2SK2586中文资料

合集下载

2SK3356资料

2SK3356资料

DATA SHEETDocument No.D14133EJ1V0DS00 (1st edition)The information in this document is subject to change without notice. Before using this document, pleaseconfirm that this is the latest version.Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.The mark 5 shows major revised points.DESCRIPTIONThe 2SK3356 is N-channel MOS Field Effect Transistor designed for high current switching applications.FEATURES•Super low on-state resistance:R DS(on)1 = 8.0 m Ω MAX. (V GS = 10 V, I D = 38 A)R DS(on)2 = 12 m Ω MAX. (V GS = 4 V, I D = 38 A)•Low C iss : C iss = 6300 pF TYP.•Built-in gate protection diodeABSOLUTE MAXIMUM RATINGS (T A = 25°C)Drain to Source Voltage V DSS 60V Gate to Source Voltage V GSS(AC)±20V Drain Current (DC)I D(DC)±75A Drain Current (pulse) Note1I D(pulse)±300A Total Power Dissipation (T C = 25°C)P T 130W Total Power Dissipation (T A = 25°C)P T 3.0W Channel Temperature T ch 150°C Storage TemperatureT stg –55 to +150°C Single Avalanche Current Note2I AS 55A Single Avalanche Energy Note2E AS302mJNotes 1.PW ≤ 10 µs, Duty cycle ≤ 1 %2. Starting T ch = 25 °C, R G = 25 Ω, V GS = 20 V → 0 VTHERMAL RESISTANCEChannel to Case Rth(ch-C)0.93°C/W Channel to AmbientRth(ch-A)41.7°C/WORDERING INFORMATIONPART NUMBERPACKAGE 2SK3356TO-3P55555552ELECTRICAL CHARACTERISTICS (T A = 25 °C)CHARACTERISTICSSYMBOL TEST CONDITIONSMIN.TYP.MAX.UNIT Drain to Source On-state ResistanceR DS(on)1V GS = 10 V, I D = 38 A 6.38.0m ΩR DS(on)2V GS = 4 V, I D = 38 A 8.012m ΩGate to Source Cut-off Voltage V GS(off)V DS = 10 V, I D = 1 mA 1.5 2.0 2.5VForward Transfer Admittance | y fs|V DS = 10 V, I D = 38 A 3557SDrain Leakage CurrentI DSS V DS = 60 V, V GS = 0 V 10µA Gate to Source Leakage Current I GSS V GS = ±20 V, V DS = 0V±10µA Input Capacitance C iss V DS = 10 V, V GS = 0 V, f = 1 MHz6300pF Output CapacitanceC oss 1000pF Reverse Transfer Capacitance C rss 490pF Turn-on Delay Time t d(on)ID = 38 A, V GS(on) = 10 V, V DD = 30 V,90ns Rise Timet r R G = 10 Ω1100ns Turn-off Delay Time t d(off)300ns Fall Timet f 400ns Total Gate Charge Q G I D = 75 A , V DD = 48 V, V GS = 10 V 106nC Gate to Source Charge Q GS 20nC Gate to Drain Charge Q GD 30nC Body Diode Forward Voltage V F(S-D)I F = 75 A, V GS = 0 V 1.0V Reverse Recovery Time t rr I F = 75 A, V GS = 0 V,55ns Reverse Recovery ChargeQ rrdi/dt = 100 A/µs100nC5TEST CIRCUIT 3 GATE CHARGEV GS = 20 → 0 TEST CIRCUIT 1 AVALANCHE CAPABILITYL DDTEST CIRCUIT 2 SWITCHING TIMEL DDτ = 1 µsDuty Cycle ≤ 1 %3PACKAGE DRAWING (Unit: mm)Remark The diode connected between the gate and source of the transistor serves as a protector against ESD.When this device actually used, an additional protection circuit is externally required if a voltage exceeding the rated voltage may be applied to this device.TO-3P (MP-88)EQUIVALENT CIRCUITBody DiodeDiodeDrain• The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.• No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.• NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual propertyrights of third parties by or arising from use of a device described herein or any other liability arising from useof such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or otherintellectual property rights of NEC Corporation or others.• Descriptions of circuits, software, and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits,software, and information in the design of the customer's equipment shall be done under the full responsibilityof the customer. NEC Corporation assumes no responsibility for any losses incurred by the customer or third parties arising from the use of these circuits, software, and information.• While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices,the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons orproperty arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.• NEC devices are classified into the following three quality grades:"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on acustomer designated "quality assurance program" for a specific application. The recommended applications ofa device depend on its quality grade, as indicated below. Customers must check the quality grade of each devicebefore using it in a particular application.Standard: Computers, office equipment, communications equipment, test and measurement equipment,audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robotsSpecial: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disastersystems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)Specific: Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, lifesupport systems or medical equipment for life support, etc.The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.M7 98. 8。

2586规格书 译文

2586规格书 译文

EUP25862012年2月DS2586 Ver1.01小包装,高性能,Asynchronies提升WLED司机描述这是一个EUP2586高频,异步的推动转换器设计用于驱动白光LED阵列。

与集成开关电源和2 0.19限流,EUP2586提供足够的驱动性能7 ~ 10英寸液晶背光(13串3个或者4个发光二极管每个)。

该装置采用电流模式、固定频率建筑规范LED电流,这是通过一个外部电流感测电阻。

它的低200毫伏电压降低功率损耗和反馈提高效率。

内置过压保护功能(OVP),西南销监视输出电压如果一个关闭装置过电压情况包括软启动、过电流限制,热保护和低电压闭锁。

这EUP2586是可得到的在小TSOT23-5包裹送到客户提供最佳的解决方案对印刷电路板的空间储蓄和总BOM成本。

特征2.6 V输入范围5.5 V内部0.19,18 V MOSFET开关效率高达到93%在表面温度低ILED = 180麻1兆赫开关频率2一个限流导致过电压保护开放内部Soft-StartPWM(脉宽调制)和直流模糊控制可在TSOT23-5包装RoHS认证,并无100%的铅无卤应用中部背光Netbook背光便携式媒体播放器GPS导航系统典型应用电路图1。

申请EUP2586 PWM变白光LED驱动EUP25862012年2月DS2586 Ver1.02框图图2。

框图销配置包装类型销配置TSOT23-5销描述销TSOT23-5描述1 SW开关的密码。

这是流失的内部电源开关。

连接电感/二极管在这里。

减少微量区这个别针减少电磁干扰(EMI)。

3弗拉维奥-布里亚托利反馈的密码。

参考电压是200毫伏。

连接阴极发光二极管(LED)和最低的电阻在这里。

根据计算电阻价值公式:= 200千瓦/ ILED RFB4在芯片使别针。

连接到1.4 V或更高的电压,使装置,0.3 V或更少电压禁用设备。

5在输入电压。

EUP25862012年2月DS2586 Ver1.03订购信息订单号码包装类型标识操作温度范围内EUP2586OIR1 TSOT23-5xxxxxAd00-40°C + 85°C□□□□EUP2586□□□□□□□□□□□□无铅代码包装记者:磁带和卷操作温度范围内我:行业标准包装类型服务员:TSOTEUP25862012年2月DS2586 Ver1.04绝对最大额定值(1)在,嗯,弗拉维奥-布里亚托利对地- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -0.3 V 6 V对地的SW - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -0.3 V至18 V功耗,PD = 25°C @助教TSOT23-5 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 0.5 W包装热阻TSOT23-5,θJA - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 200°C / W铅温度(焊接,10秒。

