2015-2019年考研数学一真题及答案解析精编版
2015年考研数学一真题及答案解析
2015年全国硕士研究生入学统一考试数学(一)试题一、选择题:1:8小题,每小题4分,共32分。
下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上。
(1)设函数()f x 在(),-∞+∞内连续,其中二阶导数()''f x 的图形如图所示,则曲线()=y f x 的拐点的个数为 ( )(A) 0 (B) 1 (C) 2 (D) 3【答案】(C )【解析】拐点出现在二阶导数等于0,或二阶导数不存在的点,并且在这点的左右两侧二阶导函数异号。
因此,由()f x ''的图形可得,曲线()y f x =存在两个拐点.故选(C ). (2)设211()23=+-x x y e x e 是二阶常系数非齐次线性微分方程'''++=x y ay by ce 的一个特解,则 ( )(A) 3,2,1=-==-a b c (B) 3,2,1===-a b c (C) 3,2,1=-==a b c (D) 3,2,1===a b c【答案】(A )【分析】此题考查二阶常系数非齐次线性微分方程的反问题——已知解来确定微分方程的系数,此类题有两种解法,一种是将特解代入原方程,然后比较等式两边的系数可得待估系数值,另一种是根据二阶线性微分方程解的性质和结构来求解,也就是下面演示的解法.【解析】由题意可知,212x e 、13x e -为二阶常系数齐次微分方程0y ay by '''++=的解,所以2,1为特征方程20r ar b ++=的根,从而(12)3a =-+=-,122b =⨯=,从而原方程变为32x y y y ce '''-+=,再将特解x y xe =代入得1c =-.故选(A )(3) 若级数1∞=∑nn a条件收敛,则=x 3=x 依次为幂级数1(1)∞=-∑n n n na x 的 ( )(A) 收敛点,收敛点 (B) 收敛点,发散点 (C) 发散点,收敛点 (D) 发散点,发散点 【答案】(B )【分析】此题考查幂级数收敛半径、收敛区间,幂级数的性质。
2015考研数一真题答案及详细解析
(8) D
解 因为X,Y不相关,所以Cov(X,Y) =E(XY) =EX• EY=O, 即E(XY)=EX• EY, 则E[X(X +Y — 2)] =E(X2 + XY-2X) =E(X2 ) +E(XY) — 2EX
=[DX+ (EX) 2 ] +EX• EY-2EX=5.
二、填空题
(9)
——
(6) A 解
�m� Q =P[�
�1�)
又因为 所以
_J, pTAP{ 1
(1
QT A Q
。 一。 ff[� �ff ( 1
_
0
\0
01
O\ 勹 0
PTAP[�!
rn
!
�l�J
_ \0 0
。1
·) 0 10
\ 、
0 1
2
2
_J[ rJ[ 三J[ 1
王子
)[
J
玄�l子 �
-1
故应选A.
(7) C
解 对于A,B选项:
P{XY — Y<O}=P{(X —l)Y<O}
=P{X — 1 <O,Y> O}+P{X -1 > O,Y<O}
=P{X — 1 <O} P{Y> O}+P{X —1 > O} P{Y<O}
=- 1 X- 1 +- 1 X- 1 =-1 2 2 2 2 2·
三、解答题
+ + (15)解
由于ln(l +x) =x
(2 ) A
解
由题设条件知,Y1 = — e幻 , Y2 = —— ex 是已知二阶常系数非齐次线性微分方程所对应
2015年考研数学一真题及答案解析
2015年全国硕士研究生入学统一考试数学(一)试题一、选择题:18小题,每小题4分,共32分。
下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上。
(1)设函数()f x 在(),-∞+∞内连续,其中二阶导数()''f x 的图形如图所示,则曲线()=y f x 的拐点的个数为 ( )(A) 0 (B) 1 (C) 2 (D) 3【答案】(C )【解析】拐点出现在二阶导数等于0,或二阶导数不存在的点,并且在这点的左右两侧二阶导函数异号。
因此,由()f x ''的图形可得,曲线()y f x =存在两个拐点.故选(C ). (2)设211()23=+-x x y e x e 是二阶常系数非齐次线性微分方程'''++=x y ay by ce 的一个特解,则 ( )(A) 3,2,1=-==-a b c (B) 3,2,1===-a b c (C) 3,2,1=-==a b c (D) 3,2,1===a b c【答案】(A )【分析】此题考查二阶常系数非齐次线性微分方程的反问题——已知解来确定微分方程的系数,此类题有两种解法,一种是将特解代入原方程,然后比较等式两边的系数可得待估系数值,另一种是根据二阶线性微分方程解的性质和结构来求解,也就是下面演示的解法.【解析】由题意可知,212x e 、13x e -为二阶常系数齐次微分方程0y ay by '''++=的解,所以2,1为特征方程20r ar b ++=的根,从而(12)3a =-+=-,122b =⨯=,从而原方程变为32x y y y ce '''-+=,再将特解x y xe =代入得1c =-.故选(A )(3) 若级数1∞=∑nn a条件收敛,则=x 3=x 依次为幂级数1(1)∞=-∑n n n na x 的 ( )(A) 收敛点,收敛点 (B) 收敛点,发散点 (C) 发散点,收敛点 (D) 发散点,发散点 【答案】(B )【分析】此题考查幂级数收敛半径、收敛区间,幂级数的性质。
2015年考研数学一真题及答案解析
2015年考研数学一真题及答案解析D234(2)设211()23=+-xxy ex e 是二阶常系数非齐次线性微分方程'''++=xy ay by ce 的一个特解,则( )(A) 3,2,1=-==-a b c(B) 3,2,1===-a b c (C) 3,2,1=-==a b c(D)3,2,1===a b c【答案】(A )【分析】此题考查二阶常系数非齐次线性微分方程的反问题——已知解来确定微分方程的系数,此类题有两种解法,一种是将特解代入原方程,然后比较等式两边的系数可得待估系数值,另一种是根据二阶线性微分方程解的性质和结构来求解,也就是下面演示的解法.【解析】由题意可知,212xe 、13xe -为二阶常系数齐次微分方程0y ay by '''++=的解,所以2,1为特征方程20r ar b ++=的根,从而(12)3a =-+=-,122b =⨯=,从而原方程变为32xy y y ce '''-+=,再将特解xy xe =代入得1c =-.故选5(A )(3) 若级数1∞=∑n n a 条件收敛,则=x 3=x 依次为幂级数1(1)∞=-∑nnn na x 的 ( )(A) 收敛点,收敛点 (B) 收敛点,发散点 (C) 发散点,收敛点 (D) 发散点,发散点 【答案】(B )【分析】此题考查幂级数收敛半径、收敛区间,幂级数的性质。
【解析】因为1nn a ∞=∑条件收敛,即2x =为幂级数1(1)nnn a x ∞=-∑的条件收敛点,所以1(1)nn n a x ∞=-∑的收敛半径为1,收敛区间为(0,2)。
而幂级数逐项求导不改变收敛区间,故1(1)nnn na x ∞=-∑的收敛区间还是(0,2)。
因而x =3x =依次为幂级数1(1)nnn na x ∞=-∑的收敛点,发散点.故选(B )。
(4) 设D 是第一象限由曲线21xy =,41xy =与直线6y x=,3y x=围成的平面区域,函数(),f x y 在D 上连续,则(),Df x y dxdy =⎰⎰( )(A) ()13sin 2142sin 2cos ,sin d f r r rdrπθπθθθθ⎰⎰(B)()sin 23142sin 2cos ,sin d f r r rdr πθπθθθθ⎰⎰(C) ()13sin 2142sin 2cos ,sin d f r r drπθπθθθθ⎰⎰(D) ()sin 23142sin 2cos ,sin d f r r drπθπθθθθ⎰⎰【答案】(B )【分析】此题考查将二重积分化成极坐标系下的累次积分【解析】先画出D 的图形,7所以(,)Df x y dxdy =⎰⎰34(cos ,sin )d f r r rdrππθθθ⎰,故选(B )(5) 设矩阵21111214A a a ⎛⎫⎪= ⎪⎪⎝⎭,21b d d ⎛⎫ ⎪= ⎪⎪⎝⎭,若集合{}1,2Ω=,则线性方程组Ax b =有无穷多解的充分必要条件为( )(A) ,a d ∉Ω∉Ω (B) ,a d ∉Ω∈Ω (C) ,a d ∈Ω∉Ω (D),a d ∈Ω∈Ω【答案】D 【解析】2211111111(,)1201111400(1)(2)(1)(2)A b ad a d a d a a d d ⎛⎫⎛⎫⎪ ⎪=→-- ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭,由()(,)3r A r A b =<,故1a =或2a =,同时1d =或2d =。
