12.3等腰1练习9.2

合集下载

12.3 等腰三角形 课课练(含答案)课时训练

12.3 等腰三角形 课课练(含答案)课时训练

12.3 等腰三角形第1课时◆名师导航本课重点内容是等腰三角形的两个重要性质:性质1,等腰三角形的两个底角相等;性质2,等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.实际上,由于等腰三角形是轴对称图形,可以发现等腰三角形中许多相等的线段或角,如两底角平分线、两腰的中线、两腰的高,以及教科书安排的“讨论”栏目中提到的一些线段和角等,这些结论用全等三角形和等腰三角形的性质可以比较容易的证明.◆典例精析【例1】(2007年重庆市)已知一个等腰三角形两内角的度数之比为1∶4,则这个等腰三角形顶角的度数为()(A)200(B)1200(C)200或1200(D)360【思路点拨】结合等腰三角形底角相等的性质,要分类讨论该三角形三个内角的比可能为1:1:4或1:4:4,于是这个三角形顶角可为200或1200.【简解】C.【规律总结】本题是一道经典考题,主要考查三角形内角和定理及分类讨论的思想意识.【例2】如图所示,Rt△ABC中,∠BC A是直角,D是AB上的一点,BD=BC,过D⊥.点作AB的垂线交AC于点.,CD、B.交于点F,求证:C D BECEFA D B【思路点拨】由已知得△BDC是等腰三角形,要证C D BE⊥,只要证BF是顶角∠C BD 的平分线或是底边CD上的中线,所以只要证,或证DF=FC即可.已EDCABHFG知DE BD CE BC EB EB ⊥⊥=,,,可从证Rt ED B Rt ECB ∆∆≅入手.【证明】 D E AB ⊥∴∠=∠===∴≅∴∠=∠=∴∴⊥E D B B C A BD BC BE BE Rt EBD Rt EC B EBD EBC BD BCBD C BE C D 90°,是等腰三角形∆∆∆【规律总结】本题主要考查三角形全等、等腰三角形三线合一等知识的综合运用.在运用三线合一性质时,通常是证明在等腰三角形中,顶角的平分线、底边上的中线,底边上的高三条中具有一条性质时,则它必同时具有另两条性质,而不是证这三条线段重合,在证题时不能混淆. ◆跟踪训练1.等腰三角形的对称轴是( )A .顶角的平分线B .底边上的高C .底边上的中线D .底边上的高所在的直线 2.等腰三角形有两条边长为4cm 和9cm ,则该三角形的周长是( ) A .17cm B .22cm C .17cm 或22cm D .18cm 3.等腰三角形的顶角是80°,则一腰上的高与底边的夹角是( ) A .40° B .50° C .60° D .30° 4.等腰三角形的一个外角是80°,则其底角是( )A .100°B .100°或40°C .40°D .80° 5.如图,C 、E 和B 、D 、F 分别在∠GAH 的两边上,且AB=BC=CD=DE=EF ,若∠A=18°,则∠GEF 的度数是( ) A .80° B .90° C .100° D .108°6.等腰△ABC 的底角是60°,则顶角是________度.ED CABF7.等腰三角形“三线合一”是指___________.8.等腰三角形的顶角是n °,则两个底角的角平分线所夹的钝角是_________. 9.如图,△ABC 中AB=AC ,EB=BD=DC=CF ,∠A=40°,则∠EDF•的度数是_____. 10.△ABC 中,AB=AC .点D 在BC 边上. (1)∵AD 平分∠BAC ,∴_______=________;________⊥_________; (2)∵AD 是中线,∴∠________=∠________;________⊥________;(3)∵AD ⊥BC ,∴∠________=∠_______;_______=_______.参考答案1.D 2.B 3.A 4.C 5.B 6.607.等腰三角形底边上的高、底边上的中线、顶角的平分线互相重合 8.(90+ 12n )° 9.70° 10.略12.3 等腰三角形第2课时◆名师导航本课的重点是探究了等腰三角形的判定方法:等角对等边.这也是证明两条线段相等的重要方法,它是把三角形中角的相等关系转化为边的相等关系的重要依据,同学们注意掌握这个技能,这也是全章重点所在.另外还要注意体会的是“等边对等角”与“等角对等边”是不一样的两个结论,它们的题设与结论正好相反,实际上是互逆命题,也前面平行线的判定与性质及全等三角形的判定与性质类似,具体应用时要注意不能混淆,这也是一个难点.◆典例精析【例题】如图,△ABC中,AB=AC,过BC上一点D作BC的垂线,交BA的延长线于P,交AC于Q,试判断△APQ的形状,并证明你的结论.【思路点拨】判断三角形的形状,其探索思路是根据图形结合我们学习过的特殊的三角形(如等腰三角形,等边三角形,直角三角形等)进行探究.【解析】△APQ是等腰三角形.证明:因为AB=AC,所以∠B=∠C,又PD⊥BC,所以∠BDP=∠PDC,所以∠P=∠DQC,又因为∠DQC=∠AQP,所以∠AQP=∠P,所以△APQ为等腰三角形.【规律总结】解决和等腰三角形有关的探索型试题,需要根据等腰三角形的特征,结合已知条件进行.◆跟踪训练1.如图1,已知OC平分∠AOB,CD∥OB,若OD=3cm,则CD等于()A.3cm B.4cm C.1.5cm D.2cmD CABEDABFEDCA BHF(1) (2) (3)2.△ABC中AB=AC,∠A=36°,BD平分∠ABC交AC于D,则图中的等腰三角形有() A.1个 B.2个 C.3个 D.4个3.如图2,△ABC中,∠ABC与∠ACB的平分线交于点F,过点F作DE∥BC交AB于点D,交AC于点E,那么下列结论:①△BDF和△CEF都是等腰三角形;②DE=BD+CE;•③△ADE 的周长等于AB与AC的和;④BF=CF.其中正确的有()A.①②③ B.①②③④ C.①② D.①4.如图3,Rt△ABC中,CD是斜边AB上的高,角平分线AE交CD于H,EF⊥AB于F,则下列结论中不正确的是()A.∠ACD=∠B B.CH=CE=EF C.CH=HD D.AC=AF二、填空题5.△ABC中,∠A=65°,∠B=50°,则AB:BC=_________.6.已知AD是△ABC的外角∠EAC的平分线,要使AD•∥BC,•则△ABC•的边一定满足________.7.△ABC中,∠C=∠B,D、E分别是AB、AC上的点,•AE=•2cm,•且DE•∥BC,•则AD=________.8.一灯塔P在小岛A的北偏西25°,从小岛A沿正北方向前进30海里后到达小岛,•此时测得灯塔P在北偏西50°方向,则P与小岛B相距________.三、解答题9.如图,已知AB=AC,E、D分别在AB、AC上,BD与CE交于点F,•且∠ABD=•∠ACE,求证:BF=CF.E DAF10.如图,△ABC 中BA=BC ,点D 是AB 延长线上一点,DF ⊥AC 于F 交BC 于E ,•求证:△DBE 是等腰三角形.ED CABF参考答案1.A 2.C 3.A 4.C 5.1 6.AB=AC 7.2cm 8.30海里9.连接BC ,∵AB=AC ,∴∠ABC=∠ACB ,又∵∠ABD=∠ACE ,∴∠FBC=∠FCB ,∴FB=FC 10.证明∠D=∠BED12.3 等腰三角形第3课时◆名师导航本课重点是等边三角形的性质、判定方法及直角三角形的一个性质.等边三角形是一种特殊的等腰三角形,它的性质实际上也是等边对等角问题,由于它三条边都相等,于是它的三个角都相等为60度;第一个判定正三角形的方法也是等角对等边的问题,只是三个角都相等,所对的三个边都相等,从而它是等边三角形,第2个判定方法告诉我们,在等腰三角形中,只要有一个角为60度,不论这个角是顶角还是底角,这个三角形就是等边三角形,这也给证明三角形中边相等带来方便.◆典例精析【例题】已知△ABC为等边三角形,在图①中,点M是线段BC上任意一点,点N 线段CA上任意一点,且BM=CN,直线BN与AM相交于Q点.(1)请猜一猜:图①中∠BQM等于多少度?(2)若M、N两点分别在线段BC、CA的延长线上,其它条件不变,如图②所示,(1)中的结论是否仍然成立?如果成立,请加以证明;如不成立,请说明理由.【思路点拨】(1)题通过猜想、测量或证明等方法不难发现∠BQM=60°,而且这一结论在图形发生变化后仍然成立.【简解】(1)∠BQM=60°;(2)题的证明思路如下:先证△ACM≌△BAN,得到∠M=∠N,所以∠BQM=∠N+∠QAN=∠M+∠CAM=∠ACB=60°.【规律总结】随着几何学习的深入,经常会出现规律探究题,要求同学们在运动变化中探求图形某些不变的性质或变化的规律,培养同学们运动变化的观念,以及发现和解决问题的能力.◆跟踪训练1.正△ABC的两条角平分线BD和CE交于点I,则∠BIC等于()A.60° B.90° C.120° D.150°2.下列三角形:①有两个角等于60°;②有一个角等于60°的等腰三角形;•③三个外角(每个顶点处各取一个外角)都相等的三角形;•④一腰上的中线也是这条腰上的高的等腰三角形.其中是等边三角形的有()A.①②③ B.①②④ C.①③ D.①②③④3.如图,D、E、F分别是等边△ABC各边上的点,且AD=BE=CF,则△DEF•的形状是() A.等边三角形 B.腰和底边不相等的等腰三角形C.直角三角形 D.不等边三角形DA B F21EDCAB第3题第5题4.Rt△ABC中,CD是斜边AB上的高,∠B=30°,AD=2cm,则AB的长度是()A.2cm B.4cm C.8cm D.16cm5.如图,E是等边△ABC中AC边上的点,∠1=∠2,BE=CD,则对△ADE的形状最准备的判断是()A.等腰三角形 B.等边三角形 C.不等边三角形 D.不能确定形状6.△ABC中,AB=AC,∠A=∠C,则∠B=_______.7.已知AD是等边△ABC的高,BE是AC边的中线,AD与BE交于点F,则∠AFE=______.8.等边三角形是轴对称图形,它有______条对称轴,分别是_____________.9.△ABC中,∠B=∠C=15°,AB=2cm,CD⊥AB交BA的延长线于点D,•则CD•的长度是_______.10.已知D、E分别是等边△ABC中AB、AC上的点,且AE=BD,求BE与CD•的夹角是多少度?参考答案1.C 2.D 3.A 4.C 5.B 6.60° 7.60°8.三;三边的垂直平分线 9.1cm 10.60°或120°AB P Q C12.3 等腰三角形第4课时◆名师导航本课安排一节习题课,综合应用等腰三角形的性质、判定与等边三角形的性质与判定,还有直角三角形的一个重要性质,灵活地选择性质进行求解. ◆典例精析【例题】如图所示,P 、Q 是△ABC 边BC 上的两点, 且BP=PQ=QC=AP=AQ ,求∠B A C 的度数.【思路点拨】由已知△APQ 为等边三角形,故可求得它的外角的度数,又由等腰三角形的性质求得底角的度数.【解析】 PA PQ AQ ==(已知)∴∠=∠=∠=APQ PQA QAP 60°(等边三角形三个角都为60°) PA PB =∴∠=∠B PAB (等边对等角)又°∠+∠=B PAB 60(三角形的一个外角等于和它不相邻的两个内角和).∴∠=∠=∠=∴∠=∠+∠+∠=++=PBA PAB Q AC BAC BAP PAQ Q AC 3030306030120°,同理°°°°°【规律总结】(1)几何计算的目的通常是找量与量的关系,等腰三角形的两底角相等,等边三角形三内角均为60°,等腰三角形三线合一的性质等都是建立量与量的关系的依据.(2)几何计算通常用列方程(组)来解决. ◆跟踪训练1.如图,等腰三角形ABC 中,A B A C =,∠A =44°,C D ⊥A B 于D ,则∠D C B 等于( )A .44°B .68°C .46°D .22°BEAB DC第1题 第3题 第4题2.已知∠AOB=30°,点P 在∠AOB 内部,P 1与P 关于OB 对称,P 2与P 关于OA 对称,则P 1,O ,P 2三点所构成的三角形是( ) A .直角三角形B .钝角三角形C .等腰三角形D .等边三角形3.如图所示,在等腰三角形ABC 中,12cm A B A C ==,30ABC = ∠,那么底边上的高AD = cm .4.(教材变型题)如图,是屋架设计图的一部分,点D 是斜梁AB 的中点,立柱BC 、DE 垂直于横梁AC,BC=4m,∠A=30°,则DE 等于 ( ) (A)1m (B) 2m (C)3m (D) 4m5.如图,ABC △中,A B A C =,30A ∠= ,D E 垂直平分A C ,则BCD ∠的度数为( )A.80B.75 C.65 D.45第5题 第7题6. 一个等腰三角形的两边分别为8cm 和6cm ,则它的周长为 cm .7.聪明的亮亮用含有30的两个完全相同的三角板拼成如图所示的图案,并发现图中有等AB DCD腰三角形,请你帮他找出两个等腰三角形 .8.已知等腰三角形ABC 中,AB AC D ,为B C 边上一点,连接A D ,若A C D △和ABD △都是等腰三角形,则C ∠的度数是 .9.小明将两个全等且有一个角为60 的直角三角形拼成如图所示的图形,其中两条较长直角边在同一直线上,则图中有 个等腰三角形.10.如图所示,A ,B 是4×5网格中的格点,网格中的每个小正方形的边长都是1.请在图中清晰标出使以A ,B ,C为顶点的三角形是等腰三角形的所有格点C的位置.参考答案1.D 2.D 3.6 4.B 5.D 6.22或20 7.ABE BEC CED ,,△△△ 8.36 或459.3 10.AFCDH BMEG BAB。

