平行线性质与判定例题精讲

合集下载

第1讲 平行线的性质与判定

第1讲 平行线的性质与判定
C于D,EF⊥AC于F,DM∥BC,∠1=∠2,求证:
∠AMD=∠AGF. 证明:∵BD⊥AC,EF⊥AC(已知), ∴∠BDF=∠EFC=90°(垂直的性质)
∴BD∥EF(同位角相等,两直线平行),
∴∠2=∠CBD(两直线平行,同位角相等), ∵∠2=∠1(已知), ∴∠1=∠CBD(等量代换),
∴∠D=∠AHC(_两___直__线__平__行___,__同__位__角__相___等____) ∵∠A=∠D(已知) ∴∠AHC=∠A(__等__量__代__换____________________)
∴___A__B_∥__C__D___(__内__错__角__相__等___,__两__直__线___平__行_____).
★ 例题精讲
例题5 如图,已知∠ABC+∠BCD+∠CDE=360°,求证:AB∥ED.
解:连接BD, ∴∠DBC+∠BCD+∠CDB=180°, ∵∠ABC+∠BCD+∠EDC=360° ∴∠ABD+∠EDB=180°, ∴AB∥DE.
★ 例题精讲
练习5 如图,EF∥AD,∠1=∠2,∠BAC=75°。 (1)求证:AB∥DG;(2)求∠AGD.
4. 把下列命题写成“如果……那么……”的形式,并判断其真假: (1)等角的补角相等; (2)两个锐角的和是锐角; (3)负数之和仍为负数.
(1)如果两个角相等,那么这两个角的补角相等; 真命题 (2)如果两个角是锐角,那么这两个角的和也是锐角;假命题 (3)如果几个数是负数,那么它们的和也是负数. 真命题
∴ CE∥DF(同位角相等,两直线平行)
∴ ∠BCE=∠BDF(两直线平行,同位角相等) ∠EDF=∠CED(两直线平行,内错角相等)

平行线的性质与判定典型例题

平行线的性质与判定典型例题

1.如图,CD平分∠ECF,∠B=∠ACB,求证:AB∥CE.证明:∵CD平分∠ECF,∴∠ECD=∠DCF,∵∠ACB=∠DCF,∴∠ECD=∠ACB,又∵∠B=∠ACB,∴∠B=∠ECD,∴AB∥CE.2.如图,AC⊥AE,BD⊥BF,∠1=15°,∠2=15°,AE与BF平行吗?为什么?解:AE∥BF.理由如下:因为AC⊥AE,BD⊥BF〔〕,所以∠EAC=∠FBD=90°〔垂直的定义〕.因为∠1=∠2〔〕,所以∠EAC+∠1=∠FBD+∠2〔等式的性质〕,即∠EAB=∠FBG,所以AE∥BF〔同位角相等,两直线平行〕.3.如图,∠ABC=∠ACB,BD平分∠ABC,CE平分∠ACB,F是BC延长线上一点,且∠DBC=∠F,求证:EC∥DF.证明:∵∠ABC=∠ACB,BD平分∠ABC,CE平分∠ACB,∴∠DBC=∠ABC,∠ECB=∠ACB,∴∠DBC=∠ECB.∵∠DBC=∠F,∴∠ECB=∠F,∴EC∥DF.4.如图,∠ABC=∠ADC,BF,DE分别是∠ABC,∠ADC的角平分线,∠1=∠2,求证:DC∥AB.证明:∵DE、BF分别是∠ABC,∠ADC的角平分线,∴∠3=∠ADC,∠2=∠ABC,∵∠ABC=∠ADC,∴∠3=∠2,∵∠1=∠2,∴∠1=∠3,∴DC∥AB.5.如下图,∠B=25°,∠D=42°,∠BCD=67°,试判断AB和ED的位置关系,并说明理由.解:AB∥ED,理由:如图,过C作CF∥AB,∵∠B=25°,∴∠BCF=∠B=25°,∴∠DCF=∠BCD﹣∠BCF=42°,又∵∠D=42°,∴∠DCF=∠D,∴CF∥ED,∴AB∥ED.6.如图,DE平分∠ADC,CE平分∠BCD,且∠1+∠2=90°.试判断AD与BC的位置关系,并说明理由.解:BC∥AD.理由如下:∵DE平分∠ADC,CE平分∠BCD,∴∠ADC=2∠1,∠BCD=2∠2,∵∠1+∠2=90°,∴∠ADC+∠BCD=2〔∠1+∠2〕=180°,∴AD∥BC.7.:如图,DG⊥BC,AC⊥BC,EF⊥AB,∠1=∠2.求证:EF∥CD.证明:∵DG⊥BC,AC⊥BC,∴∠DGB=∠ACB=90°〔垂直定义〕,∴DG∥AC〔同位角相等,两直线平行〕,∴∠2=∠ACD〔两直线平行,内错角相等〕,∵∠1=∠2,∴∠1=∠DCA,∴EF∥CD〔同位角相等,两直线平行〕.8.将一副三角板中的两块直角三角板的直角顶点C按如图方式叠放在一起,友情提示:∠A=60°,∠D=30°,∠E=∠B=45°.〔1〕①假设∠DCB=45°,那么∠ACB的度数为135°.②假设∠ACB=140°,那么∠DCE的度数为40°.〔2〕由〔1〕猜测∠ACB与∠DCE的数量关系,并说明理由.〔3〕当∠ACE<90°且点E在直线AC的上方时,当这两块三角尺有一组边互相平行时,请直接写出∠ACE角度所有可能的值〔不必说明理由〕.解:〔1〕①∵∠DCE=45°,∠ACD=90°∴∠ACE=45°∵∠BCE=90°∴∠ACB=90°+45°=135°故答案为:135°;②∵∠ACB=140°,∠ECB=90°∴∠ACE=140°﹣90°=50°∴∠DCE=90°﹣∠ACE=90°﹣50°=40°故答案为:40°;〔2〕猜测:∠ACB+∠DCE=180°理由如下:∵∠ACE=90°﹣∠DCE又∵∠ACB=∠ACE+90°∴∠ACB=90°﹣∠DCE+90°=180°﹣∠DCE即∠ACB+∠DCE=180°;〔3〕30°、45°.理由:当CB∥AD时,∠ACE=30°;当EB∥AC时,∠ACE=45°.9.:DE⊥AO于E,BO⊥AO,∠CFB=∠EDO,证明:CF∥DO.证明:∵DE⊥AO,BO⊥AO,∴∠AED=∠AOB=90°,∴DE∥BO〔同位角相等,两条直线平行〕,∴∠EDO=∠BOD〔两直线平行,内错角相等〕,∵∠EDO=∠CFB,∴∠BOD=∠CFB,∴CF∥DO〔同位角相等,两条直线平行〕.10.如图,∠A=∠C,∠E=∠F,试说明:AD∥BC.证明:∵∠E=∠F,∴AE∥CF,∴∠A=∠ADF,∵∠A=∠C,∴∠ADF=∠C,∴AD∥BC.11.:如图,EG∥FH,∠1=∠2.求证:∠BEF+∠DFE=180°.解:∵EG∥HF∴∠OEG=∠OFH,∵∠1=∠2∴∠AEF=∠DFE∴AB∥CD,∴∠BEF+∠DFE=180°.12.如图,AB∥CD,∠B=70°,∠BCE=20°,∠CEF=130°,请判断AB与EF的位置关系,并说明理由.解:AB∥EF,理由如下:∵AB∥CD,∴∠B=∠BCD,〔两直线平行,内错角相等〕∵∠B=70°,∴∠BCD=70°,〔等量代换〕∵∠BCE=20°,∴∠ECD=50°,∵CEF=130°,∴∠E+∠DCE=180°,∴EF∥CD,〔同旁内角互补,两直线平行〕∴AB∥EF.〔平行于同一直线的两条直线互相平行〕13.如图,AD∥BC,∠DAC=120°,∠ACF=20°,∠EFC=140°.求证:EF∥AD.证明:∵AD∥BC,∴∠DAC+∠ACB=180°,∵∠DAC=120°,∴∠ACB=60°,又∵∠ACF=20°,∴∠BCF=∠ACB﹣∠ACF=40°,又∵∠EFC=140°,∴∠BCF+∠EFC=180°,∴EF∥BC,∵AD∥BC,∴EF∥AD.14.完成以下推理过程::如图,∠1+∠2=180°,∠3=∠B求证:∠EDG+∠DGC=180°证明:∵∠1+∠2=180°〔〕∠1+∠DFE=180°〔邻补角定义〕∴∠2=∠DFE〔同角的补角相等〕∴EF∥AB〔内错角相等,两直线平行〕∴∠3=∠ADE〔两直线平行,内错角相等〕又∵∠3=∠B〔〕∴∠B=∠ADE〔等量代换〕∴DE∥BC〔同位角相等,两直线平行〕∴∠EDG+∠DGC=180°〔两直线平行,同旁内角互补〕15.:如图,BE∥GF,∠1=∠3,∠DBC=70°,求∠EDB的大小.阅读下面的解答过程,并填空〔理由或数学式〕解:∵BE∥GF〔〕∴∠2=∠3〔两直线平行同位角相等〕∵∠1=∠3〔〕∴∠1=〔∠2〕〔等量代换〕∴DE∥〔BC〕〔内错角相等两直线平行〕∴∠EDB+∠DBC=180°〔两直线平行同旁内角互补〕∴∠EDB=180°﹣∠DBC〔等式性质〕∵∠DBC=〔70°〕〔〕∴∠EDB=180°﹣70°=110°16.如图,:E、F分别是AB和CD上的点,DE、AF分别交BC于点G、H,AB∥CD,∠A=∠D,试说明:〔1〕AF∥ED;〔2〕∠BED=∠A;〔3〕∠1=∠2〔1〕证明:∵AB∥CD,∴∠A=∠AFC,∵∠A=∠D,∴∠AFC=∠D,∴AF∥ED;〔2〕证明:∵AF∥ED,∴∠BED=∠A;〔3〕证明:∵AF∥ED,∴∠1=∠CGD,又∵∠2=∠CGD,∴∠1=∠2.17.阅读理解,补全证明过程及推理依据.:如图,点E在直线DF上,点B在直线AC上,∠1=∠2,∠3=∠4.求证∠A=∠F证明:∵∠1=∠2〔〕∠2=∠DGF〔对顶角相等〕∴∠1=∠DGF〔等量代换〕∴BD∥CE〔同位角相等,两直线平行〕∴∠3+∠C=180°〔两直线平行,同旁内角互补〕又∵∠3=∠4〔〕∴∠4+∠C=180°〔等量代换〕∴AC∥DF〔同旁内角互补,两直线平行〕∴∠A=∠F〔两直线平行,内错角相等〕18.如图,∠α和∠β的度数满足方程组,且CD∥EF,AC⊥AE.〔1〕求∠α和∠β的度数.〔2〕求∠C的度数.解:〔1〕解方程组,得.〔2〕∵∠α+∠β=55°+125°=180°,∴AB∥CD,∴∠C+∠CAB=180°,∵AC⊥AE,∴∠CAE=90°,∴∠C=180°﹣90°﹣55°=35°.19.如图,直线a∥b,∠1=45°,∠2=30°,求∠P的度数.解:过P作PM∥直线a,∵直线a∥b,∴直线a∥b∥PM,∵∠1=45°,∠2=30°,∴∠EPM=∠2=30°,∠FPM=∠1=45°,∴∠EPF=∠EPM+∠FPM=30°+45°=75°,20.如图,AB∥CD,∠A=60°,∠C=∠E,求∠E.解:∵AB∥CD,∠A=60°,∴∠DOE=∠A=60°,又∵∠C=∠E,∠DOE=∠C+∠E,∴∠E=∠DOE=30°.21.如图,∠1+∠2=180°,∠B=∠3,∠BAC与∠DCA相等吗?为什么?解:∠BAC=∠DCA,理由:∵∠CFE=∠2,∠2+∠1=180°,∴∠CFE+∠1=180°,∴DE∥BC,∴∠AED=∠B,∵∠B=∠3,∴∠3=∠AEF,∴AB∥CD,∴∠BAC=∠DCA.22.如图,EF⊥BC,∠1=∠C,∠2+∠3=180°.试说明直线AD与BC垂直.〔请在下面的解答过程的空格内填空或在括号内填写理由〕.理由:∵∠1=∠C,〔〕∴GD∥AC,〔同位角相等,两直线平行〕∴∠2=∠DAC.〔两直线平行,内错角相等〕又∵∠2+∠3=180°,〔〕∴∠3+∠DAC=180°.〔等量代换〕∴AD∥EF,〔同旁内角互补,两直线平行〕∴∠ADC=∠EFC.〔两直线平行,同位角相等〕∵EF⊥BC,〔〕∴∠EFC=90°,∴∠ADC=90°,∴AD⊥BC.23.如图1,BC⊥AF于点C,∠A+∠1=90°.〔1〕求证:AB∥DE;〔2〕如图2,点P从点A出发,沿线段AF运动到点F停止,连接PB,PE.那么∠ABP,∠DEP,∠BPE三个角之间具有怎样的数量关系〔不考虑点P与点A,D,C重合的情况〕?并说明理由.解:〔1〕如图1,∵BC⊥AF于点C,∴∠A+∠B=90°,又∵∠A+∠1=90°,∴∠B=∠1,∴AB∥DE.〔2〕如图2,当点P在A,D之间时,过P作PG∥AB,∵AB∥DE,∴PG∥DE,∴∠ABP=∠GPB,∠DEP=∠GPE,∴∠BPE=∠BPG+∠EPG=∠ABP+∠DEP;如下图,当点P在C,D之间时,过P作PG∥AB,∵AB∥DE,∴PG∥DE,∴∠ABP=∠GPB,∠DEP=∠GPE,∴∠BPE=∠BPG﹣∠EPG=∠ABP﹣∠DEP;如下图,当点P在C,F之间时,过P作PG∥AB,∵AB∥DE,∴PG∥DE,∴∠ABP=∠GPB,∠DEP=∠GPE,∴∠BPE=∠EPG﹣∠BPG=∠DEP﹣∠ABP.24.:如图,FE∥OC,AC和BD相交于点O,E是CD上一点,F是OD上一点,且∠1=∠A.〔1〕求证:AB∥DC;〔2〕假设∠B=30°,∠1=65°,求∠OFE的度数.〔1〕证明:∵FE∥OC,∴∠1=∠C,∵∠1=∠A,∴∠A=∠C,∴AB∥DC;〔2〕解:∵AB∥DC,∴∠D=∠B,∵∠B=30°∴∠D=30°,∵∠OFE是△DEF的外角,∴∠OFE=∠D+∠1,∵∠1=65°,∴∠OFE=30°+65°=95°.25.〔2021秋•牡丹区期末〕如图,AB∥DG,∠1+∠2=180°,〔1〕求证:AD∥EF;〔2〕假设DG是∠ADC的平分线,∠2=150°,求∠B的度数.证明:〔1〕∵AB∥DG,∴∠BAD=∠1,∵∠1+∠2=180°,∴∠2+∠BAD=180°,∴AD∥EF;〔2〕∵∠1+∠2=180°,∠2=150°,∴∠1=30°,∵DG是∠ADC的平分线,∴∠GDC=∠1=30°,∵AB∥DG,∴∠B=∠GDC=30°.26.如图,AD⊥BC于点D,EG⊥BC于点G,∠E=∠3.请问:AD平分∠BAC吗?假设平分,请说明理由.平分.证明:∵AD⊥BC于D,EG⊥BC于G,〔〕∴∠ADC=∠EGC=90°,〔垂直的定义〕∴AD∥EG,〔同位角相等,两直线平行〕∴∠2=∠3,〔两直线平行,内错角相等〕∠E=∠1,〔两直线平行,同位角相等〕又∵∠E=∠3〔〕∴∠1=∠2〔等量代换〕∴AD平分∠BAC〔角平分线的定义〕.27.如图,EF∥AB,∠DCB=70°,∠CBF=20°,∠EFB=130°.〔1〕问直线CD与AB有怎样的位置关系?并说明理由;〔2〕假设∠CEF=70°,求∠ACB的度数.解:〔1〕CD和AB的关系为平行关系.理由如下:∵EF∥AB,∠EFB=130°,∴∠ABF=180°﹣130°=50°,又∵∠CBF=20°,∴∠ABC=70°,∵∠DCB=70°,∴∠DCB=∠ABC,∴CD∥AB;〔2〕∵EF∥AB,CD∥AB,∴EF∥CD,∵∠CEF=70°,∴∠ECD=110°,∵∠DCB=70°,∴∠ACB=∠ECD﹣∠DCB,∴∠ACB=40°.28.如图,BD是∠ABC的平分线,ED∥BC,∠4=∠5,那么EF也是∠AED的平分线.完成以下推理过程:证明:∵BD是∠ABC的平分线〔〕∴∠1=∠2〔角平分线定义〕∵ED∥BC〔〕∴∠5=∠2〔两直线平行,内错角相等〕∴∠1=∠5〔等量代换〕∵∠4=∠5〔〕∴EF∥BD〔内错角相等,两直线平行〕∴∠3=∠1〔两直线平行,同位角相等〕∴∠3=∠4〔等量代换〕∴EF是∠AED的平分线〔角平分线定义〕。

七年级数学下册 5.2平行线及其判定(十大题型)(解析版 )

七年级数学下册 5.2平行线及其判定(十大题型)(解析版 )

