【学生版】小学奥数3-2-9 接送问题.专项检测
【小学奥数精编】接送问题.学生版
1、准确画出接送问题的过程图——标准:每个量在相同时间所走的路程要分清2、理解运动过程,抓住变化规律3、运用行程中的比例关系进行解题一、 校车问题——行走过程描述 队伍多,校车少,校车来回接送,队伍不断步行和坐车,最终同时到达目的地,即到达目的地的最短时间,不要求证明。
二、常见接送问题类型根据校车速度(来回不同)、班级速度(不同班不同速)、班数是否变化分类为四种常见题型:(1)车速不变-班速不变-班数2个(最常见)(2)车速不变-班速不变-班数多个(3)车速不变-班速变-班数2个(4)车速变-班速不变-班数2个三、标准解法:画图+列3个式子1、总时间=一个队伍坐车的时间+这个队伍步行的时间;2、班车走的总路程;3、一个队伍步行的时间=班车同时出发后回来接它的时间。
知识精讲教学目标接送问题模块一、汽车接送问题——接一个人【例1】某校和某工厂之间有一条公路,该校下午2时派车去该厂接某劳模来做报告,往返需用1小时.这位劳模在下午1时便离厂步行向学校走来,途中遇到接他的汽车,便立刻上车驶向学校,在下午2时40分到达.问:汽车速度是劳模步行速度的几倍?【巩固】张工程师每天早上8点准时被司机从家接到厂里。
一天,张工程师早上7点就出了门,开始步行去厂里,在路上遇到了接他的汽车,于是,他就上车行完了剩下的路程,到厂时提前20分钟。
这天,张工程师还是早上7点出门,但15分钟后他发现有东西没有带,于是回家去取,再出门后在路上遇到了接他的汽车,那么这次他比平常要提前分钟到厂。
【例2】李经理的司机每天早上7点30分到达李经理家接他去公司。
有一天李经理7点从家里出发去公司,路上遇到从公司按时来接他的车,再乘车去公司,结果比平常早到5分钟。
则李经理乘车的速度是步行速度的倍。
(假设车速、步行速度保持不变,汽车掉头与上下车时间忽略不计)模块二、汽车接送问题——接两个人或多人(一)、车速不变、人速不变【例3】(难度级别※※※)A、B两个连队同时分别从两个营地出发前往一个目的地进行演习,A连有卡车可以装载正好一个连的人员,为了让两个连队的士兵同时尽快到达目的地,A连士兵坐车出发一定时间后下车让卡车回去接B连的士兵,两营的士兵恰好同时到达目的地,已知营地与目的地之间的距离为32千米,士兵行军速度为8千米/小时,卡车行驶速度为40千米每小时,求两营士兵到达目的地一共要多少时间?【巩固】 甲班与乙班学生同时从学校出发去公园,两班的步行速度相等都是4千米/小时,学校有一辆汽车,它的速度是每小时48千米,这辆汽车恰好能坐一个班的学生.为了使两班学生在最短时间内到达公园,设两地相距150千米,那么各个班的步行距离是多少?【例 4】 (难度级别 ※※)甲、乙、丙三个班的学生一起去郊外活动,他们租了一辆大巴,但大巴只够一个班的学生坐,于是他们计划先让甲班的学生步行,乙丙两班的学生步行,甲班学生搭乘大巴一段路后,下车步行,然后大巴车回头去接乙班学生,并追赶上步行的甲班学生,再回头载上丙班学生后一直驶到终点,此时甲、乙两班也恰好赶到终点,已知学生步行的速度为5千米/小时,大巴车的行驶速度为55千米/小时,出发地到终点之间的距离为8千米,求这些学生到达终点一共所花的时间.【例 5】 海淀区劳动技术学校有100名学生到离学校33千米的郊区参加采摘活动,学校只有一辆限乘25人的中型面包车.为了让全体学生尽快地到达目的地.决定采取步行与乘车相结合的办法.已知学生步行的速度是每小时5千米,汽车行驶的速度是每小时55千米.请你设计一个方案,使全体学生都能到达目的地的最短时间是多少小时?1份【例6】甲、乙两班学生到离校39千米的博物馆参观,但只有一辆汽车,一次只能乘坐一个班的学生.为了尽快到达博物馆,两个班商定,由甲班先坐车,乙班先步行,同时出发,甲班学生在途中某地下车后步行去博物馆,汽车则从某地立即返回去接在途中步行的乙班学生.如果甲、乙两班学生步行速度相同,汽车速度是他们步行速度的10倍,那么汽车应在距博物馆多少千米处返回接乙班学生,才能使两班同时到达博物馆?A B C D【例7】甲、乙两班学生到离校24千米的飞机场参观,但只有一辆汽车,一次只能乘坐一个班的学生.为了尽快到达飞机场,两个班商定,由甲班先坐车,乙班先步行,同时出发,甲班学生在途中某地下车后步行去飞机场,汽车则从某地立即返回接在途中步行的乙班学生.如果甲、乙两班学生步行速度相同,汽车速度是他们步行速度的7倍,那么汽车应在距飞机场多少千米处返回接乙班学生,才能使两班同时到达飞机场?【例8】A、B两地相距22.4千米.有一支游行队伍从A出发,向B匀速前进;当游行队伍队尾离开A时,甲、乙两人分别从A、B两地同时出发.乙向A步行;甲骑车先追向队头,追上队头后又立即骑向队尾,到达队尾后再立即追向队头,追上队头后又立即骑向队尾……当甲第5次追上队头时恰与乙相遇在距B地5.6千米处;当甲第7次追上队头时,甲恰好第一次到达B地,那么此时乙距A地还有__________千米.【例 9】A、B两地相距22.4千米.有一支游行队伍从A出发,向B匀速前进;当游行队伍队尾离开A时,甲、乙两人分别从A、B两地同时出发.乙向A步行;甲骑车先追向队头,追上队头后又立即骑向队尾,到达队尾后再立即追向队头,追上队头后又立即骑向队尾……当甲第5次追上队头时恰与乙相遇在距B地5.6千米处;当甲第7次追上队头时,甲恰好第一次到达B地,那么此时乙距A地还有______千米.(二)车速不变、人速变【例10】(难度级别※※)甲班与乙班学生同时从学校出发去公园,甲班步行的速度是每小时4千米,乙班步行的速度是每小时3千米。
小学奥数接送问题的经典例题及解题思路
小学奥数接送问题的经典例题及解题思路小学奥数接送问题的经典例题及解题思路奥数接送问题例题1:如果A、B两地相距10千米,一个班有学生45人,由A地去B 地,现在有一辆马车,车速是人步行的3倍,马车每次可以乘坐9人,在A地先将第一批学生送到B地,其余的学生同时向B地前进;车到B 地后立即返回,在途中与步行的学生相遇后,再接9名学生前往B地,余下的学生继续向B地前进。
多次往返后,当全体学生到达B地时,马车共行了多少千米?答案:10*(1+2/3*3/4*2+1/3*3/4*2+1/6*3/4*2+1/8*3/4*2)=10*47/16=235/8千米奥数接送问题例题2:某工厂每天早晨都派小汽车接专家上班。
有一天,专家为了早些到厂,比平时提前一小时出发,步行去工厂,走了一段时间后遇到来接他的汽车,他上车后汽车立即调头继续前进,进入工厂大门时,他发现只比平时早到10分钟,问专家在路上步行了多长时间才遇到汽车?(设人和汽车都作匀速运动,他上车及调头时间不记)解析:设专家从家中出发后走到M处(如图1)与小汽车相遇。
由于正常接送必须从B→A→B,而现在接送是从B→M→B恰好提前10分钟;则小汽车从M→A→M刚好需10分钟;于是小汽车从M→A只需5分钟。
这说明专家到M处遇到小汽车时再过5分钟,就是以前正常接送时在家的出发时间,故专家的行走时间再加上5分钟恰为比平时提前的1小时,从而专家行走了:60一5=55(分钟)。
奥数接送问题例题3:甲乙两辆汽车分别从A。
B两成出发,相向而行,甲车和乙车的`速度比是5:4,到两车相遇时距离中点48千米,两城之间的路程是多少千米?甲乙两辆汽车分别从A。
B两成出发,相向而行,甲车和乙车的速度比是5:4,到两车相遇时距离中点48千米,两城之间的路程是多少千米?解析:相遇时甲乙的行程比也是:5:4,即甲行了全程的:5/(4+5)=5/9,乙行了:4/9又相遇时甲比乙多行了:48*2=96千米所以路程是:96/(5/9—4/9)=864千米。
小学奥数 行程问题之接送问题 完整版例题
接送问题知识精讲一、校车问题——行走过程描述队伍多,校车少,校车来回接送,队伍不断步行和坐车,最终同时到达目的地,即到达目的地的最短时间,不要求证明。
二、常见接送问题类型根据校车速度(来回不同)、班级速度(不同班不同速)、班数是否变化分类为四种常见题型:(1)车速不变-班速不变-班数2个(最常见)(2)车速不变-班速不变-班数多个(3)车速不变-班速变-班数2个(4)车速变-班速不变-班数2个三、标准解法:画图+列3个式子1、总时间=一个队伍坐车的时间+这个队伍步行的时间;2、班车走的总路程;3、一个队伍步行的时间=班车同时出发后回来接它的时间。
模块一、汽车接送问题——接一个人【例1】某校和某工厂之间有一条公路,该校下午2时派车去该厂接某劳模来做报告,往返需用1小时.这位劳模在下午1时便离厂步行向学校走来,途中遇到接他的汽车,便立刻上车驶向学校,在下午2时40分到达.问:汽车速度是劳模步行速度的几倍?【巩固1】张工程师每天早上8点准时被司机从家接到厂里。
一天,张工程师早上7点就出了门,开始步行去厂里,在路上遇到了接他的汽车,于是,他就上车行完了剩下的路程,到厂时提前20分钟。
这天,张工程师还是早上7点出门,但15分钟后他发现有东西没有带,于是回家去取,再出门后在路上遇到了接他的汽车,那么这次他比平常要提前分钟到厂。