人教版八年级上册数学等腰三角形的性质与判定练习题及答案

人教版八年级上册数学等腰三角形的性质与判定练习题及答案

13.3.1 第1课时等腰三角形的性质一.选择题(共8小题)1.如图,△ABC中,∠C=90°,AC=3,∠B=30°,点P是BC边上的动点,则AP长不可能是()A. 3.5 B. 4.2 C. 5.8 D.7第1题第2题第3题2.如图,在△ABC中,∠B=30°,BC的垂直平分线交AB于E,垂足为D.若ED=5,则CE的长为()A.10 B.8 C. 5 D. 2.53.如图,Rt△ABC中,∠C=90°,以点B为圆心,适当长为半径画弧,与∠ABC的两边相交于点E,F,分别以点E和点F为圆心,大于的长为半径画弧,两弧相交于点M,作射线BM,交AC于点D.若△BDC的面积为10,∠ABC=2∠A,则△ABC的面积为()A.25 B.30 C.35 D.404.在Rt△ABC中,∠C=90°,∠B=30°,斜边AB的长为2cm,则AC长为()A.4cm B.2cm C.1cm D.m5.如图,△ABC中,∠ACB=90°,CD是高,∠A=30°,则BD与AB的关系是()A.BD=AB B.BD=AB C.BD=AB D.BD=AB第5题第6题第7题第8题6.如图是屋架设计图的一部分,立柱BC垂直于横梁AC,AB=10m,∠A=30°,则立柱BC的长度是()A.5m B.8m C.10m D.20m7.如图,一棵树在一次强台风中于离地面3米处折断倒下,倒下部分与地面成30°角,这棵树在折断前的高度为()A.6米 B.9米C.12米 D.15米8.如图,已知∠ABC=60°,DA是BC的垂直平分线,BE平分∠ABD交AD于点E,连接CE.则下列结论:①BE=AE;②BD=AE;③AE=2DE;④S△ABE=S△CBE,其中正确的结论是()A.①②③B.①②④ C.①③④ D.②③④二.填空题(共10小题)9.如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交AC于E,交BC的延长线于F,若∠F=30°,DE=1,则BE的长是_________.10.如图,∠AO E=∠BOE=15°,EF∥OB,EC⊥OB,若EC=1,则EF=_________.11.如图,在△ABC中,∠C=90°,∠B=60°,AB=10,则BC的长为_________.12.如图,在等腰三角形ABC中,AB=AC=12cm,∠ABC=30°,底边上的高AD=_______cm.第9题第10题第11题第12题13.如图,在△ABC中,AB=BC,∠B=120°,AB的垂直平分线交AC于点D.若AC=6cm,则AD=_________cm.第13题第14题第15题第16题14.如图,在△ABC中.∠B=90°,∠BAC=30°.AB=9cm,D是BC延长线上一点.且AC=DC.则AD=_________cm.15.如图是某超市一层到二层滚梯示意图.其中AB、CD分别表示超市一层、二层滚梯口处地面的水平线,∠ABC=150°,BC的长约为12米,则乘滚梯从点B到点C上升的高度h约为_________米.16.在△ABC中,已知A B=4,BC=10,∠B=30°,那么S△ABC=_________.17.如图,△ABC是等边三角形,AD⊥BC,DE⊥AC,若AB=12cm,则CE=______cm.18.有一轮船由东向西航行,在A处测得西偏北15°有一灯塔P.继续航行20海里后到B 处,又测得灯塔P在西偏北30°.如果轮船航向不变,则灯塔与船之间的最近距离是_________海里.三.解答题(共5小题)19.如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.(1)求证:△ACD≌△AED;(2)若∠B=30°,CD=1,求BD的长.20.如图,在△ABC中,BA=BC,∠B=120°,AB的垂直平分线MN交AC于D,求证:AD=DC.21.如图,△ABC中,∠C=90°,∠ABC=60°,BD平分∠ABC,若AD=6,求AC的长.22.如图,△ABC中,∠ACB=90°,CD是△ABC的高,∠A=30°,AB=4,求BD长.23.如图,已知∠MAN=120°,AC平分∠MAN.B、D分别在射线AN、AM上.(1)在图(1)中,当∠ABC=∠ADC=90°时,求证:AD+AB=AC.(2)若把(1)中的条件“∠ABC=∠ADC=90°”改为∠ABC+∠ADC=180°,其他条件不变,如图(2)所示.则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.一、DABCCABC二、9、2;10、2;11、5;12、6;13、2;14、18;15、6;16、10;17、3;18、10三、19、(1)证明:∵AD平分∠CAB,DE⊥AB,∠C=90°,∴CD=ED,∠DEA=∠C=90°,∵在Rt△ACD和Rt△AED中∴Rt△ACD≌Rt△A ED(HL);(2)解:∵DC=DE=1,DE⊥AB,∴∠DEB=90°,∵∠B=30°,∴BD=2DE=2.20、解:如图,连接DB.∵MN是AB的垂直平分线,∴AD=DB,∴∠A=∠ABD,∵BA=BC,∠B=120°,∴∠A=∠C=(180°﹣120°)=30°,∴∠ABD=30°,又∵∠ABC=120°,∴∠DBC=120°﹣30°=90°,∴BD=DC,∴AD=DC.21、解:∵△ABC中,∠C=90°,∠ABC=60°,BD平分∠ABC,∴∠2=∠3=30°;在Rt△BCD中,CD= BD,∠4=90°﹣30°=60°(直角三角形的两个锐角互余);∴∠1+∠2=60°(外角定理),∴∠1=∠2=30°,∴AD=BD(等角对等边);∴AC=AD+CD=AD;又∵AD=6,∴AC=9.22、解:∵△ABC中,∠ACB=90°,∠A=30°,AB=4,∴BC=AB=×4=2,∵CD是△A BC的高,∴∠CDA=∠ACB=90°,∠B=∠B,故∠BCD=∠A=30°,∴在Rt△BCD中,BD=BC=×2=1,∴BD=1.23、(1)证明:∵∠MAN=120°,AC平分∠MAN,∴∠DAC=∠BAC=60°∵∠ABC=∠ADC=90°,∴∠DCA=∠BCA=30°,在Rt△ACD中,∠DCA=30°,Rt△ACB中,∠BCA=30°∴AC=2AD,AC=2AB,∴AD+AB=AC;(2)解:结论AD+AB=AC成立.理由如下:在AN上截取AE=AC,连接CE,∵∠BAC=60°,∴△CAE为等边三角形,∴AC=CE,∠AEC=60°,∵∠DAC=60°,∴∠DAC=∠AEC,∵∠ABC+∠ADC=180°,∠ABC+∠EBC=180°,∴∠ADC=∠EBC,∴△ADC≌△EBC,∴DC=BC,DA=BE,∴AD+AB=AB+BE=AE,∴AD+AB=AC.13.3.1 第2课时等腰三角形的判定一、填空题1.如图(1),△ABC 中,AB=AC ,DE 是AB 的中垂线,△BCE 的周长为14,BC=6,则AB 的长为 。

中考数学复习----《等腰三角形》知识点总结与专项练习题(含答案解析)

中考数学复习----《等腰三角形》知识点总结与专项练习题(含答案解析)

中考数学复习----《等腰三角形》知识点总结与专项练习题(含答案解析)知识点总结1.等腰三角形的定义:有两条边相等的三角形叫做等腰三角形。

其中相等的两边叫做腰,另一边叫做底。

两腰构成的夹角叫做顶角,腰与底构成的夹角叫做底角。

2.等腰三角形的性质:①等腰三角形的两腰相等。

②等腰三角形的两底角相等。

(简称“等边对等角”)③等腰三角形底边的中线、高线以及顶角平分线相互重合。

(简称底边上三线合一)3.等腰三角形的判定:①有两条边相等的三角形是等腰三角形。

②有两个底角相等的三角形是等腰三角形。

(等角对等边)③若一个三角形某一边上存在“三线合一”,则三角形是等腰三角形。

练习题1、(2022•黑龙江)如图,△ABC中,AB=AC,AD平分∠BAC与BC相交于点D,点E是AB的中点,点F是DC的中点,连接EF交AD于点P.若△ABC的面积是24,PD=1.5,则PE的长是()A.2.5 B.2 C.3.5 D.3【分析】如图,过点E作EG⊥AD于G,证明△EGP≌△FDP,得PG=PD=1.5,由三角形中位线定理可得AD的长,由三角形ABC的面积是24,得BC的长,最后由勾股定理可得结论.【解答】解:如图,过点E作EG⊥AD于G,∵AB=AC,AD平分∠BAC,∴AD⊥BC,BD=CD,∴∠PDF=∠EGP=90°,EG∥BC,∵点E是AB的中点,∴G是AD的中点,∴EG=BD,∵F是CD的中点,∴DF=CD,∴EG=DF,∵∠EPG=∠DPF,∴△EGP≌△FDP(AAS),∴PG=PD=1.5,∴AD=2DG=6,∵△ABC的面积是24,∴•BC•AD=24,∴BC=48÷6=8,∴DF=BC=2,∴EG=DF=2,由勾股定理得:PE==2.5.故选:A.2、(2022•淄博)某城市几条道路的位置关系如图所示,道路AB∥CD,道路AB与AE的夹角∠BAE=50°.城市规划部门想新修一条道路CE,要求CF=EF,则∠E的度数为()A.23°B.25°C.27°D.30°【分析】先根据平行线的性质,由AB∥CD得到∠DFE=∠BAE=50°,根据等腰三角形的性质得出∠C=∠E,再根据三角形外角性质计算∠E的度数.【解答】解:∵AB∥CD,∴∠DFE=∠BAE=50°,∵CF=EF,∴∠C=∠E,∵∠DFE=∠C+∠E,∴∠C=∠DFE=×50°=25°,故选:B.3、(2022•鞍山)如图,在△ABC中,AB=AC,∠BAC=24°,延长BC到点D,使CD=AC,连接AD,则∠D的度数为()A.39°B.40°C.49°D.51°【分析】利用等边对等角求得∠B=∠ACB=78°,然后利用三角形外角的性质求得答案即可.【解答】解:∵AB=AC,∠BAC=24°,∴∠B=∠ACB=78°.∵CD=AC,∠ACB=78°,∠ACB=∠D+∠CAD,∴∠D=∠CAD=∠ACB=39°.故选:A.4、(2022•荆州)如图,直线l1∥l2,AB=AC,∠BAC=40°,则∠1+∠2的度数是()A.60°B.70°C.80°D.90°【分析】过点C作CD∥l1,利用平行线的性质可得∠1+∠2=∠ACB,再由等腰三角形的性质可得∠ACB=∠ABC,从而可求解.【解答】解:过点C作CD∥l1,如图,∵l1∥l2,∴l1∥l2∥CD,∴∠1=∠BCD,∠2=∠ACD,∴∠1+∠2=∠BCD+∠ACD=∠ACB,∵AB=AC,∴∠ACB=∠ABC,∵∠BAC=40°,∴∠ACB=(180°﹣∠BAC)=70°,∴∠1+∠2=70°.故选:B.5、(2022•台湾)如图,△ABC中,D点在AB上,E点在BC上,DE为AB的中垂线.若∠B=∠C,且∠EAC>90°,则根据图中标示的角,判断下列叙述何者正确?()A.∠1=∠2,∠1<∠3 B.∠1=∠2,∠1>∠3C.∠1≠∠2,∠1<∠3 D.∠1≠∠2,∠1>∠3【分析】根据线段垂直平分线的性质,等腰三角形的性质解答即可.【解答】解:∵DE为AB的中垂线,∴∠BDE=∠ADE,BE=AE,∴∠B=∠BAE,∴∠1=∠2,∵∠EAC>90°,∴∠3+∠C<90°,∵∠B+∠1=90°,∠B=∠C,∴∠1>∠3,∴∠1=∠2,∠1>∠3,故选:B.6、(2022•宜宾)如图,在△ABC中,AB=AC=5,D是BC上的点,DE∥AB交AC于点E,DF∥AC交AB于点F,那么四边形AEDF的周长是()A.5 B.10 C.15 D.20【分析】由于DE∥AB,DF∥AC,则可以推出四边形AFDE是平行四边形,然后利用平行四边形的性质可以证明▱AFDE的周长等于AB+AC.【解答】解:∵DE∥AB,DF∥AC,∴四边形AFDE是平行四边形,∠B=∠EDC,∠FDB=∠C∵AB=AC,∴∠B=∠C,∴∠B=∠FDB,∠C=∠EDC,∴BF=FD,DE=EC,∴▱AFDE的周长=AB+AC=5+5=10.故选:B.7、(2022•宿迁)若等腰三角形的两边长分别是3cm和5cm,则这个等腰三角形的周长是()A.8cm B.13cm C.8cm或13cm D.11cm或13cm 【分析】题目给出等腰三角形有两条边长为3cm和5cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:当3cm是腰长时,3,3,5能组成三角形,当5cm是腰长时,5,5,3能够组成三角形.则三角形的周长为11cm或13cm.故选:D.8、(2022•天津)如图,△OAB的顶点O(0,0),顶点A,B分别在第一、四象限,且AB ⊥x轴,若AB=6,OA=OB=5,则点A的坐标是()A.(5,4)B.(3,4)C.(5,3)D.(4,3)【分析】根据等腰三角形的性质求出AC,根据勾股定理求出OC,根据坐标与图形性质写出点A的坐标.【解答】解:设AB与x轴交于点C,∵OA=OB,OC⊥AB,AB=6,∴AC=AB=3,由勾股定理得:OC===4,∴点A的坐标为(4,3),故选:D.9、(2022•泰安)如图,l1∥l2,点A在直线l1上,点B在直线l2上,AB=BC,∠C=25°,∠1=60°.则∠2的度数是()A.70°B.65°C.60°D.55°【分析】利用等腰三角形的性质得到∠C=∠BAC=25°,利用平行线的性质得到∠BEA=95°,再根据三角形外角的性质即可求解.【解答】解:如图,∵AB=BC,∠C=25°,∴∠C=∠BAC=25°,∵l1∥l2,∠1=60°,∴∠BEA=180°﹣60°﹣25°=95°,∵∠BEA=∠C+∠2,∴∠2=95°﹣25°=70°.故选:A.10、(2022•自贡)等腰三角形顶角度数比一个底角度数的2倍多20°,则这个底角的度数是()A.30°B.40°C.50°D.60°【分析】设底角的度数是x°,则顶角的度数为(2x+20)°,根据三角形内角和是180°列出方程,解方程即可得出答案.【解答】解:设底角的度数是x°,则顶角的度数为(2x+20)°,根据题意得:x+x+2x+20=180,解得:x=40,故选:B.11、(2022•广安)若(a﹣3)2+5−b=0,则以a、b为边长的等腰三角形的周长为.【分析】先求a,b.再求第三边c即可.【解答】解:∵(a﹣3)2+=0,(a﹣3)2≥0,≥0,∴a﹣3=0,b﹣5=0,∴a=3,b=5,设三角形的第三边为c,当a=c=3时,三角形的周长=a+b+c=3+5+3=11,当b=c=5时,三角形的周长=3+5+5=13,故答案为:11或13.12、.(2022•岳阳)如图,在△ABC中,AB=AC,AD⊥BC于点D,若BC=6,则CD=.【分析】根据等腰三角形的性质可知D是BC的中点,即可求出CD的长.【解答】解:∵AB=AC,AD⊥BC,∴CD=BD,∵BC=6,∴CD=3,故答案为:3.13、(2022•苏州)定义:一个三角形的一边长是另一边长的2倍,这样的三角形叫做“倍长三角形”.若等腰△ABC是“倍长三角形”,底边BC的长为3,则腰AB的长为.【分析】由等腰△ABC是“倍长三角形”,可知AB=2BC或BC=2AB,若AB=2BC=6,可得AB的长为6;若BC=3=2AB,因1.5+1.5=3,故此时不能构成三角形,这种情况不存在;即可得答案.【解答】解:∵等腰△ABC是“倍长三角形”,∴AB=2BC或BC=2AB,若AB=2BC=6,则△ABC三边分别是6,6,3,符合题意,∴腰AB的长为6;若BC=3=2AB,则AB=1.5,△ABC三边分别是1.5,1.5,3,∵1.5+1.5=3,∴此时不能构成三角形,这种情况不存在;综上所述,腰AB的长是6,故答案为:6.14、(2022•云南)已知△ABC是等腰三角形.若∠A=40°,则△ABC的顶角度数是.【分析】分∠A是顶角和底角两种情况讨论,即可解答.【解答】解:当∠A是顶角时,△ABC的顶角度数是40°;当∠A是底角时,则△ABC的顶角度数为180°﹣2×40°=100°;综上,△ABC的顶角度数是40°或100°.故答案为:40°或100°.15、(2022•滨州)如图,屋顶钢架外框是等腰三角形,其中AB=AC,立柱AD⊥BC,且顶角∠BAC=120°,则∠C的大小为.【分析】根据等腰三角形的性质和三角形内角和得到∠B=∠C=30°.【解答】解:∵AB=AC且∠BAC=120°,∴∠B=∠C=(180°﹣∠BAC)=×60°=30°.故答案为:30°.11。

人教版数学八年级上册13.3 等腰三角形同步练习(解析版)

人教版数学八年级上册13.3 等腰三角形同步练习(解析版)

