...第1部分 专题7 第1讲 坐标系与参数方程(选修4-4)_图....ppt-PPT资料21页
高中数学选修4—4(坐标系与参数方程)知识点复习总结
坐标系与参数方程 知识点1.平面直角坐标系中的坐标伸缩变换设点P(x,y)是平面直角坐标系中的任意一点,在变换(0):(0)x xy yλλϕμμ'=>⎧⎨'=>⎩的作用下,点P(x,y)对应到点(,)P x y ''',称ϕ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.2.极坐标系的概念 (1)极坐标系如图所示,在平面内取一个定点O ,叫做极点,自极点O 引一条射线Ox ,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.注:极坐标系以角这一平面图形为几何背景,而平面直角坐标系以互相垂直的两条数轴为几何背景;平面直角坐标系内的点与坐标能建立一一对应的关系,而极坐标系则不可.但极坐标系和平面直角坐标系都是平面坐标系.(2)极坐标设M 是平面内一点,极点O 与点M 的距离|OM|叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的角xOM ∠叫做点M 的极角,记为θ.有序数对(,)ρθ叫做点M 的极坐标,记作(,)M ρθ.一般地,不作特殊说明时,我们认为0,ρ≥θ可取任意实数. 特别地,当点M 在极点时,它的极坐标为(0, θ)(θ∈R).和直角坐标不同,平面内一个点的极坐标有无数种表示.如果规定0,02ρθπ>≤<,那么除极点外,平面内的点可用唯一的极坐标(,)ρθ表示;同时,极坐标(,)ρθ表示的点也是唯一确定的.3.极坐标和直角坐标的互化(1)互化背景:把直角坐标系的原点作为极点,x 轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,如图所示:(2)互化公式:设M 是坐标平面内任意一点,它的直角坐标是(,)x y ,极坐标是(,)ρθ(0ρ≥),于是极坐标与直角坐标的互化公式如表:在一般情况下,由tan 确定角时,可根据点M 所在的象限最小正角. 4.常见曲线的极坐标方程注:由于平面上点的极坐标的表示形式不唯一,即(,),(,2),(,),(,),ρθρπθρπθρπθ+-+--+都表示同一点的坐标,这与点的直角坐标的唯一性明显不同.所以对于曲线上的点的极坐标的多种表示形式,只要求至少有一个能满足极坐标方程即可.例如对于极坐标方程,ρθ=点(,)44M ππ可以表示为5(,2)(,2),444444ππππππππ+-或或(-)等多种形式,其中,只有(,)44ππ的极坐标满足方程ρθ=.二、参数方程 1.参数方程的概念一般地,在平面直角坐标系中,如果曲线上任意一点的坐标,x y 都是某个变数t 的函数()()x f t y g t =⎧⎨=⎩①,并且对于t 的每一个允许值,由方程组①所确定的点(,)M x y 都在这条曲线上,那么方程①就叫做这条曲线的参数方程,联系变数,x y 的变数t 叫做参变数,简称参数,相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程.2.参数方程和普通方程的互化(1)曲线的参数方程和普通方程是曲线方程的不同形式,一般地可以通过消去参数而从参数方程得到普通方程.(2)如果知道变数,x y 中的一个与参数t 的关系,例如()x f t =,把它代入普通方程,求出另一个变数与参数的关系()y g t =,那么()()x f t y g t =⎧⎨=⎩就是曲线的参数方程,在参数方程与普通方程的互化中,必须使,x y 的取值范围保持一致.注:普通方程化为参数方程,参数方程的形式不一定唯一。
专题七第1讲选修44坐标系与参数方程课件共39张PPT
ρsin
θ=
3 3 ρcos
θ-4 3 3+1,
ρsin θ=- 33ρcos θ+433+1。
2.(2021·全国甲卷)在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴
建立极坐标系,曲线C的极坐标方程为ρ=2 2cos θ。
(1)将C的极坐标方程化为直角坐标方程;
(2)设点A的直角坐标为(1,0),M为C上的动点,点P满足
解 (1)由题意知⊙C的标准方程为(x-2)2+(y-1)2=1,
则⊙C的参数方程为yx==12++scions
α, α
(α为参数)。
(2)由题意可知,切线的斜率存在,设切线方程为y-1=k(x-4), 即kx-y+1-4k=0, 所以|2k-1k+2+1-1 4k|=1,解得k=± 33,
则这两条切线方程分别为y= 33x-433+1,y=- 33x+433+1, 故这两条切线的极坐标方程分别为
解 (1)解法一:曲线C1的普通方程为x2+y2=1,将直线l的参数方程代入,得t2+ t=0,解得t=0或t=-1,根据参数的几何意义可知|AB|=1。
解法二:直线l的普通方程为y= 3(x-1),曲线C1的普通方程为x2+y2=1, 由yx= 2+y32=x-1,1, 得l与C1的交点坐标为(1,0),12,- 23,则|AB|=1。
(t为参数)。
(1)将C1,C2的参数方程化为普通方程; (2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,设C1,C2的交点为P, 求圆心在极轴上,且经过极点和P的圆的极坐标方程。
解 (1)由C1的参数方程得,C1的普通方程为x+y=4(0≤x≤4)。 由C2的参数方程得x2=t2+t12+2,y2=t2+t12-2,所以x2-y2=4。 故C2的普通方程为x2-y2=4。
高考数学大一轮复习 坐标系与参数方程 第1节 坐标系课件 理 选修4-4
径,A(ρ,θ),则∠ABO=θ-90°, ρ
OB=2 2=sin(θ-90°),化简得 ρ
=-2 2cosθ.
答案:ρ=-2 2cosθ
热点命题·突破 02
课堂升华 强技提能
平面直角坐标中的伸缩变换
【例 1】 在平面直角坐标系中,求下列方程所对应的 图形经过伸缩变换xy′ ′= =23xy,后的图形.
平面直角坐标系中的坐标伸缩变换
设点 P(x,y)是平面直角坐标系中的任意一点,在变换
φ:xy′ ′= =
, ,( (λμ>>00)),的作用下,点 P(x,y)对应到
点 P′(x′,y′),称 φ 为平面直角坐标系中的坐标伸缩变换,
简称伸缩变换.
答案
λ·x μ·y
1.在同一平面直角坐标系中,直线 x-2y=2 经过伸缩 变换xy′ ′= =x4,y 后,变成直线________.
____________
(-π2 ≤θ<π2 )
π 圆心为(r, 2 ),
半径为 r 的圆 过极点,倾斜角
为 α 的直线
过点(a,0),与极 轴垂直的直线
____________ (0≤θ<π)
θ=α(ρ∈R) 或 θ= π+α(ρ∈R) __________
(-π2 <θ<π2 )
π 过点(a, 2 ),与 极轴平行的直线
的长度单位,设 M 是平面内任意一点,它的直角坐标是(x,
y),极坐标为(ρ,θ),则它们之间的关系为 x=______,y
=______.另一种关系为 ρ2=______,tanθ=______.
