算法设计与分析
算法分析与设计概论
9
How to Study Algorithm?
“Sometimes we have experiences, and sometimes not. Therefore, the better way is to learn more."
10
1.1 算法与程序
算法:是满足下述性质的指令序列。
输 入:有零个或多个外部量作为算法的输入。 输 出:算法产生至少一个量作为输出。 确定性:组成算法的每条指令清晰、无歧义。 有限性:算法中每条指令的执行次数有限,执行 每条指令的时间也有限。
1) 第一种解法:
输入:所购买的三种鸡的总数目n 输出:满足问题的解的数目k,公鸡,母鸡,小鸡的只数g[ ],m[ ],s[ ] 1. void chicken_question(int n,int &k,int g[ ],int m[ ],int s[ ]) 2. { int a,b,c; 4. k = 0; 5. for (a=0;a<=n;a++) 6. for (b=0;b<=n;b++) 7. for (c=0;c<=n;c++) { 8. if ((a+b+c==n)&&(5*a+3*b+c/3==n)&&(c%3==0)) { 9. g[k] = a; 10. m[k] = b; 11. s[k] = c; 12. k++; 13. }}}
矩阵。
数组 T:表示售货员的路线,依次存放旅行路线中的城 市编号。
售货员的每一条路线,对应于城市编号的一个排列。
n 个城市共有 n! 个排列,采用穷举法逐一计算每一条路线的费 用,从中找出费用最小的路线,便可求出问题的解。
电大计算机本科_算法设计与分析
电大计算机本科_算法设计与分析
算法设计与分析是计算机科学和数学领域的重要课程。
它涉及到一系
列算法设计、分析和实现的方面,涉及到算法流程、语法、数据结构等多
方面。
在算法设计与分析这门课程中,学生首先要学习怎么设计一个算法,
怎么从实际问题中提取算法,怎么分析算法复杂度,怎么评价算法效率。
接下来要学习算法,基本排序算法和选择算法,分治算法,贪婪算法,动
态规划,回溯算法,朴素贝叶斯,马尔科夫链等等各种算法。
学生还要熟
悉现代算法建模工具(如Matlab、SAS、C++),熟悉算法的优化技巧,
掌握算法的编码实现方法,并研究其实际应用。
本课程可以使学生充分发挥自己的能力,培养学生的算法设计能力,
提高实践能力,掌握算法的基本原理及运用,把握算法分析及其优化技术。
它不仅帮助学生提高数学思维能力,同时也有助于他们在计算机编程方面
的能力。
学习算法设计与分析有助于学生全面掌握算法设计这一重要组成
部分,也可以拓展学生的应用领域,使学生更具有竞争力。
学习算法设计与分析也有其困难之处,首先是算法编程比较抽象,学
生需要有较强的理论功底和数学能力。
算法设计与分析(第2版) 郑宗汉 第1章-1
8
Байду номын сангаас
学习要求
深刻理解每一类算法的思想及其实现
能熟练运用所学知识解决实际问题
培养提高计算思维能力
9
考核方式
Homework and Reading: 20%
Final Exam (Written Test): 80%
10
第1章 算法的基本概念
1.1 引言
1.1.1 算法的定义和特性
c %3 0
(1.1.3)
16
1.1.2 算法的设计和复杂性分析
百鸡问题的穷举法
输入:所购买的3种鸡的总数目n 输出:满足问题的解的数目k,公鸡,母鸡,小鸡的只数g[],m[],s[]
1. void chicken_question(int n, int &k, int g[], int m[], int s[]) 2. { 3. int a,b,c; 分析发现:只能买到n/5 4. k = 0; 只公鸡,n/3只母鸡,将 5. for (a = 0; a <= n; a++) { 算法进行改进。 6. for ( b = 0; b <= n; b++) { 7. for (c = 0; c <= n; c++) { 8. if ((a + b + c == n) && (5 * a + 3 * b + c / 3 == n) && (c%3 == 0)) { 9. g[k] = a; 10. m[k] = b; 11. s[k] = c; 12. k++; 13. } 14. } 15. } 16. } 17. }
《算法设计与分析》课件
常见的贪心算法包括最小生成树算法 、Prim算法、Dijkstra算法和拓扑排 序等。
贪心算法的时间复杂度和空间复杂度 通常都比较优秀,但在某些情况下可 能需要额外的空间来保存状态。
动态规划
常见的动态规划算法包括斐波那契数列、背包 问题、最长公共子序列和矩阵链乘法等。
动态规划的时间复杂度和空间复杂度通常较高,但通 过优化状态转移方程和状态空间可以显著提高效率。