模块二、汽车接送问题——接两个人或多人【例1】A、B两个连队同时分别从两个营地出发前往一个目的地进行演习,A连有卡车可以装载正好一个连的人员,为了让两个连队的士兵同时尽快到达目的地,A连士兵坐车出发一定时间后下车让卡车回去接B连的士兵,两营的士兵恰好同时到达目的地,已知营地与目的地之间的距离为32千米,士兵行军速度为8千米/小时,卡车行驶速度为40千米每小时,求两营士兵到达目的地一共要多少时间?【巩固1】甲班与乙班学生同时从学校出发去公园,两班的步行速度相等都是4千米/小时,学校有一辆汽车,它的速度是每小时48千米,这辆汽车恰好能坐一个班的学生.为了使两班学生在最短时间内到达公园,设两地相距150千米,那么各个班的步行距离是多少?【例2】甲、乙、丙三个班的学生一起去郊外活动,他们租了一辆大巴,但大巴只够一个班的学生坐,于是他们计划先让甲班的学生步行,乙丙两班的学生步行,甲班学生搭乘大巴一段路后,下车步行,然后大巴车回头去接乙班学生,并追赶上步行的甲班学生,再回头载上丙班学生后一直驶到终点,此时甲、乙两班也恰好赶到终点,已知学生步行的速度为5千米/小时,大巴车的行驶速度为55千米/小时,出发地到终点之间的距离为8千米,求这些学生到达终点一共所花的时间.【例3】海淀区劳动技术学校有100名学生到离学校33千米的郊区参加采摘活动,学校只有一辆限乘25人的中型面包车.为了让全体学生尽快地到达目的地.决定采取步行与乘车相结合的办法.已知学生步行的速度是每小时5千米,汽车行驶的速度是每小时55千米.请你设计一个方案,使全体学生都能到达目的地的最短时间是多少小时?1份【例4】甲、乙两班学生到离校39千米的博物馆参观,但只有一辆汽车,一次只能乘坐一个班的学生.为了尽快到达博物馆,两个班商定,由甲班先坐车,乙班先步行,同时出发,甲班学生在途中某地下车后步行去博物馆,汽车则从某地立即返回去接在途中步行的乙班学生.如果甲、乙两班学生步行速度相同,汽车速度是他们步行速度的10倍,那么汽车应在距博物馆多少千米处返回接乙班学生,才能使两班同时到达博物馆?A B C D【例5】甲、乙两班学生到离校24千米的飞机场参观,但只有一辆汽车,一次只能乘坐一个班的学生.为了尽快到达飞机场,两个班商定,由甲班先坐车,乙班先步行,同时出发,甲班学生在途中某地下车后步行去飞机场,汽车则从某地立即返回接在途中步行的乙班学生.如果甲、乙两班学生步行速度相同,汽车速度是他们步行速度的7倍,那么汽车应在距飞机场多少千米处返回接乙班学生,才能使两班同时到达飞机场?【例6】A、B两地相距22.4千米.有一支游行队伍从A出发,向B匀速前进;当游行队伍队尾离开A 时,甲、乙两人分别从A、B两地同时出发.乙向A步行;甲骑车先追向队头,追上队头后又立即骑向队尾,到达队尾后再立即追向队头,追上队头后又立即骑向队尾……当甲第5次追上队头时恰与乙相遇在距B地5.6千米处;当甲第7次追上队头时,甲恰好第一次到达B地,那么此时乙距A地还有__________千米.【例7】甲班与乙班学生同时从学校出发去公园,甲班步行的速度是每小时4千米,乙班步行的速度是每小时3千米。
小学奥数接送问题综合练习题
小学奥数接送问题综合练习题1.三个人同时前往相距30千米的甲地,已知三人行走的速度相同,都是5千米每小时;现在还有一辆自行车,但只能一个人骑,已知骑车的速度为10千米每小时。
现先让其中一人先骑车,到中途某地后放车放下,继续前进;第二个人到达后骑上再行驶一段后有放下让最后那人骑行,自己继续前进,这样三人同时到达甲地。
问,三人花的时间各为多少?2.甲班与乙班学生同时从学校出发去相距170千米的公园,甲乙两班的步行的速度都是每小时4千米。
学校有一辆汽车,它的速度是每小时 48千米,这辆汽车恰好能坐一个班的学生。
为了使两班学生在最短时间内到达公园,那么甲班学生与乙班学生需要步行的距离是多少千米?3.甲班与乙班学生同时从学校出发去公园,甲班步行的速度是每小时4千米,乙班步行的速度是每小时3千米。
学校有一辆汽车,它的速度是每小时48千米,这辆汽车恰好能坐一个班的学生。
为了使两班学生在最短时间内到达公园,那么甲班学生与乙班学生需要步行的距离之比是多少千米?4. A、B两地相距10千米,一个班有学生45人,由A地去B地,现在有一辆马车,车速是人步行的3倍,马车每次能够乘坐9人,在A地先将第一批学生送到B地,其余的学生同时向B地前进;车到B地后立即返回,在途中与步行的学生相遇后,再接9名学生前往B地,余下的学生继续向B地前进...多次往返后,当全体学生到达B地时,马车共行了多少千米?5. 俩兄弟要将两车西瓜运到城里去卖,但由人来拉太累,雇拖拉机太贵,所以租了头毛驴,两兄弟计划先由哥哥拉车,弟弟赶毛驴拉另一辆车,然后在中途弟弟让毛驴返回去帮哥哥拉车,自个儿拉着车行走完最后一段路,已知兄弟俩人的拉车速度相同,毛驴拉车或行走的速度为人拉车的速度的3倍,那么弟弟应该在哪儿将毛驴赶回去?6. 两个班去距学校30千米的博物馆参观。
但学校只有一辆接送车,车速每小时45千米,同学们步行每小时5千米。
为了使两班尽快到达,他们于上午8点从学校出发。
小学奥数 接送问题 精选练习例题 含答案解析(附知识点拨及考点)
接送问题教学目标1、准确画出接送问题的过程图——标准:每个量在相同时间所走的路程要分清2、理解运动过程,抓住变化规律3、运用行程中的比例关系进行解题知识精讲一、校车问题——行走过程描述队伍多,校车少,校车来回接送,队伍不断步行和坐车,最终同时到达目的地,即到达目的地的最短时间,不要求证明。
二、常见接送问题类型根据校车速度(来回不同)、班级速度(不同班不同速)、班数是否变化分类为四种常见题型:(1)车速不变-班速不变-班数2个(最常见)(2)车速不变-班速不变-班数多个(3)车速不变-班速变-班数2个(4)车速变-班速不变-班数2个三、标准解法:画图+列3个式子1、总时间=一个队伍坐车的时间+这个队伍步行的时间;2、班车走的总路程;3、一个队伍步行的时间=班车同时出发后回来接它的时间。
模块一、汽车接送问题——接一个人【例 1】某校和某工厂之间有一条公路,该校下午2时派车去该厂接某劳模来做报告,往返需用1小时.这位劳模在下午1时便离厂步行向学校走来,途中遇到接他的汽车,便立刻上车驶向学校,在下午2时40分到达.问:汽车速度是劳模步行速度的几倍?【考点】行程问题之接送问题【难度】3星【题型】解答【解析】车下午2时从学校出发,如图,学校工厂PBA在C点与劳模相遇,再返回B点,共用时40分钟,由此可知,在从B到C用了40220÷=分钟,也就是2时20分在C点与劳模相遇.此时劳模走了1小时20分,也就是80分钟.另一方面,汽车走两个AB需要1小时,也就是从B点走到A点需要30分钟,而前面说走完BC需要20分钟,所以走完AC要10分钟,也就是说2=.走完AC,劳模用了80分钟;走BC AC完BC,汽车用了20分钟.劳模用时是汽车的4倍,而汽车行驶距离是劳模的2倍,所以汽车的速度是劳模速度的428⨯=倍.【点拨】复杂的行程问题总要先分析清楚过程.我们不把本题看作是一道相遇问题,因为在路程和速度都不知道的情况下,解相遇问题需要初中代数的知识.直接求出相遇点C到两端A、B的长度关系,再通过时间的倍数关系,就可以解出本题.解这道题,最重要的就是找出劳模和汽车间路程及所有时间的倍数关系.通过汽车的用时推出AC与BC的倍数关系,再得出答案.如何避开运用分数和比例,方法有很多.对于这道题,如果认为学校与工厂间相距为3000米,则做出这道题就更容易了:汽车1分钟走300030100÷=米.AB相距1000米,劳模走了80分钟,所以劳模的速度是每分钟走10008012.5÷=倍.而实际上,3000÷=米,汽车速度是劳模的10012.58米这个附加条件对结果并不起作用,只是使解题人的思路更加清晰.【答案】8倍【巩固】张工程师每天早上8点准时被司机从家接到厂里。
小学奥数 典型行程问题 接送问题.学生版
1、准确画出接送问题的过程图——标准:每个量在相同时间所走的路程要分清2、理解运动过程,抓住变化规律3、运用行程中的比例关系进行解题一、 校车问题——行走过程描述 队伍多,校车少,校车来回接送,队伍不断步行和坐车,最终同时到达目的地,即到达目的地的最短时间,不要求证明。
二、常见接送问题类型根据校车速度(来回不同)、班级速度(不同班不同速)、班数是否变化分类为四种常见题型:(1)车速不变-班速不变-班数2个(最常见)(2)车速不变-班速不变-班数多个(3)车速不变-班速变-班数2个(4)车速变-班速不变-班数2个三、标准解法:画图+列3个式子1、总时间=一个队伍坐车的时间+这个队伍步行的时间;2、班车走的总路程;3、一个队伍步行的时间=班车同时出发后回来接它的时间。
模块一、汽车接送问题——接一个人【例 1】 某校和某工厂之间有一条公路,该校下午2时派车去该厂接某劳模来做报告,往返需用1小时.这位劳模在下午1时便离厂步行向学校走来,途中遇到接他的汽车,便立刻上车驶向学校,在下午2时40分到达.问:汽车速度是劳模步行速度的几倍?【巩固】 张工程师每天早上8点准时被司机从家接到厂里。
一天,张工程师早上7点就出了门,开始步行去厂里,在路上遇到了接他的汽车,于是,他就上车行完了剩下的路程,到厂时提前20分钟。
这天,张工程师还是早上7点出门,但15分钟后他发现有东西没有带,于是回家去取,再出门后在路上遇到了接他的汽车,那么这次他比平常要提前 分钟到厂。
知识精讲教学目标接送问题【例2】李经理的司机每天早上7点30分到达李经理家接他去公司。
有一天李经理7点从家里出发去公司,路上遇到从公司按时来接他的车,再乘车去公司,结果比平常早到5分钟。
则李经理乘车的速度是步行速度的倍。