人教版数学八年级上册13.3:等腰三角形同步练习一.选择题(共15小题)1.在Rt△ABC中,∠C=90°,∠B=30°,斜边AB的长为2cm,则AC长为()A.4 cm B.2 cm C.1 cm D.cm2.一个等腰三角形但不是等边三角形,它的角平分线、高线、中线总数共()条.A.9B.7C.6D.33.如图,△ABC是等边三角形,AE⊥BC于E,AD⊥CD于D,AB∥CD,则图中60°的角有()A.3个B.4个C.5个D.6个4.下列判断不正确的是()A.等腰三角形的两底角相等B.等腰三角形的两腰相等C.等边三角形的三个内角都是60°D.两个内角分别为120°、40°的三角形是等腰三角形5.在△ABC中,∠ACB=90°,∠B=30°,CD⊥AB于D,若AC=6,则BD等于()A.6B.3C.9D.126.等腰三角形的对称轴,最多可以有()A.1条B.3条C.6条D.无数条7.等腰三角形两边的长分别为2cm和5cm,则这个三角形的周长是()A.9cm B.12cmC.9cm或12cm D.在9cm或12cm之间8.如图,在△ABC中,AB=AC,D为BC的中点,E为AC边上一点,且AE=AD,∠BAC =40°,则∠EDC的度数是()A.10°B.20°C.30°D.40°9.一个三角形有两条边相等,这个三角形一边等于5cm,一边等于10cm,则另一边等于()A.5cm B.10cm C.15cm D.12cm10.如图,△ABC是等腰三角形,AD是底边BC上的高线,DE⊥AB于E,DF⊥AC于F,图中除AB=AC外,相等的线段共有()A.1对B.2对C.3对D.4对11.等腰三角形一腰上的高与底边所夹的角为a,则这个等腰三角形的顶角为()A.a B.90°﹣a C.12a D.2a12.等腰三角形的底角为a,则a的取值范围是()A.a≤45°B.0°<a<90°C.45°<a<90°D.0°≤a<90°13.如图,在等边三角形ABC中,三条中线AE,BD,CF相交于点O,则等边三角形ABC 中,从△BOF到△COD需要经过的变换是()A.轴对称变换B.旋转变换C.平移变换D.相似变换14.如果以4cm长的线段为底组成一个等腰三角形,腰长x的取值范围是()A.x>4cm B.x>2cm C.x≥4cm D.x≥2cm15.等腰三角形周长是32cm,一边长为10cm,则其他两边的长分别为()A.10cm,12cm B.11cm,11cmC.11cm,11cm或10cm,12cm D.不能确定二.填空题(共6小题)16.若等腰三角形的一腰上的高与另一腰的夹角等于50°,则其顶角的度数为.若等腰三角形的一腰上的高与底边的夹角等于50°,则其顶角的度数为.17.一个等腰三角形的腰长为3cm,则底边长的取值范围是.18.如图,AB=AC,∠A=100°,AB∥CD,则∠BCD=度.19.等腰三角形的顶角与底角的度数之比为4:1,则它的各内角度数为.20.△ABC中,∠A:∠B:∠C=1:2:3,AB=10,则BC=.21.(1)等腰三角形的一个角为100°,那么另外两个角分别为.(2)等腰三角形的一个角为50°,则底角是.三.解答题(共9小题)22.已知等腰三角形的周长为28cm,其中的一边长是另一边长的倍,求这个等腰三角形各边的长.23.如图,已知AB=AC,D为BC边中点,你能说出AD与BC的位置关系吗?请说明理由.24.如图,△ABC是等腰三角形,且AB=AC,试作出BC边上的中线和高以及∠A的平分线,从中你发现了什么?与其他同学进行交流.25.如图,在△ABC中,AB=AC,∠C=2∠A,BD平分∠ABC.请找出图中其他的等腰三角形,并选择其中的一个说明理由.26.已知D是等腰△ABC底边BC上的一个点,DE⊥AB于E,DF⊥AC于F,当D点在什么位置时,DE=DF,并加以证明.27.如图,AD是等腰△ABC顶角的外角的平分线,那么AD与BC平行吗?为什么?28.如图,在△ABC中,AD平分∠BAC,G是CA延长线上一点,GE∥AD交AB于F.交BC于E,试判断△AGF的形状并加以证明.29.如图,在等腰△ABC中,AB=AC,AD是BC边上的高,点E、F分别是边AB、AC上的点,且EF∥BC.(1)试说明△AEF是等腰三角形;(2)试比较DE与DF的大小关系,并说明理由.30.已知:如图,△ABC中,AB=AC,D是BC延长线上一点,E是AC延长线上一点,且DE∥AB,求证:ED=EC.人教版数学八年级上册13.3:等腰三角形同步练习参考答案一.选择题(共15小题)1.在Rt△ABC中,∠C=90°,∠B=30°,斜边AB的长为2cm,则AC长为()A.4 cm B.2 cm C.1 cm D.cm【解答】解:∵∠C=90°,∠B=30°,∴AB=2AC,∵AB=2cm,∴AC=AB=1cm,故选:C.2.一个等腰三角形但不是等边三角形,它的角平分线、高线、中线总数共()条.A.9B.7C.6D.3【解答】解:由于任意一个三角形都有三条角平分线、三条高线、三条中线,而等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合,所以一个等腰三角形但不是等边三角形,它的角平分线、高线、中线总数共7条.故选:B.3.如图,△ABC是等边三角形,AE⊥BC于E,AD⊥CD于D,AB∥CD,则图中60°的角有()A.3个B.4个C.5个D.6个【解答】解:∵△ABC是等边三角形,∴∠ABC=∠ACB=∠CAB=60°∵AB∥CD,∴∠ACD=∠CAB=60°,∵AD⊥CD,∴∠DAB=90°,∵AE⊥BC,∴∠BAE=∠CAE=30°,∴∠DAE=60°∴图中60°的角有5个,故选:C.4.下列判断不正确的是()A.等腰三角形的两底角相等B.等腰三角形的两腰相等C.等边三角形的三个内角都是60°D.两个内角分别为120°、40°的三角形是等腰三角形【解答】解:A、等腰三角形的两底角相等,正确,故本选项错误;B、等腰三角形的两腰相等,正确,故本选项错误;C、等边三角形的三个内角都是60°,正确,故本选项错误;D、两个内角分别为120°、40°的三角形的第三个内角为20°,不是等腰三角形,故本选项正确.故选:D.5.在△ABC中,∠ACB=90°,∠B=30°,CD⊥AB于D,若AC=6,则BD等于()A.6B.3C.9D.12【解答】解:∵∠ACB=90°,CD⊥AB,∴∠ACD=∠B=30°,∵AC=6,∴AD=AC=×6=3,AB=2AC=2×6=12,∴BD=AB﹣AD=12﹣3=9.故选:C.6.等腰三角形的对称轴,最多可以有()A.1条B.3条C.6条D.无数条【解答】解:等腰三角形为等边三角形时对称轴最多,可以有3条.故选:B.7.等腰三角形两边的长分别为2cm和5cm,则这个三角形的周长是()A.9cm B.12cmC.9cm或12cm D.在9cm或12cm之间【解答】解:当腰长是2cm时,因为2+2<5,不符合三角形的三边关系,应排除;当腰长是5cm时,因为5+5>2,符合三角形三边关系,此时周长是12cm.故选:B.8.如图,在△ABC中,AB=AC,D为BC的中点,E为AC边上一点,且AE=AD,∠BAC =40°,则∠EDC的度数是()A.10°B.20°C.30°D.40°【解答】解:∵在△ABC中,D为BC中点,AB=AC,∴AD⊥BC,AD是∠BAC的角平分线,又∵AD=AE,∠BAC=40°,∴∠ADE=80°∴∠EDC=∠ADC﹣∠ADE=90°﹣80°=10°.故选:A.9.一个三角形有两条边相等,这个三角形一边等于5cm,一边等于10cm,则另一边等于()A.5cm B.10cm C.15cm D.12cm【解答】解:当第三边是5cm时,则5+5=10,不能构成三角形,当另一边长是10cm时,能构成三角形.故选:B.10.如图,△ABC是等腰三角形,AD是底边BC上的高线,DE⊥AB于E,DF⊥AC于F,图中除AB=AC外,相等的线段共有()A.1对B.2对C.3对D.4对【解答】解:∵△ABC是等腰三角形,AD是底边BC上的高线,∴BD=CD,∠BAD=∠CAD,∵DE⊥AB,DF⊥AC,∴DE=DF,∠BED=∠DFC=90°,在Rt△BED和Rt△CFD中,,∴Rt△BED≌Rt△CFD(HL),∴BE=CF,∵AB=AC,∴AE=AF.故图中除AB=AC外,相等的线段共有4对.故选:D.11.等腰三角形一腰上的高与底边所夹的角为a,则这个等腰三角形的顶角为()A.a B.90°﹣a C.12a D.2a【解答】解:如图,AB=AC,BD是腰AC的高,则∠DBC=α∴∠C=90°﹣α∴∠A=180°﹣2(90°﹣α)=2α故选:D.12.等腰三角形的底角为a,则a的取值范围是()A.a≤45°B.0°<a<90°C.45°<a<90°D.0°≤a<90°【解答】解:∵等腰三角形的底角为a,且三角形的内角和等于180°,∴0°<2a<180°,∴0°<a<90°.故选:B.13.如图,在等边三角形ABC中,三条中线AE,BD,CF相交于点O,则等边三角形ABC 中,从△BOF到△COD需要经过的变换是()A.轴对称变换B.旋转变换C.平移变换D.相似变换【解答】解:∵△BOF与△COD是关于OE的轴对称图形,∴从△BOF到△COD需要经过轴对称变换.故选A14.如果以4cm长的线段为底组成一个等腰三角形,腰长x的取值范围是()A.x>4cm B.x>2cm C.x≥4cm D.x≥2cm【解答】解:此等腰三角形的底为4cm,则有2x>4,解得x>2,故选:B.15.等腰三角形周长是32cm,一边长为10cm,则其他两边的长分别为()A.10cm,12cm B.11cm,11cmC.11cm,11cm或10cm,12cm D.不能确定【解答】解:当该边是腰时,底边是32﹣20=12cm,则另外两边是10cm,12cm;当该边是底时,则腰的长为:(32﹣10)÷2=11cm,则另外两边是11cm,11cm;经检验,两种情况都符合三角形的三边关系.故选:C.二.填空题(共6小题)16.若等腰三角形的一腰上的高与另一腰的夹角等于50°,则其顶角的度数为40°或140°.若等腰三角形的一腰上的高与底边的夹角等于50°,则其顶角的度数为100°.【解答】解:(1)①当为锐角三角形时可以画图,高与右边腰成50°夹角,由三角形内角和为180°可得,顶角为40°;②当为钝角三角形时可画图,此时垂足落到三角形外面,因为三角形内角和为180°,由图可以看出等腰三角形的顶角的补角为40°,三角形的顶角为140°.(2)如图,①顶角是钝角时,∠B=90°﹣50°=40°,则顶角=180°﹣2×40°=100°,是钝角,符合;②顶角是锐角时,∠B=90°﹣50°=40°,∠A=180°﹣2×40°=100°,是钝角,不符合.故答案为:40°或140°;100°.17.一个等腰三角形的腰长为3cm,则底边长的取值范围是0<底边<6cm.【解答】解:∵3﹣3=0,3+3=6cm,∴底边的取值范围是0<底边<6cm.故答案为:0<底边<6cm.18.如图,AB=AC,∠A=100°,AB∥CD,则∠BCD=40度.【解答】解:∵AB=AC∴∠B=∠ACB=(180﹣∠A)=40°∵AB∥CD∴∠BCD=∠B=40°.故填40.19.等腰三角形的顶角与底角的度数之比为4:1,则它的各内角度数为120°,30°,30°.【解答】解:设等腰三角形的各角为4x,x,x∵4x+x+x=180°∴x=30°∴三个内角分别是120°,30°,30°.故填120°,30°,30°.20.△ABC中,∠A:∠B:∠C=1:2:3,AB=10,则BC=5.【解答】解:由∠A:∠B:∠C=1:2:3,可设∠A=x°,则∠B=2x°,∠C=3x°.∵∠A+∠B+∠C=180°,∴x+2x+3x=180,∴x=30,∴∠A=30°,∠B=60°,∠C=90°,∴BC=AB=×10=5.故答案为5.21.(1)等腰三角形的一个角为100°,那么另外两个角分别为40°,40°.(2)等腰三角形的一个角为50°,则底角是50°,65°.【解答】解:(1)∵等腰三角形的一个角为100°∴两底角的和=180°﹣100°=80°又∵等腰三角形的两底角相等∴两底角都为40°.(2)当50°的角是底角,则底角就为50°;当50°的角是顶角,则两底角的和等于130°,所以底角等于65°.故填40°,40°;50°,65°.三.解答题(共9小题)22.已知等腰三角形的周长为28cm,其中的一边长是另一边长的倍,求这个等腰三角形各边的长.【解答】解:设等腰三角形的一边长为xcm,则另一边长为xcm,则等腰三角形的三边有两种情况:xcm,xcm,xcm或xcm,xcm,xcm,则有:①x+x+x=28,得x=8cm,所以三边为:8cm、8cm、12cm;②x+x+x=28,得x=7cm,所以三边为7cm、10.5cm、10.5cm.因此等腰三角形的三边的长为:8cm,8cm,12cm或7cm,10.5cm,10.5cm.23.如图,已知AB=AC,D为BC边中点,你能说出AD与BC的位置关系吗?请说明理由.【解答】解:AD⊥BC.理由如下:∵AB=AC,D为BC边中点,∴AD⊥BC.24.如图,△ABC是等腰三角形,且AB=AC,试作出BC边上的中线和高以及∠A的平分线,从中你发现了什么?与其他同学进行交流.【解答】解:如图,过点A作AD⊥BC于点D,在Rt△ABD和Rt△ACD中,∵AB=AC,AD=AD,∴Rt△ABD≌Rt△ACD(HL)∴BD=CD,即AD也是中线,∴∠BAD=∠CAD,即AD又是高线,所以等腰三角形底边上的中线、高以及顶角的角平分线重合.25.如图,在△ABC中,AB=AC,∠C=2∠A,BD平分∠ABC.请找出图中其他的等腰三角形,并选择其中的一个说明理由.【解答】解:△ABD、△BCD.理由:∵在△ABC中,AB=AC,∠C=2∠A,∴∠ABC=∠C=2∠A,∵∠A+∠ABC+∠C=180°,∴∠A+2∠A+2∠A=180°,解得:∠A=36°,∴∠ABC=∠C=72°,∵BD平分∠ABC,∴∠ABD=∠DBC=36°,∴∠A=∠ABD=36°,∠BDC=∠C=72°,∴△ABD与△BCD是等腰三角形.26.已知D是等腰△ABC底边BC上的一个点,DE⊥AB于E,DF⊥AC于F,当D点在什么位置时,DE=DF,并加以证明.【解答】解:当D是BC中点时DE=DF,理由:∵AB=AC,∴∠B=∠C;∵∠BED=∠CFD=90°,BD=CD;∴△BDE≌△CDF;∴DE=DF.27.如图,AD是等腰△ABC顶角的外角的平分线,那么AD与BC平行吗?为什么?【解答】解:AD∥BC.∵△ABC是等腰三角形,∴∠B=∠C,又∵∠EAC是△ABC的一个外角,∴∠EAC=∠B+∠C=2∠B,∵AD是等腰△ABC顶角的外角的平分线,∴2∠DAC=∠EAC,∴∠C=∠DAC,∴AD∥BC(内错角相等,两直线平行).28.如图,在△ABC中,AD平分∠BAC,G是CA延长线上一点,GE∥AD交AB于F.交BC于E,试判断△AGF的形状并加以证明.【解答】解:△AGF是等腰三角形;理由:∵GE∥AD,∴∠G=∠CAD,∠BAD=∠GF A,∵AD平分∠BAC,∴∠CAD=∠BAD,∴∠G=∠GF A,∴AG=AF,∴△AGF是等腰三角形.29.如图,在等腰△ABC中,AB=AC,AD是BC边上的高,点E、F分别是边AB、AC上的点,且EF∥BC.(1)试说明△AEF是等腰三角形;(2)试比较DE与DF的大小关系,并说明理由.【解答】解:(1)∵EF∥BC,∴∠AEF=∠B,∠AFE=∠C.又∵AB=AC,∴∠B=∠C,∴∠AEF=∠AFE,∴AE=AF,即△AEF是等腰三角形;(2)DE=DF.理由如下:∵AD是等腰三角形ABC的底边上的高,∴AD也是∠BAC的平分线.又∵△AEF是等腰三角形,∴AG是底边EF上的高和中线,∴AD⊥EF,GE=GF,∴AD是线段EF的垂直平分线,∴DE=DF.30.已知:如图,△ABC中,AB=AC,D是BC延长线上一点,E是AC延长线上一点,且DE∥AB,求证:ED=EC.【解答】证明:∵AB=AC,∴∠B=∠ACB,∵AB∥ED,∴∠B=∠D,∴∠ACB=∠D,又∵∠ACB=∠ECD,∴∠ECD=∠D,∴ED=EC.。