动态规划算法的时间和空间复杂度分析
动态规划算法的时间复杂度通常为O(n^2),空间复杂度为O(n)。
04 经典问题与算法实现
排序问题
冒泡排序
通过重复地遍历待排序序列,比较相邻元素的大小,交换 位置,使得较大的元素逐渐往后移动,最终达到排序的目 的。
快速排序
采用分治策略,选取一个基准元素,将比基准元素小的元 素移到其左边,比基准元素大的元素移到其右边,然后对 左右两边的子序列递归进行此操作。
动态规划是一种通过将原问题分解为若干个子 问题,并从子问题的最优解推导出原问题的最 优解的算法设计方法。
动态规划的关键在于状态转移方程的建立和状态 空间的优化,以减少不必要的重复计算。
回溯算法
01
回溯算法是一种通过穷举所有可能情况来求解问题的算法设计方法。
02
常见的回溯算法包括排列组合、八皇后问题和图的着色问题等。
空间换时间 分治策略 贪心算法 动态规划
通过增加存储空间来减少计算时间,例如使用哈希表解决查找 问题。
将问题分解为若干个子问题,递归地解决子问题,最终合并子 问题的解以得到原问题的解。
在每一步选择中都采取当前状态下最好或最优(即最有利)的 选择,从而希望导致结果是最好或最优的。
通过将问题分解为相互重叠的子问题,并保存子问题的解,避 免重复计算,提高算法效率。
《算法设计与分析》(全)
1.1、算法与程序
程序:是算法用某种程序设计语言的具体实现。 程序可以不满足算法的性质(4)。 例如操作系统,是一个在无限循环中执行的程序, 因而不是一个算法。 操作系统的各种任务可看成是单独的问题,每一个 问题由操作系统中的一个子程序通过特定的算法来实 现。该子程序得到输出结果后便终止。
渐近分析记号的若干性质
(1)传递性: ➢ f(n)= (g(n)), g(n)= (h(n)) f(n)= (h(n)); ➢ f(n)= O(g(n)), g(n)= O (h(n)) f(n)= O (h(n)); ➢ f(n)= (g(n)), g(n)= (h(n)) f(n)= (h(n)); ➢ f(n)= o(g(n)), g(n)= o(h(n)) f(n)= o(h(n)); ➢ f(n)= (g(n)), g(n)= (h(n)) f(n)= (h(n)); (2)反身性: ➢ f(n)= (f(n));f(n)= O(f(n));f(n)= (f(n)). (3)对称性: ➢ f(n)= (g(n)) g(n)= (f(n)) . (4)互对称性: ➢ f(n)= O(g(n)) g(n)= (f(n)) ; ➢ f(n)= o(g(n)) g(n)= (f(n)) ;
巢湖学院计算机科学与技术系
渐近分析记号的若干性质
规则O(f(n))+O(g(n)) = O(max{f(n),g(n)}) 的证明: ➢ 对于任意f1(n) O(f(n)) ,存在正常数c1和自然数n1,使得对
所有n n1,有f1(n) c1f(n) 。 ➢ 类似地,对于任意g1(n) O(g(n)) ,存在正常数c2和自然数
巢湖学院计算机科学与技术系
第1章 算法引论
算法设计与分析
算法设计与分析算法是计算机科学中的核心概念,它是解决问题的一系列步骤和规则的有序集合。
在计算机科学的发展中,算法设计和分析扮演着至关重要的角色。
本文将探讨算法设计和分析的相关概念、技术和重要性。
一、算法设计的基本原则在设计算法时,需要遵循一些基本原则来确保其正确性和有效性:1. 正确性:算法设计应确保能够正确地解决给定的问题,即输出与预期结果一致。
2. 可读性:设计的算法应具有清晰的结构和逻辑,易于理解和维护。
3. 高效性:算法应尽可能地减少时间和空间复杂度,以提高执行效率。
4. 可扩展性:算法应具备良好的扩展性,能够适应问题规模的变化和增长。
5. 可靠性:设计的算法应具备稳定性和鲁棒性,对不同的输入都能给出正确的结果。
二、常见的算法设计技术1. 枚举法:按照规定的顺序逐个尝试所有可能的解,直到找到满足条件的解。
2. 递归法:通过将一个大问题分解成若干个小问题,并通过递归地解决小问题,最终解决整个问题。
3. 贪心算法:在每个阶段选择最优解,以期望通过一系列局部最优解达到全局最优解。
4. 分治算法:将一个大问题划分成多个相互独立的子问题,逐个解决子问题,并将解合并得到整体解。
5. 动态规划:通过将一个大问题分解成多个小问题,并存储已解决子问题的结果,避免重复计算。
三、算法分析的重要性算法分析可以评估算法的效率和性能。
通过算法分析,可以:1. 预测算法在不同规模问题上的表现,帮助选择合适的算法解决具体问题。
2. 比较不同算法在同一问题上的性能,从而选择最优的算法。
3. 评估算法在不同硬件环境和数据集上的表现,选择最适合的算法实现。