(假设车速、步行速度保持不变,汽车掉头与上下车时间忽略不计)模块二、汽车接送问题——接两个人或多人(一)、车速不变、人速不变【例3】A、B两个连队同时分别从两个营地出发前往一个目的地进行演习,A连有卡车可以装载正好一个连的人员,为了让两个连队的士兵同时尽快到达目的地,A连士兵坐车出发一定时间后下车让卡车回去接B连的士兵,两营的士兵恰好同时到达目的地,已知营地与目的地之间的距离为32千米,士兵行军速度为8千米/小时,卡车行驶速度为40千米每小时,求两营士兵到达目的地一共要多少时间?【巩固】甲班与乙班学生同时从学校出发去公园,两班的步行速度相等都是4千米/小时,学校有一辆汽车,它的速度是每小时48千米,这辆汽车恰好能坐一个班的学生.为了使两班学生在最短时间内到达公园,设两地相距150千米,那么各个班的步行距离是多少?【例4】甲、乙、丙三个班的学生一起去郊外活动,他们租了一辆大巴,但大巴只够一个班的学生坐,于是他们计划先让甲班的学生步行,乙丙两班的学生步行,甲班学生搭乘大巴一段路后,下车步行,然后大巴车回头去接乙班学生,并追赶上步行的甲班学生,再回头载上丙班学生后一直驶到终点,此时甲、乙两班也恰好赶到终点,已知学生步行的速度为5千米/小时,大巴车的行驶速度为55千米/小时,出发地到终点之间的距离为8千米,求这些学生到达终点一共所花的时间.【例5】海淀区劳动技术学校有100名学生到离学校33千米的郊区参加采摘活动,学校只有一辆限乘25人的中型面包车.为了让全体学生尽快地到达目的地.决定采取步行与乘车相结合的办法.已知学生步行的速度是每小时5千米,汽车行驶的速度是每小时55千米.请你设计一个方案,使全体学生都能到达目的地的最短时间是多少小时?【例6】甲、乙两班学生到离校39千米的博物馆参观,但只有一辆汽车,一次只能乘坐一个班的学生.为了尽快到达博物馆,两个班商定,由甲班先坐车,乙班先步行,同时出发,甲班学生在途中某地下车后步行去博物馆,汽车则从某地立即返回去接在途中步行的乙班学生.如果甲、乙两班学生步行速度相同,汽车速度是他们步行速度的10倍,那么汽车应在距博物馆多少千米处返回接乙班学生,才能使两班同时到达博物馆?【例7】甲、乙两班学生到离校24千米的飞机场参观,但只有一辆汽车,一次只能乘坐一个班的学生.为了尽快到达飞机场,两个班商定,由甲班先坐车,乙班先步行,同时出发,甲班学生在途中某地下车后步行去飞机场,汽车则从某地立即返回接在途中步行的乙班学生.如果甲、乙两班学生步行速度相同,汽车速度是他们步行速度的7倍,那么汽车应在距飞机场多少千米处返回接乙班学生,才能使两班同时到达飞机场?【例8】A、B两地相距22.4千米.有一支游行队伍从A出发,向B匀速前进;当游行队伍队尾离开A 时,甲、乙两人分别从A、B两地同时出发.乙向A步行;甲骑车先追向队头,追上队头后又立即骑向队尾,到达队尾后再立即追向队头,追上队头后又立即骑向队尾……当甲第5次追上队头时恰与乙相遇在距B地5.6千米处;当甲第7次追上队头时,甲恰好第一次到达B地,那么此时乙距A地还有__________千米.时,甲、乙两人分别从A、B两地同时出发.乙向A步行;甲骑车先追向队头,追上队头后又立即骑向队尾,到达队尾后再立即追向队头,追上队头后又立即骑向队尾……当甲第5次追上队头时恰与乙相遇在距B地5.6千米处;当甲第7次追上队头时,甲恰好第一次到达B地,那么此时乙距A地还有______千米.(二)车速不变、人速变【例10】甲班与乙班学生同时从学校出发去公园,甲班步行的速度是每小时4千米,乙班步行的速度是每小时3千米。
小学奥数3-2-9 接送问题.专项练习及答案解析
1、准确画出接送问题的过程图——标准:每个量在相同时间所走的路程要分清2、理解运动过程,抓住变化规律3、运用行程中的比例关系进行解题一、 校车问题——行走过程描述队伍多,校车少,校车来回接送,队伍不断步行和坐车,最终同时到达目的地,即到达目的地的最短时间,不要求证明。
二、常见接送问题类型根据校车速度(来回不同)、班级速度(不同班不同速)、班数是否变化分类为四种常见题型:(1)车速不变-班速不变-班数2个(最常见)(2)车速不变-班速不变-班数多个(3)车速不变-班速变-班数2个(4)车速变-班速不变-班数2个三、标准解法:画图+列3个式子1、总时间=一个队伍坐车的时间+这个队伍步行的时间;2、班车走的总路程;3、一个队伍步行的时间=班车同时出发后回来接它的时间。
模块一、汽车接送问题——接一个人【例 1】 某校和某工厂之间有一条公路,该校下午2时派车去该厂接某劳模来做报告,往返需用1小时.这位劳模在下午1时便离厂步行向学校走来,途中遇到接他的汽车,便立刻上车驶向学校,在下午2时40分到达.问:汽车速度是劳模步行速度的几倍?【考点】行程问题之接送问题 【难度】3星 【题型】解答 知识精讲教学目标接送问题【解析】车下午2时从学校出发,如图,学校工厂PBA在C点与劳模相遇,再返回B点,共用时40分钟,由此可知,在从B到C用了40220÷=分钟,也就是2时20分在C点与劳模相遇.此时劳模走了1小时20分,也就是80分钟.另一方面,汽车走两个AB需要1小时,也就是从B点走到A点需要30分钟,而前面说走完BC需要20分钟,所以走完AC要10分钟,也就是说2BC AC=.走完AC,劳模用了80分钟;走完BC,汽车用了20分钟.劳模用时是汽车的4倍,而汽车行驶距离是劳模的2倍,所以汽车的速度是劳模速度的428⨯=倍.【点拨】复杂的行程问题总要先分析清楚过程.我们不把本题看作是一道相遇问题,因为在路程和速度都不知道的情况下,解相遇问题需要初中代数的知识.直接求出相遇点C到两端A、B的长度关系,再通过时间的倍数关系,就可以解出本题.解这道题,最重要的就是找出劳模和汽车间路程及所有时间的倍数关系.通过汽车的用时推出AC与BC的倍数关系,再得出答案.如何避开运用分数和比例,方法有很多.对于这道题,如果认为学校与工厂间相距为3000米,则做出这道题就更容易了:汽车1分钟走300030100÷=米.AB相距1000米,劳模走了80分钟,所以劳模的速度是每分钟走10008012.5÷=米,汽车速度是劳模的÷=倍.而实际上,3000米这个附加条件对结果并不起作用,只是使解题人的思10012.58路更加清晰.【答案】8倍【巩固】张工程师每天早上8点准时被司机从家接到厂里。
(精品)小学奥数3-2-9 接送问题.专项练习
1、准确画出接送问题的过程图——标准:每个量在相同时间所走的路程要分清2、理解运动过程,抓住变化规律3、运用行程中的比例关系进行解题一、 校车问题——行走过程描述 队伍多,校车少,校车来回接送,队伍不断步行和坐车,最终同时到达目的地,即到达目的地的最短时间,不要求证明。
二、常见接送问题类型根据校车速度(来回不同)、班级速度(不同班不同速)、班数是否变化分类为四种常见题型:(1)车速不变-班速不变-班数2个(最常见)(2)车速不变-班速不变-班数多个(3)车速不变-班速变-班数2个(4)车速变-班速不变-班数2个三、标准解法:画图+列3个式子1、总时间=一个队伍坐车的时间+这个队伍步行的时间;2、班车走的总路程;3、一个队伍步行的时间=班车同时出发后回来接它的时间。
模块一、汽车接送问题——接一个人【例 1】 某校和某工厂之间有一条公路,该校下午2时派车去该厂接某劳模来做报告,往返需用1小时.这位劳模在下午1时便离厂步行向学校走来,途中遇到接他的汽车,便立刻上车驶向学校,在下午2时40分到达.问:汽车速度是劳模步行速度的几倍?【巩固】 张工程师每天早上8点准时被司机从家接到厂里。
一天,张工程师早上7点就出知识精讲教学目标接送问题了门,开始步行去厂里,在路上遇到了接他的汽车,于是,他就上车行完了剩下的路程,到厂时提前20分钟。
这天,张工程师还是早上7点出门,但15分钟后他发现有东西没有带,于是回家去取,再出门后在路上遇到了接他的汽车,那么这次他比平常要提前分钟到厂。
【例2】李经理的司机每天早上7点30分到达李经理家接他去公司。
有一天李经理7点从家里出发去公司,路上遇到从公司按时来接他的车,再乘车去公司,结果比平常早到5分钟。
则李经理乘车的速度是步行速度的倍。
(假设车速、步行速度保持不变,汽车掉头与上下车时间忽略不计)模块二、汽车接送问题——接两个人或多人(一)、车速不变、人速不变【例3】(难度级别※※※)A、B两个连队同时分别从两个营地出发前往一个目的地进行演习,A连有卡车可以装载正好一个连的人员,为了让两个连队的士兵同时尽快到达目的地,A连士兵坐车出发一定时间后下车让卡车回去接B连的士兵,两营的士兵恰好同时到达目的地,已知营地与目的地之间的距离为32千米,士兵行军速度为8千米/小时,卡车行驶速度为40千米每小时,求两营士兵到达目的地一共要多少时间?【巩固】甲班与乙班学生同时从学校出发去公园,两班的步行速度相等都是4千米/小时,学校有一辆汽车,它的速度是每小时48千米,这辆汽车恰好能坐一个班的学生.为了使两班学生在最短时间内到达公园,设两地相距150千米,那么各个班的步行距离是多少?【例 4】 (难度级别 ※※)甲、乙、丙三个班的学生一起去郊外活动,他们租了一辆大巴,但大巴只够一个班的学生坐,于是他们计划先让甲班的学生步行,乙丙两班的学生步行,甲班学生搭乘大巴一段路后,下车步行,然后大巴车回头去接乙班学生,并追赶上步行的甲班学生,再回头载上丙班学生后一直驶到终点,此时甲、乙两班也恰好赶到终点,已知学生步行的速度为5千米/小时,大巴车的行驶速度为55千米/小时,出发地到终点之间的距离为8千米,求这些学生到达终点一共所花的时间.【例 5】 海淀区劳动技术学校有100名学生到离学校33千米的郊区参加采摘活动,学校只有一辆限乘25人的中型面包车.为了让全体学生尽快地到达目的地.决定采取步行与乘车相结合的办法.已知学生步行的速度是每小时5千米,汽车行驶的速度是每小时55千米.请你设计一个方案,使全体学生都能到达目的地的最短时间是多少小时?1份【例6】甲、乙两班学生到离校39千米的博物馆参观,但只有一辆汽车,一次只能乘坐一个班的学生.为了尽快到达博物馆,两个班商定,由甲班先坐车,乙班先步行,同时出发,甲班学生在途中某地下车后步行去博物馆,汽车则从某地立即返回去接在途中步行的乙班学生.如果甲、乙两班学生步行速度相同,汽车速度是他们步行速度的10倍,那么汽车应在距博物馆多少千米处返回接乙班学生,才能使两班同时到达博物馆?A B C D【例7】甲、乙两班学生到离校24千米的飞机场参观,但只有一辆汽车,一次只能乘坐一个班的学生.