2016最新中考数学模拟测试题(1)
中考数学模拟试卷及答案两套
山东省滕州市初中2016届九年级数学第一次模拟说明:1. 本试卷分为第Ⅰ卷和第Ⅱ卷. 第Ⅰ卷1~2页,第Ⅱ卷3~8页. 请将第Ⅰ卷的正确选项用2B铅笔填涂在机读答题卡上;第Ⅱ卷用蓝、黑色的钢笔或签字笔解答在试卷上,其中的解答题都应按要求写出必要的解答过程.2. 本试卷满分为120分,答题时间为120分钟.3. 不使用计算器解题.第Ⅰ卷选择题36分一、选择题本大题共12个小题,每小题3分,满分36分在每小题给出的四个选项中,有且仅有一项是符合题目要求的.1. 若m-n=-1,则m-n2-2m+2n的值是A. 3B. 2C. 1D. -12. 已知点A a,2013与点A′-2014,b是关于原点O的对称点,则ba 的值为A. 1B. 5C. 6D. 43. 等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为图1A .12,B .15,C .12或15,D .184. 下列图形中,既是轴对称图形又是中心对称图形的有 ①平行四边形;②正方形;③等腰梯形;④菱形;⑤矩形;⑥圆.A. 1个B. 2个C. 3个5. 如图,在⊙O 中,弦AB,CD 相交于点P,若∠A=40°,∠APD=75°,则∠B=A. 15°B. 40°C. 75°D. 35°6. 下列关于概率知识的说法中,正确的是 A.“明天要降雨的概率是90%”表示:明天有90%的时间都在下雨.B.“抛掷一枚硬币,正面朝上的概率是21”表示:每抛掷两次,就有一次正面朝上.C.“彩票中奖的概率是1%”表示:每买100张彩票就肯定有一张会中奖.D.“抛掷一枚质地均匀的正方体骰子,朝上的点数是1的概率是61”表示:随着抛掷次数的增加,“抛出朝上点数是1”这一事件的频率是61.7. 若抛物线12--=x x y 与x 轴的交点坐标为)0,(m ,则代数式20132+-m m 的值为图2A. 2012B. 2013C. 2014D. 20158. 用配方法解方程0142=++x x ,配方后的方程是A. 3)2(2=-xB. 3)2(2=+xC. 5)2(2=-xD. 5)2(2=+x9. 要使代数式12-a a有意义,则a 的取值范围是 A. 0≥a B. 21≠a C. 0≥a 且21≠a D . 一切实数 10. 如图,已知⊙O 的直径CD 垂直于弦AB,∠ACD=°,若CD=6 cm,则AB 的长为A. 4 cmB. 23cmC. 32cmD. 62cm11. 到2013底,我县已建立了比较完善的经济困难学生资助体系. 某校2011年发放给每个经济困难学生450元,2013年发放的金额为625元. 设每年发放的资助金额的平均增长率为x,则下面列出的方程中正确的是A .625)1(4502=+xB.625)1(450=+xC .625)21(450=+x D.450)1(6252=+x12. 如图,已知二次函数y=ax2+bx+ca≠0的图象如图所示,有下列5个结论:①abc<0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b<m am+bm≠1的实数.其中正确结论的有A. ①②③B. ①③④C. ③④⑤D. ②③⑤山东省滕州初中2016届九年级第一次模拟数学试题第Ⅱ卷总分表题号二三四五六总分总分人复查人得分第Ⅱ卷非选择题84分二、填空题本大题共6个小题,每小题3分,满分18分只要求填写最后结果.13. 若方程0132=--x x 的两根分别为1x 和2x ,则2111x x +的值是_____________.14. 已知⊙O 1与⊙O 2的半径分别是方程x 2-4x+3=0的两根,且O 1O 2=t+2,若这两个圆相切,则t=____________.15. 如图,在△ABC 中,AB=2,BC=,∠B=60°,将△ABC绕点A 按顺时针旋转一定角度得到△ADE,当点B 的对应点 D 恰好落在BC 边上时,则CD 的长为 .16. 已知),(11y x A ,),(22y x B 在二次函数462+-=x x y 的图象上,若321<<x x ,则21____y y 填“>”、“=”或“<”.17. 如图,直线AB 与⊙O 相切于点A,AC 、CD 是⊙O 的两条弦,且CD ∥AB,若⊙O 的半径为52,CD=4,则弦AC 的长为. 18. 已知101=-aa ,则a a 1+的值是______________.得 分 评卷人三、解答题本大题共2个题,第19题每小题4分,共8分,第20题12分,本大题满分20分19.1计算题:20)1(3112)3(----+--; 2解方程:1222+=-x x x .20. 在一个不透明的布袋里装有4个标有1,2,3,4的小球,它们的形状、大小完全相同.小明从布袋里随机取出一个小球,记下数字为x,小红在剩下的3个小球中随机取出一个小球,记下数字为y,这样确定了点Q 的坐标x,y.1画树状图或列表,写出点Q 所有可能的坐标; 2求点Qx,y 在函数y =-x +5的图象上的概率;3小明和小红约定做一个游戏,其规则为:若x 、y 满足xy >6则小明胜,若x 、y 满足xy <6则小红胜,这个游戏公平吗说明理由;若不公平,请写出公平的游戏规则.四、解答题本大题共2个题,第21题10分,第22题10分,本大题满分20分21. 如图,在边长为1的正方形组成的网格中,△AOB 的顶点均在格点上,点A,B 的坐标分别是A3,3、B1,2,△AOB 绕点O 逆时针旋转90°后得到△11OB A . 1画出△11OB A ,直接写出点1A ,1B 的坐标;2在旋转过程中,点B 经过的路径的长; 3求在旋转过程中,线段AB 所扫过的面积.22. 某德阳特产专卖店销售“中江柚”,已知“中江柚”的进价为每个10元,现在的售价是每个16元,每天可卖出120个. 市场调查反映:如调整价格,每涨价1元,每天要少卖出10个;每降价1元,每天可多卖出30个.1如果专卖店每天要想获得770元的利润,且要尽可能的让利给顾客,那么售价应涨价多少元2请你帮专卖店老板算一算,如何定价才能使利润最大,并求出此时的最大利润BE五、几何题本大题满分12分23. 如图,AB 是⊙O 的直径,BC 为⊙O 的切线,D 为⊙O 上的一点,CD=CB,延长CD 交BA 的延长线于点E .1求证:CD 为⊙O 的切线;2求证:∠C=2∠DBE.3若EA=AO=2,六、综合题本大题满分14分24. 如图,抛物线y= 21x 2+bx -2与x 轴交于A 、B 两点,与y 轴交于C 点,且A 一1,0.1求抛物线的解析式及顶点D 的坐标; 2判断△ABC 的形状,证明你的结论;得 分 评卷人3点M是x轴上的一个动点,当△DCM的周长最小时,求点M的坐标.数学试题参考答案及评分标准一、选择题本大题共12个小题,每小题3分,满分36分二、填空题本大题共6个小题,每小题3分,满分18分13. -3 14. 0或 2 15. 16. > 17. 52 18. 14三、解答题本大题共2个题,第19题每小题4分,共8分,第20题12分,本大题满分20分19.计算题:1原式=1)13(321--+-注:每项1分 ………………3分=13--. ……………………………………………………4分2解:整理原方程,得:0142=--x x . ……………………………………1分解这个方程:……方法不唯一,此略.52,5221-=+=∴x x (4)分20. 解:画树状图得:1点Q 所有可能的坐标有: 1,2,1,3,1,4 2,1,2,3,2,4 3,1,3,2,3,4 4,1,4,2,4,3共12种. …………4分2∵共有12种等可能的结果,其中在函数y=﹣x+5的图象上的有4种,即:1,4,2,3,3,2,4,1,……………………………………………5分 ∴点x,y 在函数y=﹣x+5的图象上的概率为:=. …………………7分3∵x 、y 满足xy >6有:2,4,3,4,4,2,4,3共4种情况,x 、y 满足xy <6有1,2,1,3,1,4,2,1,3,1,4,1共6种情况.……………………………………………………9分()31124==小明胜P ,()21126==小红胜P……………………………10分 游戏不公平∴≠2131 . …………………………………………………11分公平的游戏规则为:若x 、y 满足6≥xy 则小明胜, 若x 、y 满足xy<6则小红胜. …………………………………………12分四、解答题本大题共2个题,第21题10分,第22题10分,本大题满分20分21.1如图,)3,3(1-A ,)1,2(1-B …………………………………………3分注:画图1分,两点坐标各1分.2由)2,1(B 可得:5=OB , (4)弧1BB =πππ255241241=⨯⨯=⋅r …6 3由)3,3(A 可得:23=OA ,又5=OB ,πππ2918414121=⨯⨯=⋅=OA S OAA 扇形,πππ455414121=⨯⨯=⋅=OB S OBB 扇形, ……………………………8分则线段AB 所扫过的面积为:πππ4134529=- . ……………………10分22.解:1设售价应涨价x 元,则:770)10120)(1016(=--+x x , …………………………………………2分解得:11=x ,52=x . ……………………………………………………3分又要尽可能的让利给顾客,则涨价应最少,所以52=x 舍去. ∴ 1=x .答:专卖店涨价1元时,每天可以获利770元. ……………………………4分2设单价涨价x 元时,每天的利润为W 1元,则:810)3(107206010)10120)(1016(221+--=++-=--+=x x x x x W 0≤x ≤12即定价为:16+3=19元时,专卖店可以获得最大利润810元. ……6分设单价降价z 元时,每天的利润为W 2元,则:750)1(307206030)30120)(1016(222+--=++-=+--=z z z z z W 0≤z ≤6即定价为:16-1=15元时,专卖店可以获得最大利润750元. ………8分综上所述:专卖店将单价定为每个19元时,可以获得最大利润810元. …10分五、几何题本大题满分12分 23.1证明:连接OD,∵BC 是⊙O 的切线,∴∠ABC=90°, …………1分 ∵CD=CB, ∴∠CBD=∠CDB,∵OB=OD,∴∠OBD=∠ODB,∴∠ODC=∠ABC=90°,即OD ⊥CD, ……………3分 ∵点D 在⊙O 上, ∴CD 为⊙O 的切线. ………4分2如图,∠DOE=∠ODB+∠OBD=2∠DBE,…………………6分由1得:OD ⊥EC 于点D,∴∠E+∠C=∠E+∠DOE =90°, ………………7分∴∠C=∠DOE =2∠DBE. ………………………………………………………8分 3作OF ⊥DB 于点F,连接AD,由EA=AO 可得:AD 是Rt △ODE 斜边的中线, ∴AD=AO=OD,∴∠DOA=60°,∴∠OBD=30°, ………………………………9分又∵OB=AO=2,OF ⊥BD,∴ OF=1,BF=, ………………………………10分∴BD=2BF=2,∠BOD=180°-∠DOA=120°, ……………………………11分∴3341322136021202-=⨯⨯-⨯=-=ππBODOBD S S S 三角形扇形阴影.…12分注:此大题解法不唯一,请参照给分.六、综合题本大题满分14分24.解:1∵点)01(,-A 在抛物线221y 2-+=bx x 上, ∴02)1()1(212=--⨯+-⨯b ,∴23-=b , …………………………………2分 ∴抛物线的解析式为223212--=x x y . ………………………………………3分 ∵825)23(212232122--=--=x x x y , ∴顶点D 的坐标为)825,23(-. …………………………………………………5分 2△ABC 是直角三角形. 当0=x 时,2-=y ,∴)2,0(-C ,则2=OC .…6分当0=y 时,0223212=--x x ,∴4,121=-=x x ,则)0,4(B .………7分 ∴1=OA ,4=OB , ∴5=AB .∵252=AB ,5222=+=OC OA AC ,20222=+=OB OC BC , ∴222AB BC AC =+, ……………………………………………………8分∴△ABC 是直角三角形. ……………………………………………………9分 3作出点C 关于x 轴的对称点C ′,则)2,0('C .连接C ′D 交x 轴于点M,根据轴对称性及两点之间线段最短可知,CD 一定,当MC+MD 的值最小时,△CDM 的周长最小. ………………10分设直线C ′D 的解析式为b ax y +=,则:则⎪⎩⎪⎨⎧-=+=825232b a b ,解得2,1241=-=b a ,…11分∴21241'+-=x y D C …………………………12分 当0=y 时,021241=+-x ,则4124=x ,……13分 ∴)0,4124(M . …………………………………14分济南市2016年初三年级学业水平考试数学全真模拟试卷3第Ⅰ卷选择题共45分一、选择题本大题共15个小题,每小题3分,共45分.在每小题所给的四个选项中,只有一项是符合题目要求的.1.|-2 014|等于014 014 C.±2 014 0142.下面的计算正确的是-5a=1 +2a2=3a3C.-a-b=-a+b a+b=2a+b3.实数a,b,c在数轴上对应的点如图所示,则下列式子中正确的是>b-c +c<b+c >bc D.a cb b4.在围棋盒中有x颗白色棋子和y颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子的概率是25,如果再往盒中放进3颗黑色棋子,取得白色棋子的概率变为14,则原来盒里有白色棋子颗 颗 颗 颗5.一组数据:10,5,15,5,20,则这组数据的平均数和中位数分别是 ,10 , , ,106.一个几何体的三视图如图所示,则这个几何体是7.下面四条直线,其中直线上每个点的坐标都是二元一次方程x-2y =2的解的是8.对于非零的两个实数a,b,规定ab=11b a-,若22x-1=1,则x 的值为 5531A. B. C. D.6426-9.已知2x y 30-++=(),则x+y 的值为10.如图,已知⊙O 的两条弦AC 、BD 相交于点E,∠A =70°,∠C = 50°,那么sin ∠AEB 的值为A.231C.D.2211.如图,点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是12.如图,点D为y轴上任意一点,过点A-6,4作AB垂直于x轴交x轴于点B,交双曲线6yx-=于点C,则△ADC的面积为整个常规赛季中,科比罚球投篮的命中率大约是%,下列说法错误的是A.科比罚球投篮2次,一定全部命中B.科比罚球投篮2次,不一定全部命中C.科比罚球投篮1次,命中的可能性较大D.科比罚球投篮1次,不命中的可能性较小14.一个圆锥的左视图是一个正三角形,则这个圆锥的侧面展开图的圆心角等于°°°°15.如图,在正方形ABCD中,AB=3 cm,动点M自A点出发沿AB方向以每秒1 cm的速度向B 点运动,同时动点N 自A 点出发沿折线AD —DC —CB 以每秒3 cm 的速度运动,到达B 点时运动同时停止.设△AMN 的面积为ycm 2,运动时间为xs,则下列图象中能大致反映y 与x 之间的函数关系的是第Ⅱ卷非选择题 共75分二、填空题本大题共6个小题,每小题3分,共18分.把答案填在题中的横线上.16.a 10a b -+=-,则=___________.17.命题“相等的角是对顶角”是____命题填“真”或“假”.18.某班组织20名同学去春游,同时租用两种型号的车辆,一种车每辆有8个座位,另一种车每辆有4个座位.要求租用的车辆不留空座,也不能超载.有______种租车方案.19.如图,从点A0,2发出的一束光,经x 轴反射,过点B5,3,则这束光从点A 到点B 所经过的路径的长为______.20.若圆锥的母线长为5 cm,底面半径为3 cm,则它的侧面展开图的面积为________cm2结果保留π.21.如图,点B,C,E,F在一直线上,AB∥DC,DE∥GF,∠B=∠F=72°,则∠D=______度.三、解答题本大题共7个小题,共57分.解答应写出文字说明、证明过程及演算步骤.22.本小题满分7分1解方程组:x3y1, 3x2y8.+=-⎧⎨-=⎩2解不等式组2x312x0+>⎧⎨-≥⎩,并把解集在数轴上表示出来.23.本小题满分7分1如图,在△ABC中,BE是它的角平分线,∠C=90°,D在AB边上,以DB为直径的半圆O经过点E.求证:AC是⊙O的切线;2已知在△ABC中,AB=AC=5,BC=6,AD是BC边上的中线,四边形ADBE是平行四边形.求证:平行四边形ADBE是矩形.24.本小题满分8分一项工程,甲、乙两公司合作,12天可以完成,共需付施工费102 000元;如果甲、乙两公司单独完成此项工程,乙公司所用时间是甲公司的倍,乙公司每天的施工费比甲公司每天的施工费少1 500元.1甲、乙两公司单独完成此项工程,各需多少天2若让一个公司单独完成这项工程,哪个公司的施工费较少25.本小题满分8分自实施新教育改革后,学生的自主学习、合作交流能力有很大提高,张老师为了了解所教班级学生自主学习、合作交流的具体情况,对本班部分同学进行了为期半个月的跟踪调查,并将调查结果分为四类:A.特别好;B.好;C.一般;D.较差,并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:1本次调查中,张老师一共调查了多少名同学2求出调查中C类女生及D类男生的人数,将条形统计图补充完整;3为了共同进步,张老师想从被调查的A类和D类学生中分别选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.26.本小题满分9分如图1,在梯形ABCD中,AB∥CD,∠B=90°,AB=2,CD=1,BC=m,P为线段BC上的一动点,且和B、C不重合,连接PA,过P作PE⊥PA交CD所在直线于E.设BP=x,CE=y.1求y与x的函数关系式;2若点P在线段BC上运动时,点E总在线段CD上,求m的取值范围;3如图2,若m=4,将△PEC沿PE翻折至△PEG位置,∠BAG=90°,求BP长.27.本小题满分9分已知如图,一次函数1y x 12=+的图象与x 轴交于点A,与y 轴交于点B,二次函数21y x bx c 2=++的图象与一次函数1y x 12=+的图象交于B 、C 两点,与x 轴交于D 、E 两点,且D 点坐标为1,0. 1求二次函数的解析式.2在x 轴上有一动点P,从O 点出发以每秒1个单位的速度沿x 轴向右运动,是否存在点P,使得△PBC 是以P 为直角顶点的直角三角形若存在,求出点P 运动的时间t 的值;若不存在,请说明理由.3若动点P 在x 轴上,动点Q 在射线AC 上,同时从A 点出发,点P 沿x 轴正方向以每秒2个单位的速度运动,点Q 以每秒a 个单位的速度沿射线AC 运动,是否存在以A 、P 、Q 为顶点的三角形与△ABD 相似,若存在,求a 的值;若不存在,说明理由.28.本小题满分9分如图,已知抛物线y=ax2+bx+ca≠0的顶点坐标为2 43(,),且与y轴交于点C0,2,与x轴交于A,B两点点A在点B的左边.1求抛物线的解析式及A,B两点的坐标.2在1中抛物线的对称轴l上是否存在一点P,使AP+CP的值最小若存在,求AP+CP的最小值,若不存在,请说明理由.3以AB为直径的⊙M与CD相切于点E,CE交x轴于点D,求直线CE的解析式.参考答案17.假19.π22.1解:x3y13x2y8+=-⎧⎨-=⎩,①,②①×3-②,得11y=-11,解得:y=-1,把y=-1代入②,得:3x+2=8, 解得x=2.∴方程组的解为x2 y1.=⎧⎨=-⎩,2解:2x312x0+>⎧⎨-≥ ⎩,①,②由①得:x>-1;由②得:x≤2.不等式组的解集为:-1<x≤2,在数轴上表示为:23.1证明:连接OE.∵BE是∠CBA的角平分线,∴∠ABE=∠CBE.∵OE=OB,∴∠ABE=∠OEB, ∴∠OEB=∠CBE,∴OE∥BC,∴∠OEC=∠C=90°,∴AC是⊙O的切线.2证明:∵AB=AC,AD是BC的边上的中线,∴AD⊥BC,∴∠ADB=90°.∵四边形ADBE是平行四边形,∴平行四边形ADBE是矩形.24.解:1设甲公司单独完成此项工程需x天,则乙公司单独完成此项工程需天.根据题意,得:111x1.5x12 +=,解得:x=20,经检验,知x=20是方程的解且符合题意.=30,故甲、乙两公司单独完成此项工程,各需20天、30天.2设甲公司每天的施工费为y元,则乙公司每天的施工费为y-1 500元.根据题意得:12y+y-1 500=102 000,解得:y=5 000,甲公司单独完成此项工程所需的施工费:20×5 000=100 000元;乙公司单独完成此项工程所需的施工费:30×5 000-1 500=105 000元;故甲公司的施工费较少.25.解:1张老师一共调查了:6+4÷50%=20人;2C类女生人数:20×25%-3=2人;D类男生人数:20-3-10-5-1=1人;将条形统计图补充完整如图所示:3列表如图,共6种情况,其中一位男同学一位女同学的情况是3种,所选两位同学恰好是一位男同学和一位女同学的概率是12. 26.解:1∵∠APB+∠CPE=90°,∠CEP+∠CPE=90°, ∴∠APB=∠CEP.又∵∠B=∠C=90°,∴△ABP ∽△PCE,2AB BP 2x 1m ,,y x x.PC CE m x y 22∴==∴=-+-即 22221m 1m m y x x (x ),22228=-+=--+ ∴当m x 2=时,y 取得最大值,最大值为2m .8 ∵点P 在线段BC 上运动时,点E 总在线段CD 上, 2m1,m 8∴≤≤解得∴m 的取值范围为:0m <≤3由折叠可知,PG=PC,EG=EC,∠GPE=∠CPE.又∵∠GPE+∠APG=90°,∠CPE+∠APB=90°,∴∠APG=∠APB .∵∠BAG=90°,∠B=90°,∴AG ∥BC,∴∠GAP=∠APB,∴∠GAP=∠APG,∴AG=PG=PC .解法一:如图所示,分别延长CE 、AG,交于点H,则易知ABCH 为矩形,HE=CH-CE=2-y,GH=AH-AG=4-4-x=x, 在Rt △GHE 中,由勾股定理得:GH 2+HE 2=GE 2, 即:x 2+2-y 2=y 2,化简得:x 2-4y+4=0①.2221m 1y x x m 4221y x 2x,223x 8x 40x x 232BP 2.3=-+=∴=-+-+===∴由()可知,,这里,代入①式整理得:,解得:或,的长为或解法二:如图所示,连接GC .∵AG ∥PC,AG=PC,∴四边形APCG为平行四边形,∴AP=CG.易证△ABP≌GNC,∴CN=BP=x.过点G作GN⊥PC于点N,则GH=2,PN=PC-CN=4-2x.在Rt△GPN中,由勾股定理得:PN2+GN2=PG2,即:4-2x2+22=4-x2,整理得:3x2-8x+4=0,解得:x=23或x=2,∴BP的长为23或2.解法三:过点A作AK⊥PG于点K.∵∠APB=∠APG,∴AK=AB.易证△APB≌△APK,∴PK=BP=x,∴GK=PG-PK=4-2x.在Rt△AGK中,由勾股定理得:GK2+AK2=AG2,即:4-2x2+22=4-x2,整理得:3x2-8x+4=0,解得:2x x23==或,∴BP的长为22. 3或∴点C的坐标为4,3.设符合条件的点P存在,令Pa,0.当P为直角顶点时,如图,过C作CF⊥x轴于F.∵∠BPC=90°,∴∠BPO+∠CPF=90°.又∵∠OBP+∠BPO=90°,∴∠OBP=∠CPF,∴Rt △BOP ∽Rt △PFC,BO OP 1t ,PF FC 4t 3∴==-,即 整理得:t 2-4t+3=0,解得:t=1或t=3,∴所求的点P 的坐标为1,0或3,0, ∴运动时间为1秒或3秒.3存在符合条件的t 值,使△APQ 与△ABD 相似. 设运动时间为t,则AP=2t,AQ=at.∵∠BAD=∠PAQ, ∴当AP AQ AP AQ AB AD AD AB==或时,两三角形相似.at 2t AB 5AD 333a a ,53====∴==,或∴存在a使两三角形相似且a a 53== 28.解:1由题意,设抛物线的解析式为:22y a x 4?a 0.3=--≠()() ∵抛物线经过0,2,22a 042,3∴--=() 解得:a=16, 22212y x 4.6314y x x 2.6314y 0x x 20,63∴=--=-+=-+=()即:当时, 解得:x=2或x=6,∴A2,0,B6,0.2存在,如图2,由1知:抛物线的对称轴l 为x=4,∵A 、B 两点关于l 对称,连接CB 交l 于点P,则AP=BP,∴AP+CP=BC 的值最小.∵B6,0,C0,2 ,∴OB=6,OC=2,BC AP CP BC ∴=∴+== ∴AP+CP的最小值为 3如图3,连接ME,∵CE 是⊙M 的切线,∴ME ⊥CE,∠CEM=90°.由题意,得OC=ME=2,∠ODC=∠MDE, ∵在△COD 与△MED 中,COD DEM ODC MDE OC ME ∠=∠⎧⎪∠=∠⎨⎪=⎩,,,∴△COD ≌△MEDAAS, ∴OD=DE,DC=DM.设OD=x,则CD=DM=OM-OD=4-x, 则Rt △COD 中,OD 2+OC 2=CD 2, ∴x 2+22=4-x 2. 33x ,D(,0).22∴=∴ 设直线CE 的解析式为y=kx+b, ∵直线CE 过C0,2,D 3,02两点, 43k k b 032b 2b 2⎧⎧=-+=⎪⎪⎨⎨⎪⎪==⎩⎩,,则解得:,, ∴直线CE 的解析式为4y x 2.3=-+。
2016届中考数学真题模拟集训:专题16+图形的初步试题(新人教版含解析)(2年中考1年模拟)
专题16 图形的初步知识点名师点晴直线、射线、线段直线的性质理解并掌握直线的性质线段的性质能利用线段的中点和线段的性质进行线段的有关计算相交线对顶角与邻补角理解并掌握对顶角与邻补角的有关性质垂线的性质理解垂线的性质,并能解决相关的实际问题平行线平行线的定义与画法掌握平行公理及平行线的画法平行线的判定定理利用平行线的判定证明两直线互相平行平行线的性质能利用平行线的性质解决有关角的计算问题☞2年中考【2015年题组】1.(2015南宁)如图,一块含30°角的直角三角板ABC的直角顶点A在直线DE上,且BC∥DE,则∠CAE等于()A.30°B.45°C.60°D.90°【答案】A.【解析】试题分析:∵∠C=30°,BC∥DE,∴∠CAE=∠C=30°.故选A.考点:平行线的性质.2.(2015贵港)如图,直线AB∥CD,直线EF与AB,CD相交于点E,F,∠BEF的平分线与CD相交于点N.若∠1=63°,则∠2=()A.64°B.63°C.60°D.54°【答案】D.考点:平行线的性质.3.(2015天水)如图,将矩形纸带ABCD,沿EF折叠后,C.D两点分别落在C′、D′的位置,经测量得∠EFB=65°,则∠AED′的度数是()A.65°B.55°C.50°D.25°【答案】C.【解析】试题分析:∵AD∥BC,∠EFB=65°,∴∠DEF=65°,∴∠DED′=2∠DEF=130°,∴∠AED′=180°﹣130°=50°.故选C.考点:1.平行线的性质;2.翻折变换(折叠问题).4.(2015天水)如图,在四边形ABCD中,∠BAD=∠ADC=90°,AB=AD=22,CD=2,点P在四边形ABCD的边上.若点P到BD的距离为32,则点P的个数为()A.2 B.3 C.4 D.5 【答案】A.考点:1.等腰直角三角形;2.点到直线的距离.5.(2015北海)已知∠A=40°,则它的余角为()A.40°B.50°C.130°D.140°【答案】B.【解析】试题分析:∠A的余角等于90°﹣40°=50°.故选B.考点:余角和补角.6.(2015崇左)下列各图中,∠1与∠2互为余角的是()A.B.C.D.【答案】C.【解析】试题分析:观察图形,互为余角的只能是C,故选C.考点:余角和补角.7.(2015崇左)如图是一个正方体展开图,把展开图折叠成正方体后,“我”字一面的相对面上的字是()A.的B.中C.国D.梦【答案】D.考点:专题:正方体相对两个面上的文字.8.(2015无锡)如图的正方体盒子的外表面上画有3条粗黑线,将这个正方体盒子的表面展开(外表面朝上),展开图可能是()A .B .C .D .【答案】D.【解析】试题分析:根据正方体的表面展开图,两条黑线在一列,故A错误,且两条相邻成直角,故B错误,中间相隔一个正方形,故C错误,只有D选项符合条件,故选D.考点:几何体的展开图.9.(2015广元)一副三角板按如图方式摆放,且∠1比∠2大50°,若设∠1=x°,∠2=y°.则可得到的方程组为()A.50180x yx y=-⎧⎨+=⎩B.50180x yx y=+⎧⎨+=⎩C.5090x yx y=-⎧⎨+=⎩D.5090x yx y=+⎧⎨+=⎩【答案】D.考点:1.由实际问题抽象出二元一次方程组;2.余角和补角.10.(2015西宁)如图,∠AOB的一边OA为平面镜,∠AOB=37°36′,在OB上有一点E,从E点射出一束光线经OA上一点D反射,反射光线DC恰好与OB平行,则∠DEB的度数是()A.74°12′B.74°36′C.75°12′D.75°36′【答案】C.【解析】试题分析:过点D作DF⊥AO交OB于点F.∵入射角等于反射角,∴∠1=∠3,∵CD∥OB,∴∠1=∠2(两直线平行,内错角相等);∴∠2=∠3(等量代换);在Rt△DOF中,∠ODF=90°,∠AOB=37°36′,∴∠2=90°﹣37°36′=52°24′;∴在△DEF中,∠DEB=180°﹣2∠2=75°12′.故选C.考点:1.平行线的性质;2.度分秒的换算;3.跨学科.11.(2015崇左)若直线a∥b,a⊥c,则直线b____c.【答案】⊥.【解析】试题分析:∵a⊥c,∴∠1=90°,∵a∥b,∴∠1=∠2=90°,∴c⊥b.故答案为:⊥.考点:1.平行线的性质;2.垂线.12.(2015梧州)如图,已知直线AB与CD交于点O,ON平分∠DOB,若∠BOC=110°,则∠AON的度数为度.【答案】145.考点:1.对顶角、邻补角;2.角平分线的定义.13.(2015钦州)如图,直线AB和OC相交于点O,∠AOC=100°,则∠1= 度.【答案】80.【解析】试题分析:由邻补角互补,得∠1=180°﹣∠AOC=180°﹣100°=80°,故答案为:80.考点:对顶角、邻补角.14.(2015宿迁)如图,在平面直角坐标系中,点P的坐标为(0,4),直线343-=xy与x轴、y轴分别交于点A,B,点M是直线AB上的一个动点,则PM长的最小值为.【答案】28 5.考点:1.一次函数图象上点的坐标特征;2.垂线段最短;3.最值问题.15.(2015扬州)如图,已知矩形纸片的一条边经过直角三角形纸片的直角顶点,若矩形纸片的一组对边与直角三角形纸片的两条直角边相交成∠1、∠2,则∠2﹣∠1= .【答案】90°.【解析】试题分析:∵∠2+∠3=180°,∴∠3=180°﹣∠2.∵直尺的两边互相平行,∴∠4=∠3,∴∠4=180°﹣∠2.∵∠4+∠1=90°,∴180°﹣∠2+∠1=90°,即∠2﹣∠1=90°.故答案为:90°.考点:平行线的性质.16.(2015泰州)如图,直线l1∥l2,∠α=∠β,∠1=40°,则∠2= .【答案】140°.考点:平行线的性质.17.(2015绵阳)如图,AB∥CD,∠CDE=119°,GF交∠DEB的平分线EF于点F,∠AGF=130°,则∠F= .【答案】9.5°.【解析】试题分析:∵AB∥CD,∠CDE=119°,∴∠AED=180°﹣119°=61°,∠DEB=119°.∵GF交∠DEB的平分线EF于点F,∴∠GEF=12×119°=59.5°,∴∠GEF=61°+59.5°=120.5°.∵∠AGF=130°,∴∠F=∠AGF﹣∠GEF=130°﹣120.5°=9.5°.故答案为:9.5°.考点:平行线的性质.18.(2015宿迁)如图,已知AB=AC=AD,且AD∥BC,求证:∠C=2∠D.【答案】证明见试题解析.考点:1.等腰三角形的性质;2.平行线的性质;3.和差倍分.19.(2015武汉)如图,点B、C、E、F在同一直线上,BC=EF,AC⊥BC于点C,DF⊥EF于点F,AC=DF.求证:(1)△ABC≌△DEF;(2)AB∥DE.【答案】(1)证明见试题解析;(2)证明见试题解析.【解析】试题分析:(1)用SAS证明△ABC≌△DEF;(2)由△ABC≌△DEF,得出∠B=∠DEF,即可得出结论.试题解析:(1)∵AC⊥BC于点C,DF⊥EF于点F,∴∠ACB=∠DFE=90°,在△ABC和△DEF中,∵BC=EF,∠ACB=∠DFE,AC=DF,∴△ABC≌△DEF(SAS);(2)∵△ABC≌△DEF,∴∠B=∠DEF,∴AB∥DE.考点:1.全等三角形的判定与性质;2.平行线的判定.20.(2015益阳)如图,直线AB∥CD,BC平分∠ABD,∠1=65°,求∠2的度数.【答案】50°.考点:平行线的性质.21.(2015六盘水)如图,已知,l1∥l2,C1在l1上,并且C1A⊥l2,A为垂足,C2,C3是l1上任意两点,点B在l2上,设△ABC1的面积为S1,△ABC2的面积为S2,△ABC3的面积为S3,小颖认为S1=S2=S3,请帮小颖说明理由.【答案】理由见试题解析.【解析】试题分析:根据两平行线间的距离相等,即可得出结论.试题解析:∵直线l1∥l2,∴△ABC1,△ABC2,△ABC3的底边AB上的高相等,∴△ABC1,△ABC2,△ABC3这3个三角形同底,等高,∴△ABC1,△ABC2,△ABC3这些三角形的面积相等.即S1=S2=S3.考点:1.平行线之间的距离;2.三角形的面积.22.(2015曲靖)如图,过∠AOB平分线上一点C作CD∥OB交OA于点D,E是线段OC 的中点,请过点E画直线分别交射线CD、OB于点M、N,探究线段OD、ON、DM之间的数量关系,并证明你的结论.【答案】①当M在线段CD上时,OD=DM+ON;②当M在线段CD延长线上时,OD=ON -DM,证明见试题解析.考点:1.全等三角形的判定与性质;2.平行线的性质;3.等腰三角形的判定与性质;4.分类讨论;5.探究型;6.综合题.23.(2015金华)图1、图2为同一长方体房间的示意图,图3为该长方体的表面展开图.(1)蜘蛛在顶点A′处.①苍蝇在顶点B处时,试在图1中画出蜘蛛为捉住苍蝇,沿墙面爬行的最近路线;②苍蝇在顶点C处时,图2中画出了蜘蛛捉住苍蝇的两条路线,往天花板ABCD爬行的最近路线A′GC和往墙面BB′C′C爬行的最近路线A′HC,试通过计算判断哪条路线更近;(2)在图3中,半径为10dm的⊙M与D′C′相切,圆心M到边CC′的距离为15dm,蜘蛛P 在线段AB上,苍蝇Q在⊙M的圆周上,线段PQ为蜘蛛爬行路线,若PQ与⊙M相切,试求PQ长度的范围.【答案】(1)①作图见试题解析;②往天花板ABCD爬行的最近路线A′GC更近;(2)206dm≤PQ≤55dm.试题解析:(1)①根据“两点之间,线段最短”可知:线段A′B为最近路线,如图1所示.②Ⅰ.将长方体展开,使得长方形ABB′A′和长方形ABCD在同一平面内,如图2①.在Rt△A′B′C中,∠B′=90°,A′B′=40,B′C=60,∴22406052002013Ⅱ.将长方体展开,使得长方形ABB′A′和长方形BCC′B′在同一平面内,如图2②.在Rt △A′C′C 中,∠C′=90°,A′C′=70,C′C=30,∴A′C=227030+=5800=1058.∵5200<5800,∴往天花板ABCD 爬行的最近路线A′GC 更近;(2)过点M 作MH ⊥AB 于H ,连接MQ 、MP 、MA 、MB ,如图3.∵半径为10dm 的⊙M 与D′C′相切,圆心M 到边CC′的距离为15dm ,BC′=60dm ,∴MH=60﹣10=50,HB=15,AH=40﹣15=25,根据勾股定理可得AM=22AH MH +=222550+=255,MB=22BH MH +=221550+=2725,∴50≤MP≤255.∵⊙M 与D′C′相切于点Q ,∴MQ ⊥PQ ,∠MQP=90°,∴PQ=222210PM QM MP -=-.当MP=50时,PQ=2400=206;当MP=255时,PQ=3025=55. ∴PQ 长度的范围是206dm≤PQ≤55dm .考点:1.圆的综合题;2.几何体的展开图;3.切线的性质;4.综合题;5.压轴题.【2014年题组】1.(2014年福建龙岩)如图,直线a ,b 被直线c 所截,a ∥b ,∠1=∠2,若∠3=40°,则∠4等于( )A .40°B .50°C .70°D .80°【答案】C.考点:平行线的性质;平角定义.2.(2014年甘肃白银)将直角三角尺的直角顶点靠在直尺上,且斜边与这根直尺平行,那么,在形成的这个图中与∠α互余的角共有()A.4个 B.3个C.2个D.1个【答案】C.【解析】试题分析:如答图,∵斜边与这根直尺平行,∴∠α=∠2.又∵∠1+∠2=90°,∴∠1+∠α=90°.又∠α+∠3=90°,∴与α互余的角为∠1和∠3.故选C.考点:1.平行线的性质;2.互余的定义.3.(2014年广东汕尾)如图,能判定EB∥AC的条件是()A.∠C=∠ABE B.∠A=∠EBD C.∠C=∠ABC D.∠A=∠ABE 【答案】D.考点:平行线的判定.4(2014抚顺)如图所示,已知AB∥CD,CE平分∠ACD,当∠A=120°时,∠ECD的度数是()A. 45°B. 40°C. 35°D. 30°【答案】D.【解析】试题分析:∵AB∥CD,∠A=120°,∴∠DCA=180°-∠A=60°,∵CE平分∠ACD,∴∠ECD=∠DCA=30°,故选D.考点:平行线的性质.5.(2014·吉林)如图,将三角形的直角顶点放在直尺的一边上,若∠1=65°,则∠2的度数为()A.10°B. 15°C. 20°D. 25°【答案】D.考点:平行线的性质.6.(2014年湖南岳阳)如图,若AB∥CD∥EF,∠B=40°,∠F=30°,则∠BCF= .【答案】70°.【解析】试题分析:∵AB∥CD∥EF,∴∠B=∠BCD,∠F=∠DCF.又∠B=40°,∠F=30°,∴∠BCF=∠BCD +∠DCF =70°.考点:平行线的性质.7.(2014镇江)如图,直线m∥n,Rt△ABC的顶点A在直线n上,∠C=90°,若∠1=25º,∠2=70º.则∠B=°.【答案】45.考点:1.平行线的性质;2.直角三角形两锐角的关系.8.(2014长沙)如图,直线a∥b,直线c分别与a,b相交,若∠1=70°,则∠2=.【答案】110°.【解析】试题分析:直线a∥b,直线c分别与a,b相交,根据平行线的性质,以及对顶角的定义可求出.试题解析:如图:∵∠1=70°,∴∠3=∠1=70°,∵a∥b,∴∠2+∠3=180°,∴∠2=180°﹣70°=110°.考点:1.平行线的性质;2.对顶角、邻补角.☞考点归纳归纳1:直线、射线和线段基础知识归纳:1.直线(1)直线公理:经过两个点有一条直线,并且只有一条直线。