四、常见的算法分析方法1. 时间复杂度:衡量算法所需执行时间的增长率,常用的时间复杂度有O(1)、O(log n)、O(n)、O(n log n)和O(n^2)等。
2. 空间复杂度:衡量算法所需占用存储空间的增长率,常用的空间复杂度有O(1)、O(n)和O(n^2)等。
3. 最坏情况分析:对算法在最不利情况下的性能进行分析,可以避免算法性能不稳定的问题。
算法分析与设计
算法分析与设计在计算机科学领域,算法是解决问题的一种方法或步骤。
对于任何给定的问题,可能有许多不同的算法可用于解决。
算法的效率直接影响着计算机程序的性能,在实践中,我们通常需要进行算法分析和设计来确保程序的高效性和可靠性。
算法分析算法分析是用来评估算法性能的过程。
主要关注的是算法的效率和资源消耗。
常见的算法分析方法包括时间复杂度和空间复杂度。
时间复杂度时间复杂度描述了算法运行时间随输入规模增加而增加的趋势。
通常用大O符号表示,比如O(n)、O(log n)等。
时间复杂度越低,算法执行速度越快。
空间复杂度空间复杂度描述了算法在运行过程中所需的内存空间大小。
同样用大O符号表示。
空间复杂度越低,算法消耗的内存越少。
算法设计算法设计是指为了解决特定问题而创造新的算法的过程。
常见的算法设计方法包括贪心算法、分治法、动态规划等。
贪心算法贪心算法是一种在每一步选择当前状态下最优解的算法。
虽然贪心算法并不总是能得到全局最优解,但它的简单性和高效性使其在实际应用中很受欢迎。
分治法分治法将复杂问题分解为子问题来求解,然后将子问题的解合并起来得到原问题的解。
典型的应用有归并排序和快速排序等。
动态规划动态规划是一种将问题分解为重叠子问题、并存储子问题解的方法。
通过利用已解决的子问题来解决更大规模的问题,动态规划能够显著提高算法的效率。
结语算法分析和设计是计算机科学中至关重要的一部分,它帮助我们理解算法的效率和性能,并指导我们选择合适的算法来解决问题。
通过不断学习和实践,我们可以不断提升自己在算法领域的能力,为创造更高效、更可靠的计算机程序做出贡献。
算法设计与分析基础
2023/12/21
20
LingJie/GDUT
1.2.6 详细表述该算法的方法
• 可以用到的工具有自然语言(nature
language)、伪代码(pseudocode)以及程序 流程图(flow chart)等。
• 当对一个问题有了概要的理解后,下面的工作
就是把这个问题的想法进行细化。所谓的细化 就是把它们表示成算法的步骤。
令执行顺序以及同步等问题。并行算法的设计 有相应的理论,这里仅考虑串行算法。
2023/12/21
17
LingJie/GDUT
1.2.3 选择精确或者近似的算法
• 解决问题下一步要考虑的是使用精确的还是近
似的算法。并不是每一个可解的问题都有精确 的算法,例如求一个数的平方根,求非线性方 程的解等。有时候一个问题有精确的解法但是 算法的执行效率很差,例如旅行家问题。因此 如果待处理的问题涉及到上述那些方面,则要 考虑是选择精确的还是近似的算法。
2023/12/21
10
LingJie/GDUT
-- 2* 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
-- 2 3*
5
7
9
11
13
15
17
19
21
23
25
-- 2 3
5*
7
11
13
17
19
23
25
-- 2 3
5
7
11
13
第一步:找出m的所有质因数。 第二步:找出n的所有质因数。 第三步:从第一步求得的m的质因数分解式和第二步求得的n
的质因数分解式中,找出所有公因数。 第四步:将第三步找到的公因数相乘,结果为所求的
第2章 算法分析基础(《算法设计与分析(第3版)》C++版 王红梅 清华大学出版社)
3
Page 11
2.1.2 算法的渐近分析
常见的时间复杂度:
Ο(1)<(log2n)<(n)<(nlog2n)<(n2)<(n3)<…<(2n)<(n!)
多项式时间,易解问题
算
法
指数时间,难解问题
设 计 与
分
析
(
第
时间复杂度是在不同数量级的层面上比较算法
版 )
清
华
大
学
时间复杂度是一种估算技术(信封背面的技术)
Page 7
2.1.2 算法的渐近分析
3
每条语句执行次数之和 = 算法的执行时间 = 每条语句执行时间之和
基本语句的执行次数 for (i = 1; i <= n; i++)
单位时间
算
法
设
计
与
执行次数 × 执行一次的时间
分 析 (
第
for (j = 1; j <= n; j++)
版 )
x++;
指令系统、编译的代码质量
算法设计:面对一个问题,如何设计一个有效的算法
算
法
设
检
指
验
导
评
计 与 分 析 ( 第 版
改
估
) 清
进
华 大
学
出
版
算法分析:对已设计的算法,如何评价或判断其优劣
社
3
Page 3
2.1.1 输入规模与基本语句
如何度量算法的效率呢?