2SK系列场管参数

2SK系列场管参数

1mA 大管
10mA 80mW通用型场效应管
10A 100W
15A 120W
20A 130W
10mA 200mW
5A
150W
5A
150W
10mA 200mW
20A 150W
20A 150W
15A 150W
0.5- 0.25W场效应音频/高频放
1.5mA 大管
1-3mA
0.25W场效应音频/高频放 大管
拆N沟 600V 6A
600V 6A
45W
1000V 4A
100W
30V 10mA 1000V 8A 50V 25A 100V 40A 60V 40A 60V 45A 50V 10mA 50V 3-9mA
200mW 150W 45W 100W 100W 125W 250mW 0.25W
2SK112-RN沟
10mA 150mW低频放大场效应管
0.51.5mA
0.3W场效应音频(低频)管
1-3mA 0.3W场效应音频(低频)管
2-6mA 0.3W场效应音频(低频)管
4-12mA 0.3W场效应音频(低频)管
300mW
低频放
大场效
应管
50mA 150mW低频放大场效应管
2.75.5mA
0.25W
3A
45W
500V 15A 100W
450V 20A 147/290ns
拆N沟 50V 10mA
500V 20A 120W
800V 4A
80W
900V 3.5A 80W
2SK1173N沟 2SK1177N沟
50V 500V
2SK1178N沟 500V
2SK1179N沟 500V 2SK117-BLN沟 50V 2SK117-GRN沟 50V 2SK117N沟 50V 2SK117-ON沟 50V

场效应管参数大全2要点

场效应管参数大全2要点

TOSHIBA
500 8
80
关、开关整流
N-MOSFET,用于高速高电压开
TOSHIBA
500 8
40
关、开关整流
N-MOSFET,用于高速高电压开
TOSHIBA
600 6
80
关、开关整流
N-MOSFET,用于高速高电压开
TOSHIBA 关、DC-DC 转换、继电器驱动和 600 6
40
电动机驱动
N-MOSFET,用于高速高电压开
SANYO
N-MOSFET,通用开关应用
250 16
50
N-MOSFET,用于高速开关、高频
PANASONIC
250 2
30
功率放大
N-MOSFET,用于高频功率放大、
PANASONIC
15 0.05 0.2
模拟开关
NEC
N-MOSFET,用于高速开关
50 0.1 0.25
N-MOSFET,用于高速高电压开
电源、DC-DC 转换、一般功率放 500 15 125

N-MOSFET,用于开关
600 9
50
N-MOSFET,用于开关整流、UPS
2SK2599 2SK259H 2SK2601 2SK2602 2SK2603 2SK2604 2SK2605 2SK2606 2SK2607
型号 2SK2608 2SK260H 2SK261 2SK2610
2SK2611
NEC TOSHIBA TOSHIBA
TOSHIBA
TOSHIBA
TOSHIBA
N-MOSFET,用于开关整流、UPS
电源、DC-DC 转换、一般功率放 450 10

2SK2486中文资料

2SK2486中文资料

Document No. D10282EJ1V0DS00 (1st edition)Date Published August 1995 PPrinted in Japan©19952SK24862ELECTRICAL CHARACTERISTICS (T A = 25 ˚C)The application circuits and their parameters are for references only and are not intended for use in actual design-in's.Test Circuit 3 Gate ChargeV GS PGTest Circuit 1 Avalanche CapabilityLTest Circuit 2 Switching TimePG.L DDt = 1 usDuty Cycle ≤ 1 %2SK24863TYPICAL CHARACTERISTICS (T A = 25 ˚C)FORWARD BIAS SAFE OPERATING AREA V DS - Drain to Source Voltage - V I D - D r a i n C u r r e n t - ADRAIN CURRENT vs.DRAIN TO SOURCE VOLTAGEV DS - Drain to Source Voltage - VI D - D r a i n C u r r e n t - AFORWARD TRANSFER CHARACTERISTICS V GS - Gate to Source Voltage - VI D - D r a i n C u r r e n t - A0.1DERATING FACTOR OF FORWARD BIAS SAFE OPERATING AREAT C - Case Temperature - ˚C d T - P e r c e n t a g e o f R a t e d P o w e r - %TOTAL POWER DISSIPATION vs.CASE TEMPERATURET C - Case Temperature - ˚C P T - T o t a lPo w er D i s s i p a t i o n - W200204060801001201401602040608010040608010012014016014012010080604020111010051.010100102SK24864TRANSIENT THERMAL RESISTANCE vs. PULSE WIDTHPW - Pulse Width - sr t h (t ) - T r a n s i e n t T h e r m a l R e s i s t a n c e - ˚C /WFORWARD TRANSFER ADMITTANCE vs.DRAIN CURRENTI D - Drain Current - A| y f s | - F o r w a r d T r a n s f e r A d m i t t a n c e - S DRAIN TO SOURCE ON-STATE RESISTANCE vs.GATE TO SOURCE VOLTAGE V GS - Gate to Source Voltage - V R D S (o n ) - D r a i n t o S o u r c e O n -S t a t e R e s i s t a n c e - ΩDRAIN TO SOURCE ON-STATE RESISTANCE vs. DRAIN CURRENTGATE TO SOURCE CUTOFF VOLTAGE vs.CHANNEL TEMPERATURET ch - Channel Temperature - ˚CV G S (o f f ) - G a t e t o S o u r c e C u t o f f V o l t a g e - VI D - Drain Current - AR D S (o n ) - D r a i n t o S o u r c e O n -S t a t e R e s i s t a n c e - Ω3100.0010.010.111001 000 1 m10 m100 m1101001 00010101001 000355V DS = 10 V I D = 1 mA–5005010015051717246 µ100 µ2SK24865DRAIN TO SOURCE ON-STATE RESISTANCE vs.CHANNEL TEMPERATURER D S (o n ) - D r ai n t o S o u r c e O n -S t a t e R e s i s t a n c e - ΩSOURCE TO DRAIN DIODE FORWARD VOLTAGEV DS - Drain to Source Voltage - VC i s s , C o s s , C r s s - C a p a c i t a n c e - p FI D - Drain Current - A101001 00010 000V G S - G a t e t o S o u r c e V o l t a g e - VREVERSE RECOVERY TIME vs.DRAIN CURRENTI D - Drain Current - At r r - R e v e r s e R e c o v e r y t i m e - n sdi/dt = 50 A/ s V GS = 0µ100.11001 0001.010100DYNAMIC INPUT/OUTPUT CHARACTERISTICSQ g - Gate Charge - nC246810121416010 0006SINGLE AVALANCHE CURRENT vs.INDUCTIVE LOADL - Inductive Load - HI A S - S i n g l e A v a l a n c h e C u r r e n t - ASINGLE AVALANCHE ENERGY DERATING FACTORStarting T ch - Starting Channel Temperature - ˚CE n e r g y D e r a t i n gF a c t o r - %1.00251010020801201605075100125150V DD = 150 V R G = 25 ΩV GS = 20 V → 0I AS 7.0 A1006040140≥REFERENCE7[MEMO]No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customer must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.NEC devices are classified into the following three quality grades:“Standard“, “Special“, and “Specific“. The Specific quality grade applies only to devices developed based ona customer designated “quality assurance program“ for a specific application. The recommended applicationsof a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.Standard:Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronicequipment and industrial robotsSpecial:Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designedfor life support)Specific:Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.The quality grade of NEC devices in “Standard“ unless otherwise specified in NEC's Data Sheets or Data Books.If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact NEC Sales Representative in advance.Anti-radioactive design is not implemented in this product.M4 94.11 8。

2SK2582资料

2SK2582资料

40
3
m
s
Operation in this area is 1 limited by R DS(on)
O
(1
n tio ra pe
Sh
ot
)
c (T
20
= °C 25
0.3 0.1 Ta = 25 °C 1
)
0
50
100
150 Tc (°C)
200
Case Temperature
3 10 30 100 300 1000 Drain to Source Voltage V DS (V)
2 1
Ratings 350
Unit V V A A A W
r30
13 52 13 75 150 –55 to +150
qC qC
2
元器件交易网
2SK2582
Electrical Characteristics (Ta = 25GC)
Item Drain to source breakdown voltage Gate to source breakdown voltage Gate to source leak current Symbol V(BR)DSS V(BR)GSS IGSS VGS(off) Min 350 Typ — — — — — 0.30 9.0 1250 Max — — Unit V V Test Conditions ID = 10 mA, VGS = 0 IG = r100 PA, VDS = 0 VGS = r25 V, VDS = 0 VDS =350 V, VGS = 0 ID = 1 mA, VDS = 10 V ID = 7 A 1 VGS = 10 V* ID = 7 A 1 VDS = 10 V* VDS = 10 V VGS = 0 f = 1 MHz