北师大八级下《等腰三角形》课时练习含答案解析

北师大八级下《等腰三角形》课时练习含答案解析

北师大数学八年级下册第一章三角形的证明第1节等腰三角形练习一、选择题1.等腰三角形的一个角是80°,则它顶角的度数是( )A .80°B .80°或20°C .80°或50°D .20° 答案:B解析:解答:当80°的角是底角时,等腰三角形两底角相等,根据三角形内角和定理得到顶角为20°;另一种情况是80°是顶角.分析:等腰三角形等边对等角,结合三角形内角和为180°,从而得出两种结果.2.已知等腰三角形的两边长分别是3和5,则该三角形的周长是( )A .8B .9C .10或12D .11或13答案:D解析:解答:当3是腰时,两腰和为6加上底边5,周长为11;当5是腰时,两腰和为10加上底边3,周长为13.分析:等腰三角形两腰相等,结合三角形中两小边和大于第三边.3.在等腰△ABC 中,AB =AC ,中线BD 将这个三角形的周长分为15和12两个部分,则这个等腰三角形的底边长为( )A .7B .11C .7或11D .7或10答案:C解析:解答:设AB =AC =x BC =y则有12,2152x x x y +=+=⎧⎨⎩或者12,2152x x x y +=+=⎧⎨⎩ 所以x =8, y =11或者x =10,y =7.即三角形AB =AC =8,BC =11.或AB =AC =10,BC =7.故选C.分析:等腰三角形两腰相等,会解二元一次方程.4.等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为( )A .60°B .120°C .60°或150°D .60°或120°答案:D解析:解答:分两种情况:一种是这个高在三角形内,即此三角形是锐角三角形顶角=180°-90°-30°=60°,另一种是这个高落在一腰延长线上,即此三角形为钝角三角形顶角的补角=180°-90°-30°=60°,顶角=180°-60°=120°.分析:此题要注意分两种情况,要考虑锐角三角形和钝角三角形.5.在等腰△ABC中,AB=AC,BD⊥AC,∠ABC=72°,则∠ABD=()A.36°B.54°C.18 °D.64°答案:B解析:解答:∵AB=AC,∠ABC=72°,∴∠ABC=∠ACB=72°,∴∠A=36°.∵BD⊥AC,∴∠ABD=90°-36°=54°.分析:根据等腰三角形的性质由已知可求得∠A的度数,再根据垂直的定义和三角形内角和定理不难求得∠ABD的度数.6. 在△ABC中,D是BC上的点,AB=AD=DC,∠B=70°,则∠C的度数为()A.35°B.40°C.45°D.50°答案:A解析:解答:∵AB=AD, ∴∠ADB=∠B=70°.∵AD=DC,∴12C DAC ADB∠=∠=∠=35°.分析:等腰三角形两底角相等,再根据三角形的外角等于和它不相邻的两个内角和.7. 在△ABC中,∠B=∠C,AB=5,则AC的长为()A.2 B.3 C.4 D.5答案:D解析:解答:∵∠B=∠C,∴AB=AC=5.分析:等腰三角形的性质可得AB=AC,继而得出AC的长.8. 在矩形ABCD中,AB<BC,AC,BD相交于点O,则等腰三角形的个数是()A.8 B.6 C.4 D.2答案:C解析:解答:∵四边形ABCD是矩形,∴AO=BO=CO=DO,∴△ABO,△BCO,△DCO,△ADO都是等腰三角形.分析:根据矩形的对角线相等且互相平分可得AO=BO=CO=DO,进而得到等腰三角形.9. 在等腰△ABC中,AB=AC,其周长为20 cm,则AB边的取值范围是()A.1 cm<AB<4 cm B.5 cm<AB<10 cm C.4 cm<AB<8 cm D.4 cm<AB<10cm 答案:B解析:解答:∵在等腰△ABC中,AB=AC,其周长为20cm,∴设AB=AC=x cm,则BC=(20-2x)cm,∴2x>20−2x,即20−2x>0.解得5 cm<x<10 cm.分析:设AB=AC=x,则BC=20-2x,根据三角形的三边关系即可得出结论.10. 在△ABC中,∠ACB=90°,BE平分∠ABC,ED⊥AB于D.如果∠A=30°,AE=6cm,那么CE等于()A. 4 cm B.2 cm C. 3 cm D.1 cm答案:C解析:解答:∵ED⊥AB,∠A=30°,∴AE=2ED,∵AE=6cm,∴ED=3cm.∵∠ACB=90°,BE平分∠ABC,∴ED=CE,∴CE=3cm.分析:根据在直角三角形中,30度所对的直角边等于斜边的一半得出AE=2ED,求出ED,再根据角平分线到两边的距离相等得出ED=CE,即可得出CE的值11.在平面直角坐标系xOy中,A(0,2),B(0,6),动点C在直线y=x上.若以A、B、C三点为顶点的三角形是等腰三角形,则点C的个数是( )A.2 B.3 C.4 D.5答案B解析:解答:AB的垂直平分线与直线y=x相交于点C1,∵A(0,2),B(0,6),∴AB=6-2=4,点A为圆心,以AB的长为半径画弧,与直线y=x的交点为C2,C3∴点B到直线y=x的距离为=∵4,∴以点B为圆心,以AB的长为半径画弧,与直线y=x没有交点,所以,点C的个数是1+2=3.分析:根据线段垂直平分线上的点到线段两端点的距离相等可得AB的垂直平分线与直线y=x 的交点为点C再求出AB的长,以点A为圆心,以AB的长为半径画弧,与直线y=x的交点为点C,求出点B到直线y=x的距离可知以点B为圆心,以AB的长为半径画弧,与直线没有交点12. 在△ABC中,AB=20 cm,AC=12 cm,点P从点B出发以每秒3 cm的速度向点A运动,点Q从点A同时出发以每秒2 cm的速度向点C运动,其中一个动点到达端点时,另一个动点也随之停止运动,当△APQ是以PQ为底的等腰三角形时,运动的时间是()A.秒B.3秒C.秒D.4秒答案:D解析:解答:设运动的时间为x cm/s,在△ABC中,AB=20cm,AC=12cm点P从点B出发以每秒3cm的速度向点A运动,点Q从点A同时出发以每秒2cm的速度向点C运动当△APQ是等腰三角形时,AP=AQ,AP=20-3x,AQ=2x即20-3x=2x,解得x=4.分析:设运动的时间为x,则AP=20-3x,当APQ是等腰三角形时,AP=AQ,则20-3x=2x,解得x即可.13. 等腰但不等边的三角形的角平分线、高线、中线的总条数是()A.3 B.5 C.7 D.9答案:C解析:解答:等腰但不等边的三角形底边上的角平分线、中线、高线三线重合成一条;腰上的三条线不重合,因而共有7条线.分析:画出图形,根据等腰三角形的性质进行分析即可得到答案14. 已知△ABC中,三边a,b,c满足|b-c|+(a-b)2=0,则∠A等于()A. 60°B.45°C.90°D.不能确定答案:A解析:解答:△ABC中,三边a,b,c满足|b-c|+(a-b)2=0∴b-c=0,a-b=0,∴a=b=c,∴三角形是等边三角形,∴∠A=60°.分析:根据非负数的性质列式求解得到a=b=c,然后选择答案即可.15.等腰三角形周长为36cm,两边长之比为4:1,则底边长为()A.16cm B.4cm C.20cm D.16cm或4cm答案:B解析:解答:因为两边长之比为4:1,所以设较短一边为x,则另一边为4x;(1)假设x为底边,4x为腰;则8x+x=36,x=4,即底边为4;(2)假设x为腰,4x为底边,则2x+4x=36,x=6,4x=24;∵6+6<24,∴该假设不成立.所以等腰三角形的底边为4cm.分析:题中只给出了两边之比,没有明确说明哪个是底哪个是腰,所以应该分两种情况进行分析,再结合三角形三边的关系将不合题意的解舍去.二、填空题16. 等腰三角形的一个外角为110°,则底角的度数可能是_______.答案:70°或55°解析:解答:当110°是等腰三角形底角的外角时,底角为70°;当110°是等腰三角形顶角的外角时,因为等腰三角形两底角相等,所以一个底角的度数等于外角110°的一半,即55°分析:外角与它相邻的内角互补,外角等于和它不相邻的两个内角和.17. 等腰三角形的对称轴是____________.答案:底边上的高(顶角平分线或底边的中线)所在的直线解析:解答:根据等腰三角形的性质,等腰三角形的对称轴是底边上的高(顶角平分线或底边的中线)所在的直线.分析:本题根据等腰三角形是轴对称图形,其对称轴是底边上的高所在的直线,因为等腰三角形底边上的高,顶角平分线,底边上的中线三线合一,所以等腰三角形的对称轴是底边上的高(顶角平分线或底边的中线)所在的直线.18.△ABC中,AB=AC,∠A=36°,BD平分∠ABC,则∠1 =_______度,此三角形有_______个等腰三角形.答案:72°/3解析:解答:∵AB=AC,∠A=36°,∴△ABC是等腰三角形,∠C=∠ABC=(180°−36°)12⨯=72°.∵BD为∠ABC的平分线,∴∠ABD=∠A=∠DBC=36°,∴AD=BD,△ADB是等腰三角形,∴∠1=180°-36°-72°=72°=∠C,∴BC=BD,△CDB是等腰三角形.图中共有3个等腰三角形.分析:由已知条件,根据三角形内角和等于180、角的平分线的性质求得各个角的度数,然后利用等腰三角形的判定进行找寻,注意做到由易到难,不重不漏.19. 在△ABC中,与∠A相邻的外角是100°,要使△ABC是等腰三角形,则∠B的度是_________.答案:80°或50°或20°解析:解答:∵∠A的相邻外角是100°,∴∠A=80°.分两种情况:(1)当∠A为底角时,另一底角∠B=∠A=80°;(2)当∠A为顶角时,则底角∠B=∠C=(180°−80°)12⨯=50°(3)当∠B是顶角时,∠B=180°-2∠A=20°.综上所述,∠B的度数是80°或50°或20°.分析:已知给出了∠A的相邻外角是100°,没有明确是顶角还是底角,所以要进行分类讨论,分类后还有用内角和定理去验证每种情况是不是都成立.20. 在△ABC中,若∠A=80°,∠B=50°,AC=5,则AB=_______.答案:5解析:解答:∵∠A=80°,∠B=50°,∴∠C=180°-80°-50°=50°.∴AB=AC=5.分析:由已知条件先求出∠C的度数是50°,根据等角对等边的性质求解即可.三、解答题.21.在△ABC中,AB=AC,AD是BC边上的高,∠C=63°,BC=4,求∠BAD的度数及DC的长.答案:27°/2 解答:∵AB =AC ,∠C =63°,∴∠B =∠C =63°,∴∠BAC =180°-63°-63°=54°. 又∵AD 是BC 边上的高,∴AD 是∠BAC 的平分线,AD 是BC 边上的中线,∴∠BAD =12∠BAC =27°,DC =12BC =2. 解析:分析:根据等腰三角形的两个底角相等求出顶角∠BAC 的度数,再由等腰三角形的三线合一性质即可求出∠BAD =12∠BAC =27°,DC =12BC =2. 22.在△ABC 中,AB =AC ,BD ⊥AC 于D ,CE ⊥AB 于E ,BD 、CE 相交于F .求证:AF 平分∠BAC答案:证明:∵AB =AC ,∴∠ABC =∠ACB .又∵BD ⊥AC ,CE ⊥AB ,∴∠BEC =∠CDB =90°. 在△BCE 和△CBD 中,∠ABC =∠ACB ,∠BEC =∠CDB ,BC =BC.∴△BCE ≌△CBD (AAS ).∴BE =CD.∵AB =AC ,BE =CD ,∴AB -BE =AC -CD ,∴AE =AD.∴在△AEF 和△ADF 中,AE =AD , AF =AF.△AEF ≌△ADF (HL ).∴∠EAF =∠DAF ,AF 平分∠BAC.解析:分析:要通过两次三角形全等,再结合等腰三角形的性质得出结论.23.如图,已知点B 、C 、D 在同一条直线上,△ABC 和△CDE 都是等边三角形.BE 交AC 于F ,AD 交CE 于H ,求证:(1)△BCE ≌△ACD ; 答案:证明:∵△ABC 和△CDE 都是等边三角形,∴∠BCA =∠DCE =60°,BC =AC =AB ,EC =CD =ED ,∴∠BCE =∠ACD .在△BCE 和△ACD 中,,,,BC AC BCE ACD CE CD =⎧∠=∠=⎪⎨⎪⎩∴△BCE ≌△ACD (S A S );(2)CF =CH ; 答案:∵△BCE ≌△ACD ,∴∠CBF =∠CAH .∵∠ACB =∠DCE =60°,在△BCF 和△ACH 中,∴∠ACH =60°,∴∠BCF =∠ACH ,,,,CBF CAH BC AC BCF ACH ∠=∠=∠=∠⎧⎪⎨⎪⎩∴△BCF ≌△ACH (A S A ),∴CF =CH ;(3)△FCH 是等边三角形;答案:∵CF =CH ,∠ACH =60°,∴△CFH 是等边三角形.(4)FH ∥BD.答案:证明:∵△CHF 为等边三角形∴∠FHC =60°,∵∠HCD =60°,∴FH ∥BD解析:分析:由等边三角形的三边相等,三角都是60°,再根据平角的关系,就能证明△BCE ≌△ACD ;由△BCE ≌△ACD 得出对应角相等,结合等边三角形的边角特点证明△BCF ≌△ACH ,能得出CF =CH ;两边等,加上一个角60°推出△CFH 是等边三角形;根据内错角相等,两直线平行推出FH ∥BD .24. 如图,已知AB =AC =AD ,且AD ∥BC ,求证:∠C =2∠D答案:证明:∵AB=AC=AD,∴∠C=∠ABC,∠D=∠ABD.∴∠ABC=∠CBD+∠D.∵AD∥BC,∴∠CBD=∠D,∴∠ABC=∠D+∠D=2∠D,又∵∠C=∠ABC,∴∠C=2∠D.解析:分析:首先根据AB=AC=AD,∵AD∥BC,∴∠D=∠DBC可得∠C=∠ABC,∠D=∠ABD,∠ABC=∠CBD+∠D;然后根据AD∥BC,可得∠CBD=∠D,据此判断出∠ABC=2∠D,再根据∠C=∠ABC,即可判断出∠C=2∠D25.如图,在△ABC中,∠B与∠C的平分线交于点O,过O点作DE∥BC,分别交AB、AC于D、E,若AB=5,AC=4,求△ADE的周长.答案:解答:∵在△ABC中,∠B与∠C的平分线交于点O,∴∠DBO=∠CBO,∠ECO=∠BCO,∵DE∥BC,∴∠DOB=∠CBO,∠EOC=∠BCO,∴∠DBO=∠DOB,∠ECO=∠EOC,∴OD=BD,OE=CE,∵AB=5,AC=4,∴△ADE的周长为:AD+DE+AE=AD+DO+EO+AE=AD+DB+EC+AE=AB+AC=5+4=9.解析:分析:由在△ABC中,∠B与∠C的平分线交于点O,过点O作DE∥BC,易证得△DOB与△EOC是等腰三角形,即DO=DB,EO=EC,继而可得△ADE的周长等于AB+AC,即可求得答案.北师大版数学八年级课时练习一、选择题1.如图,△ABC中,AB=5,AC=6,BC=4,边AB的垂直平分线交AC于点D,则△BDC 的周长是()A. 8B. 9C. 10D.11答案:C解析:解:∵ED是AB的垂直平分线,∴AD=BD,∵△BDC的周长=DB+BC+CD,∴△BDC的周长=AD+BC+CD=AC+BC=6+4=10.故选C.分析:由ED是AB的垂直平分线,可得AD=BD,又由△BDC的周长=DB+BC+CD,即可得△BDC的周长=AD+BC+CD=AC+BC.2.