事后统计:将算法实现,测算其时间和空间开销
缺点:(1)编写程序实现算法将花费较多的时间和精力 (2)所得实验结果依赖于计算机的软硬件等环境因素
算法设计与分析ppt课件
ACM国际大学生程序设计竞赛
ACM国际大学生程序设计竞赛(英文 全称:ACM International Collegiate Programming Contest(ACM-ICPC或 ICPC)是由美国计算机协会(ACM)主办 的,一项旨在展示大学生创新能力、团队 精神和在压力下编写程序、分析和解决问 题能力的年度竞赛。经过30多年的发展, ACM国际大学生程序设计竞赛已经发展成 为最具影响力的大学生计算机竞赛。赛事 目前由IBM公司赞助。
第3章 动态规划 3.1 矩阵连乘问题 3.2 动态规划算法的基本要素 3.3 最长公共子序列 3.4 最大子段和 3.5 凸多边形最优三角剖分 3.6 多边形游戏 3.7 图像压缩 3.8 电路布线 3.9 流水作业调度 3.10 0-1背包问题 3.11 最优二叉搜索树 3.12 动态规划加速原理
7
1.1 算法与程序
算法:是满足下述性质的指令序列。
输 入:有零个或多个外部量作为算法的输入。 输 出:算法产生至少一个量作为输出。 确定性:组成算法的每条指令清晰、无歧义。 有限性:算法中每条指令的执行次数有限,执行
每条指令的时间也有限。
程序:是算法用某种程序设计语言的具体实现。
4
教材与参考书
教 材:
◦ 算法设计与分析(第三版) 王晓东,2007年 5月,电子工业出版社。
参考书:
◦ 徐士良编,C常用算法程序集,华大学出版 社,1998年
◦ 霍红卫编,算法设计与分析 西安电子科技 大学出版社,2005年
◦ 卢开澄编,计算机算法导引,清华大学出 版社,2003年
5
部分目录
算法分析是计算机领域的“古老”而“前沿” 的课题。
10
算法设计与分析
算法设计与分析算法设计是计算机科学重要的研究方向之一。
其核心目的是在给定的计算机问题下,设计出一种能够高效完成任务的算法。
在算法设计的过程中,需要考虑多种因素,如算法的正确性、可理解性、可维护性、可移植性以及算法的时间和空间复杂度等。
常用的算法设计策略包括贪心算法、动态规划算法、回溯算法、分治算法等多种。
算法的正确性是算法设计的首要考虑因素之一。
如果一个算法不能够正确地解决问题,那么它的时间复杂度和空间复杂度再低也没有用处。
一般来说,算法的正确性可以通过数学证明来进行验证。
根据不同的算法类型,其正确性验证需要应用不同的证明方法。
时间复杂度和空间复杂度也是算法设计的关键考虑因素。
通常,一个算法的时间复杂度越低,运行时间就越短。
同样地,一个算法的空间复杂度越低,需要占用的内存就越少。
时间复杂度和空间复杂度之间通常是矛盾的,因此需要在两者之间做出权衡。
常用的算法比较基准是时间复杂度,时间复杂度大致可以分为常数阶、对数阶、线性阶、平方阶、立方阶等多个级别,并且可能还存在更高阶的时间复杂度。
在算法设计之后,需要进行算法的分析。
算法分析通常包括平均时间复杂度、最坏时间复杂度和最好时间复杂度的分析。
平均时间复杂度指的是在一组随机输入下的平均运行时间,通常是指输入数据分布的随机分布;最坏时间复杂度指的是运行时间的上界,通常是指特殊的输入情况时,算法运行时间达到最大值;最好时间复杂度指的是算法在最理想情况下的运行时间,通常指输入数据已经有序的情况下的运行时间。
除此之外,尚有许多其他因素需要考虑,例如算法的可扩展性、可移植性、可维护性、可复用性等。
其中的可扩展性指的是算法能够处理的数据规模的大小,通常需要根据不同的数据规模进行不同的优化;可移植性指的是算法能够运行在不同的计算机体系结构之上;可维护性指的是算法在输出结果有问题时,能够容易地找到错误所在并进行修改;可复用性指的是算法能够被其他程序员或其他算法模块所复用。
算法设计与分析第二章
归并排序
总结词
归并排序是一种采用分治法的排序算法。它将一个数 组分成两个子数组,分别对子数组进行递归排序,然 后将两个有序的子数组合并成一个有序的数组。
详细描述
归并排序的基本思想是,将两个或两个以上的有序表合 并成一个新的有序表。具体过程是先递归地将两个有序 表合并成一个较大的有序表,然后再将这个较大的有序 表与第三个有序表合并,以此类推,直到所有记录都合 并成一个有序表。归并排序的时间复杂度在最坏情况下 为O(nlogn),但在平均情况下也为O(nlogn)。
空间复杂度分类
根据空间复杂度的不同,可以将算 法分为线性、多项式、指数和对数 等不同级别。
算法复杂度分析方法
递归树法
递归树法是一种用于分析递归算法时 间复杂度的方法,通过构建递归树来 计算基本操作的执行次数。
主方法
空间复杂度分析方法
空间复杂度分析方法主要关注算法中 数据结构的使用和存储需求,通过分 析数据结构的规模和数量来确定空间 复杂度。
堆栈是一个后进先出(LIFO) 的数据结构,最后一个进堆 栈的元素第一个出来。
Floyd-Warshall算法
总结词
详细描述
总结词
详细描述
Floyd-Warshall算法是一种用 于查找给定图中所有节点对之 间的最短路径的动态规划算法 。