七级下册数学《第五章相交线与平行线》5.2平行线及其判定平行线及其表示方法★1、平行线定义:在同一个平面内,不相交的两条直线叫做平行线.记作:AB∥CD;记作:a∥b;读作:直线AB平行于直线CD.读作:直线a平行于直线b.【注意】1、在同一平面内,不重合的两条直线只有两种位置关系:相交和平行.(重合的直线视为一条直线)2、.线段或射线平行是指它们所在的直线平行.平行线的画法◆过直线外一点画已知直线的平行线的方法:一“落”把三角尺一边落在已知直线上;二“靠”把直尺紧靠三角尺的另一边;三“移”沿直尺移动三角尺,使三角尺与已知直线重合的边过已知点;四“画”沿三角尺过已知点的边画直线.【注意】1.经过直线上一点不能作已知直线的平行线.2.画线段或射线的平行线是指画它们所在直线的平行线.3.借助三角尺画平行线时,必须保持紧靠,否则画出的直线不平行.平行公理及其推论★1、平行公理:经过直线外一点,有且只有一条直线与这条直线平行.★2、平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.也就是说:如图,如果b∥a,c∥a,那么b∥c.几何语言:∵b∥a,c∥a,∴b∥c.【注意】1、平行公理的推论中,三条直线可以不在同一个平面内.2、平行公理中强调“直线外一点”,因为若点在直线上,不可能有平行线;“有且只有”强调这样的直线是存在的,也是唯一的.平行线的判定方法★1、平行线的判定:判定方法1:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单说成:同位角相等,两直线平行.几何语言表示:∵∠2=∠3(已知),∴a∥b(同位角相等,两直线平行).判定方法2:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单说成:内错角相等,两直线平行.几何语言表示:∵∠2=∠4(已知),∴a∥b.(内错角相等,两直线平行).判定方法3:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简单说成:同旁内角互补,两直线平行.几何语言表示:∵∠1+∠2=180°(已知),∴a∥b(同旁内角互补,两直线平行).★2、在同一平面内,垂直于同一条直线的两直线垂直.几何语言表示:直线a,b,c在同一平面内,∵a⊥c,b⊥c,∴a∥b.【注意】三条直线在“同一平面内”是前提,没有这个条件结论不一定成立.★3、判定两直线平行的方法(1)平行线的定义;(2)平行公理的推论(如果两条直线都与第三条直线平行,那么这两条直线也互相平行);(3利用同位角相等说明两直线平行;(4)利用内错角相等说明两直线平行;(5)利用同旁内角互补说明两直线平行;(6)同一平面内,垂直于同一直线的两直线平行.【例题1】(2023秋•埇桥区期中)在同一平面内,两条直线的位置关系可能是()A.相交或垂直B.垂直或平行C.平行或相交D.相交或垂直或平行【分析】根据两条直线有一个交点的直线是相交线,没有交点的直线是平行线,可得答案.【解答】解:在同一平面内,两条直线有一个交点,两条直线相交;在同一平面内,两条直线没有交点,两条直线平行,故C正确;故选:C.【点评】本题考查了平行线,两条直线有一个交点的直线是相交线,没有交点的直线是平行线.解题技巧提炼解题的关键是准确把握平行线的概念,牢记平行线的三个条件:①在同一平面内;②不相交;③都是直线,通过与定义进行对比来进行判断.【变式1-1】如图所示,能相交的是,平行的是.(填序号)【分析】根据平行线、相交线的定义,逐项进行判断,即可正确得出结果.【解答】解:①中一条直线,一条射线,不可相交,也不会平行;②中一条直线,一条线段,不可相交,也不会平行;③中一条直线,一条线段,可相交;④中都是线段,不可延长,不可相交,也不平行,⑤中都是直线,延长后不相交,是平行.故答案为:③,⑤.【点评】本题考查平行线和相交线,解题的关键是掌握直线可以沿两个方向延伸,射线可以沿一个方向延伸,线段不能延伸.【变式1-2】下列说法正确的是()A.同一平面内,如果两条直线不平行,那么它们互相垂直B.同一平面内,如果两条直线不相交,那么它们互相垂直C.同一平面内,如果两条直线不相交,那么它们互相平行D.同一平面内,如果两条直线不垂直,那么它们互相平行【分析】根据平行线的判定及垂直、相交的定义判断求解即可.【解答】解:在同一平面内,如果两条直线不平行,那么这两条直线相交,故A不符合题意;在同一平面内,两条直线不相交,那么这两条直线平行,故B不符合题意;同一平面内,如果两条直线不相交,那么这两条直线平行,故C符合题意;同一平面内,如果两条直线不垂直,它们不一定平行,故D不符合题意;故选:C.【点评】此题考查了平行线的判定、垂直、相交等知识,熟练掌握有关定理、定义是解题的关键.【变式1-3】(2022春•莱芜区校级期末)下列说法中,正确的是()A.两条不相交的直线叫做平行线B.一条直线的平行线有且只有一条C.在同一平面内,若直线a∥b,a∥c,则b∥cD.若两条线段不相交,则它们互相平行【分析】根据平行线的定义、性质、判定方法判断,排除错误答案.【解答】解:A、平行线的定义:在同一平面内,两条不相交的直线叫做平行线.故错误;B、过直线外一点,有且只有一条直线与已知直线平行.一条直线的平行线有无数条,故错误;C、在同一平面内,平行于同一直线的两条直线平行.故正确;D、根据平行线的定义知是错误的.故选:C.【点评】本题考查平行线的定义、性质及平行公理,熟练掌握公理和概念是解决本题的关键.【变式1-4】(2022秋•乌鲁木齐期末)如图,在长方体AB CD-EFGH中,与棱EF异面且与平面EFGH 平行的棱是.【分析】与棱EF异面且与平面EFGH平行的棱是:棱AD和棱BC.【解答】解:与棱EF异面且与平面EFGH平行的棱是:棱AD和棱BC.故答案为:棱AD和棱BC.【点评】本题主要考查了平行线与立体图形,熟练掌握平行线与立体图形的特征进行求解是解决本题的关键.【变式1-5】(2022春•沙河市期末)观察如图所示的长方体,与棱AB平行的棱有几条()A.4B.3C.2D.1【分析】根据长方体即平行线的性质解答.【解答】解:图中与AB平行的棱有:EF、CD、GH.共有3条.故选:B.【点评】本题考查了平行线的定义、长方体的性质.一个长方形的两条对边平行.【变式1-6】在同一平面内,直线l1与l2满足下列关系,写出其对应的位置关系:(1)若l1与l2没有公共点,则l1和l2;(2)若l1与l2只有一个公共点,则l1和l2;(3)若l1与l2有两个公共点,则l1和l2.【分析】(1)结合平行线的定义进行解答即可;(2)结合相交的定义进行解答即可;(3)结合重合的定义进行解答即可.【解答】解:(1)由于l1和l2没有公共点,所以l1和l2平行;(2)由于l1和l2有且只有一个公共点,所以l1和l2相交;(3)由于l1和l2有两个公共点,所以l1和l2重合;故答案为:(1)平行;(2)相交;(3)重合.【点评】本题侧重考查两直线的位置关系,掌握平行定义是解题关键.【变式1-7】(2022春•赵县月考)在同一平面内,直线a,b相交于P,若a∥c,则b与c的位置关系是.【分析】根据同一平面内,一条直线与两条平行线中的一条相交,则必与另一条直线也相交.解答即可.【解答】解:因为a∥c,直线a,b相交,所以直线b与c也有交点;故答案为:相交.【点评】本题主要考查了平行线和相交线,同一平面内,一条直线与两条平行线中的一条相交,则必与另一条直线也相交.【例题2】(2022春•梁山县期中)若a、b、c是同一平面内三条不重合的直线,则它们的交点可以有()A.1个或2个或3个B.0个或1个或2个或3个C.1个或2个D.以上都不对【分析】根据平行线的定义,相交线的定义,可得答案.【解答】解:当三条直线互相平行,交点是个0;当两条直线平行,与第三条直线相交,交点是2个;当三条直线两两相交交于同一点,交点个数是1个;当三条直线两两相交且不交于同一点,交点个数是3个;故选:B.【点评】本题考查了平行线,分类讨论是解题关键.解题技巧提炼用分类讨论的思想根据平面内两条直线的位置关系去讨论求解.【变式2-1】在同一平面内,两条不重合直线的位置关系可能是()A.垂直或平行B.垂直或相交C.平行或相交D.平行、垂直或相交【分析】同一平面内,直线的位置关系通常有两种:平行或相交;垂直不属于直线的位置关系,它是特殊的相交.【解答】解:平面内的直线有平行或相交两种位置关系.故选:C.【点评】本题主要考查了在同一平面内的两条直线的位置关系.【变式2-2】在同一平面内有三条直线,如果使其中有且只有两条直线平行,那么这三条直线有且只有个交点.【分析】根据同一平面内直线的位置关系得到第三条直线与另两平行直线相交,再根据直线平行和直线相交的定义即可得到交点的个数.【解答】解:∵在同一平面内有三条直线,如果其中有两条且只有两条相互平行,∴第三条直线与另两平行直线相交,∴它们共有2个交点.故答案为2.【点评】本题考查了直线平行的定义:没有公共点的两条直线是平行直线.也考查了同一平面内两直线的位置关系有:平行,相交.【变式2-3】平面内四条直线共有三个交点,则这四条直线中最多有条平行线.【分析】根据同一平面内两条直线的位置关系有两种:相交或平行,及一条直线的平行线有无数条,由四条直线相互平行,其交点为0个开始分析,然后依次变为三条直线相互平行、两条直线相互平行即可求解.【解答】解:若四条直线相互平行,则没有交点;若四条直线中有三条直线相互平行,则此时恰好有三个交点;若四条直线中有两条直线相互平行,另两条不平行,则此时有三个交点或五个交点;若四条直线中有两条直线相互平行,另两条也平行,但它们之间相互不平行,则此时有四个交点;若四条直线中没有平行线,则此时的交点是一个或四个或六个.综上可知,平面内四条直线共有三个交点,则这四条直线中最多有三条平行线.故答案是:三.【点评】本题考查了平行线,题目没有明确平面上四条不重合直线的位置关系,需要运用分类讨论思想,从四条直线都是平行线,然后数量上依次递减,直至都不平行,这样可以做到不重不漏,准确找出答案.【变式2-4】平面上不重合的四条直线,可能产生交点的个数为个.【分析】从平行线的角度考虑,先考虑四条直线都平行,再考虑三条、两条直至都不平行,作出草图即可看出.【解答】解:(1)当四条直线平行时,无交点;(2)当三条平行,另一条与这三条不平行时,有三个交点;(3)当两两直线平行时,有4个交点;(4)当有两条直线平行,而另两条不平行时,有5个交点;(5)当四条直线同交于一点时,只有一个交点;(6)当四条直线两两相交,且不过同一点时,有6个交点;(7)当有两条直线平行,而另两条不平行并且交点在平行线上时,有3个交点.故答案为:0,1,3,4,5,6.【点评】本题没有明确平面上四条不重合直线的位置关系,需要运用分类讨论思想,从四条直线都平行线,然后数量上依次递减,直至都不平行,这样可以做到不重不漏,准确找出所有答案;本题对学生要求较高.【例题3】如图,直线a,点B,点C.(1)过点B画直线a的平行线,能画几条?(2)过点C画直线a的平行线,它与过点B的平行线平行吗?【分析】根据平行公理及推论进行解答.【解答】解:(1)如图,过直线a外的一点画直线a的平行线,有且只有一条直线与直线a平行;(2)过点C画直线a的平行线,它与过点B的平行线平行.理由如下:如图,∵b∥a,c∥a,∴c∥b.【点评】本题考查了平行公理及推论.平行公理:经过直线外一点,有且只有一条直线与这条直线平行(平行公理中要准确理解“有且只有”的含义.从作图的角度说,它是“能但只能画出一条”的意思);推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.【变式3-1】如图中完成下列各题.(1)用直尺在网格中完成:①画出直线AB的一条平行线;②经过C点画直线垂直于CD.(2)用符号表示上面①、②中的平行、垂直关系.【分析】(1)根据AB所在直线,利用AB所在直角三角形得出EF,以及MD⊥CD即可;(2)根据图形得出EF,MD⊥CD,标出字母即可.【解答】解:(1)如图所示:(2)EF∥AB,MC⊥CD.【点评】此题考查了基本作图以及直角三角形的性质,利用直角三角形的性质得出平行线以及垂线是解答此题的关键.【变式3-2】如图,已知直线a和直线a外一点A.(1)完成下列画图:过点A画AB⊥a,垂足为点B,画AC∥a;(2)过点A你能画几条直线和a垂直?为什么?过点A你能画几条直线和a平行?为什么?(3)说出直线AC与直线AB的位置关系.【分析】(1)根据要求画出图形即可;(2)过点A有一条直线和直线a垂直,过点A可以画一条直线和a平行.(3)结论:AC⊥AB.【解答】解:(1)直线AB、AC如图所示;(2)过点A有一条直线和直线a垂直,理由:过直线外一点有且只有一条直线和已知直线垂直.过点A可以画一条直线和a平行.理由:过直线外一点有且只有一条直线和已知直线平行.(3)结论:AC⊥AB.【点评】本题考查复杂作图、垂线、平行线的定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.【变式3-3】作图题:(只保留作图痕迹)如图,在方格纸中,有两条线段AB、BC.利用方格纸完成以下操作:(1)过点A作BC的平行线;(2)过点C作AB的平行线,与(1)中的平行线交于点D;(3)过点B作AB的垂线.【分析】(1)A所在的横线就是满足条件的直线;(2)在直线AD上到A得等于BC的点D,则直线CD即为所求;(3)取AE上D右边的点F,过B,F的直线即为所求.【解答】解:如图,(1)A所在的横线就是满足条件的直线,即AE就是所求;(2)在直线AE上,到A距离是5个格长的点就是D,则CD就是所求与AB平行的直线;(3)取AE上D右边的点F,过B,F作直线,就是所求.【点评】本题考查复杂作图、垂线、平行线的定义等知识,解题的关键是灵活运用所学知识解决问题,【变式3-4】(2022秋•内乡县期末)如图所示,在∠AOB内有一点P.(1)过P画l1∥OA;(2)过P画l2∥OB;(3)用量角器量一量l1与l2相交的角与∠O的大小有怎样关系?【分析】用两个三角板,根据同位角相等,两直线平行来画平行线,然后用量角器量一量l1与l2相交的角与∠O的关系为:相等或互补.【解答】解:(1)(2)如图所示,(3)l1与l2夹角有两个:∠1,∠2;∠1=∠O,∠2+∠O=180°,所以l1和l2的夹角与∠O相等或互补.【点评】注意∠2与∠O是互补关系,容易漏掉.【例题4】(2022•寻乌县模拟)下面推理正确的是()A.∵a∥b,b∥c,∴c∥d B.∵a∥c,b∥d,∴c∥dC.∵a∥b,a∥c,∴b∥c D.∵a∥b,c∥d,∴a∥c【分析】根据平行公理的推论“如果两条直线都和第三条直线平行,那么这两条直线平行“进行分析,得出正确答案.【解答】解:A、a、c都和b平行,应该推出的是a∥c,而非c∥d,故错误;B、没有两条直线都和第三条直线平行,推不出平行,故错误;C、b、c都和a平行,可推出是b∥c,故正确;D、a、c与不同的直线平行,无法推出两者也平行.故选:C.【点评】本题考查的重点是平行公理的推论:如果两条直线都和第三条直线平行,那么这两条直线平行.【变式4-1】(2022春•丛台区校级期中)如图,过点A画直线l的平行线,能画()A.两条以上B.2条C.1条D.0条【分析】经过直线外一点,有且只有一条直线与这条直线平行.【解答】解:因为经过直线外一点,有且只有一条直线与这条直线平行.所以如图,过点A画直线l的平行线,能画1条.故选:C.【点评】本题考查了平行公理及推论.平行公理中要准确理解“有且只有”的含义.从作图的角度说,它是“能但只能画出一条”的意思.【变式4-2】(2023春•萨尔图区期中)下面说法正确的个数为()(1)在同一平面内,过直线外一点有一条直线与已知直线平行;(2)过一点有且只有一条直线与已知直线垂直;(3)两角之和为180°,这两个角一定邻补角;(4)同一平面内不平行的两条直线一定相交.A.1个B.2个C.3个D.4个【分析】根据同一平面内,过直线外一点有一条直线和已知直线平行即可判断(1);在同一平面内,过一点有且只有一条直线和已知直线垂直即可判断(2);举出反例即可判断(3);根据在同一平面内,两直线的位置关系是平行或相交,即可判断(4).【解答】解:在同一平面内,过直线外一点有一条直线和已知直线平行,故(1)正确;只有在同一平面内,过一点有且只有一条直线和已知直线垂直,故(2)错误;如图:∠ABC=∠DEF=90°,且∠ABC+∠DEF=180°,但是两角不是邻补角,故(3)错误;同一平面内不平行的两条直线一定相交正确,因为不特别指出时,一般认为,两条直线重合就是同一条直线,所以所提出的命题是正确的,故(4)正确.即正确的个数是2个.故选:B.【点评】本题考查了平行公理和推论,邻补角,垂线,平行线等知识点,此题比较典型,但是一道比较容易出错的题目.【变式4-3】(2023春•泸县校级期中)下列说法正确的是()A.经过一点有一条直线与已知直线平行B.经过一点有无数条直线与已知直线平行C.经过一点有且只有一条直线与已知直线平行D.经过直线外一点有且只有一条直线与已知直线平行【分析】平行线公理:经过直线外一点有且只有一条直线与已知直线平行.【解答】解:根据平行线公理:经过直线外一点有且只有一条直线与已知直线平行,可判断只有D选项正确.【点评】本题考查了平行公理,要熟练掌握.【变式4-4】(2023春•新民市期中)已知a∥b,c∥d,若由此得出b∥d,则直线a和c应满足的位置关系是()A.在同一个平面内B.不相交C.平行或重合D.不在同一个平面内【分析】根据平行推论:平行于同一条直线的两条直线互相平行,可得答案.【解答】解:当a∥c时,a∥b,c∥d,得b∥d;当a、c重合时,a∥b,c∥d,得b∥d,故C正确;故选:C.【点评】本题考查了平行公理及推论,利用了平行推论:平行于同一条直线的两条直线互相平行.【变式4-5】(2022春•和平区校级月考)下列语句正确的有()个①任意两条直线的位置关系不是相交就是平行②过一点有且只有一条直线和已知直线平行③过两条直线a,b外一点P,画直线c,使c∥a,且c∥b④若直线a∥b,b∥c,则c∥a.A.4B.3C.2D.1【分析】根据同一平面内,任意两条直线的位置关系是相交、平行;过直线外一点有且只有一条直线和已知直线平行;如果两条直线都与第三条直线平行,那么这两条直线也互相平行进行分析即可.【解答】解:①任意两条直线的位置关系不是相交就是平行,说法错误,应为根据同一平面内,任意两条直线的位置关系不是相交就是平行;②过一点有且只有一条直线和已知直线平行,说法错误,应为过直线外一点有且只有一条直线和已知直线平行;③过两条直线a,b外一点P,画直线c,使c∥a,且c∥b,说法错误;④若直线a∥b,b∥c,则c∥a,说法正确;【点评】此题主要考查了平行线,关键是掌握平行公理:过直线外一点有且只有一条直线和已知直线平行;推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.【变式4-6】(2022春•大荔县期末)如图,已知OM∥a,ON∥a,所以点O、M、N三点共线的理由是.【分析】利用平行公理:经过直线外一点,有且只有一条直线与这条直线平行,进而得出答案.【解答】解:已知OM∥a,ON∥a,所以点O、M、N三点共线的理由:经过直线外一点,有且只有一条直线与这条直线平行.故答案为:经过直线外一点,有且只有一条直线与这条直线平行.【点评】此题主要考查了平行公理,正确掌握平行公理是解题关键.【变式4-7】(2022春•海阳市期末)若P,Q是直线AB外不重合的两点,则下列说法不正确的是()A.直线PQ可能与直线AB垂直B.直线PQ可能与直线AB平行C.过点P的直线一定与直线AB相交D.过点Q只能画出一条直线与直线AB平行【分析】根据过直线外一点有且只有一条直线与已知直线平行以及两直线的位置关系即可回答.【解答】解:PQ与直线AB可能平行,也可能垂直,过直线外一点有且只有一条直线与已知直线平行,故A、B、D均正确,故C错误;故选:C.【点评】本题考查了平行线、相交线、垂线的性质,掌握相关定义和性质是解题的关键.【变式4-8】如图所示,将一张长方形纸对折三次,则产生的折痕与折痕间的位置关系是()A.平行B.垂直C.平行或垂直D.无法确定【分析】根据平行公理和垂直的定义解答.【解答】解:∵长方形对边平行,∴根据平行公理,前两次折痕互相平行,∵第三次折叠,是把平角折成两个相等的角,∴是90°,与前两次折痕垂直.∴折痕与折痕之间平行或垂直.故选:C.【点评】本题利用平行公理和垂直定义求解,需要熟练掌握.【例题5】(2022春•昭阳区校级月考)如图,把三角尺的直角顶点放在直线b上.若∠1=50°,则当∠2=时,a∥b.【分析】由直角三角板的性质可知∠3=180°﹣∠1﹣90°=40°,当∠2=40°时,∠2=∠3,得出a∥b即可.【解答】解:当∠2=40°时,a∥b;理由如下:如图所示:∵∠1=50°,∴∠3=180°﹣90°﹣50°=40°,当∠2=40°时,∠2=∠3,∴a∥b.故答案为:40°.【点评】本题考查了平行线的判定方法、平角的定义;熟记同位角相等,两直线平行是解决问题的关键.【变式5-1】(2022春•洞头区期中)如图,在下列给出的条件中,能判定DF∥BC的是()A.∠B=∠3B.∠1=∠4C.∠1=∠B D.∠B+∠2=180°【分析】根据平行线的判定定理求解即可.【解答】解:∵∠B=∠3,∴AB∥EF,故A不符合题意;∵∠1=∠4,∴AB∥EF,故B不符合题意;∵∠1=∠B,∴DF∥BC,故C符合题意;∵∠B+∠2=180°,∴AB∥EF,故D不符合题意;故选:C.【点评】此题考查了平行线的判定,熟记平行线的判定定理是解题的关键.【变式5-2】(2023秋•淮阳区校级期末)如图,木条a,b,c在同一平面内,经测量∠1=115°,要使木条a∥b,则∠2的度数应为()A.65°B.75°C.115°D.165°【分析】根据邻补角互补和平行线的判定定理求解即可.【解答】解:∠2的度数应为65°.证明:如图,∵∠1=115°,∴∠3=180°﹣115°=65°,∵∠2=65°,∴∠2=∠3,∴a∥b.故选:A.【点评】本题考查邻补角互补,平行线的判定.熟练掌握平行线的判定定理是解题关键.【变式5-3】(2023秋•泾阳县期末)如图,直线AB、CD分别与EF相交于点G、H,已知∠1=70°,∠2=70°,试说明:AB∥CD.【分析】根据对顶角相等得出∠1=∠AGH,进而根据∠2=∠AGH,即可得证.【解答】解:∵∠1=∠AGH,∠1=∠2=70°,∴∠2=∠AGH,∴AB∥CD.【点评】本题考查了对顶角相等,同位角相等两直线平行,熟练掌握平行线的判定定理是解题的关键.【变式5-4】(2023秋•泰和县期末)如图,CE平分∠ACD,若∠1=30°,∠2=60°,求证:AB∥CD.【分析】根据平行线的判定,依据角平分线的定义即可解决问题.【解答】证明:∵CE平分∠ACD,∠1=30°,∴∠ACD=2∠1=60°(角平分线定义),∵∠2=60°,(已知),∴∠2=∠ACD(等量代换),∴AB∥CD(同位角相等两直线平行).【点评】本题主要考查平行线的判定,解题的关键是熟练掌握基本知识,属于中考常考题型.【变式5-5】(2023春•樟树市期中)将一副三角板拼成如图所示的图形,过点C作CF平分∠DCE交DE于点F.求证:CF∥AB.【分析】根据CF平分∠DCE以及∠DCE=90°即可得出∠FCE=45°,再根据三角形ABC为等腰直角三角形,即可得出∠ABC=∠FCE=45°,利用“同位角相等,两直线平行”即可证出结论.【解答】证明:∵CF平分∠DCE,∠DCE=90°,∴∠FCE=12∠DCE=45°.∵△ABC为等腰直角三角形,∴∠ABC=45°,∴∠ABC=∠FCE,∴CF∥AB.【点评】本题考查了平行线的判定,解题的关键是找出∠ABC=∠FCE=45°.本题属于基础题,难度不大,解决该题型题目时,找出相等(或互补)的角的关键.【变式5-6】(2023秋•靖边县期末)如图,AF与BD相交于点C,∠B=∠ACB,且CD平分∠ECF.试说明:AB∥CE.【分析】根据角平分线的定义结合对顶角得到∠ECD=∠ACB,则可证明∠B=∠ECD,根据平行线的判定即可证明AB∥CE.【解答】证明:因为CD平分∠ECF,所以∠ECD=∠FCD(角平分线的定义).因为∠ACB=∠FCD(对顶角相等),所以∠ECD=∠ACB(等量代换).因为∠B=∠ACB,。

平行线的判定及性质 例题及练习

平行线的判定及性质 例题及练习

平行线的判定及性质一、【基础知识精讲】1、平行线的判定(1)平行公理:经过直线外一点,有且只有一条直线与已知直线平行. (2)平行公理的推论:平行于同一条直线的两条直线. (3)在同一平面内,垂直于同一条直线的两条直线. (4)同位角相等,两直线平行. (5)内错角相等,两直线平行.(6)同旁内角互补,两直线平行.3、平行线的性质(1)两直线平行,同位角相等. (2)两直线平行,内错角相等.(3)两直线平行,同旁内角互补.二、【例题精讲】专题一:余角、补角、对顶角与三线八角例题1:∠A的余角与∠A的补角互为补角,那么2∠A是()A.直角 B.锐角 C.钝角 D.以上三种都有可能【活学活用1】如图2-79中,下列判断正确的是()A.4对同位角,2对内错角,4对同旁内角B.4对同位角,2对内错角,2对同旁内角C.6对同位角,4对内错角,4对同旁内角D.6对同位角,4对内错角,2对同旁内角【活学活用2】如图2-82,下列说法中错误的是( )A.∠3和∠5是同位角B.∠4和∠5是同旁内角C.∠2和∠4是对顶角D.∠1和∠2是同位角【活学活用3】如图,直线AB与CD交于点O,OE⊥AB于O,图中∠1与∠2的关系是()A.对顶角B.互余C.互补D相等例题2:如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30°,那么这两个角分别是_______.【活学活用4】如图,∠AOC +∠DOE +∠BOF = .专题二:平行线的判定例题3:如图,已知∠EFB+∠ADC=180°,且∠1=∠2,试说明DG ∥AB.1 2A BCDF E G【活学活用】1、长方体的每一对棱相互平行,那么这样的平行棱共有 ( )A .9对B .16对 C.18对 D .以上答案都不对2、已知:如图2-96,DE ⊥AO 于E,BO ⊥AO,FC ⊥AB 于C ,∠1=∠2,求证:DO ⊥AB.3、如图2-97,已知:∠1=∠2=,∠3=∠4,∠5=∠6.求证:AD ∥BC.4、如图2—101,若要能使AB ∥ED ,∠B 、∠C 、∠D 应满足什么条件?ABCDOE F5、同一平面内有四条直线a 、b 、c 、d ,若a ∥b ,a ⊥c ,b ⊥d ,则c 、d 的位置关系为( ) A.互相垂直 B .互相平行 C.相交 D .没有确定关系专题三:平行线的性质1、如图,110,ABC ACB BO ∠+∠=、CO 分别平分ABC ∠和,ACB EF ∠过点O 与BC 平行,则BOC ∠= . 2、如图,AB //CD ,BC //DE ,则∠B+∠D = .3、如图,直线AB 与CD 相交于点O ,OB 平分∠DOE .若60DOE ∠=,则∠AOC 的度数是 .4、 如图,175,2120,375∠=∠=∠=,则4∠= .13 425、如图,//AB CD ,直线EF 分别交AB 、CD 于E 、F ,ED 平分BEF ∠,若172∠=,则2∠= .【例题讲解】例1:如图,已知:AD ∥BC, ∠AEF=∠B,求证:AD ∥EF 。

7年级数学 平行线判定及性质 (1)

7年级数学 平行线判定及性质 (1)