辽宁省沈阳市沈河区2016届九年级中考一模试卷数学试题解析(解析版)
一、选择题(共10小题,每小题2分,满分20分)1.在2,-2,0,-3中,最大的数是()A.2 B.-2 C.0 D.-3【答案】A.【解析】试题解析:如图所示,,故最大的数是2.故选A.考点:有理数大小比较.2.方程x2=3x的根是()A.3 B.-3或0 C.3或0 D.0【答案】C.考点:解一元二次方程-因式分解法.3.由几块大小相同的正方体搭成如图所示的几何体,它的左视图是()【答案】D.【解析】试题解析:从左边看第一层是两个小正方形,第二层右边一个小正方形,考点:简单组合体的三视图.4.2015年春运期间,全国有23.2亿人次进行东西南北大流动,用科学记数法表示23.2亿是()A.23.2×108 B.2.32×109 C.232×107 D.2.32×108【答案】B.【解析】试题解析:将23.2亿用科学记数法表示为:2.32×109.故选B.考点:科学记数法—表示较大的数.5.下列事件是必然事件的是()A.打开电视机正在播放广告B.投掷一枚质地均匀的硬币100次,正面向上的次数为50次C.任意一个一元二次方程都有实数根D.在平面上任意画一个三角形,其内角和是180°【答案】D.考点:随机事件.6.若点P(a,a-2)在第四象限,则a的取值范围是()A.-2<a<0 B.0<a<2 C.a>2 D.a<0【答案】B.【解析】试题解析:∵点P(a,a-2)在第四象限,∴a>0,a-2<0,0<a<2.考点:点的坐标.7.一次数学测试后,随机抽取5名学生的成绩如下:78,116,98,91,116.这组数据的中位数是( )A .91B .98C .78D .116【答案】B.【解析】试题解析:把这些数从小到大排列为:78,91,98,116,116,最中间的数是98,则组数据的中位数是98;故选B .考点:中位数.8.下列计算中,正确的是( )A .a 3•a 2=a 6B 12)-1=-2 D .(π-3.14)0=1【答案】D.【解析】试题解析:A 、a 3•a 2=a 5,故本选项错误;B ,故本选项错误;C 、(12)-1=2,故本选项错误;D 、(π-3.14)0=1,故本选项正确;故选D .考点:1.算术平方根;2.同底数幂的乘法;3.零指数幂;4.负整数指数幂.9.已知A (x 1,y 1)、B (x 2,y 2)均在反比例函数y=2x 的图象上,若x 1<0<x 2,则y 1、y 2的大小关系为() A .y 1<0<y 2 B .y 2<0<y 1 C .y 1<y 2<0 D .y 2<y 1<0【答案】A.【解析】试题解析:∵反比例函数y=2x 中,k=2>0,∴此函数的图象在一、三象限,在每一象限内y 随x 的增大而减小,∵x 1<0<x 2,∴A(x 1,y 1)位于第三象限,B (x 2,y 2)位于第一象限,∴y 1<0<y 2.故选A .考点:反比例函数图象上点的坐标特征.10.如图,在Rt△ABC 中,∠B=90°,∠A=30°,BC=2,将△ABC 绕点C 顺时针旋转120°至△A′B′C′的位置,则点A 经过的路线的长度是( )A .323πB ..8 D .83π 【答案】D.【解析】试题解析:∵在Rt△ABC 中,∠B=90°,∠A=30°,BC=2,∴AC=2BC=4,∴点A 经过的路线的长是:120481803ππ⨯=. 故选D .考点:1.弧长的计算;2.旋转的性质. 二、填空题(共6小题,每小题3分,满分18分)11.分解因式(2x+3)2-x 2= .【答案】3(x+3)(x+1).【解析】试题解析:(2x+3)2-x 2=(2x+3-x )(2x+3+x )=3(x+3)(x+1).考点:因式分解-运用公式法.12.等腰三角形的两条边长分别为3,6,那么它的周长为 .【答案】15.【解析】试题解析:①3是腰长时,三角形的三边分别为3、3、6,∵3+3=6,∴不能组成三角形,②3是底边时,三角形的三边分别为3、6、6,能组成三角形,周长=3+6+6=15,综上所述,它的周长为15.考点:1.等腰三角形的性质;2.三角形三边关系.13.在代数式x2____2x____1的空格“____”中,任意填上“+”或“-”,可组成若干个不同的代数式,其中能够构成完全平方式的概率为.【答案】12.【解析】试题解析:画树状图得:∵共有4种等可能的结果,其中能够构成完全平方式的有2种情况,∴能够构成完全平方式的概率为:21 42 .考点:1.列表法与树状图法;2.完全平方式.14.如图,在△ABC中,∠C=90°,∠CAB=60°,按以下步骤作图:①分别以A,B为圆心,以大于12AB的长为半径做弧,两弧相交于点P和Q.②作直线PQ交AB于点D,交BC于点E,连接AE.若CE=4,则AE= .【答案】8.【解析】试题解析:由题意可得出:PQ是AB的垂直平分线,∴AE=BE,∵在△ABC中,∠C=90°,∠CAB=60°,∴∠CBA=30°,∴∠EAB=∠CAE=30°,∴CE=12AE=4,∴A E=8.考点:1.作图—复杂作图;2.线段垂直平分线的性质;3.含30度角的直角三角形.15.如图,在直角坐标系中,△OAB和△OCD是位似图形,O为位似中心,若A点的坐标为(1,1),B点的坐标为(2,1),C点的坐标为(3,3),那么点D的坐标是.【答案】(6,3).【解析】试题解析:∵A点的坐标为(1,1),C点的坐标为(3,3),∴位似比k=3,∵B点的坐标为(2,1),∴点D的坐标是:(2×3,1×3),即(6,3).考点:1.位似变换;2.坐标与图形性质.16.如图,AC是四边形ABCD的对角线,∠B=90°,∠ADC=∠ACB+45°,,若AC=CD,则边AD的长为..【解析】试题解析:作∠DCM=∠ACB,并过D 作DH⊥CM 于H ,延长HD 交BA 延长线于K ,如图所示:设∠DCM=∠ACB=x,∵AC=AD,∴∠DAC=∠ADC=x+45°,∴∠ACD=180°-2(x+45°)=90°-2x ,∴∠BCH=90°,在△ABC 和△DHC 中,ACB DCH B DHCAC DC ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ABC≌△DHC(AAS ),∴BC=HC,AB=DH ,∴四边形BCKH 是正方形,∴∠K=90°,BK=HK ,∴AK=DK=BC,∴△ADK 是等腰直角三角形,=.考点:1.正方形的判定与性质;2.勾股定理.三、解答题(共9小题,满分82分)17.先化简,再求代数式2462393a a a -÷+--的值,其中a=tan60°-6sin30°.【解析】 试题分析:先根据分式混合运算的法则把原式进行化简,再求出a 的值代入进行计算即可.试题解析:原式=4633(3)(3)2aa a a--⨯++-=4333 a a-++=13a+,∵a=tan60°--6×12-3,∴原式=考点:1.分式的化简求值;2.特殊角的三角函数值.18.如图,在▱ABCD中,AB=4,AD=6,∠ABC的平分线交AD于点E,交CD的延长线于点F.(1)求DF的长;(2)点H为CD的中点,连接AH交BF于点G,点G是BF的中点吗?请说明理由.【答案】(1)2.(2) 点G是BF的中点;理由见解析.【解析】试题分析:(1)由平行四边形的性质和角平分线证出∠F=∠FBC,得出BC=CF=6,即可得出结果;(2)证出FH=AB,由AAS证明△ABG≌△HFG,得出对应边相等即可.试题解析:(1)∵四边形ABCD是平行四边形,∴AB∥CD,BC=AD=6,CD=AB=4,∴∠F=∠FBA,∵∠ABC平分线为AE,∴∠FBC=∠FBA,∴∠F=∠FBC,∴BC=CF=6,∴DF=CF-CD=6-4=2.(2)如图所示:点G 是BF 的中点;理由如下:∵点H 为CD 的中点, ∴DH=12CD=2, ∴HF=DF+HF=4,∴HF=AB,在△ABG 和△HFG 中,ABE F AGB HGF AB FH ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABG≌△HFG(AAS ),∴BG=FG,∴点G 是BF 的中点.考点:平行四边形的性质.19.某电视台为了解观众对“跑男”综艺节目的喜爱情况,随机抽取某社区部分观众,进行问卷调查,整理绘制了如下不完整的条形统计图和扇形统计图:请根据以上信息,解答下列问题:(1)求被调查的男观众中,表示“不喜欢”的男观众所占的百分比是多少?(2)求这次调查的女观众人数,并直接补全条形统计图.(3)在扇形统计图中,“一般”所对应的圆心角为 度.(4)若该社区有女观众约1000人,估计该社区女观众喜欢看“跑男”综艺节目的有多少人?【答案】(1)60%;(2)300;(33)108;(4)600人.【解析】试题分析:(1)根据百分比的意义即可直接求解;(2)根据喜欢节目的女生人数是180人,所占的百分比是60%,据此即可求得调查的总数,从而求得不喜欢的人数,补全直方图;(3)利用360°乘以对应的百分比即可求得;(4)利用总人数乘以对应的比例即可求解.试题解析:(1)表示“不喜欢”的男观众所占的百分比是90904020++×100%=60%,答:表示“不喜欢”的男观众所占的百分比是60%;(2)女观众的人数是(90+180)÷(1-10%)=300(人),则不喜欢的女生人数是300-90-180=30(人).,答:这次调查的女观众的人数是300人;(3)扇形统计图中,“一般”所对应的圆心角是:360×(1-60%-10%)=108°;(4)该社区女观众喜欢看“跑男”综艺节目的人数是1000×180300=600(人),答:喜欢看“跑男”综艺节目的女观众约有600人.考点:1.条形统计图;2.用样本估计总体;3.扇形统计图.20.如图,某中学在教学楼前新建了一座雕塑AB.为了测量雕塑的高度,小明在二楼找到一点C,利用三角尺测得雕塑顶端点A的仰角为30°,底部点B的俯角为45°,小华在五楼找到一点D,利用三角尺测得点A的俯角为60°.若CD为9.6m,则雕塑AB的高度为多少?(结果精确到0.1m,≈1.73).【答案】雕塑AB的高度约为6.6米.【解析】试题分析:首先过点C作CE⊥AB于E,然后利用三角函数的性质,求得CD,AC的长,然后在Rt△ACE中,求得AE的长,继而求得CE的长,又在Rt△BCE中,求得BE的长,继而求得答案.试题解析:过点C作CE⊥AB于E.∵∠ADC=90°-60°=30°,∠ACD=90°-30°=60°,∴∠CAD=90°.∵CD=9.6,∴AC=12CD=4.8.在Rt△ACE中,∵∠AEC=90°,∠ACE=30°,∴AE=12AC=2.4,.在Rt△BCE中,∵∠BCE=45°,,≈6.6(米). 答:雕塑AB 的高度约为6.6米.考点:解直角三角形的应用-仰角俯角问题.21.一个不透明的布袋里装有2个白球,1个黑球和若干个红球,它们除颜色外其余都相同,从中任意摸出1个球,是白球的概率为12. (1)布袋里红球有多少个?(2)先从布袋中摸出1个球后不放回,再摸出1个球,请用列表法或画树状图等方法求出两次摸到的球都是白球的概率.【答案】(1)1个;(2)16. 【解析】试题分析:(1)设红球的个数为x ,根据白球的概率可得关于x 的方程,解方程即可;(2)画出树形图,即可求出两次摸到的球都是白球的概率.试题解析:(1)设红球的个数为x ,由题意可得: 21212x =++, 解得:x=1,经检验x=1是方程的根,即红球的个数为1个;(2)画树状图如下:∴P(摸得两白)=21126=. 考点:1.列表法与树状图法;2.概率公式.22.如图,AB是⊙O的直径,OD⊥弦BC于点F,交⊙O于点E,连结CE、AE、CD,若∠AEC=∠ODC.(1)求证:直线CD为⊙O的切线;(2)若AB=5,BC=4,求线段CD的长.【答案】(1)证明见解析;(2)103.【解析】试题分析:(1)利用圆周角定理结合等腰三角形的性质得出∠OCF+∠DCB=90°,即可得出答案;(2)利用圆周角定理得出∠ACB=90°,利用相似三角形的判定与性质得出DC的长.试题解析:(1)连接OC,∵∠CEA=∠CBA,∠AEC=∠ODC,∴∠CBA=∠ODC,又∵∠CFD=∠BFO,∴∠DCB=∠BOF,∵CO=BO,∴∠OCF=∠B,∵∠B+∠BOF=90°,∴∠OCF+∠DCB=90°,∴直线CD为⊙O的切线;(2)连接AC,∵AB是⊙O的直径,∴∠ACB=90°,∴∠DCO=∠ACB,又∵∠D=∠B∴△OCD∽△ACB,∵∠ACB=90°,AB=5,BC=4,∴AC=3,∴CO CD AC BC=,即2.534CD=,解得;DC=103.考点:切线的判定.23.某仓储系统有12条输入传送带,12条输出传送带.某日,控制室的电脑显示,每条输入传送带每小时进库的货物流量如图1,每条输出传送带每小时出库的货物流量如图2,而该日仓库中原有货物8吨,在0时至5时,仓库中货物存量变化情况如图3.(1)每条输入传送带每小时进库的货物流量为吨,每条输出传送带每小时出库的货物流量为吨.(2)在0时至2时内,求出仓库内货物存量y(吨)与时间x(小时)之间的函数关系式:.(3)在4时至5时,有条输入传送带和条输出传送带在工作.【答案】(1)13;15.(2)y=2x+8.(3)6,6.【解析】试题分析:(1)根据“每小时传送货物量=增加(减少)的量÷时间”结合图1和图2即可得出结论;(2)设函数关系式为y=kx+b,由图3找出点的坐标,利用待定系数法即可求出结论;(3)设在4时至5时,有m条输入传送带和n条输出传送带在工作.结合图象得出15n-13m=12,结合m、n的取值范围即可得出结论.试题解析:(1)每条输入传送带每小时进库的货物流量为:13÷1=13(吨),每条输出传送带每小时出库的货物流量为15÷1=15(吨).(2)当0≤x≤2时,设函数关系式为y=kx+b,∵函数的图象过点(0,8),(2,12),∴有2128k bb+=⎧⎨=⎩,解得:28kb=⎧⎨=⎩.∴y=2x+8(0≤x≤2).(3)设在4时至5时,有m条输入传送带和n条输出传送带在工作.由题意得:15n-13m=12.∴n=131215m+.∵0≤m≤12,且m和n均为整数,∴13m+12为15的整数倍,∴m=6,此时n=6.考点:一次函数的应用.24.(1)如图①,点E是正方形ABCD边BC上任意一点,过点C作直线CF⊥AE,垂足为点H,直线CF交直线AB于点F,过点E作EG∥AB,交直线AC于点G.则线段AD,EG,BF之间满足的数量关系是;(2)如图②,若点E在边CB的延长线上,其他条件不变,则线段AD,EG,BF之间满足的数量关系是,证明你的结论;(3)如图③,在(2)的条件下,若正方形ABCD的边长为4,tan∠F=23,将一个45°角的顶点与点A重合,并绕点A旋转,这个角的两边分别交线段EG于M,N两点.当EN=2时,求线段GM的长.【答案】(1)AD=EG+BF;(2)AD=EG-BF;证明见解析;(3)3.【解析】试题分析:(1)由正方形的性质得出AD=AB=BC ,∠ABC=90°,∠ACB=45°,由平行线的性质得出∠CEG=∠ABC=90°,得出△CEG 是等腰直角三角形,EG=CE ,由AAS 证明△ABE≌△CBF,得出对应边相等BE=BF ,即可得出AD=EG+BF ;(2)由正方形的性质得出AD=AB=BC ,∠ABC=90°,∠ACB=45°,由平行线的性质得出∠CEG=∠ABC=90°,得出△CEG 是等腰直角三角形,EG=CE ,由AAS 证明△ABE≌△CBF,得出BE=BF ,即可得出AD=EG-BF ;(3)过A 作AP⊥EG 于P ,过M 作MQ⊥AG 于Q ,则四边形ABEP 为矩形,得出AB=PE ,AP=BE ,由正方形的性质得出AB=BC=AD=PE=4,由三角函数得出BE=BF=AP=6,得出PN=2,证明△AQM∽△APN ,得出对应边成比例,AQ=3QM ,由勾股定理求出AG ,证明△AGP∽△GMQ,得出对应边成比例,QM ,设GM=x ,由勾股定理得出方程,解方程即可.试题解析:(1)AD=EG+BF ,理由如下:∵四边形ABCD 是正方形,∴AD=AB=BC,∠ABC=90°,∠ACB=45°,∵EG∥AB,∴∠CEG=∠ABC=90°,∴△CEG 是等腰直角三角形,∴EG=CE,∵CF⊥AE,垂足为点H ,∴∠CHE=∠CBF=90°,∴∠F=∠C EH ,∵∠CEH=∠AEB,∴∠F=∠AEB,在△ABE 和△CBF 中,F AEB ABE CBF AB BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE≌△CBF(AAS ),∴BE=BF,∴BC=EC+BE=EG+BF,∴AD=EG+BF;(2)AD=EG-FB ,理由如下:∵四边形ABCD 是正方形,∴AD=AB=BC,∠ABC=90°,∠ACB=45°,∵EG∥AB,∴∠CEG=∠ABC=90°,∴△CEG 是等腰直角三角形,∴EG=CE,∵CF⊥AE,垂足为点H ,∴∠FHA=∠FBC=∠ABE=90°,∴∠FAH=∠BCF,∵∠FAH=∠BAE,∴∠BCF=∠BAE,在△ABE 和△CBF 中,FBC ABE BCF BAE AB BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE≌△CBF(AAS ),∴BE=BF,EG=CE=BE+BC=BF+AD ,∴AD=EG -BF ;故答案为:AD=EG-BF ;(3)过A 作AP⊥EG 于P ,过M 作MQ⊥AG 于Q ,如图所示:则四边形ABEP 为矩形,∴AB=PE,AP=BE ,∵正方形ABCD 的边长为4,∴AB=BC=AD=PE=4, ∵tan∠F=23BC BF =, ∴BF=432⨯=6, ∴BE=BF=AP=6,∵EN=2,∴PN=2,∵∠PAQ=∠MAN=45°,∴∠MAQ=∠NAP,∵∠APN=∠AQM=90°,∴△AQM∽△APN, ∴AQ QM AP PN=, 即62AQ QM =, ∴AQ=3QM,∵△APG 是等腰直角三角形,==∵∠G=∠G,∠GQM=∠APG=90°,∴△AGP∽△GMQ, ∴GM QM AG AP=,6QM =,QM ,设GM=x ,∵GM 2=QM 2+(AG-AQ )2,则x 2=)2+(-2, 解得:x=3或x=6(不合题意,舍去),∴GM=3.考点:四边形综合题.25.已知该抛物线y=x 2+bx+c ,经过点B (-4,0)和点A (1,0)与y 轴交于点C .(1)确定抛物线的表达式,并求出C 点坐标;(2)如图1,经过点B 的直线l 交抛物线于点E ,且满足∠EBO=∠ACB,求出所有满足条件的点E 的坐标,并说明理由;(3)如图2,M ,N 是抛物线上的两动点(点M 在左,点N 在右),分别过点M ,N 作PM∥x 轴,PN∥y 轴,PM ,PN 交于点P .点M ,N 运动时,且始终保持不变,当△MNP 的面积最大时,请直接写出直线MN 的表达式.【答案】(1)y=x 2+3x-4,C 点坐标为(0,-4);(2)E 1(83,1009),E 2(-23,-509);(3)y=x-4或y=-x-314. 【解析】试题分析:(1)根据待定系数法,可得函数解析式,根据自变量与函数值的对应关系,可得答案;(2)根据勾股定理,可得BC 的长,根据等角的正切值相等,可得HO 的长,根据待定系数法,可得BE 的解析式,根据解方程组,可得E 点坐标;(3)由题意△PMN 是等腰直角三角形,得PM=PN=1,设M (a ,a 2+3a-4)则N (a+1,a 2+3a+1)或(a+1,a 2+3a-5),代入抛物线的解析式即可求解.试题解析:(1)y=x 2+bx+c ,经过点B (-4,0)和点A (1,0),得2(4)4010b c b c ⎧--+=⎨++=⎩,解得34b c =⎧⎨=-⎩, 抛物线的解析式为y=x 2+3x-4,当x=0时,y=-4,C 点坐标为(0,-4);(2)如图:由题意,得OB=OC=4,, 设l 1与y 轴交于点H ,过A 作AD⊥BC 于点D ,△ADB 是等腰直角三角形,.∵AD=BD=AB•sin45°,53AD CD =. ∵∠ACB=∠EBA , ∴HO=20tan 3BO EBA =∠,H (0,203), 设直线l 1的解析式为y=kx+b ,将B 、C 点坐标代入,得 k=53, l 1的解析式为y=53x+203, 联立抛物线与l 1,得53x+203=x 2+3x-4, 解得x=83,E 1(83,1009); 同理l 2:y=-53x-203, -53x-203=x 2+3x-4, 解得x=-23,E 2(-23,-509), 综上所述:E 1(83,1009),E 2(-23,-509);(3)∵△PMN 是直角三角形,斜边∴当△PMN 面积最大时,△PMN 是等腰直角三角形,PM=PN=1,由题意设M(a,a2+3a-4)则N(a+1,a2+3a-3)或(a+1,a2+3a-5),∴a2+3a-3=(a+1)2+3(a+1)-4或a2+3a-5=(a+1)2+3(a+1)-4,∴a=0或-52.①当a=0时,M(0,-4),N(1,-3),设直线MN为y=kx+b,则43bk b=-⎧⎨+=-⎩,解得14kb=⎧⎨=-⎩,所以直线MN为y=x-4.②当a=-52时,M(-52,-214),N(-32,-254),设直线MN为y=k′x+b′,则5212432524k bk b⎧''-+=-⎪⎪⎨⎪''-+=-⎪⎩解得1314kb'=-⎧⎪⎨'=-⎪⎩,所以直线MN为y=-x-31 4.考点:二次函数综合题.。
江西省2016年中考数学试题(含答案)
一、选择题(本大题共6个小题,每小题3分,共18分,每小题只有一个正确选项)1.下列四个数中,最大的一个数是().A.2 B.C.0 D.-2 【答案】 A.2.将不等式的解集表示在数轴上,正确的是().【答案】D.3.下列运算正确的是是().A.B.C. D.【答案】B.4.有两个完全相同的长方体,按下面右图方式摆放,其主视图是().【答案】 C.5.设是一元二次方程的两个根,则的值是().A. 2B. 1C. -2D. -1【答案】 D.6.如图,在正方形网格中,每个小正方形的边长均相等,网格中三个多边形(分别标记为○1,○2,○3)的顶点都在网格上,被一个多边形覆盖的网格线......中,竖直部分线段长度之和为,水平部分线段长度之和为,则这三个多边形满足的是( )A.只有○2B.只有○3C.○2○3D.○1○2○3【答案】 C.二、填空题(本大题共6小题,每小题3分,共18分)7.计算:-3+2= ___ ____.【答案】 -1.8.分解因式____ ____.【答案】 .9.如图所示,中,绕点A 按顺时针方向旋转50°,得到,则∠的度数是___ _____.xyy 1y 2l AB O B CE FCABAC'DB'P第6题③②①第9题 第10题 第11题【答案】 17°.10.如图所示,在,过点D 作AD 的垂线,交AB 于点E ,交CB 的延长线于点F ,则∠BEF 的度数为 ____ ___.【答案】 50°.11.如图,直线于点P ,且与反比例函数及的图象分别交于点A ,B ,连接OA,OB ,已知的面积为2,则 __ ____.【答案】 4.12.如图,是一张长方形纸片ABCD ,已知AB=8,AD=7,E 为AB 上一点,AE=5,现要剪下一张等腰三角形纸片(AEP ),使点P 落在长方形ABCD 的某一条边上,则等腰三角形AEP 的底边长...是___ ____. 【答案】 5,5, .如下图所示:PPPEC D BAEC D B AEC DBA三、(本大题共5小题,每小题6分,共30分)13.(本题共2小题,每小题3分)(1)解方程组CA【解析】由○1得:,代入○2得:,解得把代入○1得:,∴原方程组的解是 .(2)如图,Rt中,∠ACB=90°,将Rt向下翻折,使点A与点C重合,折痕为DE,求证:DE∥BC.【解析】由折叠知:,∴∠∠,又点A与点C重合,∴∠,∴∠∠,∴∠,∵∠,∴∠,∴∠,∴DE∥BC.14.先化简,再求值:+)÷ ,其中.【解析】原式=+)=+)D E B=-=把代入得:原式 = .15.如图,过点A(2,0)的两条直线分别交轴于B,C,其中点B在原点上方,点C在原点下方,已知AB=.(1)求点B的坐标;(2)若【解析】(1) 在Rt,∴∴∴点B的坐标是(0,3) .(2) ∵∴∴∴设 , 把(2,0),代入得:xyl l1CBAO∴ ∴ 的解析式是 .16.为了了解家长关注孩子成长方面的情况,学校开展了针对学生家长的“你最关注孩子哪方面成长”的主题调查,调查设置了“健康安全”, “日常学习”, “习惯养成”, “情感品质”四个项目,并随机抽取甲,乙两班共100位学生家长进行调查,根据调查结果,绘制了如下不完整的条形统计图.项目家长人数乙甲情感品质日常学习习惯养成健康安全475172320182420161284O(1)补全条形统计图;(2)若全校共有3600位家长,据此估计,有多少位家长最关心孩子“情感品质”方面的成长?(3)综合以上主题调查结果,结合自身现状,你更希望得到以上四个项目中哪方面的关注和指导?【解析】(1)如下图所示:项目家长人数6乙甲情感品质日常学习习惯养成健康安全475172320182420161284O(2) (4+6)÷100×3600=360∴约有360位家长最关心孩子“情感品质”方面的成长.(3) 没有确定答案,说的有道理即可.17.如图,六个完全相同的小长方形拼成一个大长方形,AB是其中一个小长方形的对角线,请在大长方形中完成下列画图,要求:○1仅用无刻度直尺,○2保留必要的画图痕迹.(1)在图(1)中画一个45°角,使点A或点B是这个角的顶点,且AB为这个角的一边;(2)在图(2)中画出线段AB的垂直平分线.【解析】如图所示:(1) ∠BAC=45º;(2)OH是AB的垂直平分线.四、(本大题共4小题,每小题8分,共32分)18.如图,AB 是⊙O 的直径,点P 是弦AC 上一动点(不与A 、C 重合),过点P 作PE ⊥AB,垂足为E ,射线EP 交 于点F ,交过点C 的切线于点D.(1)求证DC=DP(2)若∠CAB=30°,当F 是 的中点时,判断以A 、O 、C 、F 为顶点的四边形是什么特殊四边形?说明理由;【解析】(1) 如图1连接OC, ∵CD 是⊙O 的切线,∴ OC ⊥CD ∴∠OCD=90º,∴∠DCA= 90º-∠OCA .又PE ⊥AB ,点D 在EP 的延长线上,∴∠DEA=90º ,∴∠DPC=∠APE=90º-∠OAC.∵OA=OC , ∴∠OCA=∠OAC.∴∠DCA=∠DPC ,∴DC=DP.(2) 如图2 四边形AOCF 是菱形. 图1 AC ACBA C =C F A F B连接CF 、AF , ∵F 是 的中点,∴∴ AF=FC . ∵∠BAC=30º ,∴ =60º , 又AB 是⊙O 的直径, ∴ =120º, ∴ = 60º ,∴∠ACF=∠FAC =30º .∵OA=OC, ∴∠OCA=∠BAC=30º,∴⊿OAC ≌⊿FAC (ASA) , ∴AF=OA ,∴AF=FC=OC=OA , ∴四边形AOCF 是菱形.19.如图是一根可伸缩的鱼竿,鱼竿是用10节大小不同的空心套管连接而成,闲置时鱼竿可收缩,完全收缩后,鱼竿的长度的长度即为第1节套管的长度(如图1所示),使用时,可将鱼竿的每一节套管都完全拉伸(如图2所示),图3是这根鱼竿所有套管都处于完全拉伸状态下的平面示意图,已知第1节套管长50cm ,第2节套管长46cm ,以此类推,每一节套管都比前一节套管少4cm ,完全拉伸时,为了使相邻两节套管连接并固定,每相邻两节套管间均有相同长度的重叠,设其长度为cm .(1)请直接写出第5节套管的长度;(2)当这根鱼竿完全拉伸时,其长度为311cm ,求的值 .F E D OBCP B CA CB =C FA F图2图1xx• • •第2节x x第1节图3【解析】 (1) 第5节的套管的长是34cm . (注:50-(5-1)×4 )(2) (50+46+…+14) -9x =311∴320-9x =311 , ∴x =1∴x 的值是1.20.甲、乙两人利用扑克牌玩“10点”游戏,游戏规则如下:○1将牌面数字作为“点数”,如红桃6的“点数”就是6(牌面点数与牌的花色无关); ○2两人摸牌结束时,将所得牌的“点数”相加 ,若“点数”之和小于或等于10,此时“点数”之和就是“最终点数”,若“点数”之和大于10,则“最终点数”是0;○3游戏结束之前双方均不知道对方“点数”; ○4判定游戏结果的依据是:“最终点数”大的一方获胜,“最终点数”相等时不分胜负.现甲、乙均各自摸了两张牌,数字之和都是5,这时桌上还有四张背面朝上的扑克牌,牌面数字分别是4,5,6,7.(1)若甲从桌上继续摸一张扑克牌,乙不再摸牌,则甲获胜的概率为 .(2)若甲先从桌上继续摸一张扑克牌,接着乙从剩下的扑克牌中摸出一张牌,然后双方不再摸牌,请用树状图或表格表示出这次摸牌后所有可能的结果,再列表呈现甲、乙的“最终点数”,并求乙获胜的概率.【解析】 (1) .(2) 如图:754654764765乙甲7654开始∴所有可能的结果是(4,5)(4,6)(4,7)(5,4)(5,6)(5,7)(6,4)(6,5)(6,7)(7,4)(7,5)(7,6) 共12种.甲5[45 6 7 甲“最终点数”9101112乙55 6 7 4 6 7 4 5 7 4 5 6 乙“最终点数” 1 10 12 9 10 11获胜情况乙胜甲胜甲胜甲胜甲胜甲胜乙胜乙胜平乙胜乙胜平∴21.如图1是一副创意卡通圆规,图2是其平面示意图,OA是支撑臂,OB是旋转臂,使用时,以点A为支撑点,铅笔芯端点B可以绕点A旋转作出圆.已知OA=OB=10cm.(1)当∠AOB=18º时,求所作圆的半径;(结果精确到0.01cm)(2)保持∠AOB=18º不变,在旋转臂OB末端的铅笔芯折断了一截的情况下,作出的圆与(1)中所作圆的大小相等,求铅笔芯折断部分的长度.(结果精确到0.01cm)(参考数据:sin9º≈0.1564,com9º≈0.9877º,sin18º≈0.3090, com18º≈0.9511,可使用科学计算器)【解析】 (1) 图1,作OC⊥AB,B∵OA=OB, OC ⊥AB ,∴AC=BC, ∠AOC=∠BOC=∠AOB=9°,在Rt ⊿AOC 中,sin ∠AOC = , ∴AC ≈0.1564×10=1.564,∴AB=2AC=3.128≈3.13.∴所作圆的半径是3.13cm.(2)图2,以点A 为圆心,AB 长为半径画弧,交OB 于点C,作AD ⊥BC 于点D;∵AC=AB, AD ⊥BC ,∴BD=CD, ∠BAD=∠CAD=∠BAC,∵∠AOB=18°,OA=OB ,AB=AC,∴∠BAC=18°, ∴∠BAD=9°,在Rt ⊿BAD 中, sin ∠BAD = ,∴BD ≈0.1564×3.128≈0.4892,∴BC=2BD=0.9784≈0.98∴铅笔芯折断部分的长度约为0.98cm. 图2D B五、(本大题共10分)22.【图形定义】如图,将正n边形绕点A顺时针旋转60°后,发现旋转前后两图形有另一交点O,连接AO,我们称AO为“叠弦”;再将“叠弦”AO所在的直线绕点A逆时针旋转60°后,交旋转前的图形于点P,连接PO,我们称∠OAB为“叠弦角”,⊿AOP为“叠弦三角形”.【探究证明】(1)请在图1和图2中选择其中一个证明:“叠弦三角形”(即⊿AOP)是等边三角形;(2)如图2,求证:∠OAB=∠OAE'.【归纳猜想】(3)图1、图2中“叠弦角”的度数分别为,;(4)图n中,“叠弦三角形”等边三角形(填“是”或“不是”);(5)图n中,“叠弦角”的度数为(用含n的式子表示).【解析】 (1) 如图1 ∵四ABCD 是正方形,由旋转知:AD=AD ',∠D=∠D '=90°, ∠DAD '=∠OAP=60°∴∠DAP=∠D 'AO ,∴⊿APD ≌⊿AOD '(ASA )∴AP=AO ,又∠OAP=60°, ∴⊿AOP 是等边三角形.(2)如右图,作AM ⊥DE 于M, 作AN ⊥CB 于N.∵五ABCDE 是正五边形,由旋转知:AE=AE ',∠E=∠E '=108°,∠EAE '=∠OAP=60°MD'∴∠EAP=∠E'AO ,∴⊿APE≌⊿AOE'(ASA)∴∠OAE'=∠PAE.在Rt⊿AEM和Rt⊿ABN中,∴Rt⊿AEM≌Rt⊿ABN (AAS)∴∠EAM=∠BAN , AM=AN.在Rt⊿APM和Rt⊿AON中,∴Rt⊿APM≌Rt⊿AON (HL).∴∠PAM=∠OAN,∴∠PAE=∠OAB∴∠OAE'=∠OAB (等量代换).(3) 15°, 24°(4) 是(5) ∠OAB= ÷2=60°-六、(本大题共共12分)23.设抛物线的解析式为y = a x2 , 过点B1 (1, 0 )作x轴的垂线,交抛物线于点A1 (1, 2);过点B2 (1, 0 )作x 轴的垂线,交抛物线于点A 2 ,… ;过点B n (, 0 ) (n 为正整数 )作x 轴的垂线,交抛物线于点A n ,连接A n B n+1 , 得直角三角形A n B n B n+1 .(1)求a 的值;(2)直接写出线段A n B n ,B n B n+1 的长(用含n 的式子表示);(3)在系列Rt ⊿A n B n B n+1 中,探究下列问题:○1当n 为何值时,Rt ⊿A n B n B n+1 是等腰直角三角形? ○2设1≤k <m ≤n (k , m 均为正整数) ,问是否存在Rt ⊿A k B k B k+1 与Rt ⊿A m B m B m+1 相似?若存在,求出其相似比;若不存在,说明理由.xyO【解析】 (1) 把A(1 , 2)代入得: 2=, ∴.(2) 2× ==- =(3) ○1 若Rt ⊿A n B n B n+1 是等腰直角三角形 ,则.∴ , ∴n=3.○2若Rt⊿A k B k B k+1与Rt⊿A m B m B m+1相似,则或,∴或 ,∴ m=k (舍去) 或 k+m=6∵m>k ,且m , k都是正整数,∴,∴相似比=,或. ∴相似比是8:1或64:1。
【中考真题】临沂市2016年中考数学试题(附答案)