答案
1.极点 极轴 极径
2019版二轮复习数学(理)全国版专题七 第一讲 选修4-4 坐标系与参数方程
第一讲 选修4-4 坐标系与参数方程[考情分析]1.坐标系与参数方程是高考的选考内容之一,高考考查的重点主要有两个方面:一是简单曲线的极坐标方程;二是曲线的参数方程与极坐标方程的综合应用.2.全国卷对此部分的考查以解答题的形式出现,难度中等,备考此部分内容时应注意转化思想的应用.考点一 极坐标方程及其应用[典例感悟][典例] (2018·全国卷Ⅰ)在直角坐标系xOy 中,曲线C 1的方程为y =k |x |+2.以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ2+2ρcos θ-3=0.(1)求C 2的直角坐标方程;(2)若C 1与C 2有且仅有三个公共点,求C 1的方程.[解] (1)由x =ρcos θ,y =ρsin θ得C 2的直角坐标方程为(x +1)2+y 2=4. (2)由(1)知C 2是圆心为A (-1,0),半径为2的圆. 由题设知,C 1是过点B (0,2)且关于y 轴对称的两条射线. 记y 轴右边的射线为l 1,y 轴左边的射线为l 2.由于点B 在圆C 2的外面,故C 1与C 2有且仅有三个公共点等价于l 1与C 2只有一个公共点且l 2与C 2有两个公共点,或l 2与C 2只有一个公共点且l 1与C 2有两个公共点.当l 1与C 2只有一个公共点时,点A 到l 1所在直线的距离为2, 所以|-k +2|k 2+1=2,故k =-43或k =0.经检验,当k =0时,l 1与C 2没有公共点;当k =-43时,l 1与C 2只有一个公共点,l 2与C 2有两个公共点.当l 2与C 2只有一个公共点时,点A 到l 2所在直线的距离为2,所以|k +2|k 2+1=2,故k =0或k =43.经检验,当k =0时,l 1与C 2没有公共点;当k =43时,l 2与C 2没有公共点.综上,所求C 1的方程为y =-43|x |+2.[方法技巧]1.求曲线的极坐标方程的一般思路曲线的极坐标方程问题通常可利用互换公式转化为直角坐标系中的问题求解,然后再次利用互换公式即可转化为极坐标方程.熟练掌握互换公式是解决问题的关键.2.解决极坐标交点问题的一般思路(1)将极坐标方程化为直角坐标方程,求出交点的直角坐标,再将其转化为极坐标; (2)将曲线的极坐标方程联立,根据限制条件求出交点的极坐标.[演练冲关](2018·太原模拟)在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρcos ⎝⎛⎭⎫θ-π3=1,M ,N 分别为曲线C 与x 轴,y 轴的交点. (1)写出曲线C 的直角坐标方程,并求M ,N 的极坐标; (2)设M ,N 的中点为P ,求直线OP 的极坐标方程. 解:(1)∵ρcos ⎝⎛⎭⎫θ-π3=1, ∴ρcos θ·cos π3+ρsin θ·sin π3=1.又⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ,∴12x +32y =1,即曲线C 的直角坐标方程为x +3y -2=0, 令y =0,则x =2;令x =0,则y =233.∴M (2,0),N ⎝⎛⎭⎫0,233.∴M 的极坐标为(2,0),N 的极坐标为⎝⎛⎭⎫233,π2.(2)∵M ,N 连线的中点P 的直角坐标为⎝⎛⎭⎫1,33,∴P 的极角为θ=π6,∴直线OP 的极坐标方程为θ=π6(ρ∈R ).考点二 参数方程及其应用[典例感悟][典例] (2018·全国卷Ⅱ)在直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =4sin θ(θ为参数),直线l 的参数方程为⎩⎪⎨⎪⎧x =1+t cos α,y =2+t sin α(t 为参数).(1)求C 和l 的直角坐标方程;(2)若曲线C 截直线l 所得线段的中点坐标为(1,2),求l 的斜率. [解] (1)曲线C 的直角坐标方程为x 24+y 216=1.当cos α≠0时,l 的直角坐标方程为y =tan α·x +2-tan α, 当cos α=0时,l 的直角坐标方程为x =1.(2)将l 的参数方程代入C 的直角坐标方程,整理得关于t 的方程(1+3cos 2α)t 2+4(2cos α+sin α)t -8=0.①因为曲线C 截直线l 所得线段的中点(1,2)在C 内, 所以①有两个解, 设为t 1,t 2,则t 1+t 2=0.又由①得t 1+t 2=-4(2cos α+sin α)1+3cos 2α,故2cos α+sin α=0,于是直线l 的斜率k =tan α=-2.[方法技巧]参数方程化为普通方程的方法及参数方程的应用(1)将参数方程化为普通方程的过程就是消去参数的过程,常用的消参方法有代入消参、加减消参、三角恒等式消参等,往往需要对参数方程进行变形,为消去参数创造条件.(2)在与直线、圆、椭圆有关的题目中,参数方程的使用会使问题的解决事半功倍,尤其是求取值范围和最值问题,可将参数方程代入相关曲线的普通方程中,根据参数的取值条件求解.[演练冲关](2018·广东广州花都区二模)已知直线l :⎩⎨⎧x =1+12t ,y =32t(t 为参数),曲线C 1:⎩⎪⎨⎪⎧x =cos θ,y =sin θ(θ为参数). (1)设l 与C 1相交于A ,B 两点,求|AB |;(2)若把曲线C 1上各点的横坐标缩短到原来的12倍,纵坐标缩短到原来的32倍,得到曲线C 2,设P 是曲线C 2上的一个动点,求它到直线l 距离的最小值.解:(1)直线l 的普通方程为y =3(x -1),曲线C 1的普通方程为x 2+y 2=1,由⎩⎪⎨⎪⎧y =3(x -1),x 2+y 2=1,解得l 与C 1的交点坐标分别为(1,0),⎝⎛⎭⎫12,-32,故|AB |=⎝⎛⎭⎫1-122+⎝⎛⎭⎫0+322=1.(2)由题意得,曲线C 2的参数方程为⎩⎨⎧x =12cos θ,y =32sin θ(θ为参数),则点P 的坐标是⎝⎛⎭⎫12cos θ,32sin θ,所以点P 到直线l 的距离d =⎪⎪⎪⎪32cos θ-32sin θ-32=64⎣⎡⎦⎤sin ⎝⎛⎭⎫θ-π4+2, 故当sin ⎝⎛⎭⎫θ-π4=-1时,d 取得最小值,最小值为23-64. 考点三 极坐标方程与参数方程的综合应用[典例感悟][典例] (2017·全国卷Ⅲ)在直角坐标系xOy 中,直线l 1的参数方程为⎩⎪⎨⎪⎧x =2+t ,y =kt (t 为参数),直线l 2的参数方程为⎩⎪⎨⎪⎧x =-2+m ,y =m k (m 为参数).设l 1与l 2的交点为P ,当k 变化时,P 的轨迹为曲线C .(1)写出C 的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设l 3:ρ(cos θ+sin θ)-2=0,M 为l 3与C 的交点,求M 的极径.[解] (1)消去参数t 得l 1的普通方程l 1:y =k (x -2);消去参数m 得l 2的普通方程l 2:y=1k (x +2).设P (x ,y ),由题设得⎩⎪⎨⎪⎧y =k (x -2),y =1k (x +2).消去k 得x 2-y 2=4(y ≠0).所以C 的普通方程为x 2-y 2=4(y ≠0).(2)C 的极坐标方程为ρ2(cos 2θ-sin 2θ)=4(0<θ<2π,θ≠π).联立⎩⎪⎨⎪⎧ρ2(cos 2θ-sin 2θ)=4,ρ(cos θ+sin θ)-2=0,得cos θ-sin θ=2(cos θ+sin θ).故tan θ=-13,从而cos 2θ=910,sin 2θ=110.代入ρ2(cos 2θ-sin 2θ)=4得ρ2=5,所以交点M 的极径为 5. [方法技巧]极坐标方程与参数方程综合问题的解题策略(1)求交点坐标、距离、线段长.可先求出直角坐标系方程,然后求解. (2)判断位置关系.先转化为平面直角坐标方程,然后再作出判断.(3)求参数方程与极坐标方程综合的问题.一般是先将方程化为直角坐标方程,利用直角坐标方程来研究问题.[演练冲关](2018·沈阳模拟)在平面直角坐标系xOy 中,已知曲线C 1的参数方程为⎩⎪⎨⎪⎧x =cos t ,y =1+sin t (t为参数),曲线C 2的直角坐标方程为x 2+(y -2)2=4.以平面直角坐标系的原点O 为极点,x 轴的正半轴为极轴建立极坐标系,射线l 的极坐标方程为θ=α,0<α<π.(1)求曲线C 1,C 2的极坐标方程;(2)设A ,B 分别为射线l 与曲线C 1,C 2除原点之外的交点,求|AB |的最大值.解:(1)由曲线C 1的参数方程⎩⎪⎨⎪⎧x =cos t ,y =1+sin t (t 为参数),消去参数t 得x 2+(y -1)2=1,即x 2+y 2-2y =0,∴曲线C 1的极坐标方程为ρ=2sin θ.由曲线C 2的直角坐标方程x 2+(y -2)2=4,得x 2+y 2-4y =0,∴曲线C 2的极坐标方程为ρ=4sin θ.(2)联立⎩⎪⎨⎪⎧θ=α,ρ=2sin θ,得A (2sin α,α),∴|OA |=2sin α,联立⎩⎪⎨⎪⎧θ=α,ρ=4sin θ,得B (4sin α,α),∴|OB |=4sin α,∴|AB |=|OB |-|OA |=2sin α,∵0<α<π,∴当α=π2时,|AB |有最大值,最大值为2.[课时跟踪检测]1.(2018·石家庄模拟)在平面直角坐标系中,直线l 的参数方程是⎩⎪⎨⎪⎧x =t ,y =2t (t 为参数),以坐标原点为极点,x 轴的正半轴为极轴,建立极坐标系,曲线C 的极坐标方程为ρ2+2ρsin θ-3=0.(1)求直线l 的极坐标方程;(2)若直线l 与曲线C 相交于A ,B 两点,求|AB |.