为了尽快到达飞机场,两个班商定,由甲班先坐车,乙班先步行,同时出发,甲班学生在途中某地下车后步行去飞机场,汽车则从某地立即返回接在途中步行的乙班学生.如果甲、乙两班学生步行速度相同,汽车速度是他们步行速度的7倍,那么汽车应在距飞机场多少千米处返回接乙班学生,才能使两班同时到达飞机场?【例8】A、B两地相距22.4千米.有一支游行队伍从A出发,向B匀速前进;当游行队伍队尾离开A时,甲、乙两人分别从A、B两地同时出发.乙向A步行;甲骑车先追向队头,追上队头后又立即骑向队尾,到达队尾后再立即追向队头,追上队头后又立即骑向队尾……当甲第5次追上队头时恰与乙相遇在距B地5.6千米处;当甲第7次追上队头时,甲恰好第一次到达B地,那么此时乙距A地还有__________千米.【例 9】A、B两地相距22.4千米.有一支游行队伍从A出发,向B匀速前进;当游行队伍队尾离开A时,甲、乙两人分别从A、B两地同时出发.乙向A步行;甲骑车先追向队头,追上队头后又立即骑向队尾,到达队尾后再立即追向队头,追上队头后又立即骑向队尾……当甲第5次追上队头时恰与乙相遇在距B地5.6千米处;当甲第7次追上队头时,甲恰好第一次到达B地,那么此时乙距A地还有______千米.(二)车速不变、人速变【例10】(难度级别※※)甲班与乙班学生同时从学校出发去公园,甲班步行的速度是每小时4千米,乙班步行的速度是每小时3千米。
【精品】小学奥数3-2-9 接送问题.专项检测
1、准确画出接送问题的过程图——标准:每个量在相同时间所走的路程要分清2、理解运动过程,抓住变化规律3、运用行程中的比例关系进行解题一、 校车问题——行走过程描述队伍多,校车少,校车来回接送,队伍不断步行和坐车,最终同时到达目的地,即到达目的地的最短时间,不要求证明。
二、常见接送问题类型根据校车速度(来回不同)、班级速度(不同班不同速)、班数是否变化分类为四种常见题型:(1)车速不变-班速不变-班数2个(最常见)(2)车速不变-班速不变-班数多个(3)车速不变-班速变-班数2个(4)车速变-班速不变-班数2个三、标准解法:画图+列3个式子1、总时间=一个队伍坐车的时间+这个队伍步行的时间;2、班车走的总路程;3、一个队伍步行的时间=班车同时出发后回来接它的时间。
模块一、汽车接送问题——接一个人【例 1】 某校和某工厂之间有一条公路,该校下午2时派车去该厂接某劳模来做报告,往返需用1小时.这位劳模在下午1时便离厂步行向学校走来,途中遇到接他的汽车,便立刻上车驶向学校,在下午2时40分到达.问:汽车速度是劳模步行速度的几倍?【巩固】 张工程师每天早上8点准时被司机从家接到厂里。
一天,张工程师早上7点就出了知识精讲教学目标接送问题门,开始步行去厂里,在路上遇到了接他的汽车,于是,他就上车行完了剩下的路程,到厂时提前20分钟。
这天,张工程师还是早上7点出门,但15分钟后他发现有东西没有带,于是回家去取,再出门后在路上遇到了接他的汽车,那么这次他比平常要提前分钟到厂。
【例2】李经理的司机每天早上7点30分到达李经理家接他去公司。
有一天李经理7点从家里出发去公司,路上遇到从公司按时来接他的车,再乘车去公司,结果比平常早到5分钟。
则李经理乘车的速度是步行速度的倍。
(假设车速、步行速度保持不变,汽车掉头与上下车时间忽略不计)模块二、汽车接送问题——接两个人或多人(一)、车速不变、人速不变【例3】(难度级别※※※)A、B两个连队同时分别从两个营地出发前往一个目的地进行演习,A连有卡车可以装载正好一个连的人员,为了让两个连队的士兵同时尽快到达目的地,A连士兵坐车出发一定时间后下车让卡车回去接B连的士兵,两营的士兵恰好同时到达目的地,已知营地与目的地之间的距离为32千米,士兵行军速度为8千米/小时,卡车行驶速度为40千米每小时,求两营士兵到达目的地一共要多少时间?【巩固】甲班与乙班学生同时从学校出发去公园,两班的步行速度相等都是4千米/小时,学校有一辆汽车,它的速度是每小时48千米,这辆汽车恰好能坐一个班的学生.为了使两班学生在最短时间内到达公园,设两地相距150千米,那么各个班的步行距离是多少?【例 4】 (难度级别 ※※)甲、乙、丙三个班的学生一起去郊外活动,他们租了一辆大巴,但大巴只够一个班的学生坐,于是他们计划先让甲班的学生步行,乙丙两班的学生步行,甲班学生搭乘大巴一段路后,下车步行,然后大巴车回头去接乙班学生,并追赶上步行的甲班学生,再回头载上丙班学生后一直驶到终点,此时甲、乙两班也恰好赶到终点,已知学生步行的速度为5千米/小时,大巴车的行驶速度为55千米/小时,出发地到终点之间的距离为8千米,求这些学生到达终点一共所花的时间.【例 5】 海淀区劳动技术学校有100名学生到离学校33千米的郊区参加采摘活动,学校只有一辆限乘25人的中型面包车.为了让全体学生尽快地到达目的地.决定采取步行与乘车相结合的办法.已知学生步行的速度是每小时5千米,汽车行驶的速度是每小时55千米.请你设计一个方案,使全体学生都能到达目的地的最短时间是多少小时?1份【例6】甲、乙两班学生到离校39千米的博物馆参观,但只有一辆汽车,一次只能乘坐一个班的学生.为了尽快到达博物馆,两个班商定,由甲班先坐车,乙班先步行,同时出发,甲班学生在途中某地下车后步行去博物馆,汽车则从某地立即返回去接在途中步行的乙班学生.如果甲、乙两班学生步行速度相同,汽车速度是他们步行速度的10倍,那么汽车应在距博物馆多少千米处返回接乙班学生,才能使两班同时到达博物馆?A B C D【例7】甲、乙两班学生到离校24千米的飞机场参观,但只有一辆汽车,一次只能乘坐一个班的学生.为了尽快到达飞机场,两个班商定,由甲班先坐车,乙班先步行,同时出发,甲班学生在途中某地下车后步行去飞机场,汽车则从某地立即返回接在途中步行的乙班学生.如果甲、乙两班学生步行速度相同,汽车速度是他们步行速度的7倍,那么汽车应在距飞机场多少千米处返回接乙班学生,才能使两班同时到达飞机场?【例8】A、B两地相距22.4千米.有一支游行队伍从A出发,向B匀速前进;当游行队伍队尾离开A时,甲、乙两人分别从A、B两地同时出发.乙向A步行;甲骑车先追向队头,追上队头后又立即骑向队尾,到达队尾后再立即追向队头,追上队头后又立即骑向队尾……当甲第5次追上队头时恰与乙相遇在距B地5.6千米处;当甲第7次追上队头时,甲恰好第一次到达B地,那么此时乙距A地还有__________千米.【例 9】A、B两地相距22.4千米.有一支游行队伍从A出发,向B匀速前进;当游行队伍队尾离开A时,甲、乙两人分别从A、B两地同时出发.乙向A步行;甲骑车先追向队头,追上队头后又立即骑向队尾,到达队尾后再立即追向队头,追上队头后又立即骑向队尾……当甲第5次追上队头时恰与乙相遇在距B地5.6千米处;当甲第7次追上队头时,甲恰好第一次到达B地,那么此时乙距A地还有______千米.(二)车速不变、人速变【例10】(难度级别※※)甲班与乙班学生同时从学校出发去公园,甲班步行的速度是每小时4千米,乙班步行的速度是每小时3千米。
小学奥数3-2-9 接送问题.专项练习及答案解析
1、准确画出接送问题的过程图——标准:每个量在相同时间所走的路程要分清2、理解运动过程,抓住变化规律3、运用行程中的比例关系进行解题一、 校车问题——行走过程描述 队伍多,校车少,校车来回接送,队伍不断步行和坐车,最终同时到达目的地,即到达目的地的最短时间,不要求证明。
二、常见接送问题类型根据校车速度(来回不同)、班级速度(不同班不同速)、班数是否变化分类为四种常见题型:(1)车速不变-班速不变-班数2个(最常见)(2)车速不变-班速不变-班数多个(3)车速不变-班速变-班数2个(4)车速变-班速不变-班数2个三、标准解法:画图+列3个式子1、总时间=一个队伍坐车的时间+这个队伍步行的时间;2、班车走的总路程;3、一个队伍步行的时间=班车同时出发后回来接它的时间。
模块一、汽车接送问题——接一个人【例 1】 某校和某工厂之间有一条公路,该校下午2时派车去该厂接某劳模来做报告,往返需用1小时.这位劳模在下午1时便离厂步行向学校走来,途中遇到接他的汽车,便立刻上车驶向学校,在下午2时40分到达.问:汽车速度是劳模步行速度的几倍?【考点】行程问题之接送问题 【难度】3星 【题型】解答【解析】 车下午2时从学校出发,如图,学校工厂P B A在C 点与劳模相遇,再返回B 点,共用时40分钟,由此可知,在从B 到C 用了40220÷=分钟,也就是2时20分在C 点与劳模相遇.此时劳模走了1小时20分,也就是80分钟. 另一方面,汽车走两个AB 需要1小时,也就是从B 点走到A 点需要30分钟,而前面说走完BC 需要20分钟,所以走完AC 要10分钟,也就是说2BC AC =.走完AC ,劳模用了BC 知识精讲教学目标接送问题2倍,所以汽车的速度是劳模速度的428⨯=倍.【点拨】复杂的行程问题总要先分析清楚过程.我们不把本题看作是一道相遇问题,因为在路程和速度都不知道的情况下,解相遇问题需要初中代数的知识.直接求出相遇点C到两端A、B的长度关系,再通过时间的倍数关系,就可以解出本题.解这道题,最重要的就是找出劳模和汽车间路程及所有时间的倍数关系.通过汽车的用时推出AC与BC的倍数关系,再得出答案.如何避开运用分数和比例,方法有很多.对于这道题,如果认为学校与工厂间相距为3000米,则做出这道题就更容易了:汽车1分钟走300030100÷=米.AB相距1000米,劳模走了80分钟,所以劳模的速度是每分钟走10008012.5÷=÷=米,汽车速度是劳模的10012.58倍.而实际上,3000米这个附加条件对结果并不起作用,只是使解题人的思路更加清晰.【答案】8倍【巩固】张工程师每天早上8点准时被司机从家接到厂里。