2015数学一真题及答案详细解析
3x 围成的平
f x, y dxdy
D
(A)
3 4
3
4
d sin12 f r cos , r sin rdr
2sin 2
1
(B)
d
3
1 sin 2 1 2sin 2
1 sin 2 1 2sin 2
f r cos , r sin rdr
0
(B)
1
(C)
2
(D)
3
(2)设 y
1 2x 1 e ( x )e x 是二阶常系数非齐次线性微分方程 2 3
y ay by ce x 的一个特解,则
( ) (A) a 3, b 2, c 1 (B) a 3, b 2, c 1 (C) a 3, b 2, c 1 (D) a 3, b 2, c 1
0
(B)
1
(C)
2
(D)
3
【答案】 (C) 【解析】拐点出现在二阶导数等于 0,或二阶导数不存在的点,并且在这点的左右两侧二阶 导函数异号。因此,由 f ( x ) 的图形可得,曲线 y f ( x) 存在两个拐点.故选(C). (2)设 y
1 2x 1 e ( x )e x 是二阶常系数非齐次线性微分方程 y ay by ce x 2 3
的一个特解,则 ( ) (A) a 3, b 2, c 1 (B) a 3, b 2, c 1 (C) a 3, b 2, c 1 (D) a 3, b 2, c 1 【答案】 (A) 【分析】 此题考查二阶常系数非齐次线性微分方程的反问题——已知解来确定微分方程的系 数,此类题有两种解法,一种是将特解代入原方程,然后比较等式两边的系数可得待估系数 值,另一种是根据二阶线性微分方程解的性质和结构来求解,也就是下面演示的解法. 【解析】由题意可知, e2 x 、 e x 为二阶常系数齐次微分方程 y ay by 0 的解,所 以 2,1
2015年考研数一真题及答案解析(完整版)
2015年考研数学(一)试题解析一、选择题:1:8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)设函数()f x 在(),-∞+∞内连续,其中二阶导数()''f x 的图形如图所示,则曲线()=y f x 的拐点的个数为 ( )(A) 0 (B) 1 (C) 2 (D) 3【答案】(C )【解析】拐点出现在二阶导数等于0,或二阶导数不存在的点,并且在这点的左右两侧二阶导函数异号.因此,由()f x ''的图形可得,曲线()y f x =存在两个拐点.故选(C ).(2)设211()23=+-x x y e x e 是二阶常系数非齐次线性微分方程'''++=x y ay by ce 的一个特解,则( )(A) 3,2,1=-==-a b c (B) 3,2,1===-a b c (C) 3,2,1=-==a b c (D) 3,2,1===a b c 【答案】(A )【分析】此题考查二阶常系数非齐次线性微分方程的反问题——已知解来确定微分方程的系数,此类题有两种解法,一种是将特解代入原方程,然后比较等式两边的系数可得待估系数值,另一种是根据二阶线性微分方程解的性质和结构来求解,也就是下面演示的解法.【解析】由题意可知,212x e 、13x e -为二阶常系数齐次微分方程0y ay by '''++=的解,所以2,1为特征方程20r ar b ++=的根,从而(12)3a =-+=-,122b =⨯=,从而原方程变为32x y y y ce '''-+=,再将特解xy xe =代入得1c =-.故选(A )(3) 若级数1∞=∑nn a条件收敛,则 3=x 与3=x 依次为幂级数1(1)∞=-∑n n n na x 的 ( )(A) 收敛点,收敛点(B) 收敛点,发散点 (C) 发散点,收敛点 (D) 发散点,发散点 【答案】(B )【分析】此题考查幂级数收敛半径、收敛区间,幂级数的性质. 【解析】因为1nn a∞=∑条件收敛,即2x =为幂级数1(1)nn n a x ∞=-∑的条件收敛点,所以1(1)nn n a x ∞=-∑的收敛半径为1,收敛区间为(0,2).而幂级数逐项求导不改变收敛区间,故1(1)nnn na x ∞=-∑的收敛区间还是(0,2).因而x =3x =依次为幂级数1(1)n n n na x ∞=-∑的收敛点,发散点.故选(B ).(4) 设D 是第一象限由曲线21xy =,41xy =与直线y x =,y =围成的平面区域,函数(),f x y 在D 上连续,则(),Df x y dxdy =⎰⎰ ( )(A)()13sin 2142sin 2cos ,sin d f r r rdr πθπθθθθ⎰⎰(B)()34cos ,sin d f r r rdr ππθθθ⎰ (C)()13sin 2142sin 2cos ,sin d f r r dr πθπθθθθ⎰⎰(D)()34cos ,sin d f r r dr ππθθθ⎰【答案】(B )【分析】此题考查将二重积分化成极坐标系下的累次积分 【解析】先画出D 的图形,所以(,)Df x y dxdy =⎰⎰34(cos ,sin )d f r r rdr ππθθθ⎰故选(B )(5) 设矩阵21111214A a a ⎛⎫⎪= ⎪ ⎪⎝⎭,21b d d ⎛⎫ ⎪= ⎪ ⎪⎝⎭,若集合{}1,2Ω=,则线性方程组有x无穷多解的充分必要条件为 ( )(A) ,a d ∉Ω∉Ω (B) ,a d ∉Ω∈Ω (C) ,a d ∈Ω∉Ω (D) ,a d ∈Ω∈Ω 【答案】(D)【解析】2211111111(,)1201111400(1)(2)(1)(2)A b ad a d a d a a d d ⎛⎫⎛⎫⎪ ⎪=→-- ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭,由()(,)3r A r A b =<,故1a =或2a =,同时1d =或2d =.故选(D )(6)设二次型()123,,f x x x 在正交变换为=x Py 下的标准形为2221232+-y y y ,其中()123,,=P e e e ,若()132,,=-Q e e e ,则()123,,f x x x 在正交变换=x Qy 下的标准形为( )(A) 2221232-+y y y (B) 2221232+-y y y (C) 2221232--y y y (D) 2221232++y y y【答案】(A)【解析】由x Py =,故222123()2T T T f x Ax y P AP y y y y ===+-. 且200010001TP AP ⎛⎫⎪= ⎪ ⎪-⎝⎭.由已知可得:100001010Q P PC ⎛⎫⎪== ⎪ ⎪-⎝⎭故有200()010001T T TQ AQ C P AP C ⎛⎫⎪==- ⎪ ⎪⎝⎭所以222123()2T T T f x Ax y Q AQ y y y y ===-+.选(A )(7) 若A,B 为任意两个随机事件,则 ( ) (A) ()()()≤P AB P A P B (B) ()()()≥P AB P A P B (C) ()()()2≤P A P B P AB (D) ()()()2≥P A P B P AB【答案】(C)【解析】由于,AB A AB B ⊂⊂,按概率的基本性质,我们有()()P AB P A ≤且()()P AB P B ≤,从而()()()2P A P B P AB +≤≤,选(C) .(8)设随机变量,X Y 不相关,且2,1,3===EX EY DX ,则()2+-=⎡⎤⎣⎦E X X Y ( )(A) 3- (B) 3 (C) 5- (D) 5 【答案】(D)【解析】22[(2)](2)()()2()E X X Y E X XY X E X E XY E X +-=+-=+- 2()()()()2()D X E X E X E Y E X =++⋅- 23221225=++⨯-⨯=,选(D) .二、填空题:9:14小题,每小题4分,共24分.请将答案写在答题纸...指定位置上. (9) 20ln cos lim _________.x xx →=【答案】12-【分析】此题考查0型未定式极限,可直接用洛必达法则,也可以用等价无穷小替换.