北师大版八年级上册数学期末复习试卷(含答案)

合集下载

北师大版八年级上册数学期末考试试卷及答案

北师大版八年级上册数学期末考试试卷及答案

北师大版八年级上册数学期末考试试题一、单选题1.下列实数中,是无理数的是()A B .3-C .0.101001D .132.如图,直线a ,b 被直线c 所截,下列条件中,不能判定a ∥b 的是()A .∠2=∠5B .∠1=∠3C .∠5=∠4D .∠1+∠5=180°3.若一次函数(2)1y k x =-+的函数值y 随x 的增大而增大,则()A .2k <B .2k >C .0k >D .0k <4.快要到新年了,某鞋店老板要进一批新年鞋,他一定会参考下面的调查数据,他最关注的是()A .中位数B .平均数C .加权平均数D .众数5.下列各命题中,属于假命题的是()A .若a -b =0,则a =b =0B .若a -b >0,则a >bC .若a -b <0,则a <bD .若a -b≠0,则a≠b6.二元一次方程组22x y x y +=⎧⎨-=-⎩的解是()A .02x y =⎧⎨=-⎩B .02x y =⎧⎨=⎩C .20x y =⎧⎨=⎩D .20x y =-⎧⎨=⎩7.已知正比例函数y =kx 的函数值y 随x 的增大而减小,则一次函数y =kx -k 的图象大致是()A .B .C .D .8.如图,已知函数y =ax+b 和y =kx 的图象交于点P ,则根据图象可得关于x ,y 的二元一次方程组y ax by kx=+⎧⎨=⎩的解是()A.24xy=-⎧⎨=-⎩B.42xy=-⎧⎨=-⎩C.24xy=⎧⎨=-⎩D.42xy=-⎧⎨=⎩9.如图,点O是△ABC内一点,∠A=80°,∠1=15°,∠2=40°,则∠BOC等于()A.95°B.120°C.135°D.无法确定10.如图,∠AFD=65°,CD∥EB,则BÐ的度数为()A.115°B.110°C.105°D.65°二、填空题11.甲、乙两地7月上旬的日平均气温如图所示,则甲,乙两地这10天中日平均气温的方差S2甲与S2乙的大小关系是S2甲_______S2乙.(填“>”或“<”)12.小明某学期数学平时成绩为70分,期中考试成绩为80分,期末考试成绩为90分,计算学期总评成绩的方法:平时占30%,期中占30%,期末占40%,则小明这学期的总评成绩是________分.13.若|3x﹣0,则xy的算术平方根是_____.14.如图所示,一次函数y=ax+b的图象与x轴相交于点(2,0),与y轴相交于点(0,4),结合图象可知,关于x的方程ax+b=0的解是_____.15.如图,已知∠1=100°,∠2=140°,那么∠3=________度.16.如图,在Rt△ABC中,∠C=90°,AC=3,BC=5,分别以点A、B为圆心,大于1AB2的长为半径画弧,两弧交点分别为点P、Q,过P、Q两点作直线交BC于点D,则CD的长是_____.17.如图,在直角坐标系中,点A,B的坐标分别为(1,4)和(3,0),点C是y轴上的一个动点,且A,B,C三点不在同一条直线上,当△ABC的周长最小时,点C的坐标是____________.18.如图,在△ABC 中,∠A=40°,点D 是∠ABC 和∠ACB 角平分线的交点,则∠BDC 为________三、解答题1901323(21)2-+20.解下列方程组:569745x y x y -=⎧⎨-=-⎩21.某单位750名职工积极参加向贫困地区学校捐书活动,为了解职工的捐数量,采用随机抽样的方法抽取30名职工作为样本,对他们的捐书量进行统计,统计结果共有4本、5本、6本、7本、8本五类,分别用A ,B ,C ,D ,E 表示,根据统计数据绘制成了如图所示的不完整的条形统计图,由图中给出的信息解答下列问题:(1)补全条形统计图;(2)这30名职工捐书本数的众数是本,中位数是本;(3)求这30名职工捐书本数的平均数是多少本?并估计该单位750名职工共捐书多少本?22.如图,已知12l l //,且3l 与1l ,2l 分别交于A ,B 两点,点P 在直线AB 上.(1)当点P 在A ,B 两点之间运动时,求1∠,2∠,3∠之间的数量关系,并说明理由.(2)如果点P 在A ,B 两点外侧运动,试探究1∠,2∠,3∠之间的数量关系(点P 与A ,B 不重合),并说明理由.23.某市推出电脑上网包月制,每月收取费用y (元)与上网时间x (小时)的函数关系如图所示,其中BA 是线段,且BA ∥x 轴,AC 是射线.(1)若小李11月份上网20小时,他应付多少元的上网费用?(2)当x≥30,求y 与x 之间的函数关系式;(3)若小李12月份上网费用为135元,则他在该月份的上网时间是多少?24.如图,在Rt △ABC 中,∠ACB =90°,AC =6,BC =8,将△ACB 沿CD 折叠,使点A 恰好落在BC 边上的点E 处.(1)求△BDE 的周长;(2)若∠B =37°,求∠CDE 的度数.25.某水果店11月份购进甲、乙两种水果共花费1700元,其中甲种水果8元/千克,乙种水果18元/千克.12月份,这两种水果的进价上调为:甲种水果10元/千克,乙种水果20元/千克.(1)若该店12月份购进这两种水果的数量与11月份都相同,将多支付货款300元,求该店11月份购进甲、乙两种水果分别是多少千克?(2)若12月份将这两种水果进货总量减少到120千克,设购进甲种水果a千克,需要支付的货款为w元,求w与a的函数关系式;(3)在(2)的条件下,若甲种水果不超过90千克,则12月份该店需要支付这两种水果的货款最少应是多少元?26.甲、乙两人相约周末登花果山,甲、乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)甲登山上升的速度是每分钟________米,乙在A地时距地面的高度b为________米;(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,请求出乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式(写出自变量范围);(3)登山多长时间时,甲、乙两人距地面的高度差为70米?参考答案1.A2.B3.B4.D 5.A 6.B 7.C 8.B 9.C 10.A 11.> 12.81 1314.x=2 15.6016.8 517.(0,3)18.110°【详解】解:∵D点是∠ABC和∠ACB角平分线的交点,∴∠CBD=∠ABD=12∠ABC,∠BCD=∠ACD=12∠ACB,∵∠A=40°,∴∠ABC+∠ACB=180°−40°=140°,∴∠DBC+∠DCB=70°,∴∠BDC=180°−70°=110°,故答案为:110°.191.1)1=+1=.20.34xy=-⎧⎨=-⎩.【详解】解:569745x y x y -=⎧⎨-=-⎩①②,①×2-②×3,得-11x=33,解得x=-3,把x=-3代入①,得-15-6y=9,解得y=-4,故方程组的解为34x y =-⎧⎨=-⎩.21.(1)补全图形见解析;(2)6,6;(3)6本;4500本.【详解】解:(1)D 组人数=30﹣4﹣6﹣9﹣3=8.(2)众数是6本中位数是6本.故答案为6,6.(3)平均数=6(本),该单位750名职工共捐书约4500本.22.(1)123∠+∠=∠,见解析;(2)123∠-∠=∠或213∠-∠=∠,见解析.【详解】(1)123∠+∠=∠.理由如下:如图所示,过点P 作1//PQ l .12//l l ,12////l l PQ ∴,14∴∠=∠,25∠=∠.453∠+∠=∠ ,123∴∠+∠=∠.(2)123∠-∠=∠或213∠-∠=∠.理由如下:当点P 在下侧时,过点P 作1l 的平行线PQ ,如图所示,12//l l ,12////l l PQ ∴,24∴∠=∠,134∠=∠+∠,123∴∠-∠=∠.当点P 在上侧时,如图所示,12//l l ,24∴∠=∠,又413∠=∠+∠,213∴∠-∠=∠.23.(1)60元;(2)y =3x ﹣30;(3)55个小时.【详解】解:(1)根据题意,从图象上看,30小时以内的上网费用都是60元;(2)当x≥30时,设函数关系式为y =kx+b ,则30604090k b k b +=⎧⎨+=⎩,解得k 3b 30=⎧⎨=-⎩,故函数关系式为y =3x ﹣30;(3)由135=3x ﹣30解得x =55,故12月份上网55个小时.24.(1)△BDE 的周长为12;(2)∠CDE 的度数为82°.【分析】(1)由折叠的性质可知,DE=AD ,CE=AC ,则△BDE 的周长=BD+DE+BE=BD+BE+AD=AB+BE ,先求出BE 的长,再利用勾股定理求出AB 的长即可;(2)由折叠的性质可知:∠ACD=∠BCD ,∠A=∠CED ,再利用三角形内角和定理求解即可.【详解】解:(1)由折叠的性质可知,DE=AD ,CE=AC ,∴△BDE 的周长=BD+DE+BE=BD+BE+AD=AB+BE ,∵∠ACB=90°,AC=6,BC=8,∴BE=BC-CE=BC-AC=2,10AB =,∴△BDE 的周长=AB+BE=10+2=12;(2)由折叠的性质可知:∠ACD=∠BCD ,∠A=∠CED ,∵∠ACB=90°,∠B=37°,∴∠A=∠CED=53°,1452ECD ACB ==o ∠,∴=180=82CDE BCD CED --o o ∠∠∠.25.(1)该店5月份购进甲种水果100千克,购进乙种水果50千克;(2)w =﹣10a+2400;(3)12月份该店需要支付这两种水果的货款最少应是1500元.【分析】(1)设该店5月份进甲种水果x千克,购进乙种水果y千克,根据总价=单价×购进数星,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设购进甲种水果a千克,需要支付的货款为w元,则购进乙种水果(120-a)千克,根据总价=单价×购进数量,即可得出w关于a的函数关系式;(3)根据甲种水果不超过90千克,可得出a的取值范固,再利用一次函数的性质即可解决最值问题.【详解】解:(1)设该店11月份购进甲种水果x千克,购进乙种水果y千克,根据题意得:8181700 10201700300 x yx y+=⎧⎨+=+⎩,解得10050xy=⎧⎨=⎩,答:该店5月份购进甲种水果100千克,购进乙种水果50千克;(2)设购进甲种水果a千克,需要支付的货款为w元,则购进乙种水果(120﹣a)千克,根据题意得:w=10a+20(120﹣a)=﹣10a+2400;(3)根据题意得,a≤90,由(2)得,w=﹣10a+2400,∵﹣10<0,w随a的增大而减小,∴a=90时,w有最小值w最小=﹣10×90+2400=1500(元).答:12月份该店需要支付这两种水果的货款最少应是1500元.【点睛】本题考查了二元一次方程组的应用、以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组:(2)根据各数之间的关系,找出w关于a的函数关系式. 26.(1)10;30;(2)15(02)3030(211)x xyx x≤<⎧=⎨-≤≤⎩;(3)登山3分钟或10分钟或13分钟时,甲、乙两人距地面的高度差为70米.【分析】(1)根据速度=高度÷时间即可算出甲登山上升的速度;根据高度=速度×时间即可算出乙在A地时距地面的高度b的值;(2)分0≤x<2和x≥2两种情况,根据高度=初始高度+速度×时间即可得出y关于x的函数关系;(3)当乙未到终点时,找出甲登山全程中y关于x的函数关系式,令二者作差等于70得出关于x的一元一次方程,解之即可求出x值;当乙到达终点时,用终点的高度-甲登山全程中y 关于x 的函数关系式=70,得出关于x 的一元一次方程,解之可求出x 值.综上即可得出结论.(1)解:甲登山上升的速度是:(300-100)÷20=10(米/分钟),b=15÷1×2=30.故答案为:10;30;(2)解:当0≤x <2时,y=15x ;当x≥2时,y=30+10×3(x-2)=30x-30.当y=30x-30=300时,x=11.∴乙登山全程中,距地面的高度y 与登山时间x 之间的函数关系式为:15(02)3030(211)x x y x x ≤<⎧=⎨-≤≤⎩;(3)解:甲登山全程中,距地面的高度y 与登山时间之间的函数关系式为y=kx+b (k≠0),把(0,100)和(20,300)代入解析式得:10020300b k b =⎧⎨+=⎩,解得:10100k b =⎧⎨=⎩,∴甲登山全程中,距地面的高度y 与登山时间之间的函数关系式为y=10x+100(0≤x≤20),当10x+100-(30x-30)=70时,解得:x=3;当30x-30-(10x+100)=70时,解得:x=10;当300-(10x+100)=70时,解得:x=13.答:登山3分钟、10分钟或13分钟时,甲、乙两人距地面的高度差为70米.。

北师大版八年级上册数学期末考试试卷及答案

北师大版八年级上册数学期末考试试卷及答案

北师大版八年级上册数学期末考试试题一、单选题12 )A B C D 2.下列各组数中不能作为直角三角形三边长的是( ) A .1,2,3 B .3,4,5 C .5,12,13 D .8,15,173.下列四个命题中,真命题是( )A .如果a b ,b c ≠,那么a c ≠B .平面内点(1,2)A -与点(1,2)B --关于y 轴对称C .三角形的一个外角大于这个三角形中的任何一个内角D .三角形的任意两边之和一定大于第三边4.在一次数学测验中,甲、乙、丙、丁四位同学的成绩(单位:分)分别是80,x ,80,70,若这四位同学成绩的众数与平均数恰好相等,则他们成绩的中位数是( )A .90分B .85分C .80分D .75分5.如图,将直角三角板的锐角顶点A ,B 分别放置在两条平行直线1l ,2l 上,若165∠=︒,则2∠的度数是( )A .65︒B .45︒C .35︒D .25︒ 6.如图,七个相同的小长方形组成一个大长方形ABCD ,若21CD =,则长方形ABCD 的周长为( )A .100B .102C .104D .106 7.如图,直线2y x =-+与x 轴交于点A ,与y 轴交于点B ,以点A 为圆心,AB 为半径画弧,交x 轴于点C ,则点C 坐标为( )A .(2-,0)B .2,0)C .(-,0)D .(2,0)-8.已知第一象限内的点(,)P x y 在直线6y x =-的图象上,x 轴上的点A 横坐标为4.设AOP的面积为S ,则下列图象中,能正确反映S 与x 之间函数关系的是( )A .B .C .D .9.如图,直线a∥b ,将含有45°的三角板ABC 的直角顶点C 放在直线b 上,若∥1=27°,则∥2的度数是( )A .10°B .15°C .18°D .20°10.甲骑摩托车从A 地去B 地.乙开汽车从B 地去A 地.同时出发,匀速行驶.各自到达终点后停止.设甲、乙两人间的距离为s(单位:千米),甲行驶的时间为t(单位:小时),s 与t 之间的函数关系如图所示,下列结论中,错误的是( )A .出发1小时时,甲、乙在途中相遇B .出发1.5小时时,乙比甲多行驶了60千米C .出发3小时时,甲、乙同时到达终点D .甲的速度是乙速度的一半二、填空题11.8-的立方根是__________.12.如表记录了甲、乙、丙、丁四名同学最近五次数学考试成绩的平均分(单位:分)与方差:要推荐一名成绩好且发挥稳定的同学参加数学竞赛,应该选择 __(填甲、乙、丙、丁中一个即可).13.若将函数2y x =-的图象向上平移3个单位,得到一个一次函数的图象,则这个一次函数的表达式为 __.14.某工厂去年的利润(总收入-总支出)为200万元.今年总收入比去年增加了20%,总支出比去年减少了10%,今年的利润为780万元.设去年的总收入为x 万元、总支出为y 万元,根据题意可列方程组___.15.如图,一次函数1y x =+与5y ax =+的图象相交于点P ,点P 的横坐标为2,那么关于x ,y 的方程组15x y ax y -=-⎧⎨-=-⎩的解为 __.16.已知长方形纸片ABCD ,5AB =,12BC =,将ABC 沿着AC 按如图方式折叠,点B 的对应点为点F ,CF 与AD 相交于点E ,则AE 的长为 __.17.平面直角坐标系xOy 中,点1A ,2A ,3A ,⋯和1B ,2B ,3B ,⋯分别在直线1233y x =+和x 轴上,∥11OA B ,∥122B A B ,∥233B A B ,⋯都是等腰直角三角形,如果1(1,1)A ,则点2021A 的纵坐标是 __.18.如图,y =k 1x+b 1与y =k 2x+b 2交于点A ,则方程组1122y k x b y k x b =+⎧⎨=+⎩的解为______.三、解答题19.如图,在ABC ∆中,40B ∠=︒,∥C=54°,AD 和AE 分别是高和角平分线,求DAE ∠的度数.20.(1(2)计算:221)1)-;(3)用适当的方法解方程组:32143x y x y +=⎧⎨-=⎩. 21.某校组织八年级全体200名学生参加“强国有我”读书活动,要求每人必读1~4本书,活动结束后从八年级学生中随机抽查了若干名学生了解读书数量情况,并根据:1A 本;:2B 本;:3C 本;:4D 本四种类型的人数绘制了不完整的条形统计图(图1)和扇形统计图(图2).请根据统计图解答下列问题:(1)在这次调查中D 类型有多少名学生?(2)直接写出被调查学生读书数量的众数和中位数;(3)求被调查学生读书数量的平均数,并估计八年级200名学生共读书多少本?22.如图,直线2:43l y x =-+与x 轴,y 轴分别交于A ,B 两点.(1)求AOB 的面积;(2)在y 轴上有一定点(0,8)P ,在x 轴上有一动点Q ,若POQ △与AOB 面积相等,请直接写出点Q 的坐标.23.请将下列题目中横线上的证明过程和依据补充完整:如图,点B 在AG 上,AG CD ,CF 平分BCD ∠,ABE BCF ∠=∠,BE AF ⊥于点E .求证:90F ∠=︒. 证明:AG ∥CD ,ABC BCD ∴∠=∠( )ABE BCF ∠=∠,ABC ABE BCD BCF ∴∠-∠=∠-∠,即CBE DCF ∠=∠, CF 平分BCD ∠,BCF DCF ∴∠=∠( )∴ BCF =∠.∥BC ∥CF ( )∴ F =∠.BE AF ⊥,∴ 90=︒( ).90F ∴∠=︒.24.某景区门票分为两种:A 种门票600元/张,B 种门票120元/张.某旅行社为一个旅行团代购部分门票,若旅行社购买A ,B 两种门票共15张,总费用5160元,求旅行社为这个旅行团代购的A 种门票和B 种门票各多少张?(要求列方程组解答)25.已知A ,B 两地间某道路全程为240km ,甲、乙两车沿此道路分别从A ,B 两地同时出发匀速相向而行,甲车从A 地出发行驶2h 后因有事按原路原速返回A 地,结果两车同时到达A 地.已知甲、乙两车距A 地的路程(km)y 与甲车出发所用的时间(h)x 的函数关系如图所示,请结合图象信息解答下列问题:(1)甲车的速度为 km/h ,乙车的速度为 km/h ;(2)求甲车出发多长时间两车途中首次相遇?(3)直接写出甲车出发多长时间两车相距40km .26.概念认识:如图∥,在ABC ∠中,若ABD DBE EBC ∠=∠=∠,则BD ,BE 叫做ABC ∠的“三分线”.其中,BD 是“邻BA 三分线”,BE 是“邻BC 三分线”.(1)问题解决:如图∥,在ABC 中,70A ∠=︒,=45ABC ∠︒,若ABC ∠的邻BA 三分线BD 交AC 于点D ,则BDC ∠的度数为 ;(2)如图∥,在ABC 中,BP ,CP 分别是ABC ∠邻BC 三分线和ACB ∠邻CB 三分线,且135BPC ∠=︒,求A ∠的度数;(3)延伸推广:在ABC 中,ACD ∠是ABC 的外角,B ∠的邻BC 三分线所在的直线与ACD ∠的三分线所在的直线交于点P .若A m ∠=︒,=60B ∠︒,直接写出BPC ∠的度数.(用含m 的代数式表示)27.如图,在平面直角坐标系中有ABO ,90AOB ∠=︒,AO BO =,作AC x ⊥轴于点C ,BD x ⊥轴于点D ,点B 的坐标为(1,3).(1)请直接写出点A 的坐标;(2)求直线AB 的表达式;(3)若M 为AB 的中点,连接CM ,动点P 从点C 出发,沿射线CM 方向运动,当||BP OP -最大时,求点P 的坐标.参考答案1.B【分析】根据最简二次根式的定义判断即可.【详解】解:A =A 不符合题意;B B 符合题意;C =,故C 不符合题意;D =,故D 不符合题意; 故选:B .【点睛】此题考查了最简二次根式的定义:被开方数中不含分母,不含能开得尽方的因数或因式,熟记定义是解题的关键.2.A【分析】利用勾股定理的逆定理判断三边长能否构成直角三角形,满足最长边的平方与另两边的平方和相等的即可构成直角三角形.【详解】解:先求出两小边的平方和,再求出最长边的平方,最后看看是否相等即可. A 、222123+≠,故不是直角三角形,符合题意;B 、222345+=,故是直角三角形,不符合题意;C 、22251213+=,故是直角三角形,不符合题意;D 、22281517+=,故是直角三角形,不符合题意;故选:A .【点睛】本题考查勾股定理的逆定理,利用勾股定理逆定理判断三边长能否构成直角三角形,若满足最长边的平方与另两边的平方和相等即可构成直角三角形.3.D【分析】利用不等式的性质、关于坐标轴对称的点的坐标特点、三角形的外角的性质及三角形的三边关系分别判断后即可确定正确的选项.【详解】解:A 、如果a b ,b c ≠,那么可能a c =,故原命题错误,是假命题,不符合题意;B 、平面内点(1,2)A -与点(1,2)B --关于x 轴对称,故原命题错误,是假命题,不符合题意;C 、三角形的一个外角大于任何一个不相邻的内角,故原命题错误,是假命题,不符合题意;D 、三角形的任意两边之和一定大于第三边,正确,是真命题,符合题意.故选:D .【点睛】考查了命题与定理的知识,解题的关键是了解不等式的性质、关于坐标轴对称的点的坐标特点、三角形的外角的性质及三角形的三边关系,难度不大.4.C【分析】因为x 的值不确定,所以众数也不能直接确定,需分类讨论:∥80x =;∥70x =;∥80x ≠且70x ≠,再分别进行解答即可.【详解】解:∥80x =时,众数是80,平均数(80808070)480=+++÷≠,则此情况不成立, ∥70x =时,众数是80和70,而平均数是一个数,则此情况不成立,∥70x ≠且80x ≠时,众数是80,根据题意得:(808070)480x +++÷=,解得90x =,则中位数是(8080)280+÷=.故选:C .【点睛】此题考查了众数的定义,中位数的定义,平均数的计算公式,正确掌握各定义并分类讨论是解题的关键.5.D【分析】延长AC 交直线2l 于点D ,由平行线的性质可得165ADB ∠=∠=︒,则可求2∠的度数.【详解】解:延长AC 交直线2l 于点D ,如图,12//l l ,165∠=︒,165ADB ∴∠=∠=︒,90ACB ∠=︒,225ADB ADB ∴∠=∠-∠=︒.故选:D .【点睛】此题考查了平行线的性质,三角形外角的性质,熟记平行线的性质是解题的关键.6.B【分析】由图可看出本题的等量关系:小长方形的长2⨯=小长方形的宽5⨯;小长方形的长+宽21=,据此可以列出方程组求解.【详解】解:设小长方形的长为x ,宽为y .由图可知:5221y x x y =⎧⎨+=⎩ 解得.156x y =⎧⎨=⎩, ∥长方形ABCD 的长为55630y =⨯=,宽为21,∴长方形ABCD 的周长为2(3021)102⨯+=,故选:B .【点睛】本题主要考查了二元一次方程组在几何图形中的应用,解题的关键在于能够根据题意列出方程求解.7.A【分析】利用一次函数图象上点的坐标特征可求出点A ,B 的坐标,利用勾股定理求出AB 的长度,再结合点A 的坐标即可找出点C 的坐标.【详解】解:当0x =时,22y x =-+=,∴点B 的坐标为(0,2),2OB =;当0y =时,20x -+=,解得:2x =,∴点A 的坐标为(2,0),2OA =.AB ∴,∴点C 的坐标为(2-,0).故选:A .【点睛】本题主要考查了一次函数与坐标轴的交点问题,勾股定理,熟知求一次函数与坐标轴交点的方法是解题的关键.8.C【分析】根据第一象限内的点(,)P x y 在直线6y x =-的图象上,x 轴上的点A 横坐标为4,从而可以得到S 关于x 的函数关系式,从而可以解答本题.【详解】解:∥第一象限内的点(,)P x y 在直线6y x =-的图象上,x 轴上的点A 横坐标为4, ∥1422(6)2x 122S y y x =⨯==-=-+,06x <<, ∥021212x <-+<∥012S <<,故选:C .【点睛】本题考查函数图象、三角形的面积,解答本题的关键是明确题意,列出相应的函数关系,利用数形结合的思想解答.9.C【分析】过B 作BE∥直线a ,推出a∥b∥BE ,根据平行线性质得出∥2=∥ABE ,∥1=∥CBE=27°,根据∥ABC=45求出∥ABE ,即可得出答案.【详解】解:过B作BE∥直线a,∥直线a∥b,∥∥2=∥ABE,∥1=∥CBE=27°,∥∥ABC=45°,∥∥2=∥ABE=45°﹣27°=18°,故选C.【点睛】本题考查了平行线性质的应用,解此题的关键是正确作出辅助线.10.C【分析】根据函数图象和图象中的数据可以计算出各个选项中的说法是否正确,从而可以解答本题.【详解】解:由图象可得,出发1小时时,甲乙在途中相遇,故选项A正确,甲的速度是:120÷3=40千米/时,则乙的速度是:120÷1﹣40=80千米/h,∥出发1.5小时时,乙比甲多行驶路程是:1.5×(80﹣40)=60千米,故选项B正确,在1.5小时时,乙到达终点,甲在3小时时到达终点,故选项C错误,∥甲的速度是:120÷3=40千米/时,乙的速度是:120÷1﹣40=80千米/h,∥甲的速度是乙速度的一半,故选项D正确,故选C.【点睛】本题考查了函数图象,解题的关键是明确题意,找出所求问题需要的条件,利用函数的思想和数形结合的思想解答.11.-2【分析】根据立方根的定义进行求解即可得.【详解】解:∥(﹣2)3 =﹣8,∥﹣8的立方根是﹣2,故答案为﹣2.【点睛】本题考查了立方根的定义,熟练掌握立方根的定义是解题的关键.12.丙【分析】首先根据平均分判断成绩好坏,平均分越高,成绩越好;再根据方差来判断数据的稳定性,方差越小,稳定性越好.【详解】解:首先比较平均数,平均数相同时选择方差较小的参加竞赛.甲和丁的平均数较小,∴从乙和丙中选择一人参加竞赛,丙的方差较小,∴选择丙竞赛.故答案为:丙.【点睛】本题考查平均数和方差,利用平均数和方差做决策,关键是理解平均数和方差代表的意义.13.23y x =-+【分析】根据函数图象平移的法则“上加下减”,就可以求出平移以后函数的解析式,【详解】解:将正比例函数2y x =-的图象向上平移3个单位长度,得到一次函数的表达式为:23y x =-+.故答案为:23y x =-+.【点睛】本题考查一次函数的平移.掌握图象平移的法则“上加下减”是解题关键.14.200(120%)(110%)780x y x y -=⎧⎨+--=⎩ 【分析】设去年的总收入为x 万元、总支出为y 万元,根据去年的利润(总收入-总支出)为200万元,今年的利润为780万元,列方程组即可.【详解】解:设去年的总收入为x 万元、总支出为y 万元,由题意得,()()200120%110%780x y x y -=⎧⎨+--=⎩. 故答案为:()()200120%110%780x y x y -=⎧⎨+--=⎩. 【点睛】本题主要考查了列二元一次方程组,解题的关键在于能够正确理解题意.15.23x y =⎧⎨=⎩【分析】先把x =2代入y =x+1,得出y =3,则两个一次函数的交点P 的坐标为(2,3);那么交点坐标同时满足两个函数的解析式,而所求的方程组正好是由两个函数的解析式所构成,因此两函数的交点坐标即为方程组的解.【详解】解:把2x =代入1y x =+得,213y =+=,一次函数1y x =+与5y ax =+的图象相交于点(2,3)P ,则关于x ,y 的方程组15x y ax y -=-⎧⎨-=-⎩的解为23x y =⎧⎨=⎩, 故答案为:23x y =⎧⎨=⎩. 【点睛】本题考查了一次函数与二元一次方程组的联系,方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标,解决问题的关键是正确的求出点P 的坐标.16.16924【分析】由矩形的性质可得5AB CD ==,12AD BC ==,//AD BC ,根据平行线的性质和折叠的性质可得EAC ACE ACB ∠=∠=∠,即AE EC =,根据勾股定理列方程可求AE 的长. 【详解】解:四边形ABCD 是矩形,5AB CD ∴==,12AD BC ==,//AD BC ,EAC ACB ∴∠=∠,由折叠可得ACE ACB ∠=∠,EAC ACE ∴∠=∠,AE CE ∴=,在Rt∥DEC 中,222CE DE CD =+,即22(12)25AE AE =-+, 解得16924AE =, 故答案为:16924. 【点睛】此题考查了矩形与折叠问题,勾股定理,正确掌握矩形的性质及折叠的性质是解题的关键.17.20202【分析】利用待定系数法可得1A 、2A 、3A 的坐标,进而得出各点的坐标的规律.【详解】解:如图所示,过点1A 作1AC x ⊥轴于C ,过点2A 作2A D x ⊥轴于D , ∥()11,1A ,∥OA 1B 1是等腰直角三角形,∥1OC B C =即点C 是1OB 的中点,∥111222A OB AC y ===, 同理可得21212222A B B B D A D y ===,∥12112A A OD OB B D y y =+=+,∴可设2(2,)A a a + ∥12(2)33a a =++,解得2a =,2(4,2)A ∴, 同理可设3(6,)A b b +,则有12(6)33b b =++,解得4b =, 3(10,4)A ∴,由此发现点n A 的纵坐标为12n -,即点2021A 的纵坐标是20202,故答案为:20202.【点睛】本题主要考查了一次函数的规律型问题,等腰直角三角形的性质,直角三角形斜边上的中线,解题的关键在于能够根据题意得到点的坐标规律.18.23x y =-⎧⎨=-⎩ 【详解】试题解析:∥11y k x b =+与22y k x b =+交于点()2,3--,∥二元一次方程组1122y k x b y k x b =+⎧⎨=+⎩的解为23.x y =-⎧⎨=-⎩ 故答案为23.x y =-⎧⎨=-⎩19.7°【分析】根据三角形内角和定理,得到∥BAC 的度数,然后根据角平分线和高的定义,分别求出∥EAC 和∥CAD 的度数,最后计算出结果即可.【详解】解:∥∥B=40°,∥C=54°∥∥BAC=180°-∥B -∥C=86°∥AE 是∥BAC 的角平分线∥∥EAC=43°∥AD 是ABC ∆的高∥∥ADC=90°∥∥CAD=90°-∥C=36°∥∥DAE=∥EAC -∥CAD=43°-36°=7°【点睛】本题考查了三角形的高线和角平分线的定义,熟练掌握相关知识,精准识图,准确计算是本题的解题关键.20.(1);(2)(3)41x y =⎧⎨=⎩【分析】(1)原式各自化简后,合并同类二次根式即可得到结果;(2)原式利用完全平方公式化简,去括号合并即可得到结果;(3)方程组利用加减消元法求出解即可.【详解】解:(1)原式== (2)原式(21)(21)=+--2121=+-+=(3)32143x y x y +=⎧⎨-=⎩①②, ∥+∥2⨯得:520x =,解得:4x =,把4x =代入∥得:43y -=,解得:1y =,则方程组的解为41x y =⎧⎨=⎩. 【点睛】本题考查了二次根式的混合运算,解二元一次方程组,熟练掌握各知识点是解答本题的关键.21.(1)2名(2)众数为2本,中位数为2本(3)平均数:2.3本;460本【分析】(1)由两个统计图可知,B 类人数为8人,占40%可得抽查总人数,进而求出D 类的学生人数;(2)根据中位数、众数的意义求解即可;(3)先求出样本的平均数,再乘以总人数即可.(1)解:这次调查一共抽查的学生人数为840%20÷=(人),D 类人数2010%2=⨯=(人);(2)解:从条形统计图来看,阅读2本的人数最多,故被调查学生读书数量的众数为2本, 20个数据中,第10个数是2,第11个数是2,故被调查学生读书数量的中位数为2本;(3) 解:被调查学生读书数量的平均数为:1(14283642) 2.320⨯⨯+⨯+⨯+⨯=(本), 2.3200460⨯=(本),估计八年级200名学生共读书460本.【点睛】本题考查的是条形统计图和扇形统计图,读懂统计图,会计算部分的数量,根据部分的百分比求总体的数量,平均数的计算公式,从统计图中得到必要的信息是解决问题的关键.22.(1)12(2)Q 点坐标为(3,0)或(3,0)-【分析】(1)由直线2:43l y x =-+求得A 、B 的坐标,然后根据三角形面积公式即可求得AOB ∆的面积;(2)利用三角形面积求得OQ ,进而即可求得Q 的坐标.(1) 解:函数243y x =-+,当0x =时,4y =, ∥B (0,4);当0y =时,6x =,(6,0)A ∴,6OA ∴=,4OB =,11641222AOB S OA OB ∆∴=⨯⋅=⨯⨯=; (2) 解:点(0,8)P ,8OP ∴=,POQ ∆与AOB ∆面积相等, ∴1122OQ OP ⨯=,即18122OQ ⨯=,3OQ ∴=,Q ∴点坐标为(3,0)或(3,0)-. 23.两直线平行,内错角相等;角平分线的定义;CBE ∠;内错角相等,两直线平行;BEF ∠;BEF ∠;垂直的定义【分析】根据平行线性质与判定、角平分线定义、垂直的定义填空即可.【详解】证明://AG CD ,(ABC BCD ∴∠=∠ 两直线平行,内错角相等),ABE BCF∠=∠,ABC ABE BCD BCF∴∠-∠=∠-∠,即CBE DCF∠=∠,CF平分BCD∠,(BCF DCF∴∠=∠角平分线的定义),//(BE CF∴内错角相等,两直线平行),BEF F∴∠=∠.BE AF⊥,90(BEF∴∠=︒垂直的定义).90F∴∠=︒.故答案为:两直线平行,内错角相等;角平分线的定义;CBE∠;内错角相等,两直线平行;BEF∠;BEF∠;垂直的定义.【点睛】本题主要考查了平行线的性质与判定,角平分线的定义,垂直的定义,熟知相关知识是解题的关键.24.旅行社为这个旅行团代购A种门票7张,B种门票8张【分析】设旅行社为这个旅行团代购A种门票x张,B种门票y张,利用总价=单价⨯数量,结合“旅行社购买A,B两种门票共15张,总费用5160元”,即可得出关于x,y的二元一次方程组,解之即可得出结论.【详解】解:设旅行社为这个旅行团代购A种门票x张,B种门票y张,依题意得:15 6001205160x yx y+=⎧⎨+=⎩,解得:78xy=⎧⎨=⎩.答:旅行社为这个旅行团代购A种门票7张,B种门票8张.【点睛】本题主要考查了二元一次方程组的实际应用,解题的关键在于能够根据题意列出方程求解.25.(1)80;60(2)12h7(3)10h7或2h【分析】(1)直接利用图象求出速度和时间即可;(2)分别求出甲、乙两车距A 地的路程(km)y 与甲车出发所用的时间(h)x 的函数关系式,再列方程解答即可;(3)分相遇前和相遇后两种情况进行讨论即可.(1)解:由题意可知,甲车的速度为:160280km/h ÷=,乙车的速度为:240(22)60km/h ÷+=; 故答案为:80;60;(2)解:设1(02)y k x x =<<甲,将(2,160)代入得180k =,()8002y x x ∴=<<甲,设2y k x b =+乙,将(0,240),(4,0)代入得:224040b k b =⎧⎨+=⎩, 解得:260240k b =-⎧⎨=⎩, 60240y x ∴=-+乙,8060240x x ∴=-+, 解得:127x =, ∴甲车出发127h 两车途中首次相遇; (3)解:∥相遇前,设甲车出发m 小时两车相距40千米,则806024040m m +=-,, 解得107m =; ∥相遇后,由图象可知:甲车行驶2h 时,甲车与乙车的距离最大,此时乙行驶的路程为602120⨯=(千米),甲乙两车的最大距离为16012024040+-=(千米),∴甲车出发2h 两车相距40千米, 综上所述,甲车出发10h 7或2h 两车相距40千米. 【点睛】本题主要考查了一次函数的应用,从函数图像获取信息,解题的关键在于能够准确读懂函数图像.26.(1)85°(2)45° (3)13m ︒或2203m ︒+︒【分析】(1)根据题意可BD 是“邻BC 三分线”可求得ABD ∠的度数,再利用三角形外角的性质可求解;(2)结合(1)根据BP 、CP 分别是ABC ∠邻BC 三分线和ACB ∠邻BC 三分线,且135BPC ∠=︒,即可求A ∠的度数; (3)分2种情况进行画图计算:情况一:如图,当BP 和CP 分别是“邻BC 三分线”、“邻CD 三分线”时,可得13BPC A ∠=∠,可求解;情况二:如图,当BP 和CP 分别是“邻BC 三分线”、“邻AC 三分线”时,可得2133BPC A ABC ∠=∠+∠可求解.(1)解:ABC ∠的邻BA 三分线BD 交AC 于点D ,=45ABC ∠︒, 1153ABD ABC ∴∠=∠=︒, 70A ∠=︒,701585BDC ∴∠=︒+︒=︒,故答案为:85︒;(2)解:在BPC ∆中,135BPC ∠=︒,45PBC PCB ∴∠+∠=︒,又BP 、CP 分别是ABC ∠邻BC 三分线和ACB ∠邻BC 三分线,13PBC ABC ∴∠=∠,13PCB ACB ∠=∠,∴111801354533ABC ACB ∠+∠=︒-︒=︒, 在ABC ∆中,180A ABC ACB ∠+∠+∠=︒(3)解:如图3-1所示,当BP 和CP 分别是“邻BC 三分线”、“邻CD 三分线”时,13CBP ABC ∠=∠,13PCD ACD ∠=∠,PCD P CBP ∠=∠+∠, ∴1133ACD P ABC ∠=∠+=∠, 即3ACD P ABC ∠=∠+∠,ACD A ABC ∠=∠+∠,A m ∠=︒,1133BPC A m ∴∠=∠=︒; 如图3-2所示,当BP 和CP 分别是“邻BC 三分线”、“邻AC 三分线”时,13CBP ABC ∠=∠,23PCD ACD ∠=∠,PCD P CBP ∠=∠+∠, ∴2133ACD P ABC ∠=∠+=∠, 即23ACD P ABC ∠=∠+∠,ACD A ABC ∠=∠+∠,A m ∠=︒,21220333BPC A ABC m ∴∠=∠+∠=︒+︒. 综上所述:BPC ∠的度数为:13m ︒或2203m ︒+︒. 【点睛】本题主要考查了三角形内角和定理,三角形外角的性质,角三等分线的定义,正确理解题意是解题的关键.27.(1)(3,1)A - (2)1522y x =+ (3)39,22P ⎛⎫ ⎪⎝⎭【分析】(1)证明()ACO ODB AAS ∆≅∆,即可求点的坐标;(2)由待定系数法求解析式即可;(3)延长OB 交射线CM 于点F ,延长DB 交射线CM 于点E ,连接OP ,PB ,可证()ACM BEM AAS ∆≅∆,由全等得到(1,4)E ,求出直线CE 的直线解析式为3y x ,直线OB 的解析式为3y x =,两直线的交点即为P .(1)解:AC x ⊥轴,BD x ⊥轴,90ACO BDO ∴∠=∠=︒,90AOB ∠=︒,90AOC BOD ∴∠+∠=︒,90AOC OAC ∠+∠=︒,BOD OAC ∴∠=∠,AO BO =,()ACO ODB AAS ∴∆≅∆,点B 的坐标为(1,3),1AC ∴=,3CO =,(3,1)A ∴-;(2)解:设直线AB 的解析式为y kx b =+,∴331k b k b +=⎧⎨-+=⎩, ∴1252k b ⎧=⎪⎪⎨⎪=⎪⎩,1522y x ∴=+;(3)解:延长OB 交射线CM 于点F , 延长DB 交射线CM 于点E ,连接OP ,PB//AC BE ∴,MAC MBE ∴∠=∠,MCA MEB ∠=∠, 点M 为AB 中点,AM BM ∴=,()ACM BEM AAS ∴∆≅∆,1BE AC ∴==,(1,4)E ∴,(1,3)B ,(3,0)C -,设直线CE 的解析式为11y k x b =+, ∴1111403k b k b =+⎧⎨=-+⎩,∴1113k b =⎧⎨=⎩,∴直线CE 的直线解析式为3y x , 设直线OB 的解析式为2y k x =,23k ∴=,∴直线OB 的解析式为3y x =,∴33 y xy x=⎧⎨=+⎩,解得3292xy⎧=⎪⎪⎨⎪=⎪⎩,∥BP OP OB-≤,∥当点P与点F重合时,BP OP OB-=有最大值,∥P点坐标为(32,92)。