解:(1)由⎩⎪⎨⎪⎧ x =t ,y =2t 消去t 得,y =2x ,把⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ代入y =2x ,得ρsin θ=2ρcos θ, 所以直线l 的极坐标方程为sin θ=2cos θ. (2)因为ρ2=x 2+y 2,y =ρsin θ,所以曲线C 的直角坐标方程为x 2+y 2+2y -3=0,即x 2+(y +1)2=4.圆C 的圆心C (0,-1)到直线l 的距离d =55, 所以|AB |=24-d 2=2955.2.(2018·益阳、湘潭模拟)在平面直角坐标系中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos α,y =sin α(α为参数).以直角坐标系的原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为ρcos ⎝⎛⎭⎫θ+π3=12.直线l 与曲线C 交于A ,B 两点. (1)求直线l 的直角坐标方程; (2)设点P (1,0),求|PA |·|PB |的值.解:(1)由ρcos ⎝⎛⎭⎫θ+π3=12得ρcos θcos π3-ρsin θsin π3=12,即12ρcos θ-32ρsin θ=12, 又ρcos θ=x ,ρsin θ=y ,∴直线l 的直角坐标方程为x -3y -1=0.(2)由⎩⎪⎨⎪⎧x =2cos α,y =sin α(α为参数)得曲线C 的普通方程为x 2+4y 2=4,∵P (1,0)在直线l 上,故可设直线l 的参数方程为⎩⎨⎧x =32t +1,y =12t(t 为参数),将其代入x 2+4y 2=4得7t 2+43t -12=0, ∴t 1·t 2=-127, 故|PA |·|PB |=|t 1|·|t 2|=|t 1·t 2|=127. 3.(2018·南昌模拟)在平面直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =3+2cos α,y =2+2sin α(α为参数),直线C 2的方程为y =33x ,以O 为极点,以x 轴的非负半轴为极轴建立极坐标系.(1)求曲线C 1和直线C 2的极坐标方程;(2)若直线C 2与曲线C 1交于P ,Q 两点,求|OP |·|OQ |的值. 解:(1)曲线C 1的普通方程为(x -3)2+(y -2)2=4,即x 2+y 2-23x -4y +3=0,则曲线C 1的极坐标方程为ρ2-23ρcos θ-4ρsin θ+3=0.∵直线C 2的方程为y =33x ,∴直线C 2的极坐标方程为θ=π6(ρ∈R ). (2)设P (ρ1,θ1),Q (ρ2,θ2),将θ=π6(ρ∈R )代入ρ2-23ρcos θ-4ρsin θ+3=0得,ρ2-5ρ+3=0,∴ρ1ρ2=3,∴|OP |·|OQ |=ρ1ρ2=3.4.(2018·福州模拟)在平面直角坐标系xOy 中,曲线C :⎩⎪⎨⎪⎧x =t cos α,y =sin α(α为参数,t >0).在以O 为极点,x 轴的正半轴为极轴的极坐标系中,直线l :ρcos ⎝⎛⎭⎫θ-π4= 2. (1)若l 与曲线C 没有公共点,求t 的取值范围; (2)若曲线C 上存在点到l 的距离的最大值为62+2,求t 的值. 解:(1)因为直线l 的极坐标方程为ρcos ⎝⎛⎭⎫θ-π4=2, 即ρcos θ+ρsin θ=2,所以直线l 的直角坐标方程为x +y -2=0.因为⎩⎪⎨⎪⎧x =t cos α,y =sin α(α为参数,t >0),所以曲线C 的普通方程为x 2t2+y 2=1(t >0),由⎩⎪⎨⎪⎧x +y =2,x 2t2+y 2=1,消去x 得,(1+t 2)y 2-4y +4-t 2=0,所以Δ=16-4(1+t 2)(4-t 2)<0,又t >0, 解得0<t <3,故t 的取值范围为(0,3). (2)由(1)知直线l 的方程为x +y -2=0,故曲线C 上的点(t cos α,sin α)到l 的距离d =|t cos α+sin α-2|2,故d max =t 2+1+22=62+2,解得t =±2.又t >0,∴t = 2.5.(2018·重庆模拟)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =3cos α,y =3sin α(α为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρcos ⎝⎛⎭⎫θ+π4=3 2. (1)求曲线C 1的普通方程和曲线C 2的直角坐标方程;(2)若点M 在曲线C 1上,点N 在曲线C 2上,求|MN |的最小值及此时点M 的直角坐标. 解:(1)由曲线C 1的参数方程可得曲线C 1的普通方程为x 29+y 23=1,由ρcos ⎝⎛⎭⎫θ+π4=32,得ρcos θ-ρsin θ=6,∴曲线C 2的直角坐标方程为x -y -6=0.(2)设点M 的坐标为(3cos β,3sin β),点M 到直线x -y -6=0的距离d =|3cos β-3sin β-6|2=⎪⎪⎪⎪23sin ⎝⎛⎭⎫β-π3+62=6+23sin ⎝⎛⎭⎫β-π32,当sin ⎝⎛⎭⎫β-π3=-1时,|MN |有最小值,最小值为32-6,此时点M 的直角坐标为⎝⎛⎭⎫332,-32. 6.(2018·昆明模拟)在直角坐标系xOy 中,已知倾斜角为α的直线l 过点A (2,1).以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.曲线C 的极坐标方程为ρ=2sin θ,直线l 与曲线C 分别交于P ,Q 两点.(1)写出直线l 的参数方程和曲线C 的直角坐标方程; (2)若|PQ |2=|AP |·|AQ |,求直线l 的斜率k .解:(1)由题意知直线l 的参数方程为⎩⎪⎨⎪⎧x =2+t cos α,y =1+t sin α(t 为参数),因为ρ=2sin θ,所以ρ2=2ρsin θ,把y =ρsin θ,x 2+y 2=ρ2代入得x 2+y 2=2y , 所以曲线C 的直角坐标方程为x 2+y 2=2y .(2)将直线l 的参数方程代入曲线C 的方程,得t 2+(4cos α)t +3=0, 由Δ=(4cos α)2-4×3>0,得cos 2α>34,由根与系数的关系,得t 1+t 2=-4cos α,t 1t 2=3.不妨令|AP |=|t 1|,|AQ |=|t 2|,所以|PQ |=|t 1-t 2|, 因为|PQ |2=|AP |·|AQ |,所以(t 1-t 2)2=|t 1|·|t 2|, 则(t 1+t 2)2=5t 1t 2,得(-4cos α)2=5×3, 解得cos 2α=1516,满足cos 2α>34,所以sin 2α=116,tan 2α=115,所以k =tan α=±1515. 7.(2019届高三·湘东五校联考)平面直角坐标系xOy 中,倾斜角为α的直线l 过点M (-2,-4),以原点O 为极点,x 轴的正半轴为极轴,建立极坐标系,曲线C 的极坐标方程为ρsin 2θ=2cos θ.(1)写出直线l 的参数方程(α为常数)和曲线C 的直角坐标方程; (2)若直线l 与C 交于A ,B 两点,且|MA |·|MB |=40,求倾斜角α的值.解:(1)直线l 的参数方程为⎩⎪⎨⎪⎧x =-2+t cos α,y =-4+t sin α(t 为参数),ρsin 2θ=2cos θ,即ρ2sin 2θ=2ρcos θ,将x =ρcos θ,y =ρsin θ代入得曲线C 的直角坐标方程为y 2=2x .(2)把直线l 的参数方程代入y 2=2x , 得t 2sin 2α-(2cos α+8sin α)t +20=0, 设A ,B 对应的参数分别为t 1,t 2,由一元二次方程根与系数的关系得,t 1+t 2=2cos α+8sin αsin 2α,t 1t 2=20sin 2α, 根据直线的参数方程中参数的几何意义,得|MA |·|MB |=|t 1t 2|=20sin 2α=40,得α=π4或α=3π4. 又Δ=(2cos α+8sin α)2-80sin 2α>0,所以α=π4.8.(2018·全国卷Ⅲ)在平面直角坐标系xOy 中,⊙O 的参数方程为⎩⎪⎨⎪⎧x =cos θ,y =sin θ(θ为参数),过点(0,-2)且倾斜角为α的直线l 与⊙O 交于A ,B 两点.(1)求α的取值范围;(2)求AB 中点P 的轨迹的参数方程.解:(1)⊙O 的直角坐标方程为x 2+y 2=1.当α=π2时,l 与⊙O 交于两点. 当α≠π2时,记tan α=k ,则l 的方程为y =kx - 2. l 与⊙O 交于两点需满足21+k 2<1, 解得k <-1或k >1,即α∈⎝⎛⎭⎫π2,3π4或α∈⎝⎛⎭⎫π4,π2. 综上,α的取值范围是⎝⎛⎭⎫π4,3π4. (2)l 的参数方程为⎩⎪⎨⎪⎧x =t cos α,y =-2+t sin α⎝⎛⎭⎫t 为参数,π4<α<3π4.设A ,B ,P 对应的参数分别为t A ,t B ,t P ,则t P =t A +t B 2,且t A ,t B 满足t 2-22t sin α+1=0. 于是t A +t B =22sin α,t P =2sin α. 又点P 的坐标(x ,y )满足⎩⎪⎨⎪⎧x =t P cos α,y =-2+t P sin α, 所以点P 的轨迹的参数方程是⎩⎨⎧ x =22sin 2α,y =-22-22cos 2α ⎝⎛⎭⎫α为参数,π4<α<3π4.。
高中数学选修4-4知识点(坐标系与参数方程)
这两种方程之间可以进行互化,通过消去参数可以把参数方程化为普通方程,而通过引 入参数,也可把普通方程化为参数方程. 2.圆的参数方程
1.圆心在坐标原点,半径为 r 的圆的参数方程 如图圆 O 与 x 轴正半轴交点 M0(r,0).
