②:由{(1,2),(3,2),(3,4),(1,4)}导出的子图(也是此4 点导出的子图); ③:由{1,2,4,5}导出的子图.
相关文档
最新文档