五年级奥数接送问题学生版
接送问题教学目标五年级奥数接送问题学生版2、理解运动过程,抓住变化规律3、运用行程中的比例关系进行解题知识精讲一、校车问题——行走过程描述队伍多,校车少,校车来回接送,队伍不断步行和坐车,最终同时到达目的地,即到达目的地的最短时间,不要求证明。
二、常见接送问题类型根据校车速度(来回不同)、班级速度(不同班不同速)、班数是否变化分类为四种常见题型:(1)车速不变-班速不变-班数2个(最常见)(2)车速不变-班速不变-班数多个(3)车速不变-班速变-班数2个(4)车速变-班速不变-班数2个三、标准解法:画图+列3个式子1、总时间=一个队伍坐车的时间+这个队伍步行的时间;2、班车走的总路程;3、一个队伍步行的时间=班车同时出发后回来接它的时间。
模块一、汽车接送问题——接一个人【例 1】某校和某工厂之间有一条公路,该校下午2时派车去该厂接某劳模来做报告,往返需用1小时.这位劳模在下午1时便离厂步行向学校走来,途中遇到接他的汽车,便立刻上车驶向学校,在下午2时40分到达.问:汽车速度是劳模步行速度的几倍?【巩固】张工程师每天早上8点准时被司机从家接到厂里。
一天,张工程师早上7点就出了门,开始步行去厂里,在路上遇到了接他的汽车,于是,他就上车行完了剩下的路程,到厂时提前20分钟。
这天,张工程师还是早上7点出门,但15分钟后他发现有东西没有带,于是回家去取,再出门后在路上遇到了接他的汽车,那么这次他比平常要提前分钟到厂。
【例 2】李经理的司机每天早上7点30分到达李经理家接他去公司。
有一天李经理7点从家里出发去公司,路上遇到从公司按时来接他的车,再乘车去公司,结果比平常早到5分钟。
则李经理乘车的速度是步行速度的倍。
(假设车速、步行速度保持不变,汽车掉头与上下车时间忽略不计)模块二、汽车接送问题——接两个人或多人(一)、车速不变、人速不变【例 3】(难度级别※※※)A、B两个连队同时分别从两个营地出发前往一个目的地进行演习,A连有卡车可以装载正好一个连的人员,为了让两个连队的士兵同时尽快到达目的地,A连士兵坐车出发一定时间后下车让卡车回去接B连的士兵,两营的士兵恰好同时到达目的地,已知营地与目的地之间的距离为32千米,士兵行军速度为8千米/小时,卡车行驶速度为40千米每小时,求两营士兵到达目的地一共要多少时间?【巩固】甲班与乙班学生同时从学校出发去公园,两班的步行速度相等都是4千米/小时,学校有一辆汽车,它的速度是每小时48千米,这辆汽车恰好能坐一个班的学生.为了使两班学生在最短时间内到达公园,设两地相距150千米,那么各个班的步行距离是多少?【例 4】 (难度级别 ※※)甲、乙、丙三个班的学生一起去郊外活动,他们租了一辆大巴,但大巴只够一个班的学生坐,于是他们计划先让甲班的学生步行,乙丙两班的学生步行,甲班学生搭乘大巴一段路后,下车步行,然后大巴车回头去接乙班学生,并追赶上步行的甲班学生,再回头载上丙班学生后一直驶到终点,此时甲、乙两班也恰好赶到终点,已知学生步行的速度为5千米/小时,大巴车的行驶速度为55千米/小时,出发地到终点之间的距离为8千米,求这些学生到达终点一共所花的时间.【例 5】 海淀区劳动技术学校有100名学生到离学校33千米的郊区参加采摘活动,学校只有一辆限乘25人的中型面包车.为了让全体学生尽快地到达目的地.决定采取步行与乘车相结合的办法.已知学生步行的速度是每小时5千米,汽车行驶的速度是每小时55千米.请你设计一个方案,使全体学生都能到达目的地的最短时间是多少小时?1份【例 6】甲、乙两班学生到离校39千米的博物馆参观,但只有一辆汽车,一次只能乘坐一个班的学生.为了尽快到达博物馆,两个班商定,由甲班先坐车,乙班先步行,同时出发,甲班学生在途中某地下车后步行去博物馆,汽车则从某地立即返回去接在途中步行的乙班学生.如果甲、乙两班学生步行速度相同,汽车速度是他们步行速度的10倍,那么汽车应在距博物馆多少千米处返回接乙班学生,才能使两班同时到达博物馆?A B C D【例 7】甲、乙两班学生到离校24千米的飞机场参观,但只有一辆汽车,一次只能乘坐一个班的学生.为了尽快到达飞机场,两个班商定,由甲班先坐车,乙班先步行,同时出发,甲班学生在途中某地下车后步行去飞机场,汽车则从某地立即返回接在途中步行的乙班学生.如果甲、乙两班学生步行速度相同,汽车速度是他们步行速度的7倍,那么汽车应在距飞机场多少千米处返回接乙班学生,才能使两班同时到达飞机场?【例 8】A、B两地相距22.4千米.有一支游行队伍从A出发,向B匀速前进;当游行队伍队尾离开A时,甲、乙两人分别从A、B两地同时出发.乙向A步行;甲骑车先追向队头,追上队头后又立即骑向队尾,到达队尾后再立即追向队头,追上队头后又立即骑向队尾……当甲第5次追上队头时恰与乙相遇在距B地5.6千米处;当甲第7次追上队头时,甲恰好第一次到达B地,那么此时乙距A地还有__________千米.【例 9】A、B两地相距22.4千米.有一支游行队伍从A出发,向B匀速前进;当游行队伍队尾离开A时,甲、乙两人分别从A、B两地同时出发.乙向A步行;甲骑车先追向队头,追上队头后又立即骑向队尾,到达队尾后再立即追向队头,追上队头后又立即骑向队尾……当甲第5次追上队头时恰与乙相遇在距B地5.6千米处;当甲第7次追上队头时,甲恰好第一次到达B地,那么此时乙距A地还有______千米.(二)车速不变、人速变【例 10】(难度级别※※)甲班与乙班学生同时从学校出发去公园,甲班步行的速度是每小时4千米,乙班步行的速度是每小时3千米。
小学奥数教程:接送问题_全国通用(含答案)
1、准确画出接送问题的过程图——标准:每个量在相同时间所走的路程要分清2、理解运动过程,抓住变化规律3、运用行程中的比例关系进行解题一、校车问题——行走过程描述队伍多,校车少,校车来回接送,队伍不断步行和坐车,最终同时到达目的地,即到达目的地的最短时间,不要求证明。
二、常见接送问题类型根据校车速度(来回不同)、班级速度(不同班不同速)、班数是否变化分类为四种常见题型:(1)车速不变-班速不变-班数2个(最常见)(2)车速不变-班速不变-班数多个(3)车速不变-班速变-班数2个(4)车速变-班速不变-班数2个三、标准解法:画图+列3个式子1、总时间=一个队伍坐车的时间+这个队伍步行的时间;2、班车走的总路程;3、一个队伍步行的时间=班车同时出发后回来接它的时间。
模块一、汽车接送问题——接一个人【例1】某校和某工厂之间有一条公路,该校下午2时派车去该厂接某劳模来做报告,往返需用1小时.这位劳模在下午1时便离厂步行向学校走来,途中遇到接他的汽车,便立刻上车驶向学校,在下午2时40分到达.问:汽车速度是劳模步行速度的几倍?【考点】行程问题之接送问题【难度】3星【题型】解答【解析】车下午2时从学校出发,如图,学校工厂P C B A在C 点与劳模相遇,再返回B 点,共用时40分钟,由此可知,在从B 到C 用了40220分钟,也就是2时20分在C 点与劳模相遇.此时劳模走了1小时20分,也就是80分钟.另一方面,汽车走两个AB 需要1小时,也就是从B 点走到A 点需要30分钟,而前面说走完BC 需要20分钟,所以走完AC 要10分钟,也就是说2BC AC .走完AC ,劳模用了80分钟;走完BC ,汽车用了20分钟.劳模用时是汽车的4倍,而汽车行驶距离是劳模的2倍,所以汽车的速度是劳模速度的428倍.【点拨】复杂的行程问题总要先分析清楚过程.我们不把本题看作是一道相遇问题,因为在路程和速度都不知道的情况下,解相遇问题需要初中代数的知识.直接求出相遇点C 到两端A 、B 的长度关系,知识精讲教学目标接送问题。
小学数学奥数测试题接送问题_人教版
26.有5位探险家计划横穿沙漠.他们每人驾驶一辆吉普车,每辆车最多能携带可供一辆车行驶312千米的汽油.显然,5个人不可能共同穿越500千米以上的沙漠.于是,他们计划在保证其余车完全返回出发点的前提下,让一辆车穿越沙漠,当然实现这一计划需要几辆车相互借用汽油.问:穿越沙漠的那辆车最多能穿越多宽的沙漠?
13.某学校学生计划乘坐旅行社的大巴前往郊外游玩,按照计划,旅行社的大巴准时从车站出发后能在约定时间到达学校,搭载满学生在预定时间到达目的地,已知学校的位置在车站和目的地之间,大巴车空载的时候的速度为 千米/小时,满载的时候速度为 千米/小时,由于某种原因大巴车晚出发了 分钟,学生在约定时间没有等到大巴车的情况下,步行前往目的地,在途中搭载上赶上来的大巴车,最后比预定时间晚了 分钟到达目的地,求学生们的步行速度.
15.三个人同时前往相距30千米的甲地,已知三人行走的速度相同,都是5千米每小时;现在还有一辆自行车,但只能一个人骑,已知骑车的速度为10千米每小时。现先让其中一人先骑车,到中途某地后放车放下,继续前进;第二个人到达后骑上再行驶一段后又放下让最后那人骑行,自己继续前进,这样三人同时到达甲地。问,三人花的时间各为多少?
4.甲班与乙班学生同时从学校出发去公园,两班的步行速度相等都是 千米/小时,学校有一辆汽车,它的速度是每小时 千米,这辆汽车恰好能坐一个班的学生.为了使两班学生在最短时间内到达公园,设两地相距 千米,那么各个班的步行距离是多少?
5.甲、乙、丙三个班的学生一起去郊外活动,他们租了一辆大巴,但大巴只够一个班的学生坐,于是他们计划先让甲班的学生步行,乙丙两班的学生步行,甲班学生搭乘大巴一段路后,下车步行,然后大巴车回头去接乙班学生,并追赶上步行的甲班学生,再回头载上丙班学生后一直驶到终点,此时甲、乙两班也恰好赶到终点,已知学生步行的速度为5千米/小时,大巴车的行驶速度为55千米/小时,出发地到终点之间的距离为8千米,求这些学生到达终点一共所花的时间.