2016年临沂市初中学生学业考试试题数 学第Ⅰ卷(选择题 共42分)一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.四个数—3、0、1、2,其中负数是 (A) —3. (B) 0.(C) 1(D) 2.2.如图,直线AB ∥CD ,∠A = 40°,∠D = 45°,则∠1等于 (A) 80°. (B) 85°. (C) 90°.(D) 95°.3.下列计算正确的是(A) 32x x x -=. (B) 326x x x ⋅=. (C). 32x x x ÷= (D). 325()x x =4.不等式组33324x xx ⎧⎪⎨-⎪⎩<+≥2,的解集,在数轴上表示正确的是5.如图,一个空心圆柱体,其主视图正确的是6.某校九年级一共有1,2,3,4四个班,现从这四个班中随机抽取两个班进行一场篮球比赛,则恰好抽到1班和2班的概率是(A) 18.(B).16 (C) 38.(D) 12.7. 一个正多边形内角和等于540°,则这个正多边形的每一外角等于45°40°1DCBA(A) 108°. (B) 90°. (C) 72°. (D) 60°.8.为了绿化校园,30名学生共种78棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x 人,女生有y 人,根据题意,所列方程组正确的是,78()3230x y A x y +=⎧⎨+=⎩ 78()2330x y B x y +=⎧⎨+=⎩ 30()2378x y C x y +=⎧⎨+=⎩ 30()3278x y D x y +=⎧⎨+=⎩9.某老师为了解学生周末学习情况,在所任班级中随机调查了10名学生,绘成如图所示的条形统计图,则这10名学生周末学习的平均时间是 (A) 4. (B) 3.(C) 2(D) 1.10.如图,AB 是⊙O 的切线,B 为切点,AC 经过点O ,与⊙O 分别相交于点D 、C.若∠ACB=30°,AB=3,则阴影部分面积是 (A)32. (B)6π. (C) 326π-. (D)336π-. 11.用大小相等的小正方形按一定规律拼成下列图形,则第n 个图形中小正方形的个数是第3个图形第2个图形第1个图形(A) 2n+1.(B) n 2-1. (C) n 2+2n.(D) 5n-2.12.如图,将等边△ABC 绕点C 顺时针旋转120°得到△EDC ,连接AD 、BD ,则下列结论:①AC=AD ;②BD ⊥AC ;③四边形ACED 是菱形.其中正确的个数是 (A) 0 . (B) 1 . (C) 2 .(D) 3 .13. 二次函数y=ax 2+bx+c ,自变量x 与函数y 的对应值如下表: x … -5 -4 -3 -2 -1 0 … y…4-2-24…下列说法正确的是(A)抛物线的开口向下 (B) 当x >—3时,y 随x 的增大而增大. (C) 二次函数的最小值是—2 (D) 抛物线的对称轴是x=—52. EDCBA14.直线y=—x+5与双曲线ky x =(x >0)相交于A 、B 两点,与x 轴相交于C 点,△BOC 的面积是52.若将直线y=—x+5向下平移1个单位,则所得直线与双曲线ky x=(x >0)的交点有 (A) 0个.(B) 1个. (C) 2个.(D) 0个,或1个,或2个.第Ⅱ卷(非选择题 共78分)二、填空题(本大题共5小题,每小题3分,共15分) 15.分解因式:x 3—2x 2+x= .16.计算:aa a -+-1112= . 17.如图,在△ABC 中,点D 、E 、F 分别在AB 、AC 、BC 上,DE ∥BC ,EF//AB.若AB=8,BD=3,BF=4,则FC 的长为 .第18题图第17题图ABCD EFOGF EDCBA18.如图,将一张矩形纸片ABCD 折叠,使两个顶点A 、C 重合,折痕为FG ,若AB=4,BC=8,则△ABF 的面积为 .19.一般地,当α、β为任意角时,sin (α+β)与sin (α—β)的值可以用下面的公式求得: sin (α+β)=sin αcos β+cos αsin β;sin (α—β)= sin αcos β—cos αsin β . 例如sin90°=sin (60°+30°)= sin60°cos30°+cos60°sin30°=21212323⨯+⨯=1 . 类似地,可以求得sin15°的值是 . 20. (本小题满分7分)计算:|—3|+3tan30°—12—(2016—π)021. (本小题满分7分)为了解某校九年级学生的身高情况,随机抽取了部分学生的身高进行调查,利用所得数据绘成如下统计图表:频数分布表 频数分布直方图 身高分组频数百分比(1)填空:a= ,b= ;(2)补全频数分布直方图;(3)该校九年级一共有600名学生,估计身高不低于165cm 的学生大约有多少人?22. (本小题满分7分)一艘轮船位于灯塔P 南偏西60°方向,距离灯塔20海里的A 处,它向东航行多少海里到达灯塔P 南偏西45方向上的B 处(参考数据:3≈1.732,结果精确到0.1)?23. (本小题满分9分)如图,A 、P 、B 、C 是圆上的四个点,∠APC=∠CPB=60°,AP 、CB 的延长线相交于点D. (1)求证:△ABC 是等边三角形;(2)若∠PAC=90°,AB=23,求PD 的长.24. (本小题满分9分)现代互联网技术的广泛应用,催生了快递行业的高速发展.小明计划给朋友快递一部分物品,经了解有甲乙两家快递公司比较合适.甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费.乙公司表示:按每千克16元收费,另加包装费3元.设小明快递物品x 千克. (1)请分别写出甲乙两家快递公司快递该物品的费用y (元)与x (千克)之间的函数关系式; (2)小明应选择哪家快递公司更省钱?25.(本小题满分11分)如图1,在正方形ABCD 中,点E 、F 分别是边BC 、AB 上的点,且CE=BF.连接DE ,过点E 作EG ⊥DE ,使EG=DE.连接FG ,FC.PDCBA东北(1)请判断:FG与CE的数量关系是,位置关系是;(2)如图2,若点E、F分别是CB、BA延长线上的点,其它条件不变,(1)中结论是否仍然成立?请出判断并予以证明;(3)如图3,若点E、F分别是BC、AB延长线上的点,其它条件不变,(1)中结论是否仍然成立?请直接写出你的判断.26.(本题满分13分)如图,在平面直角坐标系中,直线y=—2x+10与x轴、y轴相交于A、B两点.点C的坐标是(8,4),连接AC、BC.(1)求过O、A、C三点的抛物线的解析式,并判断△ABC的形状;(2)动点P从点O出发,沿OB以每秒2个单位长度的速度向点B运动;同时,动点Q从点B出发,沿BC以每秒1个单位长度的速度向点C运动.规定其中一个点到达端点时,另一个动点也随之停止运动.设运动时间为t秒,当t为何值时,PA=QA?(3)在抛物线的对称轴上,是否存在点M,使以A、B、M为顶点的三角形是等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由。
浙江省宁波市宁海县中考数学模拟试卷(含解析)-人教版初中九年级全册数学试题
2016年某某省某某市某某县中考数学模拟试卷一、选择题1.在﹣5,2,﹣1,3这四个数中,比﹣2小的数是()A.﹣5 B.2 C.﹣1 D.32.下列计算正确的是()A.a2•a3=a6B.(﹣2ab)2=4a2b2C.(a2)3=a5D.3a3b2÷a2b2=3ab×107×107,结果用科学记数法表示为()×107×106C.1×107D.1×1064.在某班组织的跳绳比赛中,第一小组五位同学跳绳次数分别为198,230,220,216,209,则这五个数据的中位数为()A.220 B.218 C.216 D.2095.下列正多边形的地砖中,不能铺满地面的正多边形是()A.正三角形 B.正方形C.正五边形 D.正六边形6.估计的值在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间7.如图,直线l1,l2,l3交于一点,直线l4∥l1,若∠1=124°,∠2=88°,则∠3的度数为()A.26° B.36° C.46° D.56°8.某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交货,设每天应多做x件才能按时交货,则x应满足的方程为()A.B. =C.D.9.如图,⊙O是△ABC的外接圆,已知AD平分∠BAC交⊙O于点D,AD=5,BD=2,则DE的长为()A.B.C.D.10.如图,在4×4正方形网格中,任选取一个白色的小正方形并涂黑,使图中黑色部分的图形构成一个轴对称图形的概率是()A.B.C.D.11.如图,正方形ABCD的边长为4,点P、Q分别是CD、AD的中点,动点E从点A向点B 运动,到点B时停止运动;同时,动点F从点P出发,沿P→D→Q运动,点E、F的运动速度相同.设点E的运动路程为x,△AEF的面积为y,能大致刻画y与x的函数关系的图象是()A.B.C.D.12.把2X形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为m,宽为n)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示.阴影部分刚好能分割成两X形状大小不同的小长方形卡片(如图③),则分割后的两个阴影长方形的周长和是()A.4m B.2(m+n) C.4n D.4(m﹣n)二、填空题13.6的平方根为.14.分解因式:2a2﹣2=.15.命题“全等三角形的面积相等”的逆命题是命题.(填入“真”或“假”)16.若关于x,y的二元一次方程组的解满足x+y<2,则a的取值X围为.17.如图,△ABC中,CA=CB,AB=6,CD=4,E是高线CD的中点,以CE为半径作⊙C,G是⊙C上一个动点,P是AG中点,则DP的最大值为.18.如图,在△ABC中,AB=AC=a,BC=b,∠A=100°,点D在AC边上,∠ABD=30°,则AD 的长为.三、解答题(本大题有8小题,共78分)19.计算:2×(﹣3)+4×()﹣1﹣20160;(2)解方程:﹣1=0.20.(8分)某中学学生会为考察该校学生参加课外体育活动的情况,采取抽样调查的方法从篮球、排球、乒乓球、足球及其他等五个方面调查了若干名学生的兴趣爱好如图,某某市共湖中有一小岛,湖边有一条笔直的观光小道AB,现决定从小岛架一座与观光小道垂直的小桥PD,在小道上测得如下数据:AB=60米,∠PAB=45°,∠PBA=30°.请帮助小X求出小桥PD的长.(≈1.414,≈1.732,结果精确到)22.(10分)△ABC在平面直角坐标系xOy中的位置如图所示.(1)作△ABC关于点C成中心对称的△A1B1C1.(2)将△A1B1C1向右平移4个单位,作出平移后的△A2B2C2.(3)在x轴上求作一点P,使PA1+PC2的值最小,并写出点P的坐标(不写解答过程,直接写出结果)23.(10分)在平面直角坐标系中,点A(﹣3,4)关于y轴的对称点为点B,连接AB,反比例函数y=(x>0)的图象经过点B,过点B作BC⊥x轴于点C,点P是该反比例函数图象上任意一点,过点P作PD⊥x轴于点D,点Q是线段AB上任意一点,连接OQ、CQ.(1)求k的值;(2)判断△QOC与△POD的面积是否相等,并说明理由.24.(10分)某工厂计划招聘A,B两个工种的工人120人,已知A,B两个工种的工人的月工资分别为800元和1000元.(1)若工厂每月所支付的工资为110 000元,那么A,B两个工种的工人各招聘多少人?(2)若要求B工种的人数不少于A工种人数的2倍,那么招聘A工种的工人多少人时,可使每月所支付的工资最少?25.(12分)定义:有一组邻边相等且对角线相等的四边形称为“美好四边形”.(1)从学过的特殊四边形中,写出一个“美好四边形”;(2)如图,在4×4的网格图中有A、B两个格点,请在答题卷给出的两个网格图上各找出C、D两个格点,使得以A、B、C、D为顶点的四边形互不全等的“美好四边形”,画出相应的“美好四边形”,并写出该“美好四边形”的对角线长.(3)如图,已知等边△ABC,在△ABC外存在点D,设∠BDC=α,∠DAC=β,探究α、β满足什么关系时,四边形ABCD为“美好四边形”.26.(14分)如图1,抛物线y=ax2+bx+c经过A(﹣2,0)、B(8,0)、C(0,4)三点,顶点为D,连结AC,BC.(1)求抛物线的函数关系式及顶点D的坐标;(2)如图2,点P是该抛物线在第一象限内上的一点.①过点P作y轴的平行线交BC于点E,若CP=CE,求点P的坐标;②连结AP交BC于点F,求的最大值.(3)若点Q在该抛物线的对称轴上,以Q为圆心的圆过A、B两点,并且和直线CD相切,求点Q的坐标.2016年某某省某某市某某县中考数学模拟试卷参考答案与试题解析一、选择题(2016•象山县模拟)在﹣5,2,﹣1,3这四个数中,比﹣2小的数是()A.﹣5 B.2 C.﹣1 D.3【考点】18:有理数大小比较.【分析】根据有理数大小比较的法则直接求得结果,再判定正确选项.【解答】解:∵﹣5<﹣2<﹣1<2<3,∴在﹣5,2,﹣1,3这四个数中,比﹣2小的数是﹣5.故选:A.【点评】考查了有理数大小比较法则.正数大于0,0大于负数,正数大于负数;两个负数,绝对值大的反而小.2.下列计算正确的是()A.a2•a3=a6B.(﹣2ab)2=4a2b2C.(a2)3=a5D.3a3b2÷a2b2=3ab【考点】4H:整式的除法;46:同底数幂的乘法;47:幂的乘方与积的乘方.【分析】根据同底数幂的乘法、积的乘方、幂的乘方、整式的除法,即可解答.【解答】解:A、a2•a3=a5,故正确;B、正确;C、(a2)3=a6,故错误;D、3a2b2÷a2b2=3,故错误;故选:B.【点评】本题考查了同底数幂的乘法、积的乘方、幂的乘方、整式的除法,解决本题的关键是熟记同底数幂的乘法、积的乘方、幂的乘方、整式的除法的法则.×107×107,结果用科学记数法表示为()×107×106C.1×107D.1×106【考点】1I:科学记数法—表示较大的数.【分析】直接根据乘法分配律即可求解.【解答】×107×107=(3.8﹣3.7)×107×107=1×106.故选:D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.注意灵活运用运算定律简便计算.4.在某班组织的跳绳比赛中,第一小组五位同学跳绳次数分别为198,230,220,216,209,则这五个数据的中位数为()A.220 B.218 C.216 D.209【考点】W4:中位数.【分析】根据中位数的定义进行求解即可.【解答】解:这组数据按照从小到大的顺次排列为:198,209,216,220,230,则中位数为:216;故选C.【点评】本题考查了中位数的知识,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.5.下列正多边形的地砖中,不能铺满地面的正多边形是()A.正三角形 B.正方形C.正五边形 D.正六边形【考点】L4:平面镶嵌(密铺).【分析】平面图形镶嵌的条件:判断一种图形是否能够镶嵌,只要看一看拼在同一顶点处的几个角能否构成周角.若能构成360°,则说明能够进行平面镶嵌;反之则不能.【解答】解:∵用一种正多边形镶嵌,只有正三角形,正四边形,正六边形三种正多边形能镶嵌成一个平面图案,∴只用上面正多边形,不能进行平面镶嵌的是正五边形.故选:C.【点评】本题考查了学生对平面镶嵌知识的掌握情况,体现了学数学用数学的思想.由平面镶嵌的知识可知只用一种正多边形能够铺满地面的是正三角形或正四边形或正六边形.6.估计的值在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间【考点】2B:估算无理数的大小.【分析】直接利用32=9,42=16得出的取值X围.【解答】解:∵32=9,42=16,∴估计在3和4之间.故选:C.【点评】此题主要考查了估算无理数的大小,正确得出接近无理数的有理数是解题关键.7.如图,直线l1,l2,l3交于一点,直线l4∥l1,若∠1=124°,∠2=88°,则∠3的度数为()A.26° B.36° C.46° D.56°【考点】JA:平行线的性质.【分析】如图,首先运用平行线的性质求出∠AOB的大小,然后借助平角的定义求出∠3即可解决问题.【解答】解:如图,∵直线l4∥l1,∴∠1+∠AOB=180°,而∠1=124°,∴∠AOB=56°,∴∠3=180°﹣∠2﹣∠AOB=180°﹣88°﹣56°=36°,故选B.【点评】该题主要考查了平行线的性质及其应用问题;应牢固掌握平行线的性质,这是灵活运用、解题的基础和关键.8.某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交货,设每天应多做x件才能按时交货,则x应满足的方程为()A.B. =C.D.【考点】B6:由实际问题抽象出分式方程.【分析】本题的关键是要弄清因客户要求工作量提速后的工作效率和工作时间,然后根据题目给出的关键语“提前5天”找到等量关系,然后列出方程.【解答】解:因客户的要求每天的工作效率应该为:(48+x)件,所用的时间为:,根据“因客户要求提前5天交货”,用原有完成时间减去提前完成时间,可以列出方程:.故选:D.【点评】这道题的等量关系比较明确,直接分析题目中的重点语句即可得知,再利用等量关系列出方程.9.如图,⊙O是△ABC的外接圆,已知AD平分∠BAC交⊙O于点D,AD=5,BD=2,则DE的长为()A.B.C.D.【考点】S9:相似三角形的判定与性质;M5:圆周角定理.【分析】根据AD平分∠BAC,可得∠BAD=∠DAC,再利用同弧所对的圆周角相等,求证△ABD ∽△BED,利用其对应边成比例可得=,然后将已知数值代入即可求出DE的长.【解答】解;∵AD平分∠BAC,∴∠BAD=∠DAC,∵∠DBC=∠DAC(同弧所对的圆周角相等)∴∠DBC=∠BAD,∴△ABD∽△BED,∴=,∴DE==.故选D.【点评】此题主要考查相似三角形的判定与性质和圆周角定理等知识点的理解和掌握,难度不大,属于基础题,要求学生应熟练掌握.10.如图,在4×4正方形网格中,任选取一个白色的小正方形并涂黑,使图中黑色部分的图形构成一个轴对称图形的概率是()A.B.C.D.【考点】X4:概率公式;P3:轴对称图形.【分析】由共有13个白色的小正方形,任选取一个白色的小正方形并涂黑,使图中黑色部分的图形构成一个轴对称图形的有5种情况,直接利用概率公式求解即可求得答案.【解答】解:如图,∵共有13个白色的小正方形,任选取一个白色的小正方形并涂黑,使图中黑色部分的图形构成一个轴对称图形的有5种情况,∴任选取一个白色的小正方形并涂黑,使图中黑色部分的图形构成一个轴对称图形的概率是:.故选B.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.11.如图,正方形ABCD的边长为4,点P、Q分别是CD、AD的中点,动点E从点A向点B 运动,到点B时停止运动;同时,动点F从点P出发,沿P→D→Q运动,点E、F的运动速度相同.设点E的运动路程为x,△AEF的面积为y,能大致刻画y与x的函数关系的图象是()A.B.C.D.【考点】E7:动点问题的函数图象.【分析】分F在线段PD上,以及线段DQ上两种情况,表示出y与x的函数解析式,即可做出判断.【解答】解:当F在PD上运动时,△AEF的面积为y=AE•AD=2x(0≤x≤2),当F在AD上运动时,△AEF的面积为y=AE•AF=x(6﹣x)=﹣x2+3x(2<x≤4),图象为:故选A【点评】此题考查了动点问题的函数问题,解决本题的关键是读懂图意,得到相应y与x 的函数解析式.12.把2X形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为m,宽为n)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示.阴影部分刚好能分割成两X形状大小不同的小长方形卡片(如图③),则分割后的两个阴影长方形的周长和是()A.4m B.2(m+n) C.4n D.4(m﹣n)【考点】44:整式的加减.【分析】设2X形状大小完全相同的小长方形卡片的长和宽分别为x、y,然后分别求出阴影部分的2个长方形的长宽即可.【解答】解:设2X形状大小完全相同的小长方形卡片的长和宽分别为x、y.∴GF=DH=y,AG=CD=x,∵HE+CD=n,∴x+y=n,∵长方形ABCD的长为:AD=m﹣DH=m﹣y=m﹣(n﹣x)=m﹣n+x,宽为:CD=x,∴长方形ABCD的周长为:2(AD+CD)=2(m﹣n+2x)=2m﹣2n+4x∵长方形GHEF的长为:GH=m﹣AG=m﹣x,宽为:HE=y,∴长方形GHEF的周长为:2(GH+HE)=2(m﹣x+y)=2m﹣2x+2y,∴分割后的两个阴影长方形的周长和为:2m﹣2n+4x+2m﹣2x+2y=4m﹣2n+2(x+y)=4m,故选(A)【点评】本题考查整式的运算,解题的关键是设2X形状大小完全相同的小长方形卡片的长和宽分别为x、y,然后根据图中的结构求出分割后的两个阴影长方形的周长和.本题属于中等题型.二、填空题13.6的平方根为.【考点】21:平方根.【分析】根据平方运算,可得一个数的平方根.【解答】解:∵()2=6∴6的平方根为,故答案为:.【点评】本题考查了平方根,平方运算是求平方根的关键.14.分解因式:2a2﹣2= 2(a+1)(a﹣1).【考点】55:提公因式法与公式法的综合运用.【分析】先提取公因式2,再对余下的多项式利用平方差公式继续分解.【解答】解:2a2﹣2,=2(a2﹣1),=2(a+1)(a﹣1).【点评】本题考查了提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.15.命题“全等三角形的面积相等”的逆命题是假命题.(填入“真”或“假”)【考点】O1:命题与定理.【分析】把一个命题的条件和结论互换就得到它的逆命题.分析是否为真命题,需要分别分析各题设是否能推出结论,如果能就是真命题.【解答】解:“全等三角形的面积相等”的逆命题是“面积相等的三角形是全等三角形”,根据全等三角形的定义,不符合要求,因此是假命题.【点评】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.16.若关于x,y的二元一次方程组的解满足x+y<2,则a的取值X围为a<4 .【考点】C6:解一元一次不等式;98:解二元一次方程组.【分析】先解关于关于x,y的二元一次方程组的解集,其解集由a表示;然后将其代入x+y<2,再来解关于a的不等式即可.【解答】解:由①﹣②×3,解得y=1﹣;由①×3﹣②,解得x=;∴由x+y<2,得1+<2,即<1,解得,a<4.解法2:由①+②得4x+4y=4+a,x+y=1+,∴由x+y<2,得1+<2,即<1,解得,a<4.故答案是:a<4.【点评】本题综合考查了解二元一次方程组、解一元一次不等式.解答此题时,采用了“加减消元法”来解二元一次方程组;在解不等式时,利用了不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变.17.如图,△ABC中,CA=CB,AB=6,CD=4,E是高线CD的中点,以CE为半径作⊙C,G是⊙C上一个动点,P是AG中点,则DP的最大值为.【考点】KX:三角形中位线定理;KH:等腰三角形的性质;M8:点与圆的位置关系.【分析】据等腰三角形的性质可得点D是AB的中点,然后根据三角形中位线定理可得DP=BG,然后利用两点之间线段最短就可解决问题.【解答】解:连接BG,如图.∵CA=CB,CD⊥AB,AB=6,∴AD=BD=AB=3.又∵CD=4,∴BC=5.∵E是高线CD的中点,∴CE=CD=2,∴CG=CE=2.根据两点之间线段最短可得:BG≤CG+CB=2+5=7.当B、C、G三点共线时,BG取最大值为7.∵P是AG中点,D是AB的中点,∴PD=BG,∴DP最大值为.【点评】本题主要考查的是三角形中位线定理,涉及了等腰三角形的性质、勾股定理、两点之间线段最短等知识,根据题意作出辅助线,利用三角形的中位线定理求解是解决本题的关键.18.如图,在△ABC中,AB=AC=a,BC=b,∠A=100°,点D在AC边上,∠ABD=30°,则AD 的长为.【考点】S9:相似三角形的判定与性质;KH:等腰三角形的性质;KK:等边三角形的性质.【分析】以BC为边在△ABC的下面作等边三角形BCE,连接AE,由等腰三角形和等边三角形的性质得出AE⊥BC,CE=BC=b,∠BCE=60°,由等腰三角形的性质和三角形内角和定理得出∠ACB=∠ABC=50°,∠CAE=∠BAC=50°,求出∠ADB=∠CAE,∠ACE=∠ACB+∠BCE=∠BAC,证出△ABD∽△CAE,得出对应边成比例,即可得出答案.【解答】解:以BC为边在△ABC的下面作等边三角形BCE,连接AE,如图所示:则AE⊥BC,CE=BC=b,∠BCE=60°,∵AB=AC,∠BAC=100°,∴∠ACB=∠ABC=(180°﹣1100°)÷2=50°,∠CAE=∠BAC=50°,∵∠ABD=30°,∴∠ADB=180°﹣∠BAC﹣∠ABD=50°,∴∠ADB=∠CAE,∠ACE=∠ACB+∠BCE=100°=∠BAC,∴△ABD∽△CAE,∴,即,解得:AD=;故答案为:.【点评】本题考查了等腰三角形的性质、等边三角形的性质、相似三角形的判定与性质、三角形内角和定理等知识;熟练掌握等腰三角形的性质,证明三角形相似是解决问题的关键.三、解答题(本大题有8小题,共78分)19.(1)计算:2×(﹣3)+4×()﹣1﹣20160;(2)解方程:﹣1=0.【考点】B3:解分式方程;6E:零指数幂;6F:负整数指数幂.【分析】(1)分别利用负指数幂的性质以及零指数幂的性质分别化简进而求出答案;(2)首先移项,进而去分母解方程即可,再检验得出答案.【解答】解:(1)2×(﹣3)+4×()﹣1﹣20160=﹣6+4×2﹣1=1;(2)原式可变为: =1,则x﹣1=1,解得:x=2,检验:当x=2时,x﹣1≠0,故x=2是原方程的根.【点评】此题主要考查了解分式方程以及实数运算,正确掌握分式方程的解法是解题关键.20.某中学学生会为考察该校学生参加课外体育活动的情况,采取抽样调查的方法从篮球、排球、乒乓球、足球及其他等五个方面调查了若干名学生的兴趣爱好(2016•象山县模拟)如图,某某市共湖中有一小岛,湖边有一条笔直的观光小道AB,现决定从小岛架一座与观光小道垂直的小桥PD,在小道上测得如下数据:AB=60米,∠PAB=45°,∠PBA=30°.请帮助小X求出小桥PD的长.(≈1.414,≈1.732,结果精确到)【考点】T8:解直角三角形的应用.【分析】设PD=x米,根据锐角三角函数的概念用x表示出AD和BD的长,根据题意列式计算即可得到答案.【解答】解:设PD=x米,∵PD⊥AB,则∠ADP=∠BDP=90°.在Rt△PAD中,tan∠PAD=,故AD==x,在Rt△PBD中,tan∠PBD=,则DB===x,又∵AB=60米,∴x+x=60,解得:x=30﹣30≈22.0.答:小桥PD的长度约为.【点评】本题考查的是解直角三角形的应用,掌握锐角三角函数的概念是解题的关键,解答时,把锐角三角函数的概念理解为公式,代入公式计算即可.22.(10分)(2013•某某)△ABC在平面直角坐标系xOy中的位置如图所示.(1)作△ABC关于点C成中心对称的△A1B1C1.(2)将△A1B1C1向右平移4个单位,作出平移后的△A2B2C2.(3)在x轴上求作一点P,使PA1+PC2的值最小,并写出点P的坐标(不写解答过程,直接写出结果)【考点】R8:作图﹣旋转变换;PA:轴对称﹣最短路线问题;Q4:作图﹣平移变换.【分析】(1)延长AC到A1,使得AC=A1C1,延长BC到B1,使得BC=B1C1,即可得出图象;(2)根据△A1B1C1将各顶点向右平移4个单位,得出△A2B2C2;(3)作出A1关于x轴的对称点A′,连接A′C2,交x轴于点P,再利用相似三角形的性质求出P点坐标即可.【解答】解;(1)如图所示:(2)如图所示:(3)如图所示:作出A1关于x轴的对称点A′,连接A′C2,交x轴于点P,可得P点坐标为:(,0).【点评】此题主要考查了图形的平移与旋转和相似三角形的性质等知识,利用轴对称求最小值问题是考试重点,同学们应重点掌握.23.(10分)(2013•某某)在平面直角坐标系中,点A(﹣3,4)关于y轴的对称点为点B,连接AB,反比例函数y=(x>0)的图象经过点B,过点B作BC⊥x轴于点C,点P是该反比例函数图象上任意一点,过点P作PD⊥x轴于点D,点Q是线段AB上任意一点,连接OQ、CQ.(1)求k的值;(2)判断△QOC与△POD的面积是否相等,并说明理由.【考点】GB:反比例函数综合题.【分析】(1)根据点B与点A关于y轴对称,求出B点坐标,再代入反比例函数解析式解可求出k的值;(2)设点P的坐标为(m,n),点P在反比例函数y=(x>0)的图象上,求出S△POD,根据AB∥x轴,OC=3,BC=4,点Q在线段AB上,求出S△QOC即可.【解答】解:(1)∵点B与点A关于y轴对称,A(﹣3,4),∴点B的坐标为(3,4),∵反比例函数y=(x>0)的图象经过点B.∴=4,解得k=12.(2)相等.理由如下:设点P的坐标为(m,n),其中m>0,n>0,∵点P在反比例函数y=(x>0)的图象上,∴n=,即mn=12.∴S△POD=OD•PD=mn=×12=6,∵A(﹣3,4),B(3,4),∴AB∥x轴,OC=3,BC=4,∵点Q在线段AB上,∴S△QOC=OC•BC=×3×4=6.∴S△QOC=S△POD.【点评】本题考查了反比例函数综合题,涉及反比例函数k的几何意义,反比例函数图象上点的坐标特征等,综合性较强.24.(10分)(2007•某某)某工厂计划招聘A,B两个工种的工人120人,已知A,B两个工种的工人的月工资分别为800元和1000元.(1)若工厂每月所支付的工资为110 000元,那么A,B两个工种的工人各招聘多少人?(2)若要求B工种的人数不少于A工种人数的2倍,那么招聘A工种的工人多少人时,可使每月所支付的工资最少?【考点】C9:一元一次不等式的应用;8A:一元一次方程的应用.【分析】(1)A,B两个工种的工人的月工资乘以它们的人数就是工厂每月所支付的工资为110000元,因此可列方程,进而解答;(2)在(1)的基础之上又多出了一个最值问题,需要运用函数,考虑函数和自变量的增减性,找出自变量取值X围,进行解答.【解答】解:(1)设招聘A工种工人x人,则招聘B工种工人(120﹣x)人,根据题意得800x+1 000(120﹣x)=110 000解得x=50,则120﹣x=70即招聘A工种工人50人,招聘B工种工人70人;(2)设每月所支付的工资为y元,招聘A工种工人x人,则招聘B工种工人(120﹣x)人,根据题意得y=800x+1 000(120﹣x)=﹣200x+120 000,由题意得120﹣x≥2x,解得x≤40,y=﹣200x+120 000中的y随x的增大而减少,所以当x=40时,y取得最小值112000.即当招聘A工种工人40人时,可使每月所付工资最少.【点评】解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.要熟练掌握利用自变量的取值X围求最值的方法.注意本题的不等关系为:B工种的人数不少于A工种人数的2.25.(12分)(2016•象山县模拟)定义:有一组邻边相等且对角线相等的四边形称为“美好四边形”.(1)从学过的特殊四边形中,写出一个“美好四边形”;(2)如图,在4×4的网格图中有A、B两个格点,请在答题卷给出的两个网格图上各找出C、D两个格点,使得以A、B、C、D为顶点的四边形互不全等的“美好四边形”,画出相应的“美好四边形”,并写出该“美好四边形”的对角线长.(3)如图,已知等边△ABC,在△ABC外存在点D,设∠BDC=α,∠DAC=β,探究α、β满足什么关系时,四边形ABCD为“美好四边形”.【考点】LO:四边形综合题.【分析】(1)根据正方形的性质和“美好四边形”的定义解答;(2)根据“美好四边形”的定义作图,根据勾股定理求出对角线的长;(3)根据等边三角形的性质和“美好四边形”的定义以及三角形内角和定理、等腰三角形的性质计算即可.【解答】解:(1)∵正方形四条边相等且对角线相等,满足“美好四边形”的条件,∴正方形是“美好四边形”;(2)图1中两个四边形ABCD都是“美好四边形”,它们的对角线长都是;(3)∵△ABC是等边三角形,四边形ABCD为“美好四边形”,∴AB=AC=BC=BD,∠CBA=∠CAB=60°,∵∠BDC=α,∴∠BCD=α,∴∠DBC=180°﹣2α,∴∠ABD=60°﹣∠DBC=2α﹣120°,∵BA=BD,∴∠BAD=∠BDA==150°﹣α,∵∠DAC=β,∴150°﹣α﹣β=60°,∴α+β=90°.【点评】本题考查的是新定义、等腰三角形的性质、等边三角形的性质,正确理解“美好四边形”的定义、掌握等腰三角形的性质和等边三角形的性质是解题的关键.26.(14分)(2016•象山县模拟)如图1,抛物线y=ax2+bx+c经过A(﹣2,0)、B(8,0)、C(0,4)三点,顶点为D,连结AC,BC.(1)求抛物线的函数关系式及顶点D的坐标;(2)如图2,点P是该抛物线在第一象限内上的一点.①过点P作y轴的平行线交BC于点E,若CP=CE,求点P的坐标;②连结AP交BC于点F,求的最大值.(3)若点Q在该抛物线的对称轴上,以Q为圆心的圆过A、B两点,并且和直线CD相切,求点Q的坐标.【考点】HF:二次函数综合题.【分析】(1)设抛物线的解析式为y=a(x+2)(x﹣8),将点C的坐标代入可求得a的值,从而得到抛物线的解析式,然后依据抛物线的对称性得到抛物线的对称轴方程,将x=3代入可求得抛物线的顶点坐标;(2)①如图1所示:作CM⊥PE,垂足为M.先利用待定系数法求得BC的解析式,设点P(m,﹣ m2+m+4),则点E(m,﹣ m+4),M(m,4),接下来依据等腰三角形的性质可得到PM=EM,从而得到关于m的方程,于是可求得点P的坐标②作PN⊥BC,垂足为N.先证明△PNE∽△COB,由相似三角形的性质可知PN=PE,然后再证明△PFN∽△CAF,由相似三角形的性质可得到PF:AF与m的函数关系式,从而可求得的最大值;(3)设⊙Q与直线CD的切点为G,连接QG,过点C作CH⊥QD于H,如图3所示:先依据勾股定理可求得DC的长,设Q(3,b),然后依据锐角三角函数的定义得到QG的长,从而得到AQ的长,最后再△AQP中依据勾股定理可得到关于b的方程,从而得到点Q的坐标.【解答】解:(1)设抛物线的解析式为y=a(x+2)(x﹣8).∵抛物线经过点C(0,4),∴﹣16a=4,解得a=﹣.∴抛物线的解析式为y=﹣(x+2)(x﹣8)=x2+x+4.∵A(﹣2,0)、B(8,0),∴抛物线的对称轴为x=3.∵将x=3代入得:y=,∴抛物线的顶点坐标为(3,).(2)①如图1所示:作CM⊥PE,垂足为M.设直线BC的解析式为y=kx+b.∵将B、C的坐标代入得:,解得k=﹣,b=4,∴直线BC的解析式为y=﹣x+4.设点P(m,﹣ m2+m+4),则点E(m,﹣ m+4),M(m,4).∵PC=EC,CM⊥PE,∴PM=EM.∴﹣m2+m+4﹣4=4﹣(﹣m+4),解得:m=0(舍去),m=4.∴P(4,6).②作PN⊥BC,垂足为N.由①得:PE=﹣m2+2m.∵PE∥y轴,PN⊥BC,∴∠PNE=∠COB=90°,∠PEN=∠BCO.∴△PNE∽△BOC.∴==.∴PN=PE=(﹣m2+2m).∵AB=10,AC=2,BC=4,∴AC2+BC2=AB2.∴∠BCA=90°,又∵∠PFN=∠CFA,∴△PFN∽△CAF.∴==﹣m2+m.∴当m=4时,的最大值为.(3)设⊙Q与直线CD的切点为G,连接QG,过点C作CH⊥QD于H,如图3所示:由(1)可知:CH=3,DH=﹣4=.在△CHD中,由勾股定理可知DC==.设Q(3,b)则QD=﹣b.∵sin∠D==,在△AQP中,由勾股定理得QG=(﹣b)=b2+52.解得:b=0,b=﹣.∴点Q的坐标为(3,0)或(3,﹣).【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式、一次函数的解析式、等腰三角形的性质、锐角三角函数的定义、勾股定理的应用,与m的函数关系式是解题的关键.。
中考仿真模拟测试《数学试题》含答案解析