α α (t
为参数)
称为直线参数方程的标准形式,此时的参数 t 有明确的几何意义.
一般地,过点 M0(x0,y0),斜率 k=ba(a,b 为常数)的直线,参数方程为xy= =xy00+ +abtt(t 为参
数),称为直线参数方程的一般形式,此时的参数 t 不具有标准式中参数的几何意义. 四 渐开线与摆线(了解)
x=rsin φcos θ (2)空间点 P 的直角坐标(x,y,z)与球坐标(r,φ,θ)之间的变换公式为y=rsin φsin θ .
z=rcos φ
第二讲:
第4页
一 曲线的参数方程
1.参数方程的概念 1.参数方程的概念
(1)定义:一般地,在平面直角坐标系中,如果曲线上任意一点的坐标 x,y 都是某个变
2.参数方程与普通方程的区别与联系 (1)区别:普通方程 F(x,y)=0,直接给出了曲线上点的坐标 x,y 之间的关系,它含有
x,y 两个变量;参数方程xy= =fg((tt))(t 为参数)间接给出了曲线上点的坐标 x,y 之间的关系,
它含有三个变量 t,x,y,其中 x 和 y 都是参数 t 的函数. (2)联系:普通方程中自变量有一个,而且给定其中任意一个变量的值,可以确定另一
就可得到普通方程. (3)普通方程化参数方程,首先确定变数 x,y 中的一个与参数 t 的关系,例如 x=f(t),
2020高考终极训练试题 专题7 第1讲 坐标系与参数方程(大题)
第1讲坐标系与参数方程(大题)热点一极坐标与简单曲线的极坐标方程1.直角坐标与极坐标的互化把直角坐标系的原点作为极点,x轴的正半轴作为极轴,且在两种坐标系中取相同的长度单位.如图,设M是平面内的任意一点,它的直角坐标、极坐标分别为(x,y)和(ρ,θ),则⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ,⎩⎪⎨⎪⎧ρ2=x 2+y 2,tan θ=y x (x ≠0). 2.在与曲线的直角坐标方程进行互化时,一定要注意变量的范围,要注意转化的等价性. 例1 (2019·全国Ⅱ)在极坐标系中,O 为极点,点M (ρ0,θ0)(ρ0>0)在曲线C :ρ=4sin θ上,直线l 过点A (4,0)且与OM 垂直,垂足为P . (1)当θ0=π3时,求ρ0及l 的极坐标方程;(2)当M 在C 上运动且P 在线段OM 上时,求P 点轨迹的极坐标方程.跟踪演练1 在平面直角坐标系xOy 中,已知直线l :x +3y =53,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,圆C 的极坐标方程为ρ=4sin θ.(1)求直线l 的极坐标方程和圆C 的直角坐标方程;(2)射线OP :θ=π6(ρ≥0)与圆C 的交点为O ,A ,与直线l 的交点为B ,求线段AB 的长.热点二 简单曲线的参数方程 1.直线的参数方程过定点M (x 0,y 0),倾斜角为α的直线l 的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数).2.圆的参数方程圆心为点M (x 0,y 0),半径为r 的圆的参数方程为⎩⎪⎨⎪⎧x =x 0+r cos θ,y =y 0+r sin θ(θ为参数).3.圆锥曲线的参数方程(1)椭圆x 2a 2+y 2b 2=1(a >b >0)的参数方程为⎩⎪⎨⎪⎧x =a cos θ,y =b sin θ(θ为参数).(2)抛物线y 2=2px (p >0)的参数方程为⎩⎪⎨⎪⎧x =2pt 2,y =2pt (t 为参数).4.(1)参数方程的实质是将曲线上每一点的横、纵坐标分别用同一个参数表示出来,所以有时处理曲线上与点的坐标有关的问题时,用参数方程求解非常方便;(2)充分利用直线、圆、椭圆等参数方程中参数的几何意义,在解题时能够事半功倍.例2 (2019·聊城模拟)在直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =sin θ(θ为参数),倾斜角为α的直线l 经过点P (0,2). (1)求曲线C 的普通方程和直线l 的参数方程;(2)若直线l 与曲线C 有两个不同的交点M ,N ,求|PM |+|PN |的最大值.跟踪演练2 (2018·全国Ⅲ)在平面直角坐标系xOy 中,⊙O 的参数方程为⎩⎪⎨⎪⎧x =cos θ,y =sin θ(θ为参数),过点(0,-2)且倾斜角为α的直线l 与⊙O 交于A ,B 两点. (1)求α的取值范围;(2)求AB 中点P 的轨迹的参数方程.热点三 极坐标方程与参数方程的综合应用解决与圆、圆锥曲线的参数方程有关的综合问题时,要注意普通方程与参数方程的互化公式,主要是通过互化解决与圆、圆锥曲线上动点有关的问题,如最值、范围等.例3 (2019·衡阳调研)在直角坐标系xOy 中,设P 为⊙O :x 2+y 2=9上的动点,点D 为P 在x 轴上的投影,动点M 满足2DM →=MP →,点M 的轨迹为曲线C .以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为ρsin ⎝⎛⎭⎫θ+π6=23,点A (ρ1,0),B ⎝⎛⎭⎫ρ2,π2为直线l 上两点.(1)求曲线C 的参数方程;(2)是否存在M ,使得△MAB 的面积为8?若存在,有几个这样的点?若不存在,请说明理由.|AB |=ρ21+ρ22=8. S △MAB =12|AB |d ≥43,∵8>43,故存在符合题意的点M ,且存在两个这样的点.跟踪演练3 (2019·烟台模拟)在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧x =1-32t ,y =-3+12t (t 为参数),以坐标原点为极点,x 轴的正半轴为极轴,建立极坐标系,曲线C 的极坐标方程为ρ=222-cos 2θ.(1)求直线l 的普通方程及曲线C 的直角坐标方程;(2)设点P (1,-3),直线l 与曲线C 相交于A ,B 两点,求1|P A |+1|PB |的值.真题体验(2019·全国Ⅰ,理,22)在直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =1-t 21+t 2,y =4t1+t2(t 为参数).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为2ρcos θ+3ρsin θ+11=0.(1)求C 和l 的直角坐标方程; (2)求C 上的点到l 距离的最小值.押题预测在平面直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为ρcos θ-2ρsin θ+1=0,曲线C 的参数方程为⎩⎨⎧x =2cos α,y =3sin α(α为参数).(1)求曲线C 上的点到直线l 的距离的最大值;(2)直线l 与曲线C 交于A ,B 两点,已知点M (1,1),求|MA |·|MB |的值.A 组 专题通关1.(2019·贵州普通高等学校招生考试)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =t cos α,y =t sin α(t 为参数,t ≥0),在以O 为原点,x 轴正半轴为极轴的极坐标系中,曲线C 2,C 3的极坐标方程为ρ2-2ρcos θ-45=0,ρ(cos θ+sin θ)=75.(1)判断C 2,C 3的位置关系,并说明理由;(2)若tan α=34(0≤α≤π),C 1分别与C 2,C 3交于M ,N 两点,求|MN |.2.(2019·全国Ⅲ)如图,在极坐标系Ox 中,A (2,0),B ⎝⎛⎭⎫2,π4,C ⎝⎛⎭⎫2,3π4,D (2,π),弧»»»AB C BC D ,,所在圆的圆心分别是(1,0),⎝⎛⎭⎫1,π2,(1,π),曲线M 1是弧»AB ,曲线M 2是弧»BC ,曲线M 3是弧».CD(1)分别写出M 1,M 2,M 3的极坐标方程;(2)曲线M 由M 1,M 2,M 3构成,若点P 在M 上,且|OP |=3,求P 的极坐标.3.(2019·陕西八校联考)已知曲线C 的极坐标方程为ρ=4cos θsin 2θ,直线l 的参数方程为⎩⎪⎨⎪⎧x =t cos α,y =1+t sin α(t 为参数,0≤α<π). (1)把曲线C 的极坐标方程化为直角坐标方程,并说明曲线C 的形状; (2)若直线l 经过点(1,0),求直线l 被曲线C 截得的线段AB 的长.B 组 能力提高4.(2019·六安模拟)已知曲线E 的极坐标方程为ρ=4tan θcos θ,倾斜角为α的直线l 过点P (2,2).(1)求曲线E 的直角坐标方程和直线l 的参数方程;(2)设l 1,l 2是过点P 且关于直线x =2对称的两条直线,l 1与E 交于A ,B 两点,l 2与E 交于C ,D 两点.求证:|P A |∶|PD |=|PC |∶|PB |.5.在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =3cos α,y =3sin α(α为参数,α∈[0,π]).以O为极点,x 轴正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ2=61-sin 2θ+3cos 2θ.(1)求曲线C 1的极坐标方程;(2)设C 1与C 2的交点为M ,N ,求∠MON .数学核心素养练习一、数学抽象、直观想象素养1 数学抽象例1 (2019·全国Ⅱ)设函数f (x )的定义域为R ,满足f (x +1)=2f (x ),且当x ∈(0,1]时,f (x )=x (x -1).若对任意x ∈(-∞,m ],都有f (x )≥-89,则m 的取值范围是( )A.⎝⎛⎦⎤-∞,94 B.⎝⎛⎦⎤-∞,73 C.⎝⎛⎦⎤-∞,52 D.⎝⎛⎦⎤-∞,831.如图表示的是一位骑自行车和一位骑摩托车的旅行者在相距80 km 的甲、乙两城间从甲城到乙城所行驶的路程与时间之间的函数关系,有人根据函数图象,提出了关于这两个旅行者的如下信息:①骑自行车者比骑摩托车者早出发3 h,晚到1 h;②骑自行车者是变速运动,骑摩托车者是匀速运动;③骑摩托车者在出发1.5 h后追上了骑自行车者;④骑摩托车者在出发1.5 h后与骑自行车者速度一样.其中,正确信息的序号是________.