北师大版八年级上册数学期末试卷及答案

北师大版八年级上册数学期末试卷及答案

北师大版八年级上册数学期末试题一、单选题1.4的算术平方根是( )A .2±B .C .2-D .22.下列各点位于平面直角坐标系内第二象限的是( ) A .()1,2B .1,2 C .1,2D .()1,2--3.以下正方形的边长是无理数的是( ) A .面积为9的正方形 B .面积为49的正方形 C .面积为8的正方形 D .面积为25的正方形4.下列各式中正确的是( )A7- B 3± C D =5.如图,在平面直角坐标系中,直线l 1:3y x与直线l 2:y mx n =+交于点A(1-,b),则关于x 、y 的方程组3y x y mx n =+⎧⎨=+⎩的解为( )A .21x y =⎧⎨=⎩B .21x y =⎧⎨=-⎩C .12x y =-⎧⎨=⎩D .12x y =-⎧⎨=-⎩6.下列各组数中,能作为直角三角形三边长的是( )A .1,2B .8,9,10CD 7.某校八年级人数相等的甲、乙、丙三个班,同时参加了一次数学测试,对成绩进行了统计分析,平均分都是72分,方差分别为2206S =甲,2198S =乙,2156S =丙,则成绩波动最小的班级( ) A .甲B .乙C .丙D .无法确定8的值应在( ) A .3和4之间B .4和5之间C .5和6之间D .6和7之间9.下列命题是假命题的是( ) A .同旁内角互补,两直线平行;B .如果两条直线都和第三条直线平行,那么这两条直线也互相平行;C .同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行;D .同位角互补,两直线平行;10.如图,小手盖住的点的坐标可能为( )A .()5,2B .()6,3-C .()4,6--D .()3,4-二、填空题11.已知点M 坐标为()4,7--,点M 到x 轴距离为______.12.已知一次函数y=kx+b 的图象经过A (1,﹣1),B (﹣1,3)两点,则k 0(填“>”或“<”)13.某单位拟招聘一个管理员,其中某位考生笔试、试讲、面试三轮测试得分分别为92分,85分,90分,若依次按40%,40%,20%的比例确定综合成绩,则该名考生的综合成绩为______分.14.如图所示,有一个高18cm ,底面周长为24cm 的圆柱形玻璃容器,在外侧距下底1cm 的点S 处有一蜘蛛,与蜘蛛相对的圆柱形容器的上口外侧距开口处1cm 的点F 处有一只苍蝇,则急于捕获苍蝇充饥的蜘蛛所走的最短路径的长度是______.15.如图,ABC 的顶点都在正方形网格的格点上,点A 的坐标为()1,4-,将ABC 沿坐标轴翻折,则点C 的对应点C '的坐标是______.16.如图,四边形ABCD ,AB BC ⊥,ABCD ,4AB BC ==,2CD =,点F 为BC 边上一点,且1CF =,连接AF ,DG AF ⊥垂足为E ,交BC 于点G ,则BG 的长为______.17.如图,已知函数y =2x+b 与函数y =kx ﹣3的图象交于点P ,则方程组23x y bkx y -=-⎧⎨-=⎩的解是______.三、解答题18.计算:()0226π-+19.(1(2))2220.选用适当的方法解方程组:23328x y x y -=⎧⎨+=⎩(1)本题你选用的方法是______; (2)写出你的解题过程.21.甲、乙两校参加区举办的学生英语口语竞赛,两校参赛人数相等.比赛结束后,统计学生成绩分别为7分、8分9分、10分(满分为10分).依据统计数据绘制了如下尚不完整的统计图和统计表: 甲校成绩统计表(1)甲校参赛人数是______人,x =______; (2)请你将如图②所示的统计图补充完整;(3)请分别求出甲校和乙校学生成绩的平均数和中位数,并从平均数和中位数的角度分析哪个学校的成绩较好?22.已知:如图,直线MN HQ ∥,直线MN 交EF ,PO 于点A ,B ,直线HQ 交EF ,PO 于点D ,C ,DG 与OP 交于点G ,若1103∠=︒,277∠=︒,396∠=︒.(1)求证:EF OP ∥;(2)请直接写出CDG ∠的度数.23.如图,用 10 块相同的小长方形地砖拼成一个宽是 75 厘米的大长方形,用列方程或方程组的方法,求每块小长方形地砖的长和宽分别是多少厘米?24.某水果店进行了一次水果促销活动,在该店一次性购买A 种水果的单价y (元)与购买量x (千克)的函数关系如图所示,(1)当05x <≤时,单价y 为______元;当单价y 为8.8元时,购买量x (千克)的取值范围为______;(2)根据函数图象,当511x ≤≤时,求出函数图象中单价y (元)与购买量x (千克)的函数关系式;(3)促销活动期间,张亮计划去该店购买A 种水果10千克,那么张亮共需花费多少元? 25.ABC 中,CD 平分ACB ∠,点E 是BC 上一动点,连接AE 交CD 于点D .(1)如图1,若110ADC ∠=︒,AE 平分BAC ∠,则B ∠的度数为______;(2)如图2,若100ADC ∠=︒,53DCE ∠=︒,27B BAE ∠-∠=︒,则BAE ∠的度数为______;(3)如图3,在BC 的右侧过点C 作CF CD ⊥,交AE 延长线于点F ,且AC CF =,2B F ∠=∠.试判断AB 与CF 的位置关系,并证明你的结论.26.如图,在平面直角坐标系xoy 中,OAB 的顶点O 是坐标原点,点A 在第一象限,点B 在x 轴的正半轴上,90OAB ∠=︒且OA AB =,6OB =,点C 是直线OC 上一点,且在第一象限,OB ,OC 满足关系式26OB =.(1)请直接写出点A的坐标;(2)点P是线段OB上的一个动点(点P不与点O重合),过点P的直线l与x轴垂直,直线l交边OA或边AB于点Q,交OC于点R.设点P的横坐标为t,线段QR的长度为m.当t=时,直线l恰好过点C.6②求直线OC的函数表达式;②当3m=时,请直接写出点P的坐标;4②当直线RQ与直线OC所组成的角被射线RA平分时,请直接写出t的值.27.如图,过点A的两条直线l1,l2分别与y轴交于点B,C,其中点B在原点上方,点C在原点下方,已知AB B(0,3).(1)求点A的坐标;(2)若②ABC的面积为4,求直线l2的表达式.(3)在(2)的条件下,在直线l1上是否存在点M,使得②OAM的面积与②OCA的面积相等?若存在,求出M点的坐标;若不存在,请说明理由.参考答案1.D【分析】根据算术平方根的定义进行计算即可.【详解】解:4的算术平方根是2,故选:D.【点睛】本题考查了算术平方根,理解算术平方根的定义,注意和平方根的区别是解答的关键.2.B【分析】根据第二象限内点的横坐标是负数,纵坐标是正数解答即可.【详解】解:位于第二象限的点是1,2.故选:B.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).3.C【分析】理解无理数的分类:无限不循环小数或开方不能开尽的数,求出正方形边长由此判断即可得出.【详解】解:A、面积为9的正方形的边长为3,是整数,属于有理数,故本选项不合题意;B、面积为49的正方形的边长为7,是整数,属于有理数,故本选项不合题意;C、面积为8=D、面积为25的正方形的边长为5,是整数,属于有理数,故本选项不合题意.故选:C.【点睛】本题主要考查了无理数的分类,准确掌握无理数的分类是解题关键.4.D【分析】根据二次根式的化简方法及算术平方根和平方根的求法依次计算即可得.【详解】解:A7,故A错误;B3,故B错误;C 2=,故C 错误;D ==D 正确; 故选:D .【点睛】题目主要考查二次根式的加减运算及平方根和算术平方根的求法,熟练掌握运算法则是解题关键. 5.C【详解】试题解析:②直线l1:y=x+3与直线l2:y=mx+n 交于点A (-1,b ), ②当x=-1时,b=-1+3=2, ②点A 的坐标为(-1,2), ②关于x 、y 的方程组3{y x y mx n ++==的解是12x y ⎩-⎧⎨==. 故选C .【点睛】本题考查了一次函数与二元一次方程组的知识,解题的关键是了解方程组的解与函数图象的交点坐标的关系. 6.A【分析】比较较小的两边的平方和是否等于较长边的平方来判定即可.【详解】解:A 、22212+=,能构造直角三角形,故符合题意; B 、2220981,不能构造直角三角形,故不符合题意;C 、222+≠,不能构造直角三角形,故不符合题意;D 、222+≠,不能构造直角三角形,故不符合题意; 故选:A .【点睛】此题考查勾股定理的逆定理,三角形的两边的平方和等于第三边的平方,则此三角形为直角三角形,熟练运用这个定理是解题关键. 7.C【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】解:②2206S =甲,2198S =乙,2156S =丙,②222S S S >>甲乙丙,②成绩波动最小的班级是:丙班. 故选:C .【点睛】此题主要考查了方差的意义,正确理解方差的意义是解题关键. 8.B【分析】因为9<10<16,所以3<4,然后估算即可.【详解】解:②34<,②415<<.故选B .的取值范围是解题关键. 9.D【分析】利用平行线的性质及判定分别判断后即可确定正确的选项. 【详解】解:A 、同旁内角互补,两直线平行;是真命题,不合题意;B 、如果两条直线都与第三条直线平行,那么这两条直线也互相平行,是真命题,不合题意;C 、同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行,是真命题,不合题意;D 、同位角相等,两直线平行;故同位角互补,两直线平行是假命题,符合题意, 故选D .【点睛】本题考查了命题与定理的知识,解题的关键是了解平行线的性质及判定,属于基础定义及定理,难度不大. 10.D【分析】根据各象限内点的坐标特征解题,四个象限的符号特征为:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-) .【详解】小手盖住的是第四象限的点,其点坐标特征为:横坐标为正数,纵坐标为负数, 故选:D .【点睛】本题考查象限及点的坐标的有关性质等知识,是基础考点,难度较易,掌握相关知识是解题关键. 11.7【分析】根据点(x ,y )到x 轴的距离等于|y |求解即可. 【详解】解:点M ()4,7--到x 轴距离为|-7|=7,故答案为:7.【点睛】本题考查点到坐标轴的距离,熟知点到坐标轴的距离与点的坐标的关系是解答的关键.12.<.【分析】根据A(1,-1),B(-1,3),利用横坐标和纵坐标的增减性判断出k的符号.【详解】②A点横坐标为1,B点横坐标为-1,根据-1<1,3>-1,可知,随着横坐标的增大,纵坐标减小了,②k<0.故答案为<.13.88.8【分析】根据加权平均数的求解方法求解即可.【详解】解:根据题意,该名考生的综合成绩为92×40%+85×40%+90×20%=88,8(分),故答案为:88.8.【点睛】本题考查加权平均数,熟知加权平均数的求解方法是解答的关键.14.20cm【分析】展开后连接SF,求出SF的长就是捕获苍蝇充饥的蜘蛛所走的最短路径,过S作SE CD⊥于E,求出SE、EF,根据勾股定理求出SF即可.【详解】解:如图展开后连接SF,求出SF的长就是捕获苍蝇充饥的蜘蛛所走的最短路径,过S作SE CD⊥于E,则124122SE BC==⨯=,181116EF=--=,在Rt FES中,由勾股定理得:20SF=cm,答:捕获苍蝇充饥的蜘蛛所走的最短路径的长度是20cm,故答案为:20cm .【点睛】本题考查了勾股定理、平面展开-最短路线问题,解题的关键是构造直角三角形.15.(1,4)--或(1,4)【分析】根据题意,分两种情况讨论:点C 关于x 轴翻折;点C 关于y 轴翻折;分别根据翻折情况坐标点的特点求解即可得.【详解】解:点C 关于坐标轴翻折,分两种情况讨论:点C 关于x 轴翻折,横坐标不变,纵坐标互为相反数可得:(1,4)C -'-;点C 关于y 轴翻折,纵坐标不变,横坐标互为相反数可得:(1,4)C ';故答案为:(1,4)--或(1,4).【点睛】题目主要考查坐标系中轴对称的点的特点,理解题意,熟练掌握轴对称点的特点是解题关键.16.43【分析】过点D 作DH AB ⊥于点H ,在矩形BCDH 中,DH=BC=4,AH=2,根据勾股定理求出AF=5, 222AF AD DF =+,根据勾股定理的逆定理得到ADF ∆是直角三角形,进一步证得Rt ADF Rt DCF ∆∆∽,Rt DEF Rt DCF ∆∆≌,EF=CF=1,最后证Rt FEG Rt FBF ∆∆∽,求得FG=53,根据BG=BC -FG 求得结果. 【详解】解:过点D 作DH AB ⊥于点H ,AB BC ⊥,AB CD ,BC DC ∴⊥, 90DCB B C ∴∠=∠=∠=︒,②四边形DCBH 是矩形,②42DH BC HB DC ====,,422AH AB HB =-=-=,在Rt ADH ∆中,AD =在Rt DCF ∆中, 222222420DF DC CF =+=+=在Rt ABF ∆中,413BF BC CF =-=-=,222224325AF AB BF ∴=+=+=,222AF AD DF ∴=+,ADF ∴∆是直角三角形,90ADF,22AD DF == , 422DC CF ==,且90ADF C ∠=∠=︒ ∴Rt ADF Rt DCF ∆∆∽,DFE CFD ∴∠=∠,DF DF =,∴ ()Rt DEF Rt DCF AAS ∆∆≌,1EF CF ∴==,90,B FEG AFB AFB ∠=∠=︒∠=∠,∴ Rt FEG Rt FBF ∆∆∽,FG EF AF FB∴= , 又FB=BC -CF=4-1=3,153FB ∴=, 53FB ∴=, 544133GB BC CF FG ∴=--=--=.【点睛】本题考查了相似三角形的判定和性质,全等三角形的判定和性质,矩形的判定和性质,勾股定理及逆定理,过点D 作辅助线求出AD 是解决本题的关键.17.46x y =⎧⎨=-⎩ 【分析】利用“方程组的解就是两个相应的一次函数图象的交点坐标”解决问题.【详解】解:②点P (4,﹣6)为函数y =2x+b 与函数y =kx ﹣3的图象的交点,②方程组23x y b kx y -=-⎧⎨-=⎩的解为46x y =⎧⎨=-⎩.故答案为46xy=⎧⎨=-⎩.【点睛】本题考查方程组的解就是两个相应的一次函数图象的交点坐标,将方程组的解转化为图像的交点问题,属于基础题型.18.3【分析】利用零指数幂的意义、绝对值的意义、立方根的意义计算即可.【详解】解:原式=1243+=【点睛】此题考查了实数的混合运算,掌握相应的运算法则和运算顺序是解答此题的关键.19.(1)1-;(2)7-【分析】(1)先算乘除,再把二次根式化为最简二次根式,然后合并即可;(2)先用完全平方公式展开,同时计算除法,再合并即可.【详解】(1)原式=67=-,1=-;(2)原式34=-7=-,7=-20.(1)代入消元法;(2)21 xy=⎧⎨=⎩.【分析】(1)由题意依据条件可以选择代入消元法进行求解;(2)根据题意直接利用代入消元法进行求解即可得出答案.【详解】解:(1)本题选用代入消元法;故答案为:代入消元法;(2)23 328x yx y-=⎧⎨+=⎩①②由②变形得,23y x =-②,将②代入②得,32(23)8x x +-=,解得:2x =,将2x =代入②得,1y =,经检验21x y =⎧⎨=⎩是方程组的解. 21.(1)20;1;(2)作图见详解;(3)两学校的分数从平均数角度分析,成绩一样好;从中位数角度分析,乙校成绩好.【分析】(1)由乙校打10分的学生人数和扇形统计图中的角度可得总人数,然后用总人数减去甲校各组人数即可得;(2)先求出乙校打8分的人数,然后补全统计图即可得;(3)根据平均数及中位数的计算方法得出结果即可知哪个学校成绩好.【详解】解:(1)由乙校打10分的学生人数和扇形统计图中的角度可得: 总人数为:90520360︒÷=︒人, ②两校参赛人数相等,②甲校参赛人数为20人,②2011081x =---=人,故答案为:20;1;(2)乙校打8分的人数为:208453---=人,作图如下:(3)甲校得分平均数为:11708198108.320⨯+⨯+⨯+⨯=, 甲校得分中位数为排序后第10、11位的平均数:7772+=分;乙校得分平均数为:8738495108.320⨯+⨯+⨯+⨯=, 甲校得分中位数为排序后第10、11位的平均数:787.52+=分; 两校得分的平均分数一样,中位数分数乙校大于甲校,②两学校的分数从平均数角度分析,成绩一样好;从中位数角度分析,乙校成绩好.【点睛】题目主要考查条形统计图和扇形统计图,计算平均数、中位数,从两个统计图获取相关信息是解题关键.22.(1)见解析;(2)19︒【分析】(1)根据1103∠=︒可得77∠=︒ABC ,,再根据内错角相等两直线平行即可得证; (2)根据两直线平行的性质可得103∠=︒FDC ,从而可得84∠=︒FDG ,再由∠=∠-∠CDG FDC FDG 即可求解.【详解】解:(1)②1103∠=︒,②77∠=︒ABC ,②277∠=︒,②2ABC ∠=∠,②EF OP ∥;(2)②MN HQ ∥,EF OP ∥,②1103∠=∠=∠=︒FDC FAB ,3180∠+∠=︒FDG ,②396∠=︒,②180********∠=︒-∠=︒-︒=︒FDG ,②1038419∠=∠-∠=︒-︒=︒CDG FDC FDG .【点睛】本题考查了平行线的判定及性质,解题的关键是掌握平行线的判定及性质,利用数形结合的思想进行求解.23.小长方形地砖的长为 45 厘米,宽为 15 厘米.【分析】设小长方形地砖的长为x 厘米,宽为y 厘米,由大长方形的宽为75厘米,即可得出关于x 、y 的二元一次方程组,解之即可得出结论.【详解】设小长方形地砖的长为x 厘米,宽为y 厘米,根据题意得:275575x y y +=⎧⎨=⎩ 解得:4515x y =⎧⎨=⎩. 答:小长方形地砖的长为45厘米,宽为15厘米.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程是解题的关键.24.(1)10;11x ≥;(2)函数图象的解析式:()0.211511y x x =-+≤≤;(3)促销活动期间,去该店购买A 种水果10千克,那么共需花费9元.【分析】(1)根据观察函数图象的横坐标,纵坐标,可得结果;(2)根据待定系数法,设函数图象的解析式y kx b =+ (k 是常数,b 是常数,0k ≠),将()5,10,()11,8.8两个点代入求解即可得函数的解析式;(3)将10x =代入(2)函数解析式即可.【详解】解:(1)观察函数图象的横坐标,纵坐标,不超过5千克时,单价是10元,数量不少于11千克时,单价为8.8元.故答案为:10;11x ≥;(2)设函数图象的解析式y kx b =+ (k 是常数,b 是常数,0k ≠),图象过点()5,10,()11,8.8,可得:510118.8k b k b +=⎧⎨+=⎩, 解得0.211=-⎧⎨=⎩k b , 函数图象的解析式:()0.211511y x x =-+≤≤;(3)当10x =时,0.210119y =-⨯+=,答:促销活动期间,去该店购买A 种水果10千克,那么共需花费9元.【点睛】本题考查了一次函数的应用,待定系数法确定函数解析式等,理解题意,根据函数图象得出信息是解题关键.25.(1)40°;(2)10°;(3)AB②CF,理由见解析【分析】(1)根据三角形的角和定理和角平分线的定义可求得②BAC+②ACB=140°即可求解;(2)根据三角形的外角性质求得②B+②BAE=47°即可求解;(3)延长AC到G,根据等腰三角形的性质和三角形的外角性质得到②FCG=2②F,再根据角平分线的定义和等角的余角相等得到②BCF=2②F,则有②B=②BCF,根据平行线在判定即可得出结论.【详解】解:(1)②②ADC=110°,②②DAC+②DCA=180°-110°=70°,②AE平分②BAC,CD平分②ACB,②②BAC=2②DAC,②ACB=2②DCA,②②BAC+②ACB=2(②DAC+②DCA)=140°,②②B=180°-(②BAC+②ACB)=180°-140°=40°,故答案为:40°;(2)②②ADC=②DCE+②DEC=100°,②DCE=53°,②②DEC=100°-53°=47°,②②B+②BAE=②DEC=47°,②②B-②BAE=27°,②②BAE=10°,故答案为:10°;(3)AB②CF,理由为:如图,延长AC到G,②AC=CF,②②F=②FAC,②②FCG=②F+②FAC=2②F,②CF②CD,②②BCF+②BCD=90°,②FCG+②ACD=90°,②CD平分②ACB,②②BCD=②ACD,②②BCF=②FCG=2②F,②②B=2②F,②②B=②BCF ,②AB②CF .【点睛】本题考查角平分线的定义、三角形的内角和定理、三角形的外角性质、等腰三角形的性质、等角的余角相等、平行线的判定,熟练掌握相关知识的联系与运用是解答的关键. 26.(1)(3,3);(2)②直线OC 的函数表达式为13y x =;②点P 坐标为(8116,0)或(6316,0);②t 的值为33【分析】(1)过A 作AD②x 轴于点D ,根据等腰直角三角形的性质得出OD=OA=3,即可得到A 坐标为(3,3),;(2)②由6OB =,且26OB =,可得OC=,在Rt BOC 中,利用勾股定理求得BC 的值,即可得到点C 坐标,设出直线OC 的函数表达式为y=kx ,把(6,2)代入 求出k 的值,即可得到直线OC 的函数表达式;②先求出直线AB 的解析式,由题意点得P (t ,0),Q (t ,t )或(t ,6t -+),R (t ,13t ),列出方程,即可求得点P 坐标;②先求出点H的坐标为(92,32),再根据面积法求出AN =. 【详解】(1)过A 作AD②x 轴于点D ,②OB=6,OA=AB ,②OAB=90°,②AD 平分②OAB ,且OD=BD=3,②②OAD=②AOD=45°,②OD=DA=3,②A 坐标为(3,3),故答案为:(3,3);(2)②②6OB =,且26OB +=,②OC=当6t =时,点P 坐标为(6,0),②直线l 恰好过点C ,222OB BC OC ∴+=,2226BC ∴+=,2BC ∴=,∴点C 坐标为(6,2),设直线OC 的函数表达式为y=kx ,把(6,2)代入,得:6k=2, 解得13k =,故直线OC 的函数表达式为13y x =;②设直线OC 与直线AB 交于点H ,直线AB 的解析式为11y k x b =+,②11113360k b k b +=⎧⎨+=⎩,②1116k b =-⎧⎨=⎩,②直线AB 的解析式为6y x =-+,②点P 的横坐标为t ,点R 在直线13y x =上,②点P (t ,0),Q (t ,t )或(t ,6t -+),R (t ,13t ),②线段QR 的长度为m , ②13-=t t m 或163t t m -+-=当34m =时,1334-=t t 或13634t t -+-= 解得:98t =或8116或6316故点P 坐标为(98,0)或(8116,0)或(6316,0); ②②直线AB 的解析式为6y x =-+, 联立613y x y x =-+⎧⎪⎨=⎪⎩,解得9232x y ⎧=⎪⎪⎨⎪=⎪⎩, ②点H 的坐标为(92,32),②AH ==OH ==OA ②11=22AOH S OA AH AN OH ⋅=⋅△,②OA AH AN OH ⋅== 过点A 作AM②直线l ,AN②直线OC ,如图:或则:AM=3t -,②直线RQ 与直线OC 所组成的角被射线RA 平分,AM=AN , 即3t -解得3t =3t = 故t的值为33 【点睛】此题考查等腰直角三角形的性质、求一次函数函数解析式、角平分线的性质、点到直线的距离、勾股定理的应用.作出相应的图形,分类讨论是解答此题的关键.27.(1)A (2,0)(2)y =112x - (3)存在,M 的坐标为(43,1)或(83,﹣1)【分析】(1)先根据勾股定理求得AO 的长,再写出点A 的坐标;(2)先根据②ABC 的面积为4,求得CO 的长,再根据点A 、C 的坐标,运用待定系数法求得直线l 2的解析式;(3)求出直线l 1的表达式为y=−32x+3,设M (m ,-32m+3),根据②OAM 的面积与②OCA 的面积相等且②OAM 与②OCA 同底,即可得到结论.(1)解:②B (0,3),②OB=3,在Rt②AOB 中,2,②A (2,0);(2)解:②S ②ABC=12BC•OA , ②4=12•BC×2,解得BC=4, ②OC=BC -OB=4-3=1,②C (0,-1),设直线l 2的表达式为y=kx+b ,将A (2,0),C (0,-1)代入y=kx+b ,得:021k b b =+⎧⎨-=⎩,解得121k b ⎧=⎪⎨⎪=-⎩, ②直线l 2的表达式为y=12x−1; (3) (3)设直线l 1的表达式为y=k 1x+b 1将A (2,0),B (0,3)代入y=k 1x+b 1,得111023k b b =+⎧⎨=⎩,解得11323k b ⎧=-⎪⎨⎪=⎩, ②直线l 1的表达式为y=−32x+3, ②②OAM 的面积与②OCA 的面积相等且②OAM 与②OCA 同底,②两个三角形的高都为OC=1,②点M 的纵坐标为±1且点M 在直线l 1上,令y=1,则1=−32x+3,解得x=43, 令y=-1,则−1=−32x+3,解得x=83, ②M 的坐标为(43,1)或(83,-1). 【点睛】本题是一次函数综合题,主要考查了两条直线的交点问题,三角形的面积公式,解题的关键是掌握勾股定理以及待定系数法.。

北师大版八年级(上)期末数学试卷(含解析)

北师大版八年级(上)期末数学试卷(含解析)

北师大版八年级(上)期末数学试卷一、选择题(本大题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的,请在答题卡的相应位置填涂1.下列实数中,无理数是()A.3.14B.2.12122C.D.2.下列四组数据,能作为直角三角形的三边长的是()A.2、4、6B.2、3、4C.5、7、12D.8、15、173.根据下列表述,能确定一个点位置的是()A.北偏东40°B.某地江滨路C.光明电影院6排D.东经116°,北纬42°4.下列代数式能作为二次根式被开方数的是()A.3﹣πB.a C.a2+1D.2x+45.已知一次函数y=kx+3的图象经过点A,且函数值y随x的增大而增大,则点A的坐标不可能是()A.(2,4)B.(﹣1,2)C.(5,1)D.(﹣1,﹣4)6.老师随机抽查了学生读课外书册数的情况,绘制成两幅统计图,其中条形统计图被遮盖了一部分,则被遮盖的数是()A.5B.9C.15D.227.方程组的解为,则a、b的值分别为()A.1,2B.5,1C.2,1D.2,38.下列四个命题中,真命题的是()A.同角的补角相等B.相等的角是对顶角C.三角形的一个外角大于任何一个内角D.两条直线被第三条直线所截.内错角相等9.已知m=,则以下对m的值估算正确的()A.2<m<3B.3<m<4C.4<m<5D.5<m<610.如图,直线y1=ax(a≠0)与y2=x+b交于点P,有四个结论:①a<0;②b<0;③当x>0时,y1>0;④当x<﹣2时,y1>y2,其中正确的是()A.①②B.①③C.①④D..②③二、填空题(本大题共6小题,每小题4分,共24分,请将答案填入答题卡的相应位置11.16的平方根是.12.若y=3x n﹣1是正比例函数,则n=.13.若P(a﹣2,a+1)在x轴上,则a的值是.14.计算5个数据的方差时,得s2=[(5﹣)2+(8﹣)2+(7﹣)2+(4﹣)2+(6﹣)2],则的值为.15.如图,直线l∥m,将含有45°角的三角板ABC的直角顶点C放在直线m上,则∠1+∠2的度数为.16.双察下列等式:,,,…则第n个等式为.(用含n的式子表示)三、解答题[本大题共9小题,共86分.请在答题卡的相应位置解答17.(8分)解二元一次方程组:18.(8分)计算:.19.(8分)我国古代数学著作《增删算法统宗》记载“官兵分布”问题:“一千官军一千布,一官四疋无零数,四军才分布一疋,请问官军多少数.”其大意为:今有1000官兵分1000匹布,1官分4匹,4兵分1匹.问官和兵各几人?20.(8分)求证:三角形三个内角的和等于180°.21.(8分)某种优质蜜柚,投入市场销售时,经调查,该蜜柚每天销售量y(千克)与销售单价x (元/千克)之间符合一次函数关系,如图所示.(1)求y与x的函数关系式;(2)某农户今年共采摘该蜜柚4500千克,其保质期为40天,若以18元/千克销售,问能否在保质期内销售完这批蜜柚?请说明理由.22.(10分)如图,把△ABC放置在每个小正方形边长为1的网格中,点A,B,C均在格点上,建立适当的平面直角坐标系xOy,使点A(1,4),△ABC与△A'B'C'关于y轴对称.(1)画出该平面直角坐标系与△A'B'C';(2)在y轴上找点P,使PC+PB'的值最小,求点P的坐标与PC+PB'的最小值.23.(10分)每年4月23日是世界读书日,某校为了解学生课外阅读情况,随机抽取20名学生,对每人每周用于课外阅读的平均时间(单位:min)进行调查,过程如下:收集数据:30608150401101301469010060811201407081102010081整理数据:课外阅读平均时间x(min)0≤x<4040≤x<8080≤x<120120≤x<160等级D C B A人数3a8b分析数据:平均数中位数众数80m n请根据以上提供的信息,解答下列问题:(1)填空:a=,b=;m=,n=;(2)已知该校学生500人,若每人每周用于课外阅读的平均时间不少于80min为达标,请估计达标的学生数;(3)设阅读一本课外书的平均时间为260min,请选择适当的统计量,估计该校学生每人一年(按52周计)平均阅读多少本课外书?24.(12分)如图,在△ABC中,∠ACB=90°,点E,F在边AB上,将边AC沿CE翻折,使点A落在AB上的点D处,再将边BC沿CF翻折,使点B落在CD的延长线上的点B'处.(1)求∠ECF的度数;(2)若CE=4,B'F=1,求线段BC的长和△ABC的面积.25.(14分)已知等边△AOB的边长为4,以O为坐标原点,OB所在直线为x轴建立如图所示的平面直角坐标系.(1)求点A的坐标;(2)若直线y=kx(k>0)与线段AB有交点,求k的取值范围;(3)若点C在x轴正半轴上,以线段AC为边在第一象限内作等边△ACD,求直线BD的解析式.参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的,请在答题卡的相应位置填涂1.下列实数中,无理数是()A.3.14B.2.12122C.D.【分析】根据无理数的三种形式,结合选项找出无理数的选项.【解答】解:无理数是,故选:C.【点评】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.2.下列四组数据,能作为直角三角形的三边长的是()A.2、4、6B.2、3、4C.5、7、12D.8、15、17【分析】分别求每个选项中数字的平方,根据其中两个数字的平方和等于第三个数字即可解题.【解答】解:22+42≠62,故A错误;22+32≠42,故B错误;52+72≠122,故C错误;82+152=172,故D正确;故选:D.【点评】本题考查了勾股数的计算,其中2个数字的平方和等于第三个数字的平方,则这3个数字为勾股数.3.根据下列表述,能确定一个点位置的是()A.北偏东40°B.某地江滨路C.光明电影院6排D.东经116°,北纬42°【分析】根据各个选项中的语句可以判断哪个选项是正确的,本题得以解决.【解答】解:根据题意可得,北偏东40°无法确定位置,故选项A错误;某地江滨路无法确定位置,故选项B错误;光明电影院6排无法确定位置,故选项C错误;东经116°,北纬42°可以确定一点的位置,故选项D正确,故选:D.【点评】本题考查坐标位置的确定,解题的关键是明确题意,可以判断选项中的各个语句哪一个可以确定一点的位置.4.下列代数式能作为二次根式被开方数的是()A.3﹣πB.a C.a2+1D.2x+4【分析】直接利用二次根式的定义分别分析得出答案.【解答】解:A、3﹣π<0,则3﹣a不能作为二次根式被开方数,故此选项错误;B、a的符号不能确定,则a不能作为二次根式被开方数,故此选项错误;C、a2+1一定大于0,能作为二次根式被开方数,故此选项正确;D、2x+4的符号不能确定,则a不能作为二次根式被开方数,故此选项错误;故选:C.【点评】此题主要考查了二次根式的定义,正确把握二次根式的定义是解题关键.5.已知一次函数y=kx+3的图象经过点A,且函数值y随x的增大而增大,则点A的坐标不可能是()A.(2,4)B.(﹣1,2)C.(5,1)D.(﹣1,﹣4)【分析】先根据一次函数的增减性判断出k的符号,再对各选项进行逐一分析即可.【解答】解:∵一次函数y=kx+2(k≠0)的函数值y随x的增大而增大,∴k>0.A、∵当x=2,y=4时,2k+3=4,解得k=0.5>0,∴此点符合题意,故本选项错误;B、∵当x=﹣1,y=2时,﹣k+3=2,解得k=1>0,∴此点符合题意,故本选项错误;C、∵当x=5,y=1时,5k+3=1,解得k=﹣0.4<0,∴此点不符合题意,故本选项正确;D、∵当x=﹣1,y=﹣4时,﹣k+3=﹣4,解得k=7>0,∴此点符合题意,故本选项错误.故选:C.【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数的增减性是解答此题的关键.6.老师随机抽查了学生读课外书册数的情况,绘制成两幅统计图,其中条形统计图被遮盖了一部分,则被遮盖的数是()A.5B.9C.15D.22【分析】求出确定总人数,再求出被遮盖的数即可.【解答】解:由题意,总人数=6÷25%=24(人),∴被遮盖的数=24﹣5﹣6﹣4=9(人),故选:B.【点评】本题考查条形统计图,扇形统计图等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.7.方程组的解为,则a、b的值分别为()A.1,2B.5,1C.2,1D.2,3【分析】把代入方程组,即可解答.【解答】解:把代入方程组得:解得:故选:B.【点评】本题主要考查了二元一次方程组的解,解题的关键是用代入法进行求解.8.下列四个命题中,真命题的是()A.同角的补角相等B.相等的角是对顶角C.三角形的一个外角大于任何一个内角D.两条直线被第三条直线所截.内错角相等【分析】根据补角的性质、对顶角的概念、三角形的外角的性质、平行线的性质判断即可.【解答】解:同角的补角相等,A是真命题;相等的角不一定是对顶角,B是假命题;三角形的一个外角大于任何一个与它不相邻的内角,C是假命题;两条平行线被第三条直线所截.内错角相等,D是假命题;故选:A.【点评】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.9.已知m=,则以下对m的值估算正确的()A.2<m<3B.3<m<4C.4<m<5D.5<m<6【分析】估算确定出m的范围即可.【解答】解:m=+=2+,∵1<3<4,∴1<<2,即3<2+<4,则m的范围为3<m<4,故选:B.【点评】此题考查了估算无理数的大小,弄清估算的方法是解本题的关键.10.如图,直线y1=ax(a≠0)与y2=x+b交于点P,有四个结论:①a<0;②b<0;③当x>0时,y1>0;④当x<﹣2时,y1>y2,其中正确的是()A.①②B.①③C.①④D..②③【分析】根据正比例函数和一次函数的性质判断即可.【解答】解:因为正比例函数y1=ax经过二、四象限,所以a<0,①正确;一次函数y2=x+b经过一、二、三象限,所以b>0,②错误;由图象可得:当x>0时,y1<0,③错误;当x<﹣2时,y1>y2,④正确;故选:C.【点评】此题考查一次函数与一元一次不等式,关键是根据正比例函数和一次函数的性质判断.二、填空题(本大题共6小题,每小题4分,共24分,请将答案填入答题卡的相应位置11.16的平方根是±4.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±4)2=16,∴16的平方根是±4.故答案为:±4.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.12.若y=3x n﹣1是正比例函数,则n=2.【分析】根据正比例函数的定义可以列出关于n是方程n﹣1=1,据此可以求得n的值.【解答】解:∵y=3x n﹣1是正比例函数,∴n﹣1=1,∴n=2,故答案是:2.【点评】本题考查了正比例函数的定义.正比例函数y=kx的定义条件是:k为常数且k≠0,自变量次数为1.13.若P(a﹣2,a+1)在x轴上,则a的值是﹣1.【分析】直接利用x轴上点的坐标特点得出a+1=0,进而得出答案.【解答】解:∵P(a﹣2,a+1)在x轴上,∴a+1=0,解得:a=﹣1.故答案为:﹣1.【点评】此题主要考查了点的坐标,正确掌握x轴上点的坐标特点是解题关键.14.计算5个数据的方差时,得s2=[(5﹣)2+(8﹣)2+(7﹣)2+(4﹣)2+(6﹣)2],则的值为6.【分析】根据平均数的定义计算即可.【解答】解:==6故答案为6.【点评】本题考查方差,平均数等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.15.如图,直线l∥m,将含有45°角的三角板ABC的直角顶点C放在直线m上,则∠1+∠2的度数为45°.【分析】首先过点B作BD∥l,由直线l∥m,可得BD∥l∥m,由两直线平行,内错角相等,可得出∠2=∠3,∠1=∠4,故∠1+∠2=∠3+∠4,由此即可得出结论.【解答】解:过点B作BD∥l,∵直线l∥m,∴BD∥l∥m,∴∠4=∠1,∠2=∠3,∴∠1+∠2=∠3+∠4=∠ABC,∵∠ABC=45°,∴∠1+∠2=45°.故答案为:45°.【点评】此题考查了平行线的性质.此题难度不大,注意辅助线的作法,注意掌握两直线平行,内错角相等定理的应用.16.双察下列等式:,,,…则第n个等式为=.(用含n的式子表示)【分析】探究规律后,写出第n个等式即可求解.【解答】解:,,,…则第n个等式为=.故答案为:=.【点评】本题考查算术平方根的定义,解题的关键是探究规律,利用规律解决问题,属于中考常考题型.三、解答题[本大题共9小题,共86分.请在答题卡的相应位置解答17.(8分)解二元一次方程组:【分析】利用加减消元法求解可得.【解答】解:①+②,得:5x=5,解得:x=1,将x=1代入①,得:3+y=6,解得y=3,所以方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.(8分)计算:.【分析】先根据二次根式的除法法则运算,再利用平方差公式计算,然后合并即可.【解答】解:原式=﹣+4﹣5=﹣﹣1=﹣1.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.19.(8分)我国古代数学著作《增删算法统宗》记载“官兵分布”问题:“一千官军一千布,一官四疋无零数,四军才分布一疋,请问官军多少数.”其大意为:今有1000官兵分1000匹布,1官分4匹,4兵分1匹.问官和兵各几人?【分析】设官有x人,兵有y人,根据1000官兵正好分1000匹布,即可得出关于x,y的二元一次方程组,解之即可得出结论.【解答】解:设官有x人,兵有y人,依题意,得:,解得:.答:官有200人,兵有800人.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.20.(8分)求证:三角形三个内角的和等于180°.【分析】画出图形,写出已知,求证,过点A作直线MN∥BC,根据平行线性质得出∠MAB=∠B,∠NAC=∠C,代入∠MAB+∠BAC+∠NAC=180°即可求出答案.【解答】已知:△ABC,如图:求证:∠A+∠B+∠C=180°证明:过点A作直线MN∥BC,∵MN∥BC,∴∠MAB=∠B,∠NAC=∠C(两直线平行,同位角相等),∵∠MAB+∠BAC+∠NAC=180°(平角的定义),∴∠B+∠BAC+∠C=180°(等量代换),即:三角形三个内角的和等于180°.【点评】本题考查了平行线性质的应用,主要考查学生的推理能力,关键是正确作出辅助线.21.(8分)某种优质蜜柚,投入市场销售时,经调查,该蜜柚每天销售量y(千克)与销售单价x (元/千克)之间符合一次函数关系,如图所示.(1)求y与x的函数关系式;(2)某农户今年共采摘该蜜柚4500千克,其保质期为40天,若以18元/千克销售,问能否在保质期内销售完这批蜜柚?请说明理由.【分析】(1)根据题意和函数图象中的数据,可以求得y与x的函数关系式;(2)将x=18代入(1)的函数解析式,求出相应的y的值,从而可以求得40天的销售量,然后与4500比较大小即可解答本题.【解答】解:(1)设y与x的函数关系式为y=kx+b,,得,即y与x的函数关系式为y=﹣10x+300;(2)能在保质期内销售完这批蜜柚,理由:将x=18代入y=﹣10x+300,得y=﹣10×18+300=120,∵120×40=4800>4500,∴能在保质期内销售完这批蜜柚.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.22.(10分)如图,把△ABC放置在每个小正方形边长为1的网格中,点A,B,C均在格点上,建立适当的平面直角坐标系xOy,使点A(1,4),△ABC与△A'B'C'关于y轴对称.(1)画出该平面直角坐标系与△A'B'C';(2)在y轴上找点P,使PC+PB'的值最小,求点P的坐标与PC+PB'的最小值.【分析】(1)直接利用A点坐标画出平面直角坐标系进而利用关于y轴对称点的性质得出答案;(2)直接利用轴对称求最短路线的方法以及勾股定理得出答案.【解答】解:(1)如图所示:△A'B'C',即为所求;(2)如图所示:点P,即为所求,点P的坐标为:(0,1),PC+PB'的最小值为:=2.【点评】此题主要考查了轴对称变换以及勾股定理,正确得出对应点位置是解题关键.23.(10分)每年4月23日是世界读书日,某校为了解学生课外阅读情况,随机抽取20名学生,对每人每周用于课外阅读的平均时间(单位:min)进行调查,过程如下:收集数据:30608150401101301469010060811201407081102010081整理数据:课外阅读平均时间x(min)0≤x<4040≤x<8080≤x<120120≤x<160等级D C B A人数3a8b 分析数据:平均数中位数众数80m n 请根据以上提供的信息,解答下列问题:(1)填空:a=5,b=4;m=81,n=81;(2)已知该校学生500人,若每人每周用于课外阅读的平均时间不少于80min为达标,请估计达标的学生数;(3)设阅读一本课外书的平均时间为260min,请选择适当的统计量,估计该校学生每人一年(按52周计)平均阅读多少本课外书?【分析】(1)根据统计表收集数据可求a,b,再根据中位数、众数的定义可求m,n;(2)达标的学生人数=总人数×达标率,依此即可求解;(3)本题需先求出阅读课外书的总时间,再除以平均阅读一本课外书的时间即可得出结果.【解答】解:(1)由统计表收集数据可知a=5,b=4,m=81,n=81;(2)500×=300(人).答:估计达标的学生有300人;(3)80×52÷260=16(本).答:估计该校学生每人一年(按52周计算)平均阅读16本课外书.【点评】此题主要考查数据的统计和分析的知识.准确把握三数(平均数、中位数、众数)和理解样本和总体的关系是关键.24.(12分)如图,在△ABC中,∠ACB=90°,点E,F在边AB上,将边AC沿CE翻折,使点A落在AB上的点D处,再将边BC沿CF翻折,使点B落在CD的延长线上的点B'处.(1)求∠ECF的度数;(2)若CE=4,B'F=1,求线段BC的长和△ABC的面积.【分析】(1)由折叠可得,∠ACE=∠DCE=∠ACD,∠BCF=∠B'CF=∠BCB',再根据∠ACB=90°,即可得出∠ECF=45°;(2)在Rt△BCE中,根据勾股定理可得BC==,设AE=x,则AB=x+5,根据勾股定理可得AE2+CE2=AB2﹣BC2,即x2+42=(x+5)2﹣41,求得x=,即可得出S△ABC =AB×CE=.【解答】解:(1)由折叠可得,∠ACE=∠DCE=∠ACD,∠BCF=∠B'CF=∠BCB',又∵∠ACB=90°,∴∠ACD+∠BCB'=90°,∴∠ECD+∠FCD=×90°=45°,即∠ECF=45°;(2)由折叠可得,∠DEC=∠AEC=90°,BF=B'F=1,∴∠EFC=45°=∠ECF,∴CE=EF=4,∴BE=4+1=5,∴Rt△BCE中,BC==,设AE=x,则AB=x+5,∵Rt△ACE中,AC2=AE2+CE2,Rt△ABC中,AC2=AB2﹣BC2,∴AE2+CE2=AB2﹣BC2,即x2+42=(x+5)2﹣41,解得x=,∴S=AB×CE=(+5)×4=.△ABC【点评】本题主要考查了折叠问题,解题时常常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.25.(14分)已知等边△AOB的边长为4,以O为坐标原点,OB所在直线为x轴建立如图所示的平面直角坐标系.(1)求点A的坐标;(2)若直线y=kx(k>0)与线段AB有交点,求k的取值范围;(3)若点C在x轴正半轴上,以线段AC为边在第一象限内作等边△ACD,求直线BD的解析式.【分析】(1)如下图所示,过点A作AD⊥x轴于点D,则AD=OA sin∠AOB=4sin60°=2,同理OA=2,即可求解;(2)若直线y=kx(k>0)与线段AB有交点,当直线过点A时,将点A坐标代入直线的表达式得:2k=2,解得:k=,即可求解;(3)证明△ACO≌△ADB(SAS),则OB=BD=4,而∠DBC=180°﹣∠ABO﹣∠ABD=180°﹣60°﹣60°=60°,即可求解.【解答】解:(1)如下图所示,过点A作AD⊥x轴于点D,则AD=OA sin∠AOB=4sin60°=2,同理OA=2,故点A的坐标为(2,2);(2)若直线y=kx(k>0)与线段AB有交点,当直线过点A时,将点A坐标代入直线的表达式得:2k=2,解得:k=,直线OB的表达式为:y=0,而k>0,故:k的取值范围为:0<k≤;(3)如下图所示,连接BD,∵△OAB是等边三角形,∴AO=AB,∵△ADC为等边三角形,∴AD=AC,∠OAC=∠OAB+∠CAB=60°+∠CAB=∠DAC+∠CAB=∠DAB,∴△ACO≌△ADB(SAS),∴OB=BD=4,∴∠AOB=∠ABD=60°,∴∠DBC=180°﹣∠ABO﹣∠ABD=180°﹣60°﹣60°=60°,故直线BD表达式的k值为tan60,设直线BD的表达式为:y=x+b,将点B(4,0)代入上式并解得:b=﹣4,故:直线BD的表达式为:y=x﹣4.【点评】本题考查的是一次函数的综合运用,涉及到三角形全等、解直角三角形等知识,其中(3)利用三角形全等,确定直线BD的倾斜角本题的难点.。