如图,△ABC中,BD平分∠ABC,BC的中垂线交BC于点E,交BD于点F,连接CF.若∠A=60°,∠ABD=24°,则∠ACF的度数为()A. 48°B. 36°C. 30°D. 24°答案:A解析:解:∵BD平分∠ABC,∴∠DBC=∠ABD=24°,∵∠A=60°,∴∠ACB=180°-60°-24°×2=72°,∵BC的中垂线交BC于点E,∴BF=CF,∴∠FCB=24°,∴∠ACF=72°-24°=48°,故选:A.分析:根据角平分线的性质可得∠DBC=∠ABD=24°,然后再计算出∠ACB的度数,再根据线段垂直平分线的性质可得BF=CF,进而可得∠FCB=24°,然后可算出∠ACF的度数. 3.如图,在等腰△ABC中,一腰AB的垂直平分线交另一腰AC于点G,若已知AB=10,△GBC的周长为17,则底BC的长为()A. 10B. 9C. 7D. 5答案:C解析:解:如图,∵在等腰△ABC中,一腰AB的垂直平分线交另一腰AC于点G,∴AG=BG,∵AB=10,△GBC的周长为17,∴CG+BG+BC=CG+AG+BC=AC+BC=17,AC=AB=10,∴BC=7.故选C.分析:首先根据题意在等腰△ABC中,一腰AB的垂直平分线交另一腰AC于点G,根据线段垂直平分线的性质,可得AG=BG,继而可得△GBC的周长=AC+BC=17,则可求得答案. 4.如图,AB=AC,∠A=40°,AB的垂直平分线DE交AC于点E,垂足为D,则∠EBC的度数是()A. 30°B. 40°C. 70°D. 80°答案:A解析:解:∵AB的垂直平分线DE交AC于点E,∴AE=BE,∴∠ABE=∠A=40°,∵AB=AC,∴∠ABC=∠C=70°,∴∠EBC=∠ABC-∠ABE=30°.故选A.分析:由AB的垂直平分线DE交AC于点E,可得AE=BE,继而求得∠ABE=∠A=40°,然后由AB=AC,求得∠ABC的度数,继而求得答案.5.如图,在△ABC中,AB的垂直平分线分别交AB,AC于D,E两点,且AC=10,BC=4,则△BCE的周长为()A. 6B. 14C. 18D. 24答案:B解析:解:∵AC=10,BC=4,∴AC+BC=10+4=14,∵DE是线段AB的垂直平分线,∴AE=BE,∴△BCE的周长=(BE+CE)+BC=AC+BC=14.故选B.分析:先根据AC=10,BC=4,可得出AC+BC的长,再根据DE是线段AB的垂直平分线可得到AE=BE,进而可得出答案.6.如图,在Rt△ABC中,∠C=90°,AC=12,AB=13,AB边的垂直平分线分别交AB、AC 于N、M两点,则△BCM的周长为()A. 18B. 16C. 17D. 无法确定答案:C解析:解:在Rt△ABC中,∠C=90°,AC=12,AB=13,由勾股定理得,BC=5,∵MN是AB的垂直平分线,∴MB=MA,∴△BCM的周长=BC+CM+MB=BC+CM+MA=BC+CA=17,故选:C分析:根据勾股定理求出BC的长,根据线段垂直平分线的性质得到MB=MA,根据三角形的周长的计算方法代入计算即可.7.如果三角形三条边的中垂线的交点在三角形的外部,那么,这个三角形是()A. 直角三角形B. 锐角三角形C. 钝角三角形D. 等边三角形答案:C解析:解:如图,O是边AB和边AC的垂直平分线的交点,则AO=OB,AO=OC,所以∠OAB=∠OBA,∠OAC=∠OCA,∵∠BAC=∠OAB+∠OAC=∠OBA+∠OCA,∴∠BAC>∠ABC+∠ACB,∵∠BAC+∠ABC+∠ACB=180°,∴∠BAC>90°,即△ABC是钝角三角形,故选C分析:先根据题意画出图形,再根据线段垂直平分线性质、等腰三角形的性质、三角形的内角和定理求出∠BAC>90°即可.8. 已知MN是线段AB的垂直平分线,C,D是MN上任意两点,则∠CAD和∠CBD之间的大小关系是()A.∠CAD<∠CBD B.∠CAD=∠CBD C.∠CAD>∠CBD D.无法确定答案:B解析:解:∵MN是线段AB的垂直平分线,C,D是MN上任意两点,∴AC=BC,AD=BD,∴∠DAB=∠CBA,∠DAB=∠DBA,如图1,∠CAD=∠CAB+∠DAB,∠CBD=∠CBA+∠DBA,∴∠CAD=∠CBD;如图2,∠CAD=∠CAB-∠DAB,∠CBD=∠CBA-∠DBA,∴∠CAD=∠CBD.故选B.分析:首先根据题意画出图形,然后由MN是线段AB的垂直平分线,C,D是MN上任意两点,根据线段垂直平分线的性质可得:AC=BC,AD=BD,则可证得∠DAB=∠CBA,∠DAB=∠DBA,继而求得答案.9. 已知△ABC中,AB=AC,AB的垂直平分线交AC于D,△ABC和△DBC的周长分别是60 cm和38 cm,则△ABC的腰和底边长分别为()A.24 cm和12 cm B.16 cm和22 cm C.20 cm和16 cm D.22 cm和16 cm答案:D解析:解:如图,连接BD,∵D在线段AB的垂直平分线上,∴BD=AD,∴BD+DC+BC=AC+BC=38 cm,且AB+AC+BC=60 cm,∴AB=60 cm-38 cm =22 cm,∴AC=22 cm,∴BC=38 cm-AC=38 cm-22 cm =16 cm,即等腰三角形的腰为22 cm,底为16 cm,故选D.分析:连接BD,根据线段垂直平分线的性质可得到BD=AD,可知两三角形周长差为AB,结合条件可求得腰长,再由周长可求得BC,可得出答案.10.如图,地面上有三个洞口A、B、C,老鼠可以从任意一个洞口跑出,猫为能同时最省力地顾及到三个洞口(到A、B、C三个点的距离相等),尽快抓到老鼠,应该蹲守在()A.△ABC三边垂直平分线的交点B.△ABC三条角平分线的交点C.△ABC三条高所在直线的交点D.△ABC三条中线的交点答案:A解析:解:∵三角形三边垂直平分线的交点到三个顶点的距离相等,∴猫应该蹲守在△ABC三边垂直平分线的交点处.故选A分析:根据题意,知猫应该到三个洞口的距离相等,则此点就是三角形三边垂直平分线的交点.11. 三角形内有一点到三角形三顶点的距离相等,则这点一定是三角形的()A.三条中线的交点B.三边垂直平分线的交点C.三条高的交点D.三条角平分线的交点答案:B解析:解:三角形内有一点到三角形三顶点的距离相等,则这点一定是三角形的三边垂直平分线的交点,故选:B.分析:根据线段垂直平分线的性质:线段垂直平分线上任意一点,到线段两端点的距离相等可得答案.12. △ABC中,AB=AC,AB的垂直平分线与直线AC相交所成锐角为40°,则此等腰三角形的顶角为()A.50°B.60°C.150°D.50°或130°答案:D解析:解:(1)当AB的中垂线MN与AC相交时易得∠A=90°-40°=50°,(2)当AB的中垂线MN与CA的延长线相交时,易得∠DAB=90°-40°=50°,∴∠A=130°,故选D.分析:此题根据△ABC中∠A为锐角与钝角分为两种情况解答.13. 如图,在Rt△ABC中,∠C=90°,直线DE是斜边AB的垂直平分线交AC于D.若AC=8,BC=6,则△DBC的周长为()A.12 B.14 C.16 D.无法计算答案:B解析:解:∵DE是AB的垂直平分线,∴DA=DB,∴△DBC的周长为CB+CD+DB=CB+CD+DA=BC+CA=6+8=14,故选:B分析:根据线段的垂直平分线上的点到线段的两个端点的距离相等得到DA=DB,根据三角形周长公式求出周长.14. 如图,在△ABC中,AB=A,AC=B,BC边上的垂直平分线DE交BC、BA分别于点D、E,则△AEC的周长等于()A.A+B B.A-B C.2A+B D.A+2B答案:A解析:解:∵ED垂直且平分BC,∴BE=CE.∵AB=A,AC=B,∴AB=AE+BE=AE+CE=A.∴△AEC的周长为:AE+EC+AC=A+B.故选A分析:要求三角形的周长,知道AC=B,只要求得AE+EC即可,由DE是BC的垂直平分线,结合线段的垂直平分线的性质,知EC=BE,这样三角形周长的一部分AE+EC=AE+BE=AB,代入数值,答案可得.15. 如图,有A、B、C三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在()A.在AC,BC两边高线的交点处B.在AC,BC两边中线的交点处C.在AC,BC两边垂直平分线的交点处D.在∠A,∠B两内角平分线的交点处答案:C解析:解:根据线段的垂直平分线的性质:线段的垂直平分线上的点到线段的两个端点的距离相等.则超市应建在AC,BC两边垂直平分线的交点处.故选C.分析:要求到三小区的距离相等,首先思考到A小区、B小区距离相等,根据线段垂直平分线定理的逆定理知满足条件的点在线段AB的垂直平分线上,同理到B小区、C小区的距离相等的点在线段BC的垂直平分线上,于是到三个小区的距离相等的点应是其交点,答案可得.二、填空题16.△ABC中,AB=AC,∠BAC=120°,AC的垂直平分线EF交AC于E,交BC于F.若FC=3 cm,则BF=_________.答案:6 cm解析:解:连接AF.∵AB=AC,∠BAC=120°,∴∠B=∠C=30°;∵AC的垂直平分线EF交AC于点E,交BC于点F,∴CF=AF,∠FAC=30°,∴∠BAF=90°,∴BF=2AF(30°直角边等于斜边的一半),∴BF=2CF=6 cm.故答案是:6 cm分析:利用辅助线,连接AF,求出CF=AF,∠BAF=90°,再根据AB=AC,∠BAC= 120°可求出∠B的度数,由直角三角形的性质即可求出BF=2AF=2CF=6 cm.17. 如图,ED为△ABC的AC边的垂直平分线,且AB=5,△BCE的周长为8,则BC=________.答案:3解析:解:∵ED为AC上的垂直平分线,∴AE=EC,∵AB=AE+EB=5,△BCE的周长=AE+BE+BC=AB+BC=8,∴BC=8-5=3.故答案为:3分析:根据ED为AC上的垂直平分线,得出AE=CE,再根据AB=5,△BCE的周长为AB+BC=8,即可求得BC.18.如图,已知在△ABC中,AB=AC=10,DE垂直平分AB,垂足为E,DE交AC于D,若△BDC的周长为16,则BC=__________ .答案:6解析:解:∵DE垂直平分AB,∴AD=BD,∴AD+CD=BD+CD,即AC=BD+CD,∵AC=10,△BDC的周长为16,∴BC=16-AC=16-10=6.故答案为:6分析:先根据DE垂直平分AB可知,AD=BD,即AC=BD+CD,再由AC=10,△BDC的周长为16即可求出答案.19. 如图,在等腰三角形ABC中,AB=AC,DE垂直平分AB,已知∠ADE=40°,则∠DBC=答案:15解析:解:∵DE垂直平分AB,∴AD=BD,∠AED=90°,∴∠A=∠ABD,∵∠ADE=40°,∴∠A=90°-40°=50°,∴∠ABD=∠A=50°,∵AB=AC,∴∠ABC=∠C=65°,∴∠DBC=∠ABC-∠ABD=65°-50°=15°,故答案为:15分析:根据线段垂直平分线求出AD=BD,推出∠A=∠ABD=50°,根据三角形内角和定理和等腰三角形性质求出∠ABC,即可得出答案.20.点P在线段AB的垂直平分线上,PA=7,则PB= _________.答案:7解析:解:∵点P在线段AB的垂直平分线上,PA=7,∴PB=PA=7,故答案为:7分析:根据线段垂直平分线的性质得出PA=PB,代入即可求出答案.三、解答题21. 某公园有海盗船、摩天轮、碰碰车三个娱乐项目,现要在公园内建一个售票中心,使三个娱乐项目所处位置到售票中心的距离相等,请在图中确定售票中心的位置.答案:解:如图,①连接AB,AC,②分别作线段AB,AC的垂直平分线,两垂直平分线相较于点P,则P即为售票中心解析:由三个娱乐项目所处位置到售票中心的距离相等,可得售票中心是海盗船、摩天轮、碰碰车三个娱乐场组成三角形的三边的垂直平分线的交点.22.如图,在△ABC中,∠C=90°,DE垂直平分AB,分别交AB,BC于D,E.若∠CAE=∠B+30°,求∠AEB的度数答案:140°解析:解:∵DE垂直平分AB,∴AE=BE,∴∠B=∠EAB.∵∠C=90°,∠CAE=∠B+30°,∴∠B+30°+∠B+∠B=90°,∴∠B=20°,∴∠AEB=180°-20°-20°=140°.分析:根据线段垂直平分线求出AE=BE,推出∠B=∠EAB,根据已知和三角形内角和定理得出∠B+30°+∠B+∠B=90°,求出∠B,即可得出答案.23.如图,在△ABC中,AB=AC,AB的垂直平分线MN交AC于点D,交AB于点E.(1)求证:△ABD是等腰三角形;(2)若∠A=40°,求∠DBC的度数;(3)若AE=6,△CBD的周长为20,求△ABC的周长答案:(1)证明:∵AB的垂直平分线MN交AC于点D,∴DB=DA,∴△ABD是等腰三角形.(2)30°(3)32解析:解:(1)证明:∵AB的垂直平分线MN交AC于点D,∴DB=DA,∴△ABD是等腰三角形;(2)∵△ABD是等腰三角形,∠A=40°,∴∠ABD=∠A=40°,∠ABC=∠C=(180°-40°)÷2=70°.∴∠BDC=∠ABC-∠ABD=70°-40°=30°.(3)∵AB的垂直平分线MN交AC于点D,AE=6,∴AB=2AD=12.∵△CBD的周长为20,∴AC+BC=20,∴△ABC的周长=AB+AC+BC=12+20=32.分析:(1)根据线段的垂直平分线到线段两端点的距离相等即可得证;(2)首先利用三角形内角和求得∠ABC的度数,然后减去∠ABD的度数即可得到答案;(3)将△ABC的周长转化为AB+AC+BC的长即可求得.24.如图所示,在△ABC中,DE是边AB的垂直平分线,交AB于E,交AC于D,连接BD.(1)若∠ABC=∠C,∠A=50°,求∠DBC的度数.(2)若AB=AC,且△BCD的周长为18 cm,△ABC的周长为30 cm,求BE的长.答案:(1)15°;(2)6 cm解析:解:(1)∵∠A=50°,∴∠ABC=∠C=65°.又∵DE垂直平分AB,∴∠A=∠ABD=50°,∴∠DBC=∠ABC-∠ABD=15°.(2)∵DE是AB的垂直平分线,∴AD=BD,AE=BE,∴△BCD的周长=BC+CD+BD=BC+CD+AD=BC+AC=18 cm.∵△ABC的周长=30 cm,∴AB=30-18=12 cm,∴BE=AE=6 cm.分析:(1)已知∠A=50°,易求∠ABC的度数.又因为DE垂直平分AB根据线段垂直平分线的性质易求出∠DBC的度数.(2)同样利用线段垂直平分线的性质:垂直平分线上任意一点,和线段两端点的距离相等可解.25.已知:如图,在△ABC中,MN是边AB的中垂线,∠MAC=50°,∠C=3∠B,求∠B 的度数=26°答案:B解析:解:∵MN是边AB的中垂线,∴AM=BM,∴∠BAM=∠B.设∠B=x,则∠BAM=x,∵∠C=3∠B,∴∠C=3x,在△ABC中,由三角形内角和定理,得x+x+3x+50°=180°,∴x=26°,即∠B=26°分析:根据线段垂直平分线性质得出AM=BM,推出∠BAM=∠B,设∠B=x,则∠BAM=x,∠C=3x,在△ABC中,由三角形内角和定理得出方程x+x+3x+50°=180°,求出即可。