D EEF1 23 A CO知识精讲7 年级数学下:平行线的性质定理模块一:平行线的性质定理平行线的性质定理(1)两条平行线被第三条直线所截,同位角相等;简记为:两直线平行,同位角相等.(2)两条平行线被第三条直线所截,内错角相等;简记为:两直线平行,内错角相等.(3)两条平行线被第三条直线所截,同旁内角互补;简记为:两直线平行,同旁内角互补. 例题解析【例 1】如图,AC //DB , ∠DBC = 56 ,则∠ACB = . 【答案】124 度.【解析】因为 AC //DB (已知), 所以∠DBC + ∠ACB = 180︒ (两直线平行,同旁内角互补),因为∠DBC = 56 (已知),所以∠ACB = 180︒ - 56︒ = 124︒ (等式性质)D B【例 2】(1)如图,已知 DE //BC ,∠A = ∠C ,则与∠AED 相等的角(不包含∠AED )有 个;(2)如图,若 AB //FD ,则∠B = ,若 AC //ED ,则∠DFC = .AAB C 【答案】(1)2 个;(2) ∠3 ;∠2.B D 【解析】(1)因为 DE //BC (已知), 所以∠AED = ∠C (两直线平行,同位角相等),又因为∠A = ∠C (已知),所以∠A = ∠C = ∠AED (等量代换);(2)∠B = ∠3(两直线平行,同位角相等);∠DFC = ∠2. 【例 3】如图,直线 a / /b ,则 x - y 的值等于( ) aA .20B .80C .120D .180 b【答案】A【解析】因为 a / /b ,所以 x = 30又因为3y + x = 180 ,解得 y = 50 ,故 x - y = 30 - 50 = 20︒ .【例 4】如图,直线 a / /b ,点 B 在直线b 上,且 AB ⊥ BC , ∠1 =A . 35B . 45C . 55D .125【答案】A 【解析】因为 AB ⊥ BC (已知),所以∠ABC = 90︒ (垂直的意义)因为 a / /b (已知), 所以 ∠1 = ∠CBD (两直线平行,同位角相等) 因为∠1 = 55 (已知), 所以∠CBD = 55 (等量代换)因为∠2 + ∠ABC + ∠CBD = 180 (平角的意义)所以∠2 = 180︒ - 55︒ - 90︒ = 35︒ (等式性质)B【例5】如图,直线a / /b ,c ⊥d ,则下列说法中正确的个数有()(1)∠2 +∠4 = 90 ;(2)∠1 +∠4 = 90 ;(3)∠1 =∠3 ;(4)∠3 +∠4 = 90 .A.1 个B.2 个C.3 个D.4 个【答案】B【解析】(1)正确:因为a / /b ,所以∠2 与∠3 互为同位角,d又因为c ⊥d ,所以∠3 +∠4 = 90︒,所以∠2 +∠4 = 90︒;(2)错误:∠1 =∠4 (两直线平行,同位角相等);(3)错误∠1 +∠3 = 90︒;(4)正确.所以本题选B【例6】如果两个角的一边在同一条直线上,另一边互相平行,那么这两个角()A.相等或互补B.互补C.相等D.相等且互余【答案】A【解析】分为同侧相等和异侧互补两种情况,故选A.【例7】如图,已知AB / /CD ,∠x 等于()A.75 B.80 C.85 D.95 【答案】C【解析】如图可过的顶点作平行线,那么被分为上下两部分.上半部分与角B 互补;下半部分与角D 互为内错角;所以易知∠x = (180︒-120︒) + 25︒= 85︒.A B120°xD 25°C【例8】如图,AB / /CD,MP / / AB,MN 平分∠AMD,∠A = 40 ,∠D = 30 ,则∠NMP 等于()A.10 B.15 C.5 D.7.5 【答案】C【解析】因为AB / /MP (已知)所以∠A =∠AMP (两直线平行,内错角相等)因为AB / /CD (已知),所以MP / /CD (平行的传递性)所以∠D =∠DMP (两直线平行,内错角相等)B MCAN PD因为∠AMD =∠AMP +∠DMP (角的和差),∠A = 40 ,∠D = 30 (已知)所以∠AMD = 30 + 40 = 70 (等式性质)因为MN平分∠AMD (已知),所以∠AMN =∠NMD = 35 (角平分线的意义)所以∠NMP = 40︒- 35︒= 5︒(等式性质)E【例9】如图,AB / /CD ,∠1 = (2x + 20) ,∠2 = (8x - 40) ,求∠1 及∠2 的度数.【答案】∠1 = 40︒,∠2 = 40︒. A1 B【解析】因为AB / /CD (已知),所以∠1 =∠2 (两直线平行,同位角相等)2 即(2x + 20) = (8x - 40) C DF 解得:x = 10所以∠1 = 40︒,∠2 = 40︒(等式性质)H 2G1C F D3 1 24【例 10】如图,已知∠1 = 40 ,∠2 = 140 ,∠3 = 40 ,能推断出 AB / /CD / / EF 吗?为什么?【答案】能;见解析. 【解析】由题意,根据对顶角的性质,可知:∠2 + ∠1 = 180︒,∠2 + ∠3 = 180︒ 所以 AB //CD ,CD //EF (同旁内角互补,两直线平行) 所以 AB //EF ,即 AB //CD //EF ,即证.N【例 11】已若∠A 的两边与∠B 的两边分别平行,且∠A 是∠B 的 2 倍少 30°,求∠A 与∠B 的度数.【答案】∠B = 30︒,∠A = 30︒ 或∠B = 70︒ ,∠A = 110︒ .【解析】由题意可知, ∠A = ∠B 或∠A + ∠B = 180︒ ,又因为∠A 是∠B 的 2 倍少 30°,所以∠A = 2∠B - 30︒ ,即∠B = 30︒,∠A = 30︒ 或∠B = 70︒ ,∠A = 110︒【总结】本题考查平行线的性质及两个角的两边平行时的两种情况的讨论.【例 12】已知:如图, ∠1 = ∠2 ,∠3 = ∠B ,AC / / DE ,且 B 、C 、D 在一条直线上.试说明 AE / / BD .AE【答案】见解析. 【解析】因为 AC / / DE (已知), 所以∠2 = ∠4 (两直线平行,内错角相等)因为∠1 = ∠2 (已知),所以∠1 = ∠(4 等量代换)所以 AB / /CE (内错角相等,两直线平行) 所以∠B = ∠ECD (两直线平行,同位角相等) B 因为∠3 = ∠B (已知),所以∠3 = ∠ECD (等量代换)所以 AE / / BD (内错角相等,两直线平行)【例 13】已知:如图,E 、F 分别是 AB 和 CD 上的点,DE 、AF 分别交 BC 于 G 、H ,∠ A = ∠ D , ∠ 1= ∠ 2,试说明: ∠ B = ∠ C .E 【答案】见解析 A B【解析】因为∠1 = ∠(2 已知),∠1 = ∠AHB (对顶角相等)所以∠2 = ∠AHB (等量代换), 所以 AF / / E D (同位角相等,两直线平行) 所以∠D = ∠AFC (两直线平行,同位角相等)因为∠A = ∠D (已知), 所以∠A = ∠AFC (等量代换)所以 AB / /CD (内错角相等,两直线平行)所以∠B = ∠C (两直线平行,内错角相等)【例 14】如图,直线 GC 截两条直线 AB 、CD ,AE 是∠GAB 的平分线,CF 是∠ACD 的平 分线,且 AE / /CF ,那么 AB ∥CD 吗?为什么?【答案】见解析 【解析】因为 AE 是∠GAB 的平分线,CF 是∠ACD 的平分线(已知)所以∠GAE = ∠EAB ,∠ACF = ∠FCD (角平分线的性质)因为 AE / /CF (已知),所以∠GAE = ∠ACF (两直线平行, 3A1 E2 D同位角相等)所以∠EAB =∠FCD(等量代换)所以AB / /CD ( 同位角相等,两直线平行)【例15】如图∠1 =∠2 ,DC / /OA ,AB / /OD ,那么∠C =∠B【答案】见解析【解析】因为DC / /OA (已知),所以∠COA =∠C(两直线平行,内错角相等),即∠COB +∠1 =∠C因为AB / /OD (已知),所以∠DOB =∠B即∠2 +∠COB =∠B ,又因为∠1 =∠2 (已知),所以∠B =∠C (等量代换)【总结】本题考查平行线的判定及性质的综合运用.【例16】如图,已知AD 平分∠BAC ,∠1 =∠2 ,试说明∠1 =∠F 的理由.【答案】见解析F【解析】因为AD 平分∠BAC (已知),所以∠2 =∠BAD (角平分线的意义)因为∠1 =∠2 (已知),所以∠1 =∠BAD (等量代换)所以EF / / AD (同位角相等,两直线平行)所以∠F =∠2 (两直线平行,同位角相等) B C 所以∠1 =∠F (等量代换)【总结】本题考查平行线的判定及性质的运用.【例17】已知:如图,∠AGH =∠B,∠CGH =∠BEF ,EF⊥AB 于F,试说明CG⊥AB.【答案】见解析【解析】因为∠AGH =∠B (已知)C所以HG / /CB (同位角相等,两直线平行)所以∠CGH =∠BCG (两直线平行,内错角相等)E 因为∠CGH =∠BEF (已知),H所以∠BEF =∠BCG (等量代换)A B所以EF / /CG (同位角相等,两直线平行)G F因为EF⊥AB(已知),所以CG⊥AB.【例18】已知,正方形ABCD 的边长为4 cm ,求三角形EBC 的面积.D【答案】8 平方厘米. A E 【解析】由题意可知:三角形EBC 与正方形同底BC,且其高即是正方形的边DC,故三角形面积为正方形面积的一半:4 ⨯ 4 ÷ 2 = 8cm2C【例19】如图,AD//BC,BC =5AD ,求三角形ABC 与三角形ACD 的面积之比.2A D【答案】5: 2 .4B CBD EA GD【解析】因为 AD / /BC (已知)所以三角形 ABC 与三角形 ACD 的高相等(平行线间的距离处处相等)所以 S ∆ABC : S ∆ACD = BC : AD = 5:2 (两三角形高相等,面积比等于底之比)【例 20】如图, AB / /GE , CD / / FG ,BE =EF =FC ,三角形 AEG 的面积等于 7,求四边形 AEFD 的面积. 【答案】21 【解析】联结 BG 、CG . 因为 AB / /GE(已知)所以 S∆BEG B = S ∆AEG (同底等高的两个三角形面积相等) E F C因为 BE =EF (已知), 所以 S ∆BEG = S ∆GEF (等底等高的两个三角形面积相等)所以 S ∆AEG = S ∆GEF =7(等量代换), 同理 S ∆GEF = S ∆DFG = 7 .所以 S 四边形AEFD = S ∆AEG + S ∆GEF + S ∆DFG = 7 + 7 + 7 = 21.【例 21】已知 E 是平行四边形 ABCD 边 BC 上一点,DE 延长线交 AB 延长线于 F ,试说明CS ∆ABE 与S ∆CEF 相等的理由. 【答案】见解析 1A1 F【解析】因为 S △ADE = S △DCF = 2 S 四边形ABCD ,所以 S △CEF = S ∆DCF - S ∆DCE = 2S 四边形ABCD - S ∆DCE , 所以 S = S - S - S = S - 1 S - S = 1 S - S∆ABE 四边形ABCD ∆ADE ∆DCE 四边形ABCD 2 四边形ABCD ∆DCE 2 四边形ABCD ∆DCE所以 S ∆ABE = S ∆CEF模块二:辅助线的添加例题解析 【例 1】如图,已知 AB ∥ED ,试说明:∠B +∠D =∠C . 【答案】见解析 【解析】过点 C 作 AB 的平行线 CF , 因为 AB ∥ED (已知) 所以 AB / /CF / / ED (平行的传递性)A BC F 所以∠B = ∠BCF ,∠D = ∠DCF (两直线平行,内错角相等)所以∠B + ∠D = ∠BCF + ∠DCF = ∠BCD (等式性质) E D【例 2】如图所示,已知, ∠A +∠B +∠C = 360︒ ,试说明 AE ∥CD . 5F E【答案】见解析A E【解析】过点 B 向右作 BF //AE , 所以∠A + ∠ABF = 180(︒ 两直线平行,同旁内角互补)因为∠A +∠B +∠C = 360︒ (已知)B F所以∠FBC + ∠C = 180︒ (等式性质) C D所以 BF / /CD (同旁内角互补,两直线平行)所以 AE / /CD (平行的传递性)【例 3】如图,已知:AB //CD ,试说明: ∠ B + ∠ D + ∠ BED = 360︒ (至少用三种方法).【答案】见解析 A【解析】方法一:连接 BD则∠EBD +∠EDB +∠E =180°(三角形内角和等于 180因为 AB //CD (已知),所以∠ABD +∠BDC =180°(两直线平行,同旁内角互补) C 所以∠ABD +∠EBD +∠EDB +∠BDC +∠E =360°,即∠B +∠D +∠BED =360°方法二:过点 E 作 EF //CD ,因为 AB / /CD (已知), 所以 EF / / AB (平行的传递性)所以∠B +∠BEF =180°,∠D +∠DEF =180°(两直线平行,同旁内角互补)所以∠B +∠BEF +∠D +∠DEF =360°(等式性质)即∠B +∠D +∠BED =360°;方法三:过点 E 作 EF / / BA因为 AB / /CD (已知), 所以 EF / / AB (平行的传递性)所以∠ABE + ∠BEF = 180︒ ,∠FED + ∠EDC = 180︒ (两直线平行,同旁内角互补) 所以∠ B + ∠ D + ∠ BED = 360︒ (等式性质);方法四:过点 E 作 EF ⊥CD 的延长线与 F ,EG 垂直于 AB 的延长线于 G ,则有:∠B =∠BGE +∠GEB ,∠D =∠EDF +∠DFE ,所以∠B +∠D +∠BED =∠BGE +∠DFE +∠GED =180+180=360°.【例4】如图所示,在六边形 ABCDEF 中,AF ∥CD ,∠A =∠D ,∠B=∠E ,试说明 BC ∥EF 的理由.【答案】见解析 A F【解析】连接 AD 、BEB因为 AF ∥CD (已知) E所以∠FAD = ∠ADC (两直线平行,内错角相等) C D因为∠BAF = ∠CDE (已知), 所以∠BAD = ∠ADE (等式性质)所以 AB ∥DE (内错角相等,两直线平行)所以∠ABE = ∠BED (两直线平行,内错角相等)因为∠ABC = ∠FED (已知), 所以∠EBC = ∠BEF (等式性质)所以 BC ∥EF (内错角相等,两直线平行)【例 5】如图已知,AB //CD ,∠ABF = 2 ∠ABE ,∠CDF = 2 ∠CDE ,求∠E 和∠F 的关系.3 3【答案】∠E : ∠F = 3:2 . C【解析】过点 E 、点 F 分别作 AB 的平行线 EG 、FH . 6A BD2 1 因为 EG / / AB ,FH / / AB所以 AB / / EG / FH / /CD (等量代换)所以∠ABF = ∠BFH (两直线平行,内错角相等)所以∠CDF = ∠DFH (两直线平行,内错角相等)所以∠BFD = ∠DFH + ∠BFH = ∠CDF + ∠ABF (等量代换)同理: ∠BED = ∠DEG + ∠BEG = ∠ABE + ∠CDE (等量代换)因为∠ABF = 2 ∠ABE ,∠CDF = 2 ∠CDE3 3所以∠BFD = ∠DFH + ∠BFH = ∠CDF + ∠ABF = 2 (∠ABE + ∠CDE ) = 2∠BED3 3 所以∠E : ∠F = 3:2【例 6】如图,已知:AC //BD ,联结 AB ,则 AC 、BD 及线段 AB 把平面分成①②③④四个部分,规定:线上各点不属于任何一个部分,当点 P 落在某个部分时,联结 PA 、PB ,构成 ∠ PAC 、∠ APB 、∠ PBD 三个角(提示:有公共角断点的两条重合的射线所组成的角是 0 °角)(1) 当点 P 落在第①部分时,试说明: ∠ PAC + ∠ PBD = ∠ APB ;(2) 当点 P 落在第②部分时,试说明: ∠ PAC + ∠ PBD = ∠ APB 是否成立?(3)当点 P 落在第③部分时,全面探究∠ PAC 、 ∠ APB 、 ∠ PBD 之间的关系是 ,并写出动点 P 的具体位置和相应的结论,选择其中一种加以证明.A 3 A 3C C C A 3 C2 1B 4 D B 4 D B 4 B 4 D【解析】(1)过点 P 作 PE // AC .因为 AC / / BD ,所以 AC / / PE / / BD (平行的传递性)所以∠PAC = ∠APE ,∠BPE = ∠PBD (两直线平行,内错角相等)因为∠APB = ∠APE + ∠BPE (角的和差)所以∠APB = ∠PAC + ∠PBD (等量代换)(2)不成立,过点 P 作 AC 的平行线即可证明.(3)分类讨论如下:①当动点 P 在射线 BA 的右侧时,结论是∠PBD = ∠PAC + ∠APB ;②当动点 P 在射线 BA 上时,结论是∠PBD = ∠PAC + ∠APB 或∠PAC = ∠PBD + ∠APB 或∠APB = 0︒,∠PAC = ∠PBD (任写一个即可) ③当动点 P 在射线 BA 的左侧时,结论是∠PBD = ∠PAC + ∠APB .2 P 1 A3 2 1随堂练习【习题1】 填空:(1) 如图(1),AB //CD ,CE 平分∠ACD , ∠A = 120 ,则∠ECD ;(2) 如图(2),已知 AB //CD , ∠B = 100 ,EF 平分∠BEC , EG ⊥ EF ,则∠DEG = .【难度】★G B AFC 【答案】(1)30°; (2)50°.E图(2) C【解析】(1)因为 AB ∥CD (已知),所以∠A + ∠ACD = 180 (两直线平行,同旁内角互补)因为∠A = 120 (已知), 所以∠ACD = 180 -120 = 60 (等式性质)又因为 CE 平分∠ACD (已知), 所以∠ECD =30°(角平分线的意义)(2)因为 AB ∥CD (已知), 所以∠B + ∠BEC = 180 (两直线平行,同旁内角互补)因为∠B = 100 (已知), 所以∠BEC = 180 -100 = 80 (等式性质)又因为 EF 平分∠BEC (已知), 所以∠BEF =40°(角平分线的意义)因为 EG ⊥EF (已知), 所以∠GEF = 90 (垂直的意义)因为∠DEG + ∠GEF + ∠CEF = 180 (平角的意义)所以∠DEG = 180 - 90 - 40 = 50 (等式性质)【总结】本题考查平行线的性质的运用.【习题2】 填空:(1)如图,直线 a / /b ,三角形 ABC 的面积是 42 cm 2 ,AB =6 cm ,则 a 、b 间的距离为 ;(2)如图,在三角形 ABC 中,点 D 是 AB 的中点,则三角形 ACD 和三角形 ABC 的面 积之比为 .【难度】★ 【答案】(1)14 厘米 ;(2) 1 .2 AD【解析】(1)三角形 ABC 的高为: 42 ⨯ 2 ÷离B 为 14 厘米; C(2)因为三角形 ACD 和三角形 ABC 高相等,所以面积之比等于底之比,即 S ∆ACD = S ∆ABC AD =1AB 2【总结】本题考查平行线间距离及同高等底的三角形面积的之比.A B E 图(1) D D .【习题3】 如图,已知 FC //AB //DE , ∠α : ∠D : ∠B = 2 : 3 : 4 ,则∠α 、∠D 、∠B 的度数分别为 .【难度】★ 【答案】∠α = 72︒ , ∠D = 108︒ , ∠B = 144︒ . 【解析】因为 FC //AB //DE (已知),A 所以∠B + ∠CFB = 180 (∠D = ∠CFD (两直线平行,内错角相等)设∠α = 2x ,∠D = 3x ,∠B = 4x ,则可列方程:180 - 4x + 2x = 3x ,解得: x = 36︒则∠α = 72︒ , ∠D = 108︒ , ∠B = 144︒ .【习题4】 如果两个角的两边分别平行,其中一个角比另一个角的 3 倍多 12°,则这两个角是( ).A .42°和 138°B .都是 10°C .42°和 138°或都是 10°D .以上都不对【难度】★★【答案】A【解析】由题意假设这两个角分别为 A 、B ,则有: ∠A = ∠B 或∠A + ∠B = 180︒ ,又因为∠A 是∠B 的 3 倍多 12°,则有: ∠A = 3∠B + 12︒ ,即180︒- ∠B = 3∠B + 12︒,解得:∠B = 42︒,∠A = 138︒ .【总结】本题考查两角位置关系的可能性,注意两种情况的讨论.【习题5】 如图,已知 QR 平分∠PQN ,NR 平分∠QNM ,∠1+∠2=90°,那么直线 PQ 、MN的位置关系.P Q【难度】★★ 【答案】见解析. 1【解析】因为 QR 平分∠PQN ,NR 平分∠QNM (已知) R所以∠PQN = 2∠1 , ∠MNQ = 2∠2 (角平分线的意义)因为∠1+∠2=90°(因为),所以∠PQN +∠MNQ =180°(等式性质) 2 所以 PQ ∥MN (同旁内角互补,两直线平行) M N【总结】本题考查平行线的判定及角平分线意义的综合运用.【习题6】 如图,已知:AB ∥CD ,EF 和 AB 、CD 相交于 G 、H 两点,MG 平分∠BGH ,NH平分∠DHF ,试说明:GM ∥NH .【难度】★★ 【答案】略. 【解析】 AB / /CD (已知) ∴∠BGH = ∠DHF (两直线平行,同位角相等) 又 MG 平分∠BGH ,NH 平分∠DHF ∴∠1 = 1 ∠BGH , ∠2 = 1 ∠DHF 2 2 ∴∠1 = ∠(2 等量代换) ∴GM / / H N (同位角相等,两直线平行)【总结】本题考查平行线的判定A B 12 OC BC M1【习题7】 如图所示,在直角三角形 ABC 中,∠C =90°,AC =3,BC =4,AB =5,三角形内一点 O 到各边的距离相等,求这个距离是多少.【难度】★★【答案】1. 【解析】设这个距离是 x ,则有:S ∆ABC = 6 = 1( AC + BC + AB ) ⨯ x = 6x , 解得: x = 1 . 2 【总结】本题可以用面积法求解比较简单.【习题8】 如图,已知 AB ,CD 分别垂直 EF 于 B ,D ,且∠DCF =60°,∠1=30°.试说明: BM / / AF .A【难度】★★ 【答案】见解析. 【解析】因为 CD ⊥EF , 所以∠CDF = 90 (垂直的意义) 因为∠DCF =60°(已知), 所以∠F =30°(三角形的内角F 和等于 1D 80°) B E 因为∠1=30°(已知), 所以∠1=∠F (等量代换)所以 BM ∥AF (同位角相等,两直线平行)【总结】本题考查平行线的判定及垂直的意义的综合运用.【习题9】 如图,已知直线l 1 / /l 2 ;(1)若∠1 = (x + 2 y ) , ∠2 = x , ∠4 = ( y + 30) 求∠1 , ∠2 , ∠4 的度数;(2)若∠2 = x , ∠3 = y , ∠4 = [2(2x - y )] ,求 x 、 y 的值. 1 2 3 l【难度】★★ 【答案】见解析 4l 2【解析】(1)因为∠1+∠2=180°(平角的意义),所以 x + 2 y + x 180︒ ,即 x +y =90°因为l 1∥l 2 (已知), 所以∠2=∠4(两直线平行,同位角相等)即 x = y +30, 解得:x =60°,y =30°,所以∠1=120°,∠2=60°,∠4=60°;(2)因为∠3+∠2=180°(平角的意义), 所以 x +y =180°,因为l 1∥l 2 (已知), 所以∠2=∠4(两直线平行,同位角相等)即 x = 4x - 2 y , 解得:x =72°,y =108°.【总结】本题考查平行线的性质及角度的简单计算.【习题10】 如图, ∠ ADC =∠ABC , ∠ 1+ ∠ FDB =180°,AD 是∠FDB 的平分线,试说明 BC 为∠DBE 的平分线.【难度】★★★ E【答案】见解析. 【解析】因为∠ 1+ ∠ FDB =180°(已知), 又因为∠1 = ∠ABD (对顶角相等) 所以∠ABD + ∠BDF = 180 (等量代换)所以 AB / / F D (同旁内角互补,两直线平行)F D CA E C所以∠ABD = ∠2 (两直线平行,内错角相等)因为∠ADC = ∠ABC (已知), 所以∠ADB = ∠CBD (等式性质)因为 AE / / FC (已证), 所以∠EBD = ∠FDB (两直线平行,内错角相等)即∠ADB + ∠ADF = ∠CBD + ∠CBE (角的和差)因为 AD 是∠FDB 平分线, 所以∠ADB = ∠ADF = ∠CBD = ∠EBC (角平分线的意义) 即 BC 为∠DBE 的平分线【总结】本题综合性较强,主要考查平行线的判定定理及性质定理以及角平分线的综合运用.【习题11】 如图,已知∠ABC =∠ACB ,AE 是∠CAD 的平分线,问:△ABC 与△EBC 的面积是否相等?为什么? D【难度】★★★【答案】相等,证明见解析. F【解析】因为∠DAE + ∠EAC + ∠BAC = 180 (平角的意义)又∠ABC + ∠ACB + ∠BAC = 180 (三角形内角和等于 180°)所以∠DAE + ∠EAC = ∠ABC + ∠ACB (等式性质) B 因为∠ABC =∠ACB ,AE 是∠CAD 的平分线(已知)所以∠ABC = ∠ACB = ∠DAE = ∠CAE所以 AE / / B C (内错角相等,两直线平行)所以 AE 与 BC 间的距离相等(夹在平行线间的距离处处相等)所以△ABC 与△EBC 的面积相等(同底等高的两个三角形面积相等).【总结】本题综合性较强,主要考查平行线的判定定理及性质定理的综合运用,同时还考查了三角形的面积问题.课后作业【作业1】 如图,AB //CD ,直线l 分别交 AB 、CD 于 E 、F ,EG 平分∠BEF ,若∠EFG = 40 ,则∠EGF 的度数是( )A . 60B . 70C . 80D . 90【难度】★【答案】B 【解析】因为 AB //CD (已知),所以∠BEF + ∠EFG = 180 因为∠EFG = 40 (已知), 所以∠BEF =140°(等式性质) 因为 EG 平分∠BEF (已知),所以∠BEG = 1∠BEF = 70 (角平分线的意义)2 因为 AB //CD (已知), 所以∠BEG = ∠EGF (两直线平行,内错角相等)所以∠EGF =70°(等量代换)【总结】本题考查平行线的性质及角平分线的意义的运用.【作业2】 如图,AB //CD ,下列等式中正确的是( )A . ∠1 + ∠2 + ∠3 = 180B . ∠1 + ∠2 - ∠3 = 90C . ∠2 + ∠3 - ∠1 = 180D . ∠2 + ∠3 - ∠1 = 90【难度】★【答案】C A B C D2D 1 2E 3 【解析】由题意可得: (180︒- ∠3) + (180︒- ∠2) + ∠1 = 180︒ ,解得: ∠2 + ∠3 - ∠1 = 180︒【总结】本题考查平行线的性质.【作业3】 若两直线被第三条直线所截,则下列说法中正确的个数有( )(1)一对同位角的角平分线互相平行,(2)一对内错角的角平分线互相平行,(3)一对同旁内角的角平分线互相平行,(4)一对同旁内角的角平分线互相垂直A .3 个B .2 个C .1 个D .0 个【难度】★【答案】D【解析】(1)同位角不一定相等,×;(2)内错角不一定相等,×;(3)×; (4)只有当这对同旁内角互补时才成立,×【总结】本题考查三线八角的基本运用.【作业4】 直线 a ∥c ,且直线 a 到直线c 的距离是 3;直线b / /c ,直线b 到直线c 的距离为5,则直线 a 到直线b 的距离为( )A .2B .3C .8D .2 或 8【难度】★★【答案】D【解析】当直线 a 和直线 b 在直线 c 的两侧时,距离为 8;当直线 a 和直线 b 在直线 c 的同一侧时,距离为 2.【总结】本题考查平行线的性质,注意分类讨论.【作业5】 已知:如图 5,∠1=∠2=∠B ,EF ∥AB .试说明∠3=∠C . A【难度】★★【答案】略.【解析】因为∠1 = ∠B (已知) 所以 DE / / B C (同位角相等,两直线平行)所以∠2 = ∠C (两直线平行,同位角相等)又因为 EF / / AB (已知), 所以∠3 = ∠B 所以∠3 = ∠C (等量代换)B FC (两直线平行,同位角相等) 【总结】本题考查平行线的判定定理及性质定理的综合运用.【作业6】 已知:∠1=60o ,∠2=60o , AB //CD .试说明:CD //EF .【难度】★★ l【答案】略. 【解析】设∠2 的对顶角为∠3, 因为∠1=∠2 = 60o (已知),所以∠1=∠3(等量代换) 所以 AB ∥EF (同位角相等,两直线平行)A 1 BC D 又因为 AB ∥CD (已知) 所以 CD ∥EF (平行的传递性) E 2 F【总结】本题主要考查平行线的判定.D ′ C′ F【作业7】 如图,已知∠4=∠B ,∠1=∠3,试说明:AC 平分∠BAD .【难度】★★【答案】略. 【解析】因为∠4=∠B (已知)所以 CD ∥AB (同位角相等,两直线平行) 所以∠3=∠2(两直线平行,内错角相等) 又因为∠1=∠3(已知), 所以∠1=∠2(等量代换),A B所以 AC 平分∠BAD (角平分线的意义)【总结】本题考查平行线的判定定理及性质定理的综合运用.【作业8】 如图, AD / / BC ,BD 平分∠ABC ,且∠A : ∠ABC = 2 :1 ,求∠DBC 的度数.【难度】★★A D 【答案】30°.【解析】因为 AD ∥BC (已知)所以∠A +∠ABC =180°(两直线平行,同旁内角互补) B C又因为∠A :∠ABC =2:1(已知), 所以∠A =120°,∠ABC =60°(等式性质)又因为 BD 平分∠ABC (已知), 所以∠DBC =30°(角平分线的意义)【总结】本题考查平行线的性质及角平分线的综合运用【作业9】 如图,把一个长方形纸片沿 EF 折叠后,点 D 、C 分别落在 D ′、C ′的位置.若∠AED ′=65°,则∠C 'FB 的度数为 . A E D 【难度】★★【答案】65°【解析】因为翻折, 所以∠D 'EF = ∠DEF (翻折的性质) B 因为∠AED ' + ∠D 'EF + ∠DEF = 180 (平角的意义) 又∠AED ′=65°(已知), 所以∠D 'EF = ∠DEF = 180 - ∠AED '= 57.5 (等式性质)2 因为 AD / / BC (已知), 所以∠DEF + ∠EFC = 180 (两直线平行,同旁内角互补) ∠EFB = ∠DEF (两直线平行,内错角相等)所以∠EFB = 57.5 , ∠EFC = 180 - 57.5 = 122.5 (等式性质)因为∠EFC ' = ∠EFC (翻折的性质) 所以∠C 'FB = ∠EFC ' - ∠EFB = 65︒ .【总结】本题主要考查平行线的性质及翻折的性质的综合运用.【作业10】 如图,已知 AD //BC ,AB //EF ,DC //EG ,EH 平分∠FEG , ∠A = ∠D = 110 ,试说明线段 EH 的长是 AD 、BC 间的距离. AE D 【难度】★★【答案】见解析.【解析】因为 AD //BC (已知)所以∠A + ∠B = 180 , ∠C + ∠D = 180 (两直线平行,同旁内角互补)因为∠A = ∠D = 110 (已知), 所以∠B =∠C =70°(等式性质)B F H G因为 AB //EF ,DC //EG (已知),D4 3 C 1 2所以∠EFG=∠B,∠EGF=∠C(两直线平行,内错角相等)所以∠EFG = ∠EGF = 70°(等量代换),所以∠FEG=40°因为EH 平分∠FEG (已知),所以∠FEH=1∠FEG=20 (角平分线的意义)2所以∠FHE = 180 -∠FEH =∠EFH = 90 (三角形内角和等于180°)即EH 的长是AD、BC 间的距离.【总结】本题综合性较强,主要考查平行线的性质及三角形的内角和以及平行线间的距离.【作业11】如图,AB ⊥l ,CD ⊥l (点B、D 是垂足),直线EF 分别交AB、CD 于点G、H.如果∠EGB =m ,∠FGB =n ,且∠EHD = (3m -n ) ,试求出∠EGB 、∠BGF 、∠EHD的度数.【难度】★★★【答案】∠EGB = 60︒,∠BGF = 120︒,∠EHD = 60︒.【解析】因为AB ⊥l ,CD ⊥l (已知)所以AB / /CD (垂直于同一直线的两直线平行)所以∠FGB +∠EHD =180 (两直线平行,同旁内角互补)∠EGB =∠EHD (两直线平行,同位角相等)即n + 3m -n = 180 ,m = 3m -n ,解得:m = 60︒,n = 120︒.所以∠EGB = 60︒,∠BGF = 120︒,∠EHD = 60︒.【总结】本题主要考查平行线的性质的运用.【作业12】如图,已知AB / /CD ,EG、FH 分别平分∠AEF 、∠DFN ,那么∠GEF +∠DFH = 90 ,试说明理由.【难度】★★【答案】见解析.【解析】因为AB / /CD (已知)所以∠AEF =∠CFN (两直线平行,同位角相等)因为∠CFN +∠DFN = 180︒(平角的性质)又因为EG、FH 分别平分∠AEF 、∠DFN (已知)所以∠AEG +∠GEF +∠DFH +∠NFH = 180︒(角的和差)即2∠GEF +∠DFH = 180︒,所以∠GEF +∠DFH = 90 .【总结】本题考查平行线的性质及角平分线性质的综合应用.【作业13】如图,已知AB∥EF,∠B=45°,∠C=x°,∠D=y°,∠E=z°,试说明x、y、z 之间的关系.【难度】★★★【答案】见解析.【解析】由题意,过C、D 两点分别作AB 的平行线CM、DN 因为AB∥EF(已知)所以AB / /CM / / DN / / EF (平行的传递性)N所以∠B =∠BCM ,∠MCD =∠CDN ,∠EDN =∠E (两直线平行,内错角相等)因为∠B=45°,∠C=x°,∠D=y°,∠E=z°(已知)所以x - 45 =y -z (等式性质)即x -y +z = 45 .【总结】本题综合性较强,主要考查平行线的性质以及辅助线的添加,注意观察角度间的关系.。