2023-2024学年北师大版数学八年级上册期末测试卷(含答案)

2023-2024学年北师大版数学八年级上册期末测试卷(含答案)

期末测试卷(满分120分,时间90分钟)题号一二三总分得分一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合要求的)1.4 的算术平方根是( )A.2B.-2C.±2 D .±22.如图,两个较大正方形的面积分别为225、289,则字母A 所代表的正方形的边长为( )A.4 B.8 C.16 D.643.在实数 ―15,3―27,π2,16,8,中,无理数的个数为( )A.1B.2C.3D.44.将直角坐标系中的点(-1,-3)向上平移4个单位,再向右平移2个单位后的点的坐标为( )A.(3,-1) B.(-5,-1) C.(-3,1) D.(1,1)5.某一次函数的图象经过点(1,2),且y 随x 的增大而减小,则这个函数的表达式可能是( ) A. y=2x+4 B. y=3x--1 C. y=-3x+1 D. y=-2x+46.估算 24+3的值是( )A.在5与6之间B.在6与7 之间C.在7 与8之间D.在8 与9之间7.如图,将直尺与含 30°角的三角尺摆放在一起,若∠1=20°,则∠2的度数是( )A.30° B.40° C.50° D.60°8.小明家1至 6月份的用水量统计图如图所示,关于这组数据,下列说法错误的是( ) A.众数是6 B.中位数是5 C.平均数是5 D.方差是 439.如果点P(x-4,x+3)在平面直角坐标系的第二象限内,那么x 的取值范围在数轴上可表示为( )10.下列命题中,是真命题的是( )A.算术平方根等于自身的数只有1B.斜边和一条直角边分别相等的两个直角三角形全等C.只有一个角等于60°的三角形是等边三角形 D .12是最简二次根式11.关于x,y 的方程组 {x +my =0,x +y =3的解是 {x =1y =,其中y 的值被盖住了.不过仍能求出m ,则m 的值是( )A .―12 B. 12 C .―14 D .1412.如图,正方形网格中的△ABC,若每个小方格边长都为1,则 △ABC 的形状为( )A.锐角三角形B.直角三角形C.钝角三角形D.以上答案都不对二、填空题(本大题共6小题,每小题4分,共24分.本题要求把正确结果填在规定的横线上,不需要解答过程)13.若点 M(a,-1)与点 N(2,b)关于y 轴对称,则a+b 的值是 .14.若关于x ,y 的二元一次方程组 {x +y =3k ,x ―y =k 的解也是二元一次方程 x +2y =8的解,则 k 的值为15.已知一组数据1,2,3,5,x ,它的平均数是3,则这组数据的方差是 .16.写出“全等三角形的面积相等”的逆命题 .17.如图,Rt△OA ₀A ₁ 在平面直角坐标系内, ∠OA₀A₁=90°,∠A₀OA₁=30°,以 OA₁为直角边向外作Rt△OA ₁A ₂,使 ∠OA₁A₂=90°,∠A₁OA₂=30°,,以OA ₂为直角边向外作 Rt △OA₂A₃,使 ∠OA₂A₃=90°, ∠A₂OA₃=30°,,按此方法进行下去,得到 RtOA 3A 4,RtOA 4A 5,⋯,RtOA 2017A 2018,若点 A₀(1,0),则 点 A ₂₀₁₈的横坐标为 .18.如图,在 △ABC 中, AB =AC ,D 、E 两点分别在AC 、BC 上,BD 是 ∠ABC 的平分线, DE‖AB ,若 BE = 5cm ,CE=3c m,则 △CDE 的周长是 .三、解答题(本大题共8小题,满分60分.解答应写出文字说明、证明过程或演算步骤)19.(6分)计算: (1)48―27+13; (2)8+182―(32―1)220.(6分)若a,b为实数,且b=a2―1+1―a2+aa+1,求―a+b―3的值.21.(8分)阅读理解,补全证明过程及推理依据.已知:如图,点 E 在直线DF 上,点 B 在直线AC 上,∠1=∠2,∠3=∠4.求证:∠A=∠F.证明:∵∠1=∠2(已知),∠2=∠DGF( ),∴∠1=∠DGF(等量代换),∴∥ ( ),∴∠3+∠=180°(),又∵∠3=∠4(已知),∴∠4+∠C=180°(等量代换),∴∥ ( ),∴∠A=∠F( ).22.(8分)解方程组:(1){2x+5y=30,2x―5y=―10;(2){3x―y=5, x+2y=11.23.(8分)如图,一条直线分别与直线 BE、直线CE、直线 CF、直线 BF 相交于点A,G,D,H且∠1=∠2,∠B=∠C.(1)找出图中相互平行的线,说说它们之间为什么是平行的;(2)证明:∠A=∠D.24.(8分)某公司需招聘一名员工,对应聘者甲、乙、丙从笔试、面试、体能三个方面进行量化考核.甲、乙、丙各项得分如下表:笔试面试体能甲837990乙858075丙809073(1)根据三项得分的平均分,从高到低确定三名应聘者的排名顺序.(2)该公司规定:笔试,面试、体能得分分别不得低于80分,80分,70分,并按60%,30%,10%的比例计入总分.根据规定,请你说明谁将被录用.25.(8分))某大酒店客房部有三人间、双人间和单人间客房,收费数据如下表(例如三人间普通间客房每人每天收费50元).为吸引客源,在“十一黄金周”期间进行优惠大酬宾,凡团体入住一律五折优惠.一个50人的旅游团在十月二号到该酒店住宿,租住了一些三人间、双人间普通客房,并且每个客房正好住满,一天一共花去住宿费 1 510 元.普通间/(元/人/天)豪华间/(元/人/天)贵宾间/(元/人/天)三人间50100500双人间70150800单人间1002001500(1)三人间、双人间普通客房各租了多少间?(2)设三人间共住了x人,则双人间住了人,一天一共花去住宿费用y元表示,写出y与x的函数关系式;(3)如果你作为旅游团团长,你认为上面这种住宿方式是不是费用最少?为什么?26.(8分)如图,在平面直角坐标系中,过点 B(6,0)的直线AB 与直线OA 相交于点A(4,2),动点 M沿路线O→A→C运动.(1)求直线AB的解析式.(2)求△OAC的面积.(3)当△OMC的面积是△OAC的面积的14时,求出这时点 M的坐标.期末测试卷1. A2. B3. B4. D5. D6. C7. C8. B9. C 10. B11. A 12. B 13.-3 14.2 15.2 16.面积相等的三角形全等 17.―220173102918.13 cm 19.解(1)原式 =433;(2).原式 =62―14.20.解因为a,b 为实数,且 a ²―1≥0,1―a ²≥0,所以 a ²―1= 1―a ²=0.所以a=±1.又因为a+1≠0,所以a=1.代入原式,得 b =12,所以 ―a +b ―3=―3.21.解∵∠1=∠2(已知),∠2=∠DGF(对顶角相等),∴∠1=∠DGF(等量代换),∴BD ∥C E(同位角相等,两直线平行),∴∠3+∠C=180°(两直线平行,同旁内角互补).又∵∠3=∠4(已知),∴∠4+∠C =180°(等量代换),∴DF ∥AC(同旁内角互补,两直线平行),∴∠A=∠F(两直线平行,内错角相等).22.解(1){x=5,4,(2,y ₁=3,23.解 (1)CE‖BF ,AB‖CD .理由:∵∠1=∠2, ∴CE‖FB , ∴∠C =∠BFD . ∵∠B =∠C , ∴∠B =∠BFD ,∴AB∥CD;(2)由(1)可得AB∥CD,∴∠A=∠D.24.解 (1)x g =(83+79+90)÷3=84, x 2=(85+80+75)÷3=80,x y 3=(80+90+73)÷3=81.从高到低确定三名应聘者的排名顺序为:甲,丙,乙;(2)由该公司规定:笔试,面试、体能得分分别不得低于80分,80分,70分,则甲淘汰.乙成绩=85×60%+80×30%+75×10%=82.5,丙成绩=80×60%+90×30%+73×10%=82.3.故乙将被录取.25.解(1)设三人间普通客房租了x 间,双人间普通客房租了y 间.根据题意得{3x +2y =50,50×50%×3x +70×50%×2y =1510,解得 {x =8,y =13.因此,三人间普通客房租了8间,双人间普通客房租了13间.(2)(50-x)根据题意得:y=25x+35(50-x),即y=-10x+1750.(3)不是,由上述一次函数可知,y 随x 的增大而减小,当三人间住的人数大于24人时,所需费用将少于1510元.26.解(1)设直线AB 的解析式是y=kx+b,根据题意得: {4k +b =2,6k +b =0,解得: {k =―1,b =6.则直线的解析式是:y=-x+6.(2)在y=-x+6 中,令x=0,解得:y=6,S AAC =12×6×4=12.(3)设OA 的解析式是y=mx,则4m=2,解得: m =12,则直线的解析式是: y =12x ,∵当△OMC 的面积是△OAC 的面积的 14时,∴M 的横坐标是 14×4=1,在 y =12x 中,当x=1时, y =12,则M 的坐标是 (1,12);在y=-x+6中,x=1则y=5,则M 的坐标是(1,5).则M 的坐标是: M 1(1,12)或M ₂(1,5).。

北师大版八年级上册数学期末考试试卷含答案

北师大版八年级上册数学期末考试试卷含答案

北师大版八年级上册数学期末考试试题一、单选题1.下列各数中,无理数是( )A .0.101001B .0CD .23- 2.在平面直角坐标系中,点P (﹣2020,2019)所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 3.若直线y kx b =+经过第一、二、四象限,则函数y bx k =-的大致图像是( )A .B .C .D .4.如果将一组数据中的每个数都减去5,那么所得的一组新数据( )A .众数改变,方差改变B .众数不变,平均数改变C .中位数改变,方差不变D .中位数不变,平均数不变5.某船顺水航行45千米需要3小时,逆水航行65千米需要5小时,若设船在静水中的速度为x 千米/时,水流速度为y 千米/时,则根据题意,可列方程组( )A .()()345565x y x y ⎧+=⎪⎨-=⎪⎩B .()()345565x y x y ⎧-=⎪⎨+=⎪⎩C .()()345565y x y x ⎧+=⎪⎨-=⎪⎩D .()()345565y x y x ⎧-=⎪⎨+=⎪⎩6.如图,已知DC‖EG ,∠C=40°,∠A=70°,则∠AFE 的度数为( )A .140°B .110°C .90°D .30°7.下列命题中是真命题的是( )A .相等的角是对顶角B .数轴上的点与实数一一对应C .同旁内角互补D .无理数就是开方开不尽得数8.如图所示,下列推理及括号中所注明的推理依据错误的是( )A .13∠=∠,//AB CD ∴(内错角相等,两直线平行)B .//AB CD ,180BCD ABC ∴∠+∠=︒(两直线平行,同旁内角互补) C .//AD BC ,180BAD D ∴∠+∠=︒(两直线平行,同旁内角互补)D .DAM CBM ∠=∠,//AD BC ∴(同位角相等,两直线平行)9.若关于x ,y 的二元一次方程组25125x y k x y k +=+⎧⎨-=-⎩的解满足7x y +=,则k 的值是( ) A .1 B .2 C .3 D .410.如图是由两个直角三角形和三个正方形组成的图形,其中阴影部分的面积是( )A .16B .25C .144D .169二、填空题11.-1 的立方根是____________12.已知点A 到x 轴的距离等于2,则点A 的坐标是____.(写出一个即可)13.点(,)a b 在直线23y x =-+上,则421a b +-=_________.14.甲和乙同时加工一种产品,他们的工作量与工作时间的关系如图所示,则当甲加工了这种产品70件时,乙加工了______件.15.如图,∠ABC 中,∠A=55°,将∠ABC 沿DE 翻折后,点A 落在BC 边上的点A′处.如果∠A′EC=70°,那么∠A′DB 的度数为______.16.已知:如图,BC∠AC于点C,CD∠AB于点D,BE∠CD.若∠EBC=50°,则∠A=____.17.如图,已知CD是ABC的边AB上的高,若CD=1AD=,2AB AC=,则BC的长为_____.三、解答题18.方程组15xx y=⎧⎨+=⎩的解是______.19|-.20.解方程组:3435x yx y-=⎧⎨+=⎩①②.21.为全面落实“双减”政策,某中学调查本校学生周末平均每天做作业所用时间的情况,随机调查了50名同学,如图是根据调查所得数据绘制的统计图的一部分,请根据以上信息,解答下列问题.(1)请你补全条形统计图; (2)在这次调查的数据中,做作业所用时间的众数是______小时,中位数是______小时,平均数是______小时;(3)若该校共有2000名学生,根据以上调查结果估计该校全体学生每天作业时间在3小时内(含3小时)的同学共有多少人?22.如图所示,一架梯子AB 斜靠在墙面上,且AB 的长为2.5米.(1)若梯子底端离墙角的距离OB 为1.5米,求这个梯子的顶端A 距地面有多高?(2)在(1)的条件下,如果梯子的顶端A 下滑0.5米到点A',那么梯子的底端B 在水平方向滑动的距离BB'为多少米?23.在直角坐标系中,∠ABC 的三个顶点的位置如图所示.(1)请画出∠ABC 关于y 轴对称的A B C '''(其中,,A B C '''分别是A ,B ,C 的对应点,不写画法).(2)求∆ABC 的面积.24.如图,MN BC ∥,BD DC ⊥,1260∠=∠=︒,DC 是NDE ∠的平分线(1)AB 与DE 平行吗?请说明理由;(2)试说明ABC C ∠=∠;(3)求ABD ∠的度数.25.如图,直线y =kx+4与x 轴相交于点A ,与y 轴相交于点B ,且AB =(1)求点A 的坐标;(2)求k 的值;(3)C 为OB 的中点,过点C 作直线AB 的垂线,垂足为D ,交x 轴正半轴于点P ,试求点P 的坐标及直线CP 的函数表达式.26.如图1,点A、B分别在射线OM、ON上运动(不与点O重合),AC、BC分别是∠BAO 和∠ABO的角平分线,BC延长线交OM于点G.(1)若∠MON=60°,则∠ACG= ;(直接写出答案)(2)若∠MON=n°,求出∠ACG的度数;(用含n的代数式表示)(3)如图2,若∠MON=80°,过点C作CF∠OA交AB于点F,求∠BGO与∠ACF的数量关系.参考答案1.C【分析】A、B、C、D分别根据无理数、有理数的定义来求解即可判定.【详解】A、B、D中0.101001,0,23是有理数,C故选:C.【点睛】此题主要考查了无理数的定义.注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π0.8080080008…(每两个8之间依次多1个0)等形式.2.B【分析】根据点的横纵坐标的符号可得所在象限.【详解】解:∠点P(﹣2020,2019)的横坐标是负数,纵坐标是正数,∠点P(﹣2020,2019)所在的象限是第二象限,故选:B.【点睛】本题考查平面直角坐标系中各个象限的点的坐标的符号特点.掌握各个象限内点的符号特点是解题的关键.3.B=+的图像经过第一、二、四象限,可以得到k和b的正负,然【分析】根据一次函数y kx b=-图像经过哪几个象限,从而可以解答后根据一次函数的性质,即可得到一次函数y bx k本题.=+的图像经过第一、二、四象限,【详解】一次函数y kx bb>,k∴<,0k->,∴>,0b=-图像第一、二、三象限,∴一次函数y bx k故选:B.【点睛】本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.4.C【分析】由每个数都减去5,那么所得的一组新数据的众数、中位数、平均数都减少5,方差不变,据此可得答案.【详解】解:如果将一组数据中的每个数都减去5,那么所得的一组新数据的众数、中位数、平均数都减少5,方差不变,故选:C.【点评】本题主要考查方差,解题的关键是掌握方差、众数、中位数和平均数的定义.5.A【分析】根据:顺水航行速度=船在静水中航行速度+水流速度、逆水航行速度=船在静水中航行速度-水流速度及路程公式可得方程组.【详解】解:设船在静水中的速度为x 千米时,水流速度为y 千米时,根据题意,可列方程组3()455()65x y x y +=⎧⎨-=⎩, 故选:A .6.B【分析】先根据三角形外角的性质可求∠ABD ,再根据平行线的性质可求∠AFE 的度数.【详解】∠∠C=40°,∠A=70°,∠∠ABD=40°+70°=110°,∠DC∠EG ,∠∠AFE=110°.故选:B .7.B【详解】解:A 、相等的角不一定是对顶角,故此命题是假命题;B 、数轴上的点与实数一一对应,故此命题是真命题;C 、两直线平行,同旁内角互补,故此命题是假命题;D 、π是无理数,但不是开方开不尽的数,故此命题是假命题;.故选B .8.C【分析】依据内错角相等,两直线平行;两直线平行,内错角相等;两直线平行,同旁内角互补;同位角相等,两直线平行进行判断即可.【详解】解:A .13∠=∠,//AB CD ∴(内错角相等,两直线平行),正确; B .//AB CD ,180BCD ABC ∴∠+∠=︒(两直线平行,同旁内角互补),正确; C .//AD BC ,180BCD D ∴∠+∠=︒(两直线平行,同旁内角互补),故C 选项错误;D .DAM CBM ∠=∠,//AD BC ∴(同位角相等,两直线平行),正确; 故选:C .9.B【分析】利用加减法,先用含k 的代数式表示出x+y ,根据x+y=7,得到关于k 的一元一次方程,求解即可.【详解】解:2511252 x y kx y k+=+⎧⎨-=-⎩()()(1)×2+(2),得3x+3y=12k-3,∠x+y=4k-1,∠4k-1=7,解得k=2.故选:B.10.B【分析】根据勾股定理解答即可.【详解】解:根据勾股定理得出:,∠EF=AB=5,∠阴影部分面积是25,故选:B.11.-1.【分析】原式利用立方根定义计算即可.【详解】∠()31-=-1,∠-1的立方根是-1.故答案为-1.12.(1,2)【分析】根据点到x轴的距离等于纵坐标的长度,只有所写点的纵坐标的绝对值是2即可.【详解】解:∠点A到x轴的距离等于2,∠点A的纵坐标的绝对值是2,∠点A的坐标可以是(1,2).故答案为:(1,2)答案不唯一.13.5【分析】利用点(,)a b 在直线23y x =-+上,得到23a b +=,然后利用整体代入的方法即可计算421a b +-的值.【详解】∠点(,)a b 在直线23y x =-+上,∠23b a =-+,即23a b +=,∠()4212212315a b a b +-=+-=⨯-=.故答案为:5.14.280【分析】由题意根据图象可以求出甲、乙的工作效率,乙的用时与甲加工70件所用的时间相等,再根据工作量=工作效率×工作时间,求出答案.【详解】解:甲的工作效率为:50÷5=10件/分,乙的工作效率为:80÷2=40件/分, 因此:40×(70÷10)=280件,故答案为:28015.40°【分析】由翻折的性质可知:∠ADE=∠EDA′,∠AED=∠A′ED=12(180°-70°)=55°,求出∠ADE 即可解决问题.【详解】解:由翻折的性质可知:∠ADE=∠EDA′,∠AED=∠A′ED=12(180°-70°)=55°, ∠∠A=55°,∠∠ADE=∠EDA′=180°-55°-55°=70°,∠∠A′DB=180°-140°=40°,故答案为:40°.16.50°.【分析】根据平行线的性质得到∠EBC =∠BCD ,根据垂直的定义得到∠BCD+∠DCA =∠A+∠DCA ,等量代换即可得到结论.【详解】∠BE∠CD ,∠EBC =50°,∠∠BCD =∠EBC =50°,∠BC∠AC ,∠∠ACB =90°,∠∠ACD =90°﹣50°=40°,∠CD∠AB ,∠∠ACD=90°,∠∠A=90°﹣∠ACD=90°﹣40°=50°,故答案为50°.17.【分析】本题可由勾股定理算出AC的长度,再由AB=2AC得AB的长度,最后再通过勾股定理得BC的长度.【详解】解:∠CD是∠ABC的边AB上的高,∠∠ADC,∠BDC是直角三角形,在Rt∠ADC中,由勾股定理得:AC2,∠AB=2AC,∠AB=4,BD=AB+AD=4+1=5,在Rt∠BDC中,由勾股定理得:BC故答案为:18.14 xy=⎧⎨=⎩【分析】利用代入消元法将x=1代入到x+y=5中,解出y即可.【详解】解:15xx y=⎧⎨+=⎩,将x=1代入到x+y=5中,解得:y=4,∠方程的解为:14xy=⎧⎨=⎩,故答案为:14xy=⎧⎨=⎩.19.2.﹣=﹣=2.20.21 xy=⎧⎨=-⎩【详解】解:3435x yx y-=⎧⎨+=⎩①②,∠3⨯+∠,得714x=,解得2x=,把2x=代入∠,得23y-=,解得1y=-.故方程组的解为21 xy=⎧⎨=-⎩.21.(1)见解析;(2)3小时、3小时、3小时;(3)1360人.【分析】(1)用样本容量减已知各部分的人数,求出平均每天作业用时是4小时的人数,然后补全统计图;(2)利用众数,中位数,平均数的定义即可求解;(3)利用总人数2000乘以每天做作业时间在3小时内(含3小时)的同学所占的比例,即可求解.(1)每天作业用时是4小时的人数是:506121688----=(人),补全条形统计图如图所示:(2)∠每天作业用时是3小时的人数最多,是16人,∠众数是3小时;∠从小到大排列后排在第25和第26位的都是每天作业用时是3小时的人,∠中位数是3小时; 平均数是61221638485350+⨯+⨯+⨯+⨯=(小时),故答案为:3小时、3小时、3小时;(3)612162000136050++⨯=(人),故估计该校全体学生每天作业时间在3小时内(含3小时)的同学共有1360人. 22.(1)梯子距离地面的高度为2米;(2)梯子的底端水平后移了0.5米.【详解】解:(1)根据勾股定理:所以梯子距离地面的高度为:AO 2米;(2)梯子下滑了0.5米即梯子距离地面的高度为OA′=(2.5﹣0.5)=2米,根据勾股定理:OB′=2米,所以当梯子的顶端下滑0.5米时,梯子的底端水平后移了2﹣1.5=0.5米,答:当梯子的顶端下滑0.5米时,梯子的底端水平后移了0.5米.23.【详解】解:(1)如图,A B C '''是所求作的三角形,(2)11145123534 5.5.222ABC S =⨯-⨯⨯-⨯⨯-⨯⨯=24.(1)AB DE ∥,见解析(3)30°【分析】(1)首先根据平行线的性质,两直线平行,内错角相等即可证得∠ABC=∠1=60°,进而证明∠ABC=∠2,根据同位角相等,两直线平行,即可证得;(2)根据平行线的性质,两直线平行,同旁内角互补求得∠NDE的度数,然后根据角平分线的定义,以及平行线的性质即可求得∠C的度数,从而判断;(3)先求得∠ADB的度数,根据平行求出∠DBC的度数,然后求得∠ABD的度数,即可证得.(1)解:AB DE∥,理由如下:∠MN BC∥,∠∠ABC=∠1=60°.又∠∠1=∠2,∠∠ABC=∠2,∠AB∠DE.(2)解:∠MN∠BC,∠∠NDE+∠2=180°,∠∠NDE=180°-∠2=180°-60°=120°.∠DC是∠NDE的平分线,∠1602∠=∠=∠=︒EDC NDC NDE.∠MN∠BC,∠∠C=∠NDC=60°,∠∠ABC=∠C.(3)解:∠ADC=180°-∠NDC=180°-60°=120°,∠BD∠DC,∠∠BDC=90°,∠∠ADB=∠ADC-∠BDC=120°-90°=30°.∠∠DBC=∠ADB=30°,∠∠ABC=∠C=60°,∠∠ABD=30°【点睛】本题考查了平行线的性质和判定定理,垂线的性质,解题关键是熟练运用平行线的性质与判定进行推理证明和计算.25.(1)()2,0A -;(2)2k =;(3)()4,0P ,直线CP 的解析式为122y x =-+ 【分析】(1)由题意可把x=0代入直线解析式求得点B 的坐标,则有OB=4,然后根据勾股定理可得OA=2,则可得点A 的坐标;(2)由(1)可把点A 的坐标代入解析式求解即可;(3)由题意易得OC=OA=2,然后可证∠AOB∠∠COP ,进而可得OP=OB=4,最后问题可求解.【详解】解:(1)把x=0代入直线y =kx+4可得:y =4,∠()0,4B ,∠OB=4,在Rt∠AOB 中,AB =2OA ==,∠()2,0A -;(2)由(1)可把点()2,0A -代入直线y =kx+4得:240k -+=,解得:2k =;(3)∠点C 为OB 的中点,OB=4,∠2OC =,∠OC OA =,∠90AOB COP ∠=∠=︒,DP AB ⊥,∠90BAO ABO BAO CPO ∠+∠=∠+∠=︒,∠ABO CPO ∠=∠,又∠∠AOB=∠COP=90°,∠∠AOB∠∠COP (AAS ),∠OP=OB=4,∠()4,0P ,设直线CP 的解析式为y ax c =+,则把点()4,0P ,()0,2C 代入得:∠240c a c =⎧⎨+=⎩,解得:212c a =⎧⎪⎨=-⎪⎩, ∠直线CP 的解析式为122y x =-+. 【点睛】本题主要考查一次函数与几何的综合及勾股定理,熟练掌握一次函数与几何的综合及勾股定理是解题的关键.26.(1)60°;(2)90°-12n°;(3)∠BGO -∠ACF=50° 【分析】(1)根据三角形内角和定理求出∠BAO+∠ABO ,根据角平分线的定义、三角形的外角性质计算,得到答案;(2)仿照(1)的解法解答;(3)根据平行线的性质得到∠ACF=∠CAG ,根据(2)的结论解答.【详解】解:(1)∠∠MON=60°,∠∠BAO+∠ABO=120°,∠AC 、BC 分别是∠BAO 和∠ABO 的角平分线, ∠∠CBA=12∠ABO ,∠CAB=12∠BAO , ∠∠CBA+∠CAB=12(∠ABO+∠BAO )=60°, ∠∠ACG=∠CBA+∠CAB=60°,故答案为:60°;(2)∠∠MON=n°,∠∠BAO+∠ABO=180°-n°,∠AC 、BC 分别是∠BAO 和∠ABO 的角平分线, ∠∠CBA=12∠ABO ,∠CAB=12∠BAO , ∠∠CBA+∠CAB=12(∠ABO+∠BAO )=90°-12n°, ∠∠ACG=∠CBA+∠CAB=90°-12n°; (3)∠CF∠OA ,∠∠ACF=∠CAG ,∠∠BGO-∠ACF=∠BGO-∠CAG=∠ACG,由(2)得:∠ACG=90°-12×80°=50°.∠∠BGO-∠ACF=50°.。