2SD2568中文资料(rohm)中文数据手册「EasyDatasheet - 矽搜」

2SD2568中文资料(rohm)中文数据手册「EasyDatasheet - 矽搜」

0.5 (A)
1
0.5 (A)
1
0.02 BASE SATURATION VOLTAGE : V 0.01 0.001 0.002 0.005 0.01 0.02 0.05 0.1 0.2 COLLECTOR CURRENT : I
C
0.5 (A)
1
COLLECTOR CURRENT : I
图4 DC电流增益 - 集电极电流(
1/2
芯片中文手册,看全文,戳
2SD2568
晶体管电气特Biblioteka 曲线200 (mA) 160
C
Ta=25 C
mA 3.0m A 2.5m A 2.0m A 1.5m A
1 (A)
C
V CE =3V
FE
1000 500 200 100
Ta=25 C
0.5 0.2 0.1 0.05
25°C
FE
2SD2568 CPT3 PQ TL 2500
电气特性
Parameter Collector-base breakdown voltage Collector-emitter breakdown voltage Emitter-base breakdown voltage Collector cutoff current Emitter cutoff current Collector-emitter saturation voltage Base-emitter saturation voltage DC current transfer ratio Transition frequency Output capacitance
(V) 2
BE(sat)
200 100 50 20

2SC2655中文资料(secos)中文数据手册「EasyDatasheet - 矽搜」

2SC2655中文资料(secos)中文数据手册「EasyDatasheet - 矽搜」

Min. Typ. Max.
50
-
-
50
-
-
5
-
-
-
-
1
-
-
1
70
-
240
40
-
-
-
-
0.5
-
-
1.2
-
100
-
-
30
-
-
0.15
-
-
2
-
-
0.15
-
单元 V V V μA μA
V V MHz pF
μs
测试条件
IC=100μA, I E=0 IC=10mA, I B=0 IE=100μA, I C=0 VCB=50V, I E=0 VEB=5V, I C=0 VCE=2V, I C=0.5A VCE=2V, I C=1.5A IC=1A, I B=0.05A IC=1A, I B=0.05A VCE=2V, I C=0.5A VCB=10V, I E=0, f=1MHz VCC=30V IB1= -I B2=0.05A IC=1A
芯片中文手册,看全文,戳
2SC2655
2A , 50V NPN塑料封装晶体管
符合RoHS产品 "-C"后缀指定卤素及无铅
特征
低饱和电压:V 高速切换时间:T已 为补充2SA1020
CE(sat) =0.5V(Max)(I C=1A) stg=1μs(Typ.)
^ h分类
产品秩 范围
FE (1) 2SC2655-O
70-140
2SC2655-Y 120-240
收藏家
基地
发射器
TO-92MOD
A

2SK2645中文资料

2SK2645中文资料

Min. 600 3,5
Typ. 4,0 10 0,2 10 1,0 5 900 150 70 25 70 60 35 1,0 550 7,0
Max. 4,5 500 1,0 100 1,2 1400 230 110 40 110 90 60 1,5
2,5
9
Unit V V µA mA nA Ω S pF pF pF ns ns ns ns A V ns µC
600V
1,2Ω
2SK2645-01MR
FAP-IIS Series
Drain-Source On-State Resistance vs. Tch
RDS(on) = f(Tch); ID=4A; VGS=10V
9A
50W
> Characteristics
Typical Output Characteristics

IF [A]
7
8
9
VDS [V]

Qg [nC]

VSD [V]

Avalanche Energy Derating
Eas=f(starting Tch); VCC=60V; IAV=9A
Safe Operation Area
ID=f(VDS): D=0,01, Tc=25°C

Zth(ch-c) [K/W]
Typical Gate Charge Characteristic
VGS=f(Qg); ID=9A; Tc=25°C
Forward Characteristics of Reverse Diode
IF=f(VSD); 80µs pulse test; VGS=0V

2SK2806-01中文资料

2SK2806-01中文资料

Typical Transfer Characteristics
ID=f(VGS); 80µs pulse test; VDS=25V; Tch=25°C

1
↑ 2
↑ 3
ID [A]
RDS(ON) [mΩ]
ID [A]
→ VDS [V]
Typical Drain-Source On-State-Resistance vs. ID
VGS(th)=f(Tch); ID=1mA; VDS=VGS
↑ 4
↑ 5
↑ 6
VGS(th) [V]
gfs [S]
RDS(ON) [mΩ]
→ ID [A]
Typical Capacitances vs. VDS
C=f(VDS); VGS=0V; f=1MHz
↑ 7
→ ID [A]
Typical Gate Charge Characteristic
→ VSD [V]
Transient Thermal impedance
Zthch=f(t) parameter:D=t/T
ID [A]
EAV [mJ]
→ starting Tch [°C]
→ VDS [V]
This specification is subject to change without notice!
V DS ID I D(puls) V GS E AV PD T ch T stg
30
V
35
A
140
A
±16
V
129,3
mJ*
30
W
150
°C
-55 ~ +150
°C

2SK2586-E中文资料

2SK2586-E中文资料
1.0 Pulse Test
Gate to Source Voltage VGS (V) Static Drain to Source on State Resistance vs. Drain Current
0.5 0.2 0.1 0.05 0.02 0.01 0.005 0.002 0.001 0.0005
Reverse Recovery Time t rr (ns)
5000 2000 10000 5000
Drain Current ID (A) Typical Capacitance vs. Drain to Source Voltage
Capacitance C (pF)
1000 500 200 100 50 20 10 5 0.1
75
100
125
150
Source to Drain Voltage
VSD (V)
Channel Temperature Tch (°C)
Normalized Transient Thermal Impedance vs. Pulse Width
Normalized Transient Thermal Impedance γs (t)
元器件交易网
2SK2586
Reverse Drain Current vs. Source to Drain Voltage
100
Repetitive Avalanche Energy EAR (mJ)
Maximum Avalanche Energy vs. Channel Temperature Derating
80
4V
3.5 V
80
60
40
40

2SK3826资料

2SK3826资料

5 3
VDS=10V
Forward Current, IF -- A
2 10 7 5 3 2 1.0 7 5 3 0.1 2 3 5 7 1.0 2
= Tc
--2
°C 25 5°C
10 7 5 3 2 1.0 7 5 3 2 0.1 7 5 3 2 0.01 0 0.3
75
°C
3
5
7 10
2
3
5
7
Tc=75 °C
Drain Current, ID -- A
IT08874
Drain-to-Source Voltage, VDS -- V
No.8243-3/4
元器件交易网
2SK3826
10 9
VGS -- Qg
VDS=50V ID=26A
Drain Current, ID -- A
Specifications
Absolute Maximum Ratings at Ta=25°C
Parameter Drain-to-Source Voltage Gate-to-Source Voltage Drain Current (DC) Drain Current (Pulse) Allowable Power Dissipation Channel Temperature Storage Temperature Avalanche Energy (Single Pulse) *1 Avalanche Current *2 Symbol VDSS VGSS ID IDP PD Tch Tstg EAS IAV PW≤10µs, duty cycle≤1% Tc=25°C Conditions Ratings 100 ±20 26 104 1.75 45 150 --55 to +150 80 26 Unit V V A A W W °C °C mJ A