【解析】方法一:2000sin ln(cos )tan 1cos lim lim lim .222x x x xx x x x x x →→→--===- 方法二:2222200001ln(cos )ln(1cos 1)cos 112lim lim lim lim .2x x x x x x x x x x x x →→→→-+--====- (10)22sin ()d ________.1cos x x x x ππ-+=+⎰【答案】2π4【分析】此题考查定积分的计算,需要用奇偶函数在对称区间上的性质化简.【解析】22202sin 2.1cos 4x x dx xdx xππππ-⎛⎫+== ⎪+⎝⎭⎰⎰(11)若函数(,)=z z x y 由方程cos 2+++=xe xyz x x 确定,则(0,1)d ________.z =【答案】dx -【分析】此题考查隐函数求导.【解析】令(,,)cos 2zF x y z e xyz x x =+++-,则(,,)1sin ,,(,,)z x y z F x y z yz x F xz F x y z e xy '''=+-==+又当0,1x y ==时1z e =,即0z =. 所以(0,1)(0,1)(0,1,0)(0,1,0)1,0(0,1,0)(0,1,0)y x z z F F zzxF yF ''∂∂=-=-=-=''∂∂,因而(0,1).dzdx =-(12)设Ω是由平面1++=x y z 与三个坐标平面平面所围成的空间区域,则(23)__________.x y z dxdydz Ω++=⎰⎰⎰【答案】14【分析】此题考查三重积分的计算,可直接计算,也可以利用轮换对称性化简后再计算. 【解析】由轮换对称性,得1(23)66zD x y z dxdydz zdxdydz zdz dxdy ΩΩ++==⎰⎰⎰⎰⎰⎰⎰⎰⎰,其中z D 为平面z z =截空间区域Ω所得的截面,其面积为21(1)2z -.所以 112320011(23)66(1)3(2).24x y z dxdydz zdxdydz z z dz z z z dz ΩΩ++==⋅-=-+=⎰⎰⎰⎰⎰⎰⎰⎰ (13) n 阶行列式20021202___________.00220012-=-LLM M OM M L L【答案】122n +-【解析】按第一行展开得1111200212022(1)2(1)2200220012n n n n n D D D +----==+--=+-L L L L L221222(22)2222222n n n n D D ---=++=++=+++L 122n +=-(14)设二维随机变量(,)x y 服从正态分布(1,0;1,1,0)N ,则{0}________.P XY Y -<=【答案】12【解析】由题设知,~(1,1),~(0,1)X N Y N ,而且X Y 、相互独立,从而{0}{(1)0}{10,0}{10,0}P XY Y P X Y P X Y P X Y -<=-<=-><+-<>11111{1}{0}{1}{0}22222P X P Y P X P Y =><+<>=⨯+⨯=. 三、解答题:15~23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分10分) 设函数()ln(1)sin =+++f x x a x bx x ,3()=g x kx ,若()fx 与()g x 在0→x 是等价无穷小,求,,a b k 的值.【答案】,,.a b k =-=-=-11123【解析】法一:原式()30ln 1sin lim1x x a x bx xkx →+++= ()()2333330236lim 1x x x x x a x o x bx x o x kx→⎛⎫⎛⎫+-+++-+ ⎪ ⎪⎝⎭⎝⎭==()()234331236lim1x a a b a x b x x x o x kx→⎛⎫++-+-+ ⎪⎝⎭== 即10,0,123a aa b k +=-== 111,,23a b k ∴=-=-=-法二:()3ln 1sin lim1x x a x bx xkx →+++=201sin cos 1lim 13x ab x bx x x kx →++++== 因为分子的极限为0,则1a =-()212cos sin 1lim16x b x bx x x kx→--+-+==,分子的极限为0,12b =-()022sin sin cos 13lim 16x b x b x bx xx k →----+==,13k =- 111,,23a b k ∴=-=-=-(16)(本题满分10分) 设函数()f x 在定义域I 上的导数大于零,若对任意的0x I ∈,由线()=y f x 在点()()0,x f x 处的切线与直线0x x =及x 轴所围成区域的面积恒为4,且()02f =,求()f x 的表达式.【答案】f x x=-8()4. 【解析】设()f x 在点()()00,x f x 处的切线方程为:()()()000,y f x f x x x '-=- 令0y =,得到()()000f x x x f x =-+',故由题意,()()00142f x x x ⋅-=,即()()()000142f x f x f x ⋅=',可以转化为一阶微分方程,即28y y '=,可分离变量得到通解为:118x C y =-+,已知()02y =,得到12C =,因此11182x y =-+;即()84f x x =-+.(17)(本题满分10分)已知函数(),=++fx y x y xy ,曲线C :223++=x y xy ,求(),f x y 在曲线C 上的最大方向导数.【答案】3【解析】因为(),f x y 沿着梯度的方向的方向导数最大,且最大值为梯度的模.()()',1,',1x y f x y y f x y x =+=+,故(){},1,1gradf x y y x =++此题目转化为对函数(),g x y =在约束条件22:3C x y xy ++=下的最大值.即为条件极值问题.为了计算简单,可以转化为对()()22(,)11d x y y x =+++在约束条件22:3C x y xy ++=下的最大值.构造函数:()()()()2222,,113F x y y x x y xy λλ=++++++-()()()()222120212030x y F x x y F y y x F x y xy λλλ'⎧=+++=⎪'=+++=⎨⎪'=++-=⎩,得到()()()()12341,1,1,1,2,1,1,2M M M M ----. ()()()()12348,0,9,9d M d M d M d M====3=. (18)(本题满分 10 分)(I )设函数()()u x ,v x 可导,利用导数定义证明u x v x u x v x u x v x '''=+[()()]()()()() (II )设函数()()()12n u x ,u x ,,u x L 可导,n f x u x u x u x =L 12()()()(),写出()f x 的求导公式.【解析】(I )0()()()()[()()]lim h u x h v x h u x v x u x v x h→++-'=0()()()()()()()()lim h u x h v x h u x h v x u x h v x u x v x h→++-+++-=00()()()()lim ()lim ()h h v x h v x u x h u x u x h v x h h→→+-+-=++()()()()u x v x u x v x ''=+ (II )由题意得12()[()()()]n f x u x u x u x ''=L121212()()()()()()()()()n n n u x u x u x u x u x u x u x u x u x '''=+++L L L L (19)(本题满分 10 分)已知曲线L的方程为,z z x ⎧=⎪⎨=⎪⎩起点为()A,终点为()0,B ,计算曲线积分()()2222d d ()d LI y z x z x y y x y z =++-+++⎰.【答案】π2【解析】由题意假设参数方程cos cos x y z θθθ=⎧⎪=⎨⎪=⎩,ππ:22θ→-π22π2[cos )sin 2sin cos (1sin )sin ]d θθθθθθθθ--++++⎰π222π2sin cos (1sin )sin d θθθθθθ-=+++⎰π220sin d πθθ==(20) (本题满11分)设向量组1,23,ααα内3R 的一个基,113=2+2k βαα,22=2βα,()313=++1k βαα.