小升初典型奥数专题一:接送问题
小升初典型奥数专题一:接送问题第一篇:小升初典型奥数专题一:接送问题接送问题1如果A、B两地相距10千米,一个班有学生45人,由A地去B地,现在有一辆马车,车速是人步行的3倍,马车每次可以乘坐9人,在A地先将第一批学生送到B地,其余的学生同时向B地前进;车到B地后立即返回,在途中与步行的学生相遇后,再接9名学生前往B地,余下的学生继续向B地前进...多次往返后,当全体学生到达B 地时,马车共行了多少千米?2某工厂每天早晨都派小汽车接专家上班.有一天,专家为了早些到厂,比平时提前一小时出发,步行去工厂,走了一段时间后遇到来接他的汽车,他上车后汽车立即调头继续前进,进入工厂大门时,他发现只比平时早到10分钟,问专家在路上步行了多长时间才遇到汽车?(设人和汽车都作匀速运动,他上车及调头时间不记)3有两个班的小学生要到少年宫参加活动,但只有一辆车接送。
第一班的学生做车从学校出发的同时,第二班学生开始步行;车到途中某处,让第一班学生下车步行,车立刻返回接第二班学生上车并直接开往少年宫。
学生步行速度为每小时4公里,载学生时车速每小时40公里,空车是50公里/小时,学生步行速度是4公里/小时,要使两个班的学生同时到达少年宫,第一班的学生步行了全程的几分之几?(学生上下车时间不计)1某校和某工厂之间有一条公路,该校下午2时派车去该厂接某劳模来做报告,往返需用1小时.这位劳模在下午1时便离厂步行向学校走来,途中遇到接他的汽车,便立刻上车驶向学校,在下午2时40分到达.问:汽车速度是劳模步行速度的几倍?2A、B两地相距30千米,甲乙丙三人同时从A到B,而且要求同时到达。
现在有两辆自行车,但不许带人,但可以将自行车放在中途某处,后来的人可以接着骑。
已知骑自行车的平均速度为每小时20千米,甲步行的速度是每小时5千米,乙和丙每小时4千米,那么三人需要多少小时可以同时到达?3小明早上从家步行去学校,走完一半路程时,爸爸发现小明的数学课本丢在家里,随即开车去给小明送书。
小学奥数接送问题专题
小学奥数接送问题专题我们把研究路程、速度、时间这三者之间关系的问题称为行程问题。
行程问题主要包括相遇问题、相背问题和追及问题。
这一周我们来学习一些常用的、基本的行程问题。
解答行程问题时,要理清路程、速度和时间之间的关系,紧扣基本数关系“路程=速度×时间”来思考,对具体问题要作仔细分析,弄清出发地点、时间和运动结果。
基准1:甲乙两人分别从相距20千米的两地同时出发相向而行,甲每小时走6千米,乙每小时走4千米。
两人几小时后相遇?分析与答疑:这就是一道碰面问题。
所谓碰面问题就是指两个运动物体以相同的地点做为出发地并作并肩运动的问题。
根据题意,启程时甲乙两人距离20千米,以后两人的距离每小时延长6+4=10千米,这也就是两人的速度和。
所以,谋两人几小时碰面,就是谋20千米里面存有几个10千米。
因此,两人20÷(6+4)=2 小时后碰面。
练习一1,甲乙两艘轮船分别从a、b两港同时启程并肩而行,甲船每小时高速行驶18千米,乙船每小时高速行驶15千米,经过6小时两船在途中碰面。
两地间的水路短多少千米?2,一辆汽车和一辆摩托车同时分别从相距千米的甲、乙两地出发,汽车每小时行40千米,摩托车每小时行50千米。
8小时后两车相距多少千米?3,甲乙两车分别从距离千米的a、b两城同时启程,并肩而行,未知甲车从a城至b城需6小时,乙车从b城至a城需12小时。
两车启程后多少小时碰面?例2:王欣和陆亮两人同时从距离米的两地并肩而行,王欣每分钟行米,陆亮每分钟行90米。
如果一只狗与王欣同时同向而行,每分钟行米,碰到陆亮后,立即转头向王欣跑去;碰到王欣后再转头光向暗跑去。
这样不断往复,直至王欣和陆亮碰面年才,狗Jaguaribe了多少米?分析与解答:要求狗共行了多少米,一般要知道狗的速度和狗所行的时间。
根据题意可知,狗的速度是每分钟行米,关键是要求出狗所行的时间,根据题意可知:狗与主人是同时行走的,狗不断来回所行的时间就是王欣和陆亮同时出发到两人相遇的时间,即÷(+90)=10分钟。
小学奥数接送行程例题透析及练习题
小学奥数接送行程例题透析及练习题小学奥数接送行程例题透析及练习题小学奥数接送行程例题透析及练习题例1:某工厂每天早晨都派小汽车接专家上班。
有一天,专家为了早些到厂,比平时提前一小时出发,步行去工厂,走了一段时间后遇到来接他的汽车,他上车后汽车立即调头继续前进,进入工厂大门时,他发现只比平时早到10分钟,问专家在路上步行了多长时间才遇到汽车?(设人和汽车都作匀速运动,他上车及调头时间不记)解析:设专家从家中出发后走到M处(如图1)与小汽车相遇。
由于正常接送必须从B→A→B,而现在接送是从B→M→B恰好提前10分钟;则小汽车从M→A→M刚好需10分钟;于是小汽车从M→A 只需5分钟。
这说明专家到M处遇到小汽车时再过5分钟,就是以前正常接送时在家的出发时间,故专家的行走时间再加上5分钟恰为比平时提前的1小时,从而专家行走了:60一5=55(分钟)。
•例2:甲乙两辆汽车分别从A.B两成出发,相向而行,甲车和乙车的速度比是5:4,到两车相遇时距离中点48千米,两城之间的路程是多少千米?甲乙两辆汽车分别从A.B两成出发,相向而行,甲车和乙车的速度比是5:4,到两车相遇时距离中点48千米,两城之间的路程是多少千米?解析:相遇时甲乙的行程比也是:5:4,即甲行了全程的:5/(4+5)=5/9,乙行了:4/9又相遇时甲比乙多行了:48*2=96千米所以路程是:96/(5/9-4/9)=864千米。
例3:如果A、B两地相距10千米,一个班有学生45人,由A 地去B地,现在有一辆马车,车速是人步行的3倍,马车每次可以乘坐9人,在A地先将第一批学生送到B地,其余的学生同时向B地前进;车到B地后立即返回,在途中与步行的学生相遇后,再接9名学生前往B地,余下的学生继续向B地前进…多次往返后,当全体学生到达B地时,马车共行了多少千米?答案:10*(1+2/3*3/4*2+1/3*3/4*2+1/6*3/4*2+1/8*3/4*2)=10*47/16=235/8千米例4:甲乙两辆汽车分别从A.B两成出发,相向而行,甲车和乙车的速度比是5:4,到两车相遇时距离中点48千米,两城之间的路程是多少千米?甲乙两辆汽车分别从A.B两成出发,相向而行,甲车和乙车的速度比是5:4,到两车相遇时距离中点48千米,两城之间的`路程是多少千米?解析:相遇时甲乙的行程比也是:5:4,即甲行了全程的:5/(4+5)=5/9,乙行了:4/9又相遇时甲比乙多行了:48*2=96千米所以路程是:96/(5/9-4/9)=864千米。
(小学奥数)接送问题
接送問題教學目標1、準確畫出接送問題的過程圖——標準:每個量在相同時間所走的路程要分清2、理解運動過程,抓住變化規律3、運用行程中的比例關係進行解題知識精講一、校車問題——行走過程描述隊伍多,校車少,校車來回接送,隊伍不斷步行和坐車,最終同時到達目的地,即到達目的地的最短時間,不要求證明。
二、常見接送問題類型根據校車速度(來回不同)、班級速度(不同班不同速)、班數是否變化分類為四種常見題型:(1)車速不變-班速不變-班數2個(最常見)(2)車速不變-班速不變-班數多個(3)車速不變-班速變-班數2個(4)車速變-班速不變-班數2個三、標準解法:畫圖+列3個式子1、總時間=一個隊伍坐車的時間+這個隊伍步行的時間;2、班車走的總路程;3、一個隊伍步行的時間=班車同時出發後回來接它的時間。
模組一、汽車接送問題——接一個人【例 1】某校和某工廠之間有一條公路,該校下午2時派車去該廠接某勞模來做報告,往返需用1小時.這位勞模在下午1時便離廠步行向學校走來,途中遇到接他的汽車,便立刻上車駛向學校,在下午2時40分到達.問:汽車速度是勞模步行速度的幾倍?【考點】行程問題之接送問題【難度】3星【題型】解答【解析】車下午2時從學校出發,如圖,学校工厂PC BA在C點與勞模相遇,再返回B點,共用時40分鐘,由此可知,在從B到C 用了40220÷=分鐘,也就是2時20分在C點與勞模相遇.此時勞模走了1小時20分,也就是80分鐘.另一方面,汽車走兩個AB需要1小時,也就是從B點走到A點需要30分鐘,而前面說走完BC需要20分鐘,所以走完AC要10分鐘,也就是說2BC AC=.走完AC,勞模用了80分鐘;走完BC,汽車用了20分鐘.勞模用時是汽車的4倍,而汽車行駛距離是勞模的2倍,所以汽車的速度是勞模速度的428⨯=倍.【點撥】複雜的行程問題總要先分析清楚過程.我們不把本題看作是一道相遇問題,因為在路程和速度都不知道的情況下,解相遇問題需要初中代數的知識.直接求出相遇點C到兩端A、B的長度關係,再通過時間的倍數關係,就可以解出本題.解這道題,最重要的就是找出勞模和汽車間路程及所有時間的倍數關係.通過汽車的用時推出AC與BC的倍數關係,再得出答案.如何避開運用分數和比例,方法有很多.對於這道題,如果認為學校與工廠間相距為3000米,則做出這道題就更容易了:汽車1分鐘走300030100÷=米.AB相距1000米,勞模走了80分鐘,所以勞模的速度是每分鐘走÷=米,汽車速度是勞模的10012.58÷=倍.而實際上,3000米這個10008012.5附加條件對結果並不起作用,只是使解題人的思路更加清晰.【答案】8倍【巩固】張工程師每天早上8點準時被司機從家接到廠裏。
小学奥数模块教程接送问题 (ABC级). 学生版
接送问题知识框架一、校车问题——行走过程描述队伍多,校车少,校车来回接送,队伍不断步行和坐车,最终同时到达目的地,即到达目的地的最短时间,不要求证明。
二、常见接送问题类型根据校车速度(来回不同)、班级速度(不同班不同速)、班数是否变化分类为四种常见题型:(1)车速不变-班速不变-班数2个(最常见)(2)车速不变-班速不变-班数多个(3)车速不变-班速变-班数2个(4)车速变-班速不变-班数2个三、标准解法:画图+列3个式子1、总时间=一个队伍坐车的时间+这个队伍步行的时间;2、班车走的总路程;3、一个队伍步行的时间=班车同时出发后回来接它的时间。