人教版八年级下册数学专题复习及练习(含解析):等腰三角形

人教版八年级下册数学专题复习及练习(含解析):等腰三角形

专题13.3 等腰三角形知识点1:等腰三角形1.等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.2.等腰三角形的性质:(1)等腰三角形的两个底角相等(简写成“等边对等角”).(2)等腰三角形的顶角平分线,底边上的中线、 底边上的高互相重合(通常称作“三线合一”).3.等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).知识点2:等边三角形1.定义:三条边相等的三角形叫做等边三角形.2.等边三角形的性质和判定:(1)等边三角形的三个内角都相等,并且每一个角都等于60°。

(2)三个角都相等的三角形是等边三角形。

(3)有一个角是60°的等腰三角形是等边三角形。

知识点3:直角三角形的一个定理在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.【例题1】如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求:△ABC各角的度数.【例题2】证明:在直角三角形中,如果一个锐角等于30°, 那么它所对的直角边等于斜边的一半. 已知:如图,在Rt △ABC 中,∠C=90°,∠BAC=30°.求证:BC=AB .【例题7】已知等边三角形的边长为3,点P 为等边三角形内任意一点,则点P 到三边的距离之和为( )A .B .C .D .不能确定【例题3】如图,已知AC ⊥BC ,BD ⊥AD ,AC 与BD 交于点O ,AC=BD.求证:(1)BC=AD ;(2)△OAB 是等腰三角形.一、选择题1.已知等边三角形的边长为3,点P 为等边三角形内任意一点,则点P 到三边的距离之和为( )12C AA.B.C.D.不能确定2.如图所示,点D是△ABC的边AC上一点(不含端点),AD=BD,则下列结论正确的是()A.AC>BC B.AC=BC C.∠A>∠ABC D.∠A=∠ABC3.如图,∠AOB=120°,OP平分∠AOB,且OP=2.若点M,N分别在OA,OB上,且△PMN 为等边三角形,则满足上述条件的△PMN有()A.1个B.2个C.3个D.3个以上4.如图所示,底边BC为2,顶角A为120°的等腰△ABC中,DE垂直平分AB于D,则△ACE的周长为()A.2+2B.2+C.4 D.3二、解答题5.已知:在△ABC中,AB=AC,D为AC的中点,DE⊥AB,DF⊥BC,垂足分别为点E,F,且DE=DF.求证:△ABC是等边三角形.6.如图,在△ABC中,过C作∠BAC的平分线AD的垂线,垂足为D,DE∥AB交AC于E.求证:AE=CE.7.求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形.已知:∠CAE 是△ABC 的外角,∠1=∠2,AD ∥BC (如图).求证:AB=AC .8.已知:如图,AD ∥BC ,BD 平分∠ABC .求证:AB=AD .9.证明:等腰三角形两底角的平分线相等.已知:如图,在△ABC 中,AB=AC ,BD 、CE 是△ABC 的平分线.求证:BD=CE .10.证明:等腰三角形两腰上的高相等.已知:如图,在△ABC 中,AB=AC ,BE 、CF 分别是△ABC 的高.E DCAB11.证明:等腰三角形两腰上的中线相等.已知:如图,在△ABC 中,AB=AC ,BD 、CE 分别是两腰上的中线.求证:BD=CE .12.已知:如图,在△ABC 中,AB=AC=2a ,∠ABC=∠ACB=15°,CD 是腰AB 上的高.求:CD 的长.13.已知:如图,△ABC 中,∠ACB=90°,CD 是高,∠A=30°.求证:BD=AB .14.已知直角三角形的一个锐角等于另一个锐角的2倍,这个角的平分线把对边分成两条线段.求证:其中一条是另一条的2倍.已知:在Rt △ABC 中,∠A=90°,∠ABC=2∠C ,BD 是∠ABC 的平分线.1415.已知:如图,在Rt △ABC 中,∠C=90°,BC=AB .求证:∠BAC=30°.16.已知,如图,点C 为线段AB 上一点,△ACM 、△CBN 是等边三角形.求证:AN=BM .17.一个直角三角形房梁如图所示,其中BC ⊥AC ,∠BAC=30°,AB=10cm , CB 1⊥AB ,B 1C ⊥AC 1,垂足分别是B 1、C 1,那么BC 的长是多少?18.如图,△ABC 中,AB=AC ,∠A=36°,AC 的垂直平分线交AB 于E ,D 为垂足,连接EC .(1)求∠ECD 的度数;(2)若CE=5,求BC 长.12专题13.3 等腰三角形知识点1:等腰三角形1.等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.2.等腰三角形的性质:(1)等腰三角形的两个底角相等(简写成“等边对等角”).(2)等腰三角形的顶角平分线,底边上的中线、 底边上的高互相重合(通常称作“三线合一”).3.等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).知识点2:等边三角形1.定义:三条边相等的三角形叫做等边三角形.2.等边三角形的性质和判定:(1)等边三角形的三个内角都相等,并且每一个角都等于60°。

12.3 等腰三角形水平测试(含答案)

12.3 等腰三角形水平测试(含答案)

12.3 等腰三角形一、选择题题号一1 二2 三3 四4 五5 六6 七7 八8 得分度的反复训练才能取得跟多的收获,我们设计的试卷主要就是从这点出发,所以从你下载这张试卷开始,就与知识接近了一步。

1.等腰三角形的周长为26㎝,一边长为6㎝,那么腰长为()A.6㎝B.10㎝C.6㎝或10㎝D.14㎝2.已知△ABC,AB =AC,∠B=65°,∠C度数是( )A.50°B.65°C.70°D.75°3.等腰三角形是轴对称图形,它的对称轴是()A.过顶点的直线B.底边的垂线C.顶角的平分线所在的直线D.腰上的高所在的直线二、填空题4.等腰三角形的两个_______相等(简写成“____________”).5.已知△ABC,AB =AC,∠A=80°,∠B度数是_________.6.等腰三角形的两个内角的比是1:2,则这个等腰三角形的顶角的度数是_______________.7.等腰三角形的腰长是6,则底边长5,周长为__________.三、解答题8.如图AB=AD,AD∥BC,求证:BD平分∠ABC.(写出每步证明的重要依据)9.如图,在△ABC中,AB=AC,D、E分别在AC、AB边上,且BC=BD,AD=DE=EB。

求∠A的度数参考答案一、选择题1.B2.B3.C二、填空题4.底角,等边对等角5.50°6.36°或90°7.16或17三、解答题8.如图AB=AD,AD∥BC,求证:BD平分∠ABC.证明:∵AB=AD(已知)∴∠ABD=∠ADB(等边对等角)∵AD∥BC(已知)∴∠ADB=∠CBD(两直线平行,内错角相等)∴∠ABD=∠CBD(等量代换)∴BD平分∠ABC.(角平分线定义)9.4512.3.2等边三角形一、选择题1.△ABC是等边三角形,D、E、F为各边中点,则图中共.有正三角形( ) A.2个B.3个C.4个D.5个2.△ABC中,∠A:∠B:∠C=1:2:3,则BC:AB等于( )A.2:1 B.1:2 C.1:3 D.2 :3二、填空题3.等边三角形的周长为6㎝,则它的边长为________.4.等边三角形的两条高线相交所成钝角的度数是__________.5.在△ABC中,∠A=∠B=∠C,则△ABC是_____三角形.6.△ABC中,∠AC B=90°∠B=60°,BC=3㎝,则AB=_______.三、解答题7.△ABC是等边三角形,点D在边BC上,DE∥AC,△BDE是等边三角形吗?试说明理由.8.已知:如图,P,Q是△ABC边上BC上的两点,且BP=PQ=QC=AP=AQ。

中考数学复习《等腰、等边及直角三角形》经典题型(含答案)

中考数学复习《等腰、等边及直角三角形》经典题型(含答案)

中考数学复习《等腰、等边及直角三角形》经典题型(含答案)知识点一:等腰和等边三角形1.等腰三角形定义:有两条边相等的三角形叫等腰三角形(1)性质①等边对等角:两腰相等,底角相等,即AB=AC ∠B=∠C;②三线合一:顶角的平分线、底边上的中线和底边上的高互相重合;③对称性:等腰三角形是轴对称图形,直线AD是对称轴.(2)判定①定义:有两边相等的三角形是等腰三角形;注意:1.实际解题中的一个常用技巧是,构造等腰三角形,进而利用等腰三角形的性质为解题服务,常用的构造方法有:1)、“角平分线+平行线”构造等腰三角形。

2)、“角平分线+垂线”构造等腰三角形。

3)、用“垂直平分线”构造等腰三角形;4)、用“三角形中角的2倍关系”构造等腰三角形。

2.当等腰三角形的腰和底不明确时,需分类讨论.变式练习1:如若等腰三角形ABC的一个内角为30°,则另外两个角的度数为30°、120°或75°、75°.3.三角形中“垂线、角平分线、中线、等腰”四个条件中,只要满足其中两个,其余均成立.变式练习2:如右图,已知AD⊥BC,D为BC的中点,则三角形的形状是等腰三角形.②等角对等边:即若∠B=∠C,则△ABC是等腰三角形.变式练习3:一个等腰三角形的两边长分别为3和7,则它的周长为( ) A. 17 B. 15 C. 13 D. 13或17【解析】A ①当等腰三角形的腰为3,底为7时,3+3<7不能构成三角形;②当等腰三角形的腰为7,底为3时,周长为3+7+7=17,故这个等腰三角形的周长是17.变式练习4:如图,O为数轴原点,A,B两点分别对应-3,3,作腰长为4的等腰△ABC,连接OC,以O为圆心,CO长为半径画弧交数轴于点M,则点M对应的实数为 __7__.变式练习5:一个等腰三角形的两边长分别为4,8,则它的周长为( C )A.12 B.16 C.20 D.16或202.等边三角形(1)性质①边角关系:三边相等,三角都相等且都等于60°.即AB=BC=AC,∠BAC=∠B=∠C=60°;②对称性:等边三角形是轴对称图形,三条高线(或角平分线或中线)所在的直线是对称轴.(2)判定①定义:三边都相等的三角形是等边三角形;②三个角都相等(均为60°)的三角形是等边三角形;③任一内角为60°的等腰三角形是等边三角形.即若AB=AC,且∠B=60°,则△ABC是等边三角形.变式练习1:△ABC中,∠B=60°,AB=A C,BC=3,则△ABC的周长为9.变式练习2:在等边△ABC中,点D,E分别在边BC,AC上,若CD=2,过点D 作DE∥AB,过点E作EF⊥DE,交BC的延长线于点F,求EF的长.解:∵△ABC是等边三角形,∴∠B=∠ACB=60°,∵DE∥AB,∴∠EDC=∠B=60°,∴△EDC是等边三角形,∴DE=DC=2,在Rt△DEF,∵∠DEF=90°,DE=2,∴DF=2DE=4,∴EF=DF2-DE2=42-22=2 3.变式练习3:如图,△ABC是等边三角形,BD平分∠ABC,点E在BC的延长线上,且CE=1,∠E=30°,则BC=__2__.知识点二:角平分线和垂直平分线1.角平分线(1)性质:角平分线上的点到角的两边的距离相等.即若∠1 =∠2,PA⊥OA,PB⊥OB,则PA=PB.(2)判定:角的内部到角的两边的距离相等的点在角的角平分线上.4.垂直平分线图形(1)性质:线段的垂直平分线上的点到这条线段的两端点距离相等.即若OP垂直且平分AB,则PA=PB.(2)判定:到一条线段两端点距离相等的点在这条线段的垂直平分线上.21P C OBAPCO B A注意:(1)等边三角形是特殊的等腰三角形,所以等边三角形也满足“三线合一”的性质.(2)等边三角形有一个特殊的角60°,所以当等边三角形出现高时,会结合直角三角形30°角的性质,即BD=1/2AB.变式练习:如图,△ABC中,∠C=90°,∠A=30°,AB的垂直平分线交AC于D,交AB于E,CD=2,则AC=6.知识点三:直角三角形的判定与性质1.直角三角形的性质(1)两锐角互余.即∠A+∠B=90°;(2) 30°角所对的直角边等于斜边的一半.即若∠B=30°则AC=12AB;(3)斜边上的中线长等于斜边长的一半.即若CD是中线,则CD=12AB.(4)勾股定理:两直角边a、b的平方和等于斜边c的平方.即a2+b2=c2 .2.直角三角形的判定(1) 有一个角是直角的三角形是直角三角形.即若∠C=90°,则△ABC是Rt△;(2) 如果三角形一条边的中线等于这条边的一半,那么这个三角形是直角三角形.即若AD=BD=CD,则△ ABC是Rt△(3) 勾股定理的逆定理:若a2+b2=c2,则△ABC是Rt△.3.直角三角形相似判定定理1).斜边与一条直角边对应成比例的两直角三角形相似。

八年级数学12.3等腰三角形水平测试题及答案

八年级数学12.3等腰三角形水平测试题及答案

12.3等腰三角形水平测试题一.选择题(每小题3分;共24分)1. 小明将两个全等且有一个角为60的直角三角形拼成如图1所示的图形;其中两条较长直角边在同一直线上;则图中等腰三角形的个数是( )A.4 B.3 C.2 D.12、已知等腰三角形的一个角等于42°;则它的底角为 ( ). A 、42 ° B 、69° C 、69°或84° D 、42°或69°3、如图;ABC △中;AB AC =;30A ∠=;DE 垂直平分AC ;则BCD ∠的度数为( )A.80 B.75 C.65 D.454、等腰三角形的顶角是80°;则一腰上的高与底边的夹角是( ) A .40° B .50° C .60° D .30°5、如图;已知等边三角形ABC 中;BD CE =;AD 与BE 交于点P ;则APE ∠的度数是( ) A .45B .55C .60D .756、如图是一个等边三角形木框;甲虫P 在边框AC 上爬行(A ;C 端点除外);设甲虫P 到另外两边的距离之和为d ;等边三角形ABC 的高为h ;则d 与h 的大小关系是( ) A.d h > B.d h < C.d h = D.无法确定7. 如图;15A =∠;AB BC CD DE EF ====;则DEF ∠等于( )A F C H BME G AD EE DC AB F A .90 B .75C .70D .608、如图;△MNP 中; ∠P=60°;MN=NP ;MQ ⊥PN ;垂足为Q ;延长MN 至G ;取NG=NQ ;若△MNP 的周长为12;MQ=a ;则△MGQ 周长是( )PQMNGA .8+2aB .8+aC .6+aD .6+2a二.选择题(每小题3分;共24分)1. 在△ABC 中;AB=AC ;若∠B=56º;则∠C=__________.2.等腰三角形底边中点与一腰的距离为6;则腰上的高为______.3.如图;在△ABC 中;AB=AC ;CD 平分∠ACB 交AB 于点D ;AE ∥DC 交BC 的延长线于点E ;已知∠E=36°;则∠B= .4.如图;在ABC △中;点D 是BC 上一点;80BAD ∠=°;AB AD DC ==;则C ∠= .5. 等腰三角形至少有a 条对称轴;至多有b 条对称轴;则b a -= .6. 有一个等腰三角形;三边分别是3x -2;4x -3;6-2x ;则等腰三角形的周长___.7. 如图;△ABC 中AB=AC ;EB=BD=DC=CF ;∠A=40°;则∠EDF•的度数是_____.8.在△ABC 中;B C ⊥AC ;D E ⊥AC ;D 是AB 的中点;若∠A=300;AB=8;则BC= ;DE= 。

八年级上册数学人教版课时练《13.3.1 等腰三角形》02(含答案解析)

八年级上册数学人教版课时练《13.3.1 等腰三角形》02(含答案解析)

答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。

2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。

亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。

相信你是最棒的!《13.3.1等腰三角形》课时练一、选择题1.下列命题中,属于假命题的是()A.等腰三角形底边上的高是它的对称轴B.有两个角相等的三角形是等腰三角形C.等腰三角形底边上的中线平分顶角D.等边三角形的每一个内角都等于60∘2.如图,在△ABC中,∠B=∠C, AB=5,则AC的长为()A.2B.3C.4D.53.如图:等腰直角△ABC中,若∠ACB=90∘,CD=DE=CE,则∠DAB 的度数为()A.60∘B.30∘C.45∘D.15∘4.等腰三角形的一腰上的高与另一腰的夹角是48∘,它的一个底角的度数是()A.48∘B.21∘或69∘C.21∘D.48∘或69∘5.已知等腰三角形的两边长分别为5㎝、2㎝,则该等腰三角形的周长是()A.7㎝B.9㎝C.12㎝或者9㎝D.12㎝6.等腰直角三角形的底边长为5,则它的面积是()A.25B.12.5C.10D.6.257.如图,△ABC中,∠ABC=90∘,∠C=30∘,AD是角平分线,DE⊥AC 于E,AD、BE相交于点F,则图中的等腰三角形有()A.2个B.3个C.4个D.5个8.一个角是60∘的等腰三角形是()A.等腰直角三角形B.等边三角形C.直角三角形D.上述都正确9.以下关于等边三角形的判定:①三条边相等的三角形是等边三角形;②有一个角是60∘的等腰三角形是等边三角形;③有两个角为60∘的三角形是等边三角形④三个角相等的三角形是等边三角形其中正确的是()A.只有①②③B.只有①②④C.只有①③④D.①②③④10.如图,在△ABC中,∠B=60∘,AB=9,BP=3,AP=AC,则BC 的长为()A.8B.7C.6D.511.等腰三角形一腰上的高等于该三角形另一边长的一半.则其顶角等于()A.30∘B.30∘或150∘C.120∘或150∘D.120∘、30∘或150∘12.等腰三角形的一个角比另一个角的2倍少20度,等腰三角形顶角的度数是()A.140∘B.20∘或80∘C.44∘或80∘D.140∘或44∘或80∘二、填空题13.等腰三角形一腰的高等于腰长的一半,则其顶角的度数为________.14.如图,△ABC是边长为8的等边三角形,点D在BC的延长线上,做DF⊥AB,垂足为F,若CD=6,则AF的长等于________.15.如图所示的图形由4个等腰直角形组成,其中直角三角形(1)的腰长为1cm,则直角三角形(4)的斜边长为________.16.如图等边三角形ABC中,AB=3,D、E是BC上的两点,AD、AE把△ABC分割成周长相等的三个三角形,则CD=________.17.如图,在△ABC中,∠ABC=∠C,∠A=100∘,BD平分∠ABC交AC于点D,点E是BC上一个动点.若△DEC是直角三角形,则∠BDE的度数是________.三、解答题18.从①∠B=∠C;②∠BAD=∠CDA;③AB=DC;④BE=CE四个等式中选出两个作为条件,证明△AED是等腰三角形(写出一种即可).已知:________(只填序号),求证:△AED是等腰三角形.19.如图,BD//AC,BD=BC,点E在BC上,且BE=AC.求证:D=∠ABC.20.如图所示,在矩形ABCD中,DE⊥CE,∠ADE=30∘,DE=4,求这个矩形的周长.21.如图,在△ABC中,∠ACB−∠B=90∘,∠BAC的平分线交BC于点E,∠BAC的外角∠CAD的平分线交BC的延长线于点F,试判断△AEF的形状.22.(1)如图①,△ABC是等边三角形,△ABC所在平面上有一点P,使△PAB,△PBC,△PAC都是等腰三角形,问:具有这样性质的点P有几个?在图中画出来.(2)如图②,正方形ABCD所在的平面上有一点P,使△PAB,△PBC,△PCD,△PDA都是等腰三角形,问:具有这样性质的点P有几个?在图中画出来.参考答案题号12345678910答案A D D B D D C B D C 题号1112答案D D13.30∘或150∘14.115.416.−3+3331617.30∘或70∘18.证明:选择的条件是:①∠B=∠C②∠BAD=∠CDA(或①③,①④,②③);证明:在△BAD和△CDA中,∵∠B=∠C,∠BAD=∠CDA,AD=DA,∴△BAD≅△CDA(AAS),∴∠ADB=∠DAC,即在△AED中∠ADE=∠DAE,∴AE=DE,△AED为等腰三角形.19.证明:∵BD//AC,∴∠EBD=∠C,BD=BC,BE=AC,∴△EDB≅ABC SAS,∴∠D=∠ABC20.解:∵四边形ABCD是矩形,∴∠A=∠B=90∘,AD=BC.在Rt△ADE中,∵∠A=90∘,∠ADE=30∘,DE=4,∴AE=12DE=2,AD=3AE=23.∵DE⊥CE,∠A=90∘,∴∠BEC=∠ADE=90∘−∠AED=30∘.在Rt△BEC中,∵∠B=90∘,∠BEC=30∘,BC=AD=23,∴BE=3BC=6,∴AB=AE+BE=2+6=8,∴矩形ABCD的周长=2(AB+AD)=2(8+23)=16+43.21.解:△AEF是等腰直角三角形;理由如下:如图所示:∵AE平分∠BAC,AF平分∠CAD,∴∠EAC=12∠BAC,∠FAC=12∠CAD,∵∠BAC+∠CAD=180∘,∴∠EAC+∠FAC=12(∠BAC+∠CAD)=90∘,即∠EAF=90∘,∵∠ACB−∠B=90∘,∴∠ACB=90∘+∠B,∴∠1=90∘−∠B=∠B+∠BAC,∴∠B=12(90∘−∠BAC),∴∠4=∠B+∠AEF,∵AE平分∠DAC,∴∠3=∠4=∠B+∠AEF,∵∠BAC+∠3+∠4=180∘,∴2(∠B+∠AEF)+∠BAC=2[12(90∘−∠BAC)+∠AEF]+∠BAC=180∘,∴∠AEF=45∘,∴∠AFE=45∘,∴△AEF是等腰直角三角形.22.【解答】(1)10个,如解图①,当点P在△ABC内部时,P是边AB.BC.CA的垂直平分线的交点:当点P在△ABC外部时,P是以三角形各顶点为圆心,边长为半径的圆与三条垂直平分线的交点每条垂直平分线上得3个交点,故具有这样性质的点P共有10个.(2)9个,如解图③.两条对角线的交点是1个,以正方形各顶点为圆心,边长为半径画圆,在正方形里面和外面的交点一共有8个,故具有这样性质的点P共有9个.。