该算法通过逐步构建最短路径 来找到所有节点对之间的最短 路径,最终得到一个距离矩阵 ,其中每个元素表示源节点到 目标节点的最短距离。
二分搜索
总结词
二分搜索是一种在有序数组中查找目标元素的搜索算法。它 通过将数组分成两半,比较中间元素与目标元素,然后根据 比较结果决定在数组的哪一半继续搜索,直到找到目标元素 或确定目标元素不存在于数组中。
算法设计与分析
算法设计与分析对于计算机科学领域来说,算法是一项非常重要的研究领域。
算法是指在计算机程序中用于解决特定问题的一系列步骤。
算法的设计和分析对于计算机程序的效率起着至关重要的作用。
本文将对算法设计与分析进行探讨。
一、算法的意义在计算机程序中,一个好的算法能够让程序运行得更加快速高效。
相反,一个不好的算法则会让程序变得非常缓慢,甚至可能会导致程序无法运行。
因此,设计一个高效的算法应该是程序开发者的首要任务。
在实际的应用中,算法也有着广泛的应用,比如搜索引擎、社交网络、人工智能等等。
这些应用的核心,都是算法。
举个例子,现在很多搜索引擎都实现了搜索的功能。
当我们输入搜索关键字时,搜索引擎会返回一些与该关键字相关的结果。
搜索引擎如何实现这个功能呢?其核心就是搜索算法。
这种算法会通过一系列的计算,找到最相关的结果。
二、算法的分类算法的分类可以从不同的角度进行划分。
下面将介绍一些常用的分类方式。
1.按照问题的特征进行划分可以将算法按照问题的特征进行分类。
比如说,如果是解决最短路径的问题,则可以使用Dijkstra算法。
如果是图像识别的问题,则可以使用神经网络算法等等。
2.按照算法的时间复杂度进行划分算法的时间复杂度是指运行算法所需的时间。
可以按照时间复杂度将算法分为以下几类:(1)常数阶n的数组进行遍历,则时间复杂度为O(1)。
(2)对数阶这种算法的运行时间与输入规模呈对数关系。
比如说,在一个有序数组中进行二分查找,则时间复杂度为O(logn)。
(3)线性阶这种算法的运行时间与输入规模呈线性关系。
比如说,遍历一个长度为n的数组,时间复杂度为O(n)。
(4)线性对数阶这种算法的运行时间与输入规模呈线性对数关系。
比如说,归并排序的时间复杂度为O(nlogn)。
(5)平方阶长度为n的数组进行两重遍历,则时间复杂度为O(n^2)。
(6)立方阶这种算法的运行时间与输入规模呈立方关系。
比如说,对一个长度为n的数组进行三重遍历,则时间复杂度为O(n^3)。
算法设计与分析
算法设计与分析算法设计与分析是计算机科学领域中的重要概念,它涵盖了计算理论、数据结构和算法的研究。
在本文中,我们将探讨算法设计与分析的基本概念、常见算法设计技巧以及如何分析算法的效率。
1. 算法设计与分析概述算法是一组指令或规则,用于完成特定任务的计算过程。
在计算机科学中,算法的设计和分析是解决问题和优化计算过程的关键步骤。
算法设计的目标是找到一种解决问题的有效方法,而算法分析的目标是评估算法的效率和性能。
2. 常见的算法设计技巧2.1 分治法分治法是一种将问题划分为更小的子问题,并通过解决子问题来解决原始问题的方法。
典型的例子是快速排序和归并排序。
这些算法将待排序的数组递归地划分为较小的子数组,并通过解决子数组来实现排序。
2.2 动态规划动态规划是通过将问题划分为重叠子问题,并利用子问题的解来构建原始问题的解决方案的方法。
典型的例子包括背包问题和最短路径问题。
动态规划算法通过存储子问题的解来避免重复计算,从而提高了算法的效率。
2.3 贪心算法贪心算法通过每次选择当前最佳解决方案来逐步构建问题的解决方案。
贪心算法不一定能够给出最优解,但在某些问题上表现良好。
经典的例子包括最小生成树问题和霍夫曼编码。
3. 算法效率的分析算法的效率是指算法在解决问题时所需的计算资源量。
算法效率的分析可以从时间复杂度和空间复杂度两个方面进行。
3.1 时间复杂度时间复杂度是衡量算法计算时间开销的度量。
它表示算法执行所需的操作次数或时间量级。
常用的时间复杂度包括常数时间、对数时间、线性时间、平方时间等。
3.2 空间复杂度空间复杂度是指算法在执行过程中所需的额外空间量。
它表示算法所需的额外存储空间和输入规模的关系。
常用的空间复杂度包括常数空间、线性空间、平方空间等。
4. 算法设计与分析的重要性算法设计与分析在计算机科学领域具有重要的地位和作用。
它不仅仅是解决问题和优化计算过程的基础,还有助于提高程序的性能和可维护性。
通过设计高效的算法并进行合理的分析,我们可以优化计算过程,提高系统的响应速度和效能。
算法设计与分析
算法设计与分析算法是计算机科学的核心内容之一,是解决问题的一种逻辑和数学表示方法。
在计算机科学的研究和实践中,算法设计与分析是一个非常重要的领域。
本文将介绍算法设计与分析的基本概念、常用方法和实际应用。
一、算法设计与分析的基本概念1.1 算法的定义和特性算法是一种有限的、确定的、可执行的计算过程,用于解决特定问题或完成特定任务。
算法应具备输入、输出、有限性、确定性和可行性等特性。
1.2 算法复杂度算法复杂度是衡量算法性能的重要指标,通常通过时间复杂度和空间复杂度来表示。
时间复杂度描述算法的运行时间与输入规模的关系,空间复杂度描述算法所需的额外存储空间与输入规模的关系。