2SK2645中文资料(fuji)中文数据手册「EasyDatasheet - 矽搜」

2SK2645中文资料(fuji)中文数据手册「EasyDatasheet - 矽搜」
芯片中文手册,看全文,戳
FAP-IIS系列
特征
高速开关 低导通电阻 无二次击穿 低驱动电源 高压 V GS =±30V防护证 额定重复性雪崩
2SK2645-01MR
外形图
N沟道MOS-FET
600V
1,2
9A
50W
应用
开关稳压器
UPS DC-DC转换
通用功率放大器
最大额定值和特性
- 绝对最大额定值 (
10
[A] Eas [mJ] I
12
Starting T [°C]
V [V] 本规范如有变更,恕不另行通知!
t [s]
雪崩能​力 二极管正向导通电压 反向恢复时间 反向恢复电荷
V GS =0V V DS= V GS Tch=25°C Tch=125°C V DS=0V V GS =10V V DS=25V V DS=25V V GS =0V f=1MHz V CC=300V ID=9A V GS=10V RGS =10 L = 100µH Tch=25°C I F=2xI DR V GS=0V T ch=25°C IF=I DR V GS=0V -dI F/dt=100A/µs T ch=25°C
Unit V A A V A mJ W °C °C
- 电气特性(T
Item
漏源击穿电压 门门限电压 零栅压漏电流 门源漏电流 漏源极导通状态电阻 正向跨 输入电容 输出电容 反向传输电容 导通时间t on (t on =t d(on) +t r ) 关断时间t
off (ton=t d(off)+t f)
Typical Forward Transconductance vs. I
Gate Threshold Voltage vs. T

2SK2736资料

2SK2736资料

Static drain to source on state RDS(on)
resistance
RDS(on)
Forward transfer admittance |yfs|
Input capacitance
Ciss
Output capacitance
Coss
Reverse transfer capacitance Crss
4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as failsafes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other consequential damage due to operation of the Hitachi product.

2SK3586-01中文资料

2SK3586-01中文资料
VGS= 5.5V 6.0V 6.5V 7.0V 7.5V
0.12 10
RDS(on) [ Ω ]
0.09
gfs [S]
8V
0.06 10V
1
0.03 20V 0.1 0.1 0.00 0 40 80 120 160 200
1
10
100
ID [A]
ID [A]
2
元器件交易网
1.75
2.00
10
0
10
-1
10
0
10
1
10
2
VSD [V]
ID [A]
3
元器件交易网
2SK3586-01
Transient Thermal Impedance Zth(ch-c)=f(t):D=0
FUJI POWER MOSFET
10
1
10
0
Zth(ch-c) [°C/W]
Maximum Avalanche Energy vs. starting Tch E(AV)=f(starting Tch):Vcc=48V,I(AV)<=50A
500
200 175
400 150 125 100 75 50 100 25 0 0 25 50 75 100 125 150 0 0 25 50 75 100 125 150
Typical Transconductance
gfs=f(ID):80µs Pulse test, VDS=25V,Tch=25°C
100 0.15
Typical Drain-Source on-state Resistance
RDS(on)=f(ID):80µs Pulse test, Tch=25°C