初三平行线知识点以及经典例题

初三平行线知识点以及经典例题

初三平行线知识点以及经典例题平行线是初中数学中的重要概念之一。

本文将介绍初三学生需要掌握的平行线的知识点,并提供几个经典例题供大家练。

知识点1. 平行线定义:如果两条直线在同一个平面内,且没有交点,那么它们被称为平行线。

平行线可以用符号"// "表示。

平行线定义:如果两条直线在同一个平面内,且没有交点,那么它们被称为平行线。

平行线可以用符号"// "表示。

2. 平行线的判定方法:以下是几种判定平行线的方法:平行线的判定方法:以下是几种判定平行线的方法:- (a) 两条直线的斜率相等,且不重合。

- (b) 两条直线之间的对应角相等。

- (c) 一条直线与另一平行线的任意直线交角为180°。

3. 平行线的性质:平行线具有以下性质:平行线的性质:平行线具有以下性质:- (a) 平行线之间的距离在每个交点处相等。

- (b) 平行线之间的夹角为0°,即平行线之间没有夹角。

- (c) 平行线与同一直线相交的角被称为"同位角",同位角的对应角相等。

经典例题例题1已知AB//CD,AB=6cm,BC=4cm,EF=5cm,求EF的长度。

例题2已知直线l与平行线m及n相交,交角1为120°,求交角2的度数。

例题3已知直线k与平行线p及q相交,交角a为40°,求交角b的度数。

例题4已知平行四边形ABCD中,AB=10cm,BC=6cm,求AD的长度。

以上是初三平行线知识点以及经典例题的介绍。

希望能对初三学生理解和掌握平行线有所帮助。

2022-2023学年七年级数学下册《平行线的性质》精讲与精练高分突破含答案解析

2022-2023学年七年级数学下册《平行线的性质》精讲与精练高分突破含答案解析

5.3平行线的性质考点一:平行线的性质1:两条平行线被第三条直线所截,同位角相等.简单地说:两直线平行,同位角相等.2:两条平行线被第三条直线所截,内错角相等.简单地说:两直线平行,内错角相等.3:两条平行线被第三条直线所截,同旁内角互补.简单地说:两直线平行,同旁内角互补.注意:是先有两直线平行,才有以上的性质,前提是“线平行”。

一个结论:平行线间的距离处处相等。

例如:应用于说明矩形(包括长方形、正方形)的对边相等,还有梯形的对角线把梯形分成分别以上底为底的两等面积的三角形,或以下底为底的两等面积的三角形。

(因为梯形的上底与下底平行,平行线间的高相等,所以,就有等底等高的三角形。

)考点二、命题判断一件事情的语句叫命题。

命题包括“题设”和“结论”两部分,可写成“如果……那么……”的形式。

例如:“明天可能下雨。

”这句语句______命题,而“今天很热,明天可能下雨。

”这句语句_____命题。

(填“是”或“不是”)①命题分为真命题与假命题,真命题指题设成立,结论也成立的命题(或说正确的命题)。

假命题指题设成立,但结论不一定或根本不成立的命题(或说错误的命题)。

②逆命题:将一个命题的题设与结论互换位置之后,形成新的命题,就叫原命题的逆命题。

注:原命题是真命题,其逆命题不一定仍为真命题,同理,原命题为假命题,其逆命题也不一定为假命题。

题型一:平行线的性质1.(2022秋·河南新乡·七年级校考期末)如图,AF 是BAC ∠的平分线,DF AC ∥,若135∠=︒,则BAF ∠的度数为( )A .17.5°B .35°C .55°D .70°2.(2022秋·吉林长春·七年级长春市第四十五中学校考期末)如图,直线a b P ,一块含60︒角的直角三角板如图放置,若113∠=︒,则2∠的度数为( ).A .45︒B .47︒C .55︒D .57︒3.(2023春·全国·七年级专题练习)如图,AB CD P ,直线EF 交AB 于点E ,交CD 于点F ,EG 平分BEF ∠,交CD 于点G ,150∠=︒,则2∠等于( )A .50︒B .60︒C .65︒D .90︒题型二:根据平行线性质探究角的关系4.(2022春·浙江金华·七年级统考期末)将一直角三角板与两边平行的纸条如图所示放置,下列结论:(1)12∠=∠;(2)34∠=∠;(3)2490∠+∠=︒;(4)45180∠+∠=︒.其中正确的个数是( )A .1个B .2个C .3个D .4个5.(2023春·七年级单元测试)如图,平面内直线a b c ∥∥,点A ,B ,C 分别在直线a ,b ,c 上,BD 平分ABC ∠,并且满足αβ∠>∠,则α∠,∠β,γ∠关系正确的是( )A .2αβγ∠=∠+∠B .αβγ∠=∠+∠C .22αβγ∠=∠-∠D .2αβγ∠=∠+∠6.(2021春·浙江宁波·七年级校考期中)将一直角三角板与两边平行的纸条如图所示放置,下列结论:(1)23∠∠=;(2)34∠∠=;(3)2+4=90∠∠︒;(4)5290∠-∠=︒,其中正确的个数是( ).A .1B .2C .3D .4题型三:根据平行线性质求角的大小7.(2022秋·重庆江北·七年级校考期末)如图,已知OP 平分AOB ∠,30AOB ∠=︒,PC OA ∥,则CPO ∠为( )A .30︒B .10︒C .15︒D .5︒8.(2023春·江苏·七年级专题练习)如图,直线m n ∥,AC BC ⊥于点C ,125∠=︒,则2∠的度数为( )A .125︒B .115︒C .110︒D .105︒9.(2022春·黑龙江哈尔滨·七年级校考期中)如图,12l l ∥,将一副直角三角板作如下摆成,图中点A 、B 、C 在同一直线上,则1∠的度数为( )A .80︒B .85︒C .75︒D .70︒题型四:平行线性质在生活应用问题10.(2022春·内蒙古巴彦淖尔·七年级统考期中)一辆汽车在笔直的公路上行驶,两次拐弯后,与原来的方向恰好相反,那么两次拐弯的角度是( )A .第一次右拐50°,第二次左拐130°B .第一次左拐50°,第二次右拐50°C .第一次左拐50°,第二次左拐130°D .第一次右拐50°,第二次右拐50°11.(2022春·山西临汾·七年级统考期中)如图,木条a 、b 、c 通过B 、E 两处螺丝固定在一起,且40ABM ∠=︒,77BEF ∠=︒,将木条a 、木条b 、木条c 看作是在同一平面内的三条直线AC 、DF 、MN ,若使直线AC 、直线DF 达到平行的位置关系,则下列描述正确的是( )A .木条b 、c 固定不动,木条a 绕点B 顺时针旋转23B .木条b 、c 固定不动,木条a 绕点B 逆时针旋转103C .木条a 、c 固定不动,木条b 绕点E 逆时针旋转37D .木条a 、c 固定不动,木条b 绕点E 顺时针旋转15812.(2022春·江苏宿迁·七年级校考阶段练习)为了亮化某景点,石家庄市在两条笔直且互相平行的景观道MN 、QP 上分别放置A 、B 两盏激光灯,如图所示.A 灯发出的光束自AM 逆时针旋转至AN 便立即回转,B 灯发出的光束自BP 逆时针旋转至BQ 便立即回转,两灯不间断照射,A 灯每秒转动30°,B 灯每秒转动10°,B 灯先转动2秒,A 灯才开始转动,当B 灯光束第一次到达BQ 之前,两灯的光束互相平行时A 灯旋转的时间是( )A .1或6秒B .8.5秒C .1或8.5秒D .2或6秒题型五:平行线之间的距离13.(2023春·七年级单元测试)在同一平面内,设a 、b 、c 是三条互相平行的直线,已知a 与b 的距离为4cm ,b 与c 的距离为1cm ,则a 与c 的距离为( )A .1cmB .3cmC .5cm 或3cmD .1cm 或3cm14.(2023春·七年级课时练习)如图,12l l ∥,AB CD ∥,2CE l ⊥,2FG l ⊥.则下列结论正确的是( ).A .A 与B 之间的距离就是线段ABB .AB 与CD 之间的距离就是线段AC 的长度C .1l 与2l 之间的距离就是线段CE 的长度D .1l 与2l 之间的距离就是线段CD 的长度15.(2020春·湖南邵阳·七年级统考期末)如图,已知直线a // b // c ,直线d 与它们分别垂直且相交于A ,B ,C 三点,若AB=2,AC=6,则平行线b 、c 之间的距离是( )A .2B .4C .6D .8题型六:与命题有关的问题16.(2023春·广东江门·七年级统考期末)下列命题中,是假命题的是( )A .直角的补角是直角B .内错角相等,两直线平行C .一条直线有且只有一条垂线D .垂线段最短17.(2023春·七年级课时练习)关于原命题“如果a b =,那么22a b =”和它的逆命题“如果22a b =,那么a b =”,下列说法正确的是( )A .原命题是真命题,逆命题是假命题B .原命题、逆命题都是真命题C .原命题是假命题,逆命题是真命题D .原命题,逆命题都是假命题18.(2023春·全国·七年级专题练习)一栋公寓楼有5层,每层有一或两套公寓.楼内共有8套公寓.住户J 、K 、L 、M 、N 、O 、P 、Q 共8人住在不同公寓里.已知:(1)J 住在两套公寓的楼层.(2)K 住在P 的上一层.(3)二层只有一套公寓.(4)M 、N 住在同一层.(5)O 、Q 不同层.(6)Q 不住在一层或二层.(7)L 住在她所在层仅有的公寓里,且不在第一次或第五层.(8)M 在第四层;那么,J 住在第( )层.A .1B .2C .3D .5题型七:平行线的判定和性质的综合问题19.(2023秋·重庆沙坪坝·七年级校考期末)如图,AB CD ∥,连接CA 并延长至点H ,CF 平分ACD ∠,CE CF ⊥,90GAH AFC ∠∠=+︒.(1)求证AG CE ∥;(2)若120GAF ∠=︒,求AFC ∠的度数.20.(2023春·七年级单元测试)如图,180ADE BCF ∠+∠=︒,BE 平分ABC ∠,2ABC E ∠=∠.(1)求证:AD BC ∥;(2)求证:AB EF ∥;(3)若AF 平分BAD ∠,求证:90E F ∠+∠=︒.21.(2023春·江苏·七年级专题练习)已知 AM CN ∥,点B 在直线AM CN 、之间,88ABC ∠=︒.(1)如图1,请直接写出A ∠和C ∠之间的数量关系:_________.(2)如图2,A ∠和C ∠满足怎样的数量关系?请说明理由.(3)如图3,AE 平分MAB ∠,CH 平分NCB ∠,AE 与CH 交于点G ,则AGH ∠的度数为_________.一:选择题22.(2023秋·河南南阳·七年级南阳市第三中学校考期末)如图,若a b ∥,211933'∠=︒,则1∠等于( )A .6027'︒B .6073'︒C .11933'︒D .11973'︒23.(2023春·七年级课时练习)如图,直线l 、n 分别截A ∠的两边,且l n ∥.根据图中标示的角,判断下列各角的度数关系,正确的是( )A .13∠=∠B .24∠∠=C .46180∠+∠=︒D .34180∠+∠=︒24.(2023春·七年级课时练习)如图,已知AB CD P ,BC 是ABD ∠的平分线,若3100∠=︒,则2∠的度数为( )A .40︒B .50︒C .60︒D .80︒25.(2023秋·吉林长春·七年级校联考期末)如图,AB CD P ,155FGB ∠︒=,FG 平分EFD ∠,则BEF ∠的大小为( )A .100︒B .110︒C .120︒D .130︒26.(2022春·四川巴中·七年级统考期中)如图,已知AB CD EF ∥∥,160∠=︒,320∠=︒,则2∠的度数是( )A .105︒B .120︒C .135︒D .140︒27.(2023秋·甘肃天水·七年级校考期末)如图,1260∠=∠=︒,376∠=︒,则4∠的度数为( )A .102︒B .103︒C .104︒D .105︒28.(2022春·全国·七年级专题练习)如图,点E 在AB 的延长线上,下列条件中能够判定AB CD P 的条件有( )①180BAD ABC ∠+∠=︒;②12∠=∠;③3=4∠∠;④5E ADC ∠+∠=∠.A .①②B .②④C .①③D .③④29.(2023春·全国·七年级专题练习)如图,已知180AEF EFC ∠+∠=︒,M N ∠=∠,求证12∠=∠;30.(2023秋·河南新乡·七年级校考期末)如图,已知12∠=∠,3=4∠∠,5A ∠=∠,试说明:BE CF ∥.完善下面的解答过程,并填写理由或数学式:解:∵3=4∠∠(已知)∴AE ∥______(______)∴5EDC ∠=∠(______)∵5A ∠=∠(已知)∴EDC ∠=______(等量代换)∴DC AB ∥(______)∴5180ABC ∠+∠=︒(______)即523180∠+∠+∠=︒∵12∠=∠(已知)∴513180∠+∠+∠=︒(______)即3180BCF ∠+∠=︒∴BE CF ∥(______).一、单选题31.(2023春·七年级课时练习)如图,已知直线AB CD ∥,130GEF ∠=︒,135EFH ∠=︒,则12∠+∠的度数为( )A .35︒B .45︒C .65︒D .85︒32.(2023春·七年级单元测试)如图,直线EF 分别与直线AB CD 、相交于点G H 、,已知1250∠=∠=︒,GM 平分HGB ∠交直线CD 于点M ,则GMD ∠的度数为( )A .115︒B .120︒C .125︒D .130︒33.(2023春·全国·七年级专题练习)如图,AB EF ∥,90BCD ∠︒=,探索图中角α,β,γ之间的关系式正确的是( )A .360αβγ++︒=B .90αβγ++︒=C .αγβ+=D .180αβγ++︒= 34.(2023春·全国·七年级专题练习)如图,AB CD EF ∥∥,则下列各式中正确的是( )A.①②④B.②③④C.①②③二、填空题37.(2023春·广东江门·七年级统考期末)如图,将一块三角尺的直角顶点放在直尺的一边上,当的度数为________.38.(2023春·广东江门·七年级统考期末)如图,已知AB CD ∥,点M ,N 分别在直线AB 、CD 上,90MEN ∠=︒,CNE ENF ∠=∠,则α∠与∠β的数量关系________.39.(2023春·江苏·七年级专题练习)如图,AB CD ABD ∠P ,和BDC ∠的角平分线交于点E ,延长BE 交CD 于点F ,232∠=︒,则3∠=_________.40.(2023春·江苏·七年级专题练习)如图,直线12l l ,被直线3l 所截,3l 分别交12l l ,于点A 和点B ,过点B 的直线4l 交1l 于点C .若1130260350∠∠∠=︒=︒=︒,,,则4∠=_________.41.(2022春·四川成都·七年级校考阶段练习)有一副直角三角板ABC 和DEC ,其中45B ∠=︒,60D ∠=︒,如图所示叠放,边CD 与边AB 交于点G ,过点G 作GH 平分AGC ∠,若GH BC ∥,则ECA ∠=______度.三、解答题42.(2023春·广东江门·七年级统考期末)如图,已知点A 、D 在直线EF 上,12180∠+∠=︒,DB 平分ADC ∠,AD BC ∥.(1)求证: AB DC ∥;(2)若128DAB ∠=︒,求DBC ∠的度数.43.(2023春·七年级单元测试)如图,已知123180BDC ∠=∠∠+∠=︒,.(1)求证:AD CE ∥;(2)若DA 平分BDC ∠,DA FE ⊥于点A ,55FAB ∠=︒,求ABD ∠的度数.44.(2023春·江苏·七年级专题练习)如图,直线a b ⊥r r ,垂足为O ,ABC V 与直线a 、b 分别交于点E 、F ,且90C ∠=︒,EG FH ,分别平分MEC ∠和NFC ∠.(1)当PD 平分ODF ∠时,(2)当DP OB ∥时,求PDE ∠(3)当DP FD ⊥时,∠ADP 2(1)如图1,若BAP ∠,PAG ∠,ACE ∠的数量关系为___________.(2)如图2,在(1)的条件下,若5DBA ACE ∠=∠,30PAG ∠=︒,求证AB AC ⊥;(3)点B 、C 分别在点D 、E 的下方,若AB AC ⊥,PAG FAC ∠=∠,请在备用图中画出相应的图形,并求出DBA ∠的度数.1.B【分析】根据两直线平行,同位角相等,可得1FAC ∠=∠,再根据角平分线的定义可得BAF FAC ∠=∠,从而可得结果.【详解】解:∵DF AC ∥,∴135FAC ∠=∠=︒,∵AF 是BAC ∠的平分线,∴35BAF FAC ∠=∠=︒,故B 正确.故选:B .【点睛】本题考查了平行线的性质,角平分线的定义,熟记平行线的性质是解题的关键.2.B【分析】由平行线的性质,已知113ABD ∠=∠=︒,再根据角的和差,平行公理推论,平行线的性质解得∠2度数,进而得出答案.【详解】过点B 作BD a ∥,∴2CBD ∠=∠,∵a b ∥,∴BD b ∥,又∵113∠=︒,∴113ABD ∠=∠=︒,∵60ABC ∠=︒,∴601347DBC ∠=︒-︒=︒,∴247∠=︒.故选:B .【点睛】本题考查了平行线的性质,平行公理的推论,角的和差,对顶角的性质,等量代换等相关知识点,重点掌握平行线的性质,难点过一点作已知直线的平行线辅助线.3.C【分析】由AB CD P ,1=50∠︒,根据两直线平行,同旁内角互补,即可求得BEF ∠的度数,又由EG 平分BEF ∠,求得BEG ∠的度数,然后根据两直线平行,内错角相等,即可求得2∠的度数.【详解】解:∥ AB CD ,1180BEF ∴∠+∠=︒,1=50∠︒ ,130BEF ∴∠=︒,EG 平分BEF ∠,1652BEG BEF ∴∠=∠=︒,265BEG ∴∠=∠=︒,故选:C .【点睛】此题考查了平行线的性质与角平分线的定义,注意掌握两直线平行,同旁内角互补与两直线平行,内错角相等定理的应用.4.D【分析】根据两直线平行,同位角相等,内错角相等,同旁内角互补,可判断(1),(2),(4),由平角的定义可判断(3),逐一进行解答即可.【详解】解:∵纸条的两边互相平行,∴∠1=∠2,∠3=∠4,∠4+∠5=180︒,故(1)(2)(4)正确;∵三角板是直角三角板,∴∠2+∠4=1809090︒-︒=︒,故(3)正确;综上所述,正确的个数是4. 故选:D .【点睛】本题考查了平行线的性质以及平角的定义,熟记平行线的性质是解题的关键.5.A【分析】先根据平行线的性质可得1γα∠+∠=∠,2β∠=∠,从而可得ABC αβ∠=∠+∠,再根据角平分线的定义可得11212αβ∠=∠+∠,代入1γα∠+∠=∠即可得出答案.【详解】解:如图,a b c ∥∥,1γα∴∠+∠=∠①,2β∠=∠,12ABC γαβ∠∴∠+∠+∠=∠+∠=,BD Q 平分ABC ∠,1112212ABC αβ∠=∴∠=∠+∠,代入①得:1212αβγα∠+∠+∠=∠,2αβγ∴∠=∠+∠,【详解】解:AC BC ⊥Q 于点C ,90ACB ∴∠=︒,190ABC ∴∠+∠=︒,902565ABC ∴∠=︒-︒=︒,m n ∥,2180115ABC ∴∠=︒-∠=︒.故选:B .【点睛】本题主要考查平行线的性质,掌握两直线平行,同旁内角互补是解题的关键.9.C【分析】如图,过点C 作CM 1l ∥,则12l l CM ∥∥,根据平行线的性质可得∠1+∠ECM =180°,∠2=∠ACM ,再根据三角板的特点求解即可.【详解】解:如图,过点C 作CM 1l ∥,∵12l l ∥,∴12l l CM ∥∥,∴∠1+∠ECM =180°,∠2=∠ACM ,∵∠2=180°−45°=135°,∴∠ACM =135°,∴∠ECM =135°−30°=105°,∴∠1=180°−105°=75°,故选:C .【点睛】此题考查了平行线的性质,熟记“两直线平行,同旁内角互补;两直线平行,同位角相等”及作平行线是解题的关键.10.C【分析】根据两直线平行,同旁内角互补判断即可.【详解】解:因为两次拐弯后,与原来的方向恰好相反,所以两次拐弯的方向相同,形成的角是同旁内角,且互补.故选:C .【点睛】此题主要考查了平行线的性质,利用两直线平行,同旁内角互补得出是解题关键.11.C【分析】根据平行线的判定定理判断求解即可.【详解】解:A .木条b 、c 固定不动,木条a 绕点B 顺时针旋转23°,∴∠ABE =40°+23°=63°≠∠DEM ,∴AC 与DF 不平行,故A 不符合题意;B .木条b 、c 固定不动,木条a 绕点B 逆时针旋转103°,∴∠CBE =180°-(103°-40°)=117°≠∠DEM ,∴AC 与DF 不平行,故B 不符合题意;C .木条a 、c 固定不动,木条b 绕点E 逆时针旋转37°,∴∠DEM =77°-37°=40°=∠ABE ,∴AC //DF ,故C 符合题意;D .木条a 、c 固定不动,木条b 绕点E 顺时针旋转158°,∴∠DEM =360°-77°-158°=125°≠∠CBE ,∴AC 与DF 不平行,故D 不符合题意;故选:C .【点睛】此题考查了平行线的判定,熟记平行线的判定定理是解题的关键.12.C【分析】设A 灯旋转的时间为t 秒,求出t 的取值范围为016t <≤,再分①06t <≤,②612t <≤和③1216t <≤三种情况,先分别求出MAM '∠和PBP '∠的度数,再根据平行线的性质可得MAM PBP ''∠=∠,由此建立方程,解方程即可得.【详解】解:设A 灯旋转的时间为t 秒,A 灯光束第一次到达AN 所需时间为180630︒=︒秒,B 灯光束第一次到达BQ 所需时间为1801810︒=︒秒,B 灯先转动2秒,A 灯才开始转动,0182t ∴<≤-,即016t <≤,由题意,分以下三种情况:①如图,当06t <≤时,//AM BP '',30,10(2)MAM t PBP t ''∴∠=︒∠=︒+,//,//MN PQ AM BP '' ,1,1MAM PBP ''∴∠=∠∠=∠,MAM PBP ''∴∠=∠,即3010(2)t t ︒=︒+,解得1t =,符合题设;②如图,当612t <≤时,//AM BP '',18030(6)36030,10(2)MAM t t PBP t ''∴∠=︒-︒-=︒-︒∠=︒+,//,//MN PQ AM BP '' ,2180,2180MAM PBP ''∴∠+∠=︒∠+∠=︒,MAM PBP ''∴∠=∠,即3603010(2)t t ︒-︒=︒+,解得8.5t =符合题设;③如图,当1216t <≤时,//AM BP '',30(12)30360,10(2)MAM t t PBP t ''∴∠=︒-=︒-︒∠=︒+,同理可得:MAM PBP ''∠=∠,即3036010(2)t t ︒-︒=︒+,解得1916t =>,不符题设,舍去;综上,A 灯旋转的时间为1秒或8.5秒,故选:C .【点睛】本题考查了平行线的性质、一元一次方程的几何应用等知识点,正确求出时间t 的取值范围,并据此分三种情况讨论是解题关键.13.C【分析】分①直线b 在直线a 、c 的之间和②直线c 在直线a 、b 的之间两种情况,根据平行线间的距离求解即可得.【详解】解:①如图,当直线b 在直线a 、c 的中间时,a 与b 的距离为4cm ,b 与c 的距离为1cm ,a ∴与c 的距离为()415cm +=;②如图,当直线c 在直线a 、b 的中间时,a 与b 的距离为4cm ,b 与c 的距离为1cm ,a ∴与c 的距离为()413cm -=;综上,a 与c 的距离为5cm 或3cm ,故选:C .【点睛】本题考查了平行线间的距离,正确分两种情况讨论是解题关键.14.C【分析】根据两点间的距离和平行线间的距离的性质逐项判断即可.【详解】解:A 、A 与B 之间的距离就是线段AB 的长度,不符合题意,故本项错误;B 、AB 与CD 之间的距离就是线段HI 的长度,不符合题意,故本项错误;C 、1l 与2l 之间的距离就是线段CE 的长度,符合题意,故本项正确;D 、1l 与2l 之间的距离就是线段CE 或GF 的长度,不符合题意,故本项错误.故答案为:C .【点睛】本题考查了两点间的距离和平行线间的距离的性质,解决本题的关键是掌握以上基本的性质.15.B【分析】依据直线a ∥b ∥c ,直线d 与它们分别垂直且相交于A ,B ,C 三点,即可得到AB 长为直线a 和b 之间的距离,BC 长为直线b 和c 之间的距离,AC 长为直线a 和c 之间的距离,再根据AB=2,AC=6,即可得出直线b 与直线c 之间的距离为4.【详解】解:∵直线a ∥b ∥c ,直线d 与它们分别垂直且相交于A ,B ,C 三点,∴AB 长为直线a 和b 之间的距离,BC 长为直线b 和c 之间的距离,AC 长为直线a 和c 之间的距离,又∵AB=2,AC=6,∴BC=6-2=4,即直线b 与直线c 之间的距离为4.故选:B .【点睛】本题主要考查了平行线之间的距离,从一条平行线上的任意一点到另一条直线作垂线,垂线段的长度叫两条平行线之间的距离.16.C【分析】根据补角的定义,平行线的判定,垂线的性质,逐项分析判断即可求解.【详解】解:A. 直角的补角是直角,是真命题,故该选项不符合题意;B. 内错角相等,两直线平行,是真命题,故该选项不符合题意;C. 同一平面内过直线上的一点有且只有一条垂线,原命题是假命题,符合题意;D. 垂线段最短,是真命题,故该选项不符合题意.故选:C .【点睛】本题考查了判断真假命题,掌握补角的定义,平行线的判定,垂线的性质是解题的关键.17.A【分析】根据互逆命题的定义即把一个命题的题设和结论互换和性质定理进行解答,即可求出答案.【详解】解:如果a b =,那么22a b =,所以原命题是真命题;命题“如果a b =,那么22a b =”的逆命题是如果22a b =,那么a b =,不一定成立,是假命题;故原命题是真命题,逆命题是假命题故选:A .【点睛】此题考查了互逆命题,掌握互逆命题的定义即两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题,其中一个命题称为另一个命题的逆命题是解题的关键.18.D【分析】首先根据已知,采取筛选法进行一个一个筛选,就能确定答案.【详解】解:由(4)和(8)得出M 和N 住在第四层.由(2)得K 只能在2或3层,又由(7)得出L 在3层且只有一户,K 在二层只有一户,P 则在一层.又由(5)和(6)知道O 只能在一层,Q 在五层.这时只有五层还有一套公寓,所以J 只能住在五层.故选:D .【点睛】用到的知识点是推理和论证,能根据已知,采取筛选法进行一个一个筛选是解此题的关键.19.(1)见解析(2)30AFC ∠=︒【分析】(1)根据平行线的性质及角平分线的定义推出AFC ACF ∠=∠,得到90ACF GAH ∠∠=+︒,根据垂直的定义求出90ACF ECH ∠∠+=︒,由此得到GAH ECH ∠=∠,即可推出结论;(2)根据平行线的性质推出2HAF ACD ACF =∠∠=∠,由90GAH ECH ACF ∠=∠=︒-∠,得到902120ACF ACF ︒-∠+∠=︒,求出30ACF ∠=︒即可.【详解】(1)证明:∵AB CD ∥,∴AFC DCF ∠=∠,∵CF 平分ACD ∠,∴DCF ACF ∠=∠,∴AFC ACF ∠=∠,∵90GAH AFC ∠∠=+︒,∴90ACF GAH ∠∠=+︒,∵CE CF ⊥,∴90ECF ∠=︒,∴90ACF ECH ∠∠+=︒,∴GAH ECH ∠=∠,∴AG CE ∥;(2)∵AB CD ∥,∴2HAF ACD ACF =∠∠=∠,∵90GAH ECH ACF ∠=∠=︒-∠,∴902120ACF ACF ︒-∠+∠=︒,∴30ACF ∠=︒,∴30AFC ∠=︒.【点睛】此题考查了平行线的性质和判定,角平分线的定义,正确掌握平行线的判定和性质是解题的关键.20.(1)见解析(2)见解析(3)见解析【分析】(1)求出ADF BCF Ð=Ð,根据平行线的判定得出即可;(2)根据角平分线的定义得出2ABC ABE ∠=∠,求出ABE E ∠=∠,根据平行线的判定得出即可;(3)根据平行线的性质得出180ADE BCF ∠+∠=︒,根据角平分线的定义得出12ABE ABC ∠=∠, 12BAF BAD ∠=∠,求出90ABE BAF ∠+∠=︒,根据三角形的内角和定理得出即可.【详解】(1)∵180ADE BCF ∠+∠=︒,180ADE ADF ∠+∠=︒,∴ADF BCF ∠=∠,∴AD BC ∥;(2)∵BE 平分ABC ∠,∴2ABC ABE ∠=∠,∵2ABC E ∠=∠,∴ABE E ∠=∠,∴AB EF ∥;(3)∵AD BC ∥,∴180DAB ABC ∠+∠=︒,∵BE 平分ABC ∠,AF 平分BAD ∠,∴12ABE ABC ∠=∠,12BAF BAD ∠=∠,∴90ABE BAF ∠+∠=︒,∴1809090AOB EOF Ð=°-°=°=Ð,∴18090E F EOF Ð+Ð=°-Ð=°.【点睛】本题考查了平行线的性质和判定,角平分线的定义,三角形的内角和定理等知识点,能灵活运用定理进行推理是解此题的关键.21.(1)88A C ∠+∠=︒(2)92C A ∠-∠=︒,见解析(3)46︒【分析】(1)过点B 作BE AM ∥,利用平行线的性质即可求得结论;(2)过点B 作BE AM ∥,利用平行线的性质即可求得结论;(3)利用(2)的结论和三角形的外角等于和它不相邻的两个内角的和即可求得结论.【详解】(1)解:过点B 作BE AM ∥,如图,∴A ABE ∠=∠.∵BE AM ∥,AM CN ∥,∴BE AM CN ∥∥.∴C CBE ∠=∠.∵88ABC ∠=︒.∴88A C ABE CBE ABC ∠+∠=∠+∠=∠=︒.故答案为:88A C ∠+∠=︒;(2)解:A ∠和C ∠满足:92C A ∠-∠=︒.理由:过点B 作BE AM ∥,如图,∴A ABE ∠=∠.∵BE AM ∥,AM CN ∥,∴BE AM CN ∥∥.∴180C CBE ∠+∠=︒.∴180CBE C ∠=︒-∠.∵88ABC ∠=︒.∴88ABE CBE ∠+∠=︒.∴18088A C ∠+︒-∠=︒.∴92C A ∠-∠=︒;(3)解:设CH 与AB 交于点F ,如图,∵AE 平分MAB ∠,CH 平分NCB ∠,∥,∵a b24.B【分析】根据平行线的性质可求ABD ∠的度数,然后根据角平分线定义求解即可.【详解】解:AB CD P ,3100∠=︒,3100ABD ∴∠=∠=︒,BC 是ABD ∠的平分线,121502ABD ∴∠=∠=∠=︒.故选:B .【点睛】本题考查了平行线的性质,角平分线的定义,根据平行线的性质求出ABD ∠的度数是解题的关键.25.D【分析】利用平行线的性质,角平分线的性质计算.【详解】解:155AB CD FGB ∠=︒ ∥,,180BEF EFD ∴∠+∠=︒,180********GFD FGB ∴∠=︒-∠=︒-︒=︒,FG 平分EFD ∠,222550EFD GFD ∴∠=∠=⨯︒=︒,180********BEF EFD ∴∠=︒-∠=︒-︒=︒,故选:D .【点睛】本题考查了平行线的性质和角平分线的性质,解题的关键是掌握平行线的性质.26.D【分析】由AB EF ∥,根据据两直线平行,内错角相等,可求出CDE ∠的度数,从而由3CEF AEF ∠=∠-∠可求得出CEF ∠的度数,再由CD EF ∥,根据两直线平行,同旁内角互补,求得2∠的度数即可.【详解】解:∵AB EF ∥,160∠=︒,∴160AEF ∠=∠=︒,∵320∠=︒,∴602040CEF ∠=︒-︒=︒,∵CD EF ∥,∴2180CEF ∠+∠=︒,∴218040140∠=︒-︒=︒.故选D .【点睛】本题主要考查平行线的性质.熟练掌握平行线的性质是解题的关键.27.C【分析】先根据对顶角相等可得5260∠=∠=︒,再根据平行线的判定可得a b P ,然后根据平行线的性质即可得.【详解】解:如图,260∠=︒ ,5260∴∠=∠=︒,160∠=︒ ,51∴∠=∠,a b ∴P ,4180180104376∠=︒-︒-︒=∴∠=︒,故选:C .【点睛】本题考查了对顶角相等、平行线的判定与性质,熟练掌握平行线的判定与性质是解题关键.28.B【分析】根据同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行三种判定方法进行判定即可.【详解】解:∵∠180BAD ABC ∠+∠=︒,∴BC AD ∥,故①不合题意;∵12∠=∠,∴AB CD P ,故②符合题意;∵3=4∠∠,∴BC AD ∥,故③不合题意;∵5E ADC ∠+∠=∠,5EDC ADC ∠+∠=∠,∴E EDC ∠=∠,∴AB CD P ,故④符合题意.故本题选:B .【点睛】本题考查平行线的判定,熟练掌握三种判定方法是解题关键.29.证明见解析【分析】先证明AB CD P ,再证明ME FN ∥,得到MEF EFN ∠=∠,利用等式的性质即可求解.【详解】证明:∵180AEF EFC ∠+∠=︒,∴AB CD P ,∴AEF DFE ∠=∠.∵M N ∠=∠,∴ME FN ∥,∴MEF EFN ∠=∠,∴AEF MEF EFD EFN ∠-∠=∠-∠,即12∠=∠.【点睛】本题考查了平行线的判定与性质,解题关键是牢记平行线的判定与性质.30.BC ;内错角相等,两直线平行;两直线平行,内错角相等;A ∠;同位角相等,两直线平行;两直线平行,同旁内角互补;等量代换;同旁内角互补,两直线平行.【分析】按照所给的证明思路,利用平行线的判定与性质定理,完善证明过程即可.【详解】解:∵3=4∠∠(已知)∴AE BC ∥(内错角相等,两直线平行)∴5EDC ∠=∠(两直线平行,内错角相等)∵5A ∠=∠(已知)∴EDC A ∠=∠(等量代换)∴DC AB ∥(同位角相等,两直线平行)∴5180ABC ∠+∠=︒(两直线平行,同旁内角互补)即523180∠+∠+∠=︒∵12∠=∠(已知)∴513180∠+∠+∠=︒(等量代换)即3180BCF ∠+∠=︒∴BE CF ∥(同旁内角互补,两直线平行).故答案为:BC ;内错角相等,两直线平行;两直线平行,内错角相等;A ∠;同位角相等,两直线平行;两直线平行,同旁内角互补;等量代换;同旁内角互补,两直线平行.【点睛】此题主要考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解答此题的关键.31.D【分析】由130GEF ∠=︒,135EFH ∠=︒可得1324265︒∠+∠+∠+∠=,由AB CD P 得34180∠+∠=︒,进而可求出12∠+∠的度数.【详解】解:如下图所示,∵130GEF ∠=︒,∴13130︒∠+∠=,∵135EFH ∠=︒,∵AB EF ∥,∴AB CM DN EF ∥∥∥,∴BCM DCM CDN EDN αγ∠∠∠∠=,=,=,∵CDN EDN CDN βγ∠+∠∠+==①,90BCD CDN α∠+∠︒==②,由①②得:90αβγ+-︒=.即90αβγ++︒=故选:B .【点睛】此题考查了平行线的性质.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用是解题的关键.34.D【分析】根据平行线的性质(两直线平行,内错角相等、两直线平行,同旁内角互补)即可得到结论.【详解】∵AB CD EF ∥∥,∴31BDC ∠=∠+∠,=1802BDC ∠︒-∠,∴311802∠=∠+︒-∠,∴231801∠+∠=︒+∠,故选:D .【点睛】本题考查了平行线的性质,熟记性质是解题关键.35.C【分析】分别过E 、F 作GE AB ∥,FH CD ∥,再根据平行线的性质可以得到解答.【详解】解:分别过E 、F 作GE AB ∥,FH CD ∥,∵AB CD ∥,∴AB GE FH CD ∥∥∥,∴180ABE BEG ∠+∠=︒,180CDE DEG ∠+∠=︒,∴360ABE BEG CDE DEG ∠+∠+∠+∠=︒,即360ABE BED CDE ∠+∠+∠=︒,①正确;∴1β∠= EF CD ∥,CNE ENF ∠=∠()121802ENC α∴∠=∠=︒-∠∵1130350∠∠=︒=︒,,∴12l l ∥,∴45∠=∠,∵260350∠∠=︒=︒,,∴5180605070∠=︒-︒-︒=︒,在BCG V 中,180180904545BCG BGC B ∠=︒-∠-∠=︒-︒-︒=︒,30DCE ∠=︒ ,90453015ECA ACB BCG DCE ∴∠=∠-∠-∠=︒-︒-︒=︒.故答案为:15.【点睛】本题主要考查了平行线性质及判定,角平分线定义,关键是理解平行线性质,灵活运用角的和差关系计算.42.(1)见解析(2)26DBC ∠=︒【分析】(1)由已知条件得出180BAD CDA ∠+∠=︒,根据同旁内角互补两直线平行,即可得证;(2)根据已知条件得出18012852ADC ∠=︒-︒=︒,根据角平分线的定义得出1262ADB BDC ADC ∠=∠=∠=︒,根据平行线的性质即可求解.【详解】(1)证明:∵12180∠+∠=︒,1180,2180DAB ADC ∠+∠=︒∠+∠=︒,∴180BAD CDA ∠+∠=︒,∴AB DC ∥;(2)解:∵180BAD CDA ∠+∠=︒,128DAB ∠=︒,∴18012852ADC ∠=︒-︒=︒,∵DB 平分ADC ∠,∴1262ADB BDC ADC ∠=∠=∠=︒,∵AD BC ∥,∴26DBC ADB ∠=∠=︒.【点睛】本题考查了平行线的性质与判定,角平分线的定义,掌握平行线的性质与判定是解题的关键.43.(1)见解析(2)110︒【分析】(1)根据同位角相等,两直线平行可判定AB CD ∥,得到2ADC ∠=∠,等量代换得出3180ADC ∠+∠=︒,即可根据同旁内角互补,两直线平行得解;(2)由CE AE ⊥,AD CE ∥得出90CEF DAF ∠∠==︒,再根据平行线的性质即可求出235ADC ∠=∠=︒,再根据角平分线的定义即可得解.【详解】(1)证明:∵1BDC ∠=∠,∴AB CD ∥,∴2ADC ∠=∠,∵23180∠+∠=︒,∴3180ADC ∠+∠=︒,∴AD CE ∥;(2)解:∵CE AE ⊥于E ,∴90CEF ∠=︒,由(1)知AD CE ∥,∴90CEF DAF ∠∠==︒,∴2ADC DAF FAB ∠=∠=∠-∠,∵55FAB ∠=︒,∴35ADC ∠=︒,∵DA 平分BDC ∠,1BDC ∠=∠,∴1270BDC ADC ∠=∠=∠=︒,∴18070110ABD ∠=︒-︒=︒.【点睛】此题考查了平行线的判定与性质,熟记平行线的判定定理与性质定理是解题的基础.44.(1)180°(2)见解析【分析】(1)根据四边形的内角和解答即可;(2)根据四边形的内角和得出180OEC OFC ∠+∠=︒,由角平分线的定义得出()111809022CEG CFH MEC NFC ∠+∠=∠+∠=⨯︒=︒,过C 点作CD EG ∥,由平行线的性质与判定即可得出结论.【详解】(1)解:在四边形OECF 中由90C ∠=︒,a b ⊥r r ,得180OEC OFC ∠+∠=︒,故答案为:180°;(2)证明:在四边形OECF 中∵90C ∠=︒,a b ⊥r r ,得180OEC OFC ∠+∠=︒,∵180MEC OEC ∠=︒-∠,180NFC OFC ∠=︒-∠,∴()()180180MEC NFC OEC OFC ∠+∠=︒-∠+︒-∠∵90ODE ∠=︒,∴1409050PDE ∠=︒-︒=︒.(3)如图,∵DP FD ⊥,(4)如图,当PD 在EDF ∠的外部时,∵45EDF ∠=︒,23PDF ∠=∠同理可得:2453 PDF∠=⨯∴PDE EDF PDF∠=∠-∠【点睛】本题考查的是垂直的定义,角平分线的定义,平行线的性质,角的和差运算,清晰的分类讨论是解本题的,BAP PAC∴∠=∠∠BAP PAC∴∠=∠=∠故答案为:BAP∠=(2)证明:如图2,DBA BAG ∴∠=∠AP 平分BAC∠BAP PAC ∴∠=∠DBA BAG ∴∠=∠5DBA ACE ∠=∠ 在图3中,∵AB AC ⊥,∴90BAC ∠=︒,∵AP 平分BAC ∠,∴1452PAB PAC BAC ∠=∠=∠=︒,∵DM FG ∥,BAG DBA x∴∠=∠=45PAG PAB BAG x∴∠=∠+∠=︒+90BAC ∠=︒9090FAC BAG x∴∠=︒-∠=︒-PAG FAC∠=∠ 4590x x∴︒+=︒-解得:22.5x =︒,22.5DBA ∴∠=︒;在图4中,∵AB AC ⊥,∴90BAC ∠=︒,∵AP 平分BAC ∠,∴1452P AB P AC BAC ∠=∠=∠=''︒,∵DM FG ∥,BAG DBA x∴∠=∠=45P AG BAG P AB x ∴∠=∠-='∠-'︒()180********PAG P AG x x∴∠=︒-∠=︒--︒=︒-'90CAG x∠=︒- ()1801809090FAC CAG x x∴∠=︒∠=︒-︒-=︒+PAG FAC∠=∠ 22590x x∴︒-=︒+解得:67.5x =︒,67.5DBA ∴∠=︒;综上所述,DBA ∠的度数为22.5︒或67.5︒.【点睛】本题考查了平行线的性质和角平分线的定义综合题;熟练和灵活运用其性质建立好等量关系是解决本题的关键.。