二、算法设计与分析的常用方法2.1 贪心算法贪心算法是一种通过每一步的局部最优选择来达到全局最优解的算法思想。
贪心算法对于一些特定问题具有简单、高效的特点,但不能保证求得最优解。
2.2 动态规划动态规划是一种通过将原问题划分为子问题,并保存子问题的解来求解原问题的方法。
动态规划通常用于求解具有重叠子问题和最优子结构性质的问题。
2.3 分治算法分治算法是一种将原问题划分为多个相互独立且相同的子问题,并通过合并子问题的解来求解原问题的方法。
分治算法通常用于求解具有可分割性和合并性质的问题。
2.4 回溯算法回溯算法是一种通过逐步构建解空间树并进行回溯搜索来求解问题的方法。
回溯算法对于问题的解空间进行全面搜索,可以找到满足约束条件的所有解。
三、算法设计与分析的实际应用3.1 排序算法排序算法是算法设计与分析中的经典问题之一。
常见的排序算法包括冒泡排序、选择排序、插入排序、快速排序、归并排序等。
不同的排序算法在时间复杂度和空间复杂度上有所差异,应根据具体需求选择合适的算法。
3.2 图算法图算法是解决图相关问题的一类算法。
常见的图算法包括深度优先搜索(DFS)、广度优先搜索(BFS)、最短路径算法(如Dijkstra算法、Floyd-Warshall算法)等。
算法设计与分析
算法设计与分析一、引言算法设计与分析是计算机科学领域中至关重要的技术。
本文将围绕算法设计与分析展开讨论,探究其在计算机科学领域中的作用和应用。
二、算法设计概述算法是解决问题的一系列有序步骤的描述。
良好的算法设计能够提高问题解决的效率和正确性。
在算法设计中,我们考虑如何将输入转换为输出的过程,同时优化算法的时间复杂度和空间复杂度。
三、常见算法设计方法1. 贪心算法贪心算法是一种基于贪心策略的算法设计方法,每次选择当前最优解。
虽然贪心算法不一定能得到全局最优解,但在某些情况下可以获得较好的近似解。
2. 分治算法分治算法将问题划分为若干个子问题,分别求解子问题,然后将子问题的解合并为原问题的解。
它通常采用递归的方式进行求解。
3. 动态规划动态规划是一种通过将问题划分为相互重叠的子问题来求解的方法。
它将每个子问题的解保存下来,避免重复计算,从而提高了算法的效率。
四、算法分析方法1. 时间复杂度时间复杂度是对算法执行时间的度量,表示算法所需时间随问题规模增长的趋势。
常见的时间复杂度有:常数时间复杂度O(1)、线性时间复杂度O(n)、对数时间复杂度O(logn)、平方时间复杂度O(n^2)等。
2. 空间复杂度空间复杂度描述算法所需存储空间与问题规模之间的关系。
它通常考虑算法中使用的额外空间和输入规模之间的关系。
五、算法的应用领域算法设计与分析广泛应用于计算机科学的各个领域,如图像处理、人工智能、数据挖掘等。
六、算法设计与分析的重要性1. 提高问题解决效率良好的算法设计可以提高问题的解决效率,节约计算资源,提升计算速度。
2. 保证算法的正确性通过对算法进行严密的设计和分析,可以保证算法在各种情况下的正确性,避免出现错误的结果。
3. 推动计算机科学的发展算法设计与分析是计算机科学领域的核心内容,推动了计算机科学的发展和创新。
七、结论通过对算法设计与分析的讨论,我们可以得出结论:算法设计与分析是计算机科学中不可或缺的重要技术,它对于解决问题和推动科学发展都具有重要意义。
算法分析与设计
算法分析与设计算法是计算机科学中非常重要的概念,它指的是一系列解决问题的步骤或方法。
算法的好坏直接影响着程序的性能和效率。
因此,算法分析与设计是计算机科学领域中至关重要的一部分。
一、算法分析算法分析是评估算法性能的过程。
对于给定的问题,可能有多种算法可供选择。
通过对算法进行分析,可以比较它们的优劣,并选择最适合的算法。
1. 时间复杂度时间复杂度是衡量算法执行时间的一个指标。
它反映了算法在处理输入规模增大时的性能变化。
通常使用大O符号来表示时间复杂度。
常见的时间复杂度有以下几种:- 常数时间复杂度 O(1)- 线性时间复杂度 O(n)- 对数时间复杂度 O(log n)- 平方时间复杂度 O(n^2)- 立方时间复杂度 O(n^3)- 指数时间复杂度 O(2^n)通过对算法的代码进行逐行分析,可以确定每行代码的时间复杂度,并将它们相加得到整个算法的时间复杂度。
2. 空间复杂度空间复杂度是衡量算法在执行过程中所需存储空间的指标。
它反映了算法在处理输入规模增大时的内存消耗变化。
常见的空间复杂度有以下几种:- 常数空间复杂度 O(1)- 线性空间复杂度 O(n)- 对数空间复杂度 O(log n)- 线性对数空间复杂度 O(n log n)- 平方空间复杂度 O(n^2)- 立方空间复杂度 O(n^3)- 指数空间复杂度 O(2^n)通过对算法中使用的变量、数组等数据结构进行分析,可以确定算法的空间复杂度。
二、算法设计算法设计是将问题转化为算法步骤并解决问题的过程。
在设计算法时,需要考虑以下几个方面。
1. 正确性算法设计的首要目标是保证算法的正确性。
一个正确的算法应该能够解决给定的问题,并得到正确的结果。
在设计、实现和测试算法时,需要进行严格的验证和测试,确保算法能够正确地执行。
2. 可读性可读性是指算法代码的易读性和可理解性。