LM2586T-5.0资料

LM2586T-5.0资料

LM2586SIMPLE SWITCHER ®3A Flyback Regulator with ShutdownGeneral DescriptionThe LM2586series of regulators are monolithic integrated circuits specifically designed for flyback,step-up (boost),and forward converter applications.The device is available in 4different output voltage versions:3.3V,5.0V,12V,and adjust-able.Requiring a minimum number of external components,these regulators are cost effective,and simple to use.Included in the datasheet are typical circuits of boost and flyback regula-tors.Also listed are selector guides for diodes and capacitors and a family of standard inductors and flyback transformers designed to work with these switching regulators.The power switch is a 3.0A NPN device that can stand-off 65V.Protecting the power switch are current and thermal limiting circuits,and an undervoltage lockout circuit.This IC contains an adjustable frequency oscillator that can be pro-grammed up to 200kHz.The oscillator can also be synchro-nized with other devices,so that multiple devices can oper-ate at the same switching frequency.Other features include soft start mode to reduce in-rush cur-rent during start up,and current mode control for improved rejection of input voltage and output load transients and cycle-by-cycle current limiting.The device also has a shut-down pin,so that it can be turned off externally.An output voltage tolerance of ±4%,within specified input voltages and output load conditions,is guaranteed for the power supply system.Featuresn Requires few external componentsn Family of standard inductors and transformers n NPN output switches 3.0A,can stand off 65V n Wide input voltage range:4V to 40Vn Adjustable switching frequency:100kHz to 200kHz n External shutdown capabilityn Draws less than 60µA when shut down n Frequency synchronizationnCurrent-mode operation for improved transient response,line regulation,and current limitn Internal soft-start function reduces in-rush current during start-upn Output transistor protected by current limit,under voltage lockout,and thermal shutdownn System output voltage tolerance of ±4%max over line and load conditionsTypical Applicationsn Flyback regulator n Forward convertern Multiple-output regulator nSimple boost regulatorFlyback RegulatorSIMPLE SWITCHER ®and Switchers Made Simple®are registered trademarks of National Semiconductor Corporation.DS012516-1May 1996LM2586SIMPLE SWITCHER 3A Flyback Regulator with Shutdown©1999National Semiconductor Corporation Ordering InformationPackage Type NSC Package Order NumberDrawing7-Lead TO-220Bent,Staggered Leads TA07B LM2586T-3.3,LM2586T-5.0,LM2586T-12,LM2586T-ADJ 7-Lead TO-263TS7B LM2586S-3.3,LM2586S-5.0,LM2586S-12,LM2586S-ADJ 7-Lead TO-263Tape and Reel TS7B LM2586SX-3.3,LM2586SX-5.0,LM2586SX-12,LM2586SX-ADJ2Absolute Maximum Ratings(Note1)If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.Input Voltage−0.4V≤V IN≤45V Switch Voltage−0.4V≤V SW≤65V Switch Current(Note2)Internally Limited Compensation Pin Voltage−0.4V≤V COMP≤2.4V Feedback Pin Voltage−0.4V≤V FB≤2V OUT ON/OFF Pin Voltage−0.4V≤V SH≤6V Sync Pin Voltage−0.4V≤V SYNC≤2V Power Dissipation(Note3)Internally Limited Storage Temperature Range−65˚C to+150˚C Lead Temperature(Soldering,10sec.)260˚C Maximum Junction Temperature(Note3)150˚C Minimum ESD Rating(C=100pF,R=1.5kΩ)2kV Operating RatingsSupply Voltage4V≤V IN≤40V Output Switch Voltage0V≤V SW≤60V Output Switch Current I SW≤3.0A Junction Temp.Range−40˚C≤T J≤+125˚CElectrical CharacteristicsSpecifications with standard type face are for T J=25˚C,and those in bold type face apply over full Operating Temperature Range.Unless otherwise specified,V IN=5V.LM2586-3.3Symbol Parameters Conditions Typical Min Max Units SYSTEM PARAMETERS Test Circuit of Figure1(Note4)V OUT Output Voltage V IN=4V to12V 3.3 3.17/3.14 3.43/3.46VI LOAD=0.3to1.2A∆V OUT/Line Regulation V IN=4V to12V2050/100mV ∆V IN I LOAD=0.3A∆V OUT/Load Regulation V IN=12V2050/100mV ∆I LOAD I LOAD=0.3A to1.2AηEfficiency V IN=5V,I LOAD=0.3A76% UNIQUE DEVICE PARAMETERS(Note5)V REF Output Reference Measured at Feedback Pin 3.3 3.242/3.234 3.358/3.366V Voltage V COMP=1.0V∆V REF Reference Voltage V IN=4V to40V 2.0mV Line RegulationG M Error Amp I COMP=−30µA to+30µA 1.1930.678 2.259mmhoTransconductance V COMP=1.0VA VOL Error Amp V COMP=0.5V to1.6V260151/75V/VVoltage Gain R COMP=1.0MΩ(Note6)LM2586-5.0Symbol Parameters Conditions Typical Min Max Units SYSTEM PARAMETERS Test Circuit of Figure1(Note4)V OUT Output Voltage V IN=4V to12V 5.0 4.80/4.75 5.20/5.25VI LOAD=0.3A to1.1A∆V OUT/Line Regulation V IN=4V to12V2050/100mV ∆V IN I LOAD=0.3A∆V OUT/Load Regulation V IN=12V2050/100mV ∆I LOAD I LOAD=0.3A to1.1AηEfficiency V IN=12V,I LOAD=0.6A80% UNIQUE DEVICE PARAMETERS(Note5)V REF Output ReferenceVoltage Measured at Feedback PinV COMP=1.0V5.0 4.913/4.900 5.088/5.100V∆V REF Reference Voltage V IN=4V to40V 3.3mV3LM2586-5.0(Continued)Symbol Parameters Conditions Typical Min Max Units UNIQUE DEVICE PARAMETERS(Note5)Line RegulationG M Error Amp I COMP=−30µA to+30µA0.7500.447 1.491mmhoTransconductance V COMP=1.0VA VOL Error Amp V COMP=0.5V to1.6V16599/49V/VVoltage Gain R COMP=1.0MΩ(Note6)LM2586-12Symbol Parameters Conditions Typical Min Max Units SYSTEM PARAMETERS Test Circuit of Figure2(Note4)V OUT Output Voltage V IN=4V to10V12.011.52/11.4012.48/12.60VI LOAD=0.2A to0.8A∆V OUT/Line Regulation V IN=4V to10V20100/200mV ∆V IN I LOAD=0.2A∆V OUT/Load Regulation V IN=10V20100/200mV ∆I LOAD I LOAD=0.2A to0.8AηEfficiency V IN=10V,I LOAD=0.6A93% UNIQUE DEVICE PARAMETERS(Note5)V REF Output Reference Measured at Feedback Pin12.011.79/11.7612.21/12.24V Voltage V COMP=1.0V∆V REF Reference Voltage V IN=4V to40V7.8mV Line RegulationG M Error Amp I COMP=−30µA to+30µA0.3280.1860.621mmhoTransconductance V COMP=1.0VA VOL Error Amp V COMP=0.5V to1.6V7041/21V/VVoltage Gain R COMP=1.0MΩ(Note6)LM2586-ADJSymbol Parameters Conditions Typical Min Max Units SYSTEM PARAMETERS Test Circuit of Figure2(Note4)V OUT Output Voltage V IN=4V to10V12.011.52/11.4012.48/12.60VI LOAD=0.2A to0.8A∆V OUT/Line Regulation V IN=4V to10V20100/200mV ∆V IN I LOAD=0.2A∆V OUT/Load Regulation V IN=10V20100/200mV ∆I LOAD I LOAD=0.2A to0.8AηEfficiency V IN=10V,I LOAD=0.6A93% UNIQUE DEVICE PARAMETERS(Note5)V REF Output Reference Measured at Feedback Pin 1.230 1.208/1.205 1.252/1.255V Voltage V COMP=1.0V∆V REF Reference Voltage V IN=4V to40V 1.5mV Line RegulationG M Error Amp I COMP=−30µA to+30µA 3.200 1.800 6.000mmhoTransconductance V COMP=1.0VA VOL Error Amp Voltage Gain V COMP=0.5V to1.6V,670400/200V/VR COMP=1.0MΩ(Note6)I B Error Amp V COMP=1.0V125425/600nAInput Bias Current4LM2586-ADJ(Continued)Symbol ParametersConditionsTypical MinMax Units COMMON DEVICE PARAMETERS for all versions (Note 5)I S Input Supply Current Switch Off (Note 8)1115.5/16.5mA I SWITCH =1.8A 50100/115mA I S/D Shutdown Input V SH=3V16100/300µA Supply Current V UV Input SupplyR LOAD =100Ω3.303.05 3.75VUndervoltage Lockout f OOscillator FrequencyMeasured at Switch PinR LOAD =100Ω,V COMP =1.0V 10085/75115/125kHz Freq.Adj.Pin Open (Pin 1)R SET =22k Ω200kHz f SC Short-Circuit Measured at Switch Pin Frequency R LOAD =100Ω25kHzV FEEDBACK =1.15V V EAO Error Amplifier Upper Limit 2.8 2.6/2.4V Output Swing(Note 7)Lower Limit 0.250.40/0.55V(Note 8)I EAO Error Amp (Note 9)Output Current 165110/70260/320µA (Source or Sink)I SS Soft Start Current V FEEDBACK =0.92V 11.08.0/7.017.0/19.0µA V COMP =1.0V D MAX Maximum Duty Cycle R LOAD =100Ω9893/90%(Note 7)I L Switch Leakage Switch Off15300/600µA CurrentV SWITCH =60V V SUS Switch Sustaining Voltage dV/dT =1.5V/ns 65VV SAT Switch Saturation Voltage I SWITCH =3.0A 0.450.65/0.9V I CL NPN Switch Current Limit 4.0 3.07.0A V STH Synchronization F SYNC =200kHz0.750.625/0.400.875/1.00V Threshold Voltage V COMP =1V,V IN =5V I SYNC Synchronization V IN =5V100200µA Pin Current V COMP =1V,V SYNC =V STH V SHTH ON/OFF Pin (Pin 1)V COMP =1V 1.6 1.0/0.8 2.2/2.4V Threshold Voltage (Note 10)I SH ON/OFF Pin (Pin 1)V COMP =1V 4015/1065/75µACurrentV SH =V SHTHθJA Thermal ResistanceT Package,Junction to Ambient (Note 11)65˚C/WθJA T Package,Junction to Ambient (Note 12)45θJC T Package,Junction to