例题精讲【例 1】某校和某工厂之间有一条公路,该校下午2时派车去该厂接某劳模来做报告,往返需用1小时.这位劳模在下午1时便离厂步行向学校走来,途中遇到接他的汽车,便立刻上车驶向学校,在下午2时40分到达.问:汽车速度是劳模步行速度的几倍?【巩固】张工程师每天早上8点准时被司机从家接到厂里。
一天,张工程师早上7点就出了门,开始步行去张工程师还是早上7点出门,但15分钟后他发现有东西没有带,于是回家去取,再出门后在路上遇到了接他的汽车,那么这次他比平常要提前 分钟到厂。
【例 2】A 、B 两个连队同时分别从两个营地出发前往一个目的地进行演习,A 连有卡车可以装载正好一个连的人员,为了让两个连队的士兵同时尽快到达目的地,A 连士兵坐车出发一定时间后下车让卡车回去接B 连的士兵,两营的士兵恰好同时到达目的地,已知营地与目的地之间的距离为32千米,士兵行军速度为8千米/小时,卡车行驶速度为40千米每小时,求两营士兵到达目的地一共要多少时间?【巩固】 甲班与乙班学生同时从学校出发去公园,两班的步行速度相等都是4千米/小时,学校有一辆汽车,它的速度是每小时48千米,这辆汽车恰好能坐一个班的学生.为了使两班学生在最短时间内到达公园,设两地相距150千米,那么各个班的步行距离是多少?DCBA是他们计划先让甲班的学生步行,乙丙两班的学生步行,甲班学生搭乘大巴一段路后,下车步行,然后大巴车回头去接乙班学生,并追赶上步行的甲班学生,再回头载上丙班学生后一直驶到终点,此时甲、乙两班也恰好赶到终点,已知学生步行的速度为5千米/小时,大巴车的行驶速度为55千米/小时,出发地到终点之间的距离为8千米,求这些学生到达终点一共所花的时间.【巩固】 海淀区劳动技术学校有100名学生到离学校33千米的郊区参加采摘活动,学校只有一辆限乘25人的中型面包车.为了让全体学生尽快地到达目的地.决定采取步行与乘车相结合的办法.已知学生步行的速度是每小时5千米,汽车行驶的速度是每小时55千米.请你设计一个方案,使全体学生都能到达目的地的最短时间是多少小时?6份1份1份1份1份1份甲、乙两人分别从A、B两地同时出发.乙向A步行;甲骑车先追向队头,追上队头后又立即骑向队尾,到达队尾后再立即追向队头,追上队头后又立即骑向队尾……当甲第5次追上队头时恰与乙相遇在距B地5.6千米处;当甲第7次追上队头时,甲恰好第一次到达B地,那么此时乙距A地还有__________千米.22.4km5.6km【巩固】A、B两地相距22.4千米.有一支游行队伍从A出发,向B匀速前进;当游行队伍队尾离开A时,甲、乙两人分别从A、B两地同时出发.乙向A步行;甲骑车先追向队头,追上队头后又立即骑向队尾,到达队尾后再立即追向队头,追上队头后又立即骑向队尾……当甲第5次追上队头时恰与乙相遇在距B地5.6千米处;当甲第7次追上队头时,甲恰好第一次到达B地,那么此时乙距A 地还有______千米.小时3千米。
六年级奥数接送问题学生版
接送问题教学目标六年级奥数接送问题学生版⒉理解运动过程,抓住变化规律3、运用行程中的比例关系进行解题知识精讲一、校车问题——行走过程描述队伍多,校车少,校车来回接送,队伍不断步行和坐车,最终同时到达目的地,即到达目的地的最短时间,不要求证明。
二、常见接送问题类型根据校车速度〈来回不同〉、班级速度〈不同班不同速〉、班数是否变化分类为四种常见题型:〈1〉车速不变-班速不变-班数2个〈最常见〉〈2〉车速不变-班速不变-班数多个〈3〉车速不变-班速变-班数2个〈4〉车速变-班速不变-班数2个三、标准解法:画图+列3个式子⒈总时间=一个队伍坐车的时间+这个队伍步行的时间;⒉班车走的总路程;3、一个队伍步行的时间=班车同时出发后回来接它的时间。
模块一、汽车接送问题——接一个人【例 1】某校和某工厂之间有一条公路,该校下午2时派车去该厂接某劳模来做报告,往返需用1小时.这位劳模在下午1时便离厂步行向学校走来,途中遇到接他的汽车,便立刻上车驶向学校,在下午2时40分到达.问:汽车速度是劳模步行速度的几倍?【巩固】张工程师每天早上8点准时被司机从家接到厂里。
一天,张工程师早上7点就出了门,开始步行去厂里,在路上遇到了接他的汽车,于是,他就上车行完了剩下的路程,到厂时提前20分钟。
这天,张工程师还是早上7点出门,但15分钟后他发现有东西没有带,于是回家去取,再出门后在路上遇到了接他的汽车,那么这次他比平常要提前分钟到厂。
【例 2】李经理的司机每天早上7点30分到达李经理家接他去公司。
有一天李经理7点从家里出发去公司,路上遇到从公司按时来接他的车,再乘车去公司,结果比平常早到5分钟。
则李经理乘车的速度是步行速度的倍。
〈假设车速、步行速度保持不变,汽车掉头与上下车时间忽略不计〉模块二、汽车接送问题——接两个人或多人〈一〉、车速不变、人速不变【例 3】〈难度级别※※※〉A、B两个连队同时分别从两个营地出发前往一个目的地进行演习,A连有卡车可以装载正好一个连的人员,为了让两个连队的士兵同时尽快到达目的地,A连士兵坐车出发一定时间后下车让卡车回去接B连的士兵,两营的士兵恰好同时到达目的地,已知营地与目的地之间的距离为32千米,士兵行军速度为8千米/小时,卡车行驶速度为40千米每小时,求两营士兵到达目的地一共要多少时间?【巩固】甲班与乙班学生同时从学校出发去公园,两班的步行速度相等都是4千米/小时,学校有一辆汽车,它的速度是每小时48千米,这辆汽车恰好能坐一个班的学生.为了使两班学生在最短时间内到达公园,设两地相距150千米,那么各个班的步行距离是多少?【例 4】 〈难度级别 ※※〉甲、乙、丙三个班的学生一起去郊外活动,他们租了一辆大巴,但大巴只够一个班的学生坐,于是他们计划先让甲班的学生步行,乙丙两班的学生步行,甲班学生搭乘大巴一段路后,下车步行,然后大巴车回头去接乙班学生,并追赶上步行的甲班学生,再回头载上丙班学生后一直驶到终点,此时甲、乙两班也恰好赶到终点,已知学生步行的速度为5千米/小时,大巴车的行驶速度为55千米/小时,出发地到终点之间的距离为8千米,求这些学生到达终点一共所花的时间.【例 5】 海淀区劳动技术学校有100名学生到离学校33千米的郊区参加采摘活动,学校只有一辆限乘25人的中型面包车.为了让全体学生尽快地到达目的地.决定采取步行与乘车相结合的办法.已知学生步行的速度是每小时5千米,汽车行驶的速度是每小时55千米.请你设计一个方案,使全体学生都能到达目的地的最短时间是多少小时?1份【例 6】甲、乙两班学生到离校39千米的博物馆参观,但只有一辆汽车,一次只能乘坐一个班的学生.为了尽快到达博物馆,两个班商定,由甲班先坐车,乙班先步行,同时出发,甲班学生在途中某地下车后步行去博物馆,汽车则从某地立即返回去接在途中步行的乙班学生.如果甲、乙两班学生步行速度相同,汽车速度是他们步行速度的10倍,那么汽车应在距博物馆多少千米处返回接乙班学生,才能使两班同时到达博物馆?A B C D【例 7】甲、乙两班学生到离校24千米的飞机场参观,但只有一辆汽车,一次只能乘坐一个班的学生.为了尽快到达飞机场,两个班商定,由甲班先坐车,乙班先步行,同时出发,甲班学生在途中某地下车后步行去飞机场,汽车则从某地立即返回接在途中步行的乙班学生.如果甲、乙两班学生步行速度相同,汽车速度是他们步行速度的7倍,那么汽车应在距飞机场多少千米处返回接乙班学生,才能使两班同时到达飞机场?【例 8】A、B两地相距22.4千米.有一支游行队伍从A出发,向B匀速前进;当游行队伍队尾离开A时,甲、乙两人分别从A、B两地同时出发.乙向A步行;甲骑车先追向队头,追上队头后又立即骑向队尾,到达队尾后再立即追向队头,追上队头后又立即骑向队尾……当甲第5次追上队头时恰与乙相遇在距B地5.6千米处;当甲第7次追上队头时,甲恰好第一次到达B地,那么此时乙距A地还有__________千米.【例 9】A、B两地相距22.4千米.有一支游行队伍从A出发,向B匀速前进;当游行队伍队尾离开A时,甲、乙两人分别从A、B两地同时出发.乙向A步行;甲骑车先追向队头,追上队头后又立即骑向队尾,到达队尾后再立即追向队头,追上队头后又立即骑向队尾……当甲第5次追上队头时恰与乙相遇在距B地5.6千米处;当甲第7次追上队头时,甲恰好第一次到达B地,那么此时乙距A地还有______千米.〈二〉车速不变、人速变【例 10】〈难度级别※※〉甲班与乙班学生同时从学校出发去公园,甲班步行的速度是每小时4千米,乙班步行的速度是每小时3千米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、准确画出接送问题的过程图——标准:每个量在相同时间所走的路程要分清2、理解运动过程,抓住变化规律3、运用行程中的比例关系进行解题一、 校车问题——行走过程描述队伍多,校车少,校车来回接送,队伍不断步行和坐车,最终同时到达目的地,即到达目的地的最短时间,不要求证明。
二、常见接送问题类型根据校车速度(来回不同)、班级速度(不同班不同速)、班数是否变化分类为四种常见题型:(1)车速不变-班速不变-班数2个(最常见)(2)车速不变-班速不变-班数多个(3)车速不变-班速变-班数2个(4)车速变-班速不变-班数2个三、标准解法:画图+列3个式子1、总时间=一个队伍坐车的时间+这个队伍步行的时间;2、班车走的总路程;3、一个队伍步行的时间=班车同时出发后回来接它的时间。
模块一、汽车接送问题——接一个人【例 1】 某校和某工厂之间有一条公路,该校下午2时派车去该厂接某劳模来做报告,往返需用1小时.这位劳模在下午1时便离厂步行向学校走来,途中遇到接他的汽车,便立刻上车驶向学校,在下午2时40分到达.问:汽车速度是劳模步行速度的几倍?【巩固】 张工程师每天早上8点准时被司机从家接到厂里。