(I )证明向量组1β2β3β为3R 的一个基;(II )当k 为何值时,存在非0向量ξ在基1,23,ααα与基1β2β3β下的坐标相同,并求所有的ξ.【答案】 【解析】(I)证明:()()()()12313213123,,2+2,2,+1201,,020201k k k k βββαααααααα=+⎛⎫⎪= ⎪ ⎪+⎝⎭20121224021201k k k k ==≠++ 故123,,βββ为3R 的一个基. (II )由题意知,112233112233,0k k k k k k ξβββαααξ=++=++≠即()()()1112223330,0,1,2,3i k k k k i βαβαβα-+-+-=≠=()()()()()()()11312223133113223132+22++10+2+0k k k k k k k k k k ααααααααααααα-+-+-=++=有非零解即13213+2,,+0k k ααααα=即101010020k k=,得k=0 11223121300,0k k k k k k ααα++=∴=+=11131,0k k k ξαα=-≠(21) (本题满分11 分)设矩阵02313312a -⎛⎫ ⎪=-- ⎪ ⎪-⎝⎭A 相似于矩阵12000031b -⎛⎫⎪ ⎪ ⎪⎝⎭B =.(I) 求,a b 的值;(II )求可逆矩阵P ,使1-P AP 为对角矩阵..【解析】(I) ~()()311A B tr A tr B a b ⇒=⇒+=++231201330012031--=⇒--=-A B b a 14235-=-=⎧⎧∴⇒⎨⎨-==⎩⎩a b a a b b (II)023100123133010123123001123A E C ---⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=--=+--=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭()123112*********---⎛⎫⎛⎫ ⎪ ⎪=--=-- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭CC 的特征值1230,4λλλ===0λ=时(0)0-=E C x 的基础解系为12(2,1,0);(3,0,1)ξξ==-T T 5λ=时(4)0-=E C x 的基础解系为3(1,1,1)ξ=--TA 的特征值1:1,1,5λλ=+A C令123231(,,)101011ξξξ--⎛⎫⎪==- ⎪ ⎪⎝⎭P ,1115-⎛⎫ ⎪∴= ⎪ ⎪⎝⎭P AP(22) (本题满分11 分) 设随机变量X 的概率密度为()2ln 2,0,0,0.xx f x x -⎧>⎪=⎨≤⎪⎩对X 进行独立重复的观测,直到2个大于3的观测值出现的停止.记Y 为观测次数. (I)求Y 的概率分布; (II)求EY【解析】(I) 记p 为观测值大于3的概率,则313228()ln x p P X dx +∞-=>==⎰,从而12221171188n n n P Y n C p p p n ---==-=-{}()()()(),23,,n =L 为Y 的概率分布; (II) 法一:分解法:将随机变量Y 分解成=Y M N +两个过程,其中M 表示从1到()n n k <次试验观测值大于3首次发生,N 表示从1n +次到第k 试验观测值大于3首次发生.则M Ge n p ~(,),N Ge k n p -(,):(注:Ge 表示几何分布)所以11221618E Y E M N E M E N p p p =+=+=+===()()()(). 法二:直接计算22212221777711288888n n n n n n n E Y n P Y n n n n n ∞∞∞---====⋅==⋅-=⋅--+∑∑∑(){}()()()()[()()()]记212111()()n n S x n n xx ∞-==⋅--<<∑,则2113222211n n n n n n S x n n xn xx x ∞∞∞--==='''=⋅-=⋅==-∑∑∑()()()()(), 12213222111()()()()()n n n n xS x n n xx n n x xS x x ∞∞--===⋅-=⋅-==-∑∑,2222313222111()()()()()nn n n x S x n n x xn n xx S x x ∞∞-===⋅-=⋅-==-∑∑, 所以212332422211()()()()()x x S x S x S x S x x x-+=-+==--, 从而7168E Y S ==()().(23) (本题满分 11 分)设总体X 的概率密度为:x f x θθθ⎧≤≤⎪=-⎨⎪⎩1,1,(,)10,其他. 其中θ为未知参数,12n x ,x ,,x L 为来自该总体的简单随机样本. (I)求θ的矩估计量. (II)求θ的最大似然估计量. 【解析】(I)11112()(;)E X xf x dx x dx θθθθ+∞-∞+==⋅=-⎰⎰, 令()E X X =,即12X θ+=,解得$1121ni i X X X n θ==-=∑,为θ的矩估计量;(II) 似然函数11110,()(;),n ni i i x L f x θθθθ=⎧⎛⎫≤≤⎪ ⎪==-⎨⎝⎭⎪⎩∏其他, 当1i x θ≤≤时,11111()()nni L θθθ===--∏,则1ln ()ln()L n θθ=--. 从而dln d 1L nθθθ=-(),关于θ单调增加,所以$12minnX X Xθ={,,,}L为θ的最大似然估计量.文档内容由经济学金融硕士考研金程考研网整理发布。
考研数学一真题和答案解析
(7) 若 A,B 为任意两个随机事件,则
()
(A) P AB P A PB
(B) P AB P A PB
(C) P(AB) P(A) P(B) 2
(D) P AB P A P B
2
【答案】(C)
【解析】由于 AB A, AB B ,按概率的基本性质,我们有 P(AB) P(A) 且 P(AB) P(B) ,
所以 z x
(0,1)
Fx(0,1, 0) Fz(0,1, 0)
1, z y
(0,1)
Fy(0,1, 0) Fz(0,1, 0)
0 ,因而 dz
(0,1) dx.
(12) 设 是 由 平 面 x y z 1 与 三 个 坐 标 平 面 所 围 成 的 空 间 区 域 , 则
(x 2y 3z)dxdydz __________.
线 C 上的最大方向导数. 【答案】3
【解析】因为 f x, y 沿着梯度的方向的方向导数最大,且最大值为梯度的模.
fx ' x, y 1 y, fy 'x, y 1 x , 故 gradf x, y 1 y,1 x,模为 1 y2 1 x2 ,
此题目转化为对函数 g x, y 1 y2 1 x2 在约束条件 C : x2 y2 xy 3 下的最大值.
P e1,e2,e3 ,若 Q e1, e3,e2 ,则 f x1, x2, x3 在正交变换 x Qy 下的标准
形
为
()
(A) 2 y12 y22 y32
(B) 2 y12 y22 y32
(C) 2 y12 y22 y32
(D) 2 y12 y22 y32
【答案】(A)
(15)(本题满分 10 分) 设函数 f x x a ln(1 x) bxsin x ,g(x) kx3 ,若 f x 与 g x 在
2015考研数学一真题及解析
换 x Qy 下的标准形为 2 y12 y22 y32 .故选(A).
方法二:因在正交变换 x Py 下,有 f xT Ax yT (PT AP) y 2 y12 y22 y32 .故
2 0 0
1 0 0
PT
AP
0
1
0
.而 Q
P
0
0
1
PC
,于是有
0 0 1
0 1 0
2 0 0
(B) 收敛点,发散点 (D) 发散点,发散点
【解】因 an 条件收敛,即收敛,且发散.于是当 x 2 时,有 an (x 1)n an 收敛,
n1
n1
n1
| an (x 1)n | | an |发散.又幂级数 an (x 1)n 的收敛区间以 x 1为中心,故其
n1
n1
n 1
2015 考研数学一真题及解析
(5) 设矩阵 A 1 2
a
,
b
d
,若集合
{1, 2},则线性方程组 Ax
b 有无穷多
1 4 a2 d 2
解的充分必要条件为
(A) a , d
(B) a , d
(C) a , d
(D) a , d
【答】应选(D).