Case 2θJA S Package,Junction to Ambient (Note 13)56θJA S Package,Junction to Ambient (Note 14)35θJA S Package,Junction to Ambient (Note 15)26θJCS Package,Junction to Case25LM2586-ADJ(Continued)Note 1:Absolute Maximum Ratings indicate limits beyond which damage to the device may occur.These ratings apply when the current is limited to less than 1.2mA for pins 1,2,3,and 6.Operating ratings indicate conditions for which the device is intended to be functional,but device parameter specifications may not be guar-anteed under these conditions.For guaranteed specifications and test conditions,see the Electrical Characteristics.Note 2:Note that switch current and output current are not identical in a step-up regulator.Output current cannot be internally limited when the LM2586is used as a step-up regulator.To prevent damage to the switch,the output current must be externally limited to 3A.However,output current is internally limited when the LM2586is used as a flyback regulator (see the Application Hints section for more information).Note 3:The junction temperature of the device (T J )is a function of the ambient temperature (T A ),the junction-to-ambient thermal resistance (θJA ),and the power dissipation of the device (P D ).A thermal shutdown will occur if the temperature exceeds the maximum junction temperature of the device:P D x θJA +T A(MAX)≥T J -(MAX).For a safe thermal design,check that the maximum power dissipated by the device is less than:P D ≤[T J(MAX)−T A(MAX)]/θJA .When calculating the maximum allowable power dissipation,derate the maximum junction temperature —this ensures a margin of safety in the thermal design.Note 4:External components such as the diode,inductor,input and output capacitors can affect switching regulator performance.When the LM2586is used as shown in Figures 1,2,system performance will be as specified by the system parameters.Note 5:All room temperature limits are 100%production tested,and all limits at temperature extremes are guaranteed via correlation using standard Statistical Qual-ity Control (SQC)methods.Note 6:A 1.0M Ωresistor is connected to the compensation pin (which is the error amplifier output)to ensure accuracy in measuring A VOL .Note 7:To measure this parameter,the feedback voltage is set to a low value,depending on the output version of the device,to force the error amplifier output high and the switch on.Note 8:To measure this parameter,the feedback voltage is set to a high value,depending on the output version of the device,to force the error amplifier output low and the switch off.Note 9:To measure the worst-case error amplifier output current,the LM2586is tested with the feedback voltage set to its low value (Note 7)and at its high value (Note 8).Note 10:When testing the minimum value,do not sink current from this pin —isolate it with a diode.If current is drawn from this pin,the frequency adjust circuit will begin operation (see Figure 41).Note 11:Junction to ambient thermal resistance (no external heat sink)for the 7lead TO-220package mounted vertically,with 1⁄2inch leads in a socket,or on a PC board with minimum copper area.Note 12:Junction to ambient thermal resistance (no external heat sink)for the 7lead TO-220package mounted vertically,with 1⁄2inch leads soldered to a PC board containing approximately 4square inches of (1oz.)copper area surrounding the leads.Note 13:Junction to ambient thermal resistance for the 7lead TO-263mounted horizontally against a PC board area of 0.136square inches (the same size as the TO-263package)of 1oz.(0.0014in.thick)copper.Note 14:Junction to ambient thermal resistance for the 7lead TO-263mounted horizontally against a PC board area of 0.4896square inches (3.6times the area of the TO-263package)of 1oz.(0.0014in.thick)copper.Note 15:Junction to ambient thermal resistance for the 7lead TO-263mounted horizontally against a PC board copper area of 1.0064square inches (7.4times the area of the TO-263package)of 1oz.(0.0014in.thick)copper.Additional copper area will reduce thermal resistance further.See the thermal model in Switchers Made Simple ®software.Typical Performance CharacteristicsSupply Current vs TemperatureDS012516-2Reference Voltage vs TemperatureDS012516-3∆Reference Voltage vs Supply VoltageDS012516-4 6Typical Performance Characteristics(Continued)Supply Currentvs Switch CurrentDS012516-5Current Limitvs TemperatureDS012516-6Feedback Pin BiasCurrent vs TemperatureDS012516-7Switch SaturationVoltage vs TemperatureDS012516-8Switch Transconductancevs TemperatureDS012516-9Oscillator Frequencyvs TemperatureDS012516-10Error Amp Transconductancevs TemperatureDS012516-11Error Amp VoltageGain vs TemperatureDS012516-12Short Circuit Frequencyvs TemperatureDS012516-13 7Typical Performance Characteristics(Continued)Connection DiagramsShutdown Supply Current vs TemperatureDS012516-14ON/OFF Pin Current vs VoltageDS012516-15Oscillator Frequency vs ResistanceDS012516-16Bent,Staggered Leads 7-Lead TO-220(T)Top ViewDS012516-17Bent,Staggered Leads 7-Lead TO-220(T)Side ViewDS012516-18Order Number LM2586T3.3,LM2586T-5.0,LM2586T-12or LM2586T-ADJ See NS Package Number TA07B7-Lead TO-263(S)Top ViewDS012516-197-Lead TO-263(S)Side ViewDS012516-20Order number LM2586S-3.3,LM2586S-5.0,LM2586S-12or LM2586S-ADJTape and Reel Order Number LM2586SX-3.3,LM2586SX-5.0,LM2586SX-12or LM2586SX-ADJSee NS Package Number TS7B 8Test CircuitsDS012516-21C IN1—100µF,25V Aluminum ElectrolyticC IN2—0.1µF CeramicT—22µH,1:1Schott#67141450D—1N5820C OUT—680µF,16V Aluminum ElectrolyticC C—0.47µF CeramicR C—2kFIGURE1.LM2586-3.3and LM2586-5.0DS012516-22C IN1—100µF,25V Aluminum ElectrolyticC IN2—0.1µF CeramicL—15µH,Renco#RL-5472-5D—1N5820C OUT—680µF,16V Aluminum ElectrolyticC C—0.47µF CeramicR C—2kFor12V Devices:R1=Short(0Ω)and2=OpenFor ADJ Devices:R1=48.75k,±0.1%and2=5.62k,±0.1%FIGURE2.LM2586-12and LM2586-ADJ9Block DiagramFlyback Regulator OperationThe LM2586is ideally suited for use in the flyback regulator topology.The flyback regulator can produce a single output voltage,such as the one shown in Figure4,or multiple out-put voltages.In Figure4,the flyback regulator generates an output voltage that is inside the range of the input voltage. This feature is unique to flyback regulators and cannot be duplicated with buck or boost regulators.The operation of a flyback regulator is as follows(refer to Figure4):when the switch is on,current flows through the primary winding of the transformer,T1,storing energy in the magnetic field of the transformer.Note that the primary and secondary windings are out of phase,so no current flows through the secondary when current flows through the pri-mary.When the switch turns off,the magnetic field col-lapses,reversing the voltage polarity of the primary and sec-ondary windings.Now rectifier D1is forward biased and current flows through it,releasing the energy stored in the transformer.This produces voltage at the output.The output voltage is controlled by modulating the peak switch current.This is done by feeding back a portion of the output voltage to the error amp,which amplifies the differ-ence between the feedback voltage and a1.230V reference. The error amp output voltage is compared to a ramp voltage proportional to the switch current(i.e.,inductor current dur-ing the switch on time).The comparator terminates the switch on time when the two voltages are equal,thereby controlling the peak switch current to maintain a constant output voltage.DS012516-23For Fixed Versions3.3V,R1=3.4k,R2=2k5.0V,R1=6.15k,R2=2k12V,R1=8.73k,R2=1kFor Adj.VersionR1=Short(0Ω),R2=OpenFIGURE3. 