素养2直观想象例2(2019·全国Ⅲ)如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则()A.BM=EN,且直线BM,EN是相交直线B.BM≠EN,且直线BM,EN是相交直线C.BM=EN,且直线BM,EN是异面直线D.BM≠EN,且直线BM,EN是异面直线2.(2018·北京)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为()A.1B.2C.3D.4二、逻辑推理、数学运算素养3逻辑推理例3(2019·全国Ⅱ)在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测.甲:我的成绩比乙高.乙:丙的成绩比我和甲的都高. 丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为( )A.甲、乙、丙B.乙、甲、丙C.丙、乙、甲D.甲、丙、乙3.(2018·全国Ⅰ)已知双曲线C :x 23-y 2=1,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M ,N .若△OMN 为直角三角形,则|MN |等于( ) A.32B.3C.2 3D.4 素养4 数学运算例4 (2019·全国Ⅰ)已知非零向量a ,b 满足|a |=2|b |,且(a -b )⊥b ,则a 与b 的夹角为( ) A.π6 B.π3 C.2π3 D.5π64.(2018·全国Ⅲ)设a=log0.20.3,b=log20.3,则()A.a+b<ab<0B.ab<a+b<0C.a+b<0<abD.ab<0<a+b三、数学建模、数据分析素养5数学建模例5(2019·全国Ⅰ)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是5-12⎝⎛⎭⎪⎫5-12≈0.618,称为黄金分割比例,著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是5-12.若某人满足上述两个黄金分割比例,且腿长为105 cm,头顶至脖子下端的长度为26 cm,则其身高可能是()A.165 cmB.175 cmC.185 cmD.190 cm5.(2019·北京)李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x元,每笔订单顾客网上支付成功后,李明会得到支付款的80%.(1)当x=10时,顾客一次购买草莓和西瓜各1盒,需要支付________元;(2)在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x的最大值为________.素养6数据分析例6(2019·全国Ⅲ)为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A,B两组,每组100只,其中A组小鼠给服甲离子溶液,B组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P(C)的估计值为0.70.(1)求乙离子残留百分比直方图中a,b的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).6.某市一水电站的年发电量y (单位:亿千瓦时)与该市的年降雨量x (单位:毫米)有如下统计数据:(1)若从统计的5年中任取2年,求这2年的发电量都高于7.5 亿千瓦时的概率;(2)由表中数据求得线性回归方程为y ^=0.004x +a ^,该水电站计划2019年的发电量不低于8.6 亿千瓦时,现由气象部门获悉2019年的降雨量约为1 800 毫米,请你预测2019年能否完成发电任务?回扣2复数、程序框图与平面向量1.复数的相关概念及运算法则(1)复数z=a+b i(a,b∈R)的分类①z是实数⇔b=0;②z是虚数⇔b≠0;③z是纯虚数⇔a=0且b≠0.(2)共轭复数复数z=a+b i(a,b∈R)的共轭复数z=a-b i.(3)复数的模复数z=a+b i(a,b∈R)的模|z|=a2+b2.(4)复数相等的充要条件a+b i=c+d i⇔a=c且b=d(a,b,c,d∈R).特别地,a +b i =0⇔a =0且b =0(a ,b ∈R ). (5)复数的运算法则加减法:(a +b i)±(c +d i)=(a ±c )+(b ±d )i ; 乘法:(a +b i)(c +d i)=(ac -bd )+(ad +bc )i ; 除法:(a +b i)÷(c +d i)=ac +bd c 2+d 2+bc -adc 2+d2i(c +d i ≠0).()其中a ,b ,c ,d ∈R2.复数的几个常见结论 (1)(1±i)2=±2i. (2)1+i 1-i =i ,1-i1+i=-i. (3)i 4n =1,i 4n +1=i ,i 4n +2=-1,i 4n +3=-i ,i 4n +i 4n +1+i 4n +2+i 4n +3=0(n ∈Z ). 3.程序框图的三种基本逻辑结构 (1)顺序结构. (2)条件结构. (3)循环结构. 4.平面向量基本定理如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.我们把不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底. 5.向量a 与b 的夹角已知两个非零向量a 和b .作OA →=a ,OB →=b ,则∠AOB =θ(0°≤θ≤180°)叫做向量a 与b 的夹角.当θ=0°时,a 与b 同向;当θ=180°时,a 与b 反向.如果a 与b 的夹角是90°,我们说a 与b 垂直,记作a ⊥b . 6.平面向量的数量积(1)若a ,b 为非零向量,夹角为θ,则a·b =|a||b |cos θ. (2)设a =(x 1,y 1),b =(x 2,y 2),则a·b =x 1x 2+y 1y 2.(3)a ·b 的几何意义:数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos θ的乘积. 7.两个非零向量平行、垂直的充要条件 若a =(x 1,y 1),b =(x 2,y 2),则 (1)a ∥b ⇔a =λb (b ≠0)⇔x 1y 2-x 2y 1=0. (2)a ⊥b ⇔a·b =0⇔x 1x 2+y 1y 2=0. 8.利用数量积求长度(1)若a =(x ,y ),则|a |=a·a =x 2+y 2. (2)若A (x 1,y 1),B (x 2,y 2),则 |AB →|=(x 2-x 1)2+(y 2-y 1)2. 9.利用数量积求夹角设a ,b 为非零向量,若a =(x 1,y 1),b =(x 2,y 2),θ为a 与b 的夹角, 则cos θ=a·b|a||b |=x 1x 2+y 1y 2x 21+y 21 x 22+y 22.10.三角形“四心”向量形式的充要条件设O 为△ABC 所在平面上一点,角A ,B ,C 所对的边长分别为a ,b ,c ,则 (1)O 为△ABC 的外心⇔|OA →|=|OB →|=|OC →|=a 2sin A. (2)O 为△ABC 的重心⇔OA →+OB →+OC →=0. (3)O 为△ABC 的垂心⇔OA →·OB →=OB →·OC →=OC →·OA →. (4)O 为△ABC 的内心⇔aOA →+bOB →+cOC →=0.1.复数z为纯虚数的充要条件是a=0且b≠0(z=a+b i,a,b∈R).还要注意巧妙运用参数问题和合理消参的技巧.2.复数的运算与多项式运算类似,要注意利用i2=-1化简合并同类项.3.在解决含有循环结构的框图时,要弄清停止循环的条件.注意理解循环条件中“≥”与“>”的区别.4.解决程序框图问题时,要注意流程线的指向与其上文字“是”“否”的对应.5.在循环结构中,易错误判定循环体结束的条件,导致错求输出的结果.6.a·b>0是〈a,b〉为锐角的必要不充分条件;a·b<0是〈a,b〉为钝角的必要不充分条件.数学的核心素养引领复习一、数学抽象、直观想象素养1数学抽象通过由具体的实例概括一般性结论,看我们能否在综合的情境中学会抽象出数学问题,并在得到数学结论的基础上形成新的命题,以此考查数学抽象素养.例1(2019·全国Ⅱ)设函数f(x)的定义域为R,满足f(x+1)=2f(x),且当x∈(0,1]时,f(x)=x(x -1).若对任意x∈(-∞,m],都有f(x)≥-89,则m的取值范围是()A.⎝⎛⎦⎤-∞,94 B.⎝⎛⎦⎤-∞,73C.⎝⎛⎦⎤-∞,52 D.⎝⎛⎦⎤-∞,83答案B解析当-1<x≤0时,0<x+1≤1,则f(x)=12f(x+1)=12(x+1)x;当1<x≤2时,0<x-1≤1,则f(x)=2f(x-1)=2(x-1)(x-2);当2<x≤3时,0<x-2≤1,则f(x)=2f(x-1)=22f(x-2)=22(x-2)(x-3),…,由此可得f(x)=⎩⎪⎨⎪⎧…,12(x+1)x,-1<x≤0,x(x-1),0<x≤1,2(x-1)(x-2),1<x≤2,22(x-2)(x-3),2<x≤3,由此作出函数f(x)的图象,如图所示.由图可知当2<x≤3时,令22(x-2)·(x-3)=-89,整理,得(3x-7)(3x-8)=0,解得x=73或x=83,将这两个值标注在图中.要使对任意x∈(-∞,m]都有f(x)≥-89,必有m≤73,即实数m的取值范围是⎝⎛⎦⎤-∞,73,故选B.1.如图表示的是一位骑自行车和一位骑摩托车的旅行者在相距80 km的甲、乙两城间从甲城到乙城所行驶的路程与时间之间的函数关系,有人根据函数图象,提出了关于这两个旅行者的如下信息:①骑自行车者比骑摩托车者早出发3 h,晚到1 h;②骑自行车者是变速运动,骑摩托车者是匀速运动;③骑摩托车者在出发1.5 h后追上了骑自行车者;④骑摩托车者在出发1.5 h后与骑自行车者速度一样.其中,正确信息的序号是________.答案①②③解析看时间轴易知①正确;骑摩托车者行驶的路程与时间的函数图象是直线,所以是匀速运动,而骑自行车者行驶的路程与时间的函数图象是折线,所以是变速运动,因此②正确;两条曲线的交点的横坐标对应着4.5,故③正确,④错误.