数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一.选择题(共10小题)1.20160的值为( )A. 0B. 1C. 2016D. ﹣20162.如图是一个正方体被截去两个角后的几何体,它的俯视图为( )A. B. C. D.3. 如图,已知AB∥CD,∠DFE=135°,则∠ABE的度数为【】A. 30B. 45C. 60D. 904. 若一个正比例函数的图象经过A(3,﹣6),B(m,﹣4)两点,则m的值为( )A. 2B. 8C. ﹣2D. ﹣85.下列计算结果正确的是( )A. 6x6÷2x3=3x2B. x2+x2=x4C. ﹣2x2y(x﹣y)=﹣2x3y+2x2y2D. (﹣3xy2)3=﹣9x3y66.如图,在△ABC中,∠B=30°,∠C=45°,AD平分∠BAC交BC于点D,DE⊥AB,垂足为E.若DE=1,则BC的长为()A. 2+2B.23+C.32+D. 37.将直线21y x =+向下平移个单位长度得到新直线21y x =-,则的值为( ) A.B.C.D.8.如图,矩形ABCD 中,AB 3=,BC 4=,EB//DF 且BE 与DF 之间的距离为3,则AE 的长是( )A.7B.38C.78D.589.如图,已知o OBA 20∠=,且OC=AC 则∠BOC 的度数是( )A. 70°B. 80°C. 40°D. 60°10.已知二次函数的与的部分对应值如下表:-1 0 1 3 -3131下列结论:①抛物线开口向下;②其图象的对称轴为;③当时,函数值随的增大而增大;④方程有一个根大于4.其中正确的结论有( )A. 1个B. 2个C. 3个D. 4个二.填空题(共4小题)11.在实数117,-(-1),3π, 1.21,313113113,5中,无理数有______个.12.若正六边形的边长为3,则其面积为_____.13.如图,在平面直角坐标系xOy中,四边形ODEF和四边形ABCD都是正方形,点F在x轴的正半轴上,点C在边DE上,反比例函数kyx=(k≠0,x>0)的图象过点B,E,若AB=2,则k的值为________.14.如图,已知正方形ABCD的边长为8,点E是正方形内部一点,连接BE,CE,且∠ABE=∠BCE,点P 是AB边上一动点,连接PD,PE,则PD+PE的长度最小值为_____.三.解答题(共11小题)15.先化简,再求值:22211111a aa a a⎛⎫-++÷⎪-+⎝⎭,其中2a=.16.计算:8﹣(12)﹣1﹣|21-|17.如图,已知线段AB.(1)仅用没有刻度直尺和圆规作一个以AB为腰、底角等于30°的等腰△ABC.(保留作图痕迹,不要求写作法)(2)在(1)的前提下,若AB=2cm,则等腰△ABC的外接圆的半径为cm.18.如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的中线,过点B作BE∥CD,过点C作CE∥AB,BE,CE相交于点E.求证:四边形BDCE是菱形.19.阅读对人成长的影响是巨大的,一本好书往往能改变人的一生,每年的4月23日被联合国教科文组织确定为”世界读书日”.蓝天中学为了解八年级学生本学期的课外阅读情况,随机抽查部分学生对其课外阅读量进行统计分析,绘制成两幅不完整的统计图.根据图示信息,解答下列问题:(1)求被抽查学生人数,课外阅读量的众数,扇形统计图中m的值;并将条形统计图补充完整;(2)若规定:本学期阅读3本以上(含3本)课外书籍者为完成目标,据此估计该校600名学生中能完成此目标的有多少人?20.数学实践小组想利用镜子的反射测量池塘边一棵树的高度AB.测量和计算的部分步骤如下:①如图,树与地面垂直,在地面上的点C处放置一块镜子,小明站在BC的延长线上,当小明在镜子中刚好看到树的顶点A时,测得小明到镜子的距离CD=2米,小明的眼睛E到地面的距离ED=1.5米;②将镜子从点C沿BC的延长线向后移动10米到点F处,小明向后移动到点H处时,小明的眼睛G又刚好在镜子中看到树的顶点A,这时测得小明到镜子的距离FH=3米;③计算树的高度AB;21.我们知道,海拔高度每上升1千米,温度下降6℃.某时刻,吉首市地面温度为20℃,设高出地面x千米处的温度为y℃.(1)写出y与x之间的函数关系式;(2)已知吉首市区最高峰莲台山高出地面约965米,这时山顶的温度大约是多少℃?(3)此刻,有一架飞机飞过吉首市上空,若机舱内仪表显示飞机外面的温度为﹣34℃,求飞机离地面的高度为多少千米?22.四张卡片,除一面分别写有数字2,2,3,6外,其余均相同,将卡片洗匀后,写有数字一面朝下扣在桌面上,随机抽取一张卡片记下数字后放回,洗匀后仍将写有数字的一面朝下扣在桌面上,再抽取一张. (1)用列表或画树状图的方法求两次都恰好抽到2的概率;(2)小贝和小晶以此为游戏,游戏规则是:第一次抽取的数字作为十位,第二次抽取的数字作为个位,组成一个两位数,若组成的两位数不小于32,小贝获胜,否则小晶获胜.你认为这个游戏公平吗?请说明理由. 23.如图,AB 是⊙O 的直径,点C 、E 在⊙O 上,∠B =2∠ACE ,在BA 的延长线上有一点P ,使得∠P =∠BAC ,弦CE 交AB 于点F ,连接AE .(1)求证:PE 是⊙O 切线;(2)若AF =2,AE =EF =10,求OA 的长.24.在平面直角坐标系中,抛物线()2y ax bx c a 0=++≠与轴的两个交点分别为A(-3,0)、B(1,0),与y轴交于点D(0,3),过顶点C 作CH⊥x 轴于点H. (1)求抛物线的解析式和顶点C 的坐标;(2)连结AD 、CD ,若点E 为抛物线上一动点(点E 与顶点C 不重合),当△ADE 与△ACD 面积相等时,求点E 的坐标;(3)若点P 为抛物线上一动点(点P 与顶点C 不重合),过点P 向CD 所在的直线作垂线,垂足为点Q ,以P 、C 、Q 为顶点的三角形与△ACH 相似时,求点P 的坐标.25.问题提出(1)如图①,在矩形ABCD 中,AB=2AD ,E 为CD 的中点,则∠AEB ∠ACB (填”>”“<”“=“); 问题探究(2)如图②,在正方形ABCD中,P为CD边上的一个动点,当点P位于何处时,∠APB最大?并说明理由;问题解决(3)如图③,在一幢大楼AD上装有一块矩形广告牌,其侧面上、下边沿相距6米(即AB=6米),下边沿到地面距离BD=11.6米.如果小刚的睛睛距离地面的高度EF为1.6米,他从远处正对广告牌走近时,在P处看广告效果最好(视角最大),请你在图③中找到点P的位置,并计算此时小刚与大楼AD之间的距离.答案与解析一.选择题(共10小题)1.20160的值为( )A. 0B. 1C. 2016D. ﹣2016 【答案】B【解析】【分析】根据零次幂直接回答即可.【详解】解:20160=1.故选:B.【点睛】本题是对零次幂的考查,熟练掌握零次幂知识是解决本题的关键.2.如图是一个正方体被截去两个角后的几何体,它的俯视图为( )A. B. C. D.【答案】A【解析】【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【详解】解:它的俯视图为.故选A.点睛:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.3. 如图,已知AB∥CD,∠DFE=135°,则∠ABE的度数为【】A. 30B. 45C. 60D. 90【答案】B【解析】∵∠DFE=135°,∴∠CFE=180°-135°=45°.∵AB∥CD,∴∠ABE=∠CFE=45°.故选B.4. 若一个正比例函数的图象经过A(3,﹣6),B(m,﹣4)两点,则m的值为( )A. 2B. 8C. ﹣2D. ﹣8【答案】A【解析】试题分析:设正比例函数解析式为:y=kx,将点A(3,﹣6)代入可得:3k=﹣6,解得:k=﹣2,∴函数解析式为:y=﹣2x,将B(m,﹣4)代入可得:﹣2m=﹣4,解得m=2,故选A.考点:一次函数图象上点的坐标特征.5.下列计算结果正确的是( )A. 6x6÷2x3=3x2B. x2+x2=x4C. ﹣2x2y(x﹣y)=﹣2x3y+2x2y2D. (﹣3xy2)3=﹣9x3y6【答案】C【解析】【分析】根据整式运算依次判断即可.【详解】解:A、6x6÷2x3=3x3,故选项A错误;B、x2+x2=2x2,故选项B错误;C、﹣2x2y(x﹣y)=﹣2x3y+2x2y2,故选项C正确;D、(﹣3xy2)3=﹣27x3y6,故选项D错误;故选:C.【点睛】本题是对整式乘除的考查,熟练掌握积的乘方,单项式乘多项式及单项式除以单项式运算是解决本题的关键.6.如图,在△ABC中,∠B=30°,∠C=45°,AD平分∠BAC交BC于点D,DE⊥AB,垂足为E.若DE=1,则BC的长为()A. 2+2B.23+C.32+D. 3【答案】A 【解析】 【分析】如图,过点D 作DF ⊥AC 于F ,由角平分线的性质可得DF=DE=1,在Rt △BED 中,根据30度角所对直角边等于斜边一半可得BD 长,在Rt △CDF 中,由∠C=45°,可知△CDF 为等腰直角三角形,利用勾股定理可求得CD 的长,继而由BC=BD+CD 即可求得答案. 【详解】如图,过点D 作DF ⊥AC 于F ,∵AD 为∠BAC 的平分线,且DE ⊥AB 于E ,DF ⊥AC 于F , ∴DF=DE=1,在Rt △BED 中,∠B=30°, ∴BD=2DE=2,在Rt △CDF 中,∠C=45°, ∴△CDF 为等腰直角三角形, ∴CF=DF=1,∴22DF CF +2, ∴BC=BD+CD=22+, 故选A.【点睛】本题考查了角平分线的性质,含30度角的直角三角形的性质,勾股定理等知识,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.7.将直线21y x =+向下平移个单位长度得到新直线21y x =-,则的值为( ) A.B.C.D.【答案】D 【解析】 【分析】直接根据”上加下减”的原则进行解答即可.【详解】解:由”上加下减”的原则可知:直线y=2x+1向下平移n 个单位长度,得到新的直线的解析式是y=2x+1-n ,则1-n=-1, 解得n=2. 故选D .【点睛】本题考查的是一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键. 8.如图,矩形ABCD 中,AB 3=,BC 4=,EB//DF 且BE 与DF 之间的距离为3,则AE 的长是( )A. 7B.38C.78D.58【答案】C 【解析】 【分析】如图,过点D 作DG BE ⊥,垂足为G ,则GD 3=,首先证明AEB ≌GED ,由全等三角形的性质可得到AE EG =,设AE EG x ==,则ED 4x =-,在Rt DEG 中依据勾股定理列方程求解即可. 【详解】如图所示:过点D 作DG BE ⊥,垂足为G ,则GD 3=,A G ∠∠=,AEB GED ∠∠=,AB GD 3==,AEB ∴≌GED ,AE EG ∴=,设AE EG x ==,则ED 4x =-,在Rt DEG 中,222ED GE GD =+,222x 3(4x)+=-,解得:7x 8=, 故选C .【点睛】本题考查了矩形的性质、勾股定理的应用、全等三角形的判定与性质,依据题意列出关于x 的方程是解题的关键.9.如图,已知o OBA 20∠=,且OC=AC 则∠BOC 的度数是( )A. 70°B. 80°C. 40°D. 60°【答案】B 【解析】 【分析】先根据等腰三角形得出OAB ∠的度数,再证的AOC ∆是等边三角形,最后根据圆周角定理求解即可. 【详解】连接OA ,∵o OBA 20∠=,OB OA = ∴o OAB=OBA 20∠∠= ∵AC OC =且OC OA = ∴AOC ∆是等边三角形 ∴6OA 0C ∠=︒∴BA OA OAB 60204=0C C =-︒-∠︒=∠∠︒ ∴=2=80BOC BAC ∠∠︒ 故选B.【点睛】本题主要考查了等腰三角形的性质,等边三角形的判定及性质,圆周角定理,正确作出辅助线证出AOC ∆是等边三角形是解本题的关键.10.已知二次函数的与的部分对应值如下表:-1 0 1 3-3 1 3 1下列结论:①抛物线的开口向下;②其图象的对称轴为;③当时,函数值随的增大而增大;④方程有一个根大于4.其中正确的结论有( )A. 1个B. 2个C. 3个D. 4个【答案】B【解析】【详解】解:根据二次函数的图象具有对称性,由表格可知,二次函数y=ax2+bx+c有最大值,当x=033 22 +=时,取得最大值,可知抛物线的开口向下,故①正确;其图象的对称轴是直线x=32,故②错误;当x>32时,y随x的增大而减小,当x<32时,y随x的增大而增大,故③正确;根据x=0时,y=1,x=﹣1时,y=﹣3,方程ax2+bx+c=0的一个根大于﹣1,小于0,则方程的另一个根大于2×32=3,小于3+1=4,故④错误.故选B.考点:1、抛物线与x轴的交点;2、二次函数的性质二.填空题(共4小题)11.在实数117,-(-1),3π1.21,3131131135中,无理数有______个.【答案】2【解析】【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】在所列实数中,无理数有π3,5这2个,故答案为2.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.12.若正六边形的边长为3,则其面积为_____.【答案】273 2【解析】【分析】根据题意画出图形,由正六边形的特点求出∠AOB的度数及OG的长,再由△OAB的面积即可求解.【详解】解:∵此多边形为正六边形,如图:∴∠AOB=3606︒=60°;∵OA=OB,∴△OAB是等边三角形,∴OA=AB=3,∴OG=OA•cos30°=3×3332∴S△OAB=12×AB×OG=12×3×332934∴S六边形=6S△OAB=6×9342732.2732;【点睛】此题主要考查正多边形的计算问题,关键是由正六边形的特点求出∠AOB的度数及OG的长.13.如图,在平面直角坐标系xOy中,四边形ODEF和四边形ABCD都是正方形,点F在x轴的正半轴上,点C在边DE上,反比例函数kyx=(k≠0,x>0)的图象过点B,E,若AB=2,则k的值为________.【答案】6+25【解析】详解】解:设E(x,x),∴B(2,x+2),∵反比例函数kyx=(k≠0,x>0)的图象过点B. E.∴x2=2(x+2),115x∴=+,215x=-(舍去),()2215625k x∴==+=+,故答案为625+14.如图,已知正方形ABCD的边长为8,点E是正方形内部一点,连接BE,CE,且∠ABE=∠BCE,点P 是AB边上一动点,连接PD,PE,则PD+PE的长度最小值为_____.【答案】134.【解析】【分析】根据正方形的性质得到∠ABC=90°,推出∠BEC=90°,得到点E在以BC为直径的半圆上移动,如图,设BC的中点为O,作正方形ABCD关于直线AB对称的正方形AFGB,则点D的对应点是F,连接FO交AB于P,交⊙O于E,则线段EF的长即为PD+PE的长度最小值,根据勾股定理即可得到结论.【详解】解:∵四边形ABCD是正方形,∴∠ABC=90°,∴∠ABE+∠CBE=90°,∵∠ABE=∠BCE,∴∠BCE+∠CBE=90°,∴∠BEC=90°,∴点E在以BC为直径的半圆上移动,如图,设BC的中点为O,作正方形ABCD关于直线AB对称的正方形AFGB,则点D的对应点是F,连接FO交AB于P,交半圆O于E,则线段EF的长即为PD+PE的长度最小值,OE=4,∵∠G=90°,FG=BG=AB=8,∴OG=12,∴OF=22F0G G+=413,∴EF=413﹣4,∴PD+PE的长度最小值为413﹣4,故答案为:413﹣4.【点睛】本题考查了正方形的性质和勾股定理,构直角三角形是解题的关键.三.解答题(共11小题)15.先化简,再求值:22211111a aa a a⎛⎫-++÷⎪-+⎝⎭,其中2a=【答案】21aa+,322【解析】【分析】先对括号内第一项因式分解同时将除法化为乘法,然后利用乘法分配律进行计算,再把结果相加,最后把a 的值代入计算即可.【详解】原式=2(1)1()(1) (1)(1)aaa a a-++ +-=11aaa+ -+=21aa+,当2a=时,原式=2(2)12+=322.16.计算:8﹣(12)﹣1﹣|21-|【答案】2﹣1【解析】【分析】先化简二次根式和绝对值,计算负整数幂,然后再计算得出结果即可.【详解】解:原式=22﹣2﹣(2﹣1)=22﹣2﹣2+1=2﹣1.【点睛】本题是对实数运算的考查,熟练掌握二次根式化简及负整数幂运算是解决本题的关键.17.如图,已知线段AB.(1)仅用没有刻度的直尺和圆规作一个以AB为腰、底角等于30°的等腰△ABC.(保留作图痕迹,不要求写作法)(2)在(1)的前提下,若AB=2cm,则等腰△ABC的外接圆的半径为cm.【答案】(1)见解析;(2)2.【解析】【分析】(1)以AB为边作等边三角形DAB,再以DB为边作等边三角形DBC,然后连接AC,则△ABC满足条件;(2)利用△ABD为等边三角形可确定等腰△ABC的外接圆的半径.【详解】解:(1)如图:△ABC为所求;(2)∵△ABD和△BCD为等边三角形,∴DA=DB=DC=AB,∴等腰△ABC的外接圆的半径为2,故答案2.点睛:本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了圆周角定理.18.如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的中线,过点B作BE∥CD,过点C作CE∥AB,BE,CE相交于点E.求证:四边形BDCE是菱形.【答案】见解析【解析】【分析】先证四边形BDCE是平行四边形,再证CD=BD,即可证明是菱形.【详解】证明:∵BE∥CD,CE∥AB,∴四边形BDCE是平行四边形,∵∠ACB=90°,CD是AB边上的中线,∴CD=BD,∴平行四边形BDCE是菱形.【点睛】本题是对菱形判定的考查,熟练掌握菱形的判定是解决本题的关键.19.阅读对人成长的影响是巨大的,一本好书往往能改变人的一生,每年的4月23日被联合国教科文组织确定为”世界读书日”.蓝天中学为了解八年级学生本学期的课外阅读情况,随机抽查部分学生对其课外阅读量进行统计分析,绘制成两幅不完整的统计图.根据图示信息,解答下列问题:(1)求被抽查学生人数,课外阅读量的众数,扇形统计图中m的值;并将条形统计图补充完整;(2)若规定:本学期阅读3本以上(含3本)课外书籍者为完成目标,据此估计该校600名学生中能完成此目标的有多少人?【答案】(1)详见解析;(2)432.【解析】【分析】(1)由阅读量为2本的人数及其百分比求得总人数,总人数剑气其他阅读数量的人数求得3本的人数,继而用阅读3本的人数除以总人数可得m的值;(2)用总人数乘以样本中阅读数量为3、4、5本人数所占的比例即可得.【详解】解:(1)被调查的学生人数为10÷20%=50人,阅读3本的人数为50﹣(4+10+14+6)=16,所以课外阅读量的众数是3本,则m%=1650×100%=32%,即m=32,补全图形如下:(2)估计该校600名学生中能完成此目标的有600×1614650++=432(人).【点睛】此题考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.数学实践小组想利用镜子的反射测量池塘边一棵树的高度AB.测量和计算的部分步骤如下:①如图,树与地面垂直,在地面上的点C 处放置一块镜子,小明站在BC 的延长线上,当小明在镜子中刚好看到树的顶点A 时,测得小明到镜子的距离CD =2米,小明的眼睛E 到地面的距离ED =1.5米; ②将镜子从点C 沿BC 的延长线向后移动10米到点F 处,小明向后移动到点H 处时,小明的眼睛G 又刚好在镜子中看到树的顶点A ,这时测得小明到镜子的距离FH =3米; ③计算树高度AB ;【答案】树的高度AB 为15米 【解析】 【分析】设AB =x 米,BC =y 米,先证△ABC ∽△EDC ,得到1.52x y =,再证△ABF ∽△GHF ,得到101.53x y +=,从而求出x 的值即可.【详解】解:设AB =x 米,BC =y 米, ∵∠ABC =∠EDC =90°,∠ACB =∠ECD , ∴△ABC ∽△EDC ,∴AB BCED DC =, ∴1.52x y =, ∵∠ABF =∠GHF =90°,∠AFB =∠GFH , ∴△ABF ∽△GHF ,∴AB BFGH HF =, ∴101.53x y +=, ∴1023y y +=, 解得:y =20, 把y =20代入1.52x y =中得201.52x =, 解得x =15,∴树的高度AB 为15米.【点睛】本题是对相似三角形的综合考查,熟练掌握相似三角形判定及相似比是解决本题的关键.21.我们知道,海拔高度每上升1千米,温度下降6℃.某时刻,吉首市地面温度为20℃,设高出地面x千米处的温度为y℃.(1)写出y与x之间的函数关系式;(2)已知吉首市区最高峰莲台山高出地面约965米,这时山顶的温度大约是多少℃?(3)此刻,有一架飞机飞过吉首市上空,若机舱内仪表显示飞机外面的温度为﹣34℃,求飞机离地面的高度为多少千米?【答案】(1)y=20﹣6x(x>0);(2)这时山顶的温度大约是14.21℃;(3)飞机离地面的高度为9千米【解析】【分析】(1)根据等量关系:高出地面x千米处的温度=地面温度-6℃×高出地面的距离,列出函数关系式;(2)把给出的自变量高出地面的距离0.965km代入一次函数求得;(3)把给出的函数值高出地面x千米处的温度-34℃代入一次函数求得x.【详解】解:(1)由题意得,y与x之间的函数关系式y=20﹣6x(x>0);(2)由题意得,x=0.965km,∴y=20﹣6×0.965=14.21(℃),则这时山顶温度大约是14.21℃;(3)由题意得,y=﹣34℃时,代入y=20﹣6x得,﹣34=20﹣6x,解得x=9km,答:飞机离地面的高度为9千米.【点睛】本题考查了一次函数的应用,比较简单,读懂题目信息,理解随着高度的增加,温度降低列出关系式是解题的关键.22.四张卡片,除一面分别写有数字2,2,3,6外,其余均相同,将卡片洗匀后,写有数字的一面朝下扣在桌面上,随机抽取一张卡片记下数字后放回,洗匀后仍将写有数字的一面朝下扣在桌面上,再抽取一张.(1)用列表或画树状图的方法求两次都恰好抽到2的概率;(2)小贝和小晶以此为游戏,游戏规则是:第一次抽取的数字作为十位,第二次抽取的数字作为个位,组成一个两位数,若组成的两位数不小于32,小贝获胜,否则小晶获胜.你认为这个游戏公平吗?请说明理由.【答案】(1)14;(2)这个游戏公平.【解析】【分析】(1)将所有可能的情况在图中表示出来,再根据概率公式计算可得;(2)计算出和为大于32和不大于32的概率,即可得到游戏是否公平【详解】解:(1)画树状图如下:由树状图知共有16种等可能结果,其中两次都恰好抽到2的有4种结果,所以两次都恰好抽到2的概率为14.(2)这个游戏公平.因为P(小贝获胜)=P(小晶获胜)=12.【点睛】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.23.如图,AB是⊙O的直径,点C、E在⊙O上,∠B=2∠ACE,在BA的延长线上有一点P,使得∠P=∠BAC,弦CE交AB于点F,连接AE.(1)求证:PE是⊙O的切线;(2)若AF=2,AE=EF10,求OA的长.【答案】(1)见解析;(2)OA=5【解析】【分析】(1)连接OE,根据圆周角定理得到∠AOE=∠B,根据圆周角定理得到∠ACB=90°,求得∠OEP=90°,于是得到结论;(2)根据等腰三角形的性质得到∠OAE=∠OEA,∠EAF=∠AFE,再根据相似三角形的性质即可得到结论.【详解】解:(1)连接OE ,∴∠AOE =2∠ACE ,∵∠B =2∠ACE ,∴∠AOE =∠B ,∵∠P =∠BAC ,∴∠ACB =∠OEP ,∵AB 是⊙O 的直径,∴∠ACB =90°,∴∠OEP =90°,∴PE 是⊙O 的切线;(2)∵OA =OE ,∴∠OAE =∠OEA ,∵AE =EF ,∴∠EAF =∠AFE ,∴∠OAE =∠OEA =∠EAF =∠AFE ,∴△AEF ∽△AOE , ∴AE AF OA AE=, ∵AF =2,AE =EF 10∴OA =5.【点睛】本题考查了相似三角形的判定和性质,等腰三角形的判定,切线的判定,正确的作出辅助线是解题的关键.24.在平面直角坐标系中,抛物线()2y ax bx c a 0=++≠与轴的两个交点分别为A(-3,0)、B(1,0),与y 轴交于点D(0,3),过顶点C 作CH⊥x 轴于点H.(1)求抛物线的解析式和顶点C 的坐标;(2)连结AD 、CD ,若点E 为抛物线上一动点(点E 与顶点C 不重合),当△ADE 与△ACD 面积相等时,求点E 的坐标;(3)若点P 为抛物线上一动点(点P 与顶点C 不重合),过点P 向CD 所在的直线作垂线,垂足为点Q ,以P 、C 、Q 为顶点的三角形与△ACH 相似时,求点P 的坐标.【答案】(1)2y x 2x 3=--+,(-1,4) (2)(-2,3),31711722⎛⎫-+-+ ⎪ ⎪⎝⎭,,31711722⎛--- ⎝⎭, (3)(-4,-5),(23-,359) 【解析】分析】 (1)将A(-3,0)、B(1,0)、D(0,3),代入y=ax 2+bx+3求出即可;(2)求出直线AD 的解析式,分别过点C 、H 作AD 的平行线,与抛物线交于点E ,利用△ADE 与△ACD 面积相等,得出直线EC 和直线EH 的解析式,联立出方程组求解即可;(3) (3)分两种情况讨论:①点P 在对称轴左侧;②点P 在对称轴右侧.【详解】(1)设抛物线的解析式为2y ax bx c(a 0)=++<,∵抛物线过点A(-3,0),B(1,0),D(0,3), ∴93003a b c a b c c -+=⎧⎪++=⎨⎪=⎩,解得,a=-1,b=-2,c=3,∴抛物线解析式为2y x 2x 3=--+,顶点C(-1,4);(2)如图1,∵A(-3,0),D(0,3),∴直线AD 的解析式为y=x+3,设直线AD 与CH 交点为F ,则点F 的坐标为(-1,2)∴CF=FH,分别过点C 、H 作AD 的平行线,与抛物线交于点E ,由平行间距离处处相等,平行线分线段成比例可知,△ADE 与△ACD 面积相等,∴直线EC 的解析式为y=x+5,直线EH 的解析式为y=x+1,分别与抛物线解析式联立,得25x 23y x y x =+⎧⎨=--+⎩,21x 23y x y x =+⎧⎨=--+⎩,解得点E 坐标为(-2,3),⎝⎭,⎝⎭; (3)①若点P 在对称轴左侧(如图2),只能是△CPQ∽△ACH,得∠PCQ=∠CAH, ∴PQ CH 2CQ AH==, 分别过点C 、P 作x 轴的平行线,过点Q 作y 轴的平行线,交点为M 和N ,由△CQM∽△QPN, 得PQ PN QN CQ MQ CM===2, ∵∠MCQ=45°,设CM=m ,则MQ=m ,PN=QN=2m ,MN=3m ,∴P 点坐标为(-m-1,4-3m),将点P 坐标代入抛物线解析式,得()()2m 12m 1343m -++++=-,解得m=3,或m=0(与点C 重合,舍去)∴P 点坐标为(-4,-5);②若点P 在对称轴右侧(如图①),只能是△PCQ∽△ACH,得∠PCQ=∠ACH, ∴PQ AH 1CQ CH 2==, 延长CD 交x 轴于M ,∴M(3,0)过点M 作CM 垂线,交CP 延长线于点F ,作FNx 轴于点N , ∴PQ FM 1CQ CM 2==, ∵∠MCH=45°,CH=MH=4∴MN=FN=2,∴F 点坐标为(5,2),∴直线CF 的解析式为y=111x 33-+, 联立抛物线解析式,得211133x 23y x y x ⎧=-+⎪⎨⎪=--+⎩,解得点P 坐标为(23-,359), 综上所得,符合条件的P 点坐标为(-4,-5),(23-,359).【点睛】本题考查了二次函数的综合应用以及相似三角形的应用,二次函数的综合应用是初中阶段的重点题型,特别注意分类讨论思想的应用.25.问题提出(1)如图①,在矩形ABCD 中,AB=2AD ,E 为CD 的中点,则∠AEB ∠ACB (填”>”“<”“=“); 问题探究(2)如图②,在正方形ABCD 中,P 为CD 边上的一个动点,当点P 位于何处时,∠APB 最大?并说明理由;问题解决(3)如图③,在一幢大楼AD 上装有一块矩形广告牌,其侧面上、下边沿相距6米(即AB=6米),下边沿到地面的距离BD=11.6米.如果小刚的睛睛距离地面的高度EF为1.6米,他从远处正对广告牌走近时,在P处看广告效果最好(视角最大),请你在图③中找到点P的位置,并计算此时小刚与大楼AD之间的距离.【答案】(1)>;(2)当点P位于CD的中点时,∠APB最大,理由见解析;(3)410米.【解析】【分析】(1)过点E作EF⊥AB于点F,由矩形的性质和等腰三角形的判定得到:△AEF是等腰直角三角形,易证∠AEB=90°,而∠ACB<90°,由此可以比较∠AEB与∠ACB的大小(2)假设P为CD的中点,作△APB的外接圆⊙O,则此时CD切⊙O于P,在CD上取任意异于P点的点E,连接AE,与⊙O交于点F,连接BE、BF;由∠AFB是△EFB的外角,得∠AFB>∠AEB,且∠AFB与∠APB 均为⊙O中弧AB所对的角,则∠AFB=∠APB,即可判断∠APB与∠AEB的大小关系,即可得点P位于何处时,∠APB最大;(3)过点E作CE∥DF,交AD于点C,作AB的垂直平分线,垂足为点Q,并在垂直平分线上取点O,使OA=CQ,以点O为圆心,OB为半径作圆,则⊙O切CE于点G,连接OG,并延长交DF于点P,连接OA,再利用勾股定理以及长度关系即可得解.【详解】解:(1)∠AEB>∠ACB,理由如下:如图1,过点E作EF⊥AB于点F,∵在矩形ABCD中,AB=2AD,E为CD中点,∴四边形ADEF是正方形,∴∠AEF=45°,同理,∠BEF=45°,∴∠AEB=90°.而在直角△ABC中,∠ABC=90°,∴∠ACB<90°,∴∠AEB>∠ACB.故答案为>;(2)当点P位于CD的中点时,∠APB最大,理由如下:假设P为CD的中点,如图2,作△APB的外接圆⊙O,则此时CD切⊙O于点P,在CD上取任意异于P点的点E,连接AE,与⊙O交于点F,连接BE,BF,∵∠AFB是△EFB的外角,∴∠AFB>∠AEB,∵∠AFB=∠APB,∴∠APB>∠AEB,故点P位于CD的中点时,∠APB最大:(3)如图3,过点E作CE∥DF交AD于点C,作线段AB的垂直平分线,垂足为点Q,并在垂直平分线上取点O,使OA=CQ,以点O为圆心,OA长为半径作圆,则⊙O切CE于点G,连接OG,并延长交DF于点P,此时点P即为小刚所站的位置,由题意知DP=OQ=,∵OA=CQ=BD+QB﹣CD=BD+AB﹣CD,BD=11.6米, AB=3米,CD=EF=1.6米,∴OA=11.6+3﹣1.6=13米,∴DP=米,即小刚与大楼AD之间的距离为4米时看广告牌效果最好.【点睛】本题考查了矩形的性质,正方形的判定与性质,圆周角定理的推论,三角形外角的性质,线段垂直平分线的性质,勾股定理等知识,难度较大,熟练掌握各知识点并正确作出辅助圆是解答本题的关键.。
中考模拟检测《数学试卷》含答案解析
数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一、选择题(本大题共10小题,每小题4分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 下列实数中,无理数是( )A. B. 3.333 C. π- D. 42. 下列计算中,结果是6a 的是A. 24a a +B. 23a a ⋅C. 122a a ÷D. 23()a3. 一粒米的质量约是0.000021kg ,这个数据用科学记数法表示为( )A 40.1210-⨯ B. 5 2. 110-⨯ C. 42.110-⨯ D. 62110-⨯ 4. 下列命题是假命题的是( )A 经过两点有且只有一条直线B. 三角形的中位线平行且等于第三边的一半C. 平行四边形的对角线相等D. 圆的切线垂直于经过切点的半径5. 在线段、角、平行四边形、矩形、圆这几个图形中既是轴对称图形又是中心对称图形的个数是( )A. 2个B. 3个C. 4个D. 5个6. 实数a ,b 在数轴上的对应点的位置如图所示,则正确的结论是( )A. a >﹣2B. a <﹣3C. a >﹣bD. a <﹣b 7. (2016广西贺州市)从分别标有数﹣3,﹣2,﹣1,0,1,2,3的七张没有明显差别的卡片中,随机抽取一张,所抽卡片上的数的绝对值不小于2的概率是( )A. 17B. 27C. 37D. 478. 已知反比例函数10y x =,当1<x <2时,y 的取值范围是( ) A. 0<y <5 B. 1<y <2 C. 5<y <10 D. y >109. 如图,在边长为6的菱形ABCD 中,60DAB ∠=︒ ,以点为圆心,菱形的高DF 为半径画弧,交AD 于点,交CD 于点,则图中阴影部分的面积是( )A. 183π-B. 1839π-C. 9932π-D. 1833π-10. 观察下列一组图形,其中图形①中共有2颗星,图形②中共有6颗星,图形③中共有 11颗星,图形④中共有17颗星,…,按此规律,图形⑧中星星的颗数是( )A. 53B. 51C. 45D. 43二、填空题(本大题共8小题,每小题4分,满分32分.)11. 若二次根式x 1-有意义,则x 的取值范围是 ▲ .12. 在一次”爱心互助”捐款活动中,某班第一小组7名同学捐款的金额(单位:元)分别为6, 7,6,15,9,6,9.这组数据的众数和中位数分别是________.13. 钟表在12时15分时刻的时针与分针所成的角是_______°.14. 一个圆锥的侧面展开图是半径为6的半圆,则这个圆锥的底面半径为________.15. 如图,将线段AB 绕点O 顺时针旋转90°得到线段A′B′,那么A(﹣2,5)的对应点A′的坐标是_________________.16. 如图,Rt △ABC 中,AB ⊥BC ,AB=6,BC=4,P 是△ABC 内部的一个动点,且满足∠PAB=∠PBC ,则线段CP 长的最小值为_____.17. 某社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S(单位:m 2)与工作时间t(单位:h)之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是_____m 2.18. 定义:有三个内角相等的四边形叫三等角四边形.三等角四边形ABCD 中,∠A =∠B=∠C ,则∠A 的取值范围________.三、解答题(本大题共8小题,满分78分,解答应写出文字说明、证明过程或演算步骤) 19. 计算:|1﹣3|﹣3tan30°﹣(35-)°. 20. 先化简,再求值:()221111x x x ⎛⎫+⋅- ⎪-+⎝⎭,其中313x -= 21. 如图,某学校在”国学经典”中新建了一座吴玉章雕塑,小林站在距离雕塑3米的A 处自B 点看雕塑头顶D 的仰角为45°,看雕塑底部C 的仰角为30°,求塑像CD 的高度.(最后结果精确到0.1米,参考数据:3 1.732≈)22. 今年我县中考的体育测试成绩改为等级制,即把测试结果分为四个等级:A 级:优秀;B 级:良好;C 级:及格;D 级:不及格.我县5月份举行了全县九年级学生体育测试.现从中随机抽取了部分学生的体育成绩,并将其绘成了如下两幅不完整的统计图.请根据统计图中的信息解答下列问题:(1)本次抽样测试的学生人数是;(2)图1中∠α的度数是,并把图2条形统计图补充完整;(3)该县九年级有学生9000名,如果全部参加这次中考体育科目测试,请估算不及格的人数是多少?23. 某汽车专卖店销售A,B两种型号的新能源汽车.上周售出1辆A型车和3辆B型车,销售额为96万元;本周已售2辆A型车和1辆B型车,销售额为62万元.(1)求每辆A型车和B型车的售价各多少万元.(2)甲公司拟向该店购买A,B两种型号的新能源汽车共6辆,购车费不少于130万元,且不超过140万元. 则有哪几种购车方案?24. 如图,四边形ABCD内接于⊙O,AB是⊙O的直径,AC和BD相交于点E,且DC2=CE•CA.(1)求证:BC=CD;(2)分别延长AB,DC交于点P,过点A作AF⊥CD交CD的延长线于点F,若PB=OB,CD=22,求圆O的半径.25. 已知正方形ABCD,P为射线AB上一点,以BP为边作正方形BPEF,使点F在线段CB的延长线上,连接EA、EC(1)如图1,若点P在线段AB的延长线上,求证:EA=EC;(2)若点P在线段AB上.①如图2,连接AC,当P为AB的中点时,判断△ACE的形状,并说明理由;②如图3,设AB=a,BP=b,当EP平分∠AEC时,求a:b及∠AEC的度数.26. 将抛物线C1:y=﹣2x2+3沿x轴翻折,得到抛物线C2,如图所示(1)请直接写出抛物线C2解析式(2)现将抛物线C1向左平移m个单位长度,平移后得到新抛物线的顶点为M,与x轴的交点从左到右依次为A、B;将抛物线C2向右也平移m个单位长度,平移后得到新抛物线的顶点为N,与x轴的交点从左到右依次为D、E.①当B、D是线段AE的三等分点时,求m的值;②在平移过程中,是否存在以点A、N、E、M为顶点四边形是矩形的情形?若存在,请求出此时m的值;若不存在,请说明理由答案与解析一、选择题(本大题共10小题,每小题4分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 下列实数中,无理数是( )A.B. 3.333C. π-D. 【答案】C【解析】A. 是有理数;B. 3.333 是有理数;C. π- 是无理数;D. 2=是有理数;故选C.2. 下列计算中,结果是6a 的是A. 24a a +B. 23a a ⋅C. 122a a ÷D. 23()a【答案】D【解析】【分析】根据幂的乘方、同底数幂的乘法的运算法则计算后利用排除法求解.【详解】解:A 、a 2+a 4≠a 6,不符合;B 、a 2•a 3=a 5,不符合;C 、a 12÷a 2=a 10,不符合;D 、(a 2)3=a 6,符合.故选D.【点睛】本题考查了合并同类项、同底数幂的乘法、幂的乘方.需熟练掌握且区分清楚,才不容易出错. 3. 一粒米质量约是0.000021kg ,这个数据用科学记数法表示为( )A. 40.1210-⨯B. 5 2. 110-⨯C. 42.110-⨯D. 62110-⨯ 【答案】B【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.000021=2.1×10−5;故选B.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4. 下列命题是假命题的是( )A. 经过两点有且只有一条直线B. 三角形的中位线平行且等于第三边的一半C. 