平行线的判定例题与讲解

平行线的判定例题与讲解

3 平行线的判定1.平行线的判定公理(1)平行线的判定公理:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单记为:同位角相等,两直线平行.如图,推理符号表示为:∵∠1=∠2,∴AB∥CD.谈重点同位角相等,两直线平行①平行线的判定公理是证明两直线平行的原始依据;②应用时,应先确定同位角及形成同位角的是哪两条直线;③本判定方法是由两同位角相等(数量关系)来确定两条直线平行(位置关系),所以在推理过程中要先写“两角相等”,然后再写“两线平行”.(2)平行公理的推论:①垂直于同一条直线的两条直线平行.若a⊥b,c⊥b,则a∥c;②平行于同一条直线的两条直线平行.若a∥b,c∥b,则a∥c.【例1】工人师傅想知道砌好的墙壁的上下边缘AB和CD是否平行,于是找来一根笔直的木棍,如图所示将其放在墙面上,那么,他通过测量∠EGB和∠GFD的度数,就知道墙壁的上下边缘是否平行了.请问:∠EGB和∠GFD满足怎样的条件时,墙壁的上下边缘才会平行?你的依据是什么?解析:判定两条直线是否平行,常根据两条直线被第三条直线所截而构成的角来判断.题中∠EGB和∠GFD是直线AB和直线CD(墙的上下边缘)被直线EF所截时形成的同位角,根据“同位角相等,两直线平行”,可知只有∠EGB和∠GFD相等时,墙壁的上下边缘才会平行.答案:∠EGB和∠GFD相等时,墙壁的上下边缘才会平行.其依据是同位角相等,两直线平行.2.平行线的判定定理(1)判定定理1两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简单记为:同旁内角互补,两直线平行.符号表示:如下图,∵∠2+∠3=180°,∴AB∥CD.谈重点同旁内角互补,两直线平行①定理是根据公理推理得出的真命题,可直接应用;②应用时,找准哪两个角是同旁内角,使哪两条直线平行.(2)判定定理2两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单记为:内错角相等,两直线平行.符号表示:如上图,∵∠2=∠4,∴AB∥CD.【例2-1】如图,小明利用两块相同的三角板,分别在三角板的边缘画直线AB和CD,这是根据________,两直线平行.解析:由题图可看出,直线AB和CD被直线BC所截,此时两块相同的三角板的两个最小角的位置关系正好是内错角,所以这是根据内错角相等,来判定两直线平行的.答案:内错角相等【例2-2】如图,下列说法中,正确的是().A.因为∠A+∠D=180°,所以AD∥BCB.因为∠C+∠D=180°,所以AB∥CDC.因为∠A+∠D=180°,所以AB∥CDD .因为∠A+∠C=180°,所以AB∥CD错解:A或B或D错解分析:判定直线平行所需要的内错角或同旁内角找不准.条件不能推出结论.正解:C正解思路:∠A与∠D是直线AB和CD被直线AD所截得到的同旁内角.因为∠A+∠D =180°,所以AB∥CD.3.平行线的判断方法平行线的判定方法主要有以下六种:(1)平行线的定义(一般很少用).(2)同位角相等,两直线平行.(3)同旁内角互补,两直线平行.(4)内错角相等,两直线平行.(5)同一平面内,垂直于同一条直线的两条直线相互平行.(6)如果两条直线都和第三条直线平行,那么这两条直线平行.析规律如何选择判定两直线平行的方法①在利用平行线的公理或定理判定两条直线是否平行时,要分清同位角、内错角以及同旁内角是由哪两条直线被第三条直线所截而构成的;②证明两条直线平行,关键是看与待证结论相关的同位角或内错角是否相等,同旁内角是否互补.【例3】如图,直线a,b与直线c相交,形成∠1,∠2,…,∠8共八个角,请你填上你认为适当的一个条件:__________,使a∥b.解析:本题主要是考查平行线的三种判定方法.若从“同位角相等,两直线平行”考虑,可填∠1=∠5,∠2=∠6,∠3=∠7,∠4=∠8中的任意一个条件;若从“内错角相等,两直线平行”考虑,可填∠3=∠6,∠4=∠5中的任意一个;若从“同旁内角互补,两直线平行”考虑,可填∠3+∠5=180°,∠4+∠6=180°中的一个条件;从其他方面考虑,还可以填∠1=∠8,∠2=∠7,∠1+∠7=180°,∠2+∠8=180°,∠4+∠7=180°,∠3+∠8=180°,∠2+∠5=180°,∠1+∠6=180°中的任意一个条件.答案:答案不唯一,如可填下列之一:∠1=∠5或∠4=∠5或∠3+∠5=180°…4.平行线判定的应用(1)平行线的生活应用数学来源于生活,同样生活中也有大量的平行线,其判定平行的方法也常在生活中遇到.如木工师傅判定所截得的木板的对边是否平行,工人师傅判定所制造的机器零件是否符合平行的要求……对于生活中的平行线判断,关键是利用工具确定与平行有关的角是否相等,比较常用的是利用直角尺判断同位角是否相等,从而判定两直线是否平行.(2)平行线在数学中的运用平行线判定方法在数学中的运用主要通过角之间的关系判定两条直线平行,进一步解决其他有关的问题.常见的条件探索题就是其应用之一.探索题是培养发散思维能力的题型,它具有开放性,所要求的答案一般不具有唯一性.解决探索性问题,不仅能提高分析问题的能力,而且能开阔视野,增加对知识的理解和掌握.释疑点判定平行的关键判定两直线平行,关键是确定角的位置关系及大小关系.【例4-1】如图,一个零件ABCD需要AB边与CD边平行,现只有一个量角器,测得拐角∠ABC=120°,∠BCD=60°,这个零件合格吗?__________(填“合格”或“不合格”).解析:要判断AB边与CD边平行,则需满足同旁内角互补的条件.∵∠ABC=120°,∠BCD=60°,∴∠ABC+∠BCD=120°+60°=180°.∴AB∥CD.∴这个零件合格.答案:合格【例4-2】已知:如图在四边形ABCD中,∠A=∠D,∠B=∠C,试判断AD与BC的位置关系,并说明理由.分析:根据四边形ABCD的内角和是360°,结合已知条件得到∠A+∠B=180°,根据同旁内角互补,两直线平行得AD∥BC.解:AD与BC的位置关系是平行.理由:∵四边形ABCD的内角和是360°,∴∠A+∠B+∠C+∠D=360°.∵∠A=∠D,∠B=∠C,∴∠A+∠B=180°.∴AD∥BC(同旁内角互补,两直线平行).点评:本题考查四边形的内角和以及利用同旁内角互补,来判定两直线平行.。