素养2直观想象通过空间图形与平面图形的观察以及图形与数量关系的分析,通过想象对复杂的数学问题进行直观表达,看我们能否运用图形和空间想象思考问题,感悟事物的本质,形成解决问题的思路,以此考查直观想象素养.例2(2019·全国Ⅲ)如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则()A.BM=EN,且直线BM,EN是相交直线B.BM≠EN,且直线BM,EN是相交直线C.BM=EN,且直线BM,EN是异面直线D.BM≠EN,且直线BM,EN是异面直线答案B解析取CD的中点O,连接ON,EO,因为△ECD为正三角形,所以EO⊥CD,又平面ECD⊥平面ABCD,平面ECD∩平面ABCD=CD,所以EO⊥平面ABCD.设正方形ABCD的边长为2,则EO=3,ON=1,所以EN2=EO2+ON2=4,得EN=2.过M作CD的垂线,垂足为P,连接BP,则MP=32,CP=32,所以BM2=MP2+BP2=⎝⎛⎭⎫322+⎝⎛⎭⎫322+22=7,得BM=7,所以BM≠EN.连接BD,BE,因为四边形ABCD为正方形,所以N为BD的中点,即EN,MB均在平面BDE内,所以直线BM,EN是相交直线.2.(2018·北京)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为()A.1B.2C.3D.4答案C解析由三视图得到空间几何体,如图所示,则P A⊥平面ABCD,平面ABCD为直角梯形,P A=AB=AD=2,BC=1,所以P A⊥AD,P A⊥AB,P A⊥BC.又BC⊥AB,AB∩P A=A,AB,P A⊂平面P AB,所以BC⊥平面P AB.又PB⊂平面P AB,所以BC⊥PB.在△PCD中,PD=22,PC=3,CD=5,所以△PCD为锐角三角形.所以侧面中的直角三角形为△P AB,△P AD,△PBC,共3个.故选C.二、逻辑推理、数学运算素养3逻辑推理通过提出问题和论证命题的过程,看我们能否选择合适的论证方法和途径予以证明,并能用准确、严谨的数学语言表述论证过程,以此考查逻辑推理素养.例3(2019·全国Ⅱ)在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测.甲:我的成绩比乙高.乙:丙的成绩比我和甲的都高.丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为( )A.甲、乙、丙B.乙、甲、丙C.丙、乙、甲D.甲、丙、乙答案 A解析 由于三人成绩互不相同且只有一个人预测正确.若甲预测正确,则乙、丙预测错误,于是三人按成绩由高到低的次序为甲、乙、丙;若甲预测错误,则甲、乙按成绩由高到低的次序为乙、甲,再假设丙预测正确,则乙、丙按成绩由高到低的次序为丙、乙,于是甲、乙、丙按成绩由高到低排序为丙、乙、甲,从而乙的预测也正确,与事实矛盾;若甲、丙预测错误,则可推出乙的预测也错误.综上所述,三人按成绩由高到低的次序为甲、乙、丙.3.(2018·全国Ⅰ)已知双曲线C :x 23-y 2=1,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M ,N .若△OMN 为直角三角形,则|MN |等于( ) A.32 B.3 C.2 3 D.4 答案 B解析 由已知得双曲线的两条渐近线方程为y =±13x . 设两渐近线的夹角为2α,则有tan α=13=33, 所以α=30°.所以∠MON =2α=60°.又△OMN 为直角三角形,由于双曲线具有对称性,不妨设MN ⊥ON ,如图所示. 在Rt △ONF 中,|OF |=2, 则|ON |= 3.则在Rt △OMN 中,|MN |=|ON |·tan 2α=3·tan 60°=3.素养4 数学运算通过各类数学问题特别是综合性问题的处理,看我们能否做到明确运算对象,分析运算条件,选择运算法则,把握运算方向,设计运算程序,获取运算结果,以此考查数学运算素养.例4 (2019·全国Ⅰ)已知非零向量a ,b 满足|a |=2|b |,且(a -b )⊥b ,则a 与b 的夹角为( ) A.π6 B.π3 C.2π3 D.5π6 答案 B解析 设a 与b 的夹角为α,∵(a -b )⊥b ,∴(a -b )·b =0,∴a ·b =b 2,∴|a |·|b |cos α=|b |2,又|a |=2|b |,∴cos α=12,∵α∈[0,π],∴α=π3,故选B.4.(2018·全国Ⅲ)设a =log 0.20.3,b =log 20.3,则( ) A.a +b <ab <0 B.ab <a +b <0 C.a +b <0<ab D.ab <0<a +b答案 B解析 ∵a =log 0.20.3>log 0.21=0, b =log 20.3<log 21=0,∴ab <0.∵a +b ab =1a +1b=log 0.30.2+log 0.32=log 0.30.4, ∴1=log 0.30.3>log 0.30.4>log 0.31=0, ∴0<a +b ab<1,∴ab <a +b <0.三、数学建模、数据分析素养5数学建模通过实际应用问题的处理,看我们是否能够运用数学语言清晰、准确地表达数学建模的过程和结果,以此考查数学建模素养.例5(2019·全国Ⅰ)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是5-12⎝⎛⎭⎪⎫5-12≈0.618,称为黄金分割比例,著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是5-12.若某人满足上述两个黄金分割比例,且腿长为105 cm,头顶至脖子下端的长度为26 cm,则其身高可能是()A.165 cmB.175 cmC.185 cmD.190 cm答案B解析若头顶至咽喉的长度为26 cm,则身高为26+26÷0.618+(26+26÷0.618) ÷0.618≈178(cm),此人头顶至脖子下端的长度为26 cm,即头顶至咽喉的长度小于26 cm,所以其身高小于178 cm,同理其身高也大于105÷0.618≈170(cm),故其身高可能是175 cm,故选B.5.(2019·北京)李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x元,每笔订单顾客网上支付成功后,李明会得到支付款的80%.(1)当x =10时,顾客一次购买草莓和西瓜各1盒,需要支付________元;(2)在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x 的最大值为________. 答案 130 15解析 (1)顾客一次购买草莓和西瓜各1盒,总价为60+80=140(元),又140>120,所以优惠10元,顾客实际需要付款130元.(2)设顾客一次购买的水果总价为m 元,由题意知,当0<m <120时,x =0,当m ≥120时,(m -x )×80%≥m ×70%,得x ≤m 8对任意m ≥120恒成立,又m8≥15,所以x 的最大值为15.素养6 数据分析通过对概率与统计问题中大量数据的分析和加工,看我们能否获得数据提供的信息及其所呈现的规律,进而分析随机现象的本质特征,发现随机现象的统计规律,以此考查数据分析素养.例6 (2019·全国Ⅲ)为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A ,B 两组,每组100只,其中A 组小鼠给服甲离子溶液,B 组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C 为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P (C )的估计值为0.70.(1)求乙离子残留百分比直方图中a ,b 的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表). 解 (1)由已知得0.70=a +0.20+0.15,故a =0.35.b =1-0.05-0.15-0.70=0.10.(2)甲离子残留百分比的平均值的估计值为2×0.15+3×0.20+4×0.30+5×0.20+6×0.10+7×0.05=4.05. 乙离子残留百分比的平均值的估计值为3×0.05+4×0.10+5×0.15+6×0.35+7×0.20+8×0.15=6.00.6.某市一水电站的年发电量y (单位:亿千瓦时)与该市的年降雨量x (单位:毫米)有如下统计数据:2013年 2014年 2015年 2016年 2017年 降雨量x (毫米) 1 500 1 400 1 900 1 600 2 100 发电量y (亿千瓦时)7.47.09.27.910.0(1)若从统计的5年中任取2年,求这2年的发电量都高于7.5 亿千瓦时的概率;(2)由表中数据求得线性回归方程为y ^=0.004x +a ^,该水电站计划2019年的发电量不低于8.6 亿千瓦时,现由气象部门获悉2019年的降雨量约为1 800 毫米,请你预测2019年能否完成发电任务?解 (1)从统计的5年发电量中任取2年,基本事件为{7.4,7.0},{7.4,9.2},{7.4,7.9},{7.4,10.0},{7.0,9.2},{7.0,7.9},{7.0,10.0},{9.2,7.9},{9.2,10.0},{7.9,10.0},共10个;其中这2年的发电量都高于7.5 亿千瓦时的基本事件为{9.2,7.9},{9.2,10.0},{7.9,10.0},共3个.所以这2年发电量都高于7.5 亿千瓦时的概率为P =310.(2)因为x =1 500+1 400+1 900+1 600+2 1005=8 5005=1 700, y =7.4+7.0+9.2+7.9+10.05=41.55=8.3. 又直线y ^=0.004x +a ^过点(x ,y ),所以8.3=0.004×1 700+a ^, 解得a ^=1.5, 所以y ^=0.004x +1.5.当x =1 800时,y ^=0.004×1 800+1.5=8.7>8.6, 所以预测该水电站2019年能完成发电任务.。
高考数学一轮复习 坐标系与参数方程课件 文(选修4-4)
13
5.几种常见曲线的参数方程 (1)直线 经过点P0(x0,y0),倾斜角为α的直线的参数方程是 x=x0+tcos α, y=y0+tsin α (t为参数).