北师大版八年级上册数学期末考试试卷及答案

北师大版八年级上册数学期末考试试卷及答案

北师大版八年级上册数学期末考试试题一、单选题1.下列实数中是无理数的是( )A.π B C .0 D .27- 2.如图,在Rt ABC 中,90C ∠=︒,边BC 的长是( )A.5 B .6 C .8 D .3.下列选项中,最简二次根式是( )A B C D 4.如图,在ABC 中,85B ∠=︒,40ACD ∠=︒,AB ∥CD ,则ACB ∠的度数为( )A .90°B .85°C .60°D .55° 5.若点(1,2)P 在正比例函数的图象上,则这个正比例函数的解析式是( ) A .2y x =- B .2y x = C .4y x =- D .4y x = 6.函数1y kx =-中,y 随x 的增大而增大,则它的图象可能是下图中的( )A .B .C .D .7.古代数学问题:“今有木,不知长短.引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺,问木长多少尺.设木长为x 尺,绳子长为y 尺,则下列符合题意的方程组是( )A . 4.5112y x y x =-⎧⎪⎨=-⎪⎩B . 4.5112y x y x =-⎧⎪⎨=+⎪⎩C . 4.5112y x y x =+⎧⎪⎨=-⎪⎩D . 4.521y x y x =+⎧⎨=-⎩ 8.如图,ABC 是一个三角形的纸片,点D 、E 分别是ABC 边上的两点,将ABC 沿直线DE 折叠,点A 落在点A '处,则BDA '∠,CEA '∠和A ∠的关系是( )A .BDA CEA A ''∠-∠=∠B .180BDA CEA A ''∠+∠+∠=︒C .2BDA A CEA ''∠+∠=∠D .2BDA CEA A ''∠+∠=∠9.下列运算结果正确的是( )AB.2+= C3= D.)213=-10.已知直线12//l l ,将一块直角三角板ABC (其中∠A 是30°,∠C 是60°)按如图所示方式放置,若∠1=84°,则∠2等于( )A .56°B .64°C .66°D .76°二、填空题11.正数a 的平方根是5和m ,则m =__________. 12.已知41x y =⎧⎨=⎩是关于x ,y 的二元一次方程3x ay -=的一个解,则a 的值是__________. 13.计算的结果是________. 14.解方程组5()3()22()4()6x y x y x y x y +--=⎧⎨++-=⎩,若设()x y A +=,()x y B -=,则原方程组可变形为______.15.如图,已知函数y ax b =+和y cx d =+图象交于点M ,则根据图象可知,关于x 、y 的二元一次方程组y ax b y cx d =+⎧⎨=+⎩的解为____________.16.如图,四边形ABCD 是长方形,F 是DA 延长线上一点,CF 交AB 于点E ,G 是CF 上一点,且∠ACG =∠AGC ,∠GAF =∠F .若∠ECB =20°,则∠ACD 的度数是______________.17.如图,已知∠1=∠2,∠B =35°,则∠3=________°.18.如图,已知直线y =ax+b 和直线y =kx 交于点P ,则关于x ,y 的二元一次方程组y kx y ax b=⎧⎨=+⎩的解是_____.三、解答题19.计算(2)1)20.为了搞好课外活动,王老师还需购买一定数量的足球和篮球.经调查发现:6个价格相同的篮球和4个价格相同的足球共需720元,1个篮球和3个足球共需260元,请问篮球和足球的单价分别是多少?21.已知点P(a﹣2,2a+8),分别根据下列条件求出点P的坐标.(1)点P在x轴上;(2)点P到x轴、y轴的距离相等.22.已知:如图,在∠ABC中,∠B=∠C,AD平分外角∠EAC.求证:AD∠BC.23.如图,∠ABC中,∠ACB=90°,D为AB上一点,过D点作AB垂线,交AC于E,交BC的延长线于F.(1)∠1与∠B有什么关系?说明理由.(2)若BC=BD,请你探索AB与FB的数量关系,并且说明理由.24.如图,在平面直角坐标系中,∠ABC 的顶点坐标分别为()3,2A -,()4,3B --,()2,2C --. (1)∠ABC 的面积是 ;(2)画出∠ABC 关于y 轴对称的∠A 1B 1C 1,并写出点B 1的坐标.25.在∠ABC 中,(1)如图1,AC =15,AD =9,CD =12,BC =20,求∠ABC 的面积;(2)如图2,AC =13,BC =20,AB =11,求∠ABC 的面积.26.如图,在平面直角坐标系xOy 中,一次函数的图象经过点()30A -,与点()0,4B .(1)求这个一次函数的表达式;(2)若点M 为此一次函数图象上一点,且∠MOB 的面积为12,求点M 的坐标;(3)点P 为x 轴上一动点,且∠ABP 是等腰三角形,请直接写出点P 的坐标.27.某校在八年级开展环保知识问卷调查活动,问卷一共10道题,八年级(三)班的问卷得分情况统计图如下图所示:a______________;(1)扇形统计图中,(2)根据以上统计图中的信息,∠问卷得分的极差是_____________分;∠问卷得分的众数是____________分;∠问卷得分的中位数是______________分;(3)请你求出该班同学的平均分.参考答案1.A【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:A、π是无理数,故此选项符合题意;B2=,属于有理数,故此选项不符合题意;C、0属于有理数,故此选项不符合题意;D、27-是分数,属于有理数,故此选项不符合题意;故选:A.【点睛】此题主要考查了无理数的定义,掌握实数的分类是解答本题的关键.2.B【分析】利用勾股定理计算即可.【详解】解:由题意可得:6=,故选:B.【点睛】本题考查了勾股定理,解题的关键是掌握直角三角形中直角边的平方和等于斜边的平方.3.C【分析】根据最简二次根式的定义判断即可.【详解】解:A=,不是最简二次根式,故不符合题意;B=CD=,不是最简二次根式,故不符合题意;故选:C.【点睛】本题考查了最简二次根式,熟练掌握最简二次根式的定义是解题的关键.满足下列两个条件的二次根式,叫做最简二次根式:(1)被开方数的因数是整数,因式是整式;(2)被开方数中不含能开得尽方的因数或因式.4.D【分析】根据平行线的性质和三角形的内角和定理即可得到结论.【详解】解:∠AB∠CD,∠ACD=40°,∠∠A=∠ACD=40°,∠∠ACB=180°-∠A-∠B=180°-40°-85°=55°,故选:D.【点睛】本题考查的是三角形内角和定理和平行线的性质,掌握三角形内角和定理等于180°是解题的关键.5.B【分析】将P坐标代入正比例函数解析式中求出k的值,即可确定出正比例解析式.【详解】解:设正比例函数的解析式为y=kx,将x=1,y=2代入y=kx中,得:2=k,则正比例解析式为y=2x;故选:B.【点睛】此题考查了待定系数法求正比例函数解析式,灵活运用待定系数法是解本题的关键.6.D【分析】y随x的增大而增大,则k>0,图象经过一、三象限;常数项-1<0,则直线与y 轴的交点在负半轴上,图象还经过第四象限.【详解】解:∠函数y=kx-1,y随x的增大而增大,∠k>0,图象经过一、三象限;又∠-1<0,∠图象还经过第四象限.即图象经过一、三、四象限.故选:D.【点睛】本题考查了一次函数的图象特征,函数的增减性,解题的关键是掌握一次函数的各个系数的作用.7.C【分析】根据用一根绳子去量一根长木,绳子还剩余4.5尺,可得x+4.5=y;根据将绳子对y,然后即可写出相应的方程组.折再量长木,长木还剩余1尺,可得x-1=12【详解】解:由题意可得,4.5112y x y x =+⎧⎪⎨=-⎪⎩, 故选:C .【点睛】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.8.D【分析】由∠BDA'+∠ADA'=180°,∠CEA'+∠A'EA=180°,得∠BDA'+∠CEA'=360°-∠ADA'-∠A'EA ,再利用四边形内角和定理可得答案.【详解】解:∠∠BDA'+∠ADA'=180°,∠CEA'+∠A'EA=180°,∠∠BDA'+∠CEA'=360°-∠ADA'-∠A'EA ,∠∠BDA'+∠CEA'=∠A+∠DA'E ,∠∠A'DE 是由∠ADE 沿直线DE 折叠而得,∠∠A=∠DA'E ,∠∠BDA'+∠CEA'=2∠A ;故选D .【点睛】本题主要考查了折叠的性质,三角形内角和定理等知识,遇到折叠的问题,一定要找准相等的量,结合题目所给出的条件在图形上找出之间的联系则可.9.D【分析】根据二次根式的运算性质,以及完全平方公式进行计算即可.【详解】A与B .2与CD.)22212113=-+=-故选:D .【点睛】本题考查了二次根式加减乘除计算,熟知二次根式加减乘除运算性质以及运用完全平方公式进行计算是解题的关键.10.C【分析】如图,由题意易得∠ABC=90°,则有∠3=∠1-∠C=24°,进而可得∠4=66°,然后根据平行线的性质可求解.【详解】解:如图所示:∠∠C=60°,∠1=84°,∠∠3=24°,∠∠ABC 是直角三角形,∠∠ABC=90°,∠∠4=66°,∠12//l l ,∠∠2=∠4=66°;故选C .【点睛】本题主要考查三角形外角的性质及平行线的性质,熟练掌握三角形外角的性质及平行线的性质是解题的关键.11.-5【分析】根据一个正数的平方根互为相反数,从而可以求得m 的值.【详解】解:∠正数a 的平方根是5和m ,∠5+m=0,∠m=-5,故答案为:-5.【点睛】本题考查了平方根,解答本题的关键是明确一个正数的平方根有两个,它们互为相反数.12.1【分析】把41x y =⎧⎨=⎩代入二元一次方程x -ay=3中,得到关于a 的方程,解方程就可以求出a .【详解】解:把41x y =⎧⎨=⎩代入二元一次方程x -ay=3,得 4-a=3,解得a=1.故答案为:1.【点睛】本题考查了二元一次方程的解,解题关键是把方程的解代入原方程,使原方程转化为以系数a 为未知数的方程.13.【详解】分析:先计算分子,然后进行二次根式的除法运算.详解:原式点睛:本题考查了二次根式的计算:一般情况下,先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.14.532246A B A B -=⎧⎨+=⎩ 【分析】根据题意,将()x y A +=,()x y B -=代入方程组中即可得出结论.【详解】解:由题意可得原方程组可变形为532246A B A B -=⎧⎨+=⎩故答案为:532246A B A B -=⎧⎨+=⎩. 【点睛】此题考查的是换元法,根据题意换元是解题关键.15.57x y =-⎧⎨=⎩ 【分析】一次函数y=ax+b 和y=cx+d 交于点(-5,7);因此点(-5,7)必为两函数解析式所组方程组的解.【详解】解:由图可知:直线y=ax+b 和直线y=cx+d 的交点坐标为(-5,7);因此关于x 、y 的二元一次方程组y ax b y cx d =+⎧⎨=+⎩的解为:57x y =-⎧⎨=⎩,故答案为:57xy=-⎧⎨=⎩.【点睛】考查了一次函数与二元一次方程(组)方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.16.30°【分析】根据矩形的性质得到AD∠BC,∠DCB=90°,根据平行线的性质得到∠F=∠ECB =20°,根据三角形的外角的性质得到∠ACG=∠AGC=∠GAF+∠F=2∠F=40°,于是得到结论.【详解】解:∠四边形ABCD是矩形,∠AD∠BC,∠DCB=90°,∠∠F=∠ECB∠∠ECB=20°,∠∠F=∠ECB=20°,∠∠GAF=∠F,∠∠GAF=∠F=20°,∠∠ACG=∠AGC=∠GAF+∠F=2∠F=40°,∠∠ACB=∠ACG+∠ECB=60°,∠∠ACD=90°﹣∠ACB=90°﹣60°=30°,故答案为:30°.【点睛】本题考查了矩形的性质,用到的知识点为:矩形的对边平行;两直线平行,内错角相等;三角形的一个外角等于和它不相邻的两个内角的和.17.35【分析】根据“平行线的判定和性质”结合“已知条件”分析解答即可.【详解】∠∠1=∠2,∠AB∠CE,∠∠3=∠B=35°.故答案为35.【点睛】熟记“平行线的判定方法和性质”是解答本题的关键.18.12 xy=⎧⎨=⎩.【分析】直接根据函数图象交点坐标为两函数解析式组成的方程组的解得到答案.【详解】解:∠直线y=ax+b和直线y=kx交点P的坐标为(1,2),∠关于x,y的二元一次方程组y kxy ax b=⎧⎨=+⎩的解为12xy=⎧⎨=⎩.故答案为12xy=⎧⎨=⎩.【点睛】此题考查一次函数与二元一次方程(组),解题关键在于利用图象求解.19.(1)3 2(2)12【分析】(1)利用二次根式的乘法法则计算,再化简;(2)利用平方差公式计算即可.(1)=32;(2))11=221-=131-=12【点睛】本题考查了二次根式的混合运算,解题的关键是掌握运算法则.20.篮球单价为80元,足球单价为60元【分析】设篮球单价为x元,足球单价为y元,根据“6个价格相同的篮球和4个价格相同的足球共需720元,1个篮球和3个足球共需260元”,即可得出关于x,y的二元一次方程组,解之即可得出结论.【详解】解:设篮球单价为x元,足球单价为y元,依题意,得:647203260x yx y+=⎧⎨+=⎩,解得:8060xy=⎧⎨=⎩,答:篮球单价为80元,足球单价为60元.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.21.(1)P(-6,0);(2)P(-12,-12)或(-4,4)【分析】(1)利用x轴上点的坐标性质纵坐标为0,进而得出a的值,即可得出答案;(2)利用点P到x轴、y轴的距离相等,得出横纵坐标相等或互为相反数进而得出答案.【详解】解:(1)∠点P(a-2,2a+8)在x轴上,∠2a+8=0,解得:a=-4,故a-2=-4-2=-6,则P(-6,0);(2)∠点P到x轴、y轴的距离相等,∠a-2=2a+8或a-2+2a+8=0,解得:a=-10,或a=-2,故当a=-10时,a-2=-12,2a+8=-12,则P(-12,-12);故当a=-2时,a-2=-4,2a+8=4,则P(-4,4).综上所述:P(-12,-12)或(-4,4).【点睛】此题主要考查了点的坐标特征,用到的知识点为:点到两坐标轴的距离相等,那么点的横纵坐标相等或互为相反数以及点在坐标轴上的点的性质.22.证明见解析【分析】由角平分线的定义可知:∠EAD=12∠EAC,再由三角形的外角的性质可得∠EAD=∠B,然后利用平行线的判定定理可证明出结论.【详解】解:∠AD 平分∠EAC , ∠∠EAD=12∠EAC ,又∠∠B=∠C ,∠EAC=∠B+∠C , ∠∠B=12∠EAC , ∠∠EAD=∠B ,∠AD∠BC .【点睛】本题主要考查了平行线的判定,三角形的外角性质,熟练掌握平行线的判定,三角形的外角性质是解题的关键.23.(1)∠1与∠B 相等,理由见解析;(2)若BC =BD ,AB 与FB 相等,理由见解析【分析】(1)∠ACB=90°,∠1+∠F=90°,又由于DF∠AB ,∠B+∠F=90°,继而可得出∠1=∠B ;(2)通过判定∠ABC∠∠FBD (AAS ),可得出AB=FB .【详解】解:(1)∠1与∠B 相等,理由:∠,∠ABC 中,∠ACB =90°,∠∠1+∠F =90°,∠FD∠AB ,∠∠B+∠F =90°,∠∠1=∠B ;(2)若BC =BD ,AB 与FB 相等,理由:∠∠ABC 中,∠ACB =90°,DF∠AB ,∠∠ACB =∠FDB =90°,在∠ACB 和∠FDB 中, B B ACB FDB BC BD ∠=∠⎧⎪∠∠⎨⎪=⎩=,∠∠ACB∠∠FDB (AAS ),∠AB =FB .【点睛】本题考查全等三角形的判定(AAS )与性质、三角形内角和,解题的关键是掌握全等三角形的判定(AAS )与性质、三角形内角和.24.(1)4.5;(2)见解析,()14,3B -【分析】(1)依据割补法进行计算,即可得到∠ABC 的面积;(2)依据轴对称的性质进行作图,即可得到∠A 1B 1C 1.【详解】解:(1)∠ABC 的面积为:2×5−12×1×4−12×1×5−12×1×2=4.5;故答案为:4.5;(2)如图,111A B C △为所求;()14,3B -;【点睛】本题考查了作图——轴对称变换,解决本题的关键是掌握轴对称的性质.25.(1)150;(2)66【分析】(1)根据勾股定理的逆定理判断∠ADC=90°,再用勾股定理求出DB ,然后求面积即可;(2)过点C 作CD AB ⊥,交BA 的延长线于点D ,设AD x =,则11BD x =+,根据勾股定理列出方程,解出x ,再求出高CD 即可.【详解】解:(1)如答题1图,∠15AC =,9AD =,12CD =∠2222129225CD AD +=+=,2215225AC == ∠222CD AD AC +=∠90ADC ∠=︒,∠=90BDC ∠︒,∠16BD =∠91625AB AD BD =+=+=.∠11251215022ABC S AB CD =⋅=⨯⨯=△(2)如答题2图,过点C 作CD AB ⊥,交BA 的延长线于点D ,则90ADC BDC ∠=∠=︒.设AD x =,则11BD x =+在Rt ACD △,2222213CD AC AD x =-=-在Rt BCD ,()222222011CD BC BD x =-=-+∠()2222132011x x -=-+解得:5x =∠222135144CD =-=∠12CD = ∠1111126622ABC S AB CD =⋅=⨯⨯=△【点睛】本题考查了勾股定理和勾股定理逆定理,解题关键是恰当作垂线,构建直角三角形,依据勾股定理建立方程.26.(1)443y x =+;(2)()6,12或()6,4--;(3)点Р()3,0或()8,0-或()2,0或7,06⎛⎫ ⎪⎝⎭【分析】(1)设一次函数的表达式为y=kx+b ,把点A 和点B 的坐标代入求出k ,b 的值即可;(2)点M 的坐标为(a ,443a +),根据∠MOB 的面积为12,列出关于a 的等式,解之即可;(3)分三种情形讨论即可∠当AB=AP 时,∠当BA=BP 时,∠当PA=PB 时.【详解】解:(1)设这个一次函数的表达式为y kx b =+,依题意得:304k b b -+=⎧⎨=⎩, 解得:434k b ⎧=⎪⎨⎪=⎩, ∠443y x =+.(2)如图:设点M 的坐标为4,43a a ⎛⎫+ ⎪⎝⎭,∠()0,4B ,∠4OB =,∠MOB △的面积为12,14122a ⨯⨯=, ∠6a =,∠6a =±,当6a =时,44123a +=; 当6a =-时,4443a +=-; ∠点M 的坐标为:()6,12或()6,4--.(3)∠点A (-3,0),点B (0,4).∠OA=3,OB=4,5=,当PA=AB 时,P 的坐标为(-8,0)或(2,0);当PB=AB 时,P 的坐标为(3,0);当PA=PB 时,设P 为(m ,0),则(m+3)2=m 2+42, 解得:7m 6=,∠P 的坐标为(76,0); 综上,点Р的坐标是:()3,0或()8,0-或()2,0或7,06⎛⎫ ⎪⎝⎭. 【点睛】本题考查一次函数综合题、待定系数法、等腰三角形的判定和性质、三角形面积等知识,解题的关键是灵活运用所学知识,学会用转化的思想思考问题,属于中考常考题型. 27.(1)14%;(2)∠40,∠90,∠85;(3)82.6.【分析】(1)依据扇形统计图中各项目的百分比,即可得到a 的值;(2)依据极差、众数和中位数的定义进行计算,即可得到答案;(3)依据加权平均数的算法进行计算,即可得到该班同学的平均分.【详解】(1)120%30%20%16%14%a =----=;(2)∠问卷得分的极差是100-60=40(分),∠90分所占的比例最大,故问卷得分的众数是90分,∠7÷14=50(人),70分的人数为:50×16%=8(人)80分的人数为:50×20%=10(人)90分的人数为:50×30%=15(人)100分的人数为:50×20%=10(人)所以,问卷得分的中位数是从低分到高分排列第25,26个学生分数的平均数,即908085 2+=(分);(3)该班同学的平均分为:6014%7016%8020%9030%10020%82.6⨯+⨯+⨯+⨯+⨯=(分)。

北师大版八年级(上)期末数学试卷(含答案)

北师大版八年级(上)期末数学试卷(含答案)

图1AB C D3412图2B CBC北师大版八年级(上)期末数学试卷及答案一选择题。

(每小题3分,共24分)下列各小题均有四个选项,其中只有一项符合题目要求,将符合题目要求的选项前面字母填入题后括号内。

1、下列式子正确的是()A. 1)1(33-=- B. 525±= C. 9)9(2-=- D. 2)2(2-=-2、二元一次方程12=-yx有无数多个解,下列四组值中不是..该方程的解是()A.⎩⎨⎧==11yxB.⎩⎨⎧-=-=21yxC.⎩⎨⎧-=-=31yxD.⎩⎨⎧==32yx3、如图1,相对灯塔O而言,小岛A的位置是()A. 北偏东60 °B. 距灯塔2km处C. 北偏东30°且距灯塔2km处D. 北偏东60°且距灯塔2km处4、下列说法正确的是()A. 数据0,5,-7,-5,7的中位数和平均数都是0;B. 数据0,1,2,5,a的中位数是2;C. 一组数据的众数和中位数不可能相等;D. 数据-1,0,1,2,3的方差是4。

5、已知正比例函数kxy=的函数值xy随的增大而减小,则一次函数kkxy+=的图象大致是()6、如图2在△ABC中,∠1=∠2,∠3=∠4,若∠D=25°,则∠A等于()A. 25°B. 50°C. 65°D. 75°7、小强每天从家到学校上学行走的路程为900m,某天他从家去上学时以每分30m的速度行走了450m,为了不迟到他加快了速度,以每分45m的速度行走完剩下的路程,那么小强离学校的路D程s (m)与他行走的时间t (min)之间的函数关系用图象表示正确的是( )8、如图3,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则 ∠ABC 的度数为( )A. 90°B. 60°C. 45°D. 30° 二、填空题(每小题3分,共21分) 9、64的算术平方根是___________。

北师大版八年级数学上册期末测试题(附参考答案)

北师大版八年级数学上册期末测试题(附参考答案)

北师大版八年级数学上册期末测试题(附参考答案)一、选择题:本题共12个小题,每小题3分,共36分。

每小题只有一个选项符合题目要求。

1.下列各数中为无理数的是( )A.√2B.1.5C.0 D.-12.△ABC的三边长a,b,c满足(a-b)2+√2a−b−3+|c-3√2|=0,则△ABC 是( )A.等腰三角形B.直角三角形C.锐角三角形D.等腰直角三角形3.如图,在△ABC中,∠BAC=90°,AD⊥BC,垂足为点D,E是边BC上的中点,AD=ED=3,则BC的长为( )A.3√2B.3√3C.6 D.6√24.下列说法错误的是( )A.1的平方根是1B.4的算术平方根是2C.√2是2的平方根D.-√3是√(−3)2的平方根−√45,则实数m所在的范围是( )5.若实数m=5√15A.m<-5 B.-5<m<-4C.-4<m<-3 D.m>-36.甲、乙两位同学放学后走路回家,他们走过的路程s(km)与所用的时间t(min)之间的函数关系如图所示.根据图中信息,下列说法错误的是( )A.前10 min,甲比乙的速度慢B.经过20 min,甲、乙都走了1.6 kmC.甲的平均速度为0.08 km/minD.经过30 min,甲比乙走过的路程少7.某油箱容量为60升的汽车,加满汽油后行驶了100千米时,油箱中的汽油大约消耗了15.若加满汽油后汽车行驶的路程为x千米,油箱中剩余油量为y升,则y与x之间的函数表达式是( )A.y=0.12xB.y=60+0.12xC.y=-60+0.12xD.y=60-0.12x8.在同一平面直角坐标系中,一次函数y1=ax+b(a≠0)与y2=mx+n(m≠0)的图象如图所示,则下列结论错误的是( )A.y1随x的增大而增大B.b<nC.当x<2时,y1>y2D.关于x,y的方程组{ax−y=−b,mx−y=−n的解为{x=2,y=39.已知方程组{2x+y=1,kx+(k−1)y=19的解满足x+y=3,则( )A.k=-8 B.k=2C.k=8D.k=-210.甲、乙、丙、丁4名同学参加跳远测试各10次,他们的平均成绩及其方差如表:A.甲B.乙C.丙D.丁11.如图,直线AB∥CD,GE⊥EF于点E.若∠BGE=60°,则∠EFD的度数是( )A.60°B.30°C.40°D.70°12.如图,在平面直角坐标系中,每个网格小正方形的边长均为1个单位长度,以点P为位似中心作正方形P A1A2A3,正方形P A4A5A6,…,按此规律作下去,所作正方形的顶点均在格点上,其中正方形P A1A2A3的顶点坐标分别为P(-3,0),A1(-2,1),A2(-1,0),A3(-2,-1),则顶点A100的坐标为( )A.(31,34) B.(31,-34)C.(32,35) D.(32,0)二、填空题:本题共6个小题,每小题3分,共18分。

北师大版八年级上册数学期末考试试卷及答案

北师大版八年级上册数学期末考试试卷及答案

北师大版八年级上册数学期末考试试题一、单选题1.下列各数中,为无理数的是( )A.13B C D 2.在平面直角坐标系中,点P (2,﹣3)在( ) A .第一象限B .第二象限C .第三象限D .第四象限3.下列各式中正确的是( )A2=±B 3=-C 2D4.下列长度的各组线段中,不能构成直角三角形的是( )A .4、5、6B .5、12、13C .3、4、5D .15.下列命题中是假命题的是( )A .两直线平行,同位角互补B .对顶角相等C .直角三角形两锐角互余D .平行于同一直线的两条直线平行6.已知方程组03mx y x ny +=⎧⎨+=⎩的解是12x y =⎧⎨=-⎩,则2m n +的值为( )A .1B .2C .3D .07.某学校为了了解九年级学生的体育达标情况,随机抽取50名九年级学生进行测试,测试成绩如表:则本次抽查中体育测试成绩的中位数和众数分别是( )A .26和25B .25和26C .25.5和25D .25和25 8.已知点A (﹣6,y 1)和B (﹣2,y 2)都在直线13y x b =-+上,则y 1,y 2满足( )A .y 1>y 2B .y 1<y 2C .y 1=y 2D .大小不确定9.如图,BC∥DE ,若∥A=35°,∥C=24°,则∥E 等于( )A .24°B .59°C .60°D .69°10.一工坊用铁皮制作糖果盒,每张铁皮可制作盒身20个,或制作盒底30个,一个盒身与两个盒底配成一套糖果盒.现有35张铁皮,设用x 张制作盒身,y 张制作盒底,恰好配套制成糖果盒、则下列方程组中符合题意的是( )A .352x y y x +=⎧⎨=⎩B .3520230x y x y +=⎧⎨=⨯⎩C .3522030x y x y +=⎧⎪⎨=⎪⎩D .3530202x y y x +=⎧⎪⎨=⎪⎩二、填空题11.已知x ,y 为两个连续的整数,且xy ,则5x+y 的平方根为_____.12.已知a ,b 满足方程组21228a b a b -=⎧⎨+=⎩,则3a b +的值为______.13.已知点(,2)A m -,(3,1)B m -,且直线ABx 轴,则m 的值是_____.14.已知直线1l :1y x =+与直线2l :y mx n =+相交于点()2,P b -,则关于x ,y 的方程组100x y mx y n -+=⎧⎨-+=⎩的解是______. 15.若多项式210x x k ++是一个完全平方式,则k =____;16.如图,在∥ABC 中,∥C =90°,AC =12,BC =9,AD 是∥BAC 的平分线.若射线AC 上有一点P ,且∥CPD =∥B ,则AP 的长为 _____.17.如图,已知∥1=∥2,∥B =35°,则∥3=________°.18.如图,函数y =5﹣x 与y =2x ﹣1的图象交于点A ,关于x 、y 的方程组521x y x y +=⎧⎨-=⎩的解是 _____.三、解答题1913-.20.解方程组:43524x y x y +=⎧⎨-=⎩.21.如图,∥ABC 的三个顶点都在方格纸的格点上,其中A 点的坐标是(﹣1,0),B 点的坐标是(﹣3,1),C 点的坐标是(﹣2,3).(1)作∥ABC 关于y 轴对称的图形∥DEF ,点A 、B 、C 的对应点分别为D 、E 、F ; (2)在(1)的条件下,点P 为x 轴上的动点,当∥PDE 为等腰三角形时,请直接写出点P 的横坐标.22.如图,已知直线l1:y=kx+2与x轴交于点B,与y轴交于点C,与直线l2:y=5x+20交于点P(-3,a),直线l2与x轴交于点A.(1)求直线l1的解析式;(2)求四边形OAPC的面积.23.我市某小区准备用5400元购买医用口罩和洗手液发放给本小区住户,若医用口罩买800个,洗手液买120瓶,则钱还缺200元;若医用口罩买1200个,洗手液买80瓶,则钱恰好用完.(1)求医用口罩和洗手液的单价;(2)由于实际需要,除购买医用口罩和洗手液外,还需购买单价为6元的N95口罩m个.若需购买医用口罩和N95口罩共1200个,且100<m<200,剩余的钱全部用来购买洗手液,恰好用完5400元,求m的值.∥,直线AD与直线BC交于点E,∥AEC=110°.24.已知:直线AB CD(1)如图∥,BF平分∥ABE交AD于F,DG平分∥CDE交BC于G,求∥AFB+∥CGD的度数;∥PCB时,(2)如图∥,∥ABC=30°,在∥BAE的平分线上取一点P,连接PC,当∥PCD=12直接写出∥APC的度数.25.对于一个四位正整数,设其千位、百位、十位、个位上的数字分别为a、b、c、d,我们将这个四位正整数记作:abcd,若满足b+c=2(a+d),则称该四位正整数为“希望数”.例如:四位正整数3975,百位数字与十位数字之和是16,千位数字与个位数字之和是8,而16是8的两倍,则称四位正整数3975为“希望数”,类似的,四位正整数3060也是“希望数”.根据题中所给材料,解答以下问题:(1)若一个四位正整数375x为“希望数”,则x=(直接填空);的值;(2)两个四位正整数91x y和28x y都是“希望数”,求x y(3)最大的“希望数”是:(直接填空);(4)对一个各个数位数字均不超过6的“希望数”m,设m=abcd,当个位数字是千位数字的2倍,且十位数字和百位数字均是2的倍数时,这个“希望数”m可能的最大值与最小值分别是(直接填空).26.如图,已知直线y=2x+9与y轴交于点A,与x轴交于点B,直线CD与x轴交于点D (6,0),与直线AB相交于点C(﹣3,n).(1)求直线CD的解折式;(2)点E为直线CD上任意一点,过点E作EF∥x轴交直线AB于点F,作EG∥y轴于点G,当EF=2EG时,设点E的横坐标为m,直接写出m的值;(3)连接CO,点M为x轴上一点,点N在线段CO上(不与点O重合).当∥CMN=45°,且∥CMN 为等腰三角形时,直接写出点M 的横坐标.27.某校八年级全体同学参加了爱心捐款活动,随机抽查了部分同学捐款的情况,统计数据如图1和图2所示.(1)本次抽查的学生人数是______;众数是______;中位数是______;图2中B 类捐款的扇形圆心角度数为______. (2)补全条形统计图.(3)该校八年级有1000名学生,请估计该校八年级学生总共捐款多少元?参考答案1.C【分析】利用有理数概念及相关运算解题即可.【详解】解:132=3是无理数.故选C .【点睛】本题考查了有理数及其运算. 2.D【分析】根据各象限内点的坐标特征解答即可.【详解】解:∥横坐标为正,纵坐标为负,∥点P(2,﹣3)在第四象限,故选:D.【点睛】本题考查的是点的坐标与象限的关系,熟记各象限内点的坐标特征是解答本题的关键.3.D【分析】分别根据算术平方根、立方根的性质化简,利用二次根式加减法则计算即可判断.【详解】解:A2=,故选项A不合题意;3,故选项B不合题意;2,故选项C不合题意;D符合题意.故选D.【点睛】本题主要考查了算术平方根和立方根的定义,二次根式的加减,熟练掌握算术平方根和立方根的性质和二次根式的加减法则是解答本题的关键.4.A【分析】欲求证是否为直角三角形,这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.【详解】解:A、因为52+42≠62,所以不能组成直角三角形;B、因为122+52=132,所以能组成直角三角形;C、因为32+42=52,所以能组成直角三角形;D、因为12+)22,所以能组成直角三角形.故选:A.【点睛】此题考查勾股定理的逆定理,解题关键在于利用勾股定理进行计算.5.A【分析】根据平行线、相交线、三角形内角和等性质,对选项逐个判断即可.【详解】A:两直线平行,同位角相等,同旁内角互补,选项错误,符合题意;B:对顶角相等,为真命题,故选项不符合题意;C:直角三角形两锐角相加为90︒,即互余,为真命题,故选项不符合题意;D:平行于同一直线的两条直线平行,为真命题,故选项不符合题意;故选A .【点睛】此题主要考查了真假命题,涉及到平行线、相交线、三角形内角和、平行公理等内容,熟练掌握相关几何性质是解题的关键. 6.C【分析】将12x y =⎧⎨=-⎩代入03mx y x ny +=⎧⎨+=⎩求出m 、n 的值,再计算2m n +的值即可.【详解】将12x y =⎧⎨=-⎩代入03mx y x ny +=⎧⎨+=⎩可得21m n =⎧⎨=-⎩,则222(1)3m n +=⨯+-=. 故选C.【点睛】本题考查方程组的解,解题的关键是将将12x y =⎧⎨=-⎩代入03mx y x ny +=⎧⎨+=⎩求出m 、n 的值.7.C【分析】根据中位数的定义和众数的定义即可得出结论.【详解】解:由表格可知:从小到大排列后,第25人的成绩为25分,26人的成绩为26分,测试成绩为25分的人数最多本次抽查中体育测试成绩的中位数为(25+26)÷2=25.5 本次抽查中体育测试成绩的众数为25 故选C .【点睛】此题考查的是求中位数和众数,掌握中位数和众数的定义是解题关键. 8.A【分析】先根据一次函数的解析式判断出函数的增减性,再根据-6<-2即可得出结论.【详解】解:∥一次函数y=13-x+b 中,k=13-<0,∥y 随x 的增大而减小, ∥-6<-2, ∥y 1>y 2. 故选:A .【点睛】本题考查了利用一次函数性质比较函数值的大小,先根据题意判断出一次函数的增减性是解答此题的关键.9.B【详解】∥∥A=35°,∥C=24°, ∥∥CBE=∥A+∥C=59°, ∥BC∥DE , ∥∥E=∥CBE=59°; 故选B . 10.D【分析】根据题意可知,本题中的相等关系是:(1)盒身的个数×2=盒底的个数;(2)制作盒身的铁皮张数+制作盒底的铁皮张数=35,再列出方程组即可. 【详解】解:设用x 张制作盒身,y 张制作盒底,恰好配套制成糖果盒, 根据题意可列方程组:3530202x y y x +=⎧⎪⎨=⎪⎩, 故选:D .【点睛】本题考查从实际问题中抽出二元一次方程组,根据题目给出的条件,找出合适的等量关系注意运用本题中隐含的一个相等关系:“一个盒身与两个盒底配成一套盒”. 11.±5【分析】2416=,2525=,4与5之间,可得x ,y 的值,代数计算即可. 【详解】∥45, ∥x =4,y =5, ∥5x+y =25,∥5x+y 的平方根是±5, 故答案为:±5【点睛】本题考查平方根运算,理解掌握平方根运算是解答关键. 12.20【分析】通过观察已知方程组中x ,y 的系数,根据加减法,即可得答案.【详解】由 21228a b a b -=⎧⎨+=⎩,两式相加,可得320a b +=,故答案为:20 .【点睛】本题考查了解二元一次方程组,利用等式的性质把两式相加是解题的关键.13.1-【分析】根据平行于x轴的直线上的点的纵坐标相同,列出方程求解即可.【详解】解:∥点A(m,﹣2),B(3,m﹣1),直线AB∥x轴,∥m﹣1=﹣2,解得m=﹣1.故答案为:﹣1.【点睛】本题考查了坐标与图形性质,熟记平行于x轴的直线上的点的纵坐标相同是解题的关键.14.21 xy=-⎧⎨=-⎩【分析】首先利用待定系数法求出b的值,进而得到P点坐标,再根据两函数图象的交点就是两函数组成的二元一次去方程组的解可得答案.【详解】解:∥直线y=x+1经过点P(-2,b),∥b=-2+1,解得b=-1,∥P(-2,-1),∥关于x,y的方程组10x ymx y n-+=⎧⎨-+=⎩的解是21xy=-⎧⎨=-⎩,故答案为:21xy=-⎧⎨=-⎩.【点睛】此题主要考查了二元一次去方程组与一次函数的关系,关键是掌握两函数图象的交点就是两函数组成的二元一次去方程组的解.15.25【分析】根据完全平方式的定义可知,k的值为一次项系数一半的平方.【详解】根据完全平方式的定义,k=(102)2=52=25.故答案为:25.【点睛】本题考查了完全平方式,要知道,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.16.9或15【分析】分两种情况讨论:∥点P在线段AC上;∥点P在线段AC的延长线上.过点D作DE∥AB于E,利用角平分线的性质可得DE=DC,进而证明∥CDP∥∥EDB,根据勾股定理求出AP的长.【详解】解:如图,过点D作DE∥AB于E,∥在∥ABC中,∥C=90°,AC=12,BC=9,∥AB=15,分两种情况讨论:情况∥:当点P在线段AC上时,∥AD是∥BAC的平分线,∥DE=CD,AE=AC=12,∥BE=AB-AE=15-12=3,在∥CDP和∥EDB中,90DCP DEBCPD BCD DE∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∥∥CDP∥∥EDB(AAS),∥CP=BE=3,∥AP=AC-CP=12-3=9;情况∥:当点P在线段AC的延长线上时,同理可得∥CDP'∥∥EDB(AAS),∥CP'=BE=3,∥AP'=AC+CP'=12+3=15,综上所述,AP 的长为9或15.故答案为:9或15.【点睛】本题考查了全等三角形的性质和判定,角平分线的性质,勾股定理,关键是灵活运用这些性质解决问题.17.35【分析】根据“平行线的判定和性质”结合“已知条件”分析解答即可.【详解】∥∥1=∥2,∥AB∥CE ,∥∥3=∥B=35°.故答案为35.【点睛】熟记“平行线的判定方法和性质”是解答本题的关键.18.23x y =⎧⎨=⎩【分析】根据一次函数和二元一次方程的性质,得函数y =5﹣x ,即5x y +=,函数y =2x﹣1,即21x y -=,从而推导得关于x 、y 的方程组521x y x y +=⎧⎨-=⎩的解,即为函数y =5﹣x 与y =2x ﹣1图象的交点坐标的横坐标和纵坐标值,从而完成求解.【详解】函数y =5﹣x ,即5x y +=;函数y =2x ﹣1,即21x y -=∥关于x 、y 的方程组521x y x y +=⎧⎨-=⎩的解,即为函数y =5﹣x 与y =2x ﹣1图象的交点坐标的横坐标和纵坐标值根据题意,得函数y =5﹣x 与y =2x ﹣1图象的交点坐标()2,3A∥关于x 、y 的方程组521x y x y +=⎧⎨-=⎩的解是:23x y =⎧⎨=⎩故答案为:23x y =⎧⎨=⎩. 【点睛】本题考查了一次函数、二元一次方程组的知识;解题的关键是熟练掌握一次函数图像的性质,从而完成求解.19.-22=-,1-=减法法则运算即可.【详解】解:原式()32=+-2=2=-20.21x y =⎧⎨=-⎩ 【分析】方程组利用加减消元法求出解即可.【详解】解:43524x y x y +=⎧⎨-=⎩①②, ∥﹣∥×4得:11y =﹣11,即y =﹣1,把y =﹣1代入∥得:x =2,则方程组的解为21x y =⎧⎨=-⎩. 21.(1)图形见解析(2)5或194【分析】(1)将A 、B 、C 分别关于y 轴的对称点D 、E 、F 坐标求出来,再连接D 、E 、F 三点即可得到∥DEF ;(2)分P 、D 、E 分别为等腰三角形的顶角三种情况讨论;当D 为顶角时,相当于以D 点为圆心,DE 为半径作圆,该圆与x 轴交点即为所求P 点;同理,E 为顶角时类似;当P 为顶角时,设P(x ,0),然后根据PE=PF ,利用两点之间距离公式求出x 即可.(1)解:A(-1,0)关于y 轴对称点D 坐标为(1,0),B(-3,1)关于y 轴对称点E 坐标为(3,1),A(-2,3)关于y 轴对称点F 坐标为(-2,3),如下图所示,∥DEF 即为所求:(2)解:分三种情况讨论:情况一:当E为等腰∥EDP的顶角时,ED=EP,相当于以E点为圆心,ED为半径作圆,该圆与x轴的交点即为P点坐标,如下图所示:此时由对称性可知:P点坐标为(5,0);情况二:当D为等腰∥EDP的顶角时,DE=DP,相当于以D点为圆心,ED为半径作圆,该圆与x轴的交点即为P点坐标,如下图中P1和P2所示:由图可知:DE=DP1=DP2(1),P1);∥P情况三:当P为等腰∥EDP的顶角时,PE=PD,设P(x,0),∥PE²=(x-3)²+(0-1)²=x²-6x+10,PD²=(x-1)² =x²-2x+1,∥x²-6x+10= x²-2x+1,解得:x=94,此时P点坐标为(94,0);综上所述:P点的横坐标为5或194.【点睛】本题考查了点关于坐标轴的对称点的画法、等腰三角形的存在性问题、勾股定理求线段长等,本题的关键是第(2)问中要注意分类讨论思想.22.(1)y=-x+2(2)13【分析】(1)由直线l2:y=5x+20求得P的坐标,代入y=kx+2即可得到结论;(2)由直线l1的解析式求得B、C的坐标,由直线l2:y=5x+20求得A的坐标,然后根据四边形OAPC的面积等于∥PAB的面积减去∥OBC的面积即可得到结论.(1)解:∥直线l2:y=5x+20过点P(-3,a),∥a=5×(-3)+20=5,∥P(-3,5),把P(-3,5)代入y=kx+2得5=-3k+2,解得:k=-1,∥直线l1的函数表达式为:y=-x+2.(2)解:把y=0代入y=-x+2得:-x+2=0,解得x=2,∥B(0,2),把x=0代入y=-x+2得:y=2,∥C(0,2),∥OB=2,OC=2,把y=0时代入y=5x+20得:5x+20=0,∥x=-4,∥A(-4,0),∥AB=6,过P点作PH∥x轴于H,如下图所示:23.(1)医用口罩的单价为2.5 元/个,洗手液的单价为30元/瓶;(2)120或者180.【分析】(1)设医用口罩的单价为x元/个,洗手液的单价为y元/瓶,根据题意得出方程组,解方程组即可;(2)设增加购买N95口罩m个,洗手液b瓶,则医用口罩(1200−m)个,根据题意得6m+2.5(1200−m)+30b=5400,解得b=80−760m,可得m为60的倍数,且100<m<200,进而得出结论.(1)设医用口罩的单价为x元/个,洗手液的单价为y元/瓶,根据题意得:8001205400200 1200805400x yx y++⎧⎨+⎩==,解得:2.530xy⎧⎨⎩==,答:医用口罩的单价为2.5元/个,洗手液的单价为30元/瓶;(2)设增加购买N95口罩m个,洗手液b瓶,则医用口罩(1200−m)个,根据题意得:6m+2.5(1200−m)+30b=5400,化简,得:7m+60b=4800,∥b=80−760m,∥m,b都为正整数,∥m为60的倍数,100<m<200,∥12066mb⎧⎨⎩==,18059mb⎧⎨⎩==,∥m的值为120或者180.24.(1)195°(2)50°或10°【分析】(1)过点E作MN∥AB.利用平行线的判定和性质并结合角平分线的概念分析求解;(2)分P点在BC的左侧、P在BC的右侧且在CD上方、P在BC的右侧且在CD下方三种情况讨论,结合角度的倍数关系和平行线的性质分析求解.(1)解:过点E作MN∥AB,如下图∥所示:∥AB∥CD,MN∥AB,∥AB∥MN∥CD,∥∥BAE=∥AEM,∥DCE=∥CEM,∥ABE=∥BEN,∥NED=∥EDC,∥∥AEC=110°,∥∥BED=110°,∥∥BAE+∥DCE=∥AEM+∥CEM=∥AEC=110°,∥ABE+∥CDE=∥BEN+∥NED=∥BED=110°,∥BF平分∥ABE,DG平分∥CDE,∥∥ABF=12∥ABE,∥CDG=12∥CDE,∥∥AFB+∥CGD=180°-(∥BAE+∥ABF)+180°-(∥DCE+∥CDG)=180°-∥BAE-12∥ABE+180°-∥DCE-12∥CDE=360°-(∥BAE+∥DCE)-(∥ABE+∥CDE)=360°-110°-12×110°=195°,∥∥AFB+∥CGD的度数为195°.(2)解:分类讨论:情况一:当点P位于BC左侧时,如下图∥所示:此时∥PCD=12∥PCB不可能成立,故此情况不存在;情况二:当点P位于BC右侧且位于CD上方时,过点P作PM∥AB,如下图∥所示:∥∥AEC=110°,∥ABC=30°,∥∥BAE=110°-30°=80°,∥AB∥CD,MP∥AB,∥AB∥MP∥CD,∥∥APM=∥BAP=12∥BAE=40°,∥ABC=∥BCD=30°,又∥∥PCD=12∥PCB,∥∥PCD=13∥BCD=10°,∥∥MPC=∥PCD=10°,∥∥APC=∥MPC+∥APM=10°+40°=50°;情况三:当点P位于BC右侧且位于CD下方时,过点P作PM∥AB,如下图∥所示:∥∥AEC=110°,∥ABC=30°,∥∥BAE=110°-30°=80°,∥AB∥CD,MP∥AB,∥AB∥MP∥CD,∥∥APM=∥BAP=12∥BAE=40°,∥ABC=∥BCD=30°,又∥∥PCD=12∥PCB,∥∥PCD=∥BCD=30°,∥∥MPC=∥PCD=30°,∥∥APC=∥APM-∥MPC=40°-30°=10°,综上,∥APC的度数为50°或10°.【点睛】本题考查平行线的判定和性质、三角形的外角性质、角平分线的定义、对顶角相等等知识,属于中考常考题型,掌握平行线的判定和性质,正确添加辅助线是解题关键.25.(1)9(2)11(3)9990(4)2664和1062【分析】(1)根据“希望数”的定义得到:72(35)+=+x即可求解;(2)根据“希望数”的定义得到关于x y、的二元一次方程组即可求解;(3)设最大的希望数为abcd,根据b c d、、均为非负整数,a为正整数,得到018<+≤b c,09<+≤a d,再根据“希望数”的定义及千位数越大整个数就越大可知,取9a=即可求解;(4)根据=m abcd,2d a=且b c、均是2的倍数且m为“希望数”得到03a<≤,由此得到a的最小值为1,最大值为3即可求解.(1)解:∥375x 为“希望数”,由“希望数”的定义可知:72(35)+=+x , 解出:9x =.故答案为:9(2)解:∥正整数91x y 和28x y 都是“希望数”,∥92(1)82(2)+=+⎧⎨+=+⎩y x x y ,解得:65x y =⎧⎨=⎩,∥11x y +=.(3)解:设最大的“希望数”为abcd , ∥abcd 为“希望数”,∥2()+=+b c a d ,∥b c d 、、均为非负整数,a 为正整数,∥018<+≤b c ,即得到:09<+≤a d ,∥一个四位数千位越大则这个数就越大,∥9,0==a d ,此时9b c ==,∥最大的“希望数”为9990.(4) 解:由题意可知:=m abcd ,2d a =且b c 、均是2的倍数, ∥=m abcd 是“希望数”,∥2()2(2)6+=+=+=b c a d a a a ,由题意可知:各个数位数字均不超过6,且千位不为0, ∥026<=≤d a ,∥03a <≤,∥a 的最小值为1,最大值为3,当1a =时,22d a ==,66+==b c a , ∥=m abcd 最小,∥0,6==b c ,∥m 的最小值为1062;当3a =时,26==d a ,618+==b c a , ∥=m abcd 最大,∥9,9==b c ,此时不满足b c 、均是2的倍数,舍去;当2a =时,24==d a ,612+==b c a , ∥=m abcd 最大,且,b c 不超过6,∥6b c ==,∥m 的最大值为2664;综上所述:m 的最大值与最小值分别是2664和1062.【点睛】本题借助“希望数”这个新定义考查了二元一次方程组的解法,不等式求参数的取值范围,本题的关键是读懂题意,理解新定义,找出a 、b 、c 、d 之间的关系.26.(1)y=−13x+2; (2)m=-2113或-21; (3)点M 的横坐标为-3或-【分析】(1)先求出点C 的坐标,再运用待定系数法求得答案;(2)如图1,设点E 的横坐标为m ,可得:E (m ,−13m+2),F (m ,2m+9),G (0,−13m+2),进而得出:EF=|73m+7|,EG=|m|,根据EF=2EG ,建立方程求解即可; (3)如图2,分三种情况:∥当CN=MN 时,则∥MCN=∥CMN=45°,推出∥CMO=90°,即CM∥x 轴,故点M 的横坐标为-3;∥当CM 2=M 2N 2时,则∥M 2CN 2=∥M 2N 2C=67.5°,推出:∥M2CN 2=∥CM 2O ,OM 2M 的横坐标为-∥当CN=CM 时,∥CMN=∥CNM=45°,此时,点N 必与点O 重合,不符合题意.(1)∥点C (-3,n )在直线y=2x+9上,∥n=2×(-3)+9=3,∥C(-3,3),设直线CD的解析式为y=kx+b,∥C(-3,3),D(6,0),∥33 60k bk b-+⎧⎨+⎩==,解得:132kb⎧-⎪⎨⎪⎩==,∥直线CD的解析式为y=−13x+2;(2)如图1,设点E的横坐标为m,∥点E在直线CD上,EF∥x轴交直线AB于点F,EG∥y轴于点G,∥E(m,−13m+2),F(m,2m+9),G(0,−13m+2),∥EF=|(2m+9)-(−13m+2)|=|73m+7|,EG=|m|,∥EF=2EG,∥|73m+7|=|m|,∥m=-2113或-21;(3)如图2,∥∥CMN=45°,且∥CMN为等腰三角形,∥CN=MN或CM=MN或CN=CM,∥当CN=MN时,则∥MCN=∥CMN=45°,∥C(-3,3),∥∥COM=45°,∥∥CMO=90°,即CM∥x轴,∥M1(-3,0),即点M的横坐标为-3;∥当CM2=M2N2时,则∥M2CN2=∥M2N2C=67.5°,∥∥OM2N2=∥M2N2C-∥COM2=67.5°-45°=22.5°,∥∥CM2O=∥CM2N2+∥OM2N2=45°+22.5°=67.5°,∥∥M2CN2=∥CM2O,∥OM2,∥M2(-,0),即点M的横坐标为-;∥当CN=CM时,∥CMN=∥CNM=45°,∥∥MCN=90°,此时,点N必与点O重合,不符合题意;综上所述,点M的横坐标为-3或-.27.(1)50;10元;12.5元;115.2°(2)见解析(3)估计该校八年级学生总共捐款13100元【分析】(1)根据捐款20元的人数和所占的百分比,可以计算出本次共抽查的学生人数;结合条形统计图,根据众数,中位数的定义可得结果;用360°×B类捐款所占比例可得B类捐款的扇形圆心角度数;(2)根据(1)的结论计算出捐款10元的人数,从而可以将条形统计图补充完整;(3)根据条形统计图中的数据,可以得到七年级800名学生共捐款多少元.(1)解:本次共抽查学生:7÷14%=50(人),由条形统计图可得,捐款金额的众数是10元,由于捐款25元和20元的学生共有11人,捐款15元的学生有14人,所以从大到小排列,第25、26位的捐款数为15元和10元,所以中位数是(10+15)÷2=12.5(元),B类捐款的扇形圆心角度数为:360°×1650=115.2°;故答案为:50,10,12.5,115.2°;(2)解:捐款10元的学生有:50-9-14-7-4=16(人),补全的条形统计图如图所示:(3)解:150×(5×9+10×16+15×14+20×7+25×4)×1000=150×655×1000=13100(元),即估计七年级1000名学生共捐款13100元.。