【解】因 Ax b 有无穷多解的充分必要条件为 r( A) r( A) < 3 ,而
【答】应选(A). 【解】方法一:
由题意, f 的标准型中平方项的系数2,1,-1是二次型的矩阵 A 的特征值,矩阵 P 中列向
量 e1, e2 , e3 分别是 A 属于特征值2,1,-1的特征向量,于是,矩阵 Q 中列向量 e1, e3 , e2 分别是 A 属于特征值2,-1,1的特征向量.又由 P 为正交矩阵易见, Q 也是正交矩阵,因此 f 在正交变
2015年考研数学一真题与答案解析
2015 年全国硕士研究生入学统一考试数学(一)试题一、选择题: 1 8 小题,每小题 4 分,共 32 分。
下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸指定位置上。
...(1) 设函数 f ( x)在,内连续,其中二阶导数 f ( x) 的图形如图所示,则曲线y f ( x)的拐点的个数为()(A)0(B)1(C)2(D)3【答案】(C)【解析】拐点出现在二阶导数等于0,或二阶导数不存在的点,并且在这点的左右两侧二阶导函数异号。
因此,由f(x) 的图形可得,曲线 y f ( x) 存在两个拐点.故选( C) .(2) 设y 1 e2x(x1)e x是二阶常系数非齐次线性微分方程y ay by ce x的一23个特解,则()(A)a3,b2, c1(B)a3, b2, c1(C)a3,b2, c1(D)a3, b2, c 1【答案】(A )【分析】此题考查二阶常系数非齐次线性微分方程的反问题——已知解来确定微分方程的系数,此类题有两种解法,一种是将特解代入原方程,然后比较等式两边的系数可得待估系数值,另一种是根据二阶线性微分方程解的性质和结构来求解,也就是下面演示的解法.1 e2 x、1e x为二阶常系数齐次微分方程y ay by 0 的解,所以【解析】由题意可知,2,123为特征方程 r 2ar b 0 的根,从而a (12)3,b 1 2 2 ,从而原方程变为y 3y 2 y ce x,再将特解 y xe x代入得c1.故选(A)(3) 若级数a n条件收敛,则x 3 与x 3 依次为幂级数na n ( x1)n的()n 1n 1(A)收敛点,收敛点(B)收敛点,发散点(C)发散点,收敛点(D)发散点,发散点【答案】(B )【分析】此题考查幂级数收敛半径、收敛区间,幂级数的性质。
【解析】因为a n条件收敛,即 x 2 为幂级数a n ( x 1) n的条件收敛点,所以a n ( x 1)n n 1n 1n 1的收敛半径为1,收敛区间为(0, 2)。
2015考研数学一真题及答案解析
的最值.
构造拉格朗日函数 F (x, y, λ) = (1 + y)2 + (1 + x)2 + λ(x 2 + y 2 + xy − 3)
∂F
令
∂∂Fx
∂y
= =
2(1 + 2(1 +
x) + 2λx + λy y) + 2λy + λx
= =
0 0 可得 (1,1), (−1,−1)
, (2,−2), (−1,2)
( D)
3 π
dθ
sin 2θ 1
f (r cosθ , r sinθ )dr
4
2sin 2θ
4
2sin 2θ
【答案】B
【解析】由 y = x 得,θ = π 4
由 y = 3x 得,θ = π 3
由 2xy = 1得, 2r2 cosθ sin=θ 1,=r
1 sin 2θ
由 4xy = 1得, 4r2 cosθ sin=θ 1,=r
(Π)
{ } = f ' (x) u1(x) ⋅[u2 (x)un (x)] '
= u1' (x) ⋅[u2 (x)un (x)] + u1(x) ⋅[u2 (x)un (x)]'
{ } = u1' (x) ⋅u2 (x)un (x) + u1(x) ⋅ u2 (x) ⋅[u3(x)un (x)] '
(A) a ∉ Ω, d ∉ Ω (B) a ∉ Ω, d ∈ Ω (C) a ∈ Ω, d ∉ Ω (D) a ∈ Ω, d ∈ Ω
【答案】D
1 1 1 1
1 1
2015年考研数学一真题及答案解析
2015年全国硕士研究生入学统一考试数学(一)试题一、选择题:1:8小题,每小题4分,共32分。
下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸指定位置上。
(1)设函数()f x 在(),-∞+∞内连续,其中二阶导数()''f x 的图形如图所示,则曲线()=y f x 的拐点的个数为 ( )(A) 0 (B) 1 (C) 2 (D) 3【答案】(C )【解析】拐点出现在二阶导数等于0,或二阶导数不存在的点,并且在这点的左右两侧二阶导函数异号。
因此,由()f x ''的图形可得,曲线()y f x =存在两个拐点.故选(C ). (2)设211()23=+-x x y e x e 是二阶常系数非齐次线性微分方程'''++=x y ay by ce 的一个特解,则 ( )(A) 3,2,1=-==-a b c (B) 3,2,1===-a b c (C) 3,2,1=-==a b c (D) 3,2,1===a b c【答案】(A )【分析】此题考查二阶常系数非齐次线性微分方程的反问题——已知解来确定微分方程的系数,此类题有两种解法,一种是将特解代入原方程,然后比较等式两边的系数可得待估系数值,另一种是根据二阶线性微分方程解的性质和结构来求解,也就是下面演示的解法.【解析】由题意可知,212x e 、13x e -为二阶常系数齐次微分方程0y ay by '''++=的解,所以2,1为特征方程20r ar b ++=的根,从而(12)3a =-+=-,122b =⨯=,从而原方程变为32x y y y ce '''-+=,再将特解x y xe =代入得1c =-.故选(A )(3) 若级数1∞=∑nn a条件收敛,则=x 3=x 依次为幂级数1(1)∞=-∑n n n na x 的 ( )(A) 收敛点,收敛点 (B) 收敛点,发散点 (C) 发散点,收敛点 (D) 发散点,发散点 【答案】(B )【分析】此题考查幂级数收敛半径、收敛区间,幂级数的性质。
2015年考研数学(一)真题及答案详解
2015年全国硕士研究生入学统一考试数学(一)试题解析一、选择题:1 8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)设函数()f x 在(),-∞+∞内连续,其中二阶导数()''f x 的图形如图所示,则曲线()=y f x 的拐点的个数为( )(A) 0 (B) 1 (C)2 (D) 3【答案】(C )【解析】拐点出现在二阶导数等于0,或二阶导数不存在的点,并且在这点的左右两侧二阶导函数异号.因此,由()f x ''的图形可得,曲线()y f x =存在两个拐点.故选(C ).(2)设211()23=+-x x y e x e 是二阶常系数非齐次线性微分方程'''++=x y ay by ce 的一个特解,则( )(A) 3,2,1=-==-a b c (B) 3,2,1===-a b c (C)3,2,1=-==a b c (D) 3,2,1===a b c 【答案】(A )【分析】此题考查二阶常系数非齐次线性微分方程的反问题——已知解来确定微分方程的系数,此类题有两种解法,一种是将特解代入原方程,然后比较等式两边的系数可得待估系数值,另一种是根据二阶线性微分方程解的性质和结构来求解,也就是下面演示的解法.【解析】由题意可知,212xe 、13x e -为二阶常系数齐次微分方程0y ay by '''++=的解,所以2,1为特征方程20r ar b ++=的根,从而(12)3a =-+=-,122b =⨯=,从而原方程变为32x y y y ce '''-+=,再将特解xy xe =代入得1c =-.故选(A )(3) 若级数1∞=∑nn a条件收敛,则=x 3=x 依次为幂级数1(1)∞=-∑nnn na x 的 ( )(A) 收敛点,收敛点 (B) 收敛点,发散点(C)发散点,收敛点 (D) 发散点,发散点 【答案】(B )【分析】此题考查幂级数收敛半径、收敛区间,幂级数的性质. 【解析】因为1n n a∞=∑条件收敛,即2x =为幂级数1(1)nn n a x ∞=-∑的条件收敛点,所以1(1)nn n a x ∞=-∑的收敛半径为1,收敛区间为(0,2).而幂级数逐项求导不改变收敛区间,故1(1)nnn na x ∞=-∑的收敛区间还是(0,2).因而x =3x =依次为幂级数1(1)nnn na x ∞=-∑的收敛点,发散点.故选(B ).