八年级上册数学人教版课时练《13.3.1 等腰三角形》01(含答案解析)

八年级上册数学人教版课时练《13.3.1 等腰三角形》01(含答案解析)

答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。

2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。

亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。

相信你是最棒的!《13.3.1等腰三角形》课时练一、单选题1.有下列说法:①等腰三角形的腰相等;②等腰三角形的两底角相等,③等腰三角形的中线、高线和角平分线互相重合;④等腰三角形两底角的平分线相等;⑤等腰三角形的腰一定大于腰上的高线其中正确的有()个A .1B .2C .3D .42.如果一个三角形的外角平分线平行于三角形的一边,那么这个三角形是()A .等腰直角三角形B .等腰三角形C .直角三角形D .锐角三角形3.如图,已知,ABC AB AC =,以点B 为圆心,BC 长为半径画弧,交腰AC 于点E ,则下列结论一定正确的是()A .BC EC =B .AE BE =C .EBC BAC Ð=ÐD .EBC ABE Ð=Ð4.如图,ABC 中,BA BC =,DE 是边AB 的垂直平分线,分别交BC 、AB 于点D 、E ,连接AD ,若AD 恰好为BAC Ð的平分线,则B Ð的度数是()A .60°B .45°C .36°D .30°5.如图,在△ABC 中,∠ABC =90°,AB =CB ,F 为AB 延长线一点,点E 在BC 上,且AE =CF ,∠CAE =30°,则∠ACF 的度数是()A .75°B .60°C .55°D .45°6.如图,ABC 中,AB =AC ,AD ⊥BC 于点D ,DE ⊥AB 于点E ,BF ⊥AC 于点F ,DE =2,则BF 的长为()A .4B .3C .5D .67.在ABC 中,AB BC =,两个完全一样的三角尺按如图所示摆放.它们一组较短的直角边分别在AB ,BC 上,另一组较长的对应边的顶点重合于点P ,BP 交边AC 于点D ,则下列结论错误的是()A .BP 平分ABC ÐB .AD DC =C .BD 垂直平分AC D .2AB AD=8.如图,在5×5的正方形网格中,每个小正方形的边长均为1,线段AB 的端点在格点上,若画以AB 为边的等腰三角形ABC ,使得点C 在格点上,则点C 的个数是()A .3B .4C .5D .89.如图,在ABC 中,36B C Ð=Ð=°,D ,E 是边BC 上的两点,且有72ADE AED Ð=Ð=°,则图中等腰三角形的个数是()A .2B .6C .5D .710.如图,在ABC 中,BO 平分ABC Ð,CO 平分ACB Ð,EF 经过点O 且//EF BC ,若7AB =,8AC =,9BC =,则AEF 的周长是()A .15B .16C .17D .2411.如图,在Rt ABC △中,90BAC °Ð=,AD BC ^于点D ,AE 平分BAD Ð交BC 于点E ,则下列结论一定成立的是()A .AC AE =B .EC AE =C .BE AE =D .AC EC=12.如图,在△ABC 中,点D 、E 分别在边AB 、AC 上,BE 与CD 相交于点O ,如果已知∠ABC =∠ACB ,补充下列一个条件后,仍无法判定△ABE ≌△ACD 的是()A .AD =AEB .BE =CDC .OB =OCD .∠BDC =∠CEB 13.如图,在△ABC 中,∠BAC =90°,AD 是高,BE 是中线,CF 是角平分线,CF 交AD 于点G ,交BE 于点H ,下面说法:①△ABE 的面积=△BCE 的面积;②∠AFG =∠AGF ;③∠F AG =2∠ACF ;④BH =CH .其中正确的是()A .①②③④B .①②③C .②④D .①③14.如图,在△ABC 中,∠CAB 的平分线AD 与BC 的垂直平分线DE 交于点D ,DM ⊥AB 于点M ,DN ⊥AC 交AC 的延长线于点N ,连接BD 、CD .以下结论:①BM =CN ;②∠DBC=∠DAN ;③∠BAC +∠BDC =180°;④点D 到△ABC 各顶点的距离相等.正确的是()A .①②④B .②③④C .①②③D .①③④15.如图,在4×4的正方形网格中,记∠ABF =a ,∠FCH =b ,∠DGE =g ,则()A .b <a <gB .b ≤g <aC .a <g <bD .a <b <g二、填空题16.一个等腰三角形的底角是顶角的2倍,则顶角的大小是____.17.如图,ABC 中,8cm AB BC ==,将ABC 沿BC 平移3cm 得到DEF ,AC 与DE 相交于点G ,则GE 的长为________cm .18.如图,∠ABC 的平分线BF 与△ABC 中∠ACB 的相邻外角∠ACG 的平分线CF 相交于点F ,过F 作DF ∥BC ,交AB 于D ,交AC 于E ,若BD =7cm ,DE =3cm ,求CE 的长为______cm .19.如图,ABC DEC ≌△△,60DCE Ð=°,100ACE Ð=°,点D 恰好落在线段AB 上,则A Ð的度数为________度.20.如图,在△ABC 中,∠ACB =90°,∠A <∠B ,点D 为AB 边上一点且不与A 、B 重合,将△ACD 沿CD 翻折得到△ECD ,直线CE 与直线AB 相交于点F .若∠A =40°,当△DEF 为等腰三角形时,∠ACD =__________________.三、解答题21.一个三角形的两边b =2,c =7.(1)当各边均为整数时,有几个三角形?(2)若此三角形是等腰三角形,则其周长是多少?22.如图,DE ∥BC ,CG =GB ,∠1=∠2,求证:△DGE 是等腰三角形.23.如图,在ABC 中,2AB AC ==,50B Ð=°,点D 是边BC 上一点,2CD =,作50ADE Ð=°,D 交边AC 于点E .求证:BD CE =.24.如图,在等腰△ABC 中,BA =BC ,点F 在AB 边上,延长CF 交AD 于点E ,BD =BE ,∠ABC =∠DBE .(1)求证:AD =CE ;(2)若∠ABC =30°,∠AFC =45°,求∠EAC 的度数.25.已知:如图,在△ABC中,∠BAC=90°,AB=AC,BD平分∠ABC,交AC于D,AE⊥BD 于F,交BC于E.求证:(1)AB=BE;∠ABC;(2)∠CAE=12(3)AD=CE;(4)CD+CE=AB.参考答案1.C2.B3.C4.C5.B6.A7.D8.D9.B 10.A11.D12.B13.B14.C15.A16.36°17.518.419.7020.30°或15°或60°21.(1)a=6或7或8,有三个三角形;(2)周长为16.解:(1)设第三边长为a,则5<a<9由于三角形的各边均为整数,则a=6或7或8,因此有三个三角形;(2)当a=7时,有a=7=c,由2+7>7,所以周长为7+7+2=16;当a=2时,有a=2=c,由2+2<7,故不能构成三角形,综上其周长只能为16 22.见详解解:连接AG,∵DE∥BC,∴∠ABC=∠1,∠ACB=∠2.又∵∠1=∠2,∴∠ABC=∠ACB.∴AB=AC,又∵G为BC中点,∴AG⊥BC.∴AG ⊥DE∵∠1=∠2,∴AD =AE ,∴AG 垂直平分DE ,∴DG =GE .∴△DGE 是等腰三角形.23.证明见解析证明:∵AB AC =,50B Ð=°,∴50C B Ð=Ð=°,∵2CD =,∴CD AB AC ==,∴65DAC ADC Ð=Ð=°,∵ADC B BAD ADE CDE Ð=Ð+Ð=Ð+Ð,50ADE Ð=°,∴BAD CDE Ð=Ð,在BAD 和CDE △中,BAD CDE AB CDB C Ð=Ðìï=íïÐ=Ðî,∴BAD ≌CDE △,∴BD CE =.24.(1)证明见解析;(2)90°解:(1)∵∠ABC =∠DBE ,∴ABC ABE DBE ABE Ð+Ð=Ð+Ð,即ABD CBE Ð=Ð,在ABD △和CBE △中,BA BC ABD CBE BD BE =ìïÐ=Ðíï=î,∴ABD △≌CBE △,∴AD =CE ;(2)∵∠ABC =30°,∠AFC =45°,∴15BCF Ð=°,∵ABD △≌CBE △,∴15EAB Ð=°∵BA =BC ,∴75BAC BCA Ð=Ð=°,∴90EAC EAB BAC Ð=Ð+Ð=°.25.(1)见详解;(2)见详解;(3)见详解;(4)见详解证明:(1)∵BD 平分∠ABC ,AE ⊥BD ,∴∠ABF =∠EBF ,∠AFB =∠EFB =90°,在△ABF 和△EBF 中,ABF EBF BF BFAFB EFB Ð=Ðìï=íïÐ=Ðî,∴△ABF ≌△EBF (ASA ),∴AB =BE ;(2)∵∠BAC =90°,∴∠CAE +∠BAF =90°,而∠BAF +∠ABF =90°,∴∠CAE =∠ABF =12∠ABC ;(3)连接DE,在△ABD 和△EBD 中∵AB BE ABF EBF BD BD ìïÐÐíïî===,∴△ABD ≌△EBD (SAS ),∴AD=DE,∠DEC=∠BAC=90°,∵∠BAC=90°,AB=AC,∴∠C=45°,∴CE=DE,∴AD=CE;(4)由(3)可得AD=CE,∴CD+CE=CD+AD=AC=AB.。

12.3.1 等腰三角形(二)及答案

12.3.1 等腰三角形(二)及答案

12.3.1等腰三角形题号一1 二2 三3 四4 五5 六6 七7 八8 得分度的反复训练才能取得跟多的收获,我们设计的试卷主要就是从这点出发,所以从你下载这张试卷开始,就与知识接近了一步。

1.△ABC中,若∠A=70°,∠B=40°,∠C =70°,则( )A.AB=AC B.AC=BC C.AB=BC D.AB=AC=BC2.若三角形一边的中线和这边上的高重合,则这个三角形是()A.直角三角形B.等腰三角形C.锐角三角形D.钝角三角形二、填空题3.如果一个三角形有两个角相等,那么这两个角所对的______也相等(简写成“______________”).4.如图,在△ABC中,BC=5cm,BP、CP分别是∠ABC和∠ACB的角平分线,且PD∥AB,PE∥AC,则△PDE的周长是____ cm.三、解答题5.如图,已知BD=CE,AD=AE,求证:AB=AC.6.如图,把一张矩形纸片沿对角线折叠,重合的部分是△FBD,(1)试说明FB=FD;(2)若∠ABF=50°,求∠FDB的度数.7.已知四边形ABCD、EFGC为全等的矩形,B、C、E在一条直线上,试判断三角形△ACF 的形状,并说明理由.参考答案一、选择题1.C2.B二、填空题3.边,等边对等角4.5三、解答题5.过A做AF⊥BC,垂足为F,∵AD=AE∴DF=EF,又∵BD=CE∴BF=CF ∴AB=AC.6.(1)证明略(2)20°7.△ACF是等腰直角三角形,提示:证明△ABC≌△CE F,再零用三角形全等的性质This document is collected from the Internet, which is convenient for readers to use. Ifthere is any infringement, please contact the author and delete it immediately.可以编辑的试卷(可以删除)。

(完整版)等腰三角形三线合一专题练习[1]

(完整版)等腰三角形三线合一专题练习[1]

等腰三角形三线合一专题训练1例1 如图,四边形ABCD中,AB // DC, BE、CE分别平分/ ABC、/ BCD,且点E在AD上。

求BC=AB+DC 。

变 1 如图,AB // CD,/ A = 90° AB = 2, BC = 3, CD = 1, E 是AD 边中点。

求证:CE丄BE。

变2:如图,四边形ABCD中,AD / BC, E是CD上一点,且AE、BE分别平分/ BAD、/ ABC.(1)求证:AE丄BE; (2)求证:E是CD的中点;(3)求证:AD+BC=AB.A n变3:\ ABC是等腰直角三角形,/ BAC=90 ,AB=AC.⑴若D为BC的中点,过D作DM丄DN分别交AB、AC 于M、N,求证:(1)DM = DN。

A⑵若DM丄DN分别和BA、AC延长线交于M、N。

问DM和DN有何数量关系。

|\/|⑴已知:如图,AB=AC , E为AB上一点,F是AC延长线上一点,且BE=CF , EF交BC于点D .求证:DE=DF .⑵已知:如图,AB=AC , E为AB上一点,F是AC延长线上一点,且,EF交BC于点D,且D为EF的中点. 求证:BE=CF .利用面积法证明线段之间的和差关系1、如图,在△ ABC中, AB=AC P为底边BC上的一点,PC L AB于D, PEL AC于E, ?CF丄AB于F,那么PD+PE与CF相等吗?变1若P点在直线BC上运动,其他条件不变,则PD、PE与CF的关系又怎样,请你作图,证明。

1、已知等腰三角形的两边长分别为4、9,则它的周长为()A 17B 22C 17 或22D 13根据等腰三角形的性质寻求规律1 1例1.在△ ABC中,AB=AC /仁一 / ABC / 2= —/ ACB BD与CE相交于点0,如图,/ B0C勺大小2 2与/A的大小有什么关系?1 1若/ 1= / ABC / 2= / ACB则/ BOC WZ A大小关系如何?3 31 1若/ 1= / ABC / 2= / ACB则/ B0C与Z A大小关系如何?n n会用等腰三角形的判定和性质计算与证明例2.如图,等腰三角形ABC中,AB=AC —腰上的中线BD?各这个等腰三角形周长分成15和6两部分,利用等腰三角形的性质证线段相等例3.如图,P是等边三角形ABC内的一点,连结PA PB PC, ?以BP为边作/ PBQ=60,且BQ=BP 连结CQ (1)观察并猜想AP与CQ之间的大小关系,并证明你的结论.2)若PA PB: PC=3: 4: 5,连结PQ试判断△ PQC的形状,并说明理由.例1、等腰三角形底边长为5cm,腰上的中线把三角形周长分为差是3cm的两部分,则腰长为()A、2cm B 、8cm C 、2cm 或8cm D 、不能确定例2、已知AD^^ ABC的高,AB=AC △ ABC周长为20cm,A ADC的周长为14cm,求AD的长。