北师大版八年级(上)期末数学试卷(含答案)

北师大版八年级(上)期末数学试卷(含答案)

北师大版八年级(上)期末数学试卷及答案一、选择题(每小题3分,共18分)1.(3分)﹣的倒数是()A.B.3C.﹣3D.﹣2.(3分)在直角三角形中,斜边与较小直角边的和、差分别为8、2,则较长直角边长为()A.5B.4C.3D.23.(3分)已知点P(m,n)在第四象限,则直线y=nx+m图象大致是下列的()A.B.C.D.4.(3分)若方程(a+3)x+3y|a|﹣2=1是关于x,y的二元一次方程,则a的值为()A.﹣3B.±2C.±3D.35.(3分)如图,将矩形ABCD沿对角线BD折叠,点C落在点E处,BE交AD于点F,已知∠BDC=62°,则∠DFE的度数为()A.31°B.28°C.62°D.56°6.(3分)已知关于x、y的方程组,则下列结论中正确的是()①当a=1时,方程组的解也是方程x+y=2的解;②当x=y时,a=﹣;③不论a取什么实数,2x+y的值始终不变.A.①②B.①②③C.②③D.②二、填空题。

(每小题3分,共18分)7.(3分)函数中,自变量x的取值范围是.8.(3分)的平方根是.9.(3分)若a,b,c分别是△ABC的三条边长,且a2﹣6a+b2﹣10c+c2=8b﹣50,则这个三角形的形状是.10.(3分)的整数部分是,小数部分是.11.(3分)如果二元一次方程组的解适合方程3x+y=﹣8,则k=.12.(3分)甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间(t)分之间的关系如图所示,下列结论:①甲步行的速度为60米/分;②乙走完全程用了30分钟;③乙用16分钟追上甲;④乙到达终点时,甲离终点还有360米.其中正确的结论有.(填序号)三、解答题。

(5×6分+3×8分+2×9分+12分=84分)13.(6分)计算:(1);(2).14.(6分)(1)已知点P(2m﹣6,m+2),若点P在y轴上,求点P的坐标.(2)已知点Q,若点Q在过点A(2,3)且与x轴平行的直线上,AQ=3,求点Q的坐标.15.(6分)解方程组.16.(6分)如图,在平面直角坐标系xOy中,一次函数y=﹣x+5的图象l1分别与x轴、y轴交于A、B两点,若正比例函数的图象l2与l1交于点C(m,4).(1)求m的值;(2)求△AOC的面积;(3)一次函数y=kx+1的图象为l3,且l1、l2、l3不能围成三角形,请写出k的值.17.(6分)如图在平面直角坐标系中,△ABC各顶点的坐标分别为:A(4,0),B(﹣1,4),C(﹣3,1)(1)在图中作△A′B′C′使△A′B′C′和△ABC关于x轴对称;(2)写出点A′,B′,C′的坐标.18.(8分)如图,在平面直角坐标系中,一次函数y=2x﹣3的图象分别交x轴,y轴于点A、B,将直线AB绕点B 顺时针方向旋转45°,交x轴于点C,求直线BC的函数表达式.19.(8分)如图,圆柱形容器的高为120cm,底面周长为100cm,在容器内壁离容器底部40cm的点B处有一蚊子,此时一只壁虎正好在容器外壁,离容器上沿40cm与蚊子相对的点A处,求壁虎捕捉蚊子的最短距离.20.(8分)某学校在体育周活动中组织了一次体育知识竞赛,每班选25名同学参加比赛,成绩分别为A、B、C、D四个等级,其中相应等级的得分依次记为100分、90分、80分、70分,学校将八年级一班和二班的成绩整理并绘制成统计图,如图所示:(1)把八年级一班竞赛成绩统计图补充完整;(2)求出下表中a、b、c的值:平均数/分中位数/分众数/分方差一班a b90106.24二班87.680c138.24(3)根据上面图表数据,请你对这次竞赛成绩的结果进行分析.(至少写两条)21.(9分)材料阅读:如图(1)所示的图形,像我们常见的学习用品—圆规,我们常把这样的图形叫做“规形图”.(1)观察“规形图”,试探究∠BDC与∠A、∠B、∠C之间的数量关系,并说明理由;(2)请你利用此结论,解决以下两个问题:Ⅰ.如图(2),把一个三角尺DEF放置在△ABC上,使三角尺的两条直角边DE,DF恰好经过点B,C,若∠A =30°,则∠ABD+∠ACD=.Ⅱ.如图(3),BD平分∠ABP,CD平分∠ACP,若∠A=50°,∠BPC=130°,求∠BDC的度数.22.(9分)在《二元一次方程组》这一章的复习课上,王老师让同学们根据下列条件探索还能求出哪些量:在我市“精准扶贫”工作中,甲、乙两个工程队先后接力为扶贫村庄修建条335米长的公路,甲队每天修建20米,乙队每天修建25米,一共用15天完成.(1)小红同学根据题意,列出了一个尚不完整的方程组请写出小红所列方程组中未知数x,y表示的意义:x表示,y表示;并写出该方程组中?处的数应是,*处的数应是;(2)小芳同学的思路是想设甲工程队一共修建了x米公路,乙工程队一共修建了y米公路.下面请你按照小芳的设想列出方程组,并求出乙队修建了多少天?23.(12分)6月份以来,猪肉价格一路上涨,为平抑猪肉价格,某省积极组织货源,计划由A、B、C三市分别组织10辆,10辆和8辆运输车向D、E两市运送猪肉,现决定派往D、E两地的运输分别是18辆、10辆.已知一辆运输车从A市到D、E两市的运费分别为200元和800元,从B市到D、E两市的运费分别为300元和700元,从C市到D、E两市的运费分别为400元和500元.若从A、B两市都派x辆车到D市,当这28辆运输车全部派出时,①求总运费W(元)与x(辆)之间的关系式,并写出x的取值范围;②求总运费W最低时的车辆派出方案.参考答案与试题解析一、选择题。

北师大版八年级数学上册期末复习练习题(含答案)

北师大版八年级数学上册期末复习练习题(含答案)

北师大新版八年级上册数学期末复习试卷一.选择题1.△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长是()A.42B.32C.42或32D.42或372.方程x+2y=7在自然数范围内的解有()A.只有1组B.只有4组C.无数组D.以上都不对3.已知实数a满足|2009﹣a|+=a,那么a﹣20092的值是()A.2008B.2009C.2010D.20114.已知x、y为实数,,则y x的值等于()A.8B.4C.6D.165.如果一个三角形的三边长分别为1、k、4.则化简|2k﹣5|﹣的结果是()A.3k﹣11B.k+1C.1D.11﹣3k6.如图,在直角坐标系中,已知点A(﹣3,0),B(0,4),对△OAB连续作旋转变换,依次得到△1,△2,△3,△4,…,则△2019的直角顶点的坐标为()A.(8076,0)B.(8064,0)C.(8076,)D.(8064,)7.如图1,在四边形ABCD中,AB∥CD,∠ABC=90°,动点P从点B出发,沿BC,CD运动至点D停止.设点P运动的路程为x,△ABP的面积为y,如果y关于x的函数图象如图2所示,则△BCD的面积是()A.6B.5C.4D.38.如图是放在地面上的一个长方体盒子,其中AB=9cm,BC=6cm,BF=5cm,点M在棱AB上,且AM=3cm,点N是FG的中点,一只蚂蚁要沿着长方体盒子的表面从点M爬行到点N,它需要爬行的最短路程为()A.10cm B.cm C.(6+)cm D.9cm9.如图,平面直角坐标系中,长方形OABC,点A,C分别在x轴,y轴的正半轴上,点B(6,3),现将△OAB 沿OB翻折至△OA′B位置,OA′交BC于点P.则点P的坐标为()A.(,3)B.(,3)C.(,3)D.()二.填空题10.已知一次函数y=kx+b(k≠0)的图象过点(2,0),且与两坐标轴围成的三角形的面积为1,则这个一次函数的解析式是.11.已知一次函数图象经过点(﹣2,0),并且与两坐标围成的封闭图形面积为6,则这个一次函数的解析式为.12.如图,在平面直角坐标系中,直线y=﹣x+3交x轴于点A,交y轴于点B,以点A为圆心,AB长为半径画弧,交x轴的负半轴于点C,则直线BC的解析式为.13.对于X,Y定义一种新运算“*”:X*Y=aX+bY,其中a,b为常数,等式右边是通常的加法和乘法的运算.若成立,那么2*3=.14.若实数x、y满足,则2x+y的立方根是.15.已知A=,则A2+2A+1=.三.解答题16.设a,b,c为△ABC的三边,化简:++﹣.17.根据题意列出方程组(1)甲、乙两人在一环形场地上从点A同时同向匀速跑步,甲的速度是乙的速度的2.5倍,4min后两人首次相遇,此时乙还需要跑300m跑完第一圈.求甲、乙两人的速度及环形场地的周长.(2)将若干只鸡放入若干笼中,若每个笼中放4只.则有一鸡无笼可放;若每个笼里放5只.则有一笼无鸡可放,问有多少只鸡,多少个笼?18.像=2;;…两个含有二次根式的代数式相乘,积不含有二次根式,则称这两个代数式互为有理化因式.爱动脑筋的小明同学在进行二次根式计算时,利用有理化因式化去分母中的根号.(1);(2).勤奋好学的小明发现;可以用平方之后再开方的方式来化简一些有特点的无理数.(3)化简:.解:设x=,易知,帮x>0.由:x2=3+=2.解得x=.即=.请你解决下列问题:(1)2的有理化因式是;(2)化简:;(3)化简:.19.问题背景.在△ABC中,AB=,BC=,AC=,求这个三角形的面积,小辉同学在解答这道题时先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(△ABC的三个顶点都在正方形的顶点处),如图所示,这样不需要求△ABC的高,而借用网格就能计算它的面积.(1)请直接写出△ABC的面积;(2)我们把上述方法叫做构图法,若△ABC中,AB,BC,AC三边的长分别为,,,请你在图2的正方形网格(每个小正方形的边长为a)中画出相应的△ABC.并求其面积.20.已知平面直角坐标系中,A、B两点的坐标分别为(2,﹣3)、(4,﹣1)(1)若P(x,0)是x轴上的一个动点,当△P AB的周长最短时,求x的值;(2)若C(a,0),D(a+3,0)是x轴上的两个动点,当四边形ABDC的周长最短时,求a的值.21.已知直线(n是正整数).当n=1时,直线l1:y=﹣2x+1与x轴和y轴分别交于点A1和B1,设△A1OB1(O是平面直角坐标系的原点)的面积为s1;当n=2时,直线与x轴和y轴分别交于点A2和B2,设△A2OB2的面积为s2,…,依此类推,直线l n与x轴和y轴分别交于点A n和B n,设△A n OB n 的面积为S n.(1)求△A1OB1的面积s1;(2)求s1+s2+s3+…+s2011的值.22.如图,已知直线AB的解析式为y=﹣x+6,点P从点A出发,沿着射线AO方向以秒1个单位长度的速度移动,同时点Q从点B出发,沿着射线BO方向以每秒2个单位度的速度移动.试问经过几秒后能使△POQ的面积为6个平方单位?23.如图,在平面直角坐标系中,长方形OABC的顶点O为坐标原点,顶点A,C分别在x轴正半轴和y轴正半轴上,顶点B的坐标为(12,8),直线y=kx+8﹣6k(k<0)交边AB于点P,交边BC于点Q.(1)当k=﹣1时,求点P,Q的坐标;(2)若直线PQ∥AC,BH是Rt△BPQ斜边PQ上的高,求BH的长;(3)若PQ平分∠OPB,求k的值.24.如图,正方形AOBC的边长为2,点O为坐标原点,边OB,OA分别在x轴,y轴上,点D是BC的中点,点P是线段AC上的一个点,如果将OA沿直线OP对折,使点A的对应点A′恰好落在PD所在直线上.(1)若点P是端点,即当点P在A点时,A′点的位置关系是,OP所在的直线是,当点P在C 点时,A′点的位置关系是,OP所在的直线表达式是.(2)若点P不是端点,用你所学的数学知识求出OP所在直线的表达式.(3)在(2)的情况下,x轴上是否存在点Q,使△DPQ的周长为最小值?若存在,请求出点Q的坐标;若不存在,请说明理由.25.在平面直角坐标系中,已知两点坐标P1(x1,y1)P2(x2,y2)我们就可以使用两点间距离公式来求出点P1与点P2间的距离.如:已知P1(﹣1,2),P2(0,3),则.通过阅读以上材料,请回答下列问题:(1)已知点P1坐标为(﹣1,3),点P2坐标为(2,1)①求P1P2=;②若点Q在x轴上,则△QP1P2的周长最小值为.(2)如图,在平面直角坐标系中,四边形OABC为长方形,点A、B的坐标分别为(4,0)(4,3),动点M、N分别从点O,点B同时出发,以每秒1个单位的速度运动,其中M点沿OA向终点A运动,N点沿BC向终点C运动,过点N作NF⊥BC交AC于F,交AO于G,连结MF.当两点运动了t秒时:①直接写出直线AC的解析式:;②F点的坐标为(,);(用含t的代数式表示)③记△MF A的面积为S,求S与t的函数关系式;(0<t<4);④当点N运动到终点C点时,在y轴上是否存在点E,使△EAN为等腰三角形?若存在,请直接写出点E的坐标,若不存在,请说明理由.参考答案一.选择题1.【解答】解:此题应分两种情况说明:(1)当△ABC为锐角三角形时,在Rt△ABD中,BD==9,在Rt△ACD中,CD==5∴BC=5+9=14∴△ABC的周长为:15+13+14=42;(2)当△ABC为钝角三角形时,在Rt△ABD中,BD=9,在Rt△ACD中,CD=5,∴BC=9﹣5=4.∴△ABC的周长为:15+13+4=32∴当△ABC为锐角三角形时,△ABC的周长为42;当△ABC为钝角三角形时,△ABC的周长为32.综上所述,△ABC的周长是42或32.故选:C.2.【解答】解:x+2y=7,x=7﹣2y,所以方程x+2y=7在自然数范围内的解有,,,,共4组,故选:B.3.【解答】解:根据题意,得a﹣2010≥0,即a≥2010;所以|2009﹣a|=a﹣2009,∵+|2009﹣a|=a,即+a﹣2009=a,∴=2009,a﹣2010=20092,∴a﹣20092=2010.故选:C.4.【解答】解:∵x﹣2≥0,即x≥2,① x﹣2≥0,即x≤2,② 由①②知,x=2;∴y=4,∴y x=42=16.故选:D.5.【解答】解:∵三角形的三边长分别为1、k、4,∴,解得,3<k<5,所以,2k﹣5>0,k﹣6<0,∴|2k﹣5|﹣=2k﹣5﹣=2k﹣5﹣[﹣(k﹣6)]=3k﹣11.故选:A.6.【解答】解:∵点A(﹣3,0)、B(0,4),∴AB==5,由图可知,每三个三角形为一个循环组依次循环,一个循环组前进的长度为:4+5+3=12,∵2019÷3=673,∴△2019的直角顶点是第673个循环组的最后一个三角形的直角顶点,∵673×12=8076,∴△2019的直角顶点的坐标为(8076,0).故选:A.7.【解答】解:∵S△ABP=AB•h,当动点P沿BC运动时,h=BP=x,∴S△ABP=AB•x,对应图象为0<x<2部分,由图象可知:点P在BC运动路程为BC=2﹣0=2;动点P沿CD运动时,h=BC,S△ABP=AB•BC为定值,对应图象2<x<5部分,由图象可知:点P在CD运动路程为CD=5﹣2=3,∴S△BCD=BC•CD=×2×3=3.所以△BCD的面积是3.故选:D.8.【解答】解:如图1,∵AB=9cm,BC=6cm,BF=5cm,∴BM=9﹣3=6,BN=5+3=8,∴MN==10;如图2,∵AB=9cm,BC=GF=6cm,BF=5cm,∴PM=9﹣3+3=9,NP=5,∴MN==,∵10<,∴蚂蚁沿长方体表面爬到米粒处的最短距离为10.故选:A.9.【解答】解:∵将△OAB沿OB翻折至△OA′B位置,OA′交BC于点P,∴∠A'OB=∠AOB,∵四边形OABC是矩形,∴BC∥OA,∴∠OBC=∠AOB,∴∠OBC=∠A'OB,∴OP=BP,∵点B的坐标为(6,3),∴AB=OC=3,OA=BC=6,设OP=BP=x,则PC=6﹣x,在Rt△OCP中,根据勾股定理得,OC2+PC2=OP2,∴32+(6﹣x)2=x2,解得:x=,∴PC=6﹣=,∴P(,3),故选:A.二.填空题10.【解答】解:∵一次函数y=kx+b(k≠0)图象过点(2,0),∴2k+b=0,b=﹣2k,∴y=kx﹣2k,令x=0,则y=﹣2k,∵函数图象与两坐标轴围成的三角形面积为1,∴×2×|﹣2k|=1,即|2k|=1,解得:k=±,则函数的解析式是y=x﹣1或y=﹣x+1.故答案为y=x﹣1或y=﹣x+1.11.【解答】解:设一次函数为y=kx+b,k≠0.则与y轴的交点为(0,b),S△=×|﹣2|×|b|=6,得|b|=6,∴b=±6,当b=6时,函数为:y=kx+6,∵函数的图象经过点(﹣2,0),得:0=﹣2k+6得到k=3,∴所求的一次函数的解析式为:y=3x+6;当b=﹣6时,函数为:y=kx﹣6,∵函数的图象经过点(﹣2,0),得:0=﹣2k﹣6,得到k=﹣3,∴所求的一次函数的解析式为:y=﹣3x﹣6.答:所求的一次函数的解析式为:y=3x+6或y=﹣3x﹣6,故答案为:y=3x+6或y=﹣3x﹣6.12.【解答】解:在直线y=﹣x+3中,令y=0,求得x=4;令x=0,求得y=3,∴点A的坐标为(4,0),点B的坐标为(0,3),∴BO=3,AO=4,∴AB==5,∵以点A为圆心,AB长为半径画弧,交x轴的负半轴于点C,∴CO=5﹣4=1,则点C的坐标为:(﹣1,0),设直线BC的解析式为y=kx+b,把B(0,3),C(﹣1,0)代入得,解得,∴直线BC的解析式为y=3x+3.故答案为y=3x+3.13.【解答】解:∵,∴a=2,∴由,得2b=,解得,b=﹣1,∵X*Y=aX+bY,∴2*3=2a+3b=2×2+3×(﹣1)=4﹣3=1;故答案是1.14.【解答】解:由题意得,、有意义,故可得x=29,y=6,从而可得2x+y=64,故可得2x+y的立方根是4.故答案为:4.15.【解答】解:A=﹣1+﹣+…+﹣=﹣1,所以A2+2A+1=(A+1)2=(﹣1+1)2=2018.故答案为2018.三.解答题16.【解答】解:根据a,b,c为△ABC的三边,得到a+b+c>0,a﹣b﹣c<0,b﹣a﹣c<0,c﹣b﹣a<0,则原式=|a+b+c|+|a﹣b﹣c|+|b﹣a﹣c|+|c﹣b﹣a|=a+b+c+b+c﹣a+a+c﹣b﹣a﹣b+c=4c.17.【解答】解:(1)设乙的速度为x米/分,则甲的速度为2.5x米/分,环形场地的周长为y米,由题意,得,即;(2)解:设笼的总数为x,鸡的总数为y只,根据题意可得:则.18.【解答】解:(1)2﹣3的有理化因式是2+3;故答案为:2+3;(2)原式=++1+2﹣=+3;(3)设x=﹣,可得<,即x<0,由题意得:x2=6﹣3+6+3﹣2=12﹣6=6,解得:x=﹣,则原式=﹣.19.【解答】解:(1)S△ABC=3×3﹣×3×1﹣×2×3﹣×1×2=;(2)如图,∵AB==a,BC==2a,AC==a,∴△ABC即为所求作三角形,则S△ABC=2a•4a﹣×a×2a﹣×2a×2a﹣×a×4a=3a2.故答案为:(1).20.解:(1)如图1先作出B关于x轴的对称点B′,连接AB′交x轴于点P,则B′点坐标为(4,1),由两点之间线段最短可知,AB′的长即为△P AB的最短周长,设过AB′两点的一次函数解析式为y=kx+b(k≠0),则,解得k=2,b=﹣7,故此一次函数的解析式为y=2x﹣7,当y=0时,2x﹣7=0,解得x=3.5.故当x=3.5时,△P AB的周长最短.(2)作点A关于x轴的对称点A′,则A′的坐标为(2,3),把A′向右平移3个单位得到点B'(5,3),连接BB′,与x轴交于点D,如图,∴CA′=CA,又∵C(a,0),D(a+3,0),∴CD=3,∴A′B′∥CD,∴四边形A′B′DC为平行四边形,∴CA′=DB′,∴CA=DB′,∴AC+BD=BB′,此时AC+BD最小,而CD与AB的长一定,∴此时四边形ABDC的周长最短.设直线BB′的解析式为y=kx+b,把B(4,﹣1)、B'(5,3)分别代入得,4k+b=﹣1,5k+b=3,解得k=4,b=﹣17,∴直线BB′的解析式为y=4x﹣17,令y=0,则4x﹣17=0,解得x=,∴D点坐标为(,0),∴a+3=,∴a=.21.【解答】解:(1)当n=1时,直线l1:y=﹣2x+1与x轴和y轴的交点是A1(,0)和B1(0,1)所以OA1=,OB1=1,∴s1=;(2)当n=2时,直线与x轴和y轴的交点是A2(,0)和B2(0,)所以OA2=,OB2=,∴s2==当n=3时,直线与x轴和y轴的交点是A3(,0)和B3(0,)所以OA3=,OB3=,∴s3==依此类推,s n=∴s1+s2+s3+…+s2011=∴s1+s2+s3+…+s2011===.22.【解答】解:∵直线AB的解析式为y=﹣x+6,令x=0,则y=6,∴B(0,6),令y=0,则0=﹣x+6,∴x=4,∴A(4,0);∴OA=4,由运动知,AP=t,BQ=2t,∴OP=|4﹣t|,OQ=|6﹣2t|,∴Q(0,6﹣2t),P(4﹣t,0);∵△POQ的面积等于6,∴×(6﹣2t)×(4﹣t)=6,∴t=1或t=6,∴经过1秒或6秒,△POQ的面积等于6.23.【解答】解:(1)当k=﹣1时,该直线表达式为y=﹣x+14,∵四边形OABC是长方形,点P,Q分别在边AB,BC上,点B(12,8),∴点P的横坐标为12,点Q的纵坐标为8,当x=12时,y=﹣1×12+14=2,当y=8时,﹣x+14=8,解得x=6,∴点P,Q的坐标分别是P(12,2),Q(6,8);(2)如图1,过点B作BH⊥PQ于H,∵长方形OABC的顶点B的坐标是(12,8),∴点A的坐标为(12,0),点C的坐标为(0,8).设直线AC表达式为y=ax+b,则解得,,∴直线AC的解析式为y=﹣x+8,∵PQ∥AC,∴k=﹣.∴直线PQ表达式为y=﹣x+12,∵当x=12时,y=4;当y=8时,8=﹣x+12,∴x=6,∴BP=4,BQ=6.在Rt△BPQ中,根据勾股定理得,PQ==2,∵S△PBQ=BQ•BP=PQ•BH,∴×4×6=××BH,∴BH=;(3)∵当x=12时,y=6k+8;当y=8时,x=6.∴点P的坐标为(12,6k+8),点Q的坐标为(6,8).∴AP=6k+8,AO=12,BQ=CQ=6,AB=OC=8.∴BP=8﹣(6k+8)=﹣6k,过点Q作QM⊥OP于点M,连接OQ,如图2,∵PQ平分∠OPB,∴∠QPB=∠QPM,又∵∠PMQ=∠B=90°,PQ=PQ,∴△BPQ≌△MPQ(AAS),∴QM=QB=6,MP=BP=﹣6k,在Rt△OCQ中,根据勾股定理得,OQ=10,在Rt△OQM中,根据勾股定理得OM=8,∴OP=OM+MP=8﹣6k,∵在Rt△OAP中,OA2+AP2=OP2,即122+(6k+8)2=(8﹣6k)2.解得,k=﹣.24.【解答】解:(1)由轴对称的性质可得,若点P是端点,即当点P在A点时,A′点的位置关系是点A,OP所在的直线是y轴;当点P在C点时,∵∠AOC=∠BOC=45°,∴A′点的位置关系是点B,OP所在的直线表达式是y=x.故答案为:A,y轴;B,y=x.(2)连接OD,∵正方形AOBC的边长为2,点D是BC的中点,∴==.由折叠的性质可知,OA′=OA=2,∠OA′D=90°.∴A′D=1.设点P(x,2),P A′=x,PC=2﹣x,CD=1.∴(x+1)2=(2﹣x)2+12.解得x=.所以P(,2),∴OP所在直线的表达式是y=3x.(3)存在.若△DPQ的周长为最小,即是要PQ+DQ为最小.∵点D关于x轴的对称点是D′(2,﹣1),∴设直线PD'的解析式为y=kx+b,,解得,∴直线PD′的函数表达式为y=﹣x+.当y=0时,x=.∴点Q(,0).25.【解答】解:(1)①P1P2==;②P1坐标关于x轴的对称点是(﹣1,﹣3),设直线P2的解析式是y=kx+b(k≠0),根据题意得:,解得:,则直线的解析式是:y=﹣x+,在解析式中令y=0,解得:x=,则Q的坐标是:(,0),则QP1+QP2=P2===6,则△QP1P2的周长最小值是:6+;故填:6+;(2)①如图,四边形ABCO是矩形,点A、B的坐标分别为(4,0)、(4,3),则C(0,3).设直线AC的解析式为:y=kx+b(k≠0),则,解得,,所以直线AC的解析式为:y=﹣x+3;故填:y=﹣x+3;②∵NF⊥BC,四边形ABCO是矩形,∴NG∥OC,BN=AG,∴=,即=,∴FG=t,∴F(4﹣t,t);③如图,S=AM•FG=(4﹣t)×t=﹣t2+t(0<t<4);④∵A(4,0),C(0,3),点N与点C重合,∴ON=3,OA=4,∴由勾股定理得到AN=5.如图,当AN=AE时,易求ON=OE=3,则E1(0,﹣3);当NE=AN时,OE=5﹣3=2,则E2(0,﹣2);当AE=NE时,设E3(0,t),则(t﹣3)2=42+t2解得,t=,∴E3(0,);综上所述,符合条件的点E的坐标分别是:E1(0,﹣3),E2(0,﹣2),E3(0,).。