一个好的算法应该具有清晰、简洁的结构,以便其他开发人员能够更容易地理解和维护代码。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四川理工学院课程设计算法设计与分析课程设计学生:学号:专业:信息与计算科学班级:2012.2指导教师:吴树林四川理工学院理学院一、问题描述输入一列整数,求出该列整数中的最大值与最小值。
二、课程设计目的通过课程设计,提高用计算机解决实际问题的能力,提高独立实践的能力,将课本上的理论知识和实际有机的结合起来,锻炼分析解决实际问题的能力。
提高适应实际,实践编程的能力。
在实际的编程和调试综合试题的基础上,把高级语言程序设计的思想、编程巧和解题思路进行总结与概括,通过比较系统地练习达到真正比较熟练地掌握计算机编程的基本功,为后续的学习打下基础。
了解一般程序设计的基本思路与方法。
三、问题分析看到这个题目我们最容易想到的算法是直接比较算法:将数组的第 1 个元素分别赋给两个临时变量:fmax:=A[1]; fmin:=A[1]; 然后从数组的第 2 个元素 A[2]开始直到第 n个元素逐个与 fmax 和 fmin 比较,在每次比较中,如果A[i] > fmax,则用 A[i]的值替换 fmax 的值;如果 A[i] < fmin,则用 A[i]的值替换 fmin 的值;否则保持 fmax(fmin)的值不变。
这样在程序结束时的fmax、fmin 的值就分别是数组的最大值和最小值。
这个算法在最好、最坏情况下,元素的比较次数都是 2(n-1),而平均比较次数也为 2(n-1)。
如果将上面的比较过程修改为:从数组的第 2 个元素 A[2]开始直到第 n 个元素,每个 A[i]都是首先与 fmax 比较,如果 A[i]>fmax,则用 A[i]的值替换 fmax 的值;否则才将 A[i]与 fmin 比较,如果 A[i] < fmin,则用 A[i]的值替换 fmin 的值。
这样的算法在最好、最坏情况下使用的比较次数分别是 n-1 和 2(n-1),而平均比较次数是 3(n-1)/2,因为在比较过程中,将有一半的几率出现 A[i]>fmax 情况。
如果采用分治的思想,可以构造算法,其时间复杂度在最坏情况下和平均用时均为 3n/2-2:四、主要算法(分治法)描述4.1 当我们求解某些问题时,由于这些问题要处理的数据相当多,或求解过程相当复杂,使得直接求解法在时间上相当长,或者根本无法直接求出。
对于这类问题,我们往往先把它分解成几个子问题,找到求出这几个子问题的解法后,再找到合适的方法,把它们组合成求整个问题的解法。
如果这些子问题还较大,难以解决,可以再把它们分成几个更小的子问题,以此类推,直至可以直接求出解为止。
这就是分治策略的基本思想。
把n个元素分成两组:A1={A[1],...,A[int(n/2)]}和A2={A[int(N/2)+1],...,A[N]}分别求这两组的最大值和最小值,然后分别将这两组的最大值和最小值相比较,求出全部元素的最大值和最小值。
如果A1和A2中的元素多于两个,则再用上述方法各分为两个子集。
直至子集中元素至多两个元素为止。
例如有下面一组元素:-13,13,9,-5,7,23,0,15。
用分治策略比较的过程如下:图中每个方框中,左边是最小值,右边是最大值。
从图中看出,用这种方法一共比较了10次,比直接比较法的14次减少4次,即约减少了1/3。
4.2 分治法在每一层递归上都有三个步骤:分解:将原问题分解为若干个规模较小,相互独立,与原问题形式相同的子问题;解决:若子问题规模较小而容易被解决则直接解,否则递归地解各个子问题;合并:将各个子问题的解合并为原问题的解。
4.3 在用分治法设计算法时,最好使子问题的规模大致相同。
换句话说,将一个问题分成大小相等的k个子问题的处理方法是行之有效的。
许多问题可以取k = 2。
这种使子问题规模大致相等的做法是出自一种平衡(balancing)子问题的思想,它几乎总是比子问题规模不等的做法要好。
五、算法代码及运行结果5.1 分治法import java.util.Arrays;import java.util.Scanner;public class lianxi {public static void main(String[] args) {System.out.println("请输入要比较数字的总个数(数组长度):");Scanner cin = new Scanner(System.in);int a;a = cin.nextInt();int[] arr=new int[a];for (int i = 0; i < a; i++) {arr[i] = cin.nextInt();if(i == a){return;}}int result[] = new int[2];result = minMax(arr, 0, arr.length - 1);System.out.println(Arrays.toString(result));}public static int[] minMax(int[] arr, int l, int