(4) 设D 是第一象限由曲线21xy =,41xy =与直线y x =,y =围成的平面区域,函数(),f x y 在D 上连续,则(),Df x y dxdy =⎰⎰ ( )(A)()13sin2142sin2cos ,sin d f r r rdr πθπθθθθ⎰⎰(B)()34cos ,sin d f r r rdr ππθθθ⎰ (C)()13sin 2142sin 2cos ,sin d f r r dr πθπθθθ⎰⎰(D)()34cos ,sin d f r r dr ππθθθ⎰【答案】(B )【分析】此题考查将二重积分化成极坐标系下的累次积分 【解析】先画出D 的图形,所以(,)Df x y dxdy =⎰⎰34(cos ,sin )d f r r rdr ππθθθ⎰故选(B )(5) 设矩阵21111214A a a ⎛⎫⎪= ⎪ ⎪⎝⎭,21b d d ⎛⎫ ⎪= ⎪ ⎪⎝⎭,若集合{}1,2Ω=,则线性方程组有无穷多解的充分必要条件为 ( )x(A) ,a d ∉Ω∉Ω (B) ,a d ∉Ω∈Ω (C),a d ∈Ω∉Ω (D) ,a d ∈Ω∈Ω 【答案】(D)【解析】2211111111(,)1201111400(1)(2)(1)(2)A b ad a d a d a a d d ⎛⎫⎛⎫⎪ ⎪=→-- ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭,由()(,)3r A r A b =<,故1a =或2a =,同时1d =或2d =.故选(D )(6)设二次型()123,,f x x x 在正交变换为=x Py 下的标准形为2221232+-y y y ,其中()123,,=P e e e ,若()132,,=-Q e e e ,则()123,,f x x x 在正交变换=x Qy 下的标准形为( )(A) 2221232-+y y y (B) 2221232+-y y y (C)2221232--y y y (D) 2221232++y y y 【答案】(A)【解析】由x Py =,故222123()2T T T f x Ax y P AP y y y y ===+-. 且200010001TP AP ⎛⎫⎪= ⎪ ⎪-⎝⎭.由已知可得:100001010Q P PC ⎛⎫⎪== ⎪ ⎪-⎝⎭故有200()010001T T TQ AQ C P AP C ⎛⎫⎪==- ⎪ ⎪⎝⎭所以222123()2T T T f x Ax y Q AQ y y y y ===-+.选(A ) (7) 若A,B 为任意两个随机事件,则 ( )(A) ()()()≤P AB P A P B (B) ()()()≥P AB P A P B (C)()()()2≤P A P B P AB (D) ()()()2≥P A P B P AB【答案】(C)【解析】由于,AB A AB B ⊂⊂,按概率的基本性质,我们有()()P AB P A ≤且()()P AB P B ≤,从而()()()2P A P B P AB +≤≤,选(C) .(8)设随机变量,X Y 不相关,且2,1,3===EX EY DX ,则()2+-=⎡⎤⎣⎦E X X Y ( )(A) 3- (B) 3 (C)5- (D) 5 【答案】(D)【解析】22[(2)](2)()()2()E X X Y E X XY X E X E XY E X +-=+-=+-2()()()()2()D X E X E X E Y E X =++⋅-23221225=++⨯-⨯=,选(D) .二、填空题:9 14小题,每小题4分,共24分.请将答案写在答题纸...指定位置上. (9) 20ln cos lim _________.x xx →= 【答案】12-【分析】此题考查0型未定式极限,可直接用洛必达法则,也可以用等价无穷小替换.【解析】方法一:2000sin ln(cos )tan 1cos lim lim lim .222x x x xx x x x x x →→→--===- 方法二:2222200001ln(cos )ln(1cos 1)cos 112lim lim lim lim .2x x x x x x x x x x x x →→→→-+--====- (10)22sin ()d ________.1cos x x x x ππ-+=+⎰【答案】2π4【分析】此题考查定积分的计算,需要用奇偶函数在对称区间上的性质化简.【解析】22202sin 2.1cos 4x x dx xdx x ππππ-⎛⎫+== ⎪+⎝⎭⎰⎰(11)若函数(,)=z z x y 由方程cos 2+++=x e xyz x x 确定,则(0,1)d ________.z =【答案】dx -【分析】此题考查隐函数求导.【解析】令(,,)cos 2z F x y z e xyz x x =+++-,则(,,)1sin ,,(,,)z x y z F x y z yz x F xz F x y z e xy '''=+-==+又当0,1x y ==时1z e =,即0z =.所以(0,1)(0,1)(0,1,0)(0,1,0)1,0(0,1,0)(0,1,0)y x z z F F z z xF yF ''∂∂=-=-=-=''∂∂,因而(0,1).dzdx =-(12)设Ω是由平面1++=x y z 与三个坐标平面平面所围成的空间区域,则(23)__________.x y z dxdydz Ω++=⎰⎰⎰【答案】14【分析】此题考查三重积分的计算,可直接计算,也可以利用轮换对称性化简后再计算. 【解析】由轮换对称性,得1(23)66zD x y z dxdydz zdxdydz zdz dxdy ΩΩ++==⎰⎰⎰⎰⎰⎰⎰⎰⎰,其中z D 为平面z z =截空间区域Ω所得的截面,其面积为21(1)2z -.所以 112320011(23)66(1)3(2).24x y z dxdydz zdxdydz z z dz z z z dz ΩΩ++==⋅-=-+=⎰⎰⎰⎰⎰⎰⎰⎰ (13) n 阶行列式20021202___________.00220012-=-【答案】122n +-【解析】按第一行展开得1111200212022(1)2(1)220220012n n n n n D D D +----==+--=+-221222(22)2222222n n n n D D ---=++=++=+++ 122n +=-(14)设二维随机变量(,)x y 服从正态分布(1,0;1,1,0)N ,则{0}________.P XY Y -<=【答案】12【解析】由题设知,~(1,1),~(0,1)X N Y N ,而且X Y 、相互独立,从而{0}{(1)0}{10,0}{10,0}P XY Y P X Y P X Y P X Y -<=-<=-><+-<>11111{1}{0}{1}{0}22222P X P Y P X P Y =><+<>=⨯+⨯=.三、解答题:15~23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分10分) 设函数()ln(1)sin =+++f x x a x bx x ,3()=g x kx ,若()f x 与()g x 在0→x 是等价无穷小,求,,a b k 的值.【答案】,,.a b k =-=-=-11123【解析】法一:原式()3ln 1sin lim1x x a x bx xkx→+++= ()()2333330236lim 1x x x x x a x o x bx x o x kx →⎛⎫⎛⎫+-+++-+ ⎪ ⎪⎝⎭⎝⎭==()()234331236lim1x a a b a x b x x x o x kx→⎛⎫++-+-+ ⎪⎝⎭== 即10,0,123a a a b k +=-== 111,,23a b k ∴=-=-=-法二:()30ln 1sin lim1x x a x bx xkx →+++= 201sin cos 1lim 13x ab x bx xx kx →++++== 因为分子的极限为0,则1a =-()212cos sin 1lim16x b x bx x x kx→--+-+==,分子的极限为0,12b =-()022sin sin cos 13lim 16x b x b x bx xx k→----+==,13k =- 111,,23a b k ∴=-=-=-(16)(本题满分10分) 设函数()f x 在定义域I 上的导数大于零,若对任意的0x I ∈,由线()=y f x 在点()()0,x f x 处的切线与直线0x x =及x 轴所围成区域的面积恒为4,且()02f =,求()f x 的表达式.【答案】f x x=-8()4. 【解析】设()f x 在点()()00,x f x 处的切线方程为:()()()000,y f x f x x x '-=- 令0y =,得到()()000f x x x f x =-+',故由题意,()()00142f x x x ⋅-=,即()()()000142f x f x f x ⋅=',可以转化为一阶微分方程,即28y y '=,可分离变量得到通解为:118x C y =-+,已知()02y =,得到12C =,因此11182x y =-+; 即()84f x x =-+.(17)(本题满分10分)已知函数(),=++fx y x y xy ,曲线C :223++=x y xy ,求(),f x y 在曲线C 上的最大方向导数.