平行四边形的对角线相等D. 圆的切线垂直于经过切点的半径【答案】C【解析】【分析】【详解】选项A,经过两点有且只有一条直线,正确;选项B,三角形的中位线平行且等于第三边的一半,正确;选项C,平行四边形的对角线相等,错误.矩形的对角线相等,平行四边形的对角线不一定相等.选项D,圆的切线垂直于经过切点的半径,正确.故答案选C.5. 在线段、角、平行四边形、矩形、圆这几个图形中既是轴对称图形又是中心对称图形的个数是( )A. 2个B. 3个C. 4个D. 5个【答案】B【解析】角只是轴对称图形;平行四边形只是中心对称图形;线段、矩形、圆既是轴对称图形又是中心对称图形,故选B.6. 实数a,b在数轴上的对应点的位置如图所示,则正确的结论是( )A. a >﹣2B. a <﹣3C. a >﹣bD. a <﹣b【答案】D【解析】 试题分析:A .如图所示:﹣3<a <﹣2,故此选项错误;B .如图所示:﹣3<a <﹣2,故此选项错误;C .如图所示:1<b <2,则﹣2<﹣b <﹣1,又﹣3<a <﹣2,故a <﹣b ,故此选项错误;D .由选项C 可得,此选项正确.故选D .考点:实数与数轴7. (2016广西贺州市)从分别标有数﹣3,﹣2,﹣1,0,1,2,3的七张没有明显差别的卡片中,随机抽取一张,所抽卡片上的数的绝对值不小于2的概率是( ) A. 17 B. 27 C. 37 D. 47【答案】D【解析】试题分析:∵标有数﹣3,﹣2,﹣1,0,1,2,3的七张没有明显差别的卡片中,随机抽取一张,所抽卡片上的数的绝对值不小于2的有4种情况,∴随机抽取一张,所抽卡片上的数的绝对值不小于2的概率是:47.故选D . 考点:1.概率公式;2.绝对值.8. 已知反比例函数10y x =,当1<x <2时,y 的取值范围是( ) A. 0<y <5B. 1<y <2C. 5<y <10D. y >10 【答案】C【解析】∵反比例函数y=10x中当x=1时y=10,当x=2时,y=5, ∴当1<x<2时,y 的取值范围是5<y<10,故选C.9. 如图,在边长为6的菱形ABCD 中,60DAB ∠=︒ ,以点为圆心,菱形的高DF 为半径画弧,交AD 于点,交CD 于点,则图中阴影部分的面积是( )A. 183π-B. 1839π-C. 9932π-D. 1833π-【答案】B【解析】【分析】 由菱形的性质得出AD=AB=6,∠ADC=120°,由三角函数求出菱形的高DF ,图中阴影部分的面积=菱形ABCD 的面积-扇形DEFG 的面积,根据面积公式计算即可.【详解】∵四边形ABCD 是菱形,∠DAB=60°,∴AD=AB=6,∠ADC=180°-60°=120°,∵DF 是菱形的高,∴DF ⊥AB ,∴DF=AD•sin60°=6×3? 2=33, ∴阴影部分的面积=菱形ABCD 的面积-扇形DEFG 的面积=6×32120(33)3? 360π⨯-=183-9π. 故选B .【点睛】本题考查了菱形的性质、三角函数、菱形和扇形面积的计算;由三角函数求出菱形的高是解决问题的关键.10. 观察下列一组图形,其中图形①中共有2颗星,图形②中共有6颗星,图形③中共有 11颗星,图形④中共有17颗星,…,按此规律,图形⑧中星星的颗数是( )A. 53B. 51C. 45D. 43【答案】B【解析】【分析】根据给出的图示可得:我们可以将这些星星分成两部分,找出其规律即可得出解. 【详解】根据给出的图示可得:我们可以将这些星星分成两部分,最下面的一横作为一部分,规律为(2n-1),上面的就是等差数列求和,规律为:(1)2n n+,则所有的五角星的数量的和的规律为:(1)2n n++(2n-1),则图形8中的星星的个数=89(281)2⨯+⨯-=36+15=51.故选:B考点:规律题.二、填空题(本大题共8小题,每小题4分,满分32分.)11. 有意义,则x的取值范围是▲ .【答案】x1≥.【解析】【分析】根据二次根式有意义的条件:被开方数大于等于0列出不等式求解.【详解】根据二次根式被开方数必须是非负数的条件,得x10x1-≥⇒≥.【点睛】本题考查二次根式有意义条件,牢记被开方数必须是非负数.12. 在一次”爱心互助”捐款活动中,某班第一小组7名同学捐款的金额(单位:元)分别为6, 7,6,15,9,6,9.这组数据的众数和中位数分别是________.【答案】6,7【解析】∵6出现了3次,出现的次数最多,∴众数是6;∵从小到大排列后7排在中间位置,∴中位数是7;13. 钟表在12时15分时刻的时针与分针所成的角是_______°.【答案】82.5【解析】90°-30°÷4=82.5°.14. 一个圆锥的侧面展开图是半径为6的半圆,则这个圆锥的底面半径为________.【答案】3【解析】试题分析:设这个圆锥的底面半径为r,根据题意得2πr=,解得r=3.故答案为3.考点:圆锥的计算.15. 如图,将线段AB绕点O顺时针旋转90°得到线段A′B′,那么A(﹣2,5)的对应点A′的坐标是_________________.【答案】(5,2)【解析】【详解】解:∵线段AB绕点O顺时针旋转90°得到线段A′B′,∴△ABO≌△A′B′O′,∠AOA′=90°,∴AO=A′O.作AC⊥y轴于C,A′C′⊥x轴于C′,∴∠ACO=∠A′C′O=90°.∵∠COC′=90°,∴∠AOA′﹣∠COA′=∠COC′﹣∠COA′,∴∠AOC=∠A′OC′.在△ACO和△A′C′O中,∵∠ACO=∠A′C′O,∠AOC=∠A′OC′,AO=A′O,∴△ACO≌△A′C′O(AAS),∴AC=A′C′,CO=C′O.∵A(﹣2,5),∴AC=2,CO=5,∴A′C′=2,OC′=5,∴A′(5,2).故答案为(5,2).考点:坐标与图形变化-旋转.16. 如图,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC内部的一个动点,且满足∠PAB=∠PBC,则线段CP长的最小值为_____.【答案】2【解析】分析】首先证明点P在以AB为直径的⊙O上,连接OC与⊙O交于点P,此时PC最小,利用勾股定理求出OC 即可解决问题.【详解】如图所示,以为直径作圆,圆心为,解:∵∠ABC=90°,∴∠ABP+∠PBC=90°,∵∠PAB=∠PBC∴∠BAP+∠ABP=90°,∴∠APB=90°,∴点P在以AB为直径的⊙O上,连接OC交⊙O于点P,此时PC最小,在RT△BCO中,∵∠OBC=90°,BC=4,OB=3,在中,2222=+=+=,OC OB BC345∴PC=OC-OP=5-3=2.∴PC最小值为2.故答案为2.【点睛】本题考查点与圆位置关系、圆周角定理、最短问题等知识,解题的关键是确定点P位置,学会求圆外一点到圆的最小、最大距离,属于中考常考题型.17. 某社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S(单位:m2)与工作时间t(单位:h)之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是_____m2.【答案】150【解析】设绿化面积与工作时间的函数解析式为,因为函数图象经过,两点,将两点坐标代入函数解析式得得,将其代入得,解得,∴一次函数解析式为,将代入得,故提高工作效率前每小时完成的绿化面积为.18. 定义:有三个内角相等的四边形叫三等角四边形.三等角四边形ABCD中,∠A =∠B=∠C,则∠A的取值范围________.【答案】60°<∠A<120°【解析】由”四边形内角和为“得,,即.因为,所以,即,即.三、解答题(本大题共8小题,满分78分,解答应写出文字说明、证明过程或演算步骤)19. 计算:|13﹣3tan30°﹣35)°.【答案】-2【解析】解:|1﹣3|﹣3tan30°﹣(35-)° =﹣=﹣2. 20. 先化简,再求值:()221111x x x ⎛⎫+⋅- ⎪-+⎝⎭,其中313x -= 【答案】3x+1;3. 【解析】 【分析】首先将括号里面的分式进行通分,然后根据分式的乘法法则进行计算. 【详解】原式=[2(1)1(1)(1)(1)(1)x x x x x x +-++-+-] (x+1)(x -1)=221(1)(1)x x x x ++-+- (x+1)(x -1)=3x+1当x=313-时,原式=3x+1=3×313-+1=3-1+1=3. 考点:分式的化简求值.21. 如图,某学校在”国学经典”中新建了一座吴玉章雕塑,小林站在距离雕塑3米的A 处自B 点看雕塑头顶D 的仰角为45°,看雕塑底部C 的仰角为30°,求塑像CD 的高度.(最后结果精确到0.1米,参考数据:3 1.732≈)【答案】1.2米 【解析】试题分析:根据锐角三角函数,在Rt △DEB 中,求得DE 的长,在Rt △CEB 中,求得CE 的长,再根据CD=DE-CE 即可求出塑像CD 的高度.试题解析:解:在Rt△DEB中,DE=BE•tan45°=2.7米,在Rt△CEB中,CE=BE•tan30°=0.93米,则CD=DE-CE=2.7-0.93≈1.2米.故塑像CD的高度大约为1.2米.考点:解直角三角形的应用.22. 今年我县中考的体育测试成绩改为等级制,即把测试结果分为四个等级:A级:优秀;B级:良好;C级:及格;D级:不及格.我县5月份举行了全县九年级学生体育测试.现从中随机抽取了部分学生的体育成绩,并将其绘成了如下两幅不完整的统计图.请根据统计图中的信息解答下列问题:(1)本次抽样测试的学生人数是;(2)图1中∠α的度数是,并把图2条形统计图补充完整;(3)该县九年级有学生9000名,如果全部参加这次中考体育科目测试,请估算不及格的人数是多少?【答案】(1)40;(2)54°,补全条形图见解析;(3)这次不及格的人数约是1800人.【解析】解:(1)本次抽样测试的学生人数是:12÷30%=40(人).(2)54°(3)89000180040⨯=,∴这次不及格的人数约是1800人.23. 某汽车专卖店销售A,B两种型号的新能源汽车.上周售出1辆A型车和3辆B型车,销售额为96万元;本周已售2辆A型车和1辆B型车,销售额为62万元.(1)求每辆A型车和B型车的售价各多少万元.(2)甲公司拟向该店购买A,B两种型号的新能源汽车共6辆,购车费不少于130万元,且不超过140万元. 则有哪几种购车方案?【答案】(1)18,26;(2)两种方案:方案1:购买A型车2辆,购买B型车4辆;方案2:购买A型车3辆,购买B型车3辆.【解析】【分析】(1)方程组的应用解题关键是设出未知数,找出等量关系,列出方程组求解.本题设每辆A型车的售价为x 万元,每辆B型车的售价为y万元,等量关系为:售1辆A型车和3辆B型车,销售额为96万元;售2辆A型车和1辆B型车,销售额为62万元.(2)不等式的应用解题关键是找出不等量关系,列出不等式求解.本题不等量关系为:购车费不少于130万元,且不超过140万元.【详解】(1)设每辆A型车的售价为x万元,每辆B型车的售价为y万元,根据题意,得396{262x yx y+=+=,解得18{26xy==.答;每辆A型车的售价为18万元,每辆B型车的售价为26万元.(2)设购买A型车a辆,则购买B型车(6-a)辆,根据题意,得1826(6)130{1826(6)140a aa a+-≥+-≤,解得1234a≤≤.∵a是正整数,∴a=2或a=3.∴共有两种方案:方案1:购买A型车2辆,购买B型车4辆;方案2:购买A型车3辆,购买B型车3辆考点:二元一次方程组的应用;一元一次不等式的应用.24. 如图,四边形ABCD内接于⊙O,AB是⊙O的直径,AC和BD相交于点E,且DC2=CE•CA.(1)求证:BC=CD;(2)分别延长AB,DC交于点P,过点A作AF⊥CD交CD的延长线于点F,若PB=OB,CD=22,求圆O的半径.【答案】(1)证明见解析;(2)⊙O的半径为4.【解析】试题分析:(1)、根据题意得出△CAD和△CDE相似,从而得出∠CAD=∠CDE,结合∠CAD=∠CBD得出∠CDB=∠CBD,从而得出答案;(2)、连接OC,根据OC∥AD得出PC=2CD,根据题意得出△PCB和△PAD相似,即PC PBPA PD,从而得出r的值.试题解析:(1)、∵DC2=CE•CA,∴=,而∠ACD=∠DCE,∴△CAD∽△CDE,∴∠CAD=∠CDE,∵∠CAD=∠CBD,∴∠CDB=∠CB D,∴BC=DC;(2)、连结OC,如图,设⊙O的半径为r,∵CD=CB,∴=,∴∠BOC=∠BAD,∴OC∥AD,∴===2,∴PC=2CD=4,∵∠PCB=∠PAD,∠CPB=∠APD,∴△PCB∽△PAD,∴=,即=,∴r=4,即⊙O的半径为4.25. 已知正方形ABCD,P为射线AB上的一点,以BP为边作正方形BPEF,使点F在线段CB的延长线上,连接EA、EC(1)如图1,若点P在线段AB的延长线上,求证:EA=EC;(2)若点P在线段AB上.①如图2,连接AC,当P为AB中点时,判断△ACE的形状,并说明理由;②如图3,设AB=a,BP=b,当EP平分∠AEC时,求a:b及∠AEC的度数.【答案】(1)详见解析;(2)△ACE为直角三角形,理由见解析;(3)∠AEC=45°.【解析】试题分析:(1)根据正方形的性质和全等三角形的判定定理易证△APE≌△CFE,由全等三角形的性质即可得结论;(2)①根据正方形的性质、等腰直角三角形的性质即可判定△ACE为直角三角形;②根据PE∥CF,得到,代入a、b的值计算求出a:b,根据角平分线的判定定理得到∠HCG=∠BCG,证明∠AEC=∠ACB,即可求出∠AEC的度数.试题解析:(1)证明:∵四边形ABCD为正方形∴AB=AC∵四边形BPEF为正方形∴∠P=∠F=90°,PE=EF=FB=BP∵AP=AB+BP,CF=BC+BF∴CF=AP在△APE和△CFE中:EP="EF," ∠P="∠F=90°," AP= CF∴△APE≌△CFE∴EA=EC(2)①∵P为AB的中点,∴PA=PB,又PB=PE,∴PA=PE,∴∠PAE=45°,又∠DAC=45°,∴∠CAE=90°,即△ACE是直角三角形;②∵EP平分∠AEC,EP⊥AG,∴AP=PG=a﹣b,BG=a﹣(2a﹣2b)=2b﹣a∵PE∥CF,∴,即,解得,a=b;作GH⊥AC于H,∵∠CAB=45°,∴HG=AG=×(2b﹣2b)=(2﹣)b,又BG=2b﹣a=(2﹣)b,∴GH=GB,GH⊥AC,GB⊥BC,∴∠HCG=∠BCG,∵PE∥CF,∴∠PEG=∠BCG,∴∠AEC=∠ACB=45°.∴a:b=:1;∴∠AEC=45°.考点:四边形综合题.26. 将抛物线C1:y=2x23x轴翻折,得到抛物线C2,如图所示(1)请直接写出抛物线C2的解析式(2)现将抛物线C1向左平移m个单位长度,平移后得到新抛物线顶点为M,与x轴的交点从左到右依次为A、B;将抛物线C2向右也平移m个单位长度,平移后得到新抛物线的顶点为N,与x轴的交点从左到右依次为D、E.①当B、D是线段AE的三等分点时,求m的值;②在平移过程中,是否存在以点A、N、E、M为顶点的四边形是矩形的情形?若存在,请求出此时m的值;若不存在,请说明理由【答案】(1)233y x =-(2)①2,1/2,②是矩形,m =1 【解析】试题分析:因为二次函数的图像关于x 轴对称时,函数中的a,c,互为相反数,b 值不变,函数向左平移时,纵坐标不变,横坐标均减少平移个单位,可假定成立,由直角三角形性质得到验证.解:(1)抛物线c 2的表达式是; 2分;(2)①点A 的坐标是(1m --,0), 3分; 点E 的坐标是(1m +,0). 4分;②假设在平移过程中,存在以点A ,M ,E 为顶点的三角形是直角三角形. 由题意得只能是90AME ∠=. 过点M 作MG ⊥x 轴于点G . 由平移得:点M 的坐标是(m -3, 5分; ∴点G 的坐标是(m -,0), ∴1GA =,3MG =,21EG m =+,在Rt △AGM 中, ∵ tan 3MG MAG AG ∠==,∴60MAG ∠=, 6分;∵ 90AME ∠=,∴30MEA ∠=,∴tan MG MEG EG ∠==,=, 7分; ∴1m =. 8分.所以在平移过程中,当1m =时,存在以点A ,M ,E 为顶点的三角形是直角三角形.考点:二次函数的图像与性质,直角三角形的性质.函数图像翻折时,解析式的系数的变换.点评:要熟练掌握以上各种性质,在解题时要掌握正确的方法,本题由一定的难度有三问需认真的思考一一作答,属于中档题.。
中考数学综合模拟测试题(附答案解析)
三、解答题(本大题共9小题,共90分)
19.计算:(π﹣3.14)0+|1﹣2 |﹣ +( )﹣1
20.先化简,再求值: ﹣ ÷ ,其中x=2.
21.如图,点B、E、C、F在一条直线上,AB=DF,AC=DE,BE=FC.
(1)求证:△ABC≌△DFE;
(2)连接AF、BD,求证:四边形ABDF是平行四边形.
A. 102°B. 54°C. 48°D. 78°
5.一件服装标价200元,若以六折销售,仍可获利20℅,则这件服装进价是
A. 100元B. 105元C. 108元D. 118元
6.为了了解某校九年级学生的体能情况,随机抽查了其中50名学生,测试1分钟仰卧起坐的成绩(次数),进行整理后绘制成如图所示的频数分布直方图(注:15~20包括15,不包括20,以下同),
23.某中学艺术节期间,学校向学生征集书画作品,杨老师从全校30个班中随机抽取了4个班(用A,B,C,D表示),对征集到的作品的数量进行了分析统计,制作了两幅不完整的统计图.
请根据以上信息,回答下列问题:
(1)杨老师采用的调查方式是(填“普查”或“抽样调查”);
(2)请你将条形统计图补充完整,并估计全校共征集多少件作品?
【答案】D
【解析】
【详解】试题分析:主视图是三角形,俯视图是两个矩形,左视图是一个矩形,
2016年安徽中考大联考数学试题(一)及答案
2016年安徽中考“合肥十校”大联考(一)数学试题本试卷满分150分,考试时间120分钟一、选择题(本大题共10小题,每小题4分。
满分40分,每小题只有一个选项符合题意)1.64的算术平方根是 ( )A.4 B.±4 C. 8 D.±82.下列各式正确的是 ( )A.一22=4 B.20=0 C.再=±2 D.︱-2︱ =23.由中国发起创立的“亚洲基础设施投资银行”的法定资本金为100 000 000 000美元,用科学记数法表示为 ( )A.1.0×109美元 B.1.0×1010美元C.1.0×1011美元 D.1.0×1012美元4.如图是一些完全相同的小正方体搭成的几何体的三视图.这个几何体只能是( )5.下列因式分解错误的是( )A.2a -2b=2(a- b)B.x2-9=(x+3)(x-3)C.a2+4a-4=(a+2)2D.-x2-x+2=-(x-1)(x+2)6.如图,直线AB∥CD,直线EF与AB,CD相交于点E,F,∠BEF的平分线与CD相交于点N.若∠1=63°,则∠2= ( )A.64° B.63°C.60° D. 54°。
7.古希腊数学家把数1,3,6,10,15,21,…叫做三角数,它有一定的规律性.若把第一个三角数记为a1,第二个三角数记为a2…,第n个三角数记为a n,则a n+a n+1 = ( )A.n2+n B.n2+n+1C.n2+2n D.n2+2n+18.如图,将⊙0沿弦AB折叠,圆弧恰好经过圆心0,点P是优弧AMB上一点,连接PB,则∠APB的度数为 ( )A.45° B.30° C.75° D.60°9.已知二次函数y=a(x一2)2+c,当x=x1时,函数值为y1;当x=x2时,函数值为y2,若︱x1-2︱>︱x2-2︱,则下列表达式正确的是 ( )A.y l+y2>O B.y1一y2>O C.a(y1一y2)>0 D.a(y l+y2)>O10.如图,△ABC中,AB=AC,DE垂直平分AB,BE⊥AC,AF⊥BC,则下面结论错误的是 ( ) A.BF=EF B.DE=EF C.∠EFC=45° D.∠BEF=∠CBE二、填空题(每小题5分,共20分)11.17的整数部分是______________.12.九年级(3)班共有50名同学,如图是该班一次体育模拟测试成绩的频数分布直方图(满分为30分,成绩均为整数).若将不低于23分的成绩评为合格,则该班此次成绩达到合格的同学占全班人数的百分比是___________.13.在平面直角坐标系的第一象限内,边长为l的正方形ABCD的边均平行于坐标轴,A点的坐标为(a,a).如图,若曲线y=4/x(x>0)与此正方形的边有交点,则a的取值范围是_________.14.如图,在△ABC中,∠ACB=90°,AB=5,BC=3,P是AB边上的动点(不与点B重合),将△BCP 沿CP所在的直线翻折,得到△B'CP,连接B'A,则下列判断:①当AP=BP时,AB’∥CP;②当AP=BP时,∠B'PC=2∠B’AC③当CP⊥AB时,AP=17/5;④B'A长度的最小值是1.其中正确的判断是_________ (填入正确结论的序号)三、本题共2小题。
陕西省2016年中考数学真题试题(含答案)
2016年陕西省初中毕业学业考试试题数学第Ⅰ卷(选择题 共30分)一、选择题(共10小题,每小题3分,计30分,每小题只有一个选项是符合题意的)1.计算:=⨯-2)21(【 】A.-1B.1C.4D.-42.如图,下面的几何体由三个大小相同的小立方块组成,则它的左视图是【 】3.下列计算正确的是【 】A.x 2+3x 2=4x 4B.y x x y x 63222.= C. 2232)3(6x x y x =÷ D. 2222)3(x x =-4.如图,AB//CD,直线EF 平分∠C AB 交直线 CD 于点E ,若∠C=50° ,则∠AED= 【 】A.65°B.115°C.125°D.130°5.设点A (a,b )是正比例函数x y 23-=的图象上任意一点 ,则下列等式一定成立的是【 】 A.2b+3b=0 B.2a-3b=0 C.3a-2b=0 D.3a+2b=06.如图,在△ABC 中,∠ABC=90°,AB=8,BC=6, 若DE 是△ABC 的中位线,若在DE 交△ABC 的外角平分线于点F , 则线段DF 的长为【 】A.7B.8C.9D.107.已知一次函数75+=+=x k y kx y ‘和,假设k>0且k '<0,则这两个一次函数的交点在【 】A.第一象限B.第二象限C.第三象限D.第四象限8.如图,在正方形ABCD 中,连接BD ,点O 是BD 的中点,若M,N 是AD 上的两点,连接MO 、NO,并分别延长交边BC 于M N ,则图中全等三角形共有【 】A.2对B.3对C.4对D.5对9.如图,⊙O 的半径为4,△ABC 是⊙O 的内接三角形,连接OB 、OC,若∠ABC 和∠BOC 互补,则弦BC 的长度为 【 】 A.33 B. 34 C. 35 D. 3610.已知抛物线322+--=x x y 与x 轴交于A 、B 两点,将这条抛物线的定点记为C ,连接AC 、BC ,则tan ∠CAB 的值为 【 】 A.21 B. 55 C. 552 D. 2 二、填空题(共4小题,每小题3分,计12分)11.不等式0321<+-x 的解集是_________________。
中考数学模拟测试题(附有答案)
中考数学模拟测试题(附有答案)(满分:120分考试时间120分钟)第Ⅰ卷(选择题共30分)一选择题:本大题共10小题共30.0分。
在每小题给出的四个选项中只有一项是正确的,请把正确的选项选出来.每小题选对得3分选错不选或选出的答案超过一个均记零分. 211.下列实数中有理数是()A. √12B. √13C. √14D. √152.下列计算正确的是()A. a3+a2=a5B. a3÷a2=aC. 3a3⋅2a2=6a6D. (a−2)2=a2−43.如图AB//CD点E F在AC边上已知∠CED=70°∠BFC=130°则∠B+∠D的度数为()A. 40°B. 50°C. 60°D. 70°(第3题图)4.如图是我们数学课本上采用的科学计算器面板利用该型号计算器计算√23cos35°按键顺序正确的是()A.B.C.D.5.如图二次函数y=ax2+bx+c的图象的对称轴为x=−12且经过点(−2,0)下列说法错误的是()A. bc<0B. a=bC. 当x1>x2≥−12时D. 不等式ax 2+bx +c <0的解集是−2<x <32(第5题图)6. 《九章算术》是古代中国第一部自成体系的数学专著 其中《卷第八方程》记载:“今有甲乙二人持钱不知其数 甲得乙半而钱五十 乙得甲太半而亦钱五十 问甲 乙持钱各几何?”译文是:今有甲 乙两人持钱不知道各有多少 甲若得到乙所有钱的12 则甲有50钱 乙若得到甲所有钱的23 则乙也有50钱.问甲 乙各持钱多少?设甲持钱数为x 钱 乙持钱数为y 钱 列出关于x y 的二元一次方程组是( )A. {x +2y =5032x +y =50B. {x +12y =5023x +y =50B. C. {x +12y =5032x +y =50D. {x +23y =5012x +y =507. 如图 直角坐标系中 以5为半径的动圆的圆心A 沿x 轴移动 当⊙A 与直线l :y =512x 只有一个公共点时 点A 的坐标为( )A. (−12,0)B. (−13,0)C. (±12,0)D. (±13,0)(第7题图)8. 已知反比例函数y =bx 的图象如图所示 则一次函数y =cx +a 和二次函数y =ax 2+bx +c 在同一平面直角坐标系中的图象可能是( )A. B.C. D.9. 对于任意的有理数a b 如果满足a 2+b 3=a+b 2+3那么我们称这一对数a b 为“相随数对” 记为(a,b).若(m,n)是“相随数对” 则3m +2[3m +(2n −1)]=( ) A. −2B. −1C. 2D. 310. 如图 在正方形ABCD 中 E F 分别是AB BC 的中点 CE DF 交于点G 连接AG.下列结论:①CE =DF ②CE ⊥DF ③∠AGE =∠CDF.其中正确的结论是( ) A. ①② B. ①③ C. ②③ D. ①②③(第10题图)第Ⅱ卷(非选择题 共90分)二 填空题:本大题共8小题 其中11-14题每小题3分 15-18题每小题4分 共28分.只要求填写最后结果.11. “先看到闪电 后听到雷声” 那是因为在空气中光的传播速度比声音快.科学家发现 光在空气里的传播速度约为3×108米/秒 而声音在空气里的传播速度大约为3×102米/秒 在空气中声音的速度是光速的_______倍.(用科学计数法表示) 12. 分解因式:ax 2+2ax +a =______.13. “共和国勋章”获得者 “杂交水稻之父”袁隆平为世界粮食安全作出了杰出贡献.全球共有40多个国家引种杂交水稻 中国境外种植面积达800万公顷.某村引进了甲 乙两种超级杂交水稻品种 在条件(肥力 日照 通风…)不同的6块试验田中同时播种并核定亩产 统计结果为:x 甲−=1042kg/亩 s 甲2=6.5 x 乙−=1042kg/亩 s 乙2=1.2 则______ 品种更适合在该村推广.(填“甲”或“乙”)14. 从不等式组{x −3(x −2)≤42+2x 3≥x −1的所有整数解中任取一个数 它是偶数的概率是______.15. 如图 △ABC 中 ∠B =30° 以点C 为圆心 CA 长为半径画弧 交BC 于点D 分别以点A D 为圆心大于12AD 的长为半径画弧两弧相交于点E 作射线CE 交AB 于点F FH ⊥AC 于点H.若FH =√2 则BF 的长为______.16.如图从一块直径为4dm的圆形铁皮上剪出一个圆心角为90°的扇形则此扇形的面积为______dm2.17.如图在Rt△OAB中∠AOB=90°OA=OB AB=1作正方形A1B1C1D1使顶点A1B1分别在OA OB上边C1D1在AB上类似地在Rt△OA1B1中作正方形A2B2C2D2在Rt△OA2B2中作正方形A3B3C3D3…依次作下去则第n个正方形A n B n C n D n的边长是______.(15题图)(16题图)(17题图)18.已知正方形ABCD的边长为3E为CD上一点连接AE并延长交BC的延长线于点F过点D作DG⊥AF交AF于点H交BF于点G N为EF的中点M为BD上一动点分别连接MC MN.若S△DCGS△FCE =14则MN+MC的最小值为______.(18题图)三解答题:本大题共7小题共62分.解答要写出必要的文字说明证明过程或演算步骤.19.(本题满分8分第(1)题3分第(2)题5分)(1)计算:(π−2021)0−3tan30°+|1−√3|+(12)−2.(2)先化简再求值:x−3x2−8x+16÷x−3x2−16−xx−4其中x=√2+4.20.(本题满分8分)为引导学生知史爱党知史爱国某中学组织全校学生进行“党史知识”竞赛该校德育处随机抽取部分学生的竞赛成绩进行统计将成绩分为四个等级:优秀良好一般不合格并绘制成两幅不完整的统计图.(第20题图)根据以上信息解答下列问题:(1)德育处一共随机抽取了______名学生的竞赛成绩在扇形统计图中表示“一般”的扇形圆心角的度数为______(2)将条形统计图补充完整(3)该校共有1400名学生估计该校大约有多少名学生在这次竞赛中成绩优秀?(4)德育处决定从本次竞赛成绩前四名学生甲乙丙丁中随机抽取2名同学参加全市“党史知识”竞赛请用树状图或列表法求恰好选中甲和乙的概率.21.(本题满分8分)如图△ABC内接于⊙O AB是⊙O的直径E为AB上一点BE=BC延长CE交AD于点D AD=AC.(1)求证:AD是⊙O的切线(2)若tan∠ACE=1OE=3求BC的长.3(第21题图)22.(本题满分8分)某工厂生产并销售A B两种型号车床共14台生产并销售1台A型车床可以获利10万元如果生产并销售不超过4台B型车床则每台B型车床可以获利17万元如果超出4台B型车床则每超出1台每台B型车床获利将均减少1万元.设生产并销售B型车床x台.(1)当x>4时完成以下两个问题:①请补全下面的表格:②若生产并销售B型车床比生产并销售A型车床获得的利润多70万元问:生产并销售B型车床多少台?(2)当0<x≤14时设生产并销售A B两种型号车床获得的总利润为W万元如何分配生产并销售AB两种车床的数量使获得的总利润W最大?并求出最大利润.23.(本题满分8分)如图在景区新建了一座垂直观光电梯.某测绘兴趣小组为测算电梯AC的高度测得斜坡AB=105米坡度i=1:2在B处测得电梯顶端C的仰角α=45°求观光电梯AC的高度.(参考数据:√2≈1.41√3≈1.73√5≈2.24.结果精确到0.1米)(第23题图)24.(本题满分10分)已知正方形ABCD E F为平面内两点.(第24题图)【探究建模】(1)如图1当点E在边AB上时DE⊥DF且B C F三点共线.求证:AE=CF【类比应用】(2)如图2当点E在正方形ABCD外部时DE⊥DF AE⊥EF且E C F三点共线.猜想并证明线段AE CE DE之间的数量关系【拓展迁移】(3)如图3当点E在正方形ABCD外部时AE⊥EC AE⊥AF DE⊥BE且D F E三点共线DE与AB交于G点.若DF=3AE=√2求CE的长.x2+bx+c与坐标轴交于A(0,−2)B(4,0) 25.(本题满分12分)如图在平面直角坐标系中抛物线y=12两点直线BC:y=−2x+8交y轴于点C.点D为直线AB下方抛物线上一动点过点D作x轴的垂线垂足为G DG分别交直线BC AB于点E F.x2+bx+c的表达式(1)求抛物线y=12(2)当GF=1时连接BD求△BDF的面积2(3)①H是y轴上一点当四边形BEHF是矩形时求点H的坐标②在①的条件下第一象限有一动点P满足PH=PC+2求△PHB周长的最小值.(第25题图)参考答案与解析1.【答案】C【解析】解:A.√12=√22不是有理数不合题意B.√13=√33不是有理数不合题意C.√14=12是有理数符合题意D.√15=√55不是有理数不合题意故选:C.2.【答案】B【解析】解:a3a2不是同类项因此不能用加法进行合并故A项不符合题意根据同底数幂的除法运算法则a3÷a2=a故B项符合题意根据单项式乘单项式的运算法则可得3a3⋅2a2=6a5故C项不符合题意根据完全平方公式展开(a−2)2=a2−4a+4故D项不符合题意.故选:B.3.【答案】C【解析】解:∵∠BFC=130°∴∠BFA=50°又∵AB//CD∴∠A+∠C=180°∵∠B+∠A+∠BFA+∠D+∠C+∠CED=360°∴∠B+∠D=60°故选:C.4.【答案】B【解析】解:根据计算器功能键正确的顺序应该是B.故选:B.5.【答案】D【解析】解:由图象可得b>0c<0则bc<0故选项A正确∵该函数的对称轴为x=−12∴−b2a =−12化简得b=a故选项B正确∵该函数图象开口向上 该函数的对称轴为x =−12 ∴x ≥−12时 y 随x 的增大而增大当x 1>x 2≥−12时 y 1>y 2 故选项C 正确 ∵图象的对称轴为x =−12 且经过点(−2,0) ∴图象与x 轴另一个交点为(1,0)不等式ax 2+bx +c <0的解集是−2<x <1 故选项D 错误 故选:D .6.【答案】B【解析】解:设甲 乙的持钱数分别为x y 根据题意可得:{x +12y =5023x +y =50故选:B .7.【答案】D【解析】解:当⊙A 与直线l :y =512x 只有一个公共点时 直线l 与⊙A 相切 设切点为B 过点B 作BE ⊥OA 于点E 如图∵点B 在直线y =512x 上 ∴设B(m,512m) ∴OE =−m在Rt △OEB 中 tan∠AOB =BEOE =512. ∵直线l 与⊙A 相切 ∴AB ⊥BO .在Rt△OAB中tan∠AOB=ABOB =512.∵AB=5∴OB=12.∴OA=√AB2+OB2=√52+122=13.∴A(−13,0).同理在x轴的正半轴上存在点(13,0).故选:D.8.【答案】D【解析】解:∵反比例函数的图象在二四象限∴b<0A∵二次函数图象开口向上对称轴在y轴右侧交y轴的负半轴∴a>0b<0c<0∴一次函数图象应该过第一二四象限A错误B∵二次函数图象开口向下对称轴在y轴右侧∴a<0b>0∴与b<0矛盾B错误C∵二次函数图象开口向下对称轴在y轴右侧∴a<0b>0∴与b<0矛盾C错误D∵二次函数图象开口向上对称轴在y轴右侧交y轴的负半轴∴a>0b<0c<0∴一次函数图象应该过第一二四象限D正确.故选:D.9.【答案】A【解析】解:因为(m,n)是“相随数对”所以m2+n3=m+n2+3所以3m+2n6=m+n5即9m+4n=0所以3m+2[3m+(2n−1)]=3m+2[3m+2n−1]=3m+6m+4n−2=9m+4n−2=0−2=−2故选:A.10.【答案】D【解析】解:∵四边形ABCD是正方形∴AB=BC=CD=AD∠B=∠BCD=90°∵E F分别是AB BC的中点∴BE=12AB CF=12BC∴BE=CF在△CBE与△DCF中{BC=CD∠B=∠BCD BE=CF∴△CBE≌△DCF(SAS)∴∠ECB=∠CDF CE=DF故①正确∵∠BCE+∠ECD=90°∴∠ECD+∠CDF=90°∴∠CGD=90°∴CE⊥DF故②正确∴∠EGD=90°在Rt△CGD中取CD边的中点H连接AH交DG于K ∴HG=HD=12CD∴Rt△ADH≌Rt△AGH(HL)∴AG=AD∴∠AGD=∠ADG∵∠AGE+∠AGD=∠ADG+∠CDF=90°∴∠AGE=∠CDF故③正确故选:D .11.【答案】1×10−6【解析】【解答】解:3×102米/秒÷(3×108)米/秒=10−6故答案为1×10−6.12.【答案】a(x +1)2【解析】解:ax 2+2ax +a=a(x 2+2x +1)--(提取公因式)=a(x +1)2.--(完全平方公式)13.【答案】乙【解析】解:∵x 甲−=1042kg/亩 x 乙−=1042kg/亩 s 甲2=6.5s 乙2=1.2∴x 甲−=x 乙− S 甲2>S 乙2∴产量稳定 适合推广的品种为乙故答案为:乙.14.【答案】25 【解析】解:∵{x −3(x −2)≤4①2+2x3≥x −1②由①得:x ≥1由②得:x ≤5∴不等式组的解集为:1≤x ≤5∴整数解有:1 2 3 4 5∴它是偶数的概率是25.故答案为25.15.【答案】2√2【解析】解:过F 作FG ⊥BC 于G由作图知 CF 是∠ACB 的角平分线∵FH ⊥AC 于点H.FH =√2∴FG=FH=√2∵∠FGB=90°∠B=30°.∴BF=2FG=2√2故答案为:2√2.16.【答案】2π【解析】解:连接AC∵从一块直径为4dm的圆形铁皮上剪出一个圆心角为90°的扇形即∠ABC=90°∴AC为直径即AC=4dm AB=BC(扇形的半径相等)∵AB2+BC2=22∴AB=BC=2√2dm∴阴影部分的面积是90⋅π⋅(2√2)2360=2π(dm2).故答案为:2π.17.【答案】13n【解析】解:法1:过O作OM⊥AB交AB于点M交A1B1于点N如图所示:∵A1B1//AB∴ON⊥A1B1∵△OAB为斜边为1的等腰直角三角形∴OM=12AB=12又∵△OA1B1为等腰直角三角形∴ON=12A1B1=12MN∴ON:OM=1:3∴第1个正方形的边长A1C1=MN=23OM=23×12=13同理第2个正方形的边长A2C2=23ON=23×16=132则第n个正方形A n B n D n C n的边长13n法2:由题意得:∠A=∠B=45°∴AC1=A1C1=C1D1=B1D1=BD1AB=1∴C1D1=13AB=13同理可得:C2D2=13A1B1=132AB=132依此类推C n D n=13n.