一天,张工程师早上7点就出了知识精讲教学目标接送问题门,开始步行去厂里,在路上遇到了接他的汽车,于是,他就上车行完了剩下的路程,到厂时提前20分钟。
这天,张工程师还是早上7点出门,但15分钟后他发现有东西没有带,于是回家去取,再出门后在路上遇到了接他的汽车,那么这次他比平常要提前分钟到厂。
【例2】李经理的司机每天早上7点30分到达李经理家接他去公司。
有一天李经理7点从家里出发去公司,路上遇到从公司按时来接他的车,再乘车去公司,结果比平常早到5分钟。
则李经理乘车的速度是步行速度的倍。
(假设车速、步行速度保持不变,汽车掉头与上下车时间忽略不计)模块二、汽车接送问题——接两个人或多人(一)、车速不变、人速不变【例3】(难度级别※※※)A、B两个连队同时分别从两个营地出发前往一个目的地进行演习,A连有卡车可以装载正好一个连的人员,为了让两个连队的士兵同时尽快到达目的地,A连士兵坐车出发一定时间后下车让卡车回去接B连的士兵,两营的士兵恰好同时到达目的地,已知营地与目的地之间的距离为32千米,士兵行军速度为8千米/小时,卡车行驶速度为40千米每小时,求两营士兵到达目的地一共要多少时间?【巩固】甲班与乙班学生同时从学校出发去公园,两班的步行速度相等都是4千米/小时,学校有一辆汽车,它的速度是每小时48千米,这辆汽车恰好能坐一个班的学生.为了使两班学生在最短时间内到达公园,设两地相距150千米,那么各个班的步行距离是多少?【例 4】 (难度级别 ※※)甲、乙、丙三个班的学生一起去郊外活动,他们租了一辆大巴,但大巴只够一个班的学生坐,于是他们计划先让甲班的学生步行,乙丙两班的学生步行,甲班学生搭乘大巴一段路后,下车步行,然后大巴车回头去接乙班学生,并追赶上步行的甲班学生,再回头载上丙班学生后一直驶到终点,此时甲、乙两班也恰好赶到终点,已知学生步行的速度为5千米/小时,大巴车的行驶速度为55千米/小时,出发地到终点之间的距离为8千米,求这些学生到达终点一共所花的时间.【例 5】 海淀区劳动技术学校有100名学生到离学校33千米的郊区参加采摘活动,学校只有一辆限乘25人的中型面包车.为了让全体学生尽快地到达目的地.决定采取步行与乘车相结合的办法.已知学生步行的速度是每小时5千米,汽车行驶的速度是每小时55千米.请你设计一个方案,使全体学生都能到达目的地的最短时间是多少小时?1份【例6】甲、乙两班学生到离校39千米的博物馆参观,但只有一辆汽车,一次只能乘坐一个班的学生.为了尽快到达博物馆,两个班商定,由甲班先坐车,乙班先步行,同时出发,甲班学生在途中某地下车后步行去博物馆,汽车则从某地立即返回去接在途中步行的乙班学生.如果甲、乙两班学生步行速度相同,汽车速度是他们步行速度的10倍,那么汽车应在距博物馆多少千米处返回接乙班学生,才能使两班同时到达博物馆?A B C D【例7】甲、乙两班学生到离校24千米的飞机场参观,但只有一辆汽车,一次只能乘坐一个班的学生.为了尽快到达飞机场,两个班商定,由甲班先坐车,乙班先步行,同时出发,甲班学生在途中某地下车后步行去飞机场,汽车则从某地立即返回接在途中步行的乙班学生.如果甲、乙两班学生步行速度相同,汽车速度是他们步行速度的7倍,那么汽车应在距飞机场多少千米处返回接乙班学生,才能使两班同时到达飞机场?【例8】A、B两地相距22.4千米.有一支游行队伍从A出发,向B匀速前进;当游行队伍队尾离开A时,甲、乙两人分别从A、B两地同时出发.乙向A步行;甲骑车先追向队头,追上队头后又立即骑向队尾,到达队尾后再立即追向队头,追上队头后又立即骑向队尾……当甲第5次追上队头时恰与乙相遇在距B地5.6千米处;当甲第7次追上队头时,甲恰好第一次到达B地,那么此时乙距A地还有__________千米.【例 9】A、B两地相距22.4千米.有一支游行队伍从A出发,向B匀速前进;当游行队伍队尾离开A时,甲、乙两人分别从A、B两地同时出发.乙向A步行;甲骑车先追向队头,追上队头后又立即骑向队尾,到达队尾后再立即追向队头,追上队头后又立即骑向队尾……当甲第5次追上队头时恰与乙相遇在距B地5.6千米处;当甲第7次追上队头时,甲恰好第一次到达B地,那么此时乙距A地还有______千米.(二)车速不变、人速变【例10】(难度级别※※)甲班与乙班学生同时从学校出发去公园,甲班步行的速度是每小时4千米,乙班步行的速度是每小时3千米。
学校有一辆汽车,它的速度是每小时48千米,这辆汽车恰好能坐一个班的学生。
为了使两班学生在最短时间内到达公园,那么甲班学生与乙班学生需要步行的距离之比是多少千米?(三)、车速变、人速不变【例11】甲、乙两班同学到42千米外的少年宫参加活动,但只有一辆汽车,且一次只能坐一个班的同学,已知学生步行速度相同为5千米/小时,汽车载人速度是45千米/小时,空车速度是75千米/小时.如果要使两班同学同时到达,且到达时间最短,那么这个最短时间是多少?【例12】有两个班的小学生要到少年宫参加活动,但只有一辆车接送,第一班的学生坐车从学校出发的同时,第二班学生开始步行;车到途中某处,让第一班学生下车步行,车立刻返回接第二班学生上车并直接开往少年宫,学生步行速度为每小时4公里,载学生时车速每小时40公里,空车时车速为每小时50公里.问:要使两班学生同时到达少年宫,第一班学生要步行全程的几分之几?【例13】某学校学生计划乘坐旅行社的大巴前往郊外游玩,按照计划,旅行社的大巴准时从车站出发后能在约定时间到达学校,搭载满学生在预定时间到达目的地,已知学校的位置在车站和目的地之间,大巴车空载的时候的速度为60千米/小时,满载的时候速度为40千米/小时,由于某种原因大巴车晚出发了56分钟,学生在约定时间没有等到大巴车的情况下,步行前往目的地,在途中搭载上赶上来的大巴车,最后比预定时间晚了54分钟到达目的地,求学生们的步行速度.(四)、车速变、人速变【例14】(台湾小学数学竞赛选拔赛决赛)甲、乙二人由A地同时出发朝向B地前进,A、B两地之距离为36千米.甲步行之速度为每小时4千米,乙步行之速度为每小时5千米.现有一辆自行车,甲骑车速度为每小时10千米,乙骑车的速度为每小时8千米.出发时由甲先骑车,乙步行,为了要使两人都尽快抵达目的地,骑自行车在前面的人可以将自行车留置在途中供后面的人继续骑.请问他们从出发到最后一人抵达目的地最少需要多少小时?模块三、汽车接送问题——借车赶路问题【例15】(难度级别※※※※※)三个人同时前往相距30千米的甲地,已知三人行走的速度相同,都是5千米每小时;现在还有一辆自行车,但只能一个人骑,已知骑车的速度为10千米每小时。
现先让其中一人先骑车,到中途某地后放车放下,继续前进;第二个人到达后骑上再行驶一段后有放下让最后那人骑行,自己继续前进,这样三人同时到达甲地。
问,三人花的时间各为多少?【例16】(全国“华罗庚金杯”少年数学邀请赛)A、B两地相距120千米,已知人的步行速度是每小时5千米,摩托车的行驶速度是每小时50千米,摩托车后座可带一人.问:有三人并配备一辆摩托车从A地到B地最少需要多少小时?(保留—位小数)【例17】兄弟两人骑马进城,全程51千米。
马每时行12千米,但只能由一个人骑。
哥哥每时步行5千米,弟弟每时步行4千米。
两人轮换骑马和步行,骑马者走过一段距离就下鞍拴马(下鞍拴马的时间忽略不计),然后独自步行。
而步行者到达此地,再上马前进。
若他们早晨6点动身,则何时能同时到达城里?【巩固】(难度级别※)甲乙两人同时从学校出发去距离33千米外的公园,甲步行的速度是每小时4千米,乙步行的速度是每小时3千米。
他们有一辆自行车,它的速度是每小时5千米,这辆车只能载一个人,所以先让其中一人先骑车到中途,然后把车放下之后继续前进,等另一个人赶到放车的位置后再骑车赶去,这样使两人同时到达公园。
那么放车的位置距出发点多少千米?【巩固】A、B两人同时自甲地出发去乙地,A、B步行的速度分别为100米/分、120米/分,两人骑车的速度都是200米/分,A先骑车到途中某地下车把车放下,立即步行前进;B走到车处,立即骑车前进,当超过A一段路程后,把车放下,立即步行前进,两人如此继续交替用车,最后两人同时到达乙地,那么A从甲地到乙地的平均速度是米/分.【例18】A、B两地相距30千米,甲乙丙三人同时从A到B,而且要求同时到达。
现在有两辆自行车,但不许带人,但可以将自行车放在中途某处,后来的人可以接着骑。
已知骑自行车的平均速度为每小时20千米,甲步行的速度是每小时5千米,乙和丙每小时4千米,那么三人需要多少小时可以同时到达?【例19】设有甲、乙、丙三人,他们步行的速度相同,骑车的速度也相同,骑车的速度是步行速度的3倍.现甲从A地去B地,乙、丙从B地去A地,双方同时出发.出发时,甲、乙为步行,丙骑车.途中,当甲、丙相遇时,丙将车给甲骑,自己改为步行,三人仍按各自原有方向继续前进;当甲、乙相遇时,甲将车给乙骑,自己重又步行,三人仍按各自原有方向继续前进.问:三人之中谁最先达到自己的目的地?谁最后到达目的地?模块四、汽车接送问题——策略问题【例20】两辆同一型号的汽车从同一地点同时出发,沿同一方向同速直线前进,每车最多能带20桶汽油(连同油箱内的油)。
每桶汽油可以使一辆汽车前进60千米,两车都必须返回出发地点,两辆车均可借对方的油,为了使一辆车尽可能地远离出发点,那么这辆车最远可达到离出发点多少千米远的地方?【巩固】(难度等级※※※※)在一个沙漠地带,汽车每天行驶200千米,每辆汽车载运可行驶24天的汽油.现有甲、乙两辆汽车同时从某地出发,并在完成任务后,沿原路返回.为了让甲车尽可能开出更远的距离,乙车在行驶一段路程后,仅留下自己返回出发地的汽油,将其他的油给甲车.求甲车所能开行的最远距离.【例21】一个旅游者于是10时15分从旅游基地乘小艇出发,务必在不迟于当日13时返回。