【答案】3【解析】因为(),f x y 沿着梯度的方向的方向导数最大,且最大值为梯度的模.()()',1,',1x y f x y y f x y x =+=+,故(){},1,1gradf x y y x =++此题目转化为对函数(),g x y =在约束条件22:3C x y xy ++=下的最大值.即为条件极值问题.为了计算简单,可以转化为对()()22(,)11d x y y x =+++在约束条件22:3C x y xy ++=下的最大值.构造函数:()()()()2222,,113F x y y x x y xy λλ=++++++-()()()()222120212030x y F x x y F y y x F x y xy λλλ'⎧=+++=⎪'=+++=⎨⎪'=++-=⎩,得到()()()()12341,1,1,1,2,1,1,2M M M M ----. ()()()()12348,0,9,9d M d M d M d M ====3=. (18)(本题满分 10 分)(I )设函数()()u x ,v x 可导,利用导数定义证明u x v x u x v x u x v x '''=+[()()]()()()() (II )设函数()()()12n u x ,u x ,,u x 可导,n f x u x u x u x = 12()()()(),写出()f x 的求导公式.【解析】(I )0()()()()[()()]limh u x h v x h u x v x u x v x h→++-'=0()()()()()()()()lim h u x h v x h u x h v x u x h v x u x v x h→++-+++-= 00()()()()lim ()lim ()h h v x h v x u x h u x u x h v x h h→→+-+-=++ ()()()()u x v x u x v x ''=+(II )由题意得12()[()()()]n f x u x u x u x ''=121212()()()()()()()()()n n n u x u x u x u x u x u x u x u x u x '''=+++(19)(本题满分 10 分)已知曲线L的方程为,z z x ⎧=⎪⎨=⎪⎩起点为()A,终点为()0,B ,计算曲线积分()()2222d d ()d LI y z x z x y y x y z =++-+++⎰.π【解析】由题意假设参数方程cos cos x y z θθθ=⎧⎪=⎨⎪=⎩,ππ:22θ→-π22π2[cos )sin 2sin cos (1sin )sin ]d θθθθθθθθ--++++⎰π222π2sin cos (1sin )sin d θθθθθθ-=+++⎰π220sin d θθ==(20) (本题满11分)设向量组1,23,ααα内3R 的一个基,113=2+2k βαα,22=2βα,()313=++1k βαα.(I )证明向量组1β2β3β为3R 的一个基;(II )当k 为何值时,存在非0向量ξ在基1,23,ααα与基1β2β3β下的坐标相同,并求所有的ξ.【答案】 【解析】(I)证明:()()()()12313213123,,2+2,2,+1201,,020201k k k k βββαααααααα=+⎛⎫⎪= ⎪ ⎪+⎝⎭2012102024021201kk kk ==≠++故123,,βββ为3R 的一个基. (II )由题意知,112233112233,0k k k k k k ξβββαααξ=++=++≠即()()()1112223330,0,1,2,3i k k k k i βαβαβα-+-+-=≠=()()()()()()()11312223133113223132+22++10+2+0k k k k k k k k k k ααααααααααααα-+-+-=++=有非零解即13213+2,,+0k k ααααα=即10110020k k=,得k=0 11223121300,0k k k k k k ααα++=∴=+=11131,0k k k ξαα=-≠(21) (本题满分11 分)设矩阵02313312a -⎛⎫ ⎪=-- ⎪ ⎪-⎝⎭A 相似于矩阵12000031b -⎛⎫ ⎪⎪ ⎪⎝⎭B =.(I) 求,a b 的值;(II )求可逆矩阵P ,使1-P AP 为对角矩阵..【解析】(I) ~()()311A B tr A tr B a b ⇒=⇒+=++0231201330012031--=⇒--=-A B ba 14235-=-=⎧⎧∴⇒⎨⎨-==⎩⎩a b a a b b (II)023100123133010123123001123A E C ---⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=--=+--=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭()123112*********---⎛⎫⎛⎫ ⎪ ⎪=--=-- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭CC 的特征值1230,4λλλ===0λ=时(0)0-=E C x 的基础解系为12(2,1,0);(3,0,1)ξξ==-T T 5λ=时(4)0-=E C x 的基础解系为3(1,1,1)ξ=--TA 的特征值1:1,1,5λλ=+A C令123231(,,)101011ξξξ--⎛⎫ ⎪==- ⎪ ⎪⎝⎭P ,1115-⎛⎫⎪∴= ⎪ ⎪⎝⎭P AP(22) (本题满分11 分) 设随机变量X 的概率密度为()2ln 2,0,0,0.x x f x x -⎧>⎪=⎨≤⎪⎩对X 进行独立重复的观测,直到2个大于3的观测值出现的停止.记Y 为观测次数. (I)求Y 的概率分布; (II)求EY【解析】(I) 记p 为观测值大于3的概率,则313228()ln x p P X dx +∞-=>==⎰,从而12221171188n n n P Y n C p p p n ---==-=-{}()()()(),23,,n =为Y 的概率分布; (II) 法一:分解法:将随机变量Y 分解成=Y M N +两个过程,其中M 表示从1到()n n k <次试验观测值大于3首次发生,N 表示从1n +次到第k 试验观测值大于3首次发生.则M Ge n p ~(,),N Ge k n p -(,) (注:Ge 表示几何分布)所以11221618E Y E M N E M E N p p p =+=+=+===()()()(). 法二:直接计算22212221777711288888n n n n n n n E Y n P Y n n n n n ∞∞∞---====⋅==⋅-=⋅--+∑∑∑(){}()()()()[()()()]记212111()()n n S x n n xx ∞-==⋅--<<∑,则2113222211n n n n n n S x n n xn xx x ∞∞∞--==='''=⋅-=⋅==-∑∑∑()()()()(), 12213222111()()()()()n n n n xS x n n xx n n x xS x x ∞∞--===⋅-=⋅-==-∑∑,2222313222111()()()()()nn n n x S x n n x xn n xx S x x ∞∞-===⋅-=⋅-==-∑∑, 所以212332422211()()()()()x x S x S x S x S x x x-+=-+==--, 从而7168E Y S ==()().(23) (本题满分 11 分)设总体X 的概率密度为:x f x θθθ⎧≤≤⎪=-⎨⎪⎩1,1,(,)10,其他. 其中θ为未知参数,12n x ,x ,,x 为来自该总体的简单随机样本. (I)求θ的矩估计量. (II)求θ的最大似然估计量. 【解析】(I)11112()(;)E X xf x dx x dx θθθθ+∞-∞+==⋅=-⎰⎰, 令()E X X =,即12X θ+=,解得 1121ni i X X X n θ==-=∑,为θ的矩估计量;(II) 似然函数11110,()(;),nni i i x L f x θθθθ=⎧⎛⎫≤≤⎪ ⎪==-⎨⎝⎭⎪⎩∏其他, 当1i x θ≤≤时,11111()()nni L θθθ===--∏,则1ln ()ln()L n θθ=--. 从而dln d 1L nθθθ=-(),关于θ单调增加, 所以 12min nX X X θ={,,,} 为θ的最大似然估计量.。
2015年考研数学一真题及答案解析
2015年全国硕士研究生入学统一考试数学(一)试题一、选择题:18小题,每小题4分,共32分。
下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上。