故答案为13n.18.【答案】2√10【解析】解:∵四边形ABCD是正方形∴A点与C点关于BD对称∴CM=AM∴MN+CM=MN+AM≥AN∴当A M N三点共线时MN+CM的值最小∵AD//CF∴∠DAE=∠F∵∠DAE+∠DEH=90°∵DG⊥AF∴∠CDG+∠DEH=90°∴∠DAE=∠CDG∴∠CDG=∠F∴△DCG∽△FCE∵S△DCGS△FCE =14∴CDCF =12∵正方形边长为3∴CF=6∵AD//CF∴ADCF =DECE=12∴DE=1CE=2在Rt△CEF中EF2=CE2+CF2∴EF=√22+62=2√10∵N是EF的中点∴EN=√10在Rt△ADE中EA2=AD2+DE2∴AE=√32+12=√10∴AN=2√10∴MN+MC的最小值为2√10故答案为:2√10.19.(1)【答案】解:(π−2021)0−3tan30°+|1−√3|+(12)−2=1−3×√33+√3−1+4=1−√3+√3−1+4=4.(2)【答案】解:原式=x−3(x−4)2⋅(x+4)(x−4)x−3−xx−4=x+4x−4−xx−4=4x−4.把x=√2+4代入原式=√2+4−4=2√2.20.【答案】40108°【解析】解:(1)德育处一共随机抽取的学生人数为:16÷40%=40(名)则在条形统计图中成绩“一般”的学生人数为:40−10−16−2=12(名)∴在扇形统计图中成绩“一般”的扇形圆心角的度数为:360°×1240=108°故答案为:40108°(2)把条形统计图补充完整如下:(3)1400×1040=350(名)即估计该校大约有350名学生在这次竞赛中成绩优秀(4)画树状图如图:共有12种等可能的结果恰好选中甲和乙的结果有2种∴恰好选中甲和乙的概率为212=16.21.【答案】解:(1)∵AB是⊙O的直径∴∠ACB=90°即∠ACE+∠BCE=90°∵AD=AC BE=BC∴∠ACE=∠D∠BCE=∠BEC又∵∠BEC=∠AED∴∠AED+∠D=90°∴∠DAE=90°即AD⊥AE∵OA是半径∴AD是⊙O的切线(2)由tan∠ACE=13=tan∠D可设AE=a则AD=3a=AC ∵OE=3∴OA=a+3AB=2a+6∴BE=a+3+3=a+6=BC在Rt△ABC中由勾股定理得AB2=BC2+AC2即(2a+6)2=(a+6)2+(3a)2解得a1=0(舍去)a2=2∴BC=a+6=8.22.【答案】解:(1)①由题意得生产并销售B型车床x台时生产并销售A型车床(14−x)台当x>4时每台B型车床可以获利[17−(x−4)]=(21−x)万元.故答案应为:14−x21−x②由题意得方程10(14−x)+70=[17−(x−4)]x解得x1=10x2=21(舍去)答:生产并销售B型车床10台(2)当0<x≤4时总利润W=10(14−x)+17x整理得W=7x+140∵7>0∴当x=4时总利润W最大为7×4+140=168(万元)当x>4时总利润W=10(14−x)+[17−(x−4)]x整理得W=−x2+11x+140∵−1<0=5.5时总利润W最大∴当x=−112×(−1)又由题意x只能取整数∴当x=5或x=6时∴当x=5时总利润W最大为−52+11×5+140=170(万元)又∵168<170∴当x=5或x=6时总利润W最大为170万元而14−5=914−6=8答:当生产并销售A B两种车床各为9台5台或8台6台时使获得的总利润W最大最大利润为170万元.23.【答案】解:过B作BM⊥水平地面于M BN⊥AC于N如图所示:则四边形AMBN是矩形∴AN=BM BN=MA∵斜坡AB=105米坡度i=1:2=BMAM∴设BM=x米则AM=2x米∴AB=√BM2+AM2=√x2+(2x)2=√5x=105∴x=21√5∴AN=BM=21√5(米)BN=AM=42√5(米)在Rt△BCN中∠CBN=α=45°∴△BCN是等腰直角三角形∴CN=BN=42√5(米)∴AC=AN+CN=21√5+42√5=63√5≈141.1(米)答:观光电梯AC的高度约为141.1米.24.【答案】(1)证明:如图1中∵四边形ABCD是正方形∴DA=DC∠A=∠ADC=∠DCB=∠DCF=90°∵DE⊥DF∴∠EDF=∠ADC=90°∴∠ADE=∠CDF在△DAE和△DCF中{∠ADE=∠CDF DA=DC∠A=∠DCF∴△DAE≌△DCF(ASA)∴AE=CF.(2)解:结论:EA+EC=√2DE.理由:如图2中连接AC交DE于点O过点D作DK⊥EC于点K DJ⊥EA交EA的延长线于点J.∵四边形ABCD是正方形△DEF是等腰直角三角形∴∠DAO=∠OEC=45°∵∠AOD=∠EOC∴△AOD∽△EOC∴AOEO =ODOC∴AOOD =OEOC∵∠AOE=∠DOC∴△AOE∽△DOC∴∠AEO=∠DCO=45°∴∠DEJ=∠DEK∵∠J=∠DKE=90°ED=ED∴△EDJ≌△EDK(AAS)∴EJ=EK DJ=DK∵∠J=∠DKC=90°DJ=DK DA=DC∴Rt△DJA≌Rt△DKC(HL)∴AJ=CK∴EA+EC=EJ−AJ+EK+CK=2EJ∵DE=√2EJ∴EA+EC=√2DE.(3)解:如图3中连接AC取AC的中点O连接OE OD.∵四边形ABCD是正方形AE⊥EC∴∠AEC=∠ADC=90°∵OA=OC∴OD=OA=OC=OE∴A E C D四点共圆∴∠AED=∠ACD=45°∴∠AEC=∠DEC=45°由(2)可知AE+EC=√2DE∵AE⊥AF∴∠EAF=90°∴∠AEF=∠AFE=45°∴AE=AF=√2∴EF=√2AE=2∵DF=3∴DE=5∴√2+EC=5√2∴EC=4√2.25.【答案】解:(1)∵抛物线y=12x2+bx+c过A(0,−2)B(4,0)两点∴{c=−28+4b+c=0解得{b=−32 c=−2∴y=12x2−32x−2.(2)∵B(4,0)A(0,−2)∴OB=4OA=2∵GF⊥x轴OA⊥x轴在Rt△BOA和Rt△BGF中tan∠ABO=OAOB =GFGB即24=12GB∴GB=1∴OG=OB−GB=4−1=3当x=3时y D=12×9−32×3−2=−2∴D(3,−2)即GD=2∴FD=GD−GF=2−12=32∴S△BDF=12⋅DF⋅BG=12×32×1=34.(3)①如图1中过点H作HM⊥EF于M ∵四边形BEHF是矩形∴EH//BF EH=BF∴∠HEF=∠BFE∵∠EMH=∠FGB=90°∴△EMH≌△FGB(AAS)∴MH=GB EM=FG∵HM=OGOB=2∴OG=GB=12∵A(0,−2)B(4,0)x−2∴直线AB的解析式为y=12a−2)设E(a,−2a+8)F(a,12由MH=BG得到a−0=4−a∴a=2∴E(2,4)F(2,−1)∴FG=1∵EM=FG∴4−y H=1∴y H=3∴H(0,3).②如图2中BH=√OH2+OB2=√32+42=5∵PH=PC+2∴△PHB的周长=PH+PB+HB=PC+2+PB+5=PC+PB+7要使得△PHB的周长最小只要PC+PB的值最小∵PC+PB≥BC∴当点P在BC上时PC+PB=BC的值最小∵BC=√OC2+OB2=√82+42=4√5∴△PHB的周长的最小值为4√5+7.第21页共21页。
2016年中考数学模拟试题汇编专题14:统计(含答案)
统计一、选择题1.(2016·浙江金华东区·4月诊断检测为了解学校九年级学生某次知识问卷的得分情况,小红随机调查了50名九年级同学,结果如下表:则这50名同学问卷得分的众数是()A.15B.16 C.80 D.72.5答案:C2、(2016·浙江丽水·模拟)如图,是丽水PM2.5来源统计图,则根据统计图得出的下列判断中,正确的是()(第2题图)A.汽车尾气约为建筑扬尘的3倍 B.表示建筑扬尘的占7%C.表示煤炭燃烧的圆心角约126° D.煤炭燃烧的影响最大答案:C3.(2016·郑州·二模)马老师想知道学生每天上学路上要花多少时间,于是让大家将每天来校的单程时间写在纸上用于统计,下面是全班45名学生单程所花时间(单位:分)与对应人数(单位:人)的统计表,则关于这45名学生单程所花时间的数据的中位数是8A.15 B.20 C.25 D.30答案:B4、(2016泰安一模)某地统计部门公布最近5年国民消费指数增长率分别为:8.5%、9.2%、9.9%、10.2%、9.8%,业内人士评论说:“这五年消费指数增长率之间相当平稳”,从统计角度看,“增长率之间相当平稳”说明这组数据()比较小.A.方差 B.平均数C.众数 D.中位数【考点】方差.【专题】应用题.【分析】根据方差的意义:是反映一组数据波动大小,稳定程度的量;方差越大,表明这组数据偏离平均数越大,即波动越大,反之也成立.故从统计角度看,“增长率相当平稳”说明这组数据方差比较小.【解答】解:根据方差的意义知,数据越稳定,说明方差越小.故选:A.5、(2016泰安一模)某市广播电视局欲招聘播音员一名,对A、B两名候选人进行了两项素质测试,两人的两项测试成绩如表所示.根据实际需要,广播电视局将面试、综合知识测试的得分按3:2的比例计算两人的总成绩,那么B(填A或B)将被录用.【考点】加权平均数.【专题】压轴题.【分析】将面试、综合知识测试的得分按3:2的比例计算两人的总成绩,所以利用加权平均数的公式即可分别求出A、B的成绩,进而求出答案.【解答】解:A的成绩=(90×3+85×2)÷5=88(分),B的成绩=(95×3+80×2)÷5=89(分).因此B将被录用.故填B.6、(2016枣庄41中一模)在九年级体育中考中,某班参加仰卧起坐测试的一组女生:46,44,45,42,48,46,47,45.则这组数据的极差为()A.2 B.4 C.6 D.8【考点】极差.【分析】根据极差的定义,找出这组数据的最大值和最小值,再求出最大值与最小值的差即可.【解答】解:∵46,44,45,42,48,46,47,45中,最大的数是48,最小的数是42,∴这组数据的极差为48﹣42=6,故选:C.7、(2016枣庄41中一模)某同学对甲、乙、丙、丁四个市场二月份每天的白菜价格进行调查,计算后发现这个月四个市场的价格平均值相同、方差分别为S甲2=8.5,S乙2=2.5,S丙2=10.1,S丁2=7.4,二月份白菜价格最稳定的市场是乙.【考点】方差.【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【解答】解:∵S甲2=8.5,S乙2=2.5,S丙2=10.1,S丁2=7.4,∴S乙2<S丁2<S甲2<S丙2,∴二月份白菜价格最稳定的市场是乙;故答案为:乙.8.(2016·天津市和平区·一模)某中学九年级1班全体同学的综合素质评价“运动与健康”方面的等级统计如图所示,其中评价为“A”所在扇形的圆心角是()A.120°B.108°C.90°D.30°【考点】扇形统计图.【分析】首先计算出A部分所占百分比,再利用360°乘以百分比可得答案.【解答】解:A所占百分比:100%﹣15%﹣20%﹣35%=30%,圆心角:360°×30%=108°,故选B.【点评】此题主要考查了扇形统计图,关键是掌握圆心角度数=360°×所占百分比.9.(2016·重庆巴南·一模)某校九年级五班有7个合作学习小组,各学习小组的人数分别为:5,6,6,x,7,8,9,已知这组数据的平均数是7,则这组数据的中位数是()A.7 B.6 C.9 D.8【分析】可先根据平均数的公式求出x=8,再将这组数按从小到大的顺序排列,最后求出中位数是7(这组数据的个数为奇数个,故最中间的数字就是中位数).【解答】解:∵5,6,6,x,7,8,9这组数据的平均数是7,∴(5+6+6+x+7+8+9)÷7=7,解得:x=8,∴这组数按从小到大的顺序排列为:5,6,6,7,8,8,9,最中间的是:7,∴中位数是7,故选A.10.(2016·重庆巴蜀·一模)某校九年级(1)班全体学生2015年初中毕业体育考试的成绩统计如下表:根据上表中的信息判断,下列结论中错误的是()A.该班一共有40名同学B.该班学生这次考试成绩的众数是45分C.该班学生这次考试成绩的中位数是45分D.该班学生这次考试成绩的平均数是45分【分析】结合表格根据众数、平均数、中位数的概念求解.【解答】解:该班人数为:2+5+6+6+8+7+6=40,得45分的人数最多,众数为45,第20和21名同学的成绩的平均值为中位数,中位数为: =45,平均数为: =44.425.故错误的为D.故选D.11.(2016·山西大同·一模)某公司欲招聘一名公关人员,对甲、乙、丙、丁四位候选人进行了面试和笔试,他们的成绩如下()如果公司认为,作为公关人员面试的成绩应该比笔试成绩更重要,并分别赋予它们6和4的权.根据四人各自的平均成绩,公司将录取()A.甲B.乙C.丙D.丁答案:B12.(2016·新疆乌鲁木齐九十八中·一模)为了解某班学生每天使用零花钱的使用情况,张华随机调查了15名同学,结果如下表:关于这15名同学每天使用的零花钱,下列说法正确的是()A.众数是5元B.平均数是2.5元C.极差是4元D.中位数是3元【考点】极差;加权平均数;中位数;众数.【专题】计算题.【分析】分别计算该组数据的众数、平均数、极差及中位数后找到正确答案即可.【解答】解:∵每天使用3元零花钱的有5人,∴众数为3元;==≈2.93,∵最多的为5元,最少的为0元,∴极差为:5﹣0=5;∵一共有15人,∴中位数为第8人所花钱数,∴中位数为3元.故选:D.【点评】本题考查了极差、加权平均数、中位数及众数,在解决此类题目的时候一定要细心,特别是求中位数的时候,首先排序,然后确定数据总个数.13.(2016·云南省·一模)九年级某班40位同学的年龄如下表所示:则该班40名同学年龄的众数和平均数分别是()A.19,15 B.15,14.5 C.19,14.5 D.15,15【考点】众数;加权平均数.【分析】首先根据众数的定义确定该组数据的众数,然后利用加权平均数的计算公式求得平均数即可.【解答】解:∵年龄为15岁的有19人,最多,∴众数为15岁;平均数为:=14.5岁,故选B.【点评】本题考查了众数的定义及平均数的求法,解题的关键是熟记加权平均数的计算公式,难度不大.14.(2016·云南省·二模)2015年4月某日我市区县的可吸入颗粒物数值统计如下表:该日这一时刻的可吸入颗粒物数值的众数和中位数分别是()A.0.15和0.14 B.0.18和0.15 C.0.18和0.14 D.0.15和0.15【考点】众数;中位数.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:在这一组数据中0.15是次数最多的,故众数是0.15;处于这组数据中间位置的数是0.15、0.15,那么由中位数的定义可知,这组数据的中位数是0.15. 故选D【点评】本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.15. (2016·广东·一模)今年,我省启动了“关爱留守儿童工程”.某村小为了了解各年级留守儿童的数量,对一到六年级留守儿童数量进行了统计,得到每个年级的留守儿童人数分别为20 18 17 10 15 10,,,,,.对于这组数据,下列说法错误..的是( ) A .平均数是15 B .众数是10 C .中位数是17D .方差是344答案:C16. (2016·广东东莞·联考)某青年排球队12名队员的年龄情况如表:则这个队队员年龄的众数和中位数是( ) A .19,20B .19,19C .19,20.5D .20,19【考点】众数;中位数.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不只一个. 【解答】解:数据19出现了四次最多为众数;20和20处在第6位和第7位,其平均数是20,所以中位数是20.所以本题这组数据的中位数是20,众数是19. 故选:A .【点评】本题属于基础题,考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.17. (2016·河北石家庄·一模)下列说法正确的是( ) A .掷一枚均匀的骰子,骰子停止转动后,6点朝上是必然事件B .甲、乙两人在相同条件下各射击10次,他们的成绩平均数相同,方差是S 2甲=0.4C .“明天降雨的概率为”,表示明天有半天都在降雨D .了解一批电视机的使用寿命,适合用普查的方式【考点】方差;全面调查与抽样调查;随机事件;概率的意义.【分析】利用事件的分类、普查和抽样调查的特点以及方差的性质即可作出判断. 【解答】解:A .掷一枚均匀的骰子,骰子停止转动后6点朝上是随机事件,故本项错误; B .甲、乙两人在相同条件下各射击10次,他们的成绩平均数相同,方差是S 2甲=0.4,故本项正确;C .“明天降雨的概率为”,表示明天可能降雨,故本项错误;D .了解一批电视机的使用寿命,具有破坏性,适合用抽样调查的方式,故本项错误. 故选:B【点评】本题考查了事件的分类、普查和抽样调查的特点以及方差的性质.本题解决的关键是理解必然事件和随机事件的概念;用到的知识点为:具有破坏性的事要采用抽样调查;反映数据波动情况的量有极差、方差和标准差等.18.(2016·黑龙江大庆·一模)下列说法正确的是( )①了解某市学生的视力情况需要采用普查的方式;②甲、乙两个样本中,20.5s =甲,20.3s =乙,则甲的波动比乙大;③50个人中可能有两个人生日相同,但可能性较小;④连续抛掷两枚质地均匀的硬币,会出现“两枚正面朝上”,“两枚反面朝上”,“一枚正面朝上,一枚反面朝上”三个事件.A .①②B .②③C .②④D .③④ 答案:C19.(2016·黑龙江齐齐哈尔·一模)一组数据3、4、x 、1、4、3有唯一的众数3,则这组数据的中位数是 ( )A .3B .3.5C .4D .4.5 答案:A20.(2016·河南洛阳·一模)在一次中学生田径运动会上,参加跳高的15名运动员的成绩如下表所示:【 】那么这些运动员跳高成绩的众数和中位数分别是【】A.3. 2.5 B.1.65. 1.65 C.1.65, 1.70 D.1.65, 1.75答案:C21. (2016·辽宁丹东七中·一模)一组数据-4,-2,0,2,4的方差是A.1 B.2 C.4 D.8答案:D22.(2016·湖南省岳阳市十二校联考·一模)一组数据3,3,4,2,8的中位数和平均数分别是()A.3和3 B.3和4 C.4和3 D.4和4【考点】中位数;算术平均数.【分析】根据中位数及平均数的定义求解即可.【解答】解:将数据从小到大排列为:2,3,3,4,8,则中位数是3,平均数==4.故选:B.【点评】本题考查了平均数及中位数的知识,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.23.(2016·湖南湘潭·一模)某工厂对一个生产小组的零件进行抽样调查,在10天中,这个生产小组每天出的次品数如下(单位:个) 2,0,1,1,3,2,1,1,0,1.那么,在这10天中,这个生产小组每天出的次品数的A.平均数是1.5B.众数是3C. 中位数是1D.方差是1.65答案:C24.(2016·江苏省南京市钟爱中学·九年级下学期期初考试)某小组5名同学在一周内参加家务劳动的时间如下表所示,关于),平均数是3.75C.中位数是4,平均数是3.8 D.众数是2,平均数是3.8答案:C25.(2016·河南三门峡·一模)为了解居民用水情况,在某小区随机抽查了15户家庭的则这15A.9、6 B.6、6 C.5、6 D.5、5答案:C26.(2016·河南三门峡·二模)2016年5月份,某市一周空气质量报告中某项污染指数的数据是:31,35,31,33,30,33,31.則下列关于这列数据表述正确的是()A.众数是30 B.中位教是31 C.平均数是33 D.极差是35答案:B27.(2016·上海闵行区·二模)一鞋店销售一种新鞋,试销期间卖出情况如下表,对于鞋店经理来说最关心哪种尺码的鞋畅销,那么下列统计量对该经理来说最有意义的是()A.平均数B.中位数C.众数 D.方差【考点】统计量的选择.【分析】鞋店的经理最关心的是各种鞋号的鞋的销售量,特别是销售量最大的鞋号.【解答】解:由于众数是数据中出现最多的数,鞋店的经理最关心的是各种鞋号的鞋的销售量,特别是销售量最多的鞋号.故鞋店的经理最关心的是众数.故选:C.【点评】本题考查学生对统计量的意义的理解与运用.要求学生对统计量进行合理的选择和恰当的运用.28.(2016·上海浦东·模拟)下图是上海今年春节七天最高气温(℃)的统计结果:这七天最高气温的众数和中位数是( C )(A)15,17;(B)14,17;(C)17,14;(D)17,15.二、填空题1. (2016·浙江镇江·模拟)一组数据:3,5,2,5,3,7,5,则这组数据的中位数是.答案:52.(2016·浙江杭州萧山区·模拟)数据2,2,2,5,6,8的中位数是 3.5;众数是2.【考点】众数;中位数.【分析】根据中位数以及众数的定义解答即可,解答时要特别注意先把数据排序.【解答】解:数据2,2,2,5,6,8的中位数是 3.5;因为2出现的次数最多,所以此数据的众数是2.故答案为:3.5,2.【点评】本题考查了众数与中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.3、(2016 苏州二模)苏州市青少年活动中心组织一次少年跳绳比赛,各年龄组的参赛人数如下表所示:则全体参赛选手年龄的中位数是岁.答案:154、(2016·天津五区县·一模)实验中学规定学生学期的数学成绩满分为120分,其中平时成绩占20%,期中考试成绩占30%,期末考试成绩占50%,王玲的三项成绩依次是100分,90分,106分,那么王玲这学期的数学成绩为100分.【考点】加权平均数.【分析】利用加权平均数公式即可求解.【解答】解:该生这学期的数学成绩是:,故答案为:100.【点评】本题考查的是样本平均数的求法.熟记公式是解决本题的关键.5.(2016·四川峨眉·二模)某车间6名工人日加工零件数(单位:个)分别为7,10,4,5,8,4则这组数据的中位数是.答案:66、(2016青岛一模)小明进行射击训练,5次成绩分别为3环、4环、6环、8环,9环,则这5次成绩的方差为5.【考点】方差.【分析】根据平均数和方差公式计算即可.【解答】解:五次成绩的平均数为(3+4+6+8+9)=6,方差= [(3﹣6)2+(4﹣6)2+(6﹣6)2+(8﹣6)2+(9﹣6)2]=5.故答案为:5;7.(2016·辽宁丹东七中·一模)一组数据2,3,5,x,6的唯一众数是x,中位数也是x,则x=答案:58.(2016·湖南省岳阳市十二校联考·一模)质检部门对甲、乙两工厂生产的同样产品抽样调查,计算出甲厂的样本方差为0.99,乙厂的样本方差为1.02,那么,由此可以推断出生产此类产品,质量比较稳定的是甲厂(填写“甲”或者“乙”).【考点】方差.【分析】根据方差的定义判断,方差越小数据越稳定.【解答】解:因为S甲2=0.99<S乙2=1.02,方差小的为甲,所以本题中质量比较稳定的是甲.故填甲.【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.9.(2016·湖南湘潭·一模)两组数据:3,a,2b, 5与a,6 ,b的平均数都是6,若将这两组数据合并为一组数据,则这组新数据的中位数为 .答案:610.(2016·江苏常熟·一模)如图是某城市近十年雾霾日统计图,则这城市近十年雾霾日的中位数是159.5天.【考点】中位数;折线统计图.【分析】先把这组数据按照从小到大的顺序排列,然后求出中位数.【解答】解:这组数据按照从小到大的顺序排列为:129,157,158,159,159,160,165,169,176,239,则中位数为:=159.5.故答案为:159.5.【点评】本题考查了中位数的知识,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.11.(2016·江苏丹阳市丹北片·一模)小华5次射击的成绩如下:(单位:环)5,9,7,10,9.其方差为3.2,如果他再射击1次,命中8环,那么他的射击成绩的方差.(填“变大”、“变小”或“不变”).答案:变小;12.(2016·江苏省南京市钟爱中学·九年级下学期期初考试)若一组数据1,2,x,4的众数是1,则这组数据的方差为.答案: 1.5.13.(2016·上海市闸北区·中考数学质量检测4月卷)某中学九(1)班5个同学在体育测试“1分钟跳绳”项目中,跳绳个数如下:126,134,118,152,148.这组数据中,中位数是▲.答案:134;14. (2016·上海浦东·模拟)在开展“国学诵读”活动中,某校为了解全校1200名学生课外阅读的情况,随机调查了50名学生一周的课外阅读时间,并绘制成如图所示的条形统计图.根据图中数据,估计该校1200名学生一周的课外阅读时间不少于6小时的人数是720 .15.(2016·上海闵行区·二模)9月22日世界无车日,某校开展了“倡导绿色出行”为主题的调查,随机抽查了部分师生,将收集的数据绘制成下列不完整的两种统计图.已知随机抽查的教师人数为学生人数的一半,根据图中信息,乘私家车出行的教师人数是15.【考点】条形统计图;扇形统计图.【分析】根据骑自行车的学生人数和所占的百分比求出调查的总学生数,再根据随机抽查的教师人数为学生人数的一半,得出教师人数,再用教师人数减去步行、乘公交车和骑自行车的教师数,即可得出乘私家车出行的教师人数.【解答】解:调查的学生人数是:15÷25%=60(人),则教师人数为30人,教师乘私家车出行的人数为30﹣(3+9+3)=15(人).故答案为:15.【点评】此题考查了条形统计图和扇形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.三、解答题1.(2016·浙江杭州萧山区·模拟)如图,是杭州市2016年2月份的空气质量指数的AQI 折线统计图,空气质量指数AQI的值在不同的区间,就代表了不同的空气质量水平(如在0﹣50之间,代表“优”;51﹣100之间,代表“良”;101﹣150之间,代表“轻度污染”等.)以下是关于杭州市2016年2月份空气质量天数情况统计图.(1)根据三个图表中的信息,请补全条形统计图和扇形统计图中缺失的数据.(扇形统计图中的数据精确到1%)(2)求出图3中表示轻度污染的扇形圆心角的度数.(结果精确到度)(3)在杭州,有一种“蓝”叫“西湖蓝”.现在的一年中,我们至少有超过一半以上的时间能看见“西湖蓝”.请估算2016年一年杭州的空气质量为优良的天数.(一年按365计,精确到天)【考点】折线统计图;用样本估计总体;扇形统计图;条形统计图.【分析】(1)根据图1中的数据整理出四个等级的数目,补全图2,将图2中中度、轻度污染天数分别除以总天数得百分率,补全图3;(2)轻度污染的扇形圆心角的度数=轻度污染百分率×360°;(3)一年的空气质量为优良的天数=365×优良天数占抽查总天数得比例.【解答】解:(1)补全统计图如下:(2)轻度污染的扇形圆心角的度数为:31%×360°≈112°;(3)2016年一年杭州的空气质量为优良的天数为:×365≈239(天).【点评】此题主要考查了条形统计图和扇形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.2. (2016·浙江丽水·模拟)(本题8分)来自某综合商场财务部的报告表明,商场1﹣5月份的销售总额一共是370万元,图1、图2反映的是商场今年1﹣5月份的商品销售额统计情况.(1)、该商场三月份销售总额是___________.(2) 试求四月份的销售总额,并求服装部四月份销售额占1—5月份销售总额的百分比(结果百分比中保留两位小数).(3)有人认为 5月份服装部月销售额比4月份减少了,你认为正确吗?请说明理由. 解:(1)85.(2)370-90-85-60-70=65 %57.1737065= (3)不正确,理由:四月份: 4.1016.065=⨯(万元).五月份:5.1015.070=⨯(万元)>10.4(万元)3.(2016·浙江镇江·模拟)(本小题满分6分)图(1)表示的是某综合商场今年1~5月的商品各月销售总额的情况,图(2)表示的是商场服装部各月销售额占商场当月销售总额的百分比情况,来自商场财务部的数据报告表明,商场1~5月的商品销售总额一共是405万元,观察图(1)、图(2),解答下列问题:(1)将图(1)中的统计图补充完整;(2)商场服装部5月份的销售额是多少万元?(3)小明观察图(2)后认为,5月份商场服装部的销售额比4月份减少了.你同意他的看法吗?请说明理由.(1)如图:(2)商场服装部5月份的销售额是12.8万元;(3)不同意.因为70×17%=11.9,12.8>11.9,故5月份商场服装部的销售额比4月份增加了.4、(2016 苏州二模)为增强学生环保意识,某中学组织全校2 000名学生参加环保知识大赛,比赛成绩均为整数.从中抽取部分同学的成绩进行统计,并绘制成如下统计图.请根据图中提供的信息,解答下列问题:(1)若抽取的成绩用扇形图来描述,则表示“第三组(79. 5~89. 5 )”的扇形的圆心角为°;(2)若成绩在90分以上(含90分)的同学可以获奖,请估计该校约有多少名同学获奖;(3)某班准备从成绩最好的4名同学(男、女各2名)中随机选取2名同学去社区进行环保宣传.则选出的同学恰好是1男1女的概率为.答案:解: (1) 144 ;(2) 640名同学获奖;(3)2 35.(2016·天津北辰区·一摸)(本小题8分)为了解某校九年级学生的理化实验操作情况,随机抽查了40名同学实验操作的得分. 根据获取的样本数据,制作了如下的条形统计图和扇形统计图. 请根据相关信息,解答下列问题:(Ⅰ)扇形①的圆心角的大小是_________;(Ⅱ)求这40个样本数据的平均数、众数、中位数;(Ⅲ)若该校九年级共有320名学生,估计该校理化实验操作得满分(10分)有多少人. 解:(Ⅰ)36︒;(Ⅱ)∵64768119121078.340x⨯+⨯+⨯+⨯+⨯==,∴平均数是8.3;∵9出现了12次,次数最多,∴众数是9;∵将40个数字按从小到大排列,中间的两个数都是8,∴中位数是8882+=;(Ⅲ)∵73205640⨯=,∴满分约有56人.6.(2016·天津市和平区·一模)八年2班组织了一次经典诵读比赛,甲、乙两组各10人的比赛成绩如下表(10 分制):(I)甲组数据的中位数是9.5,乙组数据的众数是10;(Ⅱ)计算乙组数据的平均数和方差;(Ⅲ)已知甲组数据的方差是1.4分2,则成绩较为整齐的是乙组.【考点】方差;中位数;众数.【分析】(1)根据中位数的定义求出最中间两个数的平均数;根据众数的定义找出出现次数最多的数即可;(2)先求出乙组的平均成绩,再根据方差公式进行计算;(3)先比较出甲组和乙组的方差,再根据方差的意义即可得出答案.【解答】解:(1)把甲组的成绩从小到大排列为:7,7,8,9,9,10,10,10,10,10,最中间两个数的平均数是(9+10)÷2=9.5(分),则中位数是9.5分;乙组成绩中10出现了4次,出现的次数最多,则乙组成绩的众数是10分;故答案为:9.5,10;(2)乙组的平均成绩是:(10×4+8×2+7+9×3)=9,则方差是:[4×(10﹣9)2+2×(8﹣9)2+(7﹣9)2+3×(9﹣9)2]=1;(3)∵甲组成绩的方差是1.4,乙组成绩的方差是1,∴成绩较为整齐的是乙组.故答案为乙组.【点评】本题考查方差、中位数和众数:中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);一组数据中出现次数最多的数据叫做众数;一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣它反映了一组数据的波动大小)2],,方差越大,波动性越大,反之也成立.7.(2016·天津市南开区·一模)随着人民生活水平不断提高,我市“初中生带手机”现象也越来越多,为了了解家长对此现象的态度,某校数学课外活动小组随机调查了若干名学生家长,并将调查结果进行统计,得出如下所示的条形统计图和扇形统计图.问:(1)这次调查的学生家长总人数为200.(2)请补全条形统计图,并求出持“很赞同”态度的学生家长占被调查总人数的百分比.(3)求扇形统计图中表示学生家长持“无所谓”态度的扇形圆心角的度数.【考点】条形统计图;扇形统计图.【分析】(1)利用持反对态度的人数和所占百分比进而求出总人数;(2)利用(1)中所求得出持很赞同态度的人数没进而求出所占百分比;(3)利用(1)中所求得出学生家长持“无所谓”态度的扇形圆心角的度数.【解答】解:(1)这次调查的家长总人数为:60÷30%=200(人);故答案为:200;(2)如图所示:。
2016年中考数学模拟试题汇编专题16:概率(含答案)