10Flyback Regulator Operation(Continued)Typical Performance CharacteristicsDS012516-24As shown in Figure 4,the LM2586can be used as a flyback regulator by using a minimum number of external components.The switching waveforms of this regulator are shown in Figure 5.Typical Performance Characteristics observed during the operation of this circuit are shown in Figure 6.FIGURE 4.12V Flyback Regulator Design ExampleDS012516-65A:Switch Voltage,20V/div B:Switch Current,2A/divC:Output Rectifier Current,2A/divD:Output Ripple Voltage,50mV/div AC-CoupledFIGURE 5.Switching Waveforms11Typical Performance Characteristics(Continued)Typical Flyback Regulator ApplicationsFigure 7through Figure 12show six typical flyback applica-tions,varying from single output to triple output.Each draw-ing contains the part number(s)and manufacturer(s)for ev-ery component except the transformer.For the transformer part numbers and manufacturers’names,see the table inFigure 13.For applications with different output voltages —requiring the LM2586-ADJ —or different output configurations that do not match the standard configurations,refer to the Switchers Made Simple software.DS012516-66FIGURE 6.V OUT Response to Load Current StepDS012516-27FIGURE 7.Single-Output Flyback Regulator 12Typical Flyback Regulator Applications(Continued)DS012516-28FIGURE8.Single-Output Flyback RegulatorDS012516-29FIGURE9.Single-Output Flyback Regulator13Typical Flyback Regulator Applications(Continued)DS012516-30FIGURE10.Dual-Output Flyback RegulatorDS012516-31FIGURE11.Dual-Output Flyback Regulator14Typical Flyback Regulator Applications(Continued)Transformer Selection (T)Figure 13lists the standard transformers available for flyback regulator applications.Included in the table are the turns ratio(s)for each transformer,as well as the output voltages,input voltage ranges,and the maximum load currents for each circuit.DS012516-32FIGURE 12.Triple-Output Flyback RegulatorApplications Figure 7Figure 8Figure 9Figure 10Figure 11Figure 12Transformers T7T7T7T6T6T5V IN 4V–6V 4V–6V 8V–16V 4V–6V 18V–36V 18V–36V V OUT1 3.3V 5V 12V 12V 12V 5V I OUT1(Max) 1.4A 1A 0.8A 0.15A 0.6A 1.8A N 11111.2 1.20.5V OUT2−12V −12V 12V I OUT2(Max)0.15A 0.6A 0.25A N 2 1.21.21.15V OUT3−12V I OUT3(Max)0.25A N 31.15FIGURE 13.Transformer Selection Table15Typical Flyback Regulator Applications(Continued)Transformer FootprintsFigure15through Figure29show the footprints of each transformer,listed in Figure14.TransformerTypeManufacturers’Part NumbersCoilcraft(Note16)Coilcraft(Note16)SurfaceMountPulse(Note17)Surface MountPulse(Note17)Renco(Note18)Schott(Note19)T5Q4338-B Q4437-B PE-68413—RL-553267140890T6Q4339-B Q4438-B PE-68414—RL-553367140900T7S6000-A S6057-A—PE-68482RL-575126606 Note16:Coilcraft Inc.,Phone:(800)322-26451102Silver Lake Road,Cary,IL60013Fax:(708)639-1469European Headquarters,21Napier Place Phone:+441236730595Wardpark North,Cumbernauld,Scotland G680LL Fax:+441236730627Note17:Pulse Engineering Inc.,Phone:(619)674-810012220World Trade Drive,San Diego,CA92128Fax:(619)674-8262European Headquarters,Dunmore Road Phone:+3539324107Tuam,Co.Galway,Ireland Fax:+3539324459Note18:Renco Electronics Inc.,Phone:(800)645-582860Jeffryn Blvd.East,Deer Park,NY11729Fax:(516)586-5562Note19:Schott Corp.,Phone:(612)475-11731000Parkers Lane Road,Wayzata,MN55391Fax:(612)475-1786FIGURE14.Transformer Manufacturer GuideT7DS012516-33Top ViewFIGURE15.Coilcraft S6000-AT6DS012516-34Top ViewFIGURE16.Coilcraft Q4339-BT5DS012516-35FIGURE17.Coilcraft Q4437-B(Surface Mount)T5DS012516-36Top ViewFIGURE18.Coilcraft Q4338-B16Typical Flyback RegulatorApplications(Continued)T7DS012516-37Top ViewFIGURE19.Coilcraft S6057-A(Surface Mount)T6DS012516-38Top ViewFIGURE20.Coilcraft Q4438-B(Surface Mount)T7DS012516-39Top ViewFIGURE21.Pulse PE-68482T6DS012516-40Top ViewFIGURE22.Pulse PE-68414(Surface Mount)T5DS012516-42Top ViewFIGURE23.Pulse PE-68413(Surface Mount)T7DS012516-43Top ViewFIGURE24.Renco RL-5751T6DS012516-45Top ViewFIGURE25.Renco RL-5533T5DS012516-46Top ViewFIGURE26.Renco RL-553217Typical Flyback Regulator Applications(Continued)Step-Up (Boost)Regulator OperationFigure 30shows the LM2586used as a step-up (boost)regulator.This is a switching regulator that produces an out-put voltage greater than the input supply voltage.A brief explanation of how the LM2586Boost Regulator works is as follows (refer to Figure 30).When the NPN switch turns on,the inductor current ramps up at the rate of V IN /L,storing energy in the inductor.When the switch turnsoff,the lower end of the inductor flies above V IN ,discharging its current through diode (D)into the output capacitor (C OUT )at a rate of (V OUT −V IN )/L.Thus,energy stored in the induc-tor during the switch on time is transferred to the output dur-ing the switch off time.The output voltage is controlled by adjusting the peak switch current,as described in the flyback regulator section.By adding a small number of external components (as shown in Figure 30),the LM2586can be used to produce a regulated out-put voltage that is greater than the applied input voltage.The switching waveforms observed during the operation of this circuit are shown in Figure 31.Typical performance of this regulator is shown in Figure 32.T7DS012516-47Top ViewFIGURE 27.Schott 26606T6DS012516-49Top ViewFIGURE 28.Schott 67140900T5DS012516-50Top ViewFIGURE 29.Schott 67140890DS012516-51FIGURE 30.12V Boost Regulator 18Typical Performance CharacteristicsTypical Boost Regulator ApplicationsFigures 33,35through Figure 37show four typical boost applications —one fixed and three using the adjustable ver-sion of the LM2586.Each drawing contains the part num-ber(s)and manufacturer(s)for every component.For thefixed 12V output application,the part numbers and manufac-turers’names for the inductor are listed in a table in Figure 34.For applications with different output voltages,refer to the Switchers Made Simple software.DS012516-67A:Switch Voltage,10V/div B:Switch Current,2A/div C:Inductor Current,2A/divD:Output Ripple Voltage,100mV/div,AC-CoupledFIGURE 31.Switching WaveformsDS012516-68FIGURE 32.V OUT Response to Load Current StepDS012516-54FIGURE 33.+5V to +12V Boost Regulator19Typical Boost Regulator Applications(Continued)Figure34contains a table of standard inductors,by part number and corresponding manufacturer,for the fixed output regulator of Figure33.Coilcraft (Note20)Pulse(Note21)Renco(Note22)Schott(Note23)Schott(Note23)(Surface Mount)DO3316-153PE-53898RL-5471-76714651067146540 Note20:Coilcraft Inc.,Phone:(800)322-26451102Silver Lake Road,Cary,IL60013Fax:(708)639-1469European Headquarters,21Napier Place Phone:+441236730595Wardpark North,Cumbernauld,Scotland G680LL Fax:+441236730627Note21:Pulse Engineering Inc.,Phone:(619)674-810012220World Trade Drive,San Diego,CA92128Fax:(619)674-8262European Headquarters,Dunmore Road Phone:+3539324107Tuam,Co.Galway,Ireland Fax:+3539324459Note22:Renco Electronics Inc.,Phone:(800)645-582860Jeffryn Blvd.East,Deer Park,NY11729Fax:(516)586-5562Note23:Schott Corp.,Phone:(612)475-11731000Parkers Lane Road,Wayzata,MN55391Fax:(612)475-1786FIGURE34.Inductor Selection TableDS012516-55FIGURE35.+12V to+24V Boost RegulatorDS012516-56FIGURE36.+24V to+36V Boost Regulator20Typical Boost Regulator Applications(Continued)Note 24:The LM2586will require a heat sink in these applications.The size of the heat sink will depend on the maximum ambient temperature.To calculate the thermal resistance of the IC and the size of the heat sink needed,see the “Heat Sink/Thermal Considerations”section in the Application Hints.Application HintsLM2586SPECIAL FEATURESSHUTDOWN CONTROLA feature of the LM2586is its ability to be shut down using the ON /OFF pin (pin 1).This feature conserves input power by turning off the device when it is not in use.For proper op-eration,an isolation diode is required (as shown in Figure 38).The device will shut down when 3V or greater is applied on the ON /OFF pin,sourcing current into pin 1.In shut down mode,the device will draw typically 56µA of supply current (16µA to V IN and 40µA to the ON /OFF pin).To turn the de-vice back on,leave pin 1floating,using an (isolation)diode,as shown in Figure 38(for normal operation,do not source or sink current to or from this pin —see the next section).FREQUENCY ADJUSTMENTThe switching frequency of the LM2586can be adjusted with the use of an external resistor.This feature allows the user to optimize the size of the magnetics and the output capaci-tor(s)by tailoring the operating frequency.A resistor con-nected from pin 1(the Freq.Adj.pin)to ground will set theswitching frequency from 100kHz to 200kHz (maximum).As shown in Figure 38,the pin can be used to adjust the fre-quency while still providing the shut down function.A curve in the Performance Characteristics Section graphs the resistor value to the corresponding switching frequency.The table in Figure 39shows resistor values corresponding to commonly used frequencies.However,changing the LM2586’s operating frequency from its nominal value of 100kHz will change the magnetics se-lection and compensation component values.DS012516-57FIGURE 37.