完整版ppt
14
问题探究2:在直线的参数方程xy==xy00++ttcsions
α, α
(t为参数)
中,t的几何意义是什么?如何利用t的几何意义求直线上任两点
标x,y都是某个变数t的函数:xy==fgtt,, 并且对于t的每一个 允许值,由方程组所确定的点M(x,y)都在这条曲线上 ,那 么方程就叫做这条曲线的参数方程,联系变数x,y之间关系 的变数t叫做参变数,简称 参数 .相对于参数方程而言,直 接给出点的坐标间关系的方程叫做 普通方程 .
完整版ppt
完整版ppt
9
3.简单曲线的极坐标方程 (1)直线的极坐标方程 若直线过点M(ρ0,θ0),且极轴到此直线的角为α,则它的方 程为 ρsin(θ-α)=ρ0sin(θ0-α) . 几个特殊位置的直线的极坐标方程 ①直线过极点: θ=θ0 和 θ=π-θ0 ; ②直线过点M(a,0)且垂直于极轴: ρcos θ=a ; ③直线过点M(b,π2)且平行于极轴: ρsin θ=b .
22t+m,
y= 22t,
消去 t,得 x-y
-m=0,∵直线 l 与圆 C 相切,∴|2-2m|=2,∴m=2±2 2.
答案:A
完整版ppt
22
3.(2014·天津卷)在以 O 为极点的极坐标系中,圆 ρ=4sin θ 和直线 ρsin θ=a 相交于 A,B 两点,若△AOB 是等边三角形, 则 a 的值为________.
完整版ppt
11
问题探究1:平面内的点与点的直角坐标的对应关系是什 么?与点的极坐标呢?
(完整)高中数学选修4—4(坐标系与参数方程)知识点总结,推荐文档
坐标系与参数方程 知识点1.平面直角坐标系中的坐标伸缩变换设点P(x,y)是平面直角坐标系中的任意一点,在变换(0):(0)x xy yλλϕμμ'=>⎧⎨'=>⎩g g 的作用下,点P(x,y)对应到点(,)P x y ''',称ϕ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换. 2.极坐标系的概念(1)极坐标系如图所示,在平面内取一个定点O ,叫做极点,自极点O 引一条射线Ox ,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.注:极坐标系以角这一平面图形为几何背景,而平面直角坐标系以互相垂直的两条数轴为几何背景;平面直角坐标系内的点与坐标能建立一一对应的关系,而极坐标系则不可.但极坐标系和平面直角坐标系都是平面坐标系.(2)极坐标:设M 是平面内一点,极点O 与点M 的距离|OM|叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的角xOM ∠叫做点M 的极角,记为θ.有序数对(,)ρθ叫做点M 的极坐标,记作(,)M ρθ.一般地,不作特殊说明时,我们认为0,ρ≥θ可取任意实数. 特别地,当点M 在极点时,它的极坐标为(0,θ)(θ∈R).和直角坐标不同,平面内一个点的极坐标有无数种表示.如果规定0,02ρθπ>≤<,那么除极点外,平面内的点可用唯一的极坐标(,)ρθ表示;同时,极坐标(,)ρθ表示的点也是唯一确定的.3.极坐标和直角坐标的互化(1)互化背景:把直角坐标系的原点作为极点,x 轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,如图所示:(2)互化公式:设M 是坐标平面内任意一点,它的直角坐标是(,)x y ,极坐标是(,)ρθ(0ρ≥),于是极坐标与直角坐标的互化公式如表:点M直角坐标(,)x y 极坐标(,)ρθ互化公式cos sin x y ρθρθ=⎧⎨=⎩222tan (0)x y yx xρθ=+=≠ 在一般情况下,由tan θ确定角时,可根据点M 所在的象限最小正角. 4.常见曲线的极坐标方程曲线 图形 极坐标方程圆心在极点,半径为r 的圆(02)r ρθπ=≤<圆心为(,0)r ,半径为r 的圆2cos ()22r ππρθθ=-≤<圆心为(,)2r π,半径为r 的圆2sin (0)r ρθθπ≤<过极点,倾斜角为α的直线(1)()()R R θαρθπαρ=∈=+∈或(2)(0)(0)θαρθπαρ=≥=+≥和过点(,0)a ,与极轴垂直的直线cos ()22a ππρθθ=-<<过点(,)2a π,与极轴平行的直线sin (0)a ρθθπ=<<注:由于平面上点的极坐标的表示形式不唯一,即(,),(,2),(,),(,),ρθρπθρπθρπθ+-+--+都表示同一点的坐标,这与点的直角坐标的唯一性明显不同.所以对于曲线上的点的极坐标的多种表示形式,只要求至少有一个能满足极坐标方程即可.例如对于极坐标方程,ρθ=点(,)44M ππ可以表示为5(,2)(,2),444444ππππππππ+-或或(-)等多种形式,其中,只有(,)44ππ的极坐标满足方程ρθ=.二、参数方程 1.参数方程的概念一般地,在平面直角坐标系中,如果曲线上任意一点的坐标,x y 都是某个变数t 的函数()()x f t y g t =⎧⎨=⎩①,并且对于t 的每一个允许值,由方程组①所确定的点(,)M x y 都在这条曲线上,那么方程①就叫做这条曲线的参数方程,联系变数,x y 的变数t 叫做参变数,简称参数,相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程.2.参数方程和普通方程的互化(1)曲线的参数方程和普通方程是曲线方程的不同形式,一般地可以通过消去参数而从参数方程得到普通方程.(2)如果知道变数,x y 中的一个与参数t 的关系,例如()x f t =,把它代入普通方程,求出另一个变数与参数的关系()y g t =,那么()()x f t y g t =⎧⎨=⎩就是曲线的参数方程,在参数方程与普通方程的互化中,必须使,x y 的取值范围保持一致.注:普通方程化为参数方程,参数方程的形式不一定唯一。
高中数学《 坐标系与参数方程》课件 新人教版选修4-4
内 第二讲 参数方程 容 一、曲线的参数方程
二、圆锥曲线的参数 方程
三、直线的参数方程
四、渐开线与摆线
坐 坐标系是解析几何的
标 基础,有了坐标系,
系
使几何问题代数化成 为可能,它是实现几何
的 图形与代数形式互相转
作 化的基础,使精确刻画
用
几何图形的位置和物体 运动的轨迹成为可能。
序数组 (, , z)叫做P的柱坐标,记作 P(, , z), 其中 0,0 2,- z
柱 坐 标 系
x
P(,,z)
z
o
y
x
Q
柱
坐
标
互 化
与 直 角
坐
标
的
空间点 P的直角坐(x标 , y,z)与柱坐(标 ,,z)
之间的变换公式为
xcos {y sin
zz
球 坐 标 系 的 概 念
坐 在不同的坐标系中, 标 同一个几何图形可 系 以有不同的表现形 的 式,这使解决问题 多 的方法有了更多的 样 选择。 性
平 教材从一个思考题出发,复
面
习了建立平面直角坐标系解
直
决实际问题的方法,并进一
角 坐
步提出思考:这种方法与用 直角坐标刻画点P的位置有 什么区别和联系?你认为哪
标
种方法更方便?为引入极坐
z rcos
曲 参数方程是曲线的另
线
一种表现形式,它弥 补了普通方程表示曲
的 线的不足,极坐标与
参 参数方程为研究较为
数 复杂的曲线提供了工 方 具。
程
参 一般地,在平面直角坐标系中, 如果曲线上任意一点的坐标
数 都是x ,某y 个变数t的函数 ,
专题7第1讲选修4-4坐标系与参数方程-2021届高三高考数学二轮复习课件
方程为
ρ=2acosθ,曲线
C2
的极坐标方程为
ρ=sin
2 θ+cos
θ.曲线
C1
与曲
线 C2 交于 M,N 两点.