概率一.选择题1.(2016·新疆乌鲁木齐九十八中·一模)某校决定从三名男生和两名女生中选出两名同学担任校艺术节文艺演出专场的主持人,则选出的恰为一男一女的概率是()A.B.C.D.【考点】列表法与树状图法.【分析】列举出所有情况,看恰为一男一女的情况占总情况的多少即可.【解答】解:男1男2男3女1女2男1一一√√男2一一√√男3一一√√女1√√√一女2√√√一∴共有20种等可能的结果,P(一男一女)=.故选B.【点评】如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.2、(2016苏州二模)在数轴上表示5的两点以及它们之间的所有整数点中,任意取一点P则点P表示的数大于3的概率是( )A. 14B.29C.15D.211答案:D3、(2016青岛一模)为了估计水塘中的鱼数,养鱼者首先从鱼塘中捕获20条鱼,在每条鱼身上做好记号后,把这些鱼放归鱼塘.再从鱼塘中打捞100条鱼,如果在这100条鱼中有5条鱼是有记号的,则估计该鱼塘中的鱼数约为()A.300条B.380条C.400条D.420条【考点】用样本估计总体.【分析】首先求出有记号的5条鱼在100条鱼中所占的比例,然后根据用样本中有记号的鱼所占的比例等于鱼塘中有记号的鱼所占的比例,即可求得鱼的总条数.【解答】解:∵×100%=5%,∴20÷5%=400(条).故选C4、(2016泰安一模)某中学为迎接建党九十周年,举行了“童心向党,从我做起”为主题的演讲比赛.经预赛,七、八年级各有一名同学进入决赛,九年级有两名同学进入决赛.那么九年級同学获得前两名的概率是()A.B.C.D.【考点】列表法与树状图法.【分析】依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式即可求出该事件的概率.【解答】解:画树状图得:∴一共有12种等可能的结果,九年級同学获得前两名的有2种情况,∴九年級同学获得前两名的概率是=.故选D.5.(2016·天津北辰区·一摸)甲、乙两个不透明的布袋,甲袋中装有3个完全相同的小球,分别标有数字0,,2;乙袋中装有3个完全相同的小球,分别标有数字2-,1-,0;从甲袋中随机抽取一个小球,再从乙袋中随机抽取一个小球,两球数字之和为的概率是().(A)19(B)29(C)16(D)13答案:B6.(2016·天津五区县·一模)一次掷两枚质地均匀的硬币,出现两枚硬币都正面朝上的概率是( )A .B .C .D .(本题原题如此) 【考点】列表法与树状图法.【分析】先列举出同时掷两枚质地均匀的硬币一次所有四种等可能的结果,然后根据概率的概念即可得到两枚硬币都是正面朝上的概率.【解答】解:同时掷两枚质地均匀的硬币一次, 共有正正、反反、正反、反正四种等可能的结果, 两枚硬币都是正面朝上的占一种, 所以两枚硬币都是正面朝上的概率=. 故选D .【点评】本题考查了用列表法与树状图法求概率的方法:先利用列表法与树状图法表示所有等可能的结果n ,然后找出某事件出现的结果数m ,最后计算P=.7.(2016·浙江镇江·模拟)已知实数0<a ,则下列事件中是必然事件的是( ▲ ) A .03<+a B .03<-a C .03>a D .03>a 答案:B8.(2016·四川峨眉 ·二模) 下列事件中不是..必然事件的是 )(A 对顶角相等 )(B 同位角相等)(C 三角形的内角和等于180° )(D 等边三角形是轴对称图形 答案:C9. (2016·广东东莞·联考)给甲乙丙三人打电话,若打电话的顺序是任意的,则第一个打电话给甲的概率为( ) A . B . C . D . 【考点】概率公式.【分析】根据题意,打电话的顺序是任意的,打电话给甲乙丙三人的概率都相等均为. 【解答】解:∵打电话的顺序是任意的,打电话给甲乙丙三人的概率都相等, ∴第一个打电话给甲的概率为. 故选:B .【点评】此题主要考查了概率公式,如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=.10. (2016·广东深圳·一模)下列说法正确的是( ) A .“明天降雨的概率是80%”表示明天有80%的时间都在降雨 B .“抛一枚硬币正面朝上的概率为”表示每抛2次就有一次正面朝上 C .“彩票中奖的概率为1%”表示买100张彩票肯定会中奖D .“抛一枚正方体骰子,朝上的点数为2的概率为”表示随着抛掷次数的增加,“抛出朝上的点数为2”这一事件发生的频率稳定在附近 【考点】概率的意义.【分析】概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生.【解答】解:A 、“明天下雨的概率为80%”指的是明天下雨的可能性是80%,错误; B 、这是一个随机事件,抛一枚硬币,出现正面朝上或者反面朝上都有可能,但事先无法预料,错误;C 、这是一个随机事件,买这种彩票,中奖或者不中奖都有可能,但事先无法预料,错误.D 、正确 故选D .【点评】正确理解概率的含义是解决本题的关键.11. (2016·广东河源·一模)不透明的袋子里装有2个红球和1个白球,这些球除了颜色外其他都相同.从中任意摸出一个,放回摇匀,再从中摸出一个,则两次摸到球的颜色相同的概率是( )A .94 B.95 C.21 D.32答案:B12. (2016·广东深圳·联考)如图,现分别旋转两个标准的转盘,则转盘所转到的两个数字之积为奇数的概率是A. B.C. D.答案:A13. (2016·江苏常熟·一模)下列说法中错误的是()A.某种彩票的中奖率为1%,买100张彩票一定有1张中奖B.从装有10个红球的袋子中,摸出1个白球是不可能事件C.为了解一批日光灯的使用寿命,可采用抽样调查的方式D.掷一枚普通的正六面体骰子,出现向上一面点数是2的概率是【考点】概率的意义;全面调查与抽样调查;随机事件;概率公式.【分析】根据概率的意义对A进行判断;根据随即事件和必然事件对B进行判断;根据全面调查和抽样调查对C进行判断;根据概率公式对D进行判断.【解答】解:A:某种彩票的中奖率为1%,是中奖的频率接近1%,所以买100张彩票可能中奖,也可能没中奖,所以A选项的说法错误;B、从装有10个红球的袋子中,摸出的应该都是红球,则摸出1个白球是不可能事件,所以B选项的说法正确;C、为了解一批日光灯的使用寿命,可采用抽样调查的方式,而不应采用普查的方式,所以C选项的说法正确;D、掷一枚普通的正六面体骰子,共有6种等可能的结果,则出现向上一面点数是2的概率是,所以D选项的说法正确.故选A.【点评】本题考查了概率的意义:概率是对随机事件发生的可能性的度量.表示一个事件发生的可能性大小的数,叫做该事件的概率.也考查了全面调查和抽样调查、随即事件以及概率公式.14. (2016·江苏省南京市钟爱中学·九年级下学期期初考试)某十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是黄灯的概率为()A. B. C. D.答案:A15. 、(2016·山东枣庄·模拟)从长度分别为1、3、5、7的四条线段中任选三条作边,能构成三角形的概率为()A. B. C. D.【考点】列表法与树状图法;三角形三边关系.【分析】从四条线段中任意选取三条,找出所有的可能,以及能构成三角形的情况数,即可求出所求的概率.【解答】解:从四条线段中任意选取三条,所有的可能有:1,3,5;1,3,7;1,5,7;3,5,7共4种,其中构成三角形的有3,5,7共1种,则P(构成三角形)=.故选C.【点评】此题考查了列表法与树状图法,以及三角形的三边关系,用到的知识点为:概率=所求情况数与总情况数之比.16.(2016·上海浦东·模拟)如果从1、2、3这三个数字中任意选取两个数字组成一个两位数,那么这个两位数是素数的概率等于( A )(A)12;(B)13;(C)14;(D)16.二.填空题1.(2016·郑州·二模)一个不透明的盒子里有4个除颜色外其他完全相同的小球,其中每个小球上分别标有1,-1,-2,-3四个不同的数字,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下数字后再放回盒子,那么两次摸出的小球上两个数字乘积是负数的概率为____.答案:3 82.(2016·天津市和平区·一模)在一个不透明的布袋中有2个白球和n个黄球,它们除颜色不同外,其余均相同,若从中随机摸出一个球,摸到黄球的概率是,则n= 8 .【考点】概率公式.【分析】根据黄球的概率公式可得方程=,解方程即可求解.【解答】解:不透明的布袋中的球除颜色不同外,其余均相同,共有n+4个球,其中黄球n个,根据古典型概率公式知:P(黄球)==,解得n=8.故答案为:8.【点评】此题主要考查了概率公式的应用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.3.(2016·天津市南开区·一模)一个口袋中有四个完全相同的小球,把它们分别标号为1、2、3、4,随机地摸出一个小球,然后放回,再随机地摸出一个小球,则两次摸出的小球标号的和等于4的概率是.【考点】列表法与树状图法.【专题】计算题.【分析】先画树状图展示所有16种等可能的结果数,其中两次摸出的小球标号的和等于4的占3种,然后根据概率的概念计算即可.【解答】解:如图,随机地摸出一个小球,然后放回,再随机地摸出一个小球,共有16种等可能的结果数,其中两次摸出的小球标号的和等于4的占3种,所有两次摸出的小球标号的和等于4的概率=.故答案为:.【点评】本题考查了列表法或树状图法:利用列表法或树状图法展示所有等可能的结果数n,再找出某事件所占有的结果数m,然后利用概率的概念求得这个事件的概率=.4.(2016·浙江镇江·模拟)如果从九年级(1)、(2)、(3)班中随机抽取一个班与九年级(4)班进行一场拔河比赛,那么恰好抽到九年级(1)班的概率是▲ .1答案:35、(2016·浙江丽水·模拟) “nice to meet you(很高兴见到你)”,在这段句子的所有英文字母中,字母e出现的概率是 .3答案:136.(2016·重庆巴蜀·一模)从﹣,﹣1,0,1这四个数中,任取一个数作为m的值,恰好使得关于x,y的二元一次方程组有整数解,且使以x为自变量的一次函数y=(m+1)x+3m﹣3的图象不经过第二象限,则取到满足条件的m值的概率为.【分析】首先由题意可求得满足条件的m值,然后直接利用概率公式求解即可求得答案.【解答】解:∵关于x,y的二元一次方程组有整数解,∴,∴m的值为:﹣1,0,1;∵一次函数y=(m+1)x+3m﹣3的图象不经过第二象限,∴,解得:﹣1<m≤1,∴m的值为:0,1;综上满足条件的m值为:0,1;∴取到满足条件的m值的概率为: =.故答案为:.7.(2016·重庆铜梁巴川·一模)从﹣3,﹣2,﹣1,0,1,2,3这七个数中随机抽取一个数记为a,则a的值是不等式组的解,但不是方程x2﹣3x+2=0的实数解的概率为.【分析】首先解不等式组,即可求得a的取值范围,解一元二次方程x2﹣3x+2=0,可求得a的值,然后直接利用概率公式求解即可求得答案.【解答】解:,由①得:x>﹣2,由②得:x>﹣,∵a的值是不等式组的解,∴a=0,1,2,3,∵x2﹣3x+2=0,∴(x﹣1)(x﹣2)=0,解得:x1=1,x2=2,∵a不是方程x2﹣3x+2=0的实数解,∴a=0或3;∴a的值是不等式组的解,但不是方程x2﹣3x+2=0的实数解的概率为:.故答案为:.8. (2016·河南洛阳·一模)袋中装有大小相同的2个红球和2个绿球,先从袋中摸出1个球后放回,混合均匀后再摸出1个球,则两次摸到的球中有1个绿球和1个红球的概率是 .1答案:29. (2016·江苏常熟·一模)一个口袋中装有2个红球、3个绿球、5个黄球,每个球除颜色外其它都相同,搅均匀后随机从中摸出一个球是绿球的概率是.【考点】概率公式.【专题】压轴题.【分析】首先算出求的总个数,再让绿球的个数除以球的总数即为所求的概率.【解答】解:球的总数为:2+3+5=10,∵绿球的球的个数为3,∴随机地从中摸出一个球是绿球的概率是.故答案为:.【点评】本题主要考查了概率公式:P(A)=,n表示该试验中所有可能出现的基本结果的总数目.m表示事件A可能出现结果数.10. (2016·江苏丹阳市丹北片·一模)在一个不透明的盒子中装有12个白球,若干个黄球,这些球除颜色外都相同.若从中随机摸出一个球是白球的概率是13,则黄球的个数为个.答案:24;11. (2016·江苏省南京市钟爱中学·九年级下学期期初考试)有5张卡片,上面分别画有:圆、正方形、等边三角形、正五边形、线段,将卡片画面朝下随意放在桌上,任取一张,那么取到卡片对应图形是中心对称图形的概率是.答案:12. (2016·上海市闸北区·中考数学质量检测4月卷)袋子里有4个黑球,m个白球,它们除颜色外都相同.经过大量实验,从中任取一个球恰好是黑球的概率是12,则m的值是▲ .答案:4;13. (2016·河南三门峡·一模)如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任选取一个白色的小正方形并涂黑,使图中黑色部分的图形仍然构成一个轴对称图形的概率是答案:51314. .(2016·上海闵行区·二模)布袋中有大小、质地完全相同的4个小球,每个小球上分别标有数字1、2、3、4,如果从布袋中随机抽取两个小球,那么这两个小球上的数字之和为偶数的概率是.【考点】列表法与树状图法.【分析】根据题意画出树状图,进而利用概率公式求出答案.【解答】解:由题意可得:,故一共有12种可能,这两个小球上的数字之和为偶数的有4种,故这两个小球上的数字之和为偶数的概率是: =.故答案为:.【点评】此题主要考查了树状图法求概率,正确列举出所有可能是解题关键.三.解答题1.(2016·云南省曲靖市罗平县·二模)有甲、一两个不透明的布袋,甲袋中有两个完全相同的小球,分别标有数字1和﹣2;乙袋中有三个完全相同的小球,分别标有数字﹣1、0和2.小丽从甲袋中随机取出一个小球,记下标有的数字为x,再从乙袋中随机取出一个小球,记录下小球上的数字为y,且设点P的坐标(x,y).(1)请用列表或树状图表示出点P可能出现的所有坐标;(2)求点P(x,y)在反比例函数y=图象上概率.【考点】列表法与树状图法;反比例函数图象上点的坐标特征.【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由(1)可求得点P(x,y)在反比例函数y=图象上的情况,然后直接利用概率公式求解即可求得答案.【解答】解:(1)画树状图得:则点P 可能出现的所有坐标:(1,﹣1),(1,0),(1,2),(﹣2,﹣1),(﹣2,0),(﹣2,2);(2)∵点P (x ,y )在反比例函数y=图象上的有(1,2),(﹣2,﹣1), ∴点P (x ,y )在反比例函数y=图象上的概率为:62 =31. 【点评】此题考查了列表法或树状图法求概率以及反比例函数图象上点的坐标特征.用到的知识点为:概率=所求情况数与总情况数之比.2.(2016·云南省·一模)某市“艺术节”期间,小明、小亮都想去观看茶艺表演,但是只有一张茶艺表演门票,他们决定采用抽卡片的办法确定谁去.规则如下:将正面分别标有数字1、2、3、4的四张卡片(除数字外其余都相同)洗匀后,背面朝上放置在桌面上,随机抽出一张记下数字后放回;重新洗匀后背面朝上放置在桌面上,再随机抽出一张记下数字.如果两个数字之和为奇数,则小明去;如果两个数字之和为偶数,则小亮去.(1)请用列表或画树状图的方法表示抽出的两张卡片上的数字之和的所有可能出现的结果;(2)你认为这个规则公平吗?请说明理由. 【考点】游戏公平性;列表法与树状图法. 【专题】应用题;创新题型.【分析】(1)用列表法将所有等可能的结果一一列举出来即可; (2)求得两人获胜的概率,若相等则公平,否则不公平. 【解答】解:(1)根据题意列表得:1 2 3 4 1 2 3 4 5 2 3 4 5 6 3456745678(2)由列表得:共16种情况,其中奇数有8种,偶数有8种,∴和为偶数和和为奇数的概率均为,∴这个游戏公平.【点评】本题考查了游戏公平性及列表与列树形图的知识,难度不大,是经常出现的一个知识点.3.(2016·云南省·二模)课间小明和小亮玩“剪刀、石头、布”游戏.游戏规则是:双方每次任意出“剪刀”、“石头”、“布”这三种手势中的一种,石头胜剪刀,剪刀胜布,布胜石头,若双方出现相同手势,则算打平.若小亮和小明两人只比赛一局.(4)请用树状图或列表法列出游戏的所有可能结果.(5)求出双方打平的概率.(6)游戏公平吗?如果不公平,你认为对谁有利?【考点】游戏公平性;列表法与树状图法.【分析】(4)采用树状图法或者列表法解答即可;(5)列举出所有情况,看所求的情况占总情况的多少即可.(6)求出概率比较公平性即可.【解答】解:(4)所有可能结果列表如下:石头剪刀布小明小亮石头(石头,石头)(石头,剪刀)(石头,布)剪刀(剪刀,石头)(剪刀,剪刀)(剪刀,布)布(布,石头)(布,剪刀)(布,布)总共有9中等可能结果.(5)双方打平的情况有3种,P(双方打平)=(6)游戏对双方公平小明胜的情况有3种,小亮胜的情况有3种P(小明胜)=P(小亮胜)=∵P(小明胜)=P(小亮胜)∴游戏对双方公平.【点评】此题考查游戏的公平性,列表法可以不重复不遗漏地列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.4、(2016青岛一模)有五张卡片,卡片上分别写有A、B、B、C、C,这些卡片除字母外完全相同,从中随机摸出一张,记下字母后放回,充分洗匀后,再从中摸出一张,请你利用树状图会列表的方法,求两次摸到卡片字母相同的概率;若从中随机摸出一张,记下字母后不放回,洗匀后再从中摸出一张,则两次摸到卡片字母相同的概率又是多少?【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸到卡片字母相同的情况,再利用概率公式即可求得答案;注意此实验室是放回实验;首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸到卡片字母相同的情况,再利用概率公式即可求得答案;注意此实验室是不放回实验.【解答】解:画树状图得:∵共有25种等可能的结果,两次摸到卡片字母相同的有9种等可能的结果,∴两次摸到卡片字母相同的概率为:;画树状图得:∵共有25种等可能的结果,两次摸到卡片字母相同的有4种等可能的结果,∴两次摸到卡片字母相同的概率为:.5、(2016枣庄41中一模)把2张形状、大小相同但画面不同的风景图片全部从中间剪断,然后将四张形状相同的小图片混合在一起.现从这四张图片中随机的一次抽出2张.(1)请用列表或画树状图的方法表示出上述实验所有可能结果.(2)求这2张图片恰好组成一张完整风景图概率.【考点】列表法与树状图法.【专题】计算题.【分析】(1)用A、a表示一张风景图片被剪成的两半,用B、b表示另一张风景图片被剪成的两半,然后利用树状图展示所有可能的结果数;(2)找出2张图片恰好组成一张完整风景图的结果数,然后根据概率公式求解.【解答】解:(1)用A、a表示一张风景图片被剪成的两半,用B、b表示另一张风景图片被剪成的两半,画树状图为:(2)共有12种等可能的结果数,其中2张图片恰好组成一张完整风景图的结果数为4,所以2张图片恰好组成一张完整风景图的概率==.6.(2016·天津南开区·二模)在一副扑克牌中,拿出红桃2,红桃3,红桃4,红桃5四张牌,洗匀后,小明从中随机摸出一张,记下牌面上的数字为x,然后放回并洗匀,再由小华随机摸出一张,记下牌面上的数字为y,组成一对数(x,y).(1)用列表法或树形图表示出(x,y)的所用可能出现的结果;(2)求小明、小华各摸一次扑克牌所确定的一对数是方程x+y=5的解的概率.考点:概率及计算答案:见解析试题解析:(1)出现的情况如下:一共有16种.(2)数对(2,3),(3,2)是方程x+y=5的解,所以P(和等于5)==.7.(2016·浙江金华东区·4月诊断检测)小明有一个呈等腰直角三角形的积木盒,现在积木盒中只剩下如图1所示的九个空格,图2是可供选择的A、B、C、D四块积木.(1)小明选择把积木A 和B 放入图-3,要求积木A 和B 的九个小圆恰好能分别与图18-3中的九个小圆重合,请在图18-3中画出他放入方式的示意图(温馨提醒:积木A 和B 的连接小圆的小线段还是要画上哦!);(2)现从A 、B 、C 、D 四块积木中任选两块,求恰好能全部不重叠放入的概率. 答案:(1)略(3分);(2)31(3分); 8.(2016·绍兴市浣纱初中等六校·5月联考模拟) 为进一步推广“阳光体育”大课间活动,某中学对已开设的A 实心球,B 立定跳远,C 跑步,D 跳绳四种活动项目的学生喜欢情况进行调查,随机抽取了部分学生,并将调查结果绘制成图1,图2的统计图,请结合图中的信息解答下列问题:(1)请计算本次调查中喜欢“跑步”的学生人数和所占百分比,并将两个统计图补充完整;(2)随机抽取了5名喜欢“跑步”的学生,其中有3名女生,2名男生,现从这5名学生中任意抽取2名学生,请用画树状图或列表的方法,求出刚好抽到同性别学生的概率.解:(1)根据题意得: 15÷10%=150(名),1-10%-20%-30%=40%,150×40%=60.……4分图-1C图-2图-3(3)用A 表示女生,B 表示男生,画图如下:共有20种情况,同性别学生的情况是8种,则刚好抽到同性别学生的概率是= 25…………4分9. (2016·浙江镇江·模拟) (本小题满分6分)甲、乙两人做游戏,规则如下:每人手中各持分别标有“1”、“2”、“3”的三张纸牌,甲、乙背靠背同时从各自的纸牌中随机抽取一张,规定纸牌数字大的获胜,数字相同时不分胜负.请你用树状图或列表法求甲获胜的概率。
中考模拟检测《数学试题》含答案解析
数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一、选择题:本题共10小题,每小题4分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.-12016的相反数是( ) A. 2016 B. ﹣2016 C. 12016 D. -120162.下列各式化简后的结果为32 的是( )A. 6B. 12C. 18D. 363.下列运算正确的是( )A. 22x y xy +=B. 2222x y xy ⋅=C. 222x x x ÷=D. 451x x -=- 4.不等式组-32-13x x <⎧⎨≤⎩,的解集在数轴上表示正确的是( ) A. B. C. D. 5.下列判断错误的是( )A. 两组对边分别相等的四边形是平行四边形B. 四个内角都相等的四边形是矩形C. 四条边都相等的四边形是菱形D. 两条对角线垂直且平分的四边形是正方形6.小军为了了解本校运动员百米短跑所用步数的情况,对校运会中百米短跑决赛的8名男运动员的步数进行了统计,记录的数据如下:66、68、67、68、67、69、68、71,这组数据的众数和中位数分别为( )A. 67、68B. 67、67C. 68、68D. 68、67 7.关于x 一元二次方程20ax bx c ++=()0a ≠的两根为11x =,21x =-那么下列结论一定成立的是( )A. 240b ac ->B. 240b ac -=C. 240b ac -<D. 240b ac -≤ 8.将一矩形纸片沿一条直线剪成两个多边形,那么这两个多边形的内角和之和不可能是( )A. 360°B. 540°C. 720°D. 900°9.关于抛物线y =x 2﹣2x +1,下列说法错误是( )A. 对称轴是直线x=1B. 与x轴有一个交点C. 开口向上D. 当x>1时,y随x的增大而减小10.如图,小明利用测角仪和旗杆拉绳测量学校旗杆的高度.如图,旗杆PA的高度与拉绳PB的长度相等.小明将PB拉到PB′的位置,测得∠PB′C=α(B′C为水平线),测角仪B′D的高度为1m,则旗杆PA的高度为( )A.11sinα-m B.11sinα+m C.11cosα-m D.11cosα+m二、填空题:本题共8小题,每小题4分,把答案填在答题卡中对应题号后的横线上.11.将正比例函数y=2x的图象向左平移3个单位,所得的直线不经过第____象限.12.甲、乙、丙三位好朋友随机站成一排照合影,甲没有站在中间的概率为____.13.如图,AB∥CD,CB平分∠ACD,若∠BCD = 28°,则∠A的度数为_________.14.某学习小组为了探究函数y=x2﹣|x|的图象和性质,根据以往学习函数的经验,列表确定了该函数图象上一些点的坐标,表格中的m=_____.x …﹣2﹣1.5 ﹣1﹣0.50 0.5 1 1.5 2 …y … 2 0.75 0﹣0.25 0﹣0.250 m 2 …15.我们把直角坐标系中横坐标与纵坐标都是整数的点称为整点.反比例函数3yx=-的图象上有一些整点,请写出其中一个整点的坐标______.16.如图是一个圆柱体的三视图,由图中数据计算此圆柱体的侧面积为________.(结果保留π)17.如图,四边形ABCD 内接于⊙O ,AB 是⊙O 的直径,过点C 作⊙O 的切线交AB 的延长线于点P ,若∠P =40°,则∠ADC =____°.18.小李用围棋子排成下列一组有规律的图案,其中第1个图案有1枚棋子,第2个图案有3枚棋子,第3个图案有4枚棋子,第4个图案有6枚棋子,…,那么第9个图案的棋子数是___枚.三、解答题:本题共8小题,共78分.解答应写出文字说明、证明过程或演算步骤.19.计算:()031321223⎛⎫⎛⎫-+---⨯- ⎪ ⎪⎝⎭⎝⎭. 20.先化简,再求值:2211()111x x x x -÷+--,其中12x =-. 21.如图,在▱ABCD 中,AE ⊥BD 于点E ,CF ⊥BD 于点F ,连接AF ,CE.求证:AF =CE.22.在大课间活动中,体育老师随机抽取了七年级甲、乙两班部分女学生进行仰卧起坐的测试,并对成绩进行统计分析,绘制了频数分布表和统计图,请你根据图表中的信息完成下列问题:(1)频数分布表中a = ,b = ,并将统计图补充完整;(2)如果该校七年级共有女生180人,估计仰卧起坐能够一分钟完成30或30次以上的女学生有多少人? (3)已知第一组中只有一个甲班学生,第四组中只有一个乙班学生,老师随机从这两个组中各选一名学生谈心得体会,则所选两人正好都是甲班学生概率是多少?23.初一五班共有学生42人,其中男生人数比女生人数的2倍少3人.(1)该班男生和女生各有多少人?(2)学校决定派该班30名学生勤工俭学,练习制作乐高零件,经测试,该班男、女生每天能加工的零件数分别为50个和45个,为保证他们每天加工的零件总数不少于1460个,那么至少需要派多少名男学生?24.在△ABC中,AB=15,BC=14,AC=13,求△ABC的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路完成解答过程.25.如图,顶点为A(3,1)的抛物线经过坐标原点O,与x轴交于点B.(1)求抛物线对应的二次函数的表达式;(2)过B作OA的平行线交y轴于点C,交抛物线于点D,求证:△OCD≌△OAB;(3)在x轴上找一点P,使得△PCD周长最小,求出P点的坐标.26.如图①,在△ABC中,∠ACB=90°,∠B=30°,AC=1,D为AB的中点,EF为△ACD 的中位线,四边形EFGH为△ACD的内接矩形(矩形的四个顶点均在△ACD的边上).(1)计算矩形EFGH的面积;(2)将矩形EFGH 沿AB 向右平移,F 落在BC 上时停止移动.在平移过程中,当矩形与△CBD 重叠部分的面积为316时,求矩形平移的距离; (3)如图③,将(2)中矩形平移停止时所得的矩形记为矩形1111E F G H ,将矩形1111E F G H 绕1G 点按顺时针方向旋转,当1H 落在CD 上时停止转动,旋转后的矩形记为矩形2212E F G H ,设旋转角为,求cos 的值.答案与解析一、选择题:本题共10小题,每小题4分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.-12016的相反数是( ) A. 2016B. ﹣2016C. 12016D. -12016【答案】C【解析】【分析】 直接利用相反数的定义分析得出答案. 【详解】12016-的相反数是-(1)2016-=1 2016. 故答案是:C.【点睛】此题主要考查了相反数的定义,正确把握定义是解题关键.2.下列各式化简后的结果为 的是( )【答案】C【解析】A 不能化简;B ;C ,故正确;D ,故错误; 故选C .点睛:本题主要考查二次根式,熟练掌握二次根式的性质是解题的关键.3.下列运算正确的是( )A. 22x y xy +=B. 2222x y xy ⋅=C. 222x x x ÷=D. 451x x -=- 【答案】B【解析】分析:直接利用合并同类项法则和整式的乘除运算法则分别化简求出答案.详解:A 、2x+y 无法计算,故此选项错误;B 、x•2y 2=2xy 2,正确;C 、2x÷x 2=2x,故此选项错误;D、4x-5x=-x,故此选项错误;故选B.点睛:此题主要考查了合并同类项和整式的乘除运算等知识,正确掌握运算法则是解题关键.4.不等式组-32-13xx<⎧⎨≤⎩,的解集在数轴上表示正确的是( )A. B. C. D. 【答案】A【解析】【分析】分别求出各不等式的解集,再在数轴上表示出来即可.【详解】解:3213xx-<⎧⎨-≤⎩①②,由①得,x>-3,由②得,x≤2,故不等式组解集为:-3<x≤2,在数轴上表示为:.故选A.点睛:本题考查的是解一元一次不等式组,熟知”同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答本题的关键.5.下列判断错误的是()A. 两组对边分别相等的四边形是平行四边形B. 四个内角都相等的四边形是矩形C. 四条边都相等的四边形是菱形D. 两条对角线垂直且平分的四边形是正方形【答案】D【解析】【分析】分别利用平行四边形、矩形、菱形和正方形的判定定理,对选项逐一分析即可做出判断.【详解】解:A、两组对边分别相等的四边形是平行四边形,符合平行四边形的判定,故本选项正确,不符合题意;B 、∵四边形的内角和为360°,四边形的四个内角都相等,∴四边形的每个内角都等于90°,则这个四边形有三个角是90°,∴这个四边形是矩形,故四个内角都相等的四边形是矩形,本选项正确,不符合题意;C 、四条边都相等的四边形是菱形,符合菱形的判定,,故本选项正确,不符合题意;D 、两条对角线垂直且平分的四边形是菱形,不一定是正方形,故本选项错误,符合题意;故选:D .【点睛】本题考查了平行四边形、矩形、菱形和正方形的判定定理,解题的关键是正确理解并掌握判定定理.6.小军为了了解本校运动员百米短跑所用步数的情况,对校运会中百米短跑决赛的8名男运动员的步数进行了统计,记录的数据如下:66、68、67、68、67、69、68、71,这组数据的众数和中位数分别为( )A. 67、68B. 67、67C. 68、68D. 68、67【答案】C【解析】【分析】根据次数出现最多的数是众数,根据中位数的定义即可解决问题.【详解】解:因为68出现了3次,出现次数最多,所以这组数据的众数是68.将这组数据从小到大排列得到:66,67,67,68,68,68,69,71,所以这组数据的中位数为68. 故选C .【点睛】本题考查众数、中位数定义,记住众数、中位数的定义是解决问题的关键,属于中考常考题型. 7.关于x 的一元二次方程20ax bx c ++=()0a ≠的两根为11x =,21x =-那么下列结论一定成立的是( )A. 240b ac ->B. 240b ac -=C. 240b ac -<D. 240b ac -≤ 【答案】A【解析】【分析】由一元二次方程有两个不相等的实数根,确定出根的判别式的符号即可.【详解】解:∵关于x 的一元二次方程ax 2+bx+c=0(a≠0)的两根为x 1=1,x 2=-1,∴方程有两个不相等的实数根∴b 2-4ac >0,故选A .【点睛】此题考查了根与系数的关系,以及根的判别式,熟练掌握根的判别式的意义是解本题的关键.8.将一矩形纸片沿一条直线剪成两个多边形,那么这两个多边形的内角和之和不可能是( )A. 360°B. 540°C. 720°D. 900°【答案】D【解析】根据题意列出可能情况,再分别根据多边形的内角和定理进行解答即可.解:①将矩形沿对角线剪开,得到两个三角形,两个多边形的内角和:180°+180°=360°;②将矩形从一顶点剪向对边,得到一个三角形和一个四边形,两个多边形的内角和为:180°+360°=540°;③将矩形沿一组对边剪开,得到两个四边形,两个多边形的内角和为:180°+540°=720°,④将矩形沿一组邻边剪开,得到一个三角形和一个五边形,其内角和为:180°+540°=720°,故选D.9.关于抛物线y=x2﹣2x+1,下列说法错误的是( )A. 对称轴是直线x=1B. 与x轴有一个交点C. 开口向上D. 当x>1时,y随x的增大而减小【答案】D【解析】【分析】利用二次函数的性质来解题即可.【详解】解:抛物线y=x2﹣2x+1,对称轴是直线21221bxa-=-=-=⨯,故A选项内容正确,不符合题意;△=b2﹣4ac=(﹣2)2﹣4×1×1=0,所以抛物线与x轴只有一个交点,故B选项内容正确,不符合题意; 抛物线a=1>0,所以开口向上,故C选项内容正确,不符合题意;因为抛物线开口向上,所以在对称轴右侧,即x>1时,y随x的增大而增大,所以D选项错误.符合题意,故选D.【点睛】此题考察二次函数的性质,熟记性质才能熟练运用.10.如图,小明利用测角仪和旗杆的拉绳测量学校旗杆的高度.如图,旗杆PA的高度与拉绳PB的长度相等.小明将PB拉到PB′的位置,测得∠PB′C=α(B′C为水平线),测角仪B′D的高度为1m,则旗杆PA的高度为( )A. 11sin α-mB. 11sin α+mC. 11cos α- mD. 11cos α+ m 【答案】A【解析】【分析】设PA=PB=PB′=x ,在RT △PCB′中,根据sinα=PC PB ',列出方程即可解决问题. 【详解】设PA=PB=PB′=x ,在RT △PCB′中,sinα=PC PB ', ∴1x x-=sinα, ∴x-1=xsinα,∴(1-sinα)x=1,∴x=11sin α-. 故选A .【点睛】本题考查解直角三角形、三角函数等知识,解题的关键是设未知数列方程,属于中考常考题型.二、填空题:本题共8小题,每小题4分,把答案填在答题卡中对应题号后的横线上. 11.将正比例函数y =2x 的图象向左平移3个单位,所得的直线不经过第____象限.【答案】四【解析】【详解】根据上加下减自变量,得:2(+3)2+6y x x == ,过一、二、三象限. 即所得的直线不经过第四象限.故答案:四.12.甲、乙、丙三位好朋友随机站成一排照合影,甲没有站在中间的概率为____. 【答案】23 【解析】【分析】列举出所有情况,看甲没排在中间的情况占所有情况的多少即为所求的概率.【详解】解:甲、乙、丙三个同学排成一排拍照有以下可能:甲乙丙,甲丙乙,乙甲丙,乙丙甲,丙甲乙,丙乙甲,全部6种情况,有4种甲没在中间, 所以甲没排在中间的概率是42=63. 故答案为:23. 【点睛】本题考查列举法求概率,正确理解题意列举出所有的情况是解题关键.13.如图,AB ∥CD ,CB 平分∠ACD ,若∠BCD = 28°,则∠A 的度数为_________.【答案】124°【解析】试题分析:根据平行线的性质得到∠ABC=∠BCD=28°,根据角平分线的定义得到∠ACB=∠BCD=28°,根据三角形的内角和即可得到∠A=180°﹣∠ABC ﹣∠ACB=124°,故答案为124°.考点:平行线的性质14.某学习小组为了探究函数y =x 2﹣|x |的图象和性质,根据以往学习函数的经验,列表确定了该函数图象上一些点的坐标,表格中的m =_____. x … ﹣2 ﹣1.5 ﹣1﹣0.50 0.5 1 1.5 2 … y … 2 0.75 0 ﹣0.25﹣0.25 0 m 2 …【答案】0.75【解析】当x >0时,函数2y x x =-=2x x -,当x =1.5时,y =21.5 1.5-=0.75,则m =0.75.故答案为0.75.点睛:本题考查了二次函数图象上点的坐标特征以及绝对值,解题的关键是找出当x >0时,函数的关系式.本题属于基础题,难度不大,解决该题型题目时,根据绝对值的性质找出当x >0时y 关于x 的函数关系式是关键.15.我们把直角坐标系中横坐标与纵坐标都是整数的点称为整点.反比例函数3yx=-的图象上有一些整点,请写出其中一个整点的坐标______.【答案】(答案不唯一)如(1,-3)等【解析】【详解】解:根据整点的定义可得x、y均为整数,即x是3的约数,当x=3时,y=-13、-1均为整数,故3yx=-图象上的整点为(3,-1),故答案为:(答案不唯一)如(1,-3)等16.如图是一个圆柱体的三视图,由图中数据计算此圆柱体的侧面积为________.(结果保留π)【答案】24π【解析】解:由图可知,圆柱体的底面直径为4,高为6,所以,侧面积=4π×6=24π.故答案为24π.点睛:本题考查了立体图形的三视图和学生的空间想象能力,圆柱体的侧面积公式,根据主视图判断出圆柱体的底面直径与高是解题的关键.17.如图,四边形ABCD内接于⊙O,AB是⊙O的直径,过点C作⊙O的切线交AB的延长线于点P,若∠P =40°,则∠ADC=____°.【答案】115°【解析】【分析】根据过C点的切线与AB的延长线交于P点,∠P=40°,可以求得∠OCP和∠OBC的度数,又根据圆内接四边形对角互补,可以求得∠D 的度数,本题得以解决. 【详解】解:连接OC ,如右图所示,由题意可得,∠OCP=90°,∠P=40°,∴∠COB=50°,∵OC=OB ,∴∠OCB=∠OBC=65°,∵四边形ABCD 是圆内接四边形,∴∠D+∠ABC=180°,∴∠D=115°,故答案为:115°.【点睛】本题考查切线的性质、圆内接四边形,解题的关键是明确题意,找出所求问题需要的条件. 18.小李用围棋子排成下列一组有规律的图案,其中第1个图案有1枚棋子,第2个图案有3枚棋子,第3个图案有4枚棋子,第4个图案有6枚棋子,…,那么第9个图案的棋子数是___枚.【答案】13【解析】设第n 个图形有a n 个旗子,观察,发现规律:a 1=1,a 2=1+2=3,a 3=3+1=4,a 4=4+2=6,a 5=6+1=7,…,a 2n+1=3n+1,a 2n+2=3(n+1)(n 为自然数),当n=4时,a 9=3×4+1=13, 故答案13.三、解答题:本题共8小题,共78分.解答应写出文字说明、证明过程或演算步骤.19.计算:()031321223⎛⎫⎛⎫-+---⨯- ⎪ ⎪⎝⎭⎝⎭. 【答案】16【解析】分析:原式利用乘方的意义,绝对值的代数意义,零指数幂法则计算即可得到结果.详解:原式=121123⎛⎫-+-⨯- ⎪⎝⎭=1223-+=16. 点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.20.先化简,再求值:2211()111x x x x-÷+--,其中12x =-. 【答案】2x-,4. 【解析】【分析】 先括号内通分,然后计算除法,最后代入化简即可.【详解】原式=()2221112=-1x x x x x x--+-⨯- . 当12x =-时,原式=4. 【点睛】此题考查分式的化简求值,解题关键在于掌握运算法则.21.如图,在▱ABCD 中,AE ⊥BD 于点E ,CF ⊥BD 于点F ,连接AF ,CE.求证:AF =CE.【答案】见解析【解析】试题分析:首先证明AE ∥CF ,△ABE ≌△CDF ,再根据全等三角形的性质可得AE =CF ,然后再根据一组对边平行且相等的四边形是平行四边形可得四边形AECF 是平行四边形,根据平行四边形的性质可得AF =CE .试题解析:证明:∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD ,∴∠ABE =∠CDF .又∵AE ⊥BD ,CF ⊥BD ,∴∠AEB =∠CFD =90°,AE ∥CF .在△ABE 和△CDF 中,{ABE CDFAEB CFDAB CD∠∠∠∠===,∴△ABE ≌△CDF (AAS),∴AE =CF .∵AE ∥CF ,∴四边形AECF 是平行四边形,∴AF =CE . 22.在大课间活动中,体育老师随机抽取了七年级甲、乙两班部分女学生进行仰卧起坐的测试,并对成绩进行统计分析,绘制了频数分布表和统计图,请你根据图表中的信息完成下列问题:(1)频数分布表中a = ,b = ,并将统计图补充完整;(2)如果该校七年级共有女生180人,估计仰卧起坐能够一分钟完成30或30次以上的女学生有多少人?(3)已知第一组中只有一个甲班学生,第四组中只有一个乙班学生,老师随机从这两个组中各选一名学生谈心得体会,则所选两人正好都是甲班学生的概率是多少?【答案】(1)a=0.3,b=4;(2)99人;(3)1 4【解析】分析:(1)由统计图易得a与b的值,继而将统计图补充完整;(2)利用用样本估计总体的知识求解即可求得答案;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与所选两人正好都是甲班学生的情况,再利用概率公式即可求得答案.详解:(1)a=1-015-0.35-0.20=0.3;∵总人数为:3÷0.15=20(人),∴b=20×0.20=4(人);故答案为0.3,4;补全统计图得:(2)估计仰卧起坐能够一分钟完成30或30次以上的女学生有:180×(0.35+0.20)=99(人);(3)画树状图得:∵共有12种等可能的结果,所选两人正好都是甲班学生的有3种情况,∴所选两人正好都是甲班学生的概率是:31= 124.