(1)设函数()f x 在(),-∞+∞内连续,其中二阶导数()''f x 的图形如图所示,则曲线()=y f x 的拐点的个数为 ( )(A) 0 (B) 1 (C) 2 (D) 3【答案】(C )【解析】拐点出现在二阶导数等于0,或二阶导数不存在的点,并且在这点的左右两侧二阶导函数异号。
因此,由()f x ''的图形可得,曲线()y f x =存在两个拐点.故选(C ).(2)设是二阶常系数非齐次线性微分方程'''++=x y ay by ce 的一个特解,则 ( )(A) 3,2,1=-==-a b c (B) 3,2,1===-a b c (C) 3,2,1=-==a b c (D) 3,2,1===a b c【答案】(A )【分析】此题考查二阶常系数非齐次线性微分方程的反问题——已知解来确定微分方程的系数,此类题有两种解法,一种是将特解代入原方程,然后比较等式两边的系数可得待估系数值,另一种是根据二阶线性微分方程解的性质和结构来求解,也就是下面演示的解法. 【解析】由题意可知,212xe 、为二阶常系数齐次微分方程0y ay by '''++=的解,所以2,1为特征方程20r ar b ++=的根,从而(12)3a =-+=-,122b =⨯=,从而原方程变为32x y y y ce '''-+=,再将特解x y xe =代入得1c =-.故选(A )(3) 若级数条件收敛,则 =x 3=x 依次为幂级数的 ( )(A) 收敛点,收敛点(B) 收敛点,发散点 (C) 发散点,收敛点 (D) 发散点,发散点 【答案】(B )【分析】此题考查幂级数收敛半径、收敛区间,幂级数的性质。
2015年考研数学一真题及答案解析
2015年全国硕士研究生入学统一考试数学(一)试题一、选择题:18小题,每小题4分,共32分。
下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上。
(1)设函数()f x 在(),-∞+∞内连续,其中二阶导数()''f x 的图形如图所示,则曲线()=y f x 的拐点的个数为 ( )(A) 0 (B) 1 (C) 2 (D) 3【答案】(C )【解析】拐点出现在二阶导数等于0,或二阶导数不存在的点,并且在这点的左右两侧二阶导函数异号。
因此,由()f x ''的图形可得,曲线()y f x =存在两个拐点.故选(C ). (2)设211()23=+-x x y e x e 是二阶常系数非齐次线性微分方程'''++=x y ay by ce 的一个特解,则 ( )(A) 3,2,1=-==-a b c (B) 3,2,1===-a b c (C) 3,2,1=-==a b c (D) 3,2,1===a b c【答案】(A )【分析】此题考查二阶常系数非齐次线性微分方程的反问题——已知解来确定微分方程的系数,此类题有两种解法,一种是将特解代入原方程,然后比较等式两边的系数可得待估系数值,另一种是根据二阶线性微分方程解的性质和结构来求解,也就是下面演示的解法.【解析】由题意可知,212x e 、13x e -为二阶常系数齐次微分方程0y ay by '''++=的解,所以2,1为特征方程20r ar b ++=的根,从而(12)3a =-+=-,122b =⨯=,从而原方程变为32x y y y ce '''-+=,再将特解x y xe =代入得1c =-.故选(A )(3) 若级数1∞=∑nn a条件收敛,则=x 3=x 依次为幂级数1(1)∞=-∑n n n na x 的 ( )(A) 收敛点,收敛点 (B) 收敛点,发散点 (C) 发散点,收敛点 (D) 发散点,发散点 【答案】(B )【分析】此题考查幂级数收敛半径、收敛区间,幂级数的性质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题,1~8 小题,每小题 4 分,共 32 分.下列每题给出的四个选项中,只有一个选项 是符合题目要求的.
1.当 x 0 时,若 x tan x 与 xk 是同阶无穷小,则 k
A.1.
B.2.
C.3.
D.4.
【答案】C
【答案解析】根据泰勒公式有 x tan x ~ 1 x3 ,故选 C. 3
ai1x ai2 y ai3z di (i 1,2,3)
组成的线性方程组的系数矩阵和增广矩阵分别记为 A, A ,则
A. r( A) 2, r(A) 3.
B. r( A) 2, r(A) 2.
C. r( A) 1, r(A) 2.
D. r( A) 1, r( A) 1.
【答案】A 【答案解析】由图像可知平面两两分别相交,所以系数矩阵的秩大于等于 2,又因为三个平 面没有共同的交线,所以方程组无解,所以增广矩阵的秩为 3.其相关知识如下:
设平面1 2 3 的方程所组成的线性方程组(下简称方程组)的系数矩阵和增广矩阵
分别为 A 和 A .下面根据线性代数和解析几何知识讨论其位置关系.因秩 A 秩 A ,秩 A 3,秩 A 1,故只有下述 6 种不同情况:
A. un .
n1 n
B. (1)n 1 .
n1
un
C.
n1
1
un un1
.
D.
u2 n1
un2
.
n1
【答案】D
【答案解析】
选项
A:
u n
单调递增有界,知 un收敛,
故lim n
u n
u
0 ,也就是 n 趋近无穷时,
n 1
n n 2
13
2
n 1
n
n n 1
1
1
n 1
此,根据比较审敛法可知级数 D 收敛。当然也可以一开始就使用裂项相消,也能证明其收
敛.
x 4.设函数 Q(x, y) y2 ,如果对上半平面( y 0 )内的任意有向光滑封闭曲线 C 都有
P(x, y)dx Q(x, y)dy 0 ,那么函数 P(x, y) 可取为
C
x2 A. y .
y3
1 x2 B. .
y y3
11 C. .
xy
1 D. x .
y
【答案】D
P Q 1
【答案解析】由题意可知
y
x
y2
且 要保证对于上半平面任意光滑闭曲线都成立,
故也包含 x=0 一条线,故选 D。A、B 偏导数不符合,C 在 x=0 处不连续,不成立。
(1)秩 A =3=秩 A 时.
●方程组有唯一解,三平面交于一点,下图(1).
(2)秩 A 3 ,秩 A 2 时,因秩 A 秩 A ,方程组误解,因而 3 平面无交点.但因秩
A 2 ,必有两平面相交.又秩 A 3 , 3个平面又互异,于是可能有: ● 3平面两两相交,下图(2).
5.设 A 是 3 阶实对称矩阵,E 是 3 阶单位矩阵.若 A2 A 2E ,且 A 4 ,则二次型 xT Ax
的规范形为
A. y12 y22 y32 .
B. y12 y22 y32 .
C. y12 y22 y32 .
D. y12 y22 y32 .
【答案】C
【答案解析】由 A2 A 2E 可知,矩阵的特征值满足 2 2,所以A的两个特征值为 2,1; 又知道行列式等于所有特征值的乘积,故矩阵
的第三个特征值为-2,所以二次型的正、负惯性指数分别为 1,2.故选 C. 6.如图所示,有 3 张平面两两相交,交线相互平行,它们的方程
● 3平面中有两平面相交,另一平面与其中一平面平行,下图(3). (3)秩 A 3 ,秩 A 1 .根据秩的定义易知这不可能. (4)秩 A 2 秩 A 时,因秩 A 秩 A 2 n 3(未知数个数),方程组有无穷多 个解,因而 3平面有无穷多个交点,又因秩 A 2 ,必有两平面相交,秩 A 2 ,A 说明 3平面 中至少有 2 个平面互异,于是可能有:
2n n+1 n+2
,根据极
2
限形式的比较审敛法,该级数与 同敛散,因此发散。
n 1 n
选项 D:由题意可知,选项 D 为项级数.又由于un有界,即 存在M,使得 un M ,
u2 n1
un2
un1 un
un1 un
2M(un1 un),
(u u )= lim u u +u u +...+u u = lim u u M u ,因
u n
1
,故根据极限形式的比较审敛发,
u
n与
1
同敛散,而
1
发散,故选项
nn
n 1 n n 1 n
n 1 n
A
发散。本选项也可举反例u n
=
arctan
n
;
1
选项
B:
u n
单调递增有界,知
un
收敛.故lim n
u n
u
0,故 lim n u
0 ,由数列收
不存在(极限为无穷属于极限不错在),故 x 0 是 f (x) 的
x0
x
不可导点.且当 x 0, f (x) 0;0 x 1, f (x) 0且f (0) 0 ,由极值定义可知, x 0 是
f (x) 的极值点,故选 B.
3.设 un 是单调增加的有界数列,则下列级数中收敛的是
对泰勒不熟悉的同学,本题也可以用洛必达法则.
x x , x 0,
2.设函数 f (x)
则 x 0 是 f (x) 的
x ln x, x 0,
A.可导点,极值点.
B.不可导点,极值点.
C.可导点,非极值点.
D.不可导点,非极值点.
【答案 B】
x ln x 0
【答案解析】由于 lim
n
敛的必要条件可知 B 发散。本选项也可举反例un = arctan n ;
选项 C:该选项最具迷惑性,一般项趋近 0,是正项级数,单调减.但这种正项级数是否收敛
n
取决于递减的速度。比如举反例u =
,
n n 1
u
1 n =
n 1
u n 1 n 1