北师大版八年级数学(上)期末复习试题及答案

北师大版八年级数学(上)期末复习试题及答案

北师大版八年级数学(上)期末复习试题及答案班级 姓名 学号 评分一、选择题:(每小题3分,共30分,每小题只有一个答案,请你把正确的选择填在表格中) 1、(2012贵州贵阳)如图,在Rt △ABC 中,∠ACB =90°,AB 的垂直平分线DE 交BC 的延长线于F ,若∠F =30°,DE =1,则EF 的长( )A.3B.2C.3D.1 2、下列各式中正确的是( )A 、2(7)7-=B 、39±=C 、4)2(2=-D 、2223=-3、(2012浙江省温州市)给出四个数,100.57-,,,其中为无理数的是( ) A. 1- B. 0 C. 0.5 D. 74、直线y =2x -3的图像经过象限是( )A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限5、(2012贵州贵阳)张老师想对同学们的打字能力进行测试,他将全班同学分成5组.经统计,这5个小组平均每分钟打字的个数如下:100,80,x ,90,90.已知这组数据的众数与平均数相等,那么这组数据的中位数是( ) . A.78 B 85 C.88 D 906、下列各组数分别为一个三角形三边的长,其中能构成直角三角形的一组是( ) A 、5,11,12 B 、1,2,3 C 、 3,4,5 D 、4,5,67、(2012山东泰安)如图1,菱形OABC 的顶点O 在坐标原点,顶点A 在x 轴上,∠B =120°,OA =2,将菱形OABC 绕点O 顺时针旋转105°至OA B C '''的位置,则点B '的坐标为( ) A.(2,2)- B.(2,2)- C.(2,2)- D.(2,2)-8、(2012湖南益阳)在一个标准大气压下,能反映水在均匀加热过程中,水的温度(T )随加热时间(t )变化的函数图象大致是( )图1ABCD EFGH图 2A DEAA .B .C .D .9、小明从家中出发,到离家1.2千米的早餐店吃早餐,用了一刻钟吃完早餐后,按原路返回到离家1千米的学校上课,在下列图象中,能反映这一过程的大致图象是( )A .B .C .D .10、(2011湖北武汉市)如图2,在菱形ABCD 中,AB =BD ,点E ,F 分别在AB ,AD 上,且AE =DF .连接BF 与DE 相交于点G ,连接CG 与BD 相交于点H .下列结论: ①△AED ≌△DFB ; ②S 四边形 BCDG =43CG 2; ③若AF =2DF ,则BG =6GF .其中正确的结论 A .只有①②. B .只有①③. C .只有②③. D .①②③. 二、填空题:(每小题3分,共30分)11、(湖南株洲市)一次函数2y x =+的图像不经过第 象限. 12、在□ABCD 中,AC 平分∠DAB ,AB =8, 则□ABCD 的周长为13、(2012年广西玉林市)在平面直角坐标系中,一青蛙从点A (-1,0)处向右跳2个单位长度,再向上跳2个单位长度到点A ′处,则点A ′的坐标为 .14、(2012黔西南州)如图3,在△ABC 中,∠ACB =90°,D 是BC 的中点,DE ⊥BC ,CE ∥AD ,若AC =2,CE =4,则四边形ACEB 的周长为______________.图515、某工地派24人去挖土和运土,若每人每天挖土5方或运土3方,那么安排 人挖土, 人运土,才能使挖出的土及时运走.16、(2012无锡) 如图4,△ABC 中,∠ACB =90°,AB =8cm ,D 是AB 的中点.现将△BCD 沿BA 方向平移1cm ,得到△EFG ,FG 交AC 于H ,则GH 的长等于 cm . 17、在□ABCD 中,对角线AC 与BD 相交于点O ,在不添加任何辅助线和字母的情况下,请添加一个条件,使□ABCD 变为矩形,需添加的条件是 .(写出一个即可) 18、(2011四川内江)如图5,点E 、F 、G 、H 分别是任意四边形ABCD 中AD 、BD 、BC 、CA 的中点,当四边形ABCD 的边至少满足 条件时,四边形EFGH 是菱形. 19、(2012四川达州)实数m 、n 在数轴上的位置如图6所示,化简:m n - = ______ . 20、两直线1:,12:21+=-=x y l x y l 的交点坐标为 ( 2, 3 )则方程组{112+=-=x y x y 的解为三、解答题:(请写出必要的解题步骤,21~24题每小题6分,25~27题每小题8分, 28题12分,共60分)21、化简:(1)(2012四川宜宾)()12323101-+---⎪⎪⎭⎫⎝⎛-π (2)⎩⎨⎧=+=②13y 2x ①113y -4x图3图622、如图7,已知ABC △的三个顶点的坐标分别为(23)A -,、(60)B -,、(10)C -,.(1)请直接写出点A 关于y 轴对称的点的坐标;(2)将ABC △绕坐标原点O 逆时针旋转90°.画出图形,直接写出点B 的对应点的坐标; (3)请直接写出:以A B C 、、为顶点的平行四边形的第四个顶点D 的坐标.23、△ABC 在方格纸中的位置如图8所示,方格纸中的每个小正方形的边长为1个单位. (1)△A 1B 1C 1与△ABC 关于纵轴 (y 轴) 对称,请你在图8中画出△A 1B 1C 1; (2)将△ABC 向下平移8个单位后得到△A 2B 2C 2,请你在图8中画出△A 2B 2C 2图724、为了加快社会主义新农村建设,让农民享受改革开放30年取得的成果,党中央、务院决定:凡农民购买家电和摩托车享受政府13%的补贴(凭购物发票到乡镇财政所按13%领取补贴). 星星村李伯伯家今年购买了一台彩电和一辆摩托车共花去6000元,且该辆摩托车的单价比所买彩电的单价的2倍还多600元. (1)李伯伯可以到乡财政所领到的补贴是多少元? (2)求李伯伯家所买的摩托车与彩电的单价各是多少元?25、(2011贵州贵阳)如图9,点E 是正方形ABCD 内一点,△CDE 是等边三角形,连接EB 、EA ,延长BE 交边AD 于点F .(1)求证:△ADE ≌△BCE ;(5分) (2)求∠AFB 的度数.(5分)xy OACB图8(图9)26、某通讯公司推出①、②两种通讯收费方式供用户选择,其中一种有月租费,另一种无月租费,且两种收费方式的通讯时间x (分钟)与收费y (元)之间的函数关系如图10所示. (1)有月租费的收费方式是 (填①或②),月租费是 元;(2)分别求出①、②两种收费方式中y 与自变量x 之间的函数关系式; (3)请你根据用户通讯时间的多少,给出经济实惠的选择建议.27、(2012山东省聊城)直线AB 与x 轴交于点A (1,0),与y 轴交于点B (0,-2). (1)求直线AB 的解析式;(图10)②①100908070605040302010500400300200(分钟)(元)y x O100(2)若直线AB 上一点C 在第一象限,且2=∆BOC S ,求点C 坐标.28、已知:如图11,在四边形ABCD 中,∠ABC =90°,CD ⊥AD ,AD 2+CD 2=2AB 2. (1)求证:AB =BC ;(2)当BE ⊥AD 于E 时,试证明:BE =AE +CD .参考答案一、选择题:ABE 图111--5、BADDD 6--10、CAB B D 二、填空题:11、四 12、32 13、(1,2). 14、10+213. 15、9,15 16、3. 17、略 18、AB =CD 19、n -m 20、x =2,y =3 三、解答题:21、(1)解:原式=11323+--3-=(2)x =5,y =3 22--24略25、解:(1)∵四边形ABCD 是正方形,∴∠ADC =∠BCD =90°,AD =BC . ∵△CDE 是等边三角形,∴∠CDE =∠DCE =60°,DE =CE . ∵∠ADC =∠BCD =90°,∠CDE =∠DCE =60°, ∴∠ADE =∠BCE =30°.∵AD =BC ,∠ADE =∠BCE ,DE =CE , ∴△ADE ≌△BCE . (2)∵△ADE ≌△BCE , ∴AE =BE , ∴∠BAE =∠ABE .∵∠BAE +∠DAE =90°,∠ABE +∠AFB =90°,∠BAE =∠ABE , ∴∠DAE =∠AFB . ∵AD =CD =DE , ∴∠DAE =∠DEA . ∵∠ADE =30°, ∴∠DAE =75°, ∴∠AFB =75°.26、略27、点拨:(1)将A (1,0),B (0,-2)两点代入一次函数y =kx +b ,先求出k 、b 值;(2) 设点c 坐标为(m ,n ),结合点C 在直线上与面积值为2即可解题. 解(1)设直线AB 解析式为y =kx +b , ∵A (1,0),B (0,-2)在直线AB 上,∴⎩⎨⎧-==+20b b k ,即⎩⎨⎧-==22b k . ∴直线AB 解析式为y =2x -2.(2)设点C (m ,n ),该点在直线y =2x -2上, ∴n =2m -2. ∵2=∆BOC S ,∴2)22(21=-⨯m m ,即022=--m m . 解此方程得1,221-==m m (舍去). ∴n =2×2-2=2,点C 坐标为(2,2).点评:本题以一此函数图像为背景,考察了用待定系数法求一次函数解析式,一元二次方程等知识,突显函数与方程结合,同时把数形结合思想融为一体. 28、略。

北师大版八年级上册数学期末试卷及答案

北师大版八年级上册数学期末试卷及答案

北师大版八年级上册数学期末试题一、单选题1.下列各数:0.9π,223,0.6868868886…(相邻两个6之间8的个数逐次加1()02021π-,其中无理数的个数有( )个.A .1B .2C .3D .42.在Rt ABC 中,90ACB ∠=︒,如果8AB =,6BC =,那么AC 的长是( )A .10B .C .10或D .73.在平面直角坐标系中,点()3,1M m m -+在x 轴上,则点M 的坐标为( ) A .()4,0- B .()0,2- C .()2,0- D .()0,4- 4.如图,①13∠=∠,①23∠∠=,①14∠=∠,①25180+=︒∠∠可以判定b c ∥的条件有A .①①①B .①①①C .①①①D .①①①① 5.甲、乙、丙、丁四名同学进行立定跳远测试,每人10次立定跳远成绩的平均数都是2.25米,方差分别是20.72S =甲,20.75S =乙,20.68S =丙,20.61S =丁,则这四名同学立定跳远成绩最稳定的是( )A .甲B .乙C .丙D .丁 6.下列语句是真命题的是( )A .内错角相等B .若22a b =,则a b =C .直角三角形中,两锐角A ∠和B ∠的函数关系是一次函数D .在ABC 中,::3:4:5A B C ∠∠∠=,那么ABC 为直角三角形7.若一次函数y kx b =+(k ,b 为常数,0k ≠)的图象不经过第三象限,那么k ,b 应满足的条件是( )A .0k <且0b >B .0k >且0b >C .0k >且0b ≥D .0k <且0b ≥ 8.如图所示,一副三角板叠放在一起,则图中α∠等于( )A .105°B .115°C .120°D .135°9.如图,已知点(1,2)B 是一次函数(0)y kx b k =+≠上的一个点,则下列判断正确的是( )A .0,0k b >>B .y 随x 的增大而增大C .当0x >时,0y <D .关于x 的方程2kx b +=的解是1x =10.如图,一次函数y kx b =+的图象与x 轴的交点坐标为(2,0)-,则下列说法正确的有() ①y 随x 的增大而减小:①0,0k b ><;①关于x 的方程0kx b +=的解为2x =-;①当2x >-时,0y >.A .1个B .2个C .3个D .4个二、填空题11.16的算术平方根是___________.12.点()5,2A -到y 轴的距离为______,到x 轴的距离为______.13.有5个数据的平均数为24,另有15个数据的平均数是20,那么所有这20个数据的平均数是______. 14.已知:直线34y x b =-与直线6y mx =+的图象交点如图所示,则方程组346x y b mx y ⎧-=⎪⎨⎪-=-⎩的解为______.15.a ,3b ,则a+b 等于______.16.如图所示,长方体ABCD A B C D -''''中,4cm AB BC ==,2cm AA '=,E 是B C ''的中点,一只蚂蚁从点A 出发,沿长方体表面爬到E 点,则蚂蚁走的最短路径长为______cm .17.如图,33BAC ∠︒=,点D 和点E 分别在边AB 和边AC 上,连接DE ,将A ∠沿DE 折叠,点A 的对应点是A ',若12170∠+∠=︒,则2∠=______.18.如图,BD 是ABC 的角平分线,15AB =,9BC =,12AC =,则BD 的长为______.三、解答题19.计算:⎛-+÷ ⎝20.解方程组:45711582x y x y -=⎧⎪⎨-+=-⎪⎩21.如图,在平面直角坐标系中有A ,B 两点,坐标分别为()2,3A ,()6,1B ,已知点C 的坐标为()6,4C(1)确定平面直角坐标系,并画出ABC ;(2)请画出ABC 关于x 轴对称的图形111A B C △,并直接写出111A B C △的面积;(3)若x 轴上存在一点M ,使MA MB +的值最小.请画图确定M 点的位置,并直接写出MA MB +的最小值.22.如图,已知直线EF GH ∥,AC BC ⊥,BC 平分DCH ∠.(1)求证:ACD DAC ∠=∠;(2)若ACG ∠比BCH ∠的2倍少3度,求DAC ∠的度数.23.书籍是人类进步的阶梯.为了解学生的课外阅读情况,某校随机抽查了部分学生本学期阅读课外书的册数,并绘制出如下统计图.(1)共抽查了多少名学生?(2)请补全条形统计图,并写出被抽查学生本学期阅读课外书册数的众数、中位数;(3)根据抽查结果,请估计该校1200名学生中本学期课外阅读5册书的学生人数.24.在“新冠疫情”期间,某药店出售普通口罩和N95口罩.下表为两次销售记录:(1)求每个普通口罩和每个N95口罩的销售价格各是多少元?(2)该药店计划第三次购进两种口罩共800个,已知普通口罩的进价为1元/个,N95口罩的进价为8元/个,两种口罩的销售单价不变,设此次购进普通口罩x个,药店销售完此次购进的两种口罩共获利为W元.①求W与x的函数关系式;①若销售利润为1400元,则购进两种口罩各多少个?25.甲、乙两辆汽车沿同一路线赶赴距出发地300千米的目的地,乙车比甲车晚出发1小时(从甲车出发时开始计时).图中折线OABD、线段EF分别表示甲、乙两车所行路程y(千米)与时间x(小时)之间的函数关系对应的图象(线段AB表示甲出发不足1小时因故停车检修).请根据图象所提供的信息,解决如下问题:(1)求乙车行驶的路程y 与时间x 的函数关系式;(2)求甲车发生故障时,距离出发地多少千米;(3)请直接写出第一次相遇后,经过多长时间两车相距30千米?26.已知A ,B 两地间某道路全程为240km ,甲、乙两车沿此道路分别从A ,B 两地同时出发匀速相向而行,甲车从A 地出发行驶2h 后因有事按原路原速返回A 地,结果两车同时到达A 地.已知甲、乙两车距A 地的路程(km)y 与甲车出发所用的时间(h)x 的函数关系如图所示,请结合图象信息解答下列问题:(1)甲车的速度为 km/h ,乙车的速度为 km/h ;(2)求甲车出发多长时间两车途中首次相遇?(3)直接写出甲车出发多长时间两车相距40km .27.已知一次函数y=-3x+3的图象分别与x 轴,y 轴交于A ,B 两点,点C(3,0).(1)如图1,点D 与点C 关于y 轴对称,点E 在线段BC 上且到两坐标轴的距离相等,连接DE ,交y 轴于点F .求点E 的坐标;(2)①AOB 与①FOD 是否全等,请说明理由;(3)如图2,点G 与点B 关于x 轴对称,点P 在直线GC 上,若①ABP 是等腰三角形,直接写出点P 的坐标.参考答案1.C【分析】根据无理数是无限不循环小数进行判断解答即可.【详解】解: 无理数有0.9π,0.6868868886…(相邻两个6之间8的个数逐次加1),共3个,故选:C2.B【分析】根据题意,勾股定理求解即可. 【详解】解:90ACB ∠=︒,8AB =,6BC =,AC ∴故选B3.A【分析】根据x 轴上的点的坐标特点纵坐标为0,即求得m 的值,进而求得点M 的坐标【详解】解:①点()3,1M m m -+在x 轴上,①10m +=解得1m =-3134m ∴-=--=-()4,0M ∴-故选A4.A【分析】根据平行线的判定定理逐个排查即可.【详解】解:①由于①1和①3是同位角,则①可判定b c ∥;①由于①2和①3是内错角,则①可判定b c ∥;①①由于①1和①4既不是同位角、也不是内错角,则①不能判定b c ∥;①①由于①2和①5是同旁内角,则①可判定b c ∥;即①①①可判定b c ∥.故选A .5.D【分析】平均数相同,方差值越小越稳定,比较四名同学方差值的大小即可.【详解】解:①2222S S S S >>>乙甲丁丙①丁同学的成绩最稳定故选D .6.C【分析】根据平行线的性质,函数的定义,三角形内角和定理逐一判断即可.【详解】解:A 、两直线平行,内错角相等,故原命题是假命题,不符合题意; B 、若22a b =,则a b =±,故原命题是假命题,不符合题意;C 、直角三角形中,两锐角A ∠和B ∠的函数关系是一次函数,故原命题是真命题,符合题意;D 、在ABC 中,::3:4:5A B C ∠∠∠=,那么最大角①C=518075345⨯︒=︒++,故①ABC 为锐三角形,故原命题是假命题,不符合题意;故选:C .7.D 【详解】解:一次函数(y kx b k =+、b 是常数,0)k ≠的图象不经过第三象限, 0k ∴<且0b ≥,故选:D .8.A【分析】根据直角三角板各角的度数和三角形外角性质求解即可.【详解】解:如图,①C=90°,①DAE=45°,①BAC=60°,①①CAO=①BAC -①DAE=60°-45°=15°,①α∠=①C+①CAO=90°+15°=105°,故选:A .9.D【分析】根据已知函数图象可得0,0k b <>,是递减函数,即可判断A 、B 选项,根据0x >时的函数图象可知y 的值不确定,即可判断C 选项,将B 点坐标代入解析式,可得2k b +=进而即可判断D【详解】A.该一次函数经过一、二、四象限∴ 0,0k b <>, y 随x 的增大而减小,故A,B 不正确;C. 如图,设一次函数(0)y kx b k =+≠与x 轴交于点(,0)C c ()0c >则当x c >时,0y <,故C 不正确D. 将点(1,2)B 坐标代入解析式,得2k b +=∴关于x 的方程2kx b +=的解是1x =故D 选项正确故选D10.B【分析】根据一次函数的性质,一次函数与一元一次方程的关系对各个小项分析判断即可得解【详解】解:①由图可得:y 随x 的增大而增大,故错误①由图可得:0,0k b >>,故错误①一次函数y kx b =+的图象与x 轴的交点坐标为(2,0)-,即20k b -+= ,故正确 ①由图可得:当2x >-时,0y >,故正确故选:B11.4【详解】解:①2(4)16±=①16的平方根为4和-4,①16的算术平方根为4,故答案为:412. 5 2【分析】根据横坐标的绝对值就是点到y 轴的距离,纵坐标的绝对值就是点到x 轴的距离即可求解.【详解】解:点()5,2A -到y 轴的距离为5,到x 轴的距离为2.故答案为:5;213.21 【详解】解:5241520420212020N x n ⨯+⨯====故答案为:21.14.23x y =⎧⎨=⎩【详解】解:①函数y=34x -b 与函数y=mx+6的交点坐标是(2,3),①方程组346x y b mx y ⎧-=⎪⎨⎪-=-⎩的解为23x y =⎧⎨=⎩.故答案为23x y =⎧⎨=⎩.15.6【详解】①12,①4<5,a=4,①12,①-2<-1,①1<32,设3m ,则m=1,①3b=3m=2①a+b=4+2-故答案为:616.【详解】解:如图由题意可知AA BB CC '''处于同一平面,连接AE 、AE ',①在Rt AA E ''中,2AA '=,426A E ''=+=AE '===在Rt ABE 中,4AB =,224BE =+=AE ===①224032=>=①蚂蚁的最短路径为故答案为:17.118°【详解】解:设AB 与A E '交于点O ,由折叠性质得:①A '=①BAC=33°,①①2=①BAC+①AOE ,①AOE=①1+①A ',①①2=①BAC+①1+①A '=①1+66°,即①1=①2-66°,①①1+①2=170°,①①2=118°,故答案为:118°.18【详解】解:如图,过点D 作DE AB ⊥于点E ,①15AB =,9BC =,12AC =,①22222225,912225AB BC AC =+=+=222AB BC AC ∴=+ABC ∴是直角三角形90C ∴∠=︒DC BC ∴⊥BD 是ABC 的角平分线,DE DC ∴=在Rt DEB 与Rt DCB △中DB DBDC DE =⎧⎨=⎩∴Rt DEB ≌Rt DCB △9BE BC ∴==1596AE AB BE ∴=-=-=设DC DE =x =,则12AD AC DC x =-=-在Rt ADE △中,222AD AE DE =+即()222126x x -=+ 解得92x =在Rt BDC 中BD ==19.32-【详解】⎛-÷ ⎝58⎛=-⨯⨯÷ ⎝(20116=-++=-32=- 故答案为:32-.20.121x y ⎧=-⎪⎨⎪=-⎩ 【详解】解:45711582x yx y -=⎧⎪⎨-+=-⎪⎩47511582x y x y -=⎧⎪⎨-+=-⎪⎩203525203222x y x y -=⎧⎨-+=-⎩两式相加消元得1y =-,①12x =-,①方程组的解为:121x y ⎧=-⎪⎨⎪=-⎩21.(1)图见解析;(2)图见解析,111A B C △的面积为6;(3)点M 的位置见解析,MA MB +的最小值为【分析】(1)解,如图,平面直角坐标系和①ABC 即为所求:(2)解:如图,111A B C △即为所求:由图知:111A B C S=S ①ABC =1(62)(41)2⨯-⨯-=6; (3)解:如图,连接AB 1交x 轴于M ,根据两点之间线段最短知,此时的点M 使得MA MB +的值最小,即点M 即为所求,MA MB +最小值为AB 1的长, ①A (2,3)、B 1(6,-1),①AB1①MA MB +的最小值为【点睛】本题考查平面直角坐标系、作图-轴对称变换、坐标与图形、轴对称-最短路线问题、三角形的面积公式,正确作出图形是解答的关键.22.(1)见解析(2)59︒【分析】(1)根据平行线的性质,角平分线的定义,直角三角形的两锐角互余可得12∠=∠,23∠∠=,25=9034=90∠+∠︒∠+∠︒,,进而即可得45∠=∠,即ACD DAC ∠=∠;(2)根据题意,由(1)的角度之间关系可得1590∠+∠=︒,结合已知条件建立二元一次方程组,解方程组即可求解.(1)如图,BC 平分DCH ∠12∴∠=∠EF GH ∥13∠∠∴=23∴∠=∠AC BC ⊥,25=9034=90∴∠+∠︒∠+∠︒,45∴∠=∠即ACD DAC ∠=∠(2)如图,EF GH ∥4ACG ∴∠=∠45,12∠=∠∠=∠5,1ACG BCH ∴∠=∠∠=∠由ACG ∠比BCH ∠的2倍少3度,即5213∠=∠-︒①5290∠+∠=︒,又12∠=∠即5190∠+∠=︒①213190∴∠-︒+∠=︒解得131∠=︒45213231359DAC ∠=∠=∠=∠-︒=⨯︒-︒=∴︒59DAC ∴∠=︒【点睛】本题考查了平行线的性质,直角三角形的两锐角互余,二元一次方程组,数形结合是解题的关键.23.(1)共抽查了40名学生;(2)众数为5册,中位数为5册;(3)估计该校1200名学生中本学期课外阅读5册书的学生人数为420人.【分析】(1)利用阅读6册的人数除以所占百分比可得抽查总人数;(2)根据总人数求得阅读5册的人数,可补全条形统计图,再根据众数和中位数定义可得答案;(3)利用样本估计总体的方法进行计算即可.【详解】解:(1)抽查的总人数:12÷30%=40;故共抽查了40名学生;(2)阅读课外书5册的人数:40-8-12-6=14(人),补全条形统计图如图:阅读课外书册数最多的是5册,则众数为5册,把这些数从小大排列,中位数是第20、21个数的平均数,第20、21个数都是5,则中位数是5(册);故众数为5册,中位数为5册;(3)1200×1440=420(人), 估计该校1200名学生中本学期课外阅读5册书的学生人数为420人.【点睛】本题考查了条形统计图、扇形统计图、用样本估计总体、众数、中位数,解答本题的关键是明确题意,利用数形结合的思想解答.24.(1)每个普通口罩的销售价格为2元,每个95N 口罩的销售价格12元;(2)()320030800W x x =-≤≤,;普通口罩600个,95N 口罩200个【分析】(1)设普通口罩的单价为x 元, 口罩的单价为y 元;根据题意列方程组,求解即可.(2)①利润=(售价-单价)⨯价格,可列利润与个数的函数关系式;①将利润代入(2)中的关系式,即可求出x 的值与800x -的值.(1)解:设普通口罩的单价为x 元,95N 口罩的单价为y 元;由题意可知60010024004002003200x y x y +=⎧⎨+=⎩解得:212x y =⎧⎨=⎩①每个普通口罩的销售价格为2元,每个N95口罩的销售价格为12元.(2)解:①由题意可得()()()21128800W x x =-⨯+-⨯-化简得:()320030800W x x =-≤≤,①W 与 x 的函数关系式为()320030800W x x =-≤≤,.①当1400W =时,有140032003x =-解得600x =①800800600200x -=-=①购进普通口罩600个;95N 口罩200个【点睛】本题考查了二元一次方程的应用,一次函数解析式.解题的关键在于明确各数据之间的数量关系并正确的列出方程.自变量的取值范围是易错点.25.(1)y 乙=60x -60;(2)甲车发生故障时,距离出发地50千米;(3)第一次相遇后,经过12小时或136小时或113小时两车相距30千米. 【分析】(1)根据图象可知E (1,0),F (6,300),设y 乙=kx+b ,把E 、F 坐标代入,列方程组求出k 、b 的值即可得答案;(2)根据(1)中解析式可求出点C 坐标,利用待定系数法可得出直线BD 的解析式,即可求出点B 坐标,即可得答案;(3)根据图象可求出乙两的速度和甲车BD 段的速度,根据(1)中解析式及点B 坐标可求出第一次相遇时间,根据距离=时间×速度即可得答案.(1)设y 乙=k1x+b1,由图象可知E (1,0),F (6,300),①111106300k b k b +=⎧⎨+=⎩, 解得:116060k b =⎧⎨=-⎩,①y 乙=60x -60.(2)①y 乙=60x -60,点C 横坐标为4.75,①y=60×4.75-60=225,①C (4.75,225),设直线BD 的解析式为y=k 2x+b 2,①点C 在直线BD 上,D (5.5,300),①22224.752255.5300k b k b +=⎧⎨+=⎩,解得:22100250k b =⎧⎨=-⎩,①直线BD 的解析式为y=100x -250,①点B 横坐标为3,①点B 纵坐标为y=100×3-250=50,①AB//x 轴,①甲车发生故障时,距离出发地50千米.(3)由图象可知乙车的速度为300÷(6-1)=60(千米/小时),甲车BD 段的速度为(300-50)÷(5.5-3)=100(千米/小时),①y 乙=60x -60,①当y=50时,60x -60=50,解得:x=116,①第一次相遇时间为甲车出发后116小时,①B (3,50),①第一次相遇后,乙出发76小时后甲车出发,此时乙车距甲车76×60=70(千米),①两车相距30千米,①当乙车出发,甲车没出发时,30÷60=12(小时),当甲车没追上乙车时,(70-30)÷(100-60)=1(小时),当甲车超过乙车时,(70+30)÷(100-60)=52(小时), ①1+76=136(小时),52+76=113(小时). 答:第一次相遇后,经过12小时或136小时或113小时两车相距30千米.26.(1)80;60 (2)12h 7 (3)10h 7或2h 【分析】(1)直接利用图象求出速度和时间即可;(2)分别求出甲、乙两车距A 地的路程(km)y 与甲车出发所用的时间(h)x 的函数关系式,再列方程解答即可;(3)分相遇前和相遇后两种情况进行讨论即可.(1)解:由题意可知,甲车的速度为:160280km/h ÷=,乙车的速度为:240(22)60km/h ÷+=; 故答案为:80;60;(2)解:设1(02)y k x x =<<甲,将(2,160)代入得180k =,()8002y x x ∴=<<甲,设2y k x b =+乙,将(0,240),(4,0)代入得:224040b k b =⎧⎨+=⎩, 解得:260240k b =-⎧⎨=⎩, 60240y x ∴=-+乙,8060240x x ∴=-+, 解得:127x =, ∴甲车出发127h 两车途中首次相遇;(3)解:①相遇前,设甲车出发m 小时两车相距40千米,则806024040m m +=-,, 解得107m =;①相遇后,由图象可知:甲车行驶2h 时,甲车与乙车的距离最大, 此时乙行驶的路程为602120⨯=(千米),甲乙两车的最大距离为16012024040+-=(千米), ∴甲车出发2h 两车相距40千米, 综上所述,甲车出发10h 7或2h 两车相距40千米.27.(1)E (32,32)(2)①AOB①①FOD ,理由见详解;(3) P (0,-3)或(4,1)或(132,72).【分析】(1)解: 连接OE ,过点E 作EG①OC 于点G ,EH①OB 于点H ,当y=0时,-3x+3=0,解得x=1,①A(1,0),当x=0时,y=3,①OB=3,B(0,3),①点D与点C关于y轴对称,C(3,0),OC=3,①D(-3,0),①点E到两坐标轴的距离相等,①EG=EH,①EH①OC,EG①OC,①OE平分①BOC,①OB=OC=3,①CE=BE,①E为BC的中点,①E(32,32);(2)解: ①AOB①①FOD,设直线DE表达式为y=kx+b,则30 33 22k bk b-+=⎧⎪⎨+=⎪⎩,解得:131kb⎧=⎪⎨⎪=⎩,①y=13x+1,①F是直线DE与y轴的交点,①F(0,1),①OF=OA=1,①OB=OD=3,①AOB=①FOD=90°,①①AOB①①FOD;(3)解:①点G与点B关于x轴对称,B(0,3),①点G (0,-3),①C (3,0),设直线GC 的解析式为:y=ax+c , 330c a c =-⎧⎨+=⎩ ,解得:13a c =⎧⎨=-⎩,①y=x -3,,设P (m ,m -3),①当AB=AP 时,整理得:m 2-4m=0,解得:m 1=0,m 2=4,①P (0,-3)或(4,1),①当AB=BP m 2-6m+13=0,①<0故不存在,①当AP=BP 时,解得:m=132,①P (132,72 ),综上所述P (0,-3)或(4,1)或(132,72),。

北师大版八年级数学上册期末复习练习题(有答案)

北师大版八年级数学上册期末复习练习题(有答案)

期末复习练习题一.选择题1.在给出的一组数0.3,,3.14,,﹣,﹣2.13中,无理数有()A.1个B.2个C.3个D.5个2.下列各式中计算正确的是()A.B.C.D.3.在平面直角坐标系中,已知函数y=ax+a(a≠0)的图象过点P(1,2),则该函数的图象可能是()A.B.C.D.4.实数a,b在数轴上对应点的位置如图所示,且|a|>|b|,则化简+|a+b|的结果为()A.2a+b B.﹣2a﹣b C.b D.2a﹣b5.式子在实数范围内有意义,x的取值范围是()A.x≠﹣5B.x≥5C.x>﹣5D.x≥﹣56.某校7名学生在某次测量体温(单位:℃)时得到如下数据:36.3,36.4,36.5,36.7,36.6,36.5,36.5,对这组数据描述正确的是()A.众数是36.5 B.中位数是36.7C.平均数是36.6 D.方差是0.47.下列命题是真命题的是()A.实数与数轴上的点是一一对应的B.如果a≠b,b≠c,那么a≠cC.三角形的外角大于它的内角D.同位角相等8.如图,在△ABC中,∠A=90°,AB=6,AC=8,∠ABC与∠ACB的平分线交于点O,过点O作OD ⊥AB于点D,则AD的长为()A.B.2C.D.49.如图,∠BCD=90°,AB∥DE,则∠α与∠β满足()A.∠α+∠β=180°B.∠β﹣∠α=90°C.∠β=3∠αD.∠α+∠β=90°10.小强每天坚持引体向上锻炼,他记录了某一周每天做引体向上的个数,如下表:星期日一二三四五六个数11121312其中有三天的个数墨汁覆盖了,但小强已经计算出这组数据唯一众数是13,平均数是12,那么这组数据的方差是()A.B.C.1D.11.为了建设社会主义新农村,我市积极推进“行政村通畅工程“,对甲村和乙村之间的道路需要进行改造,施工队在工作了一段时间后,因暴雨被迫停工几天,不过施工队随后加快了施工进度,按时完成了两村之间道路的改造,下面能反映该工程改造道路里程y(公里)与时间x(天)的函数关系大致的图象是()A.B.C.D.12.如图,在平面直角坐标系上有个点P(1,0),点P第1次向上跳动1个单位至点P1(1,1),紧接着第2次向左跳动2个单位至点P2(﹣1,1),第3次向上跳动1个单位到达P3(﹣1,2),第4次向右跳动3个单位到达P4(2,2),第5次又向上跳动1个单位,第6次向左跳动4个单位,…,依此规律跳动下去,点P2019的坐标为()A.(505,1010)B.(505,﹣505)C.(﹣505,1010)D.(﹣505,505)二.填空题13.以方程组的解为坐标的点(x,y)在第象限.14.若m<2<m+1,且m为整数,则m=.15.如图,在平面直角坐标系中,点A的坐标为(﹣2,0),点B在直线y=x上运动,当线段AB最短时,点B的坐标为.16.对于任意实数a,b,定义关于“⊗”的一种运算如下:a⊗b=2a﹣b.例如3⊗4=2×3﹣4=2.若x⊗y =2,且y⊗x=4,则x+y的值为.17.已知是方程组的解,则a+b的值为.18.如图,一个圆柱的高为10cm,底面周长为24cm,动点P从A点出发,沿着圆柱侧面移动到BC的中点S,则移动的最短距离是cm.19.如图,在△ABC中,点D、E分别在边AB、AC上,如果∠A=40°,那么∠1+∠2的大小为.20.如图,直线l:y=﹣x,点A1的坐标为(﹣1,0),过点A1作x轴的垂线交直线l于点B1,以原点O为圆心,OB1长为半径画弧交x轴正半轴于点A2;再过点A2作x轴的垂线交直线l于点B2,以原点O 为圆心,OB2长为半径画弧交x轴正半轴于点A3;…,按此作法进行下去点A2020的坐标为.三.解答题21.如图,直线l1:y=x+3与过点A(3,0)的直线l2交于点C(1,m),与x轴交于点B.(1)求直线l2的解析式;(2)点M在直线l1上,MN∥y轴,交直线l2于点N,若MN=AB,求点M的坐标.22.2020年5月16日,“钱塘江诗路”航道全线开通.一艘游轮从杭州出发前往衢州,线路如图1所示.当游轮到达建德境内的“七里扬帆”景点时,一艘货轮沿着同样的线路从杭州出发前往衢州.已知游轮的速度为20km/h,游轮行驶的时间记为t(h),两艘轮船距离杭州的路程s(km)关于t(h)的图象如图2所示(游轮在停靠前后的行驶速度不变).(1)写出图2中C点横坐标的实际意义,并求出游轮在“七里扬帆”停靠的时长.(2)若货轮比游轮早36分钟到达衢州.问:①货轮出发后几小时追上游轮?②游轮与货轮何时相距12km?23.经过一年多的精准帮扶,小明家的网络商店(简称网店)将红枣、小米等优质土特产迅速销往全国.小明家网店中红枣和小米这两种商品的相关信息如下表:商品红枣小米规格1kg/袋2kg/袋成本(元/袋)4038售价(元/袋)6054根据上表提供的信息,解答下列问题:(1)已知今年前五个月,小明家网店销售上表中规格的红枣和小米共3000kg,获得利润4.2万元,求这前五个月小明家网店销售这种规格的红枣多少袋;(2)根据之前的销售情况,估计今年6月到10月这后五个月,小明家网店还能销售上表中规格的红枣和小米共2000kg,其中,这种规格的红枣的销售量不低于600kg.假设这后五个月,销售这种规格的红枣为x(kg),销售这种规格的红枣和小米获得的总利润为y(元),求出y与x之间的函数关系式,并求这后五个月,小明家网店销售这种规格的红枣和小米至少获得总利润多少元.24.如图,直线l1:y=﹣x+3分别与x轴,y轴交于A,B两点.过点B的直线l2:y=x+3交x轴于点C.点D(n,6)是直线l1上的一点,连接CD.(1)求AB的长和点D的坐标;(2)求△BCD的面积.25.某商场服装部为了解服装的销售情况,统计了每位营业员在某月的销售额(单位:万元),并根据统计的这组销售额数据,绘制出如下的统计图1和图2,请根据相关信息,解答下列问题:(1)该商场服装部营业员的人数为,图1中m的值为;(2)求统计的这组销售额数据的平均数、众数和中位数.26.计算(1)()﹣2+|2﹣6|﹣;(2)解方程组:.27.若买3根跳绳和6个毽子共72元;买1根跳绳和5个毽子共36元.(1)跳绳、毽子的单价各是多少元?(2)元旦促销期间,所有商品按同样的折数打折销售,买10根跳绳和10个毽子只需180元,问商品按原价的几折销售?28.一辆货车和一辆小轿车同时从甲地出发,货车匀速行驶至乙地,小轿车中途停车休整2h后提速行驶至乙地.设行驶时间为x(h),货车的路程为y1(km),小轿车的路程为y2(km),图中的线段OA与折线OBCD分别表示y1,y2与x之间的函数关系.(1)甲乙两地相距km,m=;(2)求线段CD所在直线的函数表达式;(3)小轿车停车休整后还要提速行驶多少小时,与货车之间相距20km?29.某校组织学生参加“安全知识竞赛”,测试结束后,张老师从七年级720名学生中随机地抽取部分学生的成绩绘制了条形统计图,如图所示.试根据条形统计图中提供的信息,回答下列问题:(1)张老师抽取的这部分学生中,共有名男生,名女生;(2)张老师抽取的这部分学生中,女生成绩的众数是;(3)若将不低于27分的成绩定为优秀,请估计七年级720名学生中成绩为优秀的学生人数大约是多少.30.如图,函数的图象与x轴、y轴分别交于点A、B,与函数y=x的图象交于点M,点M的横坐标为2,在x轴上有一点P(a,0)(a>2),过点P作x轴的垂线,分别交函数和y=x的图象于点C、D.(1)求点A的坐标;(2)若OB=CD,求a的值;(3)直接写出不等式组的解集.参考答案一.选择题1.【解答】解:在0.3,,3.14,,﹣,﹣2.13中,无理数是:,共2个.故选:B.2.【解答】解:A是求它的算术平方根的,答案是3,故选项错误;B、,故选项错误;C、,故选项错误;D、,故选项正确.故选:D.3.【解答】解:∵函数y=ax+a(a≠0)的图象过点P(1,2),∴2=a+a,解得a=1,∴y=x+1,∴直线交y轴的正半轴于点(0,1),且过点(1,2),故选:A.4.【解答】解:由题意可知:a<﹣1<b<﹣a,∴a+b<0,∴原式=|a|﹣(a+b)=﹣a﹣a﹣b=﹣2a﹣b,故选:B.5.【解答】解:由题意得:5+x≥0,解得:x≥﹣5,故选:D.6.【解答】解:7个数中36.5出现了三次,次数最多,即众数为36.5,故A选项正确,符合题意;将7个数按从小到大的顺序排列为:36.3,36.4,36.5,36.5,36.5,36.6,36.7,第4个数为36.5,即中位数为36.5,故B选项错误,不符合题意;=×(36.3+36.4+36.5+36.5+36.5+36.6+36.7)=36.5,故C选项错误,不符合题意;S2=[(36.3﹣36.5)2+(36.4﹣36.5)2+3×(36.5﹣36.5)2+(36.6﹣36.5)2+(36.7﹣36.5)2]=,故D选项错误,不符合题意;故选:A.7.【解答】解:A、实数与数轴上的点是一一对应的,是真命题;B、3≠2,2≠3,但3=3,则如果a≠b,b≠c,那么a≠c,是假命题;C、三角形的外角大于与它不相邻的它的任意一个内角,本选项说法是假命题;D、两直线平行,同位角相等,本选项说法是假命题;故选:A.8.【解答】解:过O作OE⊥CB,OF⊥AC,又∵∠BAC=90°,∴四边形ADOF是矩形,∵∠ABC与∠ACB的平分线交于点O,∴DO=EO=FO,∴四边形ADOF是正方形,∴AD=DO,∵∠BAC=90°,AB=6,AC=8,∴BC=10,∴S△ABC==24,连接AO,设DO=x,则FO=EO=x,∴×6x+×8x+×10x=24,解得:x=2,∴DO=2,∴AD=2.故选:B.9.【解答】解:过C作CF∥AB,∵AB∥DE,∴AB∥CF∥DE,∴∠1=∠α,∠2=180°﹣∠β,∵∠BCD=90°,∴∠1+∠2=∠α+180°﹣∠β=90°,∴∠β﹣∠α=90°,故选:B.10.【解答】解:∵平均数是12,∴这组数据的和=12×7=84,∴被墨汁覆盖三天的数的和=84﹣(11+12+13+12)=36,∵这组数据唯一众数是13,∴被墨汁覆盖的三个数为:10,13,13,∴S2=[(11﹣12)2+(12﹣12)2+(10﹣12)2+(13﹣12)2+(13﹣12)2+(13﹣12)2+(12﹣12)2]=,故选:A.11.【解答】解:∵y随x的增大而减小,∴选项AD错误;∵施工队在工作了一段时间后,因暴雨被迫停工几天,∴选项C错误;∵施工队随后加快了施工进度,∴y随x的增大减小得比开始的快,∴选项B正确;故选:B.12.【解答】解:设第n次跳动至点P n,观察发现:P(1,0),P1(1,1),P2(﹣1,1),P3(﹣1,2),P4(2,2),P5(2,3),P6(﹣2,3),P7(﹣2,4),P8(3,4),P9(3,5),…,∴P4n(n+1,2n),P4n+1(n+1,2n+1),P4n+2(﹣n﹣1,2n+1),P4n+3(﹣n﹣1,2n+2)(n为自然数).∵2019=504×4+3,∴P2019(﹣504﹣1,504×2+2),即(﹣505,1010).故选:C.二.填空题13.【解答】解:∵,①+②得,2y=﹣2,解得y=﹣1,把y=﹣1代入①得,﹣1=2x+1,解得x=﹣1,∴点(x,y)的坐标为(﹣1,﹣1),∴此点在第三象限.故答案为:三.14.【解答】解:2=,∵<<,∴5<2<6,又∵m<2<m+1,∴m=5,故答案为:5.15.【解答】解:过点A作AB⊥直线y=x于点B,过点A作x轴的垂线交直线y=x于点C,此时AB最短,如图所示.∵点A(﹣2,0),点C在直线y=x上,∴点C(﹣2,﹣2).∵直线OC的解析式为y=x,∴∠AOC=45°,∴Rt△OAC为等腰直角三角形,∵AB⊥OC,∴点B为OC的中点,∴B(﹣1,﹣1).故答案为:(﹣1,﹣1).16.【解答】解:根据题中的新定义得:,①+②得:x+y=6.故答案为:6.17.【解答】解:把x=1、y=3代入方程组得:,解得:.∴a+b=﹣2﹣1=﹣3.故答案为:﹣3.18.【解答】解:沿着S所在的母线展开,如图连接AS,则AB=×24=12,BS=BC=5,在Rt△ABS中,根据勾股定理AB2+BS2=AS2,即122+52=AS2,解得AS=13.∵A,S两点之间线段AS最短,∴点A到点S移动的最短距离为AS=13cm.故答案为13.19.【解答】解:∵∠1=∠A+∠ADE,∠2=∠A+∠AED,∴∠1+∠2=∠A+∠ADE+∠A+∠AED=∠A+(∠ADE+∠A+∠AED)=40°+180°=220°.故答案为:220°.20.【解答】解:已知点A1坐标为(﹣1,0),且点B1在直线y=﹣x上,可知B1点坐标为(﹣1,),由题意可知OB1==2,故A2点坐标为(﹣2,0),同理可求的B2点坐标为(﹣2,2),按照这种方法逐个求解便可发现规律,A2020点坐标为(﹣22019,0),故答案为(﹣22019,0).三.解答题(共10小题)21.【解答】解:(1)在y=x+3中,令y=0,得x=﹣3,∴B(﹣3,0),把x=1代入y=x+3得y=4,∴C(1,4),设直线l2的解析式为y=kx+b,∴,解得,∴直线l2的解析式为y=﹣2x+6;(2)AB=3﹣(﹣3)=6,设M(a,a+3),由MN∥y轴,得N(a,﹣2a+6),MN=|a+3﹣(﹣2a+6)|=AB=6,解得a=3或a=﹣1,∴M(3,6)或(﹣1,2).22.【解答】解:(1)C点横坐标的实际意义是游轮从杭州出发前往衢州共用了23h.∴游轮在“七里扬帆”停靠的时长=23﹣(420÷20)=23﹣21=2(h).(2)①280÷20=14h,∴点A(14,280),点B(16,280),∵36÷60=0.6(h),23﹣0.6=22.4,∴点E(22.4,420),设BC的解析式为s=20t+b,把B(16,280)代入s=20t+b,可得b=﹣40,∴s=20t﹣40(16≤t≤23),同理由D(14,0),E(22.4,420)可得DE的解析式为s=50t﹣700(14≤t≤22.4),由题意:20t﹣40=50t﹣700,解得t=22,∵22﹣14=8(h),∴货轮出发后8小时追上游轮.②相遇之前相距12km时,20t﹣40﹣(50t﹣700)=12,解得t=21.6.相遇之后相距12km时,50t﹣700﹣(20t﹣40)=12,解得t=22.4,当游轮在刚离开杭州12km时,此时根据图象可知货轮就在杭州,游轮距离杭州12km,所以此时两船应该也是想距12km,即在0.6h的时候,两船也相距12km∴0.6h或21.6h或22.4h时游轮与货轮相距12km.23.【解答】解:(1)设这前五个月小明家网店销售这种规格的红枣m袋.由题意:20m+×16=42000 解得m=1500,答:这前五个月小明家网店销售这种规格的红枣1500袋.(2)由题意:y=20x+×16=12x+16000,∵600≤x<2000,当x=600时,y有最小值,最小值为23200元.答:这后五个月,小明家网店销售这种规格的红枣和小米至少获得总利润23200元24.【解答】解:(1)∵直线l1:y=﹣x+3分别与x轴,y轴交于A,B两点,∴点A的坐标为(2,0),点B的坐标为(0,3),∴OA=2,OB=3,∴AB==.∵点D(n,6)是直线l1上的一点,∴6=﹣n+3,解得:n=﹣2,∴点D的坐标为(﹣2,6).(2)过点D作DE⊥∥y轴,交BC于点E,如图所示.∵点D的坐标为(﹣2,6),∴点E的坐标为(﹣2,2),∴DE=6﹣2=4.∵直线l2:y=x+3交x轴于点C,∴点C的坐标为(﹣6,0),∴OC=6.∴S△BCD=OC•DE=×6×4=12.25.【解答】解:(1)2+5+7+8+3=25(人);7÷25=28%,m=28,故答案为:25、28;(2)平均数=×(10×2+12×5+18×7+21×8+24×3)=17.84万元;∴这组数据的平均数是17.84万元,∵在这组数据中,21出现了8次,出现的次数最多,∴这组数据的众数是21万元,∵将这组数据按照由小到大的顺序排列,其中处于中间位置的数是18,∴这组数据的中位数是18万元.26.【解答】解:(1)原式=4+2﹣6﹣2=﹣2;(2),①×3﹣②得:11y=﹣11,解得:y=﹣1,把y=﹣1代入①得:x=2,则方程组的解为.27.【解答】解:(1)设跳绳的单价为x元/条,毽子的单价y元/个,由题意可得:解得:答:跳绳的单价为16元/条,毽子的单价4元/个;(2)设该店的商品按原价的n折销售,由题意可得(10×16+10×4)×=180,∴n=9,答:该店的商品按原价的9折销售.28.【解答】解:(1)观察图象可知:甲乙两地相距420km,m=5,故答案为:420,5;(2)设直线CD的解析式为y=kx+b,把C(5,270),D(6.5,420)代入得到,解得,∴直线CD的解析式为y=100x﹣230.(3)设线段OA所在的直线的解析式为y=k′x,把点A(7,420)代入得到k′=60,∴y=60x,由题意:60x﹣(100x﹣230)=20,解得x=,x﹣5=,或(100x﹣230)﹣60x=20,解得x=,x﹣5=,答:小轿车停车休整后还要提速行驶或小时,与货车之间相距20km.29.【解答】解:(1)男生:1+2+2+4+9+14+5+2+1=40(人)女生:1+1+2+3+11+13+7+1+1=40(人)故答案为40,40;(2)女生成绩27的人数最多,所以众数为27,故答案为27;(3)(人),七年级720名学生中成绩为优秀的学生人数大约是396人.30.【解答】解:(1)∵点M在直线y=x上,且点M的横坐标为2,∴M(2,2),∵点M在直线AB:y=﹣x+b上,∴﹣×2+b=2,∴b=3,∴直线AB的解析式为y=﹣x+3,令y=0,∴﹣x+3=0,∴x=6,∴A(6,0);(2)由(1)知,直线AB的解析式为y=﹣x+3,∴B(0,3),∴OB=3,由题意知,C(a,﹣a+3),D(a,a),∵a>2,∴CD=a﹣(﹣a+3)=a﹣3,∵OB=CD,∴a﹣3=3,∴a=4;(3)由(1)知,A(6,0),M(2,2),∴不等式组的解集为2<x≤6.。