【精心整理】平行线的性质知识点总结、例题解析

【精心整理】平行线的性质知识点总结、例题解析

平行线的性质知识点总结、例题解析知识点1【平行线的性质】(1)性质1:两条平行线被第三条直线所截,同位角相等.简称:两直线平行,同位角相等.∵AB∥CD∴∠2=∠3(2)性质2:两条平行线被地三条直线所截,同旁内角互补.简称:两直线平行,同旁内角互补.∵AB∥CD∴∠2+∠4=180°(3)性质3:两条平行线被第三条直线所截,内错角相等.简称:两直线平行,内错角相等。

∵AB∥CD∴∠1=∠2【例题1】如图,已知DE∥BC,∠B=80°,∠C=56°,求∠ADE和∠AEC的度数。

【答案】∠ADE=80°;∠AEC=124°【例题2】如图,平行线AB。

CD被直线AE所截,若∠1=110°,则∠2等于()A、70B、80C、90D、110【答案】A【例题3】如图,已知AB∥CD,∠1=150°,∠2=______【答案】30°【例题4】在平面内,将一个直角三角板按如图所示摆放在一组平行线上:若∠1=55°,则∠2的度数是_______【答案】35°【例题5】如图所示,已知∠AOB=50 °,PC ∥OB ,PD 平分∠OPC ,则∠APC=______ °,∠PDO=______°【答案】50 ,50 ;【例题6】如图所示,OP∥QB∥ST,若∠2=110°,∠3=120°,则∠1的度数为________【答案】10°【例题7】如图,已知AB∥CD,AE∥CF,求证:∠BAE=∠DCF【答案】证明:∵AB∥CD,∴∠BAC=∠DCA.(两直线平行,内错角相等)∵AE∥CF,∴∠EAC=∠FCA.(两直线平行,内错角相等)∵∠BAC=∠BAE+∠EAC,∠DCA=∠DCF+∠FCA,∴∠BAE=∠DCF.【例题8】如图,已知AB∥CD,∠B=40°CN是∠BCE的平分线,CM⊥CN,求∠BCM的度数。

-平行线性质与判定(word版有答案)

-平行线性质与判定(word版有答案)

第2讲平行线的判断与性质 一、基础知识1.平行公理2.平行线的判断方法①平行线的判断方法 1: ②平行线的判断方法 2: ③平行线的判断方法 3: ④平行公理推论 : 3.平行线的性质 【性质定理】①平行线的性质1: ②平行线的性质2: ③平行线的性质3: 二、基础练习1.如图,由AB ∥CD ,可以得到A .∠1=∠3.B .∠2=∠3.C .∠2=∠4.D .∠A =∠C .2.如图,点E 在BC 的延长线上,则下列条件中,不能判定AB ∥CD 的是A .∠3=∠4.B .∠B =∠DCE .C .∠1=∠2.D .∠D+∠DAB =180°.3.已知:a⊥b ,b∥c,求证:a⊥c∵a⊥b (已知)∴∠1=90°( ) 又b∥c(已知)∴∠1=∠2 ( ) ∴∠2=90°( ) ∴a⊥c( )2413A DBC第2题图A BCD 123 4 第1题图4.如图8,推理填空:(1)∵∠A =∠ (已知),∴AC∥ED( ); (2)∵∠2 =∠ (已知),∴AC∥ED( ); (3)∵∠A +∠ = 180°(已知), ∴AB∥FD( ); (4)∵∠2 +∠ = 180°(已知), ∴AC∥ED( );5.如图,直线a 、b 直线c 被截(1)已知∠1=∠3,求证:a ∥b(2)已知∠2+∠3=180°,求证:a ∥b 证明:(1) ∵∠1=∠3 (已知)又 ∠1=∠4 ( ) ∴∠3 = ∠4 ( ) ∴a ∥b ( )(2) ∵ ∠2+∠3=180° (已知)又 ∠2+∠4=180° ( )∴∠3 = ∠4 ( )∴a ∥b ( )三、典型例题例1.如图11,直线AB.CD 被EF 所截,∠1 =∠2,∠CNF +∠AME=180°,求证:AB∥CD,MP∥NQ.F2AB CDQ E1PMN 图111 2 3AFC D BE 图8例2.如图1,在五边形ABCDE 中,AE ∥BC ,∠A =∠C (1) 猜想AB 与CD 之间的位置关系,并说明理由(2) 延长DE 至F ,连接BE ,如图2,若∠1=∠3,∠AEF =2∠2,求证:∠AED =∠C(1)猜想:AB ∥CD , 理由:∵AE ∥BC ,∴∠A+∠B=180°,∵∠A=∠C ,∴∠C+∠B=180°, ∴AB ∥CD ;-------------- 4′ (2)∵AE ∥BC ,∴∠2=∠3,∠A+∠ABC=180°, ∵∠1=∠3,∴∠1=∠2=∠3,∠ABC=2∠2, ∵∠AEF=2∠2,∴∠A+∠ABC=∠A+2∠2=∠A+∠AEF=180°, ∵∠AEF+∠AED=180°, ∴∠A=∠AED ,∵∠A=∠C ,∴∠AED=∠C .--------- 8′例3、如图,MG 是∠BME 的平分线,NH 是∠CNE 的平分线,且∠BME=∠CNF 。

七年级数学下册-平行线的判定和性质(10类热点题型讲练)(解析版)

七年级数学下册-平行线的判定和性质(10类热点题型讲练)(解析版)

第02讲平行线的判定和性质(10类热点题型讲练)1.掌握同位角、内错角、同旁内角的位置关系;2.掌握利用同位角、内错角、同旁内角判定判定两条直线平行的条件,并能解决一些问题;3.掌握平行线的性质与判定的综合运用;4.体会平行线的性质与判定的区别与联系.知识点01同位角、内错角、同旁内角的概念1.同位角、内错角和同旁内角:填空:(1)如图,∠1和∠5,分别在直线AB,CD的上方(同一方),在直线EF的右侧(同侧).具有这种位置关系的一对角是同位角.(2)如图,∠3和∠5,在直线AB,CD之间,在直线EF的两侧.具有这种位置关系的一对角叫做内错角.(3)如图,∠3和∠6,在直线AB,CD之间,在直线EF的同侧.具有这种位置关系的一对角叫做同旁内角.【总结】(1)同位角:在被截直线的同一方向,截线的同侧的一对角.(2)内错角:在被截直线的内侧,截线的两侧的一对角.(3)同旁内角:在被截直线的内侧,截线的同侧的一对角.知识点02平行线的定义及表示(1)定义:在同一平面内内,不相交的两条直线.(2)表示:平行用“∥”符号表示,读作“平行于”.1.同一平面内,两条直线的位置关系:(1)平行(2)相交2.利用直尺和三角尺画平行线:一“落”、二“靠”、三“移”、四“画”.【注意】平行线的画法四字诀1.“落”:三角板的一边落在已知直线上;2.“靠”:用直尺紧靠三角板的另一边;3.“移”:沿直尺移动三角板,直至落在已知直线上的三角板的一边经过已知点;4.“画”:沿三角板过已知点的边画直线.知识点03平行公理及推论(1)平行公理:经过直线外一点,有且只有一条直线与这条直线平行.(2)推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.即如果b∥a,c∥a,那么b∥c.【注意】平行公理(1)“有且只有”强调直线的存在性和唯一性.(2)前提条件“经过直线外一点”,若点在直线上,不可能有平行线.知识点04平行线的判定方法平行线的判定方法1:(1)文字表述:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单说成:同位角相等,两直线平行.(2)几何语言:∵∠1=∠5(或者∠2=∠6,∠4=∠8,∠3=∠7),∴AB∥CD.平行线的判定方法2:(1)文字表述:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单说成:内错角相等,两直线平行.(2)几何语言:∵∠2=∠8(或者∠3=∠5),∴AB∥CD.平行线的判定方法3:(1)文字表述:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简单说成:同旁内角互补,两直线平行.(2)几何语言:∵∠2+∠5=180°(或者∠3+∠8=180°),∴AB∥CD.平行线的其他判定方法:(1)在同一平面内,平行于同一条直线的两条直线平行.(2)在同一平面内,垂直于同一条直线的两条直线平行.【总结】判定两直线平行的方法方法一:平行线的定义:在同一平面内,不相交的两条直线就是平行线.方法二:平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.方法三:同位角相等,两直线平行.方法四:内错角相等,两直线平行.方法五:同旁内角互补,两直线平行.方法六:同一平面内,垂直于同一条直线的两条直线平行.知识点05平行线的性质(1)文字表达:①两条平行线被第三条直线所截,同位角相等,内错角相等,同旁内角互补;②简单说成:两直线平行,同位角相等;两直线平行,内错家相等;两直线平行,同旁内角互补;(2)几何语言表述:已知,如图所示,若AB∥CD,则①同位角:∠1=∠5(或∠2=∠6,∠4=∠8,∠3=∠7);②内错角:∠2=∠8(或∠3=∠5);③同旁内角:∠2+∠5=180°(或∠3+∠8=180°).题型01同位角、内错角、同旁内角的辨别【例题】(2023上·黑龙江哈尔滨·七年级校考期中)如图,下列结论正确的是()A .5∠与4∠是对顶角B .1∠与3∠是同位角C .2∠与3∠是同旁内角D .1∠与2∠是同旁内角【答案】D 【分析】本题考查同位角同旁内角、对顶角,根据同位角、同旁内角、对顶角的定义进行判断,熟练掌握各角的定义是解题的关键.【详解】A 、5∠与23∠+∠是对顶角,故本选项错误,不符合题意;B 、1∠与34∠+∠是同位角,故本选项错误,不符合题意;C 、2∠与3∠没有处在两条被截线之间,故本选项错误,不符合题意;D 、1∠与2∠是同旁内角;故本选项正确,符合题意;故选:D .【变式训练】1.(2023上·四川巴中·七年级四川省巴中中学校考阶段练习)如图所示,有下列五种说法:①1∠和4∠是同位角;②3∠和5∠是内错角;③2∠和6∠是同旁内角;④5∠和2∠是同位角;⑤1∠和3∠是同旁内角;其中正确的是()A .①②③⑤B .①②③④C .①②③④⑤D .①②④⑤【答案】D 【分析】本题考查了同位角、内错角以及同旁内角的定义,根据内错角、同位角以及同旁内角的定义寻找出各角之间的关系,再比照五种说法判断对错,即可得出结论.【详解】解:根据内错角、同位角以及同旁内角的定义分析五种说法.①1∠和4∠是同位角,即①正确;②3∠和5∠是内错角,即②正确;③2∠和6∠是内错角,即③不正确;④5∠和2∠是同位角,即④正确;⑤1∠和3∠是同旁内角,即⑤正确.故选:D .2.(2023下·广东河源·七年级期中)如图,a ,b ,c 三条直线两两相交,下列说法错误的是()A .1∠与2∠是同位角B .2∠与4∠是内错角C .3∠与4∠是对顶角D .1∠与3∠是同旁内角【答案】B 【分析】本题考查相交直线所成相关角的概念,解答关键是熟知同位角、内错角、同旁内角、对顶角的相关概念和判断方法.【详解】解:A .1∠与2∠是直线a 、直线b 被直线c 所截,所得到的同位角,因此选项A 不符合题意;B .2∠与4∠是直线a 、直线c 被直线b 所截,所得到的同位角,因此选项B 符合题意;C .3∠与4∠是对顶角,因此选项C 不符合题意;D .1∠与3∠是直线b 、直线c 被直线a 所截,所得到的同旁内角,因此选项D 不符合题意;故选:B .题型02同位角相等,两直线平行【例题】根据要求完成下面的填空:如图,直线AB ,CD 被EF 所截,若已知12∠=∠.23∠=∠ (______),又12∠=∠ (已知),∴∠______=∠______,∴______∥______(______).【详解】23∠=∠ (对顶角相等),又12∠=∠ (已知),13∠∠∴=,AB CD ∴∥(同位角相等,两直线平行),故答案为:对顶角相等,1,3,AB ,CD ,同位角相等,两直线平行.【变式训练】1.请完成下面的推理过程并在括号里填写推理依据:如图,129023,,AB BC ⊥=︒∠+∠∠=∠,BE 与DF 平行吗?为什么?解:BE DF ∥.理由如下:∵AB BC ⊥(已知),∴ABC ∠=________°即34∠+∠=________°()又∵1290∠+∠=︒(),且23∠∠=(已知)∴14∠=∠()∴BE DF ∥()【详解】解:BE DF ∥.理由如下:∵AB BC ⊥(已知),∴90ABC ∠=︒,即3490∠+∠=°(等量代换)又∵1290∠+∠=︒(已知),且23∠∠=(已知)∴14∠=∠(等角的补角相等)∴BE DF ∥(同位角相等,两直线平行).故答案为:90,90,等量代换,已知,等角的补角相等,同位角相等,两直线平行.2.如图,已知AC AE ⊥,BD BF ⊥,135∠=︒,235∠=︒.AC 与BD 平行吗?AE 与BF 平行吗?阅读下面的解答过程,并填空或填写理由.解:AC 与BD 平行;AE 与BF 平行,理由如下:135∠=︒,235∠=︒∴12∠=∠∴(________)∥(________)(________________________);又 AC AE⊥∴EAC 90∠=∴1EAB EAC ∠=∠+∠=(________)o同理可得2FBG FBD ∠=∠+∠=(________)o∴(________)∥(________)(_____________________________).【详解】解:AC 与BD 平行;AE 与BF 平行,理由如下:135∠=︒,235∠=︒∴12∠=∠∴AC ∥BD (同位角相等,两直线平行);又 AC AE⊥∴90EAC ∠=︒∴1125EAB EAC ∠=∠+∠=︒同理可得2125FBG FBD ∠=∠+∠=︒∴AE ∥BF (同位角相等,两直线平行).题型03内错角相等,两直线平行【例题】如图,EF 交AD 于O ,AB 交AD 于A ,CD 交AD 于D ,12∠=∠,34∠∠=,试判断AB 和CD 的位置关系,并说明为什么.【详解】解:AB CD .理由:12∠=∠ ,34∠∠=,23∠∠=,14∴∠=∠,∴AB CD .【变式训练】1.推理填空:已知:如图AB BC ⊥于B ,CD BC ⊥于C ,12∠=∠,求证:BE CF ∥.证明:∵AB BC ⊥于B ,CO ∴139024∠+∠=︒∠+∠=,∴1∠与3∠互余,2∠与4∠又∵12∠=∠(),(1)求BOF ∠的度数;(2)试说明AB CD ∥的理由.【详解】(1)∵OA OB ,分别平分∴12AOE AOC COE ∠∠∠==,∵180COE DOE ∠+∠=°,题型04同旁内角互补,两直线平行【例题】如图,已知直线AB CD 、被直线EF 所截,GE 平分AEF ∠,GF 平分EFC ∠,1290∠+∠=︒,AB CD ∥吗?为什么?解:∵GE 平分AEF ∠,GF 平分EFC ∠(已知),∴2AEF ∠∠=___________,2EFC ∠∠=___________,∴AEF EFC ∠∠+=___________(),∵1290∠+∠=︒(),∴AEF EFC ∠∠+=___________°,∴AB CD ∥.【详解】解:GE 平分AEF ∠,GF 平分EFC ∠(已知),21AEF ∴∠=∠,22EFC ∠=∠,2(12)AEF EFC ∴∠+∠=∠+∠(等量代换)1290∠+∠=︒ (已知),180AEF EFC ∴∠+∠=︒,AB CD ∴∥.【变式训练】1.如图,160,260,3120︒︒︒∠=∠=∠=.试说明,DE BC DF ∥∵160260,︒∠=∠=∴12∠=∠(等量代换)∴________//_________∵,AB DE 相交,∴4160∠=∠=︒(∵3120∠=︒∴34180∠+∠=︒∴ (___________________【详解】∵160∠=∴12∠=∠(等量代换)∴DE BC ∥(同位角相等,两直线平行)∵AB ,DE 相交,证明:∵12180∠+∠=︒,∴a ∥______(______).∵13∠=∠,∴a ∥______(______).∴b c ∥(______).【详解】证明:∵12180∠+∠=︒,∴a ∥b (同旁内角互补,两直线平行).∵13∠=∠,∴a ∥c (同位角相等,两直线平行).∴b c ∥(如果两条直线都与第三条直线平行,那么这两条直线也互相平行).题型05平行线及平行公理【详解】解:因为∠13∠=∠(对顶角相等)所以∠2=∠3(等量代换)所以a ∥c (同位角相等,两直线平行)又因为a b ∥(已知)1.如图所示,直线AB CD ,相交于点O ,OD 平分EOB ∠,OF 平分AOE ∠,GH CD ⊥,垂足为点H ,GH 与FO 平行吗?说明理由.【详解】解:GH FO ∥,理由如下:(1)判断CD与AB的位置关系;(2)求证:DF BE∥.⊥【详解】(1)解:∵AB MN∥.∴CD AB题型06添加一条件使两条直线平行∠=∠【答案】EAB【分析】本题主要考查了平行线的判定.要判断的位置关系,根据平行线的判定定理解答即可.∠=∠(答案不唯一).故答案为:EAB C【变式训练】【答案】①②④【分析】根据平行线的判定条件,逐一判断即可解答.【详解】解:①12∠=∠,能判断∠=︒.(答案不唯一)【答案】250【分析】根据平行线的判定和性质进行解答即可.【详解】解:可以添加条件∠⊥,∵EF MN∠=︒90EFM线平行;同位角相等,两直线平行;同旁内角互补,两直线平行.题型07根据平行线的性质求角度【例题】(2023下·新疆阿克苏·七年级校考期末)如图,AB CD ∥,直线EF 分别交AB 、CD 于点E 、F ,EG 平分AEF ∠,135∠=︒,求2∠的度数.【答案】110︒【分析】根据平行线的性质、角平分线的定义结合平角的定义即可求解.【详解】解:如图所示,∵AB CD ∥,135∠=︒∴3135∠=∠=︒∵EG 平分AEF∠∴3435∠=∠=︒∴21803535110∠=︒-︒-︒=︒.【点睛】本题主要考查了平行线的性质、角平分线的定义,熟练掌握平行线的性质、求出3135∠=∠=︒是关键.【变式训练】1.(2023下·浙江金华·七年级校联考期末)如图,点E 在BC 的延长线上,连接DE ,作CED ∠的角平分线分别交线段AD ,DC 于点F ,点G ,已知AB CD ∥,AD BC ∥.(1)试说明2BED DFE ∠=∠;(2)若105B ∠=︒,28DFE ∠=︒,求CDE ∠的度数.【答案】(1)见解析(2)19CDE ∠=︒【分析】(1)根据角平分线的性质得出2BED BEF ∠=∠,根据平行线的性质可得DFE BEF ∠=∠;(2)根据平行线的性质可得105DCE B ∠=∠=︒,根据平行线的性质得出105ADC DCE ∠=∠=︒,180ADE BED ∠+∠=︒,根据(1)的结论得出256BED DFE ∠=∠=︒,180124ADE BED ∠=︒-∠=︒,进而根据CDE ADE ADC ∠=∠-∠,即可求解.【详解】(1)解:∵EF 平分CED ∠,∴2BED BEF ∠=∠,∵AD BC∥∴DFE BEF ∠=∠,(2)解:∵AB CD ∥,105B ∠=︒,∴105DCE B ∠=∠=︒,∵AD BC ∥,∴105ADC DCE ∠=∠=︒,180ADE BED ∠+∠=︒.∵28DFE ∠=︒,∴256BED DFE ∠=∠=︒,∴180124ADE BED ∠=︒-∠=︒,∴12410519CDE ADE ADC ∠=∠-∠=︒-︒=︒.【点睛】本题考查了平行线的性质,角平分线的定义,熟练掌握平行线的性质是解题的关键.2.(2023下·贵州黔南·七年级统考期末)如图,已知AB CD ∥,AD BC ∥,90DCE ∠=︒,点E 在线段AB 上,90FCG ∠=︒,点F 在直线AD 上,90AHG ∠=︒.(1)图中与D ∠相等的角有__________;(2)若25ECF ∠=︒,求BCD ∠的度数;(3)在(2)的条件下,点C (点C 不与B ,H 两点重合)从点B 出发,沿射线BG 的方向运动,其他条件不变,求BAF ∠的度数.【答案】(1)DCG ∠,ECF ∠,B∠(2)155︒(3)25︒或155︒【分析】(1)根据同角的余角相等以及平行线的性质,即可得到与D ∠相等的角;(2)根据25ECF ∠=︒,90DCE ∠=︒,可得65FCD Ð=°,再根据90BCF ∠=︒,即可得到6590155BCD Ð=°+°=°;(3)分两种情况讨论:当点C 在线段BH 上;点C 在BH 延长线上,根据平行线的性质,即可得到BAF ∠的度数为25︒或155︒.【详解】(1)解:AD BC ∥ ,D DCG ∴∠=∠,90FCG ∠=︒ ,90DCE ∠=︒,ECF DCG ∴∠=∠,D ECF ∴∠=∠,AB DC ∥,DCG B ∴∠=∠,D B ∴∠=∠;∴与D ∠相等的角为DCG ∠,ECF ∠,B ∠;(2)解:25ECF ∠=︒ ,90DCE ∠=︒,65FCD ∴∠=︒,90BCF ∠=︒Q ,6590155BCD ∴∠=︒+︒=︒;(3)解:分两种情况进行讨论:①如图a ,当点C 在线段BH 上时,点F 在DA 的延长线上,此时25ECF DCG B ∠=∠=∠=︒,AD BC ∥ ,25BAF B ∴∠=∠=︒;②如图b ,当点C 在BH 的延长线上时,点F 在线段AD 上.25B ∠=︒ ,AD BC ∥,18025155BAF ∴∠=︒-︒=︒,综上所述,BAF ∠的度数为25︒或155︒.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质定理是解题关键.题型08平行线的性质在生活中的应用【答案】120︒/120度【分析】首先过B作BF AE∥,根据100∠=︒,A∴∠=∠=︒,100ABF A又160ABC ∠=︒ ,16010060FBC ∴∠=︒-︒=︒,AE CD ∥ ,FB CD ∴∥,180********C FBC ∴∠=︒-∠=︒-︒=︒,故答案为:120︒.【点睛】此题主要考查了平行线性质,关键是掌握两直线平行,同旁内角互补;两直线平行,内错角相等.【变式训练】【答案】17︒/17度【分析】由平行线的性质可知DBC MBC MBD ∠=∠-∠求解即可.【详解】解:∵MN EF ∥∴160MBC ∠=∠=︒.【答案】30︒/30度【分析】过点B 作BF CE ∥.先利用平行线的性质和垂直的定义、角的和差关系求出CBF ∠,再利用平行线的性质和角的和差关系求得结论.【详解】解:过点B 作BF CE ∥.CE l ∥ ,BF l ∴∥.190ABF ∴∠=∠=︒.140ABC ∠=︒ ,1409050CBF ∴∠=︒-︒=︒.BF CE ∥ ,50ECB CBF ∴∠=∠=︒.DCE DCB BCE∴∠=∠-∠8050=︒-︒30=︒.故答案为:30︒.【点睛】本题主要考查了平行线的性质,掌握平行线的性质和角的和差关系是解决本题的关键.题型09平行线的性质与判定综合应用【答案】(1)见解析;(2)F BMF DNF∠=∠-∠;(3)20【分析】本题主要考查平行线的判定和性质,作辅助线是解题的关键.(1)过点E作EF AB∥,根据平行线的性质可求解;∥,根据平行线的性质即可得到结论;(2)如图②,过F作FH AB∥,根据平行线的性质即可得到结论.(3)如图③,过C作CG AB【详解】(1)证明:如图①,过点E作EF AB∥,则MEF BME∠=∠,∥,又∵AB CD∥,∴EF CD∴∠=∠,NEF DNEMEN MEF NEF∴∠=∠+∠,∠=∠+∠;即MEN BME DNE(2)解:BMF MFN FND∠=∠+∠.,证明:如图②,过F作FK AB∴∠=∠,BMF MFK∥,∵AB CD,∴FK CD∴∠=∠,FND KFN∴∠=∠-∠=∠-∠,MFN MFK KFN BMF FND即:BMF MFN FND ∠=∠+∠.故答案为:BMF MFN FND ∠=∠+∠;(3)如图③,过C 作CG AB ∥,18060GCA BAC ∴∠=︒-∠=︒,∵AB DE ∥,∴CG DE ∥,80GCD CDE ∴∠=∠=︒,20ACD ∴∠=︒,故答案为:20.【变式训练】1.(2023上·湖南岳阳·八年级校考开学考试)如图,12∠=∠,BAE BDE ∠=∠,点F 在DE 的延长线上,点C 在AB 的延长线上,且EA 平分BEF ∠.(1)求证:AB DE ∥;(2)若40BAE ∠=︒,求EBD ∠.【答案】(1)见解析(2)40︒【分析】(1)根据对顶角相等结合题意推出1ABE ∠=∠,根据“同位角相等,两直线平行”即可判定AB DE ∥;(2)根据平行线的性质结合题意推出AEF BDE ∠=∠,即可判定AE BD ,根据平行线的性质及角平分线的定义求解即可.【详解】(1)证明:∵2ABE ∠=∠(对顶角相等),又12∠=∠(已知),∴1ABE ∠=∠(等量代换),∴AB DE ∥(同位角相等,两直线平行);(2)解:由(1)已证AB DE ∥可得:40BAE AEF ∠=∠=︒(两直线平行,内错角相等),又∵BAE BDE ∠=∠,∴AEF BDE ∠=∠(等量代换),∴AE BD (同位角相等,两直线平行),∴AEB EBD ∠=∠(两直线平行,内错角相等),又∵EA 平分BEF ∠,∴AEB AEF ∠=∠,∴40EBD AEB AEF BAE ∠=∠=∠=∠=︒,∴40∠=︒EBD .【点评】此题考查了平行线的判定与性质,熟记平行线的判定定理与性质定理是解题的关键.2.(2023下·江苏泰州·七年级校考期中)如图,在ABC 中,点D 、F 在BC 边上,点E 在AB 边上,点G 在AC 边上,EF 与GD 的延长线交于点H ,BDH B ∠=∠,AEH ADH ∠=∠.(1)EH 与AD 平行吗?为什么?(2)若40H ∠=︒,求BAD ∠的度数.【答案】(1)平行,见解析(2)40︒【分析】(1)EH AD ∥,理由如下:由已知条件,BDH B ∠=∠,根据平行线的判定可得AB GH ∥,根据平行线的性质得180BAD ADH ∠+∠=︒,等量代换得到180BAD AEH ∠+∠=︒,即可得出答案;(2)结合(1)根据平行线的性质即可得解.【详解】(1)EH AD ∥,理由如下:BDH B ∠=∠ ,AB GH ∴∥,180BAD ADH ∴∠+∠=︒,AEH ADH ∠=∠ ,180BAD AEH ∴∠+∠=︒,EH AD ∴∥;(2)180BAD ADH ∠+∠=︒ ,又EH AD ∥,180H ADH ∴∠+∠=︒,40,∠=︒H∴∠=︒.40BAD【点睛】此题考查了平行线的判定与性质,熟记平行线的判定与性质定理是解题的关键.题型10根据平行线的性质与判定探究角的关系(1)123、、之间的关系为∠∠∠(2)如果点P在A、B两点之间运动时,(3)如果点P(点P和A、∠+∠=∠【答案】(1)123∠+∠=∠(2)123∠-∠=∠或2∠-∠(3)123∴123∠+∠=∠(等量代换);故答案为:123∠+∠=∠;(2)解:由(1)的证明过程知,123∠∠∠、、之间的关系不发生变化;故答案为:123∠+∠=∠;(3)解:过点P 作1PQ l ∥,∵12l l ∥,∴21PQ l l ∥∥;当点P 在AB 延长线上时,如左图,则24∠∠=,134CPQ Ð=Ð=Ð+Ð,∴132∠=∠+∠,即123∠-∠=∠;当点P 在BA 延长线上时,如右图,∵21PQ l l ∥∥,∴14∠=∠,234DPQ Ð=Ð=Ð+Ð,∴231∠=∠+∠,即213∠-∠=∠;综上,123∠-∠=∠或213∠-∠=∠.故答案为:123∠-∠=∠或213∠-∠=∠.【变式训练】(1)图中CBD ∠=︒;(2)当ACB ABD ∠=∠时,ABC ∠=(3)随点P 位置的变化,图中APB ∠【答案】(1)60;(1)求证:AB CD(2)点G是射线MD上的一个动点EHN交直线AB于点N,设∠=αβ=︒①点G在点F右侧,且70∴HEF HEG ∠=∠,∵HN EM ∥,∴EHN HEM HEF FEM ∠=∠=∠+∠,∵FEM FME ∠=∠,∴EHN HEF FME α∠=∠+∠=,∵()180********EGF FME GEM FME FEM HEF FME HEF ∠=︒-∠-∠=︒-∠-∠-∠=︒-∠+∠,∴1802βα=︒-,∵70β=︒,∴701802α︒=︒-,解得55α=︒.②α和β之间的数量关系为2βα=或1802βα=︒-.理由如下:当点G 在点F 的右侧,由(2)得1802αβ=︒-,当点G 在点F 的左侧时,如图2,∵EH 平分FEG ∠,∴HEF HEG ∠=∠,∵HN EM ∥,∴EHN HEM ∠=∠,∵FEM FME ∠=∠,∴()222EGF FME GEM FEM GEM GEM HEG GEM GEM HEG HEM ∠=∠+∠=∠+∠=∠+∠+∠=∠+∠=∠,∴2EGF EHN ∠=∠,即2βα=,综上所述,α和β之间的数量关系为2βα=或1802βα=︒-.【点睛】本题考查角平分线的定义,平行线的性质,利用数形结合和分类讨论的思想是解题关键.一、单选题1.(2023下·云南昭通·七年级统考阶段练习)如图,下列条件不能判定AB CD 的是()A .13∠=∠B .35∠=∠C .12180∠+∠=︒D .15∠=∠【答案】B 【分析】根据平行线的判定定理,对各项逐一进行判断即可.【详解】解:A 、13∠=∠,根据同位角相等,两直线平行可判定AB CD ,故此选项不符合题意;B 、35∠=∠,对顶角相等,不能判定AB CD ,故此选项符合题意;C 、12180∠+∠=︒,根据同旁内角互补,两直线平行可判定AB CD ,此选项不符合题意;D 、15∠=∠,根据内错角相等,两直线平行可判定AB CD ,故此选项不符合题意;故选:B .【点睛】本题考查了平行线的判定定理,解题的关键是正确识别“三线八角”中的同位角、内错角、同旁内角,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.2.(2023下·广东江门·七年级统考期末)如图所示,以下说法错误的是()A .1∠与2∠是同位角B .4∠与3∠是同位角C .5∠与3∠是内错角D .4∠与5∠是同旁内角【答案】C 【分析】根据同位角、内错角、同旁内角的定义逐项判断即可.【详解】解:A 、1∠与2∠是同位角,正确,不符合题意;B 、4∠与3∠是同位角,正确,不符合题意;C 、5∠与3∠不是内错角,错误,符合题意;D 、4∠与5∠是同旁内角,正确,不符合题意,故选:C .【点睛】本题考查同位角、内错角、同旁内角,解答的关键是理解定义:如果两条直线被第三条直线所截所形成的的角,在两条被截直线之间且在截线两侧的两个角互为内错角;在两条被截直线同一方且在截线同侧的两个角互为同位角;在两条被截线之间且在截线同侧的两个角互为同旁内角.3.(2023上·陕西铜川·八年级统考期末)如图,下列推理及括号中所注明的推理依据错误的是()A .∵AD BC ∥,180BAD D ∴∠+∠=︒(两直线平行,同旁内角互补)B .∥ AB CD ,180BCD ABC ∴∠+∠=︒(两直线平行,同旁内角互补)C .13∠=∠ ,AB CD ∴∥(内错角相等,两直线平行)D .DAM CBM ∠=∠ ,AD BC ∴∥(同位角相等,两直线平行)【答案】A【分析】本题考查的是平行线的判定与性质,利用平行线的判定方法与性质逐一分析即可得到答案,熟记平行线的判定方法与平行线的性质是解本题的关键.【详解】解:∵AD BC ∥,180BAD ABC ∴∠+∠=︒(两直线平行,同旁内角互补),故A 符合题意;∥ AB CD ,180BCD ABC ∴∠+∠=︒(两直线平行,同旁内角互补),故B 不符合题意;13∠=∠ ,AB CD ∴∥(内错角相等,两直线平行),故C 不符合题意;DAM CBM ∠=∠ ,AD BC ∴∥(同位角相等,两直线平行),故D 不符合题意;故选A4.(2023上·陕西榆林·八年级校考期末)如图,直线a b ,直线l 与直线a 相交于点P ,与直线b 相交于点Q ,PM l ⊥于点P ,若155∠=︒,则2∠的度数为()A .35︒B .55︒C .125︒D .145︒【答案】A 【分析】本题考查了平行线性质,根据两直线平行,同位角相等,平角的定义计算即可.【详解】如图,∵a b ,155∠=︒,∴3155∠=∠=︒,∵34180,2+∠=︒∠∠+∠∴180324∠=∠故选A .5.(2023上·四川宜宾·七年级四川省宜宾市第二中学校校考阶段练习)平分BAC ∠,AC CE ⊥A .1个【答案】D 【分析】①根据平行线的传递性可以判断出来;内角互补可得2BAC ∠+∠212180Ð+Ð=°,可求得结果;二、填空题【答案】①②④【分析】根据同位角的定义,逐一判断选项,即可得到答案.【详解】解:①∠1和∠2在两条直线的同侧,也在第三条直线的同侧,故它们是同位角;②∠1和∠2在两条直线的同侧,也在第三条直线的同侧,故它们是同位角;【答案】B DAB∠=∠【分析】根据“内错角相等,两直线平行【详解】解:由“内错角相等,两直线平行【答案】36︒/36度【分析】由对顶角相等可得∠∠,即可求解.件可求得B【详解】解:如图,,1108∠=︒∴∠=∠=︒,31108∥,∵l AB∴∠+∠=︒,2BA3180∠=∠,【答案】3或7.5或12【分析】本题考查了平行线的性质.分类讨论∠的大小即可求解.性质确定旋转角AFE∥时,如图所示:【详解】解:①当DE BC30AFE ∠=︒∴30310t ==秒②当DE AB ∥时,如图所示:∵45FHD A ∠=∠=︒,∴45HFD ∠=︒45AFE HFD EFD ∠=∠+∠=︒+∴757.510t ==秒180120AFE E ∠=︒-∠=︒∴1201210t ==秒综上所述:t 的值为3或7.5或12三、解答题11.(2023上·新疆克孜勒苏·七年级统考期末)如图,已知12180∠+∠=︒,3B ∠=∠,试判断C ∠与AED ∠的大小关系,请补全证明过程,即在横线处填上结论或理由.解:AED C ∠=∠.理由如下:∵12180∠+∠=︒(已知),1180DFE ∠+∠=︒(_______),∴2DFE ∠=∠(_______),∴AB ∥_______(_______),∴3ADE ∠=∠(_______),∵3B ∠=∠(已知),∴∠_______=∠_______(_______),∴_______∥_______(_______),C AED ∠=∠(_______).【答案】平角的定义;等量代换;EF ;内错角相等,两直线平行;两直线平行,内错角相等:ADE ;B ;等量代换;DE ;BC ,同位角相等,两直线平行;两直线平行,同位角相等【分析】本题考查了平行线的判定与性质,根据证明的思路,把证明过程填写完整即可.【详解】AED C ∠=∠.理由如下:∵12180∠+∠=︒(已知),1180DFE ∠+∠=︒(平角的定义),∴2DFE ∠=∠(等量代换),∴AB EF ∥(内错角相等,两直线平行),∴3ADE ∠=∠(两直线平行,内错角相等),∵3B ∠=∠(已知),∴ADE B ∠=∠(等量代换),∴DE BC ∥(同位角相等,两直线平行),∴C AED ∠=∠(两直线平行,同位角相等).故答案为:平角的定义;等量代换;EF ;内错角相等,两直线平行;两直线平行,内错角相等:ADE ;B ;等量代换;DE ;BC ,同位角相等,两直线平行;两直线平行,同位角相等.12.(2023上·吉林长春·七年级统考期末)在下列解答中,填空(理由或数学式).如图,已知直线b c ∥,1116∠=︒,3=4∠∠.(1)求AOB ∠的度数;(2)求证:直线a c ∥.解:(1)∵1116∠=︒(已知)∴2116∠=︒().∵b c ∥(已知),∴2AOB ∠=∠().∴AOB ∠=(等量代换).证明:(2)∵3=4∠∠()∴a b ∥().又∵b c ∥(已知),故答案为:已知;内错角相等,两直线平行;如果两条直线都和第三条直线平行,那么这两条直线也互相平行.13.(2023上·吉林长春·七年级校考期末)如图,已知AB CD ,AC 与BD 相交于点E ,从点E 引一条射线EF 交线段AB 于点F ,若180AFE DCB ∠+∠=︒,A AEF ∠=∠,求证:DCA ACB ∠=∠.证明:∵AB CD (已知),∴180ABC DCB ∠+∠=︒(两直线平行,同旁内角互补),又∵180AFE DCB ∠+∠=︒(已知),∴AFE ABC ∠=∠(____________________),∴EF ∥__________(____________________),∴∠=AEF __________(____________________),∵AB CD (已知),∴A DCA ∠=∠(____________________),∵A AEF ∠=∠(已知),∴DCA ACB ∠=∠(____________________).【答案】见解析【分析】本题考查平行线的性质与判定,根据题目已知条件及现有步骤结合平行线的判定和性质定理,即可得到答案.【详解】证明:AB CD (已知),∴180ABC DCB ∠+∠=︒(两直线平行同旁内角互补),又∵180AFE DCB ∠+∠=︒(已知),∴AFE ABC ∠=∠(同角的补角相等);∴EF BC ∥(同位角相等,两直线平行),∴AEF ACB ∠=∠(两直线平行,同位角相等),∵AB CD (已知),∴A DCA ∠=∠(两直线平行,内错角相等),∴A AEF ∠=∠(已知),∴DCA ACB ∠=∠(等量代换),故答案为:同角的补角相等;BC ;同位角相等,两直线平行;ACB ∠;两直线平行,同位角相等;两直线平行,内错角相等;等量代换.14.(2023上·重庆沙坪坝·八年级统考期中)已知:如图,在ABC 中,点D 在BC 边上,EF AD ∥分别交AB ,CB 于点E ,F ,DG 平分ADC ∠,12180∠+∠=︒,(1)求证:AB DG ∥;(2)若40B ∠=︒,60DAC ∠=︒,求DGC ∠的度数.【答案】(1)见解析(2)100︒【分析】本题考查了平行线的性质与判定、角平分线的定义、三角形的外角性质,熟练掌握平行线的性质和判定,是解决本题的关键.平行线的性质:两直线平行,内错角相等;两直线平行,同位角相等;两直线平行,同旁内角互补;平行线的判定:内错角相等,两直线平行;同位角相等,两直线平行;同旁内角互补,两直线平行.三角形的外角性质:三角形的外角等于与它不相邻的两个内角的和.【详解】(1)证明:∵EF AD ∥,∴1180BAD ∠+∠=︒.∵12180∠+∠=︒.∴2BAD ∠=∠.∴AB DG ∥;(2)解:∵AB DG ∥,40B ∠=︒,∴40GDC B ∠=∠=︒,∵DG 平分ADC ∠,∴240GDC ∠=∠=︒,又∵60DAC ∠=︒,∴2100DGC DAC ∠=∠+∠=︒.15.(2023上·四川遂宁·七年级射洪中学校联考阶段练习)如图1,直线AD EF ,点B C ,分别在EF 和AD 上,A ABC ∠=∠,BD 平分CBF ∠.【探索】如图②,AM 平分BAC ∠,CAM CMA ∠=∠,点E 在射线AB 上,点F 在线段CM 上,若AEF C ∠=∠,求证:EF AC ∥.【拓展】如图③,将【探索】中的点F 移动到线段CM 的延长线上,其他条件不变,若357CAM MEF ∠=∠=︒,请直接写出AME ∠的度数.【答案】感知:BAM ∠;BAM ∠;探索:见解析;拓展:76AME =︒∠【分析】感知:根据角平分线定义和平行线的性质进行解答即可;探索:先证明AB CD ,得出AEF EFD ∠=∠,在证明EFD C ∠=∠,根据平行线的判定得出结论即可;拓展:根据角平分线定义得出57BAM CAM ==︒∠∠,257114BAC =⨯︒=︒∠,根据平行线的性质求出18066C BAC =︒-=︒∠∠,求出661947AEM =︒-︒=︒∠,最后根据平行线的性质求出结果即可.【详解】解:感知:∵AM 平分BAC ∠,(已知),∴CAM BAM ∠=∠(角平分线的定义),∵AB CD (已知),∴CMA BAM ∠=∠(两直线平行,内错角相等)∴CAM CMA ∠=∠(等量代换).故答案为:BAM ∠;BAM ∠.探索:∵AM 平分BAC ∠,∴CAM BAM ∠=∠,∵CAM CMA ∠=∠,∴A BAM CM =∠∠,∴AB CD ,∴AEF EFD ∠=∠,∵AEF C ∠=∠,∴EFD C ∠=∠,∴EF AC ∥.拓展:∵357CAM MEF ∠=∠=︒,∴根据探索可知:57BAM CAM ==︒∠∠,19MEF =︒∠,∴257114BAC =⨯︒=︒∠,根据探索可知:AB CD ,∴18066C BAC =︒-=︒∠∠,∴66AEF C ==︒∠∠,∴661947AEM =︒-︒=︒∠,∵AB CD ,∴57AMC BAM ==︒∠∠,47DME AEM ==︒∠∠,∴18076AME AMC DME =︒--=︒∠∠∠.【点睛】本题主要考查了平行线的判定和性质,角平分线的定义,几何图形中的角度计算,解题的关键是熟练掌握平行线的判定方法,内错角相等,两直线平行;同位角相等,两直线平行;同旁内角互补,两直线平行.平行线的性质,两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.17.(2023上·内蒙古乌海·八年级统考期末)综合与实践:问题:如图1,直线AB 、BC 、AC 两两相交,交点分别为点A 、B 、C ,点D 在线段AB 上,过点D 作DE BC∥交AC 于点E ,过点E 作EF AB ∥交BC 于点F .(1)若65ABC ∠=︒,求DEF ∠的度数.请将下面的解答过程补充完整,并填空(理由或数学式)解:∵DE BC ∥,∴DEF ∠=______(______),∵EF AB ∥,∴______ABC =∠(______),∴DEF ABC ∠=∠(______),∵65ABC ∠=︒,∴65DEF ∠=︒.探究:如图2,直线AB 、BC 、AC 两两相交,交点分别为点A 、B 、C ,点D 在线段AB 的延长线上,过点D 作DE BC ∥交AC 于点E ,过点E 作EF AB ∥交BC 于点F .(2)在图2中,若65ABC ∠=︒,求DEF ∠的度数并说明理由.(3)猜想:如果ABC ∠的两边分别平行于DEF ∠的两边,直接写出ABC ∠与DEF ∠这两个角之间有怎样的数量关系?【答案】(1)EFC ∠;两直线平行,内错角相等;EFC ∠;两直线平行,同位角相等;等量代换;(2)115DEF ∠=︒,理由见解析;(3)ABC DEF ∠=∠或180ABC DEF ∠+∠=︒【分析】本题主要考查平行线的性质,解答的关键是熟记平行线的性质并灵活运用.(1)由平行线的性质可得DEF EFC ∠=∠,EFC ABC ∠=∠,则有DEF ABC ∠=∠,即可得解;(2)由平行线的性质得65ABC ADE ∠=∠=︒,180ADE DEF ∠+∠=︒,则可求DEF ∠得度数.(3)根据平行线的性质分析,即可获得答案.【详解】解:(1)∵DE BC ∥,∴DEF EFC ∠=∠(两直线平行,内错角相等),∵EF AB ∥,∴EFC ABC ∠=∠(两直线平行,同位角相等),∴DEF ABC ∠=∠(等量代换),∵65ABC ∠=︒,∴65DEF ∠=︒.故答案为:EFC ∠;两直线平行,内错角相等;EFC ∠;两直线平行,同位角相等;等量代换;(2)115DEF ∠=︒,理由如下:∵DE BC ∥,∴65ABC ADE ∠=∠=︒(两直线平行,同位角相等),∵EF AB ∥,∴180ADE DEF ∠+∠=︒(两直线平行,同旁内角互补),∴180115DEF ADE ∠=︒-∠=︒;(3)ABC DEF ∠=∠或180ABC DEF ∠+∠=︒,理由如下:如图1,ABC ∠的两边分别平行于DEF ∠的两边时,ABC DEF ∠=∠;如图2,ABC ∠的两边分别平行于DEF ∠的两边时,180ABC DEF ∠+∠=︒.18.(2023上·全国·八年级专题练习)如图,线段AB 与线段CD 平行,P 是平面内一点,连接PA PD ,,射线AM DN ,分别平分BAP CDP ∠∠,.(1)当点P 在线段DA 的延长线上时:①在图1中,依题意补全图形;②请直接写出直线AM 与直线DN 的位置关系:___________;(2)如图2,当点P 在直线AB 与直线CD 之间时,射线AM ,DN 交于点Q ,探究P ∠与AQD ∠的数量关系,。