12.3.1 等腰三角形(1)(含答案)-

12.3.1 等腰三角形(1)(含答案)-

12.3.1 等腰三角形(1)第1课时角度的反复训练才能取得跟多的收获,我们设计的试卷主要就是从这点出发,所以从你下载这张试卷开始,就与知识接近了一步。

◆课前预习1.等腰三角形是有________相等的三角形.2.等腰三角形的性质(1)性质1:等腰三角形的_______相等,简称“等边对等角”.(2)性质2:等腰三角形的________,_______,________相互重合,•简称“等腰三角形三线合一”.◆互动课堂(一)基础热点【例1】已知一个等腰三角形的两角分别为(2x-2)°,(3x-5)°,•求这个等腰三角形各角的度数.解:(1)当(2x-2)°作为顶角时,三角形三个角的度数分别为46°,67°,67°.(2)当(3x-5)°为顶角时,三角形三个角的度数分别为:52°,52°,76°.(3)当以上两个角均为底角时,即(2x-2)=(3x-5),解得x=3,因此,•三角形的三个内角分别为4°,4°,172°.点拨:利用等腰三角形的性质解题时易犯考虑不周全的错误,解题时应认真审题,分析已知条件,分清是顶角还是底角.(二)易错疑难【例2】如图,已知AB=AC,BD⊥AC于D,求证:∠BAC=2∠DBC.分析:利用等腰三角形“三线合一”的性质.解:作∠BAC的平分线AE,交BC于E,则∠1=∠2=12∠BAC.又∵AB=AC(已知)∴AE⊥BC∴∠2+∠ACB=90°∵BD⊥AC(已知)∴∠DBC+∠ACB=90°∴∠2=∠DBC∴∠BAC=2∠DBC(三)中考链接【例3】如图,在△ABC中,AB=AC,DE是AB的垂直平分线,垂足为D,交AC于E,连接BE.(1)如果∠ABE=40°,求∠C的度数;(2)若△ABC的周长为82cm,一边为30cm,求△BCE的周长.解:(1)由已知得∠ABE=∠A=40°,∴∠C=12(180°-40°)=70°.(2)在△BCE中,BE+EC=AC,由三角形两边之和大于第三边得AC>BC,∴AC为30cm,•BC为22cm,∴△BCE的周长为52cm.名师点津在等腰三角形中,常常需要作底边上的高,运用等腰三角形“三线合一”的性质,对于解决所有的问题能起到事半功倍的效果.◆跟进课堂1.已知等腰三角形的一个角为50°,则其余两个角的度数为______.2.已知等腰三角形的一个外角为120°,则它的另外两个角的度数为_______.3.已知等腰三角形的一个内角是另一个内角的7倍,则它的三个内角的度数分别为_________.4.已知等腰三角形的两边长为7和3,则它的周长为________.5.如图1,在△ABC中,∠A=36°,∠C=72°,BD是∠ABC的平分线,则图中共有______个等腰三角形.6.在△ABC中,AB=AC,如果∠A=100°,那么∠B为().A.100° B.80° C.40° D.120°7.如图2所示,∠A=15°,AB=BC=CD=DE=EF=,那么∠FEM等于().A.90° B.75° C.70° D.60°(1) (2) (3)8.一等腰三角形的周长为20,两条边的比为1:2,那么其底边长为().A.10 B.4 C.4或10 D.5或89.一等腰三角形的底边长为5,周长被一腰上的中线分成的两部分的差为3,则腰长为(). A.2 B.8 C.2或8 D.710.(2007,荆门)如图3,D是等腰Rt△ABC内一点,BC是斜边,如果将△ABD绕点A逆时针方向旋转到△ACD′的位置,则∠ADD′的度数是().A.25° B.30° C.35° D.45°◆漫步课外11.如图,在△ABC中,AB=AD=DC,∠BAD=26°,求∠B和∠C的度数.12.在△ABC中,AB=AC,D是BC上的一点,若BD=AB,CD=AD,求△ABC三个内角的度数.13.(2008,内江)如图,在△ABC中,点E在AB上,点D在BC上,BD=BE,∠BAD=•∠BCE,AD与CE相交于点F,试判断△AFC的形状,并说明理由.◆挑战极限14.如图①,在等腰△ABC中,底边BC上有任意一点,过点P作PE⊥AC,PD⊥AB,垂足为E、E,再过C作CF⊥AB于点F;(1)求证:PD+PE=CF;(2)若点P在BC•的延长线上,如图②,则PE、PD、CF之间存在什么样的等量关系,请写出你的猜想,并证明.答案:1.50°,80°或65° 2.60°,60°3.12°,84°,84°或140°,20°,20•° •4.17 5.3 6.C 7.B 8.B 9.B 10.D11.∠B=77°,∠C=38.5° •12.•∠BAC=108°,∠ABC=∠ACB=36°13.△AFC是等腰三角形,证明略.14.(1)提示:连接AP;(2)PD-PE=CF,连接AP,证明略.可以编辑的试卷(可以删除)。

八年级数学等腰三角形 同步练习1新课标 人教版

八年级数学等腰三角形 同步练习1新课标 人教版

等腰三角形同步练习1新课指南1.知识与技能:(1)经历获得知识的过程,并通过观察、分析、想象、探索,掌握等腰三角形的性质及判定;(2)了解等边三角形的性质和判定等知识的形成过程,培养丰富的想像力,增强审美意识.2.过程与方法:经历探索等腰(边)三角形的性质及判定,探索应用等腰三角形知识解决实际问题,尤其是用轴对称的性质来解释等腰(或等边)三角形的相关性质,进一步体会从一般到特殊,再从特殊到一般的研究事物的辩证方法.3.情感态度与价值观:培养学生合作交流、体验成功、体验审美、增强自信心,同时,充分体会分类讨论数学思想在解决问题中的广泛应用.4.重点与难点;重点是等腰三角形的性质和判定.难点是由轴对称知识来理解和掌握等腰三角形的性质和判定.教材解读精华要义数学与生活如图14-61所示,位于在海上A,B两处的两艘救生船接到O处遇险船只的报警,当时测得∠A=∠B,如果这两艘救生船以同样的速度同时出发,能不能大约同时赶到出事地点(不考虑风浪因素)?思考讨论如果两艘船以同样的速度同时出发,并且同时赶到出事地点,说明两艘船的航程相同,即OA=OB,而已知∠A=∠B,能直接由此判断出OA=OB吗?知识详解知识点1 等腰三角形的概念有两条边相等的三角形,叫做等腰三角形,相等的两条边叫做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角.如图14-62所示,在△ABC中,若AB=AC,则△ABC是等腰三角形,其中AB,AC叫做腰,BC叫做底边,∠A叫做顶角,∠B和∠C叫做底角.知识点2 等腰三角形的性质性质1:等腰三角形的两个底角相等(简写成“等边对等角”).性质2:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.【说明】等腰三角形的两个性质都可以由证明两个三角形全等而证实.例如:如图14-63所示,在△∠B=∠C.证明:过点A作BC边上的中线AD.∴BD=DC.在△ABD和△ACD中,∴△ABD≌△ACD(SSS).∴∠B=∠C(全等三角形的对应角相等).探究交流上例中并没有直接全等的三角形,而是通过作辅助线“BC边上的中线AD”来构造出两个全等的三角形,再用全等三角形的性质证明出“∠B=∠C”.想一想,本题还有没有作其他辅助线的方法?在本题中能否进一步证明AD是∠BAC的平分线和BD边上的高?试试看.点拨由等腰三角形的性质2可知,等腰三角形是轴对称图形,它的对称轴是底边上的中线(顶角平分线、底边上的高)所在直线.知识点3 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).例如:图14-64所示,在△ABC中,∠B=∠C.求证AB=AC.证明:作AD⊥BC,垂足为D.∴∠ADB=∠ADC=90°.在Rt△ADB和Rt△ADC中,∴Rt△ADB≌Rt△ADC(AAS).∴AB=AC(全等三角形的对应边相等).知识点4 等边三角形的概念三条边都相等的三角形,叫做等边三角形.知识点5 等边三角形的性质和判定Ⅰ.等边三角形的性质和判定.(1)等边三角形的三个内角都相等,并且每一个内角都等于60°(2)三个角都相等的三角形是等边三角形(3)有一个角是60°的等腰三角形是等边三角形Ⅱ.在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半.典例剖析师生互动基础知识应用题本节知识的基础应用主要包括:(1)等腰三角形的性质和判定;(2)等边三角形的性质;(3)三角形的内角和;(4)三角形三边关系.例1 已知三角形的一个内角是110°,求另外两个角的度数.(分析)因为等腰三角形的内角和是180°,若110°是底角,则110°×2=220°>180°,所以110°2110180︒-︒=35°.解:由题意可知,110°是顶角,设底角为α,则2α+110°=180°,∴α=35°.∴这个三角形另外两个角是35°,35°.例2 等腰三角形的一个内角是80°,求它的另外两个角.°,则设底角为α,由三角形内角和得2α+80°=180°,∴α=50°.若底角是80°则设项角为β,由三角形内角和得2×80°+β=180°,∴β=20°.解:①若顶角是80°,设底角为α,则有2α+80°=180°,∴α=50°.②若底角是80°,设顶角为β,则有80°×2+β=180°,∴β=20。

八年级数学上册 等腰三角形课后练习二(含详解)(新版)苏科版

八年级数学上册 等腰三角形课后练习二(含详解)(新版)苏科版

等腰三角形重难点易错点解析题一:题面:下列说法:①顶角相等的两个等腰三角形的底角一定相等;②底边相等的两个等腰三角形全等;③腰长相等且有一个角是20°的两个等腰三角形全等.其中正确的有 .金题精讲题一:题面:如图,在△ABC中,AB=AC,点D是BC的中点,点E在AD上.求证:(1)△ABD≌△ACD;(2)BE=CE题二:题面:如图,a∥b,点A在直线a上,点C在直线b上,∠BAC=900,AB=AC.若∠1=20°,则∠2的度数为( )A. 25°B. 65°C. 70°D. 75°题三:题面:如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为( )A. 20B. 12C. 14D. 13题四:题面:如图,在△ABC中,∠BAC的平分线与BC的垂直平分线PQ相交于点P,过点P分别作PN⊥AB于N,PM⊥AC于点M,求证:BN=CM.思维拓展题面:如图,∠AOB是一建筑钢架,∠AOB=10°,为使钢架更加稳固,需在内部添加一些钢管EF、FG、GH、HI、IJ,添加钢管的长度都与OE相等,则∠BIJ= .课后练习详解重难点易错点解析题一:答案:①.详解:①两个等腰三角形的顶角相等,根据三角形内角和定理可知底角一定相等,故是正确的;②底边相等的两个等腰三角形,不满足两个三角形全等的条件,故是错误的;③腰长相等且有一个角是20°的两个等腰三角形,不满足两个三角形全等的条件,故是错误的.故答案为:①.金题精讲题一:答案:见详解详解:(1)∵D是BC的中点,∴BD=CD.在△ABD和△ACD中,∵BD=CD,AB=AC,AD=AD(公共边),∴△ABC≌△ACD(SSS).(2)由(1)知△ABD≌△ACD,∴∠BAD=∠CAD,即∠BAE=∠CAE.在△ABE和△ACE中,∵AB=AC,∠BAE=∠CAD,AE=AE,∴△ABE≌△ACE(SAS).∴BE=CE(全等三角形的对应边相等).题二:答案:B.详解:∵∠BAC=90°,AB=AC,∴∠ACB=45°.∵∠1=20°,∴∠ACB+∠1=65°.又∵a∥b,∴∠2=∠ACB+∠1=65°.故选B.题三:答案:C.详解:∵AB=AC,AD平分∠BAC,BC=8,∴根据等腰三角形三线合一的性质得AD⊥BC,C D=BD=12BC=4.∵点E为AC的中点,∴根据直角三角形斜边上的中线等于斜边的一半得DE=CE=12AC=5.∴△CDE的周长=CD+DE+CE=4+5+5=14.故选C. 题四:答案:见详解详解:连接PB,PC,∵AP是∠BAC的平分线,PN⊥AB,PM⊥AC,∴PM=PN,∠PMC=∠PNB=90°,∵P在BC的垂直平分线上,∴PC=PB,在Rt△PMC和Rt△PNB中PC=PB,PM=PN,∴Rt△PMC≌Rt△PNB(HL),∴BN=CM.思维拓展答案:60°.详解:∵OE=EF=FG=GH=HI=IJ,∴∠1=∠AOB=10°,∠2=∠3,∠4=∠5,∠6=∠7,∠8=∠9,∴∠2=∠O+∠1=20°=∠3,∴∠4=∠O+∠3=30°=∠5,∠6=∠O+∠5=40°=∠7,∠8=∠O+∠7=50°=∠9,∠BIJ=∠O+∠9=60°。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题12.3等腰三角形性质练习课型:习题课日期:2010.9.2
教学目的:
知识技能:理解并掌握等腰三角形的定义,等腰三角形的性质;能够用等腰三角形的知识解决相应的数学问题.
数学思考:在应用等腰三角形的性质的过程中体会知识间的关系,
解决问题:培养学生分析解决问题的能力,
情感态度:体会数学的逻辑思维,培养数学学习兴趣
教学重点:定义、性质的应用
教学难点:推理证明
教学过程:
一、主要概念:
1、有边相等的三角形叫做等腰三角形。

2、等腰三角形的性质:
(1)、等腰三角形的两个底角,也就是说,在同一个三角形中,;(2)、等腰三角形的顶角、底边上的和互相重合,简称等腰三角形。

二、典型习题:
1、已知等腰三角形的一边长为,另一边长为,则它的周长为。

2、已知等腰三角形的一边长为,另一边长为,则它的周长为。

3、等腰三角形底边长为,一腰上的中线把其周长分为两部分的差为 .则腰长为
4、如果等腰三角形的顶角等于36°,则底角等于_________度;如果底角等于36°,那么顶角的度数为_________.
5、有一个角等于50°,另一个角等于__________的三角形是等腰三角形.
6、有一个底角为的等腰三角形的另外两个角的度数分别为________.
7、顶角为的等腰三角形的另外两个内角的度数分别为_______.
8、有一个内角为的等腰三角形的另外两个内角的度数为______.
9、有一个内角为的等腰三角形的另外两个内角的度数为________.
10、如果等腰三角形的三边均为整数且它的周长为,那么它的三边长为______.
11、下列几何图形中:(1)平行四边形;(2)线段;(3)角;(4)圆;(5)正方形;(6)任意三角形.其中一定是轴对称图形的有_____________.
12、下面的三角形都是等腰三角形,且均为,它们均有一部分被木板遮住了,你能相当快的说出它们被遮住的顶角或底角各是多少度吗?
13、我们知道等腰三角形是轴对称图形,你认为它有____条对称轴.对于等腰三角形对称轴的问题,芳芳、丽丽、园园有了不同的看法.
芳芳:“我认为等腰三角形的对称轴是顶角平分线所在的直线.”
丽丽:“我认为等腰三角形的对称轴是底边中线所在的直线.”
园园:“我认为等腰三角形的对称轴是底边高线所在的直线.”
你认为她们谁说的对呢?请说明你的理由__________________________________________.
14、在等腰三角形中,如果顶角是一个底角的2倍,那么顶角等于_____度;如果一个底角是顶角的2倍,那么顶角等于_______度.
15、如图,,交BC于点D,,那么BC的长为_________.
16、如图,在中,,BD是的角平分线,且,
,则 _______.
17、如图,在中,D是AC上的一点,且,,则
_______, ______, ________.
18、如图,已知:在中,,,
BD是的角平分线,求的度数.
19、如图,已知:在中, ,CD平分交
AB于D点,若 .求:的度数.
教学反思:本节课重点难点明确,学生对知识的掌握较好,但是推理的思路还不是特别清晰,尤其遇到较复杂的图形时,不知道从自己所需出发去寻找条件,探究原因,是因为证明方向不明确,下节课要多注意推理思路的讲解。

等腰三角形的分类讨论思想学生能够记住,但是检验的步骤还经常忘,还需要继续提醒。

注意方程思想在题目中的渗透。

相关文档
最新文档