(1)若 a=2,求|MN|的值.
(2)若 a=4-2 2,求∠MON 的大小.
专题7第1讲选修4-4坐标系与参数方程 -2021 届高三 高考数 学二轮 复习课 件
专题7第1讲选修4-4坐标系与参数方程 -2021 届高三 高考数 学二轮 复习课 件
第二部分
专题篇•素养提升()
专题七 选修部分
第1讲 选修4-4:坐标系与参数方程
1 解题策略 • 明方向 2 考点分类 • 析重点 3 真题回放 • 悟高考 4 预测演练 • 巧押题
● 坐标系与参数方程是高考选考内容之一,高考对本讲的考查内容有: ● (1)直线与圆的极坐标方程以及极坐标方程与直角坐标方程的互化. ● (2)直线、圆与圆锥曲线的参数方程以及参数方程与普通方程的互化.
∴12(cos 2θ+1)+12sin 2θ=2+4 2,得 sin(2θ+π4)=12.
结合图形可知 2θ1+π4=π6,2θ2+π4=56π,
θ1=1π2-π8,θ2=51π2-π8,
得∠MON=θ2-θ1=π3.
考点一 极坐标方程及其应用
● 1.圆的极坐标方程
●
若圆心为M(ρ0,θ0),半径为r的圆的方程为
●
ρ2-2ρ0ρcos(θ-θ0)+ρ-r2=0.
● 几个特殊位置的圆的极坐标方程
专题7第1讲选修4-4坐标系与参数方程 -2021 届高三 高考数 学二轮 复习课 件
专题7第1讲选修4-4坐标系与参数方程 -2021 届高三 高考数 学二轮 复习课 件
高中数学课件-第一部分 专题七 第一讲 坐标系与参数方程(选修4-4)
第一讲 坐标系与参数方程(选修4-4)
选讲考点突破 限时规范训练 上页 下页
试题 解析
5.(2016·张掖一模)已知直线l的参数方程为
x=-1-
3 2t
y= 3+12t
(t为参数),以
坐标原点为极点,x轴的正半轴为极轴建立极坐标系,圆C的极坐标方程为ρ =4sin(θ-π6). (1)求圆C的直角坐标方程; (2)若P(x,y)是直线l与圆面ρ≤4sin(θ-π6)的公共点,求 3x+y的取值范围.
第一讲 坐标系与参数方程(选修4-4)
选讲考点突破 限时规范训练 上页 下页
试题 解析
(1)因为圆C的极坐标方程为ρ=4sin(θ-π6),
所以ρ2=4ρsin(θ-π6)=4ρ(
3 2 sin
θ-12cos
θ).
又ρ2=x2+y2,x=ρcos θ,y=ρsin θ,
所以x2+y2=2 3y-2x,
第一讲 坐标系与参数方程(选修4-4)
选讲考点突破 限时规范训练 上页 下页
第一讲 坐标系与参数方程(选修4-4)
第一讲 坐标系与参数方程(选修4-4)
选讲考点突破 限时规范训练 上页 下页
试题 解析
1.(2016·山西四校联考)已知曲线C的参数方程为
x=3+
y=1+
10cos α 10sin α
(t为参数),
与C2的直角坐标方程联立,得t2-2tcos α+1-2sin α=0, 则|TM|·|TN|=|t1t2|=|1-2sin α|,
因为α∈(0,π2],所以|TM|·|TN|∈[0,1].
第一讲 坐标系与参数方程(选修4-4)
限时规范训练
选讲考点突破 限时规范训练 上页 下页
人教A版高三理科数学二轮模块三重点专题专题七 选修4系列选讲 第一讲 坐标系与参数方程(选修4-4)
3.几个特殊位置的直线的极坐标方程
高
(1)直线过极点:θ=θ0 和 θ=π+θ0.
考
真 题
(2)直线过点 M(a,0)且垂直于极轴:ρcosθ=A.
体 验
(3)直线过 Mb,π2且平行于极轴:ρsinθ=B.
第9页
与名师对话·系列丛书
大二轮专题辅导与增分攻略•数学 (理)
【例 1】 (2019·全国卷Ⅱ)在极坐标系中,O 为极点,点 M(ρ0,θ0)(ρ0>0)在曲线 C:
体
验
= |
2sin2θ4+π4+1|,所以||OOMN||的最小值为
24+1=4(
2-1).
第22页
与名师对话·系列丛书
角度 2:直线参数方程中参数几何意义的应用
大二轮专题辅导与增分攻略•数学 (理)
核 心
【例 3】 (2018·全国卷Ⅱ)在直角坐标系 xOy 中,曲线 C 的参数方程为yx==42scionsθθ,
(t 为参数).
真
题
体
验
第20页
与名师对话·系列丛书
大二轮专题辅导与增分攻略•数学 (理)
(1)求曲线 C1 和曲线 C2 的普通方程;
核 心
(2)过坐标原点 O 作直线交曲线 C1 于点 M(异于点 O),交曲线 C2 于点 N,求||OOMN||的
考 点
最小值.
突
破
[解题指导] (1)利用 sin2α+cos2α=1 求曲线 C1 的普通方程→利用代换消去参数 t
考 点
当 cosα=0 时,l 的普通方程为 x=1.
突
破
(2)将 l 的参数方程代入 C 的普通方程,整理得关于 t 的方程(1+3cos2α)t2+4(2cosα+
选修4-4坐标系与参数方程复习课件
考
向
目
突
录
破
·
典
例
基
精
础
析
回
扣
·
专
步
题
步
演
为 练
营
·
模
拟
考
场
考
向
目
突
录
破
·
典
例
基
精
础
析
回
扣
·
专
步
题
步
演
为 练
营
·
模
拟
考
场
考
向
目
突
录
破
·
典
例
基
精
础
析
回
扣
·
专
步
题
步
演
为 练
营
·
模
拟
考
场
考
向
目
突
录
破
·
典
例
基
精
础
析
回
扣
·
专
步
题
步
演
为 练
营
·
模
拟
考
场
考
向
目
突
录
破
·
典
例
基
精
础
析
回
扣
·
专
考
场
考
向
目
突
录
破
·
典
例
基
精
础
析
回
扣
·
专
步
题
步
演
为 练
第十二章坐标系与参数方程(选修4—4)课件
第十二章 坐标系与参数方程[选修4-4] 第一节 坐标系 第二节 参数方程
数学(广东专版)
第一节 坐标系
基 础
第十二章 坐标系与参数方程[选修4-4]
知
识
要 打 牢
解 题 训
练
要
高 频
[知识能否忆起]
高
效
考
点
要
通
关
数学(广东专版)
第一节 坐标系
一、极坐标系与极坐标
基 础
如图,在平面内取一个定点O,叫做极
知 识 要 打 牢
为 y′=2sin4x′+π4”则此伸缩变换为________.
解
析
:
设
伸
缩
变
换
为
x′=λx,λ>0, y′=μy,μ>0,
代入
y′ =
解 题 训
高
2sin4x′+π4,得 μy=2sin4λx+π4.∴y=μ2sin4λx+π4.
练 要 高
频
考 点 要 通 关
与 y=sin2x+π4对比知,μ42λ==12. , 所以所求伸缩变换为x′=12x,
高
点.
要 高
频 考
2.极坐标方程应用时,一般化为直角坐标方程, 效
点
要
转化时注意方程的等价性.
通
关
数学(广东专版)
第一节 坐标系
基 3.(2012·深圳调研)在极坐标系中,点 P1,π2到曲线
础
知 识 要 打 牢
l:ρcosθ+π4=3 2 2上的点的最短距离为________.
解
解析:点 P1,π2的直角坐标是(0,1),曲线 l:ρcosθ+π4
题 训 练