平行线的判定和性质知识点详解

平行线的判定和性质知识点详解

平行线的判定和性质〔综合篇〕一、重点和难点:重点:平行线的判定性质。

难点:①平行线的性质与平行线的判定的区分②掌握推理论证的格式。

二、例题:这局部容所涉及的题目主要是从图形中识别出对顶角、同位角、错角或同旁角。

解答这类题目的前提是熟练地掌握这些角的概念,关键是把握住这些角的根本图形特征,有时还需添加必要的辅助线,用以突出根本图形的特征。

上述类型题目大致可分为两大类。

一类题目是判断两个角相等或互补及与之有关的一些角的运算问题。

其方法是“由线定角〞,即运用平行线的性质来推出两个角相等或互补。

另一类题目主要是“由角定线〞,也就是根据某些角的相等或互补关系来判断两直线平行,解此类题目必须要掌握好平行线的判定方法。

例1.如图,直线a,b,c被直线d所截,假设∠1=∠2,∠2+∠3=180°,求证:∠1=∠7分析:运用综合法,证明此题的思路是由角的关系推证出两直线平行,然后再由两直线平行解决其它角的关系。

∠1与∠7是直线a和c被d所截得的同位角。

须证a//c。

法〔一〕证明:∵d是直线〔〕∴∠1+∠4=180°〔平角定义〕∵∠2+∠3=180°,∠1=∠2〔〕∴∠3=∠4〔等角的补角相等〕∴a//c〔同位角相等,两直线平行〕∴∠1=∠7〔两直线平行,同位角相等〕法〔二〕证明:∵∠2+∠3=180°,∠1=∠2〔〕∴∠1+∠3=180°〔等量代换〕∵∠5=∠1,∠6=∠3〔对顶角相等〕∴∠5+∠6=180°〔等量代换〕∴a//c 〔同旁角互补,两直线平行〕∴∠1=∠7〔两直线平行,同位角相等〕。

例2.如图,∠1+∠2=180°,∠A=∠C,AD平分∠BDF,求证:BC平分∠DBE。

分析:只要求得∠EBC=∠CBD,由∠1+∠2=180°推出∠1=∠BDC,从而推出AE//FC,从而推出∠C=∠EBC而∠C=∠A于是可得∠A=∠EBC。

平行线及其判定知识点总结、例题解析

平行线及其判定知识点总结、例题解析

平行线及其判定知识点总结、例题解析知识点1【平行线】在同一平面内,不重合的两条直线的只有两种位置关系:平行和相交。

1、平行线的定义:在同一平面内,不相交的两条直线叫平行线.记作:a∥b;读作:直线a平行于直线b.2、平行线的画法用直尺和三角板作平行线的步骤:①落:用三角板的一条斜边与已知直线重合②靠:用直尺紧靠三角板的一条直角边③推:沿着直尺平移三角板,使与已知直线重合的斜边通过已知点④画:沿着这条斜边画一条直线,所画直线与已知直线平行3、平行线公理及推论(1)平行公理:经过直线外一点,有且只有一条直线与这条直线平行.注意区别垂线的性质:在同一平面内,过一点有且只有一条直线与已知直线垂直。

(2)推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.平行公理的推论可以看做是平行线的一种判定方法,在解题中要注意该结论在证明直线平行时应用。

如果a∥b,b∥c,那么a∥c。

【例题1】下列叙述正确的是()A、两条直线不相交就平行B、在同一平面内,不相交的两条线叫做平行线C、在同一平面内,不相交的两条直线叫做平行线D、在同一平面内,不相交的两条线段叫做平行线【答案】C【例题2】在同一平面内,不重合的两条直线的位置关系有()A、平行或垂直B、平行或相交C、垂直或相交D、平行、垂直或相交【答案】B【例题3】下列说法中正确的序号有_______①一条直线的平行线只有一条:②过一点与已知直线平行的直线只有一条:③因为a∥b,c∥d,所以a∥d:④经过直线外一点有且只有一条直线与己知直线平行【解析】①一条直线有无数条平行线;②必须过直线外一点,如果点在直线上,会出现重合。

【答案】④【例题4】下列说法:①过两点有且只有一条直线;②两条直线不平行必相交;③过一点有且只有一条直线与已知直线垂直;④过一点有且只有一条直线与已知直线平行。

其中正确的有()。

A、1个;B、2个;C、3个;D、4个。

【解析】②③需在同一平面内,④过直线外一点【答案】A知识点2【平行线的判定】(1)判定方法1:两条直线被第三条所截,如果同位角相等,那么这两条直线平行.简称:同位角相等,两直线平行.∵∠3=∠2∴AB∥CD(同位角相等,两直线平行)(2)判定方法2:两条直线被第三条所截,如果内错角相等,那么这两条直线平行.简称:内错角相等,两直线平行.∵∠1=∠2∴AB∥CD(内错角相等,两直线平行)(3)判定方法3:两条直线被第三条所截,如果同旁内角互补,那么这两条直线平行.简称:同旁内角互补,两直线平行.∵∠4+∠2=180°∴AB∥CD(同旁内角互补,两直线平行判定方法补充:①两条直线都和第三条直线平行,那么这两条直线平行.②在同一平面内,如果两条直线同时垂直于同一条直线,那么这两条直线平行.【例题5】如图所示,直线a、b被直线c所截,现给出下列四个条件:①∠1=∠5:②∠1=∠7:③∠2+∠3=180°:④∠4=∠7,其中能判断a∥b的条件的序号是()A、①②B、①③C、①④D、③④【答案】A【例题6】如图,下列条件中,不能判断直线l1∥l2的是()A、∠1=∠3B、∠2=∠3C、∠4=∠5D、∠2+∠4=180°【答案】B【例题7】如图,已知BE平分∠ABC,CF平分∠BCD,∠1=∠2,求证:AB∥CD【答案】∵∠1=∠2∴2∠1=2∠2,即∠ABC=∠BCD∴AB∥CD(内错角相等,两直线平行)【例题8】如图,在四边形ABCD中,AD∥BC,∠ABC=∠CDA,BE、DF分别是∠ABC和∠ADC 的平分线,求证:BE∥DF【解析】想要证明EB∥DF,根据平行钱的判定方法,只要证明∠AEB=∠ADF即可【答案】证明:∵AD∥BC∴∠AEB=∠EBC∵∠ABC=∠ADC,BE、DF分别是∠ABC和∠ADC的平分线∴∠EBC=∠ADF∴∠AEB=∠ADF∴EB∥DE【例题9】已知,如图,EF⊥EG,GM⊥EG,∠1=∠2,AB与CD平行吗?请说明理由【答案】解:AB∥CD。