r) { int min = 0;int max = 0;if (l == r) {min = arr[l];max = arr[l];} else if (l + 1 == r) {if (arr[l] < arr[r]) {min = arr[l];max = arr[r];} else {min = arr[r];max = arr[l];}} else {int mid = (l + r) / 2;int[] preHalf = minMax(arr, l, mid);int[] postHalf = minMax(arr, mid + 1, r);min = preHalf[0] < postHalf[0] ? preHalf[0] : postHalf[0];max = preHalf[1] > postHalf[1] ? preHalf[1] : postHalf[1];}return new int[] { min, max };}}分治法运行结果:5.2直接法代码import java.util.Scanner;public class lianxi2 {public static void main(String[] args) {System.out.println("请输入要比较数字的总个数(数组长度):");Scanner cin = new Scanner(System.in);int a;a = cin.nextInt();int[] list=new int[a];for (int i = 0; i < a; i++) {list[i] = cin.nextInt();if(i == a){return;}}int max = list[0];int min = list[0];for (int i=0;i<a;i++){//依次比较得最大值(大值下沉)if(max<=list[i]){max=list[i];}//依次比较取最小值if(min>=list[i]){min=list[i];}}System.out.println("这些数字中最大的数字是:" + max);System.out.println("这些数字中最小的数字是:" + min);}}直接法运行结果:5.3:排序法代码import java.util.Arrays;import java.util.Scanner;public class lianxi2 {public static void main(String[] args) {System.out.println("请输入要比较数字的总个数(数组长度):");Scanner cin = new Scanner(System.in);int a;a = cin.nextInt();int[] list=new int[a];for (int i = 0; i < a; i++) {list[i] = cin.nextInt();if(i == a){return;}}//先从小到大进行排序在取最大值与最小值Arrays.sort(list);System.out.println("数组按从小到大排序为:");for (int i = 0; i < list.length; i++) {System.out.print(list[i]+",");}System.out.println("这些数字中最大的数字是:" + list[a-1]);System.out.println("这些数字中最小的数字是:" + list[0]);}}排序法运行结果:六、各种算法比较与分析虽然所有算法运行结果相同,但是他们的运行时间却是有很大差距的,任何一种以比较为基础的搜索算法,其最坏情况下的所用时间不可能低于Θ(log n)。
不可能存在其最坏情况下时间比折半搜索数量级(阶)还低的算法。
事实上,折半搜索所产生的比较树的所有叶结点都在相邻的两个层次上,而且这样的二叉树使得比较树的高度最低。
因此,折半搜索是解决搜索问题在最坏情况下的最优算法。
七、心得体会课程设计终于做完了,虽然有些疲劳和困倦,但带给我很多的收获。
算法设计与分析已经学了一个学期,有许多知识都存在似懂非懂的现象,这种现象通过实际的上机操作,实际应用,已经减少了许多。
对这些知识也有了更深的理解和很好的掌握。
许多困惑,有许多已经通过实际操作解决了,并能够深刻认识,但也有很多没有明白。
通过课程设计,明白做一件事需要考虑到很多方面的问题的,这些都是要在实践中摸索的,这与平时做练习是不同的,但也因为平时有许多的练习基础,会使你做起程序来,更加得心应手。
另外就是要把错误总结,有许多错误或者陷阱是平时自己陷进去的,因此很深刻,但也有些错误或者陷阱是自己还没有接触或者犯过的,这就应该看多些别人的总结,使自己不犯这些错误。
不让自己掉进这些陷阱。
这样长期总结,会对自己有很大的帮助。
通过实验对各种算法有了更深一步的理解,知道了它们适合解决哪类的问题,锻炼和提高了自我的分析问题解决问题的能力,也使我对分治法的核心思想也有了更加深刻的理解和应用。
参考文献:[1]《算法设计与分析》(第二版)霍红卫编著,西安电子科技大学出版社,2010。