北师大版八年级上册数学期末试卷附答案

北师大版八年级上册数学期末试卷附答案

北师大版八年级上册数学期末试题一、单选题1.下列运算中错误的是( )A .(23=B =C 2÷=D 2.若函数y =kx (k≠0)的值随自变量的增大而增大,则函数y =x+2k 的图象大致是()A .B .C .D .3.表记录了甲、乙、丙、丁四名同学最近几次数学考试成绩的平均数与方差,要选择一名发挥稳定的同学参加数学竞赛,应该选择( )A .甲B .乙C .丙D .丁4.下列说法:①±3都是27的立方根;①116的算术平方根是±14;①2;平方根是±4;①﹣9是81的算术平方根,其中正确的有( )A .1个B .2个C .3个D .4个 5.将一个直角三角形纸片()90ABC ACB ∠=︒,沿线段CD 折叠,使点B 落在B '处,若//B D CB ',3ACB ADB ''∠=∠,则下列结论正确的是( )A .ADB ACD '∠=∠B .90ACB ADB ''∠+∠>︒C .22.5B ∠=︒D .67.5B DC '∠=︒6.下列命题中,假命题有( )①两点之间,线段最短; ①垂线段最短;①过一点有且只有一条直线与已知直线平行; ①垂直于同一直线的两条直线平行.A.4个B.3个C.2个D.1个7.一次函数y=ax+b与y=ax+c(a>0,b≠c)在同一坐标系中的图像可能是()A.B.C.D.8.如图,长方体的长为15宽为10,高为20,点B离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是()A.20B.25C.30D.329.如图,描述了林老师某日傍晚的一段生活过程:他晚饭后,从家里散步走到超市,在超市停留了一会儿,马上又去书店,看了一会儿书,然后快步走回家,图象中的平面直角坐标系中x表示时间,y表示林老师离家的距离,请你认真研读这个图象,根据图象提供的信息,以下说法错误的是()A.林老师家距超市1.5千米B.林老师在书店停留了30分钟C .林老师从家里到超市的平均速度与从超市到书店的平均速度是相等的D .林老师从书店到家的平均速度是10千米/时10.如图,一束光线从点()4,4A 出发,经y 轴上的点C 反射后经过点()10B ,,则点C 的坐标是( )A .10,2⎛⎫ ⎪⎝⎭B .40,5⎛⎫ ⎪⎝⎭C .()0,1D .()0,2 二、填空题11.直角三角形的斜边为10cm ,两直角边之比为3:4,那么这个直角三角形的周长为______.12.已知方程mx+n=0的解为x=-3,则直线y=mx+n 与x 轴的交点坐标是____. 13.在数轴上表示实数a 的点如图所示,化简2(5)a -+|a -2|的结果为____________.14.命题 “若a=b ,则|a|=|b|”的逆命题________(是/不是)真命题.15.若点A (2,-3),B (4,3),C (5,a )在同一条直线上,则a 的值_________.16.设a ,b a b <<,是,则a b =____.17.如图所示,AB①CD ,①1=115°,①3=140°,则①2=__________.18.如图,已知①1=100°,①2=140°,那么①3=________度.三、解答题19.计算:(1)(2)21)(1--.20.解方程组:234347x yx y⎧+=⎪⎨⎪-=-⎩21.如图,是规格为8×8的正方形网格,每个小正方形的边长均为1,请在所给网格中按下列要求操作:(1)在网格中建立平面直角坐标系,使A点坐标为(4,2),B点坐标为(1,-1);(2)在第一象限内的格点上画一点C,使点C与线段AB构成一个以AB为底的等腰三角形,且腰长是无理数,则C点坐标是;(3)若①A'B'C'与①ABC关于y轴对称,写出点A'和点B'的坐标.22.在学校组织的“学习强国”知识竞赛中,每班参加比赛的人数相同,成绩分为A,B,C,D四个等级,其中相应等级的得分依次记为100分,90分,80分和70分.年级组长张老师将801班和802班的成绩进行整理并绘制成如图所示的统计图.(1)在本次竞赛中,802班成绩在C级以上(包括C级)的人数为多少?(2)请你将下面的表格补充完整:(3)结合以上统计量,请你从不同角度对这次竞赛成绩的结果进行分析(写出两条).23.如图,已知BD①AC,EF①AC,D,F分别为垂足,G是AB上一点,且①1=①2.试说明:①AGD=①ABC.24.用1块A型钢板可制成4件甲种产品和1件乙种产品;用1块B型钢板可制成3件甲种产品和2件乙种产品,要生产甲种产品37件,乙种产品18件,则恰好需用A、B两种型号的钢板共多少块?25.甲、乙两组工人同时加工某种零件,乙组在工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍,两组各自加工零件的数量y(件)与时间x(小时)之间的函数图象如图所示.(1)求甲组加工零件的数量y与时间x之间的函数关系式;(2)求乙组加工零件总量a的值及乙组更换设备后加工零件的数量y与时间x之间的函数关系式;(3)甲、乙两组加工出的零件合在一起装箱,每够300件装一箱,零件装箱的时间忽略不计,求经过多长时间恰好装满第1箱.26.如图,在Rt①ABC中,①ACB=90°,AC=6,BC=8,将①ACB沿CD折叠,使点A恰好落在BC边上的点E处.(1)求①BDE的周长;(2)若①B=37°,求①CDE的度数.27.在图a中,应用三角形外角的性质不难得到下列结论:①BDC=①A+①ABD+①ACD.我们可以应用这个结论解决同类图形的角度问题.(1)在图a中,若①1=20°,①2=30°,①BEC=100°,则①BDC=;(2)在图a中,若BE平分①ABD,CE平分①ACD,BE与CE交于E点,请写出①BDC,①BEC 和①BAC之间的关系;并说明理由.(3)如图b,若113ABD∠=∠,123ACD∠=∠试探索①BDC,①BEC和①BAC之间的关系.(直接写出)参考答案1.D【分析】分别利用二次根式加减、乘除法则计算即可.【详解】A 、(23=,此选项计算正确,不符合题意;B =C 2÷=,此选项计算正确,不符合题意;D故选:D .【点睛】本题考查二次根式的加减法法则和乘除法法则,根据题目计算出正确结果是解答本题的关键.2.A【分析】先根据正比例函数的性质判断出k 的符号,再根据一次函数的图象和性质选出对应的答案.【详解】解:①函数y kx =的值随自变量的增大而增大①0k >,① 在函数2y x k =+中,10>,20k >①函数2y x k =+的图象经过一、二、三象限.故选:A .【点睛】本题主要考查一次函数的图象和性质,牢记比例系数k 和常数b 的值所对应的一次函数图象是解题的关键.3.B【分析】根据方差的定义,方差越小数据越稳定即可解答.【详解】解:从平均数看,四名同学成绩相同,从方差看,乙方差最小,发挥最稳定,所以要选择一名发挥稳定的同学参加数学竞赛,应该选择乙,故选:B .【点睛】本题主要考查平均数与方差的应用,解题关键在于掌握方差越小波动就越小.4.A【分析】根据平方根,算术平方根,立方根的定义找到错误选项即可.【详解】①3是27的立方根,原来的说法错误; ①116的算术平方根是14,原来的说法错误;①是正确的;,4的平方根是±2,原来的说法错误;①9是81的算术平方根,原来的说法错误.故其中正确的有1个.故选:A .【点睛】本题考查了立方根,平方根,算术平方根的知识;用到的知识点为:一个正数的正的平方根叫做这个数的算术平方根;一个正数的平方根有2个;任意一个数的立方根只有1个.5.C【分析】设①B=x .想办法证明①A=3x ,根据三角形内角和定理构建方程求出x 即可解决问题.【详解】解:设①B=x ,①DB′①BC ,①①ADB′=①B=x ,①①ACB′=3①ADB′=3x ,由翻折可知:①B=①B′=x ,又①①ADB′=①B①AB①B′C ,①①A=①ACB′=3x ,①①ACB=90°,①x+3x=90°,①x=22.5°,①①B=22.5°,故C 正确;①=390ACB ADB x x ''∠+∠+=︒,故B 错误;①DC B DC B '∠=∠,22.5ADB '∠=︒, ①()1=18022.5=78.752B DC '∠⨯︒-︒︒,故D 错误; ①=180ACD A ADC ∠︒-∠-∠=180A ADB B DC ''︒-∠-∠-∠=18067.522.578.75︒-︒-︒-︒=11.25°,①ADB ACD '∠≠∠,故A 错误.故选:C .【点睛】本题考查三角形内角和定理,平行线的性质等知识,解题的关键是学会利用参数构建方程解决问题.6.C【分析】根据概念判断即可.【详解】①两点之间,线段最短;说法正确,不是假命题;①垂线段最短;说法正确,不是假命题;①过直线外一点有且只有一条直线与已知直线平行;原说法错误,是假命题;①在同一平面内,垂直于同一直线的两条直线平行;原说法错误,是假命题;故选:C .【点睛】本题考查线段的定义,平行线的判定,熟记各知识点是解答本题的关键.7.A【分析】根据a 相同,判定直线平行;结合a>0,判定图像分布一定过一三象限,判断即可.【详解】①一次函数y=ax+b 与y=ax+c(a>0,b≠c),①直线平行,图像分布一定过一三象限,故选A .8.B【详解】解:将长方体展开,连接A 、B ,根据两点之间线段最短,(1)如图,BD=10+5=15,AD=20,由勾股定理得:.(2)如图,BC=5,AC=20+10=30,由勾股定理得,(3)只要把长方体的右侧表面剪开与上面这个侧面所在的平面形成一个长方形,如图:①长方体的宽为10,高为20,点B离点C的距离是5,①BD=CD+BC=20+5=25,AD=10,在直角三角形ABD中,根据勾股定理得:由于25<,故选B.9.D【分析】根据图象中的数据信息进行分析判断即可.【详解】解:A选项中,由图象可知:“林老师家距离超市1.5km”,所以A中说法正确;B选项中,由图象可知:林老师在书店停留的时间为;80-50=30(分钟),所以B中说法正确;C选项中,由图象可知:林老师从家里到超市的平均速度为:1500÷30=50(米/分钟),林老师从超市到书店的平均速度为:(2000-1500)÷(50-40)=50(米/分钟),所以C中说法正确;D选项中,由图象可知:林老师从书店到家的平均速度为:2000÷(100-80)=100(米/分钟)=6(千米/时),所以D中说法错误.故选D.【点睛】本题考查了函数图象,读懂题意,“弄清函数图象中每个转折点的坐标的实际意义”是解答本题的关键.10.B【分析】延长AC 交x 轴于点D ,利用反射定律,可得1OCB ∠=∠,利用ASA 可证()COD COB ASA ∆≅∆,已知点B 坐标,从而得点D 坐标,利用A ,D 两点坐标,求出直线AD 的解析式,即可求得点C 坐标.【详解】如图所示,延长AC 交x 轴于点D .设()0,C c①这束光线从点()4,4A 出发,经y 轴上的点C 反射后经过点()10B ,,①由反射定律可知,1OCB ∠=∠,①①1=①OCD ,①OCB OCD ∠=∠,①CO DB ⊥于O ,①COD COB ∠=∠=90°,在COD ∆和COB ∆中OCD OCBOC OC COD COB∠=∠⎧⎪=⎨⎪∠=∠⎩,①()COD COB ASA ∆≅∆,①1OD OB ==,①()1,0D -,设直线AD 的解析式为y kx b =+,①将点()4,4A ,点()1,0D -代入得:440k bk b =+⎧⎨=-+⎩, 解得:4545k b ⎧=⎪⎪⎨⎪=⎪⎩,①直线AD 的解析式为:4455y x =+,①点C 坐标为40,5⎛⎫⎪⎝⎭.故选B.11.24cm【分析】设两直角边分别为3x,4x,根据勾股定理列式求出x,得到边长,再根据周长计算方法计算即可.【详解】解:设两直角边分别为3x,4x,由勾股定理得,(3x)2+(4x)2=102,解得,x=2,则两直角边分别为6cm,8cm,①这个直角三角形的周长=6cm+8cm+10cm=24cm,故答案为:24cm.【点睛】此题考查直角三角形的勾股定理计算,题中有比值关系时根据比值设未知数,根据勾股定理列出方程求出边长是解题的关键.12.(-3,0)【分析】求直线与x轴的交点坐标,需使直线y=mx+n的y值为0,则mx+n=0;已知此方程的解为x=-3.因此可得答案.【详解】解:①方程的解为x=-3,①当x=-3时mx+n=0;又①直线y=mx+n与x轴的交点的纵坐标是0,①当y=0时,则有mx+n=0,①x=-3时,y=0.①直线y=mx+n与x轴的交点坐标是(-3,0).【点睛】本题主要考查了一次函数与一元一次方程的关系,解题的关键是了解一次函数图像与x轴的交点横坐标就是对应的一元一次方程的解.13.3【详解】解:由数轴得,a>2且a<5,所以a -5<0,a -2>0,原式=5-a+a -2=3.故答案为:314.不是【分析】根据逆命题的概念写出原命题的逆命题,判断真假即可.【详解】解:命题“如a b =,那么||||a b =”的逆命题是如果||||a b =,那么a b =, 如果||||a b =,那么a b =,不是真命题,如:4a =,4b =-,则||||a b =,但a b .故答案为:不是.【点睛】本题考查了命题的逆命题、以及命题的真假判断,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题,其中一个命题称为另一个命题的逆命题.15.6【分析】设出函数解析式,转化为求函数值问题计算即可.【详解】设直线的解析式为y=kx+b ,根据题意,得 2343k b k b +=-⎧⎨+=⎩, 解得39k b =⎧⎨=-⎩, 直线解析式为y=3x -9,当x=5时,a=15-9=6,故答案为:6.【点睛】本题考查了待定系数法求解析式,根据解析式求函数值,熟练掌握待定系数法是解题的关键.16.9a 、b 的值,代入求出即可.【详解】①23,①a=2,b=3,①b a=32=9.故答案为:9.【点睛】本题考查了估算无理数的大小的应用,关键是求出a、b的值.17.75°【分析】根据两直线平行,同旁内角互补求出①4的度数,再根据三角形的一个外角等于和它不相邻的两个内角的和即可求出①2的度数.【详解】如图,①AB①CD,①3=140°,①①4=180°-140°=40°,①①1=115°,①①2=①1-①4=115°-40°=75°.故答案为75°.【点睛】本题主要利用两直线平行,同旁内角互补的性质和三角形的一个外角等于和它不相邻的两个内角的和求解.18.60【分析】据邻补角得出①4的度数,利用三角形外角性质得出①3即可.【详解】解:①①1+①4=180°,①1=100°,①①4=180°-①1=180°-100°=80°,①①2=①3+①4,①①3=①2-①4=140°-80°=60°,故答案为:60.【点睛】本题考查三角形外角性质,关键是根据三角形的一个外角等于和它不相邻的两个内角的和解答.19.(1)(2)11-+【分析】(1)先化简二次根式,再利用二次根式的加减法法则计算即可;(2)先用平方差公式和完全平方公式计算,再利用二次根式的加减法法则计算即可.(1)解:原式752=⨯⨯== (2)解:原式(222211⎡⎤=---⎢⎥⎣⎦31112=--+11=-+【点睛】本题考查二次根式的化简、平方差公式和完全平方公式的应用、二次根式的加减法法则,熟练掌握相关运算法则是解答本题的关键.20.34x y =⎧⎨=⎩【分析】方程组利用加减消元法求出解即可.【详解】方程组可化为4324347x y x y +=⎧⎨-=-⎩①②, ①×4+①×3得:25x=75,解得:x=3,把x=3代入①得:3×3﹣4y=﹣7,解得:y=4,所以,方程组的解是34xy=⎧⎨=⎩.【点睛】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.21.(1)见解析(2)C点坐标是(2,1).不唯一(3)A'(-4,2),B'(-1,-1)【分析】(1)将点B的坐标向上平移一个单位长度,再向左平移一个单位长度,得到原点,以水平直线为x轴建立坐标系即可.(2)根据等腰三角形的定义,无理数的性质,选择即可.(3)根据关于y轴对称点的坐标特点,纵坐标不变,横坐标变为相反数计算确定即可.(1)①B点坐标为(1,-1),①将点B的坐标向上平移一个单位长度,再向左平移一个单位长度,得到原点,以水平直线为x轴建立坐标系如下:(2)点C如图所示,C点坐标是(2,1),故答案为:(2,1).(3)①关于y轴对称点的坐标特点,纵坐标不变,横坐标变为相反数,且A点坐标为(4,2),B 点坐标为(1,-1),①A'(-4,2),B'(-1,-1).【点睛】本题考查了平面直角坐标系的建立,对称点坐标的确定,等腰三角形顶点坐标的确定,平移的运用,熟练掌握平移的规律,对称点的坐标特点是解题的关键.22.(1)21(2)见解析(3)①从平均数的角度看两班成绩一样;从中位数的角度看801班比802班的成绩好;①从平均数的角度看两班成绩一样;从众数的角度看802班比801班的成绩好.(答案不唯一)【分析】(1)先求出801班参加比赛的人数,再求802班参加比赛的C级以上(包括C级)的人数;(2)由中位数和众数的定义解答;(3)由平均数、中位数和众数的定义的分析即可.(1)解:801班参加比赛的人数为6+12+2+5=25,①每班参加比赛的人数相同,①802班参加比赛的有25人,①C级以上(包括C级)的人数为25×(44%+4%+36%)=21.(2)解:801班成绩的众数为90分,802班成绩为A级的学生有25×44%=11(人),成绩为B级的学生有25×4%=1(人),成绩为C级的学生有25×36%=9(人),成绩为D级的学生有25×16%=4(人),故802班竞赛成绩的中位数为80分,802班成绩为B级及以上的人数为11+1=12,补全表格如下:(3)解:①从平均数的角度看两班成绩一样;从中位数的角度看801班比802班的成绩好; ①从平均数的角度看两班成绩一样;从众数的角度看802班比801班的成绩好.(答案不唯一).【点睛】本题考查条形统计图和扇形统计图的综合应用,读懂统计图,从不同的统计图得到必要信息是解答本题的关键.23.见解析.【分析】由BD①AC ,EF①AC 推出BD①EF ,得到①DBC =①1,再结合①1=①2推出GD①BC ,可证①AGD =①ABC.【详解】①BD①AC ,EF①AC ,①BD①EF ,①①DBC =①1.①①1=①2,①①2=①DBC ,①GD①BC ,①①AGD =①ABC.【点睛】本题考查的知识点是平行线的判定与性质,解题的关键是熟练的掌握平行线的判定与性质.24.恰好需用A 、B 两种型号的钢板共11块.【分析】根据题目意思列出二元一次方程组,解出A 、B 两种型号的钢板的数量即可.【详解】解:设需用A 型钢板x 块,B 型钢板y 块,根据题意得4337218x y x y +=⎧⎨+=⎩ 解得47x y =⎧⎨=⎩, ①4711x y +=+=,①恰好需用A 、B 两种型号的钢板共11块.【点睛】本题考查二元一次方程组的应用,根据题目意思列出二元一次方程组是解答本题的关键.25.(1)y=60x(0≤x≤6)(2)300件,y=100x -180(2.8<x≤4.8)(3)经过3小时恰好装满第1箱【分析】(1)将(6,360)代入关系式y=kx中,求出k即可;(2)先求出更换设备前的工作效率,可知更换设备后的工作效率,可求出a;进而求出更换设备后的关系式;(3)分三段根据两种设备加工的零件和=300列出方程,求出符合条件的结果即可.(1)设甲组加工零件的数量y与时间x之间的函数关系式为y=kx(k≠0),①当x=6时,y=360,①6k=360,解得k=60,①y=60x(0≤x≤6);(2)由题图知,更换设备前,乙组2小时加工100件,①乙组的加工速度是每小时加工50件.①乙组在工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍,①更换设备后,乙组的工作速度是每小时加工50×2=100件,①a=100+100×(4.8-2.8)=300.乙组更换设备后,乙组加工的零件的个数y与时间x的函数关系式为y=100+100(x-2.8)=100x-180(2.8<x≤4.8);(3)当0≤x≤2时,60x+50x=300,解得x=3011,不合题意,舍去;当2<x≤2.8时,100+60x=300,解得x=103,不合题意,舍去;当2.8<x≤4.8时,60x+100x-180=300,解得x=3,符合题意,①经过3小时恰好装满第1箱.【点睛】本题主要考查了求正比例函数和一次函数关系式,从图象中获取信息是解题的关键.26.(1)①BDE的周长为12;(2)①CDE的度数为82°.【分析】(1)由折叠的性质可知,DE=AD,CE=AC,则①BDE的周长=BD+DE+BE=BD+BE+AD=AB+BE,先求出BE的长,再利用勾股定理求出AB的长即可;(2)由折叠的性质可知:①ACD=①BCD,①A=①CED,再利用三角形内角和定理求解即可.【详解】解:(1)由折叠的性质可知,DE=AD ,CE=AC ,①①BDE 的周长=BD+DE+BE=BD+BE+AD=AB+BE ,①①ACB=90°,AC=6,BC=8,①BE=BC -CE=BC -AC=2,10AB =,①①BDE 的周长=AB+BE=10+2=12;(2)由折叠的性质可知:①ACD=①BCD ,①A=①CED ,①①ACB=90°,①B=37°,①①A=①CED=53°,1452ECD ACB ==∠∠, ①=180=82CDE BCD CED --∠∠∠.【点睛】本题主要考查了折叠的性质,勾股定理,三角形内角和定理,解题的关键在于能够熟练掌握相关知识进行求解.27.(1)150°(2)①BDC+①BAC=2①BEC(3)2①BDC+①BAC=3①BEC【分析】(1)根据题目给出的条件可得:12150BDC BEC ∠=∠+∠+∠=︒;(2)根据题意得出①BDC=①BEC+①1+①2,①BEC=①BAC+①ABE+①ACE ,再根据BE 平分①ABD ,CE 平分①ACD ,得出①ABE=①1,①ACE=①2,然后进行化简即可得出结论; (3)先根据题意得出①BDC=①BEC+①1+①2,①BEC=①BAC+①ABE+①ACE ,再根据113ABD ∠=∠,123ACD ∠=∠,得出①BEC=①BAC+2①1+2①2,整理化简即可得出结论. (1)解:①①1=20°,①2=30°,①BEC=100°,①12150BDC BEC ∠=∠+∠+∠=︒.故答案为:150°.(2)由题意可知,①BDC=①BEC+①1+①2,①①BEC=①BAC+①ABE+①ACE,①①BE平分①ABD,CE平分①ACD,①①ABE=①1,①ACE=①2,①-①得①BDC-①BEC=①BEC-①BAC,即①BDC+①BAC=2①BEC.(3)由题意可知,①BDC=①BEC+①1+①2,①①BEC=①BAC+①ABE+①ACE,①①①1=13①ABD,①2=13①ACD,①①ABE=2①1,①ACE=2①2.由①得①BEC=①BAC+2①1+2①2,①①×2-①得2①BDC-①BEC=2①BEC-①BAC,即2①BDC+①BAC=3①BEC.21。