探究平行线的判定与性质综合运用经典题型

探究平行线的判定与性质综合运用经典题型

探究平行线的判定与性质综合运用经典题型引言平行线是几何学中常见的概念,对于研究几何学的学生来说,判定平行线以及利用平行线性质解题是必不可少的基本技能。

本文将探讨平行线的判定方法和性质,并通过一些经典题型来综合运用这些技能。

平行线的判定方法判定两条直线是否平行有多种方法,以下是几种常见且简便的判定方法:1. 垂直线判定法:当两直线的斜率之积为 -1 时,这两条直线互相垂直。

2. 平行线同旁内角相等定理:两条直线被一条截线所交,其同旁内角相等,则这两条直线平行。

3. 平行线同位角定理:两条直线被一条截线所交,它们对应角或同旁内角相等,则这两条直线平行。

平行线的性质了解平行线的性质可以帮助我们更好地进行判定和解题。

以下是一些常见的平行线性质:1. 平行线的同位角相等性质:当两条平行线被一条截线所交,同位角相等。

2. 平行线的同旁内角相等性质:当两条平行线被一条截线所交,同旁内角相等。

3. 平行线的对顶内角互补性质:当一对平行线被一条截线所交,对顶内角互为补角。

经典题型综合运用下面通过几个经典题型,来综合运用平行线的判定方法和性质:1. 题目:已知线段 AB // 线段 CD,线段 EF 垂直于线段 CD,若角 AEF = 60°,求角 BFD 的度数。

解答:由已知线段 AB // 线段 CD 可知,角 AEF 和角 BFD 是同旁内角。

由于角AEF = 60°,根据平行线同旁内角相等性质可知,角 BFD 也等于 60°。

2. 题目:在平行四边形 ABCD 中,线段 EF 交线段 BC,若角ABE = 30°,求角 CDE 的度数。

解答:由已知线段 EF 交线段 BC 可知,角 ABE 和角 CDE 是同旁内角。

由于角ABE = 30°,根据平行线同旁内角相等性质可知,角 CDE 也等于 30°。

通过以上题型的解答,我们可以看到平行线的判定方法和性质在解题过程中的重要作用。

七年级下平行线的判定及性质讲义(1)

七年级下平行线的判定及性质讲义(1)

平行线与相交线的判定与性质讲义一.知识再现:平行线的判定:判定1:同位角相等,两直线平行。

判定2:内错角相等,两直线平行。

判定3:同旁内角相等,两直线平行。

平行线的性质:性质1:两直线平行,同位角相等。

性质2:两直线平行,内错角相等。

性质3:两直线平行,同旁内角互补。

二.例题评析1.如图1-18,直线a∥b,直线AB交a与b于A,B,CA平分∠1,CB平分∠2,求证:∠C=90°.2.如图1-21所示,AA1∥BA2求∠A1-∠B1+∠A2.3.如图1-25所示.若∠A 1+∠A 2+…+∠A n =∠B 1+∠B 2+…+∠B n-1,问AA 1与BA n 是否平行?4.如图1-26所示.AE ∥BD ,∠1=3∠2,∠2=25°,求∠C .三.知识点专练知识点1:平行和角平分线、三角形1如图,//AB CD ,直线EF 分别交AB 、CD 于E 、F ,ED 平分BEF ∠,若172∠=o ,则2∠= .ABCDE F1 232如图,已知//,30,AD BC B DB ∠=o平分,ADE ∠则DEC ∠为( ).(A )30o (B )60o (C )90o (D )120oADBEC3如图,已知:AB ∥CD ,AE 平分∠BAC ,CE 平分∠ACD ,请说明:AE ⊥CF.ABDCE知识点2:方程与角1.一个角的余角等于这个角的补角的13,求这个角.2如图,直线AB,CD 相交于O 点,OM ⊥AB. (1)若∠1=∠2,求∠NOD;(2)若∠1=14∠BOC,求∠AOC 与∠MOD.MN1O A B D C2知识点3:平行中的模型1如图,AB//CD ,若∠ABE =130o ,∠CDE =152o ,则∠BED = .ACBDE2如图,已知AB //CD ,(1)你能找到∠B 、∠D 和∠BED 的关系吗? (2)如果∠B =46o ,∠D =58o ,则∠E 的度数是多少?ABCE知识点4:填写简单证明1如图,直线AB 、CD 被EF 所截,若已知AB //CD ,试完成下面填空.∵AB //CD (已知),∴1∠=∠ (两直线平行, )又∵23∠=∠,( )∴∠ =∠ .B DE 13A CF2四.中考直击1.(2008年安徽省)如图,已知a ∥b ,∠1=70°,∠2=40°,则∠3= ____。

5.3 平行线的性质和命题(精讲)-

5.3 平行线的性质和命题(精讲)-

5.3平行线的性质及命题平行线的性质性质1:两直线平行,同位角相等;性质2:两直线平行,内错角相等;性质3:两直线平行,同旁内角互补.注意:(1)“同位角相等、内错角相等”、“同旁内角互补”都是平行线的性质的一部分内容,切不可忽视前提“两直线平行”.(2)从角的关系得到两直线平行,是平行线的判定;从平行线得到角相等或互补关系,是平行线的性质.题型1:两直线平行同位角相等如图,已知a∥b,∠2=115°,则∠1的度数为( )A.65°B.125°C.115°D.25°【变式1-1】如图,∠1=∠2,∠3=112°,则∠4等于( )A.62°B.68°C.78°D.112°【变式1-2】光线在不同介质中的传播速度是不同的,因此当光线从水中射向空气时,要发生折射,由于折射率相同,所以在水中是平行的光线,在空气中也是平行的,如图,∠1+∠2=103°,则∠3﹣∠4的度数为 .题型2:两直线平行内错角相等如图,∠1=∠2,∠4=120°,则∠3等于( )A.30°B.60°C.90°D.120°【变式2-1】如图,∠1=∠2,则下列结论一定成立的是( )A.∠B=∠D B.∠3=∠4C.AB∥CD D.AD∥BC【变式2-2】如图,B是AC边上一点,AD∥BE,∠1=∠2,求证:∠A=∠E.题型3:两直线平行同旁内角互补把一块直角三角板的直角顶点放在直尺的一边上(如图所示),则下列关于∠1与∠2的等式中一定成立的是( )A.∠1+∠2=180°B.2∠1=∠2C.∠2﹣∠1=45°D.∠2﹣∠1=90°【变式3-1】如图,AB∥CD,AD⊥BD,∠1=53°,则∠2的大小是( )A.53°B.50°C.37°D.23°【变式3-2】完成下面的证明.已知:如图,∠AGF=∠ABC,∠1+∠2=180°求证:BF∥DE证明:∠AGF=∠ABCGF∥ ()∠1=∠3 () ∠1+∠2=180°, +∠3=180°BF∥DE()题型4:平行线的判定与性质的综合应用如图,如果∠1=∠2,DE∥BC,则下列结论正确的个数为( )(1)FG∥DC;(2)∠AED=∠ACB;(3)CD平分∠ACB;(4)∠1+∠B=90°;(5)∠BFG=∠BDC.A.1个B.2个C.3个D.4个【变式4-1】已知:如图,∠1=∠2.试说明:∠C=∠DBA.解∵∠1=∠2(已知),∠1=∠DGF(对顶角相等),∴∠2=∠DGF(等量代换),∴BD∥CE( )∴∠C=∠DBA( )①两直线平行,内错角相等;②同位角相等;③内错角相等,两直线平行;④两直线平行,同位角相等;⑤同位角相等,两直线平行.以上空缺处依次所填正确的是( )A.③④B.④⑤C.⑤④D.⑤②【变式4-2】如图,已知∠α和∠β的度数满足方程组,且CD∥EF,AC⊥AE.(1)分别求∠α和∠β的度数;(2)求∠C的度数.题型5:单拐点问题(猪蹄模型)如图所示,AB∥EF,那么∠BAC+∠ACE+∠CEF=( )A.180°B.270°C.360°D.540°【变式5-1】已知AB∥CD,图中∠A、∠C、∠P有怎样的数量关系?用式子表示并说明理由.【变式5-2】如图,直线AB∥EF∥CD.(1)在图①中,试探究:∠BAE,∠AEC,∠ECD之间的关系;(2)当动点E如图②所示时,(1)中的结论还成立吗?如不成立,请你写出它们之间的关系.题型6:多拐点问题(探究性)如图,已知m∥n,试判断∠1,∠2,∠3,∠4会满足怎样的关系,并说明理由.【变式6-1】如图,已知直线AB∥CD,试确定∠A,∠F,∠C与∠E,∠G之间的数量关系并说明理由.【变式6-2】(1)如图(a),已知AB∥CD,∠B=120°,∠C=25°.①求α的度数;②若∠B=m°,∠C=n°,请直接写出α与m,n之间的关系式;(2)如图(b),已知AB∥EF,∠BCD=90°,试探究α、β、θ之间的数量关系,并说明理由.两条平行线的距离定义:同时垂直于两条平行线,并且夹在这两条平行线间的线段的长度,叫做这两条平行线的距离.注意:(1)求两条平行线的距离的方法是在一条直线上任找一点,向另一条直线作垂线,垂线段的长度就是两条平行线的距离.(2) 两条平行线的位置确定后,它们的距离就是个定值,不随垂线段的位置的改变而改变,即平行线间的距离处处相等.题型7:平行线间的距离及应用如图所示,直线l1∥l2,点A、B在直线l2上,点C、D在直线l1上,若△ABC的面积为S1,△ABD的面积为S2,则()A.S1>S2B.S1=S2C.S1<S2D.不确定题型8:命题与定理下命题中:①若两条直线相交所形成的四个角中有三个角相等,则这两条直线互相垂直;②若AC=BC,则C是线段AB的中点;③在同一平面内,不相交的两条线段必平行;④两点确定一条直线.其中真命题的个数是( )A.1B.2C.3D.4【变式8-1】下列命题中是假命题的是( )A.两直线平行,同位角互补B.对顶角相等C.直角三角形两锐角互余D.平行于同一直线的两条直线平行【变式8-2】下列定理中逆命题是假命题的是( )A.对顶角相等B.在一个三角形中如果两边相等那么它们所对的角也相等C.直角三角形两条直角边的平方和等于斜边的平方D.同位角相等,两直线平行【变式8-3】命题“如果|a|=|b|,那么a3=b3”,是 (选填“真”或“假”)命题.。

专题52平行线及其判定精讲(学生版)

专题52平行线及其判定精讲(学生版)

专题 5.2 平行线及其判定一、知识点平行线定义;平行公理:同一平面内,经过直线外一点有且只有一条直线与已知直线平行。

平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

平行线的判定1.两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.2.两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.3.两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.二、考点点拨与训练考点1:平面内两直线位置关系典例:(2020·石家庄市第四十一中学九年级期中)下列命题中,真命题有()(1)直线外一点与直线上各点连接的所有线段中,垂线段最短;(2)内错角相等;(3)对顶角相等;(4)过一点有且只有一条直线与已知直线平行;(5)如果一条直线和两条直线中的一条垂直,那么这条直线也和另一条垂直.(6)点到直线的垂线段叫做点到直线的距离A.1 个B.2 个C.3 个D.4 个方法或规律点拨本题考查了对顶角、内错角、点到直线的距离,点与线、线与线等的关系,掌握相关的定义与性质是解题关键.巩固练习1.(2020·浙江金华市·七年级期中)下列说法正确的是()A.没交点的两直线一定平行B.两直线平行一定没交点C.没交点的线段一定平行D.相交的两直线可能平行2.(2020·河南省淮滨县第一中学七年级期末)在同一平面内,两条直线的位置关系可能是()A.相交或垂直B.垂直或平行C.平行或相交D.相交或垂直或平行3.(2020·忠县乌杨初级中学校七年级月考)在同一平面内,两条直线的位置关系可能是()A.相交或平行B.相交或垂直C.平行或垂直D.不能确定4.(2019·山西七年级月考)已知 AOB 内部有一点M ,过点M 画OA的平行线,这样的直线()A.有且只有一条B.有两条C.有三条D.有无数条5.(2020·山东省昌乐第一中学七年级月考)下列说法正确的有()①两点之间的所有连线中,线段最短②相等的角叫对顶角③过一点有且只有一条直线与已知直线平行④不相交的两条直线叫做平行线⑤直线外一点到该直线的所有线段中垂线最短⑥在同一平面内,过一点有且只有一条直线与已知直线垂直A.1个B.2 个C.3个D.4 个6.(2020·嘉峪关市第六中学七年级月考)同一平面内,两条直线的位置关系有()A.相交、垂直B.相交、平行C.垂直、平行D.相交、垂直、平行7.(2020·河南省淮滨县第一中学七年级期末)如果a//c,a 与b 相交,b//d,那么d 与c 的关系为.8.(2019·山西七年级月考)如图所示,直线a ,b 被直线c 所截,∠1=∠2,则直线a ,b 的位置关系为(用符号表示).9.(2020·广东广州市·绿翠现代实验学校七年级月考)同一平面内,两条直线的位置关系有.考点2:平行公理及应用典例:(2020·江苏南京市·七年级期中)下列命题中的真命题是()A.在同一平面内,a、b、c 是直线,如果a∥b,b⊥c,则a∥cB.在同一平面内,a、b、c 是直线,如果a⊥b,b⊥c,则a⊥cC.在同一平面内,a、b、c 是直线,如果a∥b,b∥c,则a∥cD.在同一平面内,a、b、c 是直线,如果a∥b,b∥c,则a⊥c方法或规律点拨本题主要考查平行线和垂直的判定,掌握平行线和垂直的判定方法是解题的关键.巩固练习1.(2020·湖南永州市·七年级期末)下列说法中不正确的是()A.三条直线a ,b ,c 若a / /b ,b / /c ,则a / /cB.在同一平面内,若直线a / /b ,c ⊥a ,则c ⊥bC.在同一平面内,过一点有且只有一条直线与已知直线垂直D.在同一平面内,过一点有且只有一条直线与已知直线平行2.(2019·四川绵阳市·七年级期末)已知a,b,c是同一平面内的不同直线,下列说法正确的是()A.若a 与b 相交,b 与c 相交,则a 与c 相交B.若a / /b ,b / /c ,则a / /cC.若a ⊥b ,b ⊥c ,则a ⊥cD.若a, b, c 两两相交,有三个交点3.(2020·凉州区洪祥乡洪祥中学七年级期末)下列说法错误的是( )A .过任意一点 P 可作已知直线m 的一条平行线 B .同一平面内的两条不相交的直线是平行线 C .过直线外一点只能画一条直线与已知直线平行 D .平行于同一条直线的两条直线平行4.(2020·河南许昌市·七年级期末)在统一平面内有三条直线 a 、b 、c ,下列说法:①若a / /b , b / /c ,则a / /c ;②若 a ⊥ b , b ⊥ c ,则 a ⊥ c ,其中正确的是( )A .只有①B .只有②C .①②都正确D .①②都不正确 5.(2020·江苏淮安市·七年级期末)下列命题中,是真命题的有()①同位角相等;②对顶角相等;③同一平面内,如果直线 l 1∥l 2,直线 l 2∥l 3,那么 l 1∥l 3;④同一平面内, 如果直线 l 1⊥l 2,直线 l 2⊥l 3,那么 l 1∥l 3. A .0 个B .1 个C .2 个D .3 个6.(2021·全国九年级专题练习)如图,工人师傅用角尺画出工件边缘 AB 的垂线 a 和 b ,得到 a ∥b ,理由是( )A .连结直线外一点与直线上各点的所有线段中,垂线段最短B .在同一平面内,垂直于同一条直线的两条直线互相平行C .在同一平面内,过一点有一条而且仅有一条直线垂直于已知直线D .经过直线外一点,有且只有一条直线与这条直线平行 考点 3:平行线的判定典例:(2020·河南新乡市·七年级期末)如图,点 E 在 AC 的延长线上,给出的五个条件:① ∠3 = ∠4; ② ∠1 = ∠2 ;③ ∠A = ∠DCE ;④ ∠D = ∠DCE ;⑤ ∠D + ∠ABD = 1800 .能判断 AB / /CD 的有.方法或规律点拨本题主要考查平行线的判定定理,掌握“内错角相等,两直线平行”,“同位角相等,两直线平行”,“同旁内角互补,两直线平行”,是解题的关键.巩固练习1.(2021·广东佛山市·八年级期末)如图,直线a、b被直线c所截,下列条件不能判定直线a与b平行的是()A.∠1=∠3 B.∠2+∠4=180°C.∠1=∠4 D.∠1+∠4=180°2.(2021·福建三明市·七年级期末)如图是利用直尺和三角板过直线l 外一点P作直线l 的平行线的方法,这样做的依据是()A.同位角相等,两直线平行B.两直线平行,同位角相等C.两直线平行,内错角相等D.内错角相等,两直线平行3.(2020·珠海市紫荆中学七年级期中)如图,在下列给出的条件中,能判定DF //AB的是()A.∠4=∠3 B.∠1=∠A C.∠1=∠4 D.∠4+∠2=180°4.(2021·长沙市开福区青竹湖湘一外国语学校七年级期末)如图,能判定DE / / AC 的条件是()A.∠1 =∠3 B.∠3 =∠C C.∠2 =∠4 D.∠1+∠2 = 180︒5.(2020·浙江金华市·七年级期中)如图,点E在BC 的延长线上,则下列条件中,不能判定AB / /CD 的是()A.∠1 =∠2 B.∠3 =∠4 C.∠B =∠DCE D.∠D +∠1 +∠3 = 180︒ 6.(2020·黑龙江哈尔滨市·七年级期末)如图,下列条件:①∠1 =∠5;②∠2 =∠6;③④∠4 =∠8,其中能判定AB//CD 的是()A.①②B.②③C.①④D.②④7.(2020·福建福州市·七年级期末)如图,能判断直线AB∥CD的条件是()∠3 =∠7;A.∠3 +∠4 =180︒B.∠3 =∠4 C.∠1+∠3 = 180︒D.∠1 =∠28.(2020·上海同济大学实验学校七年级期中)如图,已知直线a、b、c,若∠1=∠2=60°,且∠2=∠3,则图中平行线组数为()A.0 B.1 C.2 D.39.(2020·吉林长春市·七年级期末)如图,给出下列条件:①∠1=∠2;②∠3=∠4;③∠B=∠DCE;④∠B+∠BAD=180°,其中能推出AB//CD 的是()A.①②B.①③C.②③D.②④10.(2021·全国七年级)如图,已知下列条件不能判定直线a / /b 的是()A.∠1 =∠2 B.∠3 =∠4 C.∠1 =∠4 D.∠4 +∠5 = 180︒ 11.(2020·浙江杭州市·七年级其他模拟)如图,直线a,b被直线c所截,现给出下列四个条件:(1)∠1 =∠5;(2)∠1 =∠7 ;(3)∠2 +∠3 =180︒;(4)∠4 =∠7 ,其中能判定a//b的条件的序号是()A.(1),(2)B.(1),(3)C.(1),(4)D.(3),(4)12(.2020·浙江金华市·七年级期末)如图,点E在AB的延长线上,下列四个条件:①∠1 =∠3;②∠2=∠4;③∠DAB =∠CBE ;④∠D +∠BCD = 180︒.其中能判断AD//CB 的是(填写正确的序号即可).13.(2020·浙江金华市·七年级期末)下列说法中:(1)不相交的两条直线叫做平行线;(2)经过一点,有且只有一条直线与已知直线平行;(3)垂直于同一条直线的两直线平行;(4)直线a//b ,b//c ,则a//c ;(5)两条直线被第三条直线所截,同位角相等.其中正确的是.14.(2021·全国七年级)如图,已知∠1=∠3,∠2+∠3=180°,请说明AB与DE平行的理由.解:将∠2 的邻补角记作∠4,则∠2+∠4=°()因为∠2+∠3=180°()所以∠3=∠4()因为()所以∠1=∠4()所以AB//DE()15.(2020·陕西宝鸡市·七年级期中)数学活动课上,小亮把两个含30°角的三角板按照如图所示方式摆放,点C ,E ,F ,B 在同一条直线上,他让小明判断直线AB 与CD 的位置关系,小明很快说出了答案并讲出了判断的依据.请你猜猜小明的答案和理由.16.(2020·甘肃张掖市·张掖四中八年级期末)已知:如图,∠C =∠1,∠2和∠D互余,∠1和∠D互余,求证:AB//CD .考点4:与平行线有关的作图问题典例:.(2021·南京外国语学校七年级期末)如图,所有小正方形的边长都是1个单位,A、B、C均在格点上仅用无刻度直尺画图:(1)过点A 画线段BC 的平行线AD ;(2)过点B 画线段BC 的垂线,垂足为B;(3)过点C 画线段AB 的垂线,垂足为E;(4)线段CE 的长度是点C 到直线的距离;(5)线段CA 、CE 的大小关系是(用“<”连接),理由是.方法或规律点拨本题考查了垂线段最短和点到直线的距离的知识,解题的关键是理解有关垂线段的性质及能进行简单的基本作图.巩固练习1.(2018·山东济南市·七年级期中)如图所示的方格纸中,每个方格均为边长为1的正方形,我们把每个小正方形的顶点称为格点,已知A、B、C 都是格点.请按以下要求作图(注:下列求作的点均是格点)(1)过点C 作一条线段CD ,使CD 平行且等于AB ;(2)过点B 作线段AB 的垂线段BE ;(3)过点C 作线段AB 的垂线段CF ,并判断CF 与BE 的位置关系;(4)求 ABC 的面积.2.(2021·北京通州区·首师大附中通州校区七年级期末)如图,点P是 AOB 的边OB 上的一点.(1)过点P 画OB 的垂线,交OA于点E;(2)过点P 画OA的垂线,垂足为H;(3)过点P 画OA的平行线PC ;(4)若每个小正方形的边长是1,则点P 到OA的距离是;(5)线段PE,PH,OE的大小关系是(用“<”连接).3.(2020·射阳县实验初级中学七年级期末)利用网格画图,每个小正方形边长均为1(1)过点C 画AB 的平行线CD;(2)仅用直尺,过点C 画AB 的垂线,垂足为E;(3)连接CA、CB,在线段CA、CB、CE 中,线段最短,理由.(4)直接写出△ABC 的面积为.4.(2021·南京外国语学校七年级期末)如图,所有小正方形的边长都是1个单位,A、B、C均在格点上仅用无刻度直尺画图:(1)过点A 画线段BC 的平行线AD ;(2)过点B 画线段BC 的垂线,垂足为B;(3)过点C 画线段AB 的垂线,垂足为E;(4)线段CE 的长度是点C 到直线的距离;(5)线段CA 、CE 的大小关系是(用“<”连接),理由是. 5.(2021·江苏苏州市·七年级期末)在如图所示的方格纸中,每个小正方形的顶点称为格点,点A,B,C都在格点上.(1)找一格点D ,使得直线CD //AB ,画出直线CD ;(2)找一格点E ,使得直线AE ⊥BC 于点F ,画出直线AE ,并注明垂足F ;(3)找一格点G ,使得直线BG ⊥AB ,画出直线BG ;(4)连接AG ,则线段AB, AF, AG 的大小关系是(用“<”连接).6.(2020·南平市建阳第三中学七年级开学考试)已知方格纸上点O和线段AB,根据下列要求画图:(1)画直线OA;(2)过B 点画直线OA 的垂线,垂足为D;(3)取线段AB 的中点E,过点E 画BD 的平行线,交AO 于点F.7.(2020·上饶市实验中学七年级期末)如图,平面上有一条直线AB以及AB外一点P,请你只用一块含30°角的三角板经过P 点画直线CD 使CD∥AB,简单说明你的画法.8.(2020·广西钦州市·七年级期末)如图,CA,AB,CD都是射线,且AB / /CD .(1)按要求画图:过A 画CD 的垂线,垂足为E ,过E 画AC 的平行线交AB 于F ;(2)在(1)画出的图形中,比较AC 与AE 的大小,并写出理由.9.(2019·广东广州市·七年级期末)如图,直线CD与直线AB相交于C,解答下列问题.(1)过点P 画PQ∥CD,交AB 于点Q;(2)过点P 画PR⊥CD,垂足为R,连接PC,判断PC 与PR 的大小,并说明理由10.(2019·天津和平区·七年级期中)阅读材料后完成.有这样一个游戏,游戏规则如下所述:如图①—图④,都是边长为1的5⨯ 5网格图,其中每条实线称为格线,格线与格线的交点称为格点.在图①和图②中,可知EF ⊥EH , LM ⊥AB .在图③ 和图④中,可知CD / / AB .根据上面的游戏规则,同学们开始闯关吧!第一关:在图⑤的6⨯6网格图中,所给各点均为格点,经过给定的一点(不包括边框上的点),在图中画出一条与线段AB 垂直的线段(或者直线)BC ,再画出与线段AB 平行的一条线段(或者直线)EF .第二关:在图⑥的6⨯6网格图中,所给各点均为格点,经过两对给定的点,构造两条互相垂直的直线.(在图中直接画出)11.(2019·陕西西安市·七年级期中)如图,由相同边长的小正方形组成的网格图形,A、B、C 都在格点上,利用网格画图.(1)过点C 画AB 的平行线CF ,标出F 点;(2)过点B 画AC 的垂线BG ,垂足为点G ,标出G 点;(3)点B 到AC 的距离是线段的长度;(4)线段BG 、AB的大小关系为:BG AB(填“>”、“<”或“=”).12.(2019·山西七年级月考)(1)如图,点M代表某个公园,直线l 代表公园M 附近的一条公路.根据实际需要,计划在公路l 上某处设置一个公交站点,并使其距离公园M 最近,请在公路l 上画出公交站点的位置,并写出画图依据(不需要尺规作图);(2)将一副透明的直角三角尺,按如图所示的位置摆放.如果把三角尺的每条边看成线段,线段AB 分别和DE ,CE 相交于点F 和点G ,请根据图形回答下列问题.①找出图中两条互相垂直的线段,并用符号表示出来(写出一对即可);②找出图中两条互相平行的线段,并用符号表示出来(写出一对即可).。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档