+24V to +48V Boost RegulatorDS012516-58FIGURE 38.Shutdown OperationR SET (k Ω)Frequency (kHz)Open 100200125471503317522200FIGURE 39.Frequency Setting Resistor Guide21Application Hints(Continued)FREQUENCY SYNCHRONIZATIONAnother feature of the LM2586is the ability to synchronize the switching frequency to an external source,using the sync pin (pin 6).This feature allows the user to parallel mul-tiple devices to deliver more output power.A negative falling pulse applied to the sync pin will synchro-nize the LM2586to an external oscillator (see Figures 40,41).Use of this feature enables the LM2586to be synchronized to an external oscillator,such as a system clock.This opera-tion allows multiple power supplies to operate at the same frequency,thus eliminating frequency-related noise problems.The scope photo in Figure 41shows a LM258612V Boost Regulator synchronized to a 200kHz signal.There is a 700ns delay between the falling edge of the sync signal and the turning on of the switch.PROGRAMMING OUTPUT VOLTAGE (SELECTING R1AND R2)Referring to the adjustable regulator in Figure 42,the output voltage is programmed by the resistors R1and R2by the fol-lowing formula:V OUT =V REF (1+R1/R2)where V REF =1.23V Resistors R1and R2divide the output voltage down so that it can be compared with the 1.23V internal reference.With R2between 1k and 5k,R1is:R1=R2(V OUT /V REF −1)where V REF =1.23V For best temperature coefficient and stability with time,use 1%metal film resistors.SHORT CIRCUIT CONDITIONDue to the inherent nature of boost regulators,when the out-put is shorted (see Figure 42),current flows directly from the input,through the inductor and the diode,to the output,by-passing the switch.The current limit of the switch does not limit the output current for the entire circuit.To protect the load and prevent damage to the switch,the current must beexternally limited,either by the input supply or at the output with an external current limit circuit.The external limit should be set to the maximum switch current of the device,which is 3A.In a flyback regulator application (Figure 43),using the stan-dard transformers,the LM2586will survive a short circuit to the main output.When the output voltage drops to 80%of its nominal value,the frequency will drop to 25kHz.With a lower frequency,off times are larger.With the longer off times,the transformer can release all of its stored energy be-fore the switch turns back on.Hence,the switch turns on ini-tially with zero current at its collector.In this condition,the switch current limit will limit the peak current,saving the de-vice.FLYBACK REGULATOR INPUT CAPACITORSA flyback regulator draws discontinuous pulses of current from the input supply.Therefore,there are two input capaci-tors needed in a flyback regulator —one for energy storage and one for filtering (see Figure 43).Both are required due to the inherent operation of a flyback regulator.To keep aDS012516-59FIGURE 40.Frequency SynchronizationDS012516-69FIGURE 41.Waveforms of a Synchronized12V Boost RegulatorDS012516-61FIGURE 42.Boost Regulator22。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2SK2586Silicon N-Channel MOS FETADE-208-358 C4th. EditionApplicationHigh speed power switchingFeatures• Low on-resistance• R DS(on) = 7 m typ.• High speed switching• 4 V gate drive device can be driven from 5 V sourceOutline2SK25862Absolute Maximum Ratings (Ta = 25°C)ItemSymbol Ratings Unit Drain to source voltage V DSS 60V Gate to source voltage V GSS ±20V Drain current I D *260A Drain peak currentI D(pulse)*1240A Body to drain diode reverse drain current I DR *260A Avalanche current I AP *345A Avalanche energy E AR *3174mJ Channel dissipation Pch*2125W Channel temperature Tch 150°C Storage temperatureTstg–55 to +150°CNotes: 1.PW ≤ 10 µs, duty cycle ≤ 1 %2.Value at Tc = 25°C3.Value at Tch = 25°C, Rg ≥ 50 Ω2SK25863Electrical Characteristics (Ta = 25°C)ItemSymbol Min Typ Max Unit Test Conditions Drain to source breakdown voltageV (BR)DSS 60——V I D = 10 mA, V GS = 0Gate to source breakdown voltageV (BR)GSS ±20——V I G = ±100 µA, V DS = 0Gate to source leak current I GSS ——±10µA V GS = ±16 V, V DS = 0Zero gate voltage drain current I DSS——100µA V DS = 60 V, V GS = 0Gate to source cutoff voltage V GS(off) 1.0— 2.0V I D = 1 mA, V DS = 10 V Static drain to source on state resistanceR DS(on)—710m ΩI D = 30 A V GS = 10 V*1—1016m ΩI D = 30 A V GS = 4 V*1Forward transfer admittance |y fs |3560—S I D = 30 A V DS = 10 V*1Input capacitance Ciss —3550—pF V DS = 10 V Output capacitanceCoss —1760—pF V GS = 0Reverse transfer capacitance Crss —500—pF f = 1 MHz Turn-on delay time t d(on)—35—ns I D = 30 A Rise timet r —260—ns V GS = 10 V Turn-off delay time t d(off)—480—ns R L = 1.0 ΩFall timet f —370—ns Body to drain diode forward voltageV DF —0.94—V I F = 60 A, V GS = 0Body to drain diode reverse recovery time t rr—140—nsI F = 60 A, V GS = 0diF / dt = 50 A / µs Note:1.Pulse TestSee characteristic curves of 2SK2529.2SK25864Hitachi CodeJEDECEIAJWeight (reference value)TO-3P—Conforms5.0 gUnit: mmCautions1.Hitachi neither warrants nor grants licenses of any rights of Hitachi’s or any third party’s patent,copyright, trademark, or other intellectual property rights for information contained in this document.Hitachi bears no responsibility for problems that may arise with third party’s rights, includingintellectual property rights, in connection with use of the information contained in this document.2.Products and product specifications may be subject to change without notice. Confirm that you have received the latest product standards or specifications before final design, purchase or use.3.Hitachi makes every attempt to ensure that its products are of high quality and reliability. However,contact Hitachi’s sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation,traffic, safety equipment or medical equipment for life support.4.Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installationconditions and other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as fail-safes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other consequential damage due to operation of the Hitachi product.5.This product is not designed to be radiation resistant.6.No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Hitachi.7.Contact Hitachi’s sales office for any questions regarding this document or Hitachi semiconductor products.Hitachi, Ltd.Semiconductor & Integrated Circuits.Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109Copyright ' Hitachi, Ltd., 1999. All rights reserved. Printed in Japan.Hitachi Asia Pte. Ltd.16 Collyer Quay #20-00Hitachi TowerSingapore 049318Tel: 535-2100Fax: 535-1533URLNorthAmerica : http:/Europe : /hel/ecg Asia (Singapore): .sg/grp3/sicd/index.htm Asia (Taiwan): /E/Product/SICD_Frame.htm Asia (HongKong): /eng/bo/grp3/index.htm Japan : http://www.hitachi.co.jp/Sicd/indx.htmHitachi Asia Ltd.Taipei Branch Office3F, Hung Kuo Building. No.167, Tun-Hwa North Road, Taipei (105)Tel: <886> (2) 2718-3666Fax: <886> (2) 2718-8180Hitachi Asia (Hong Kong) Ltd.Group III (Electronic Components)7/F., North Tower, World Finance Centre,Harbour City, Canton Road, Tsim Sha Tsui,Kowloon, Hong Kong Tel: <852> (2) 735 9218Fax: <852> (2) 730 0281 Telex: 40815 HITEC HXHitachi Europe Ltd.Electronic Components Group.Whitebrook ParkLower Cookham Road MaidenheadBerkshire SL6 8YA, United Kingdom Tel: <44> (1628) 585000Fax: <44> (1628) 778322Hitachi Europe GmbHElectronic components Group Dornacher Stra§e 3D-85622 Feldkirchen, Munich GermanyTel: <49> (89) 9 9180-0Fax: <49> (89) 9 29 30 00Hitachi Semiconductor (America) Inc.179 East Tasman Drive,San Jose,CA 95134 Tel: <1> (408) 433-1990Fax: <1>(408) 433-0223For further information write to:。

相关文档
最新文档