北师大版数学八年级上册期末考试试卷有答案

北师大版数学八年级上册期末考试试卷有答案

北师大版数学八年级上册期末考试试题一、选择题(每小题3分,共30分,每小题只有一项符合题目要求)1.(3分)数4的算术平方根是()A.2 B.﹣2 C.±2 D.2.(3分)下列实数中的无理数是()A.0 B.C.πD.1.01010101…3.(3分)与最接近的整数是()A.9 B.8 C.7 D.64.(3分)下列等式成立的是()A.3+4=7B.=C.÷=2D.=3 5.(3分)下列命题是假命题的是()A.对顶角相等B.两直线平行,同位角相等C.内错角相等,两直线平行D.三角形的外角大于内角6.(3分)已知一次函数y=kx+3的图象经过点A,且y随x的增大而减小,则点A的坐标可以是()A.(﹣1,2)B.(1,﹣2)C.(2,3)D.(3,4)7.(3分)用加减消元法解二元一次方程组时,下列方法中无法消元的是()A.①×2﹣②B.②×(﹣3)﹣①C.①×(﹣2)+②D.①﹣②×3 8.(3分)将一副直角三角板(∠A=∠FDE=90°,∠F=45°,∠C=60°,点D在边AB上)按图中所示位置摆放,两条斜边为EF,BC,且EF∥BC,则∠ADF等于()A.70°B.75°C.80°D.85°9.(3分)数形结合是解决数学问题常用的思想方法.如图,直线y=x+5和直线y=ax+b 相交于点P,根据图象可知,关于x的方程x+5=ax+b的解是()A.x=5 B.x=15 C.x=20 D.x=2510.(3分)如图,正方形ABCD的边长为1,其面积标记为S1,以AB为斜边向外作等腰直角三角形,再以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2,…,按照此规律继续下去,则S7的值为()A.B.C.D.二、填空题(本大题4个小题,每小题4分,共16分)11.(4分)实数2﹣的倒数是.12.(4分)点P(a,b)在函数y=3x+2的图象上,则代数式6a﹣2b的值等于.13.(4分)如图,在x轴,y轴上分别截取OA,OB,使OA=OB,再分别以点A,B为圆心,以大于AB长为半径画弧,两弧交于点P.若点P的坐标为(a,2a﹣3),则a 的值为.14.(4分)《九章算术》中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问每头牛、每只羊各值金多少两?”设每头牛值金x两,每只羊值金y两,可列方程组为.三、解答题(本大题共6个小题,满分54分)15.(10分)(1)计算:﹣+﹣|2﹣3|;(2)计算:÷3×.16.(10分)(1)解方程组:;(2)解方程组:.17.(8分)某校开展了“学习新思想,做好接班人”主题阅读活动月.请根据统计图表中的信息,解答下列问题:(1)被抽查的学生人数是人,表中m=;(2)被抽查的学生阅读文章篇数的中位数是,众数是;(3)若该校共有1600名学生,请估计该校学生在主题阅读活动月内文章阅读的篇数为4篇的有多少人?阅读篇数 3 4 5 6 7及以上人数20 25 m 15 1018.(6分)大学生运动会将在成都召开,大批的大学生报名参与志愿者服务工作.某大学计划组织本校大学生志愿者乘车去了解比赛场馆情况,若单独调配36座(不含司机)新能源客车若干辆,则有2人没有座位;若只调配22座(不含司机)新能源客车,则用车数量将增加4辆,并空出2个座位.求计划调配36座新能源客车多少辆?该大学共有多少名大学生志愿者?19.(10分)如图,平面直角坐标系中,△ABC的顶点坐标分别为A(4,1),B(3,4),C(1,2).(1)画出△ABC关于y轴对称的△A1B1C1,并写出顶点C1的坐标;(2)若点P在x轴上,且满足PA+PC1最小,求点P的坐标及PA+PC1的最小值.20.(10分)已知,△ABC和△DCE都是等边三角形,点B,C,E三点不在一条直线上(如图1).(1)求证:BD=AE;(2)若∠ADC=30°,AD=4,CD=5,求BD的长;(3)若点B,C,E三点在一条直线上(如图2),且△ABC和△DCE的边长分别为3和5,求AD的长.一、填空题(每小题4分,共20分)21.(4分)计算•(﹣)+•(﹣)的结果是.22.(4分)某小组数学综合练习得分如表:得分130 140 145人数 5 3 2 则该小组的平均得分是分.23.(4分)如图,线段AB,BC的垂直平分线l1,l2相交于点O,若∠B=50°,则∠AOC =.24.(4分)如图,点A(﹣2,0),直线l:y=与x轴交于点B,以AB为边作等边△ABA1,过点A1作A1B1∥x轴,交直线l于点B1,以A1B1为边作等边△A1B1A2,过点A2作A2B2∥x轴,交直线l于点B2,以A2B2为边作等边△A2B2A3,则点A3的坐标是.25.(4分)如图,△ACB和△ECD都是等腰直角三角形,CA=CB,CE=CD,△ACB的顶点A在△ECD的斜边DE上,CD交AB于点F,若AE=,AD=2,则△ACF的面积为.二、解答题(本大题有3个小题,共30分)26.(8分)某商场在二楼到一楼之间设有自动扶梯和步行楼梯.甲、乙两人从二楼同时下行,甲乘自动扶梯,甲离一楼地面的高度y甲(米)与下行时间x(秒)满足函数关系y=﹣x+6;乙走步行楼梯,乙离一楼地面的高度y乙(米)与下行时间x(秒)的函甲数关系如图所示.(1)求y乙关于x的函数解析式;(2)请通过计算说明甲、乙两人谁先到达一楼地面?27.(10分)阅读理解:已知实数x,y满足3x﹣y=5…①,2x+3y=7…②,求x﹣4y和7x+5y 的值.仔细观察两个方程未知数的系数之间的关系,本题可以通过适当变形整体求得代数式的值,如由①﹣②可得x﹣4y=﹣2,由①+②×2可得7x+5y=19.这样的解题思想就是通常所说的“整体思想”.利用“整体思想”,解决下列问题:(1)已知二元一次方程组,则x﹣y=,x+y=;(2)买20支铅笔、3块橡皮、2本日记本共需32元,买39支铅笔、5块橡皮、3本日记本共需58元,求购买5支铅笔、5块橡皮5本日记本共需多少元?(3)对于实数x,y,定义新运算:x*y=ax+by+c,其中a,b,c是常数,等式右边是实数运算.已知3*5=15,4*7=28,求1*1的值.28.(12分)表格中的两组对应值满足一次函数y=kx+b,函数图象为直线l1,如图所示.将函数y=kx+b中的k与b交换位置后得一次函数y=bx+k,其图象为直线l2.设直线l1交y轴于点A,直线l1交直线l2于点B,直线l2交y轴于点C.x ﹣2 4y ﹣4 2 (1)求直线l2的解析式;(2)若点P在直线l1上,且△BCP的面积是△ABC的面积的(1+)倍,求点P的坐标;(3)若直线y=a分别与直线l1,l2及y轴的三个交点中,其中一点是另两点所成线段的中点,求a的值.参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.(3分)数4的算术平方根是()A.2 B.﹣2 C.±2 D.【分析】算术平方根的概念:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.记为.【解答】解:∵2的平方为4,∴4的算术平方根为2.故选:A.【点评】此题主要考查了算术平方根的定义,算术平方根的概念易与平方根的概念混淆而导致错误.2.(3分)下列实数中的无理数是()A.0 B.C.πD.1.01010101…【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A、0是整数,属于有理数,故本选项不合题意;B、,是整数,属于有理数,故本选项不合题意;C、π是无理数,故本选项符合题意;D、1.01010101…是循环小数,属于有理数,故本选项不合题意;故选:C.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.3.(3分)与最接近的整数是()A.9 B.8 C.7 D.6【分析】由于64<66<81,于是8<<9,64与66的距离小于66与81的距离,可得答案.【解答】解:∵82=64,92=81,∴8<<9,又∵8.52>66,∴与最接近的整数是8.故选:B.【点评】本题考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题.4.(3分)下列等式成立的是()A.3+4=7B.=C.÷=2D.=3 【分析】根据二次根式的加、乘、除法法则及二次根式的性质逐一判断即可得.【解答】解:A.3与4不是同类二次根式,不能合并,此选项计算错误;B.×=,此选项计算错误;C.÷=×=3,此选项计算错误;D.=3,此选项计算正确;故选:D.【点评】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的加、乘、除法法则及二次根式的性质.5.(3分)下列命题是假命题的是()A.对顶角相等B.两直线平行,同位角相等C.内错角相等,两直线平行D.三角形的外角大于内角【分析】对各个命题逐一判断后找到错误的即可确定假命题.【解答】解:A、对顶角相等,是真命题;B、两直线平行,同位角相等,是真命题;C、内错角相等,两直线平行,是真命题;D、三角形的一个外角大于和它不相邻的任何一个内角,原命题是假命题;故选:D.【点评】此题主要考查了命题与定理,熟练利用相关定理以及性质进而判定举出反例即可判定出命题正确性.6.(3分)已知一次函数y=kx+3的图象经过点A,且y随x的增大而减小,则点A的坐标可以是()A.(﹣1,2)B.(1,﹣2)C.(2,3)D.(3,4)【分析】由点A的坐标,利用一次函数图象上点的坐标特征求出k值,结合y随x的增大而减小即可确定结论.【解答】解:A、当点A的坐标为(﹣1,2)时,﹣k+3=2,解得:k=1>0,∴y随x的增大而增大,选项A不符合题意;B、当点A的坐标为(1,﹣2)时,k+3=﹣2,解得:k=﹣5<0,∴y随x的增大而减小,选项B符合题意;C、当点A的坐标为(2,3)时,2k+3=3,解得:k=0,选项C不符合题意;D、当点A的坐标为(3,4)时,3k+3=4,解得:k=>0,∴y随x的增大而增大,选项D不符合题意.故选:B.【点评】本题考查了一次函数的性质以及一次函数图象上点的坐标特征,根据点的坐标,利用一次函数图象上点的坐标特征求出k值是解题的关键.7.(3分)用加减消元法解二元一次方程组时,下列方法中无法消元的是()A.①×2﹣②B.②×(﹣3)﹣①C.①×(﹣2)+②D.①﹣②×3【分析】方程组利用加减消元法变形即可.【解答】解:A、①×2﹣②可以消元x,不符合题意;B、②×(﹣3)﹣①可以消元y,不符合题意;C、①×(﹣2)+②可以消元x,不符合题意;D、①﹣②×3无法消元,符合题意.故选:D.【点评】此题考查了解二元一次方程组,熟练掌握加减消元法是解本题的关键.8.(3分)将一副直角三角板(∠A=∠FDE=90°,∠F=45°,∠C=60°,点D在边AB上)按图中所示位置摆放,两条斜边为EF,BC,且EF∥BC,则∠ADF等于()A.70°B.75°C.80°D.85°【分析】依据平行线的性质,即可得到∠BGD的度数,再根据三角形外角的性质,即可得到∠ADG的度数.【解答】解:如图所示,CB与FD交点为G,∵EF∥BC,∴∠F=∠BGD=45°,又∵∠ADG是△BDG的外角,∠B=30°,∴∠ADG=∠B+∠BGD=30°+45°=75°,故选:B.【点评】本题主要考查了平行线的性质以及三角形外角性质,解题时注意:两条平行线被第三条直线所截,同位角相等.9.(3分)数形结合是解决数学问题常用的思想方法.如图,直线y=x+5和直线y=ax+b 相交于点P,根据图象可知,关于x的方程x+5=ax+b的解是()A.x=5 B.x=15 C.x=20 D.x=25【分析】两直线的交点坐标为两直线解析式所组成的方程组的解,即可得出答案.【解答】解:∵直线y=x+5和直线y=ax+b相交于点P(20,25),∴方程x+5=ax+b的解为x=20,故选:C.【点评】此题考查了一次函数与一元一次方程,关键是掌握一元一次方程与一次函数的关系,从图象上看,一元一次方程的解,相当于已知两条直线交点的横坐标的值.10.(3分)如图,正方形ABCD的边长为1,其面积标记为S1,以AB为斜边向外作等腰直角三角形,再以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2,…,按照此规律继续下去,则S7的值为()A.B.C.D.【分析】根据题意求出S2=()1,S3=()2,S4=()3,…,根据规律解答.【解答】解:由题意得:S1=12=1,S2=(1×)2=()1,S3=(×)2==()2,S4=(××)2==()3,…,则S n=()n﹣1,∴S7=()6,故选:A.【点评】本题考查了等腰直角三角形的性质、勾股定理以及规律型中数的变化规律,解题的关键是找出规律“S n=()n﹣1”.二、填空题(本大题4个小题,每小题4分,共16分)11.(4分)实数2﹣的倒数是2+.【分析】利用倒数的定义,以及分母有理化性质计算即可.【解答】解:实数2﹣的倒数是==2+.故答案为:2+.【点评】此题考查了分母有理化,以及倒数,熟练找到有理化因式也是解本题的关键.12.(4分)点P(a,b)在函数y=3x+2的图象上,则代数式6a﹣2b的值等于﹣4.【分析】把P(a,b)代入一次函数解析式得到b=3a+2,则3a﹣b=﹣2,即可求解.【解答】解:∵点P(a,b)在函数y=3x+2的图象上,∴b=3a+2,∴3a﹣b=﹣2,∴6a﹣2b=2×(﹣2)=﹣4,故答案为:﹣4.【点评】本题考查了一次函数图象上点的坐标特征:一次函数图象上点的坐标满足其解析式.13.(4分)如图,在x轴,y轴上分别截取OA,OB,使OA=OB,再分别以点A,B为圆心,以大于AB长为半径画弧,两弧交于点P.若点P的坐标为(a,2a﹣3),则a 的值为3.【分析】根据作图方法可知点P在∠BOA的角平分线上,由角平分线的性质可知点P到x轴和y轴的距离相等,结合点P在第一象限,可得关于a的方程,求解即可.【解答】解:∵OA=OB,分别以点A,B为圆心,以大于AB长为半径画弧,两弧交于点P,∴点P在∠BOA的角平分线上,∴点P到x轴和y轴的距离相等,又∵点P在第一象限,点P的坐标为(a,2a﹣3),∴a=2a﹣3,∴a=3.故答案为:3.【点评】本题考查了角平分线的作法及其性质在坐标与图形性质问题中的应用,明确题中的作图方法及角平分线的性质是解题的关键.、14.(4分)《九章算术》中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问每头牛、每只羊各值金多少两?”设每头牛值金x两,每只羊值金y两,可列方程组为.【分析】根据“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两”,得到等量关系,即可列出方程组.【解答】解:根据题意得:.故答案为:.【点评】本题考查了由实际问题抽象出二元一次方程组,解决本题的关键是找到题目中所存在的等量关系.三、解答题(本大题共6个小题,满分54分)15.(10分)(1)计算:﹣+﹣|2﹣3|;(2)计算:÷3×.【分析】(1)直接利用二次根式的性质化简,再利用二次根式的加减运算法则计算即可;(2)直接利用二次根式的乘除运算法则计算得出答案.【解答】解:(1)原式=﹣+2+2﹣3=2;(2)÷3×=3××=×=1.【点评】此题主要考查了实数运算以及二次根式的混合运算,正确化简二次根式是解题关键.16.(10分)(1)解方程组:;(2)解方程组:.【分析】(1)方程组利用代入消元法求出解即可;(2)方程组利用加减消元法求出解即可.【解答】解:(1)把①代入②得:3(y+1)+y=7,解得:y=1,把y=1代入①得:x=1+1=2,则方程组的解为;(2)②×5﹣①×2得:21y=20,解得:y=,把y=代入②得:2x+5×=8,解得:x=,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.17.(8分)某校开展了“学习新思想,做好接班人”主题阅读活动月.请根据统计图表中的信息,解答下列问题:(1)被抽查的学生人数是100人,表中m=30;(2)被抽查的学生阅读文章篇数的中位数是5篇,众数是5篇;(3)若该校共有1600名学生,请估计该校学生在主题阅读活动月内文章阅读的篇数为4篇的有多少人?阅读篇数 3 4 5 6 7及以上人数20 25 m 15 10【分析】(1)先由6篇的人数及其所占百分比求得总人数,总人数减去其他篇数的人数求得m的值;(2)根据中位数和众数的定义求解;(3)用总人数乘以样本中4篇的人数所占比例即可得.【解答】解:(1)被调查的总人数为15÷15%=100(人),m=100﹣(20+25+15+10)=30;故答案为:100,30.(2)由于共有100个数据,其中位数为第50、51个数据的平均数,而第50、51个数据均为5篇,所以中位数为5篇,出现次数最多的是5篇,所以众数为5篇.故答案为:5篇,5篇.(3)该校学生在主题阅读活动月内文章阅读的篇数为4篇的有:1600×=400(人).【点评】本题考查的是扇形统计图的综合运用,读懂统计图,从统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.18.(6分)大学生运动会将在成都召开,大批的大学生报名参与志愿者服务工作.某大学计划组织本校大学生志愿者乘车去了解比赛场馆情况,若单独调配36座(不含司机)新能源客车若干辆,则有2人没有座位;若只调配22座(不含司机)新能源客车,则用车数量将增加4辆,并空出2个座位.求计划调配36座新能源客车多少辆?该大学共有多少名大学生志愿者?【分析】设计划调配36座新能源客车x辆,该大学共有y名大学生志愿者,根据“若单独调配36座(不含司机)新能源客车若干辆,则有2人没有座位;若只调配22座(不含司机)新能源客车,则用车数量将增加4辆,并空出2个座位”,即可得出关于x,y 的二元一次方程组,解之即可得出结论.【解答】解:设计划调配36座新能源客车x辆,该大学共有y名大学生志愿者,依题意得:,解得:.答:计划调配36座新能源客车6辆,该大学共有218名大学生志愿者.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.19.(10分)如图,平面直角坐标系中,△ABC的顶点坐标分别为A(4,1),B(3,4),C(1,2).(1)画出△ABC关于y轴对称的△A1B1C1,并写出顶点C1的坐标;(2)若点P在x轴上,且满足PA+PC1最小,求点P的坐标及PA+PC1的最小值.【分析】(1)依据轴对称的性质,即可得到△ABC关于y轴对称的△A1B1C1,即可得到顶点C1的坐标;(2)作点C1关于x轴的对称点C',设直线AC'交x轴于点P,则C'的坐标为(﹣1,﹣2),利用待定系数法即可得到直线AC'的解析式,进而得出点P的坐标;过点A作x轴的垂线,过点C'作y轴的垂线,交于点D,则∠ADC'=90°,再根据勾股定理进行计算即可得出PA+PC1的最小值.【解答】解:(1)如图所示,△A1B1C1即为所求,顶点C1的坐标为(﹣1,2);(2)作点C1关于x轴的对称点C',设直线AC'交x轴于点P,则C'的坐标为(﹣1,﹣2),设直线AC'的解析式为y=kx+b,则,解得,∴直线AC'的解析式为y=x﹣,令y=0,则x=,∴点P的坐标为(,0),过点A作x轴的垂线,过点C'作y轴的垂线,交于点D,则∠ADC'=90°,在Rt△AC'D中,AC'==,∴PA+PC1的最小值为.【点评】本题主要考查了利用轴对称变换作图以及最短距离问题,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.20.(10分)已知,△ABC和△DCE都是等边三角形,点B,C,E三点不在一条直线上(如图1).(1)求证:BD=AE;(2)若∠ADC=30°,AD=4,CD=5,求BD的长;(3)若点B,C,E三点在一条直线上(如图2),且△ABC和△DCE的边长分别为3和5,求AD的长.【分析】(1)根据等边三角形的性质和全等三角形的判定和性质解答即可;(2)根据等边三角形的性质和全等三角形的判定和性质以及勾股定理解答即可;(3)根据等边三角形的性质和全等三角形的判定和性质以及勾股定理解答即可.【解答】证明:(1)∵△ABC和△DCE是等边三角形,∴BC=AC,DC=EC,∠ACB=∠DCE=60°,∴∠ABC+∠ACD=∠DCE+∠ACD,即∠BCD=∠ACE,在△BCD与△ACE中,,∴△BCD≌△ACE(SAS),∴BD=AE;(2)∵△DCE等式等边三角形,∴∠CDE=60°,CD=DE=5,∵∠ADC=30°,∴∠ADE=∠ADC+∠CDE=30°+60°=90°,在Rt△ADE中,AD=4,DE=5,∴,∴BD=;(3)如图2,过A作AH⊥CD于H,∵点B,C,E三点在一条直线上,∴∠BCA+∠ACD+∠DCE=180°,∵△ABC和△DCE都是等边三角形,∴∠BCA=∠DCE=60°,∴∠ACD=60°,∴∠CAH=30°,在Rt△ACH中,CH=AC=,AH=CH=,∴DH=CD﹣CH=5﹣,在Rt△ADH中,AD=.【点评】此题考查全等三角形的判定和性质,关键是根据等边三角形的性质、全等三角形的判定和性质解答.一、填空题(每小题4分,共20分)21.(4分)计算•(﹣)+•(﹣)的结果是5.【分析】利用因式分解得方法得到原式=(﹣)(+),然后利用平方差公式计算.【解答】解:原式=(﹣)(+)=()2﹣()2=8﹣3=5.故答案为5.【点评】本题考查了二次根式的混合运算:在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.22.(4分)某小组数学综合练习得分如表:得分130 140 145人数 5 3 2 则该小组的平均得分是136分.【分析】根据算术平均数的计算公式列出算式,再进行计算即可得出答案.【解答】解:根据题意得:=136(分),答:该小组的平均得分是136分.故答案为:136.【点评】本题考查的是算术平均数的求法,熟练掌握运算公式是解题的关键.23.(4分)如图,线段AB,BC的垂直平分线l1,l2相交于点O,若∠B=50°,则∠AOC =100°.【分析】根据线段垂直平分线的性质和等腰三角形的性质即可得到结论.【解答】解:如图,连接OB,∵OD垂直平分AB,∴OA=OB,∴∠ABO=∠A,∴∠AOB=180°﹣2∠ABO,∵OE垂直平分BC,∴OC=OB,∴∠CBO=∠C,∴∠COB=180°﹣2∠CBO,∵∠AOB+∠BOC+∠AOC=360°,∴∠AOC=360°﹣(180°﹣2∠CBO+180°﹣2∠ABO)=2(∠CBO+∠ABO)=2∠ABC =2×50°=100°,故答案为:100°.【点评】本题考查了线段垂直平分线的性质:垂直平分线垂直且平分其所在线段;垂直平分线上任意一点,到线段两端点的距离相等.24.(4分)如图,点A(﹣2,0),直线l:y=与x轴交于点B,以AB为边作等边△ABA1,过点A1作A1B1∥x轴,交直线l于点B1,以A1B1为边作等边△A1B1A2,过点A2作A2B2∥x轴,交直线l于点B2,以A2B2为边作等边△A2B2A3,则点A3的坐标是(,).【分析】先根据解析式求得B的坐标,即可求得AB=1,根据等边三角形的性质以及含30°角的直角三角形的性质,分别求得A1的纵坐标为,A2的纵坐标为,A3的纵坐标为.【解答】解:∵直线l:y=x+与x轴交于点B,∴B(﹣1,0),∴OB=1,∵A(﹣2,0),∴OA=2,∴AB=1,∵△ABA1是等边三角形,∴A1(﹣,),把y=代入y=x+,求得x=,∴B1(,),∴A1B1=2,∴A2(﹣,+×2),即A2(﹣,),把y=代入y=x+,求得x=,∴B2(,),∴A2B2=4,∴A3(,+×4),即A3(,),故答案为:(,).【点评】本题主要考查了一次函数图象上点的坐标特征以及等边三角形的性质的运用,解决问题的关键是依据等边三角形的性质找出规律.25.(4分)如图,△ACB和△ECD都是等腰直角三角形,CA=CB,CE=CD,△ACB的顶点A在△ECD的斜边DE上,CD交AB于点F,若AE=,AD=2,则△ACF的面积为3﹣.【分析】连接BD,作FM⊥DE于M,FN⊥BD于N.想办法求出△ABC的面积.再求出FA与FB的比值即可解决问题.【解答】解:如图,连接BD,作FM⊥DE于M,FN⊥BD于N.∵∠ECD=∠ACB=90°,∴∠ECA=∠DCB,∵CE=CD,CA=CB,∴△ECA≌△DCB,∴∠E=∠CDB=45°,AE=BD=,∵∠EDC=45°,∴∠ADB=∠ADC+∠CDB=90°,在Rt△ADB中,AB==,∴AC=BC=,∴S△ABC=××=,∵FD平分∠ADB,FM⊥DE于M,FN⊥BD于N,∴OM=ON,∵====,∴S△AFC=×=3﹣,故答案为:3﹣.【点评】本题考查全等三角形的判定和性质、等腰直角三角形的性质、勾股定理、角平分线的性质等知识,解题的关键是学会利用面积法确定线段之间的关系,属于中考选择题中的压轴题.二、解答题(本大题有3个小题,共30分)26.(8分)某商场在二楼到一楼之间设有自动扶梯和步行楼梯.甲、乙两人从二楼同时下行,甲乘自动扶梯,甲离一楼地面的高度y甲(米)与下行时间x(秒)满足函数关系y=﹣x+6;乙走步行楼梯,乙离一楼地面的高度y乙(米)与下行时间x(秒)的函甲数关系如图所示.(1)求y乙关于x的函数解析式;(2)请通过计算说明甲、乙两人谁先到达一楼地面?【分析】(1)根据题意和图象,即可求y乙关于x的函数解析式;(2)根据已知条件,结合(1)即可说明甲、乙两人谁先到达一楼地面.【解答】解:(1)由图象可知:y乙是x的一次函数,设函数解析式为y乙=kx+b,由图象知:y乙=kx+b过(5,5)和(15,3),∴,解得,∴y乙关于x的函数解析式为y乙=﹣x+6;(2)令y甲=﹣x+6中y甲=0,则0=﹣x+6,得x=20,令y乙=﹣x+6中y乙=0,则0=﹣x+6;得x=30,∵20<30,甲先到达一楼地面.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.27.(10分)阅读理解:已知实数x,y满足3x﹣y=5…①,2x+3y=7…②,求x﹣4y和7x+5y 的值.仔细观察两个方程未知数的系数之间的关系,本题可以通过适当变形整体求得代数式的值,如由①﹣②可得x﹣4y=﹣2,由①+②×2可得7x+5y=19.这样的解题思想就是通常所说的“整体思想”.利用“整体思想”,解决下列问题:(1)已知二元一次方程组,则x﹣y=﹣1,x+y=5;(2)买20支铅笔、3块橡皮、2本日记本共需32元,买39支铅笔、5块橡皮、3本日记本共需58元,求购买5支铅笔、5块橡皮5本日记本共需多少元?(3)对于实数x,y,定义新运算:x*y=ax+by+c,其中a,b,c是常数,等式右边是实数运算.已知3*5=15,4*7=28,求1*1的值.【分析】(1)由方程组的两式相减与相加即可得出结果;(2)设的消毒液单价为m元,测温枪的单价为n元,防护服的单价为p元,由题意列出方程组,即可得出结果;(3)由定义新运算列出方程组,求出a﹣b+c=﹣11,即可得出结果.【解答】解:(1),由①﹣②得:x﹣y=﹣1,①+②得:3x+3y=15,∴x+y=5,故答案为:﹣1,5;(2)设铅笔单价为m元,橡皮的单价为n元,日记本的单价为p元,由题意得:,由①×2﹣②得:m+n+p=6,∴5m+5n+5p=5×6=30,答:购买5支铅笔、5块橡皮5本日记本共需30元;(3)由题意得:,由①×3﹣②×2可得:a+b+c=﹣11,∴1*1=a+b+c=﹣11.【点评】本题考查了三元一次方程组的应用、定义新运算、“整体思想”等知识;熟练掌握“整体思想”,找出等量关系列出方程组是解题的关键.28.(12分)表格中的两组对应值满足一次函数y=kx+b,函数图象为直线l1,如图所示.将函数y=kx+b中的k与b交换位置后得一次函数y=bx+k,其图象为直线l2.设直线l1交y轴于点A,直线l1交直线l2于点B,直线l2交y轴于点C.x ﹣2 4y ﹣4 2 (1)求直线l2的解析式;(2)若点P在直线l1上,且△BCP的面积是△ABC的面积的(1+)倍,求点P的坐标;(3)若直线y=a分别与直线l1,l2及y轴的三个交点中,其中一点是另两点所成线段的中点,求a的值.【分析】(1)由待定系数法可求出答案;(2)过点B作BH⊥y轴于点H,则△ABH为等腰直角三角形,由三角形面积的比求出BP的长,分两种情况,由等腰直角三角形的性质可求出点P的坐标;(3)设直线y=a与直线l1,l2及y轴的交点分别为D,E,F,求出F(0,a),D(a+2,a),E(,a).分三种情况得出a的方程,解方程即可得出答案.【解答】解:(1)直线l1的解析式为y=kx+b,把(﹣2,﹣4),(4,2)分别代入得,,解得,∴直线l1的解析式为y=x﹣2,由题意可得直线l2的解析式为y=﹣2x+1.(2)令y=x﹣2中,x=0,则y=﹣2,故A(0,﹣2),令y=﹣2x+1中,x=0,则y=1,故C(0,1),过点B作BH⊥y轴于点H,则△ABH为等腰直角三角形,∴AH=BH=1,AB=,∴===1+,∴=1+,∴BP=(1+)•=2+,①过点P1作P1H1⊥y轴于H1,则△AP1H1为等腰直角三角形,∴AP1+,∴AP1=2,∴P1H1=,∴P1的横坐标为﹣,代入直线解析式得y=﹣2﹣,故P1(﹣,﹣2﹣);②过点P2作P2H2⊥y轴于H2,则△AP2H2为等腰直角三角形,∴AP2﹣=2+,∴AP2=2+2,∴P2H2==2+,∴P2的横坐标为2+,代入直线解析式得y=,故P2(2+,);综合以上可得点P的坐标为(﹣,﹣2﹣)或(2+,);(3)设直线y=a与直线l1,l2及y轴的交点分别为D,E,F,则F(0,a),令y=x﹣2中,y=a,则x﹣2=a,解得x=a+2,∴D(a+2,a),代入直线y=﹣2x+1中,则﹣2x+1=a,解得,x=,∴E(,a).①若点F是DE的中点时,D1F1=﹣a﹣2,E1F1=,∴﹣a﹣2=,解得a=﹣5;②若点D是EF的中点时,D2F2=a+2,E2F2=,∴2(a+2)=,解得a=﹣;③若点E是FD的中点时,D3F3=a+2,E3F3=,∴a+2=2×,解得a=﹣;综合以上可得,a的值为﹣5或﹣或﹣.【点评】此题属于一次函数综合题,考查了待定系数法,等腰直角三角形的性质,一次函数与坐标轴的交点,熟练掌握等腰直角三角形的判定与性质是解本题的关键.。

北师大版八年级上学期数学《期末考试试卷》含答案

北师大版八年级上学期数学《期末考试试卷》含答案
5.下列四个命题中,真命题有()
①两条直线被第三条直线所截,内错角相等.
②如果∠1和∠2是对顶角,那么∠1=∠2.
③三角形的一个外角大于任何一个内角.
④如果x2>0,那么x>0.
A.1个B.2个3个D.4个
[答案]A
[解析]
[分析]
利用平行线的性质、对顶角的性质、三角形的外角的性质分别判断后即可确定正确的选项.
(1) 分别写出当0≤x≤100和x>100时,y与x的函数关系式
(2) 利用函数关系式,说明电力公司采取的收费标准
(3) 若该用户某月用电62度,则应缴费多少元?若该用户某月缴费105元时,则该用户该月用了多少度电?
25.如图,直线L:y=﹣ x+2与x轴、y轴分别交于A、B两点,在y轴上有一点N(0,4),动点M从A点以每秒1个单位的速度匀速沿x轴向左移动.
(1)点A 坐标:;点B的坐标:;
(2)求△NOM的面积S与M的移动时间t之间的函数关系式;
(3)在y轴右边,当t为何值时,△NOM≌△AOB,求出此时点M的坐标;
(4)在(3)的条件下,若点G是线段ON上一点,连结MG,△MGN沿MG折叠,点N恰好落在x轴上的点H处,求点G的坐标.
答案与解析
一、选择题(本大题共10小题,共30.0分)
11.已知一组数据x,1,2,3,5,它的平均数是3,则这组数据的方差是__.
12.若点M(a,﹣1)与点N(2,b)关于y轴对称,则a+b的值是_____
13.当m=_______时,函数y=(2m-1)X 是正比例函数.
14.如图,BD与CD分别平分∠ABC、∠ACB的外角∠EBC、∠FCB,若∠A=80°,则∠BDC=_______.
8.已知 和 是二元一次方程ax+by+3=0的两个解,则一次函数y=ax+b(a≠0)的解析式为

北师大版八年级上册数学期末考试试卷含答案

北师大版八年级上册数学期末考试试卷含答案

北师大版八年级上册数学期末考试试题一、单选题 1.在实数227-,0,506,π,0.7171171117…(相邻两个7之间1的个数逐次加1)中,无理数的个数是( ) A .2个B .3个C .4个D .5个2.将具有下列长度的三条线段首尾顺次相连,能组成直角三角形的是( ) A .1,2,3B .5,12,13C .4,5,7D .9,80,813.点P (-3,4)到坐标原点的距离是( ) A .3B .4C .-4D .54.下列命题中真命题有几个( )①三角形的任意两边之和都大于第三边;①三角形的任意两角之和都大于第三个角;①同位角都相等;①若a =b ,则a b =;①相等的角都是直角;①同角的补角不一定相等; A .1个B .2个C .3个D .4个5.如图,AB①CD ,①A=35°,①C=80°,那么①E 等于( )A .35°B .45°C .55°D .75°6.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A 、B 、C 、D 的边长分别是3、5、2、3,则最大正方形E 的面积是( )A .13B .26C .34D .477.点A (3,1y )和点B (-2,2y )都在直线y =-2x +3上,则1y 和2y 的大小关系是() A .12y y =B .12y y >C .12y y <D .不能确定8.如果关于x ,y 的方程组45x by ax =⎧⎨+=⎩与72x y bx ay +=⎧⎨+=⎩的解相同,则a b +的值( )A .1B .2C .-1D .09.甲、乙两车从A 城出发匀速行驶至B 城.在整个行驶过程中,甲、乙两车离开A 城的距离y (千米)与甲车行驶的时间t (小时)之间的函数关系如图所示.则下列结论:①A ,B 两城相距300千米; ①乙车比甲车晚出发1小时,却早到1小时; ①乙车出发后2.5小时追上甲车; ①当甲、乙两车相距50千米时,54t =或154. 其中正确的结论有( ) A .1个B .2个C .3个D .4个10.已知正比例函数y=kx 的图象经过第一、三象限,则一次函数y=kx ﹣k 的图象可能是下图中的( )A .B .C .D .二、填空题11.-8的立方根是________________.12_____0.5(用“>”或“<”填空). 13.甲、乙、丙三个芭蕾舞团各有10名女演员,她们的平均身高都是165cm ,其方差分别为21.5S =甲,22.5S =乙,20.8S =丙,则________团女演员身高更整齐(填甲、乙、丙中一个).14.如果函数y=(m+1)x+m2﹣1是正比例函数.则m的值是___.15.已知二元一次方程组522x yx y-=-⎧⎨+=-⎩的解为41xy=-⎧⎨=⎩,则在同一平面直角坐标系中,直线l1:y=x+5与直线l2:y=-12x-1的交点坐标为____.16.若一直角三角形的两边长为4、5,则第三边的长为________ .17.如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD对折,使它落在斜边AB上,且与AE重合,CD的长为______.18.如图,①A1B1A2,①A2B2A3,①A3B3A4,…①AnBnAn+1都是等腰直角三角形,其中点A1,A2,…,An在x轴上,点B1,B2,…,Bn在直线y=x上,已知OA1=1,则OA2021的长为______.三、解答题19.计算:2(2)2-20.解方程组:(1)4 25 x yx y-=⎧⎨+=⎩(2)4=52 232 x yx y--⎧⎨+=⎩21.如图,在平面直角坐标系中,A(-1,5),B(-1,0),C(-4,3).(1)在图中作出①ABC关于y轴的对称图形①A1B1C1(2)写出点A1,B1,C1的坐标.22.如图,把一块直角三角形①ABC,(①ACB=90°)土地划出一个三角形①ADC后,测得CD=3米,AD=4米,BC=12米,AB=13米,求图中阴影部分土地的面积.23.某单位用汽车和火车向疫区用输两批防疫物资,具体运输情况如下表所示,求每辆汽车和每节火车车厢平均各装物资多少吨?24.某中学数学活动小组为了调查居民的用水情况,从某社区的1500户家庭中随机抽取了30户家庭的月用水量,结果如下表所示:(1)求这30户家庭月用水量的平均数、众数和中位数;(2)根据上述数据,试估计该社区的月用水量;(3)由于我国水资源缺乏,许多城市常利用分段计费的办法引导人们节约用水,即规定每个家庭的月基本用水量为m(吨),家庭月用水量不超过m(吨)的部分按原价收费,超过m(吨)的部分加倍收费.你认为上述问题中的平均数、众数和中位数中哪一个量作为月基本用水量比较合理?简述理由.25.如图,直线EF分别与直线AB,CD交于点E,F.EM平分①BEF,FN平分①CFE,且EM①FN.求证:AB①CD.26.疫情过后,地摊经济迅速兴起.小李以每千克2元的价格购进某种水果若干千克,销售一部分后,根据市场行情降价销售,销售额y(元)与销售量x(千克)之间的关系如图所示.(1)求降价后销售额y(元)与销售量x(千克)之间的函数表达式;(2)当销售量为多少千克时,小李销售此种水果的利润为150元?27.某实验中学八年级甲、乙两班分别选5名同学参加“学雷锋读书活动”演讲比赛其预赛成绩如图:(1)根据上图填写下表(2)根据上表中的平均数和中位数你认为哪班的成绩较好?并说明你的理由参考答案1.B2.B3.D4.B5.B6.D7.C8.A9.B10.D11. -2 4 2【分析】根据立方根、平方根、算术平方根解决此题.【详解】解:-82=-.4.4,42.故答案为:2-,4,2.【点睛】本题主要考查了立方根、平方根、算术平方根,熟练掌握立方根、平方根、算术平方根是解决本题的关键. 12.>【分析】由459<<,得23,故112<与0.5的大小关系. 【详解】解:459<<,23,21131∴--<,即112<,12>, 故答案为:>【点睛】本题主要考查算术平方根的性质以及不等式的性质,熟练掌握算术平方根的性质以及不等式的性质是解题的关键. 13.丙【分析】根据方差越小数据越稳定解答即可.【详解】解:①21.5S =甲,22.5S =乙,20.8S =丙,①222丙甲乙S S S , ①丙团女演员身高更整齐, 故答案为:丙.【点睛】本题考查方差,熟知方差越小数据越稳定是解答的关键. 14.1【详解】解:由正比例函数的定义可得:m2﹣1=0,且m+1≠0,解得,m=1;故答案为:1.【点睛】此题主要考查了正比例函数的定义.解题关键是掌握正比例函数的定义条件:正比例函数y=kx的定义条件是:k为常数且k≠0,自变量次数为1.15.(-4,1)【详解】试题分析:①二元一次方程组5{22x yx y-=-+=-的解为4{1xy=-=,①直线l1:y=x+5与直线l2:112y x=--的交点坐标为(﹣4,1),故答案为(﹣4,1).考点:一次函数与二元一次方程(组).16或3##3【详解】解:当4和5;当53=;3.17.3cm【分析】由勾股定理求得AB=10cm,然后由翻折的性质求得BE=4cm,设DC=xcm,则BD=(8-x)cm,DE=xcm,在①BDE中,利用勾股定理列方程求解即可.【详解】解:①在Rt①ABC中,两直角边AC=6cm,BC=8cm,10AB cm∴=().由折叠的性质可知:DC=DE,AC=AE=6cm,①DEA=①C=90°,①BE=AB-AE=10-6=4(cm ),①DEB=90°,设DC=xcm,则BD=(8-x)cm,DE=xcm,在Rt①BED中,由勾股定理得:BE2+DE2=BD2,即42+x2=(8-x)2,解得:x=3.故答案为3cm.18.20202【分析】根据①A1B1A2为等腰直角三角形,得出A1B1⊥OA2,①B1A2O=45°,根据点B1在直线y=x上,①B1Ox=45°=①B1A2O,OA1= A1A2,即点A1为OA2的中点,根据OA1=1,得出OA2=2OA1=2,根据①A2B2A3为等腰直角三角形,得出A2B2⊥OA2,①B2A3O=45°=①B2OA3,得出OA2=A2A3=2,可求OA3=OA2+A2A3=2+2=4=22,根据①A3B3A4,…①AnBnAn+1都是等腰直角三角形,可得①B3A4O=…=①BnAn+1O=45°=①BnOAn,B3A3①OA4,…,Bn-1An-1①OAn,得出OA4=2OA3=2×4=8=23,…OA n=2OAn-1=2×2n-2=2n-1,当n=2021时,代入求值即可.【详解】解:①①A1B1A2为等腰直角三角形,①A1B1⊥OA2,①B1A2O=45°,又①点B1在直线y=x上,①①B1Ox=45°=①B1A2O①OA1= A1A2,即点A1为OA2的中点,又①OA1=1,①A1B1=A1A2=1 .OA2=2OA1=2,①①A2B2A3为等腰直角三角形,点B2在直线y=x上,①A2B2⊥OA2,①B2A3O=45°=①B2OA3,①OA2=A2A3=2,①OA3=OA2+A2A3=2+2=4=22,①①A3B3A4,…①AnBnAn+1都是等腰直角三角形,点B3,Bn在直线y=x上,①①B3A4O=…=①BnAn+1O=45°=①B3OA4=①BnOAn,B3A3①OA4,…,Bn-1An-1①OAn,①OA4=2OA3=2×4=8=23,…①OA n=2OAn-1=2×2n-2=2n-1当n=2021时,①OA2021=22021-1=22020.故答案为:22020.【点睛】本题主要考查一次函数图象上点的坐标特征,规律型:图形的变化类,等腰直角三角形性质.19.(1)1(2)-2【分析】(1)将二次根式化简,合并同类二次根式,计算除法,最后计算减法即可; (2)根据平方差公式和完全平方公式去括号,再合并同类二次根式. (1)22- =3-2 =1; (2)解:原式=2222⎡⎤+-⎣-⎦=3-(3++2)=3-3-2=--2.【点睛】此题考查了二次根式的混合运算,正确掌握运算顺序及运算法则及公式是解题的关键.20.(1)31x y =⎧⎨=-⎩(2)86x y =-⎧⎨=⎩【分析】(1)用加法消元法求解; (2)用减法消元法求解. (1)①425x y x y -=⎧⎨+=⎩①② ①+①得:39x =, 3x =,将x =3代入①中得:34y -=,得1y =-,①原方程组的解是31x y =⎧⎨=-⎩. (2)将方程组变形为452232x y x y +=-⎧⎨+=⎩①②, ①2⨯,得464x y +=①,①-①,得6y =,把6y =代入①,得8x =-.①原方程组的解是86x y =-⎧⎨=⎩. 21.(1)见解析(2)A 1(1,5),B 1(1,0),C 1(4,3)【分析】(1)分别作出A ,B ,C 的对应点A 1,B 1,C 1即可.(2)根据A 1,B 1,C 1的位置写出坐标即可.(1)解:所作图形①A 1B 1C 1如下所示:(2)解:根据所作图形知:A 1(1,5),B 1(1,0),C 1(4,3).【点睛】本题考查作图-轴对称变换,解题的关键是熟练掌握基本知识.关于y 轴对称的点,纵坐标相同,横坐标互为相反数.22.阴影部分土地的面积为24平方米.【分析】先由勾股定理求出AC=5米,再由勾股定理的逆定理证出①ADC=90°,最后由三角形面积公式求解即可.【详解】解:①①ACB =90°,BC =12,AB =13,①AC 5,① 32+42=52,CD =3,AD =4,AC =5,即 CD 2+AD 2=AC 2,①①ADC =90°,①S 阴影=-ABC ACD S S =1122AC BC CD AD ⨯-⨯ 11512342422=⨯⨯-⨯⨯=(平方米). 【点睛】本题考查了勾股定理的应用以及勾股定理的逆定理;熟练掌握勾股定理和勾股定理的逆定理是解题的关键.23.每辆汽车平均装物资8吨,每节火车车厢平均装物资50吨【分析】设每辆汽车平均装物资x 吨,每节火车车厢平均装物资y 吨,列方程得5214034224x y x y +=⎧⎨+=⎩,计算即可.【详解】解:设每辆汽车平均装物资x 吨,每节火车车厢平均装物资y 吨根据题意得:5214034224x y x y +=⎧⎨+=⎩, 解得: 850x y =⎧⎨=⎩. 答:每辆汽车平均装物资8吨,每节火车车厢平均装物资50吨.【点睛】此题考查了二元一次方程组的实际应用,正确理解题意是解题的关键.24.(1)众数是7,中位数是7;(2)9300吨;(3)以中位数或众数作为月基本用水量较为合理.【分析】(1)根据中位数和众数的定义求解即可,(2)用社区的总户数乘以平均数列出算式计算即可,(3)根据平均数、众数、中位数的意义,结合题意选择合适的量即可.【详解】(1)解:1(3443557118492101) 6.230x =⨯+⨯+⨯+⨯+⨯+⨯+⨯=, 众数是7,中位数是7 (2)1500 6.29300⨯=(吨)①该社区月用水量约为9300吨(3)以中位数或众数作为月基本用水量较为合理.因为这样既可满足大多数家庭的月用水量,也可以引导用水量高于7吨的家庭节约用水.25.见解析【分析】根据平行线的性质以及角平分线的定义,即可得到①FEB=①EFC ,进而得出AB①CD .【详解】解:证明:①EM①FN ,①①FEM=①EFN ,又①EM 平分①BEF ,FN 平分①CFE ,①①BEF=2①FEM ,①EFC=2①EFN ,①①FEB=①EFC ,①AB①CD .【点睛】本题考查了平行线的判定与性质,解决本题的关键是熟记角平分线的定义和平行线的性质.26.(1) 2.560(40)y x x =+>;(2)180千克【分析】(1)根据函数图象中的数据,可以得到降价后销售额y (元)与销售量x (千克)之间的函数表达式;(2)根据(1)中的函数关系式和题意,可以列出相应的方程,从而可以得到当销售量为多少千克时,小李销售此种水果的利润为150元.【详解】解:(1)设降价后销售额y (元)与销售量x (千克)之间的函数表达式是y kx b =+, AB 段过点(40,160),(80,260),∴4016080260k b k b +=⎧⎨+=⎩, 解得, 2.560k b =⎧⎨=⎩, 即降价后销售额y (元)与销售量x (千克)之间的函数表达式是 2.560(40)y x x =+>; (2)设当销售量为a 千克时,小李销售此种水果的利润为150元,2.5602150a a +-=,解得,180a =,答:当销售量为180千克时,小李销售此种水果的利润为150元.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质解答.27.(1)8.5;0.7;8;(2)甲班的成绩较好.【分析】(1)根据众数、方差和中位数的定义及公式分别进行解答即可;(2)从平均数、中位数两个角度分别进行分析即可;【详解】解:(1)甲班的众数是8.5;甲班的方差是:0.7;乙班的中位数是8;(2)因为甲、乙两班成绩的平均数相同,而甲班成绩的中位数高于乙班的中位数,所以甲班的成绩较好.。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档