点睛:此题考查了列表法或树状图法求概率以及条形统计图的知识.用到的知识点为:概率=所求情况数与总情况数之比.23.初一五班共有学生42人,其中男生人数比女生人数的2倍少3人.(1)该班男生和女生各有多少人?(2)学校决定派该班30名学生勤工俭学,练习制作乐高零件,经测试,该班男、女生每天能加工的零件数分别为50个和45个,为保证他们每天加工的零件总数不少于1460个,那么至少需要派多少名男学生? 【答案】(1)女生15人,男生27人;(2)至少派22人【解析】【分析】(1)设该班男生有x人,女生有y人,根据男女生人数的关系以及全班共有42人,可得出关于x、y的二元一次方程组,解方程组即可得出结论;(2)设派m名男学生,则派的女生为(30-m)名,根据”每天加工零件数=男生每天加工数量×男生人数+女生每天加工数量×女生人数”,即可得出关于m的一元一次不等式,解不等式即可得出结论.【详解】(1)设该班男生有x人,女生有y人,依题意得:4223 x yx y⎨⎩+-⎧==,解得:2715xy⎧⎨⎩==.∴该班男生有27人,女生有15人.(2)设派m名男学生,则派的女生为(30-m)名,依题意得:50m+45(30-m)≥1460,即5m+1350≥1460,解得:m≥22,答:至少需要派22名男学生.【点睛】本题考查了一元一次不等式的应用以及二元一次方程组的应用,解题的关键是:(1)根据数量关系列出二元一次方程组;(2)根据数量关系列出关于m的一元一次不等式.本题属于基础题,难度不大,解决该题型题目时,根据数量关系列出不等式(方程或方程组)是关键.24.在△ABC 中,AB =15,BC =14,AC =13,求△ABC 的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路完成解答过程.【答案】84.【解析】试题分析:根据题意利用勾股定理表示出AD 2的值,进而得出等式求出答案.试题解析:作AD ⊥BC 于D ,如图所示:设BD = x ,则14CD x =-.在Rt △ABD 中,由勾股定理得:2222215AD AB BD x =-=-,在Rt △ACD 中,由勾股定理得:()222221314AD AC CD x =-=--,∴2215x -= ()221314x --,解之得:9x =.∴12AD =. ∴1·2ABC S BC AD ∆= 11412842=⨯⨯=. 25.如图,顶点为A 31)的抛物线经过坐标原点O ,与x 轴交于点B .(1)求抛物线对应的二次函数的表达式;(2)过B 作OA 的平行线交y 轴于点C ,交抛物线于点D ,求证:△OCD ≌△OAB ;(3)在x 轴上找一点P ,使得△PCD 的周长最小,求出P 点的坐标.【答案】(1)y=﹣13x2+33x;(2)证明见解析;(3)P(﹣35,0).【解析】【分析】(1)用待定系数法求出抛物线解析式;(2)先求出直线OA对应的一次函数的表达式为y 3.再求出直线BD的表达式为y3﹣2.最后求出交点坐标C,D即可;(3)先判断出C'D与x轴的交点即为点P,它使得△PCD的周长最小.作辅助线判断出△C'PO∽△C'DQ即可.【详解】解:(1)∵抛物线顶点为A31),设抛物线解析式为y=a(x32+1,将原点坐标(0,0)在抛物线上,∴0=a3)2+1∴a=﹣13,∴抛物线的表达式为:y=﹣13x223x.(2)令y=0,得0=﹣13x2+23x,∴x=0(舍),或x3∴B点坐标为:(3,0),设直线OA的表达式为y=kx.∵A31)在直线OA上,3=1,∴k3∴直线OA 对应的一次函数的表达式为y =33x . ∵BD ∥AO ,设直线BD 对应的一次函数的表达式为y =33x +b .∵B (23,0)在直线BD 上,∴0=33×23+b ,∴b =﹣2, ∴直线BD 的表达式为y =33x ﹣2. 由2321233y x y x x ⎧=-⎪⎪⎨⎪=-+⎪⎩得交点D 的坐标为(33),令x =0得,y =﹣2,∴C 点的坐标为(0,﹣2),由勾股定理,得:OA =2=OC ,AB =2=CD ,OB 3OD .在△OAB 与△OCD 中,OA OC AB CD OB OD =⎧⎪=⎨⎪=⎩,∴△OAB ≌△OCD .(3)点C 关于x 轴的对称点C '的坐标为(0,2),∴C 'D 与x 轴的交点即为点P ,它使得△PCD 的周长最小. 过点D 作DQ ⊥y ,垂足为Q ,∴PO ∥DQ ,∴△C 'PO ∽△C 'DQ ,∴''PO C O DQ C Q =253=,∴PO 23, ∴点P 的坐标为(23,0). 【点睛】本题是二次函数综合题,主要考查了待定系数法求函数解析式,全等三角形的性质和判定,相似三角形的性质和全等,解答本题的关键是确定函数解析式.26.如图①,在△ABC 中,∠ACB =90°,∠B =30°,AC =1,D 为AB 的中点,EF 为△ACD 的中位线,四边形EFGH 为△ACD 的内接矩形(矩形的四个顶点均在△ACD 的边上).(1)计算矩形EFGH 的面积;(2)将矩形EFGH 沿AB 向右平移,F 落在BC 上时停止移动.在平移过程中,当矩形与△CBD 重叠部分的面积为316时,求矩形平移的距离; (3)如图③,将(2)中矩形平移停止时所得的矩形记为矩形1111E F G H ,将矩形1111E F G H 绕1G 点按顺时针方向旋转,当1H 落在CD 上时停止转动,旋转后的矩形记为矩形2212E F G H ,设旋转角为,求cos α的值.【答案】3矩形移动距离为38时,矩形与△CBD 3313+ 【解析】 分析:(1)根据已知,由直角三角形的性质可知AB=2,从而求得AD ,CD ,利用中位线的性质可得EF ,DF ,利用三角函数可得GF ,由矩形的面积公式可得结果;(2)首先利用分类讨论的思想,分析当矩形与△CBD 重叠部分为三角形时(0<x ≤14),利用三角函数和三角形的面积公式可得结果;当矩形与△CBD 重叠部分为直角梯形时(14<x ≤12),列出方程解得x; (3)作H 2Q ⊥AB 于Q ,设DQ=m ,则H 2Q 3m ,又DG 1=14,H 2G 1=12,利用勾股定理可得m ,在Rt △QH 2G 1中,利用三角函数解得cosα.详解:(1)如图①,在ABC ∆中,∠ACB =90°,∠B =30°,AC =1,∴AB =2,又∵D 是AB 的中点,∴AD =1,112CD AB ==. 又∵EF 是ACD ∆的中位线,∴12EF DF ==, 在ACD ∆中,AD=CD, ∠A =60°, ∴∠ADC =60°.在FGD ∆中,sin GF DF =⋅60°34=, ∴矩形EFGH 的面积133248S EF GF =⋅=⨯=. (2)如图②,设矩形移动的距离为则102x <≤,当矩形与△CBD 重叠部分为三角形时,则104x <≤, 1332S x x ==, ∴214x =>.(舍去). 当矩形与△CBD 重叠部分为直角梯形时,则1142x <≤, 重叠部分的面积3113324x -⨯=, ∴38x =. 即矩形移动的距离为38时,矩形与△CBD 重叠部分的面积是316. (3)如图③,作2H Q AB ⊥于Q .设DQ m =,则23H Q m =,又114DG =,2112H G =. 在Rt △H 2QG 1中,)22211342m m ⎛⎫⎛⎫++= ⎪ ⎪⎝⎭⎝⎭ , 解之得113m -±=负的舍去). ∴1211131313164cos 12QG H G α-+++===. 点睛:本题主要考查了直角三角形的性质,中位线的性质和三角函数定义等,利用分类讨论的思想,构建直角三角形是解答此题的关键.。
江苏省宿迁市泗阳县中考数学一模试题(含解析)-人教版初中九年级全册数学试题
2016年某某省宿迁市泗阳县中考数学一模试卷一、选择题:本大题共8小题,每题3分共24分.1.﹣3的相反数是()A.B.C.3 D.﹣32.下列计算正确的是()A.(ab3)2=a2b6B.a2•a3=a6C.(a+b)(a﹣2b)=a2﹣2b2D.5a﹣2a=33.已知一粒大米的质量约为,这个数用科学记数法表示为()×10﹣4×10﹣4×10﹣5×10﹣54.下面四个几何体中,俯视图为四边形的是()A.B.C.D.5.甲、乙、丙、丁四人进行射箭测试,每人10次射箭成绩的平均成绩都相同,方差分别是S甲2=0.65,S乙2=0.55,S丙2=0.50,S丁2=0.45,则射箭成绩最稳定的是()A.甲B.乙C.丙D.丁6.已知下列函数:①y=﹣(x>0),②y=﹣2x+1,③y=3x2+1(x<0),④y=x+3,其中y随x的增大而减小的函数有()A.1个B.2个C.3个D.4个7.已知,在△ABC中,AD为BC边上的中线,AC=5,AD=4,则AB的取值X围是()A.1<AB<9 B.3<AB<13 C.5<AB<13 D.9<AB<138.如图所示,在直角坐标系中放置一个矩形OABC,其中AB=2,AO=1,若将矩形OABC沿x轴的负方向无滑动地在x轴上翻滚,则当点O离开原点后第一次落在x轴上时,点O运动的路径与x轴围成的面积为()A.B.C. D.二、填空题:本大题共8小题,每题3分,共24分.9.4是的算术平方根.10.分解因式ma2﹣2mab+mb2=.11.关于x的方程x2﹣4x+3﹣m=0有两个相等的实数根,则m=.12.在平面直角坐标系xOy中,平行四边形OABC的顶点为O(0,0),A(1,1),B(3,0),则顶点C的坐标是.13.分式方程的解为.14.如图,已知直线l1:y=k1x+4与直线l2:y=k2x﹣5交于点A,它们与y轴的交点分别为点B,C,点E,F分别为线段AB、AC的中点,则线段EF的长度为.15.如图,扇形OAB是圆锥的侧面展开图,且点O、A、B分别是格点,已知小正方形方格的边长为1cm,则这个圆锥的底面半径为.16.已知函数y=,若使y=k成立的x值恰好有两个,则k的取值X围为.三、解答题:本大题共10题,17-22题每题6分,23、24题每题8分,25、26题每题10分.共72分.17.计算:﹣4sin60°+(1﹣π)0.18.先化简:,当y=﹣1时,请你为x任选一个适当的整数代入求值.19.现在“校园手机”越来越受到社会的关注,为此某校八(1)班随机调查了本校若干名学生和家长对中学生带手机现象的看法,统计整理并制作了统计图.(1)求这次调查的家长人数,并补全图①;(2)求图②中表示家长“赞成”的圆心角的度数;(3)从这次接受调查的家长来看,若该校的家长为2500名,则有多少名家长持反对态度?20.如图,平行四边形ABCD中,E是CD的延长线上一点,BE与AD交于点F,DE=CD.(1)求证:△ABF∽△CEB;(2)若△DEF的面积为2,求平行四边形ABCD的面积.21.如图,已知在△ABC中,∠A=90°(1)请用圆规和直尺作出⊙P,使圆心P在AC边上,且与AB,BC两边都相切(保留作图痕迹,不写作法和证明).(2)若∠B=60°,AB=3,求⊙P的面积.22.某市“艺术节”期间,小明、小亮都想去观看茶艺表演,但是只有一X茶艺表演门票,他们决定采用抽卡片的办法确定谁去.规则如下:将正面分别标有数字1、2、3、4的四X卡片(除数字外其余都相同)洗匀后,背面朝上放置在桌面上,随机抽出一X记下数字后放回;重新洗匀后背面朝上放置在桌面上,再随机抽出一X记下数字.如果两个数字之和为奇数,则小明去;如果两个数字之和为偶数,则小亮去.(1)请用列表或画树状图的方法表示抽出的两X卡片上的数字之和的所有可能出现的结果;(2)你认为这个规则公平吗?请说明理由.23.如图,一次函数y=kx+b与反比例函数y=的图象交于A(n,3),B(3,﹣1)两点.(1)求一次函数与反比例函数的解析式;(2)根据所给条件,请直接写出不等式kx+b>的解集;(3)过点B作BC⊥x轴,垂足为C,求△ABC的面积S.24.为方便市民通行,某广场计划对坡角为30°,坡长为60米的斜坡AB进行改造,在斜坡中点D 处挖去部分坡体(阴影表示),修建一个平行于水平线CA的平台DE和一条新的斜坡BE.(1)若修建的斜坡BE的坡角为36°,则平台DE的长约为多少米?(2)在距离坡角A点27米远的G处是商场主楼,小明在D点测得主楼顶部H 的仰角为30°,那么主楼GH高约为多少米?(结果取整数,参考数据:sin36°=0.6,cos36°=0.8,tan36°=0.7,=1.7)25.(1)如图1,正方形ABCD和正方形DEFG,G在AD边上,E在CD的延长线上.求证:AE=CG,AE⊥CG;(2)如图2,若将图1中的正方形DEFG绕点D顺时针旋转角度θ(0°<θ<90°),此时AE=CG 还成立吗?若成立,请给予证明;若不成立,请说明理由;(3)如图3,当正方形DEFG绕点D顺时针旋转45°时,延长CG交AE于点H,当AD=4,DG=时,求线段CH的长.26.如图,抛物线y=ax2+bx+c(a≠0)经过点A(﹣3,0),B(1,0),C(0,3).(1)求抛物线的解析式;(2)点P为抛物线上一个动点,记△PAC的面积为S.①当点P与抛物线顶点D重合时,求△PAC的面积S;②若点P位于第二象限,试求△PAC面积S的最大值及此时点P的坐标;(3)在y轴上是否存在点M,使得△ADM是等腰直角三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.2016年某某省宿迁市泗阳县中考数学一模试卷参考答案与试题解析一、选择题:本大题共8小题,每题3分共24分.1.﹣3的相反数是()A.B.C.3 D.﹣3【考点】相反数.【分析】根据相反数的定义:只有符号不同的两个数称互为相反数计算即可.【解答】解:(﹣3)+3=0.故选C.【点评】本题主要考查了相反数的定义,根据相反数的定义做出判断,属于基础题,比较简单.2.下列计算正确的是()A.(ab3)2=a2b6B.a2•a3=a6C.(a+b)(a﹣2b)=a2﹣2b2D.5a﹣2a=3【考点】多项式乘多项式;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据多项式乘多项式、合并同类项、同底数幂的乘法和幂的乘方与积的乘方分别进行解答,即可得出答案.【解答】解:A、(ab3)2=a2b6,故本选项正确;B、a2•a3=a5,故本选项错误;C、(a+b)(a﹣2b)=a2﹣ab﹣2b2,故本选项错误;D、5a﹣2a=3a,故本选项错误.故选A.【点评】本题考查了多项式乘多项式、合并同类项、同底数幂的乘法和幂的乘方与积的乘方,熟记法则和公式是本题的关键.3.已知一粒大米的质量约为,这个数用科学记数法表示为()×10﹣4×10﹣4×10﹣5×10﹣5【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.×10﹣5,故选:C.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.下面四个几何体中,俯视图为四边形的是()A.B.C.D.【考点】简单几何体的三视图.【分析】俯视图是指从物体上面看,所得到的图形.【解答】解:A、圆柱的俯视图是圆;B、三棱锥的俯视图是三角形;C、球的俯视图是圆;D、正方体的俯视图是四边形.故选D.【点评】本题考查了几何体的三种视图,掌握定义是关键.主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.5.甲、乙、丙、丁四人进行射箭测试,每人10次射箭成绩的平均成绩都相同,方差分别是S甲2=0.65,S乙2=0.55,S丙2=0.50,S丁2=0.45,则射箭成绩最稳定的是()A.甲B.乙C.丙D.丁【考点】方差.【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【解答】解:∵射箭成绩的平均成绩都相同,方差分别是S甲2=0.65,S乙2=0.55,S丙2=0.50,S丁2=0.45,∴S甲2>S乙2>S丙2>S丁2,∴射箭成绩最稳定的是丁;故选D.【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.6.已知下列函数:①y=﹣(x>0),②y=﹣2x+1,③y=3x2+1(x<0),④y=x+3,其中y随x的增大而减小的函数有()A.1个B.2个C.3个D.4个【考点】反比例函数的性质;一次函数的性质;二次函数的性质.【分析】分析四个给定函数,根据函数的系数结合函数的性质,找出其在定义域内的单调性,由此即可得出结论.【解答】解:①在反比例函数y=﹣(x>0)中,k=﹣2,∴该函数在x>0中单调递增;②在一次函数y=﹣2x+1中,k=﹣2,∴该函数在其定义域内单调递减;③二次函数y=3x2+1(x<0)中a=3>0,且对称轴为x=0,∴该函数在x<0中单调递减;④一次函数y=x+3中,k=1,∴该函数在其定义域内单调递增.综上可知:y随x的增大而减小的函数有②③.故选B.【点评】本题考查了反比例函数的性质、一次函数的性质以及二次函数的性质,解题的关键是结合函数的系数找出函数的单调性.本题属于基础题,难度不大,解决该题型题目时,根据函数的系数结合函数的性质找出函数的单调性是关键.7.已知,在△ABC中,AD为BC边上的中线,AC=5,AD=4,则AB的取值X围是()A.1<AB<9 B.3<AB<13 C.5<AB<13 D.9<AB<13【考点】三角形三边关系;全等三角形的判定与性质.【分析】首先根据题意画出图形,然后延长AD至E,使DE=AD=4,连接CE,易证得△ABD≌△ECD(SAS),可求得AE的长,证得CE=AB,然后由三角形三边关系,求得答案.【解答】解:如图,延长AD至E,使DE=AD=4,连接CE.∵AD为BC边上的中线,∴BD=CD,在△ABD和△ECD中,,∴△ABD≌△ECD(SAS),∴CE=AB,∵AC=5,AE=AD+ED=8,∴3<EC<13,∴AB的取值X围是:3<AB<13.故选B.【点评】此题考查了三角形的三边关系以及全等三角形的判定与性质.注意准确作出辅助线是解此题的关键.8.如图所示,在直角坐标系中放置一个矩形OABC,其中AB=2,AO=1,若将矩形OABC沿x轴的负方向无滑动地在x轴上翻滚,则当点O离开原点后第一次落在x轴上时,点O运动的路径与x轴围成的面积为()A.B.C. D.【考点】轨迹;坐标与图形性质;矩形的性质.【分析】根据题意先画出示意图,再结合图形及扇形的面积公式即可计算出点O运动的路径线与x 轴围成的面积.【解答】解:点O运动的路径如图所示,见图:则点O运动的路径与x轴围成的面积=++++=+×1×2+×1×2+=π+1+π+1+=π+2.故选A.【点评】本题考查了轨迹问题,用到的知识点是矩形的性质、旋转的性质、扇形的面积公式,解答本题如果不能直观想象出图形,可以画出图形再求解,注意熟练掌握扇形的面积计算公式.二、填空题:本大题共8小题,每题3分,共24分.9.4是16 的算术平方根.【考点】算术平方根.【分析】如果一个非负数x的平方等于a,那么x是a的算术平方根,由此即可求出结果.【解答】解:∵42=16,∴4是16的算术平方根.故答案为:16.【点评】此题主要考查了算术平方根的概念,牢记概念是关键.10.分解因式ma2﹣2mab+mb2= m(a﹣b)2.【考点】提公因式法与公式法的综合运用.【分析】原式提取m,再利用完全平方公式分解即可.【解答】解:ma2﹣2mab+mb2=m(a2﹣2ab+b2)=m(a﹣b)2,故答案为m(a﹣b)2.【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.11.关于x的方程x2﹣4x+3﹣m=0有两个相等的实数根,则m= ﹣1 .【考点】根的判别式.【分析】由方程有两个相等的实数根可得出b2﹣4ac=0,代入数据即可得出关于m的一元一次方程,解方程即可得出结论.【解答】解:由已知得:b2﹣4ac=(﹣4)2﹣4(3﹣m)=0,即4m+4=0,解得:m=﹣1.故答案为:﹣1.【点评】本题考查了根的判别式以及解一元一次方程,解题的关键是得出关于m的一元一次方程.本题属于基础题,难度不大,解决该题型题目时,由根的个数结合根的判别式得出方程(不等式或不等式组)是关键.12.在平面直角坐标系xOy中,平行四边形OABC的顶点为O(0,0),A(1,1),B(3,0),则顶点C的坐标是(2,﹣1).【考点】平行四边形的性质;坐标与图形性质.【分析】连接AC交OB于P,根据O,B的坐标易求P的坐标,再根据平行四边形的性质:对角线互相平分即可求出则C点坐标.【解答】解:连接AC交OB于P,如图所示:∵四边形OABC是平行四边形,∴AP=CP,OP=BP,∵O(0,0),B(3,0),∴P的坐标(1.5,0),∵A(1,1),∴C的坐标为(2,﹣1),故答案为:(2,﹣1).【点评】此题考查了平行四边形的性质、坐标与图形性质;熟练掌握平行四边形的性质.求出点P 的坐标是解决问题的关键.13.分式方程的解为x=﹣3 .【考点】分式方程的解.【分析】根据等式的性质,可得整式方程,根据解整式方程,可得答案.【解答】解:两边都乘以x(x﹣1),得4x=3(x﹣1),解得x=﹣3,经检验:x=﹣3是原分式方程的解,故答案为:x=﹣3.【点评】本题考查了分式方程的解,利用等式的性质是解题关键,要检验分式方程的根.14.如图,已知直线l1:y=k1x+4与直线l2:y=k2x﹣5交于点A,它们与y轴的交点分别为点B,C,点E,F分别为线段AB、AC的中点,则线段EF的长度为.【考点】三角形中位线定理;两条直线相交或平行问题.【专题】几何图形问题.【分析】根据直线方程易求点B、C的坐标,由两点间的距离得到BC的长度.所以根据三角形中位线定理来求EF的长度.【解答】解:如图,∵直线l1:y=k1x+4,直线l2:y=k2x﹣5,∴B(0,4),C(0,﹣5),则BC=9.又∵点E,F分别为线段AB、AC的中点,∴EF是△ABC的中位线,∴EF=BC=.故答案是:.【点评】本题考查了三角形中位线定理、两条直线相交或平行问题.根据直线方程求得点B、C的坐标是解题的关键.15.如图,扇形OAB是圆锥的侧面展开图,且点O、A、B分别是格点,已知小正方形方格的边长为1cm,则这个圆锥的底面半径为cm .【考点】圆锥的计算.【分析】利用勾股定理的逆定理求得扇形的圆心角,然后利用弧长公式求得扇形的弧长,即圆锥的底面周长,根据圆的周长公式求得底面圆的半径.【解答】解:根据勾股定理可以得到:OA2=OB2=22+22=4+4=8,即OA=2.∵AB=4,42=8+8,∴AB2=OA2+OB2,∴△OAB是等腰直角三角形.∴的长是=π.设圆锥的底面半径是rcm,则2πr=π,解得:r=.故答案为cm.【点评】考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.16.已知函数y=,若使y=k成立的x值恰好有两个,则k的取值X围为k=1或k<﹣3 .【考点】二次函数图象上点的坐标特征.【专题】常规题型.【分析】首先在平面直角坐标系内作出函数y=的图象,然后利用数形结合的方法即可找到使y=k成立的x值恰好有2个的k值.【解答】解:画函数y=的图象:根据图象知道当y=1或y<﹣3时,对应成立的x有恰好有2个,所以k=1或k<﹣3.故答案为:k=1或k<﹣3.【点评】此题主要考查了利用二次函数的图象解决交点问题,解题的关键是把解方程的问题转换为根据函数图象找交点的问题.三、解答题:本大题共10题,17-22题每题6分,23、24题每题8分,25、26题每题10分.共72分.17.计算:﹣4sin60°+(1﹣π)0.【考点】实数的运算;零指数幂;特殊角的三角函数值.【专题】计算题;实数.【分析】原式利用二次根式性质,特殊角的三角函数值,以及零指数幂法则计算即可得到结果.【解答】解:原式=2﹣4×+1=1.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.先化简:,当y=﹣1时,请你为x任选一个适当的整数代入求值.【考点】分式的化简求值.【专题】计算题;分式.【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,确定出x的值,代入计算即可求出值.【解答】解:原式=÷=•=,当x=2,y=﹣1时,原式=1.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.19.现在“校园手机”越来越受到社会的关注,为此某校八(1)班随机调查了本校若干名学生和家长对中学生带手机现象的看法,统计整理并制作了统计图.(1)求这次调查的家长人数,并补全图①;(2)求图②中表示家长“赞成”的圆心角的度数;(3)从这次接受调查的家长来看,若该校的家长为2500名,则有多少名家长持反对态度?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据家长认为无所谓的有80人,所占的比例是20%,即可求得家长的总人数,进而求得反对的家长的人数,从而完成统计图;(2)利用360°乘以表示“赞成”的家长所占的比例即可求得;(3)利用总人数2500乘以持反对态度的家长所占的比例即可求解.【解答】解:(1)这次调查的家长人数为80÷20%=400人,反对人数是:400﹣40﹣80=280人,;(2)360×═36°;(3)反对中学生带手机的大约有2500×=1750(名).【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.如图,平行四边形ABCD中,E是CD的延长线上一点,BE与AD交于点F,DE=CD.(1)求证:△ABF∽△CEB;(2)若△DEF的面积为2,求平行四边形ABCD的面积.【考点】相似三角形的判定与性质;平行四边形的性质.【分析】(1)要证△ABF∽△CEB,需找出两组对应角相等;已知了平行四边形的对角相等,再利用AB∥CD,可得一对内错角相等,则可证.(2)由于△DEF∽△EBC,可根据两三角形的相似比,求出△EBC的面积,也就求出了四边形BCDF 的面积.同理可根据△DEF∽△AFB,求出△AFB的面积.由此可求出▱ABCD的面积.【解答】(1)证明:∵四边形ABCD是平行四边形,∴∠A=∠C,AB∥CD,∴∠ABF=∠CEB,∴△ABF∽△CEB;(2)解:∵四边形ABCD是平行四边形,∴AD∥BC,AB平行且等于CD,∴△DEF∽△CEB,△DEF∽△ABF,∵DE=CD,∴=()2=, =()2=,∵S△DEF=2,∴S△CEB=18,S△ABF=8,∴S四边形BCDF=S△BCE﹣S△DEF=16,∴S四边形ABCD=S四边形BCDF+S△ABF=16+8=24.【点评】本题主要考查了平行四边形的性质,相似三角形的判定和性质,熟悉相似三角形的性质和判定是解决问题的关键.21.如图,已知在△ABC中,∠A=90°(1)请用圆规和直尺作出⊙P,使圆心P在AC边上,且与AB,BC两边都相切(保留作图痕迹,不写作法和证明).(2)若∠B=60°,AB=3,求⊙P的面积.【考点】作图—复杂作图;切线的性质.【专题】作图题.【分析】(1)作∠ABC的平分线交AC于P,再以P为圆心PA为半径即可作出⊙P;(2)根据角平分线的性质得到∠ABP=30°,根据三角函数可得AP=,再根据圆的面积公式即可求解.【解答】解:(1)如图所示,则⊙P为所求作的圆.(2)∵∠B=60°,BP平分∠ABC,∴∠ABP=30°,∵tan∠ABP=,∴AP=,∴S⊙P=3π.【点评】本题主要考查了作图﹣复杂作图,角平分线的性质,即角平分线上的点到角两边的距离相等.同时考查了圆的面积.22.某市“艺术节”期间,小明、小亮都想去观看茶艺表演,但是只有一X茶艺表演门票,他们决定采用抽卡片的办法确定谁去.规则如下:将正面分别标有数字1、2、3、4的四X卡片(除数字外其余都相同)洗匀后,背面朝上放置在桌面上,随机抽出一X记下数字后放回;重新洗匀后背面朝上放置在桌面上,再随机抽出一X记下数字.如果两个数字之和为奇数,则小明去;如果两个数字之和为偶数,则小亮去.(1)请用列表或画树状图的方法表示抽出的两X卡片上的数字之和的所有可能出现的结果;(2)你认为这个规则公平吗?请说明理由.【考点】游戏公平性;列表法与树状图法.【专题】应用题;创新题型.【分析】(1)用列表法将所有等可能的结果一一列举出来即可;(2)求得两人获胜的概率,若相等则公平,否则不公平.【解答】解:(1)根据题意列表得:1 2 3 41 2 3 4 52 3 4 5 63 4 5 6 74 5 6 7 8(2)由列表得:共16种情况,其中奇数有8种,偶数有8种,∴和为偶数和和为奇数的概率均为,∴这个游戏公平.【点评】本题考查了游戏公平性及列表与列树形图的知识,难度不大,是经常出现的一个知识点.23.如图,一次函数y=kx+b与反比例函数y=的图象交于A(n,3),B(3,﹣1)两点.(1)求一次函数与反比例函数的解析式;(2)根据所给条件,请直接写出不等式kx+b>的解集;(3)过点B作BC⊥x轴,垂足为C,求△ABC的面积S.【考点】反比例函数与一次函数的交点问题.【分析】(1)将点B的坐标带入反比例函数解析式中即可求出m的值,从而得出反比例函数解析式,再将点A的坐标带入反比例函数解析式即可求出n值,由点A、B的坐标利用待定系数法即可求出一次函数解析式;(2)观察两函数图象,结合点A、B的坐标,即可得出结论;(3)由BC⊥x轴结合点B的坐标可得出BC的长度,再根据点A的坐标利用三角形的面积公式即可得出结论.【解答】解:(1)将点B(3,﹣1)带入反比例函数解析式中,得:﹣1=,解得:m=﹣3,∴反比例函数解析式为y=﹣;∵点A(n,3)在反比例函数y=﹣的图象上,∴3=﹣,解得:n=﹣1,即点A的坐标为(﹣1,3).将点A(﹣1,3),点B(3,﹣1)带入到一次函数解析式中,得:,解得:.∴一次函数解析式为y=﹣x+2.(2)观察函数图象发现:当x<﹣1或0<x<3时,一次函数图象在反比例函数图象上方,∴不等式kx+b>的解集为x<﹣1或0<x<3.(3)∵BC⊥x轴,B(3,﹣1),∴BC=1,∵A(﹣1,3),∴S△ABC=BC•(x B﹣x A)=×1×4=2.【点评】本题考查了反比例函数与一次函数交点的问题、待定系数法求函数解析式以及三角形的面积公式,解题的关键是:(1)求出点A的坐标;(2)结合函数图象解不等式;(3)利用三角形的面积公式求出面积.本题属于基础题,难度不大,解决该题型题目时,求出点的坐标,利用待定系数法求出函数解析式是关键.24.为方便市民通行,某广场计划对坡角为30°,坡长为60米的斜坡AB进行改造,在斜坡中点D 处挖去部分坡体(阴影表示),修建一个平行于水平线CA的平台DE和一条新的斜坡BE.(1)若修建的斜坡BE的坡角为36°,则平台DE的长约为多少米?(2)在距离坡角A点27米远的G处是商场主楼,小明在D点测得主楼顶部H 的仰角为30°,那么主楼GH高约为多少米?(结果取整数,参考数据:sin36°=0.6,cos36°=0.8,tan36°=0.7,=1.7)【考点】解直角三角形的应用-坡度坡角问题.【分析】(1)根据题意得出,∠BEF=36°,进而得出EF的长,即可得出答案;(2)利用在Rt△DPA中,DP=AD,以及PA=AD•cos30°进而得出DM的长,利用HM=DM•tan30°得出即可.【解答】解:(1)∵修建的斜坡BE的坡角(即∠BEF)为36°,∴∠BEF=36°,∵∠DAC=∠BDF=30°,AD=BD=30,∴BF=BD=15,DF=15≈25.98,EF==≈故:DE=DF﹣EF=4(米);(2)过点D作DP⊥AC,垂足为P.在Rt△DPA中,DP=AD=×30=15,PA=AD•cos30°=×30=15,在矩形DPGM中,MG=DP=15,DM=PG=15+27,在Rt△DMH中,HM=DM•tan30°=×(15+27)=15+9,GH=HM+MG=15+15+9≈45米.答:建筑物GH高约为45米.【点评】此题主要考查了解直角三角形中坡角问题,根据图象构建直角三角形,进而利用锐角三角函数得出是解题关键.25.(1)如图1,正方形ABCD和正方形DEFG,G在AD边上,E在CD的延长线上.求证:AE=CG,AE⊥CG;(2)如图2,若将图1中的正方形DEFG绕点D顺时针旋转角度θ(0°<θ<90°),此时AE=CG 还成立吗?若成立,请给予证明;若不成立,请说明理由;(3)如图3,当正方形DEFG绕点D顺时针旋转45°时,延长CG交AE于点H,当AD=4,DG=时,求线段CH的长.【考点】四边形综合题.【分析】(1)先判断出△ADE≌△CDG,然后用互余判断出垂直;(2)先判断出△ADE≌△CDG,然后用互余判断出垂直;(3)先判断出△ADE≌△CDG,然后用互余判断出垂直,然后用勾股定理计算出CM,AM最后用相似即可.【解答】解:(1)在△ADE和△CDG中,,∴△ADE≌△CDG,∴AE=CG,∠AED=∠CGD,∵∠DCG+∠CGD=90°,∴∠DCG+∠AED=90°,∴AE⊥CG.(2)∵∠CDG+∠ADG=90°,∠ADE+∠ADG=90°,∴∠CDG=∠ADE在△ADE和△CDG中,,∴△ADE≌△CDG,∴AE=CG,∠AED=∠CGD,∵∠DCG+∠CGD=90°,∴∠DCG+∠AED=90°,∴AE⊥CG.(3)如图,过点E作AD的垂线,垂足为N,连接AC,在△ADE和△CDG中,,∴△ADE≌△CDG,∴∠EAD=∠DCM∴tan∠DCM=,∴DM=CD=∴CM==,AM=AD﹣DM=∵△CMD∽△AMH,∴,∴AH=,∴CH==.【点评】此题是四边形综合题,主要考查了全等三角形的性质,判定,利用互余判断出直角,勾股定理,三角函数的意义,解本题的关键是判定三角形全等.26.如图,抛物线y=ax2+bx+c(a≠0)经过点A(﹣3,0),B(1,0),C(0,3).(1)求抛物线的解析式;(2)点P为抛物线上一个动点,记△PAC的面积为S.①当点P与抛物线顶点D重合时,求△PAC的面积S;②若点P位于第二象限,试求△PAC面积S的最大值及此时点P的坐标;(3)在y轴上是否存在点M,使得△ADM是等腰直角三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)根据待定系数法,可得函数解析式;(2)根据平行于y轴直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得PN的长,根据面积的和差,可得二次函数,根据二次函数的性质,可得答案;(3)根据余角的性质,可得∠MAO=∠DMN,根据全等三角形的判定与性质,可得答案.【解答】解:(1)将A、B、C点的坐标代入函数解析式,得,解得,抛物线的解析式为:y=﹣x2﹣2x+3;(2)①如图1,y=﹣x2﹣2x+3=﹣(x+1)2+4,即D点坐标为(﹣1,4),AC的解析式为y=x+3,当x=﹣1时,y=2,即N点坐标为(﹣1,2),ND=4﹣2=2.S△ADC=ND•OA=×2×3=3;②如图2,由上题可知直线AC的解析式是:y=x+3设P点的坐标为(x,﹣x2﹣2x+3),则点N的坐标为(x,x+3)∴PN=PE﹣NE=(﹣x2﹣2x+3)﹣(x+3)=﹣x2﹣3x∵S△APC=S△ANP+S△P∴S=PN•OA=×3(﹣x2﹣3x)=﹣(x+)2+∴当x=﹣时,S有最大值,此时点P的坐标(﹣,);(3)如图3,由△ADM是等腰直角三角形,得AM=DM,∠AMD=90°,由∠MAO+∠AMO=90°,∠AMO+∠DMN=90°,∴∠MAO=∠DMN.在△MAO和△DMN中,,∴△MAO≌△DMN(AAS),∴OM=DN=1,∴M(0,1).【点评】本题考查了二次函数综合题,利用待定系数法求函数解析式;利用面积的和差得出二次函数是解题关键;利用全等三角形的判定与性质得出OM=DN是解题关键.。
中考数学模拟试卷一(含解析)-人教版初中九年级全册数学试题
某某市铜梁区巴川中学2016届中考数学模拟试卷一一、选择题(本大题共12个小题,每小题4分,共48分)1.的算术平方根是()A.2 B.±2C.D.±2.计算(﹣2a2b)3的结果是()A.﹣6a6b3B.﹣8a6b3C.8a6b3 D.﹣8a5b33.下列四个图形中,既是轴对称图形又是中心对称图形的是()A. B.C.D.4.函数y=+中自变量x的取值X围是()A.x≤2 B.x≤2且x≠1C.x<2且x≠1D.x≠15.下列说法不正确的是()A.了解全市中学生对某某“三个名城”含义的知晓度的情况,适合用抽样调查B.若甲组数据方差=0.39,乙组数据方差=0.27,则乙组数据比甲组数据稳定C.某种彩票中奖的概率是,买100X该种彩票一定会中奖D.数据﹣1、1.5、2、2、4的中位数是2.6.如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A.132°B.134°C.136°D.138°7.如图,▱ABCD的周长为20cm,AE平分∠BAD,若CE=2cm,则AB的长度是()A.10cm B.8cm C.6cm D.4cm8.如图,已知AB是⊙O的切线,点A为切点,连接OB交⊙O于点C,∠B=38°,点D是⊙O上一点,连接CD,AD.则∠D等于()A.76° B.38° C.30° D.26°9.甲、乙两人进行慢跑练习,慢跑路程y(米)与所用时间t(分钟)之间的关系如图所示,下列说法错误的是()A.甲乙两人8分钟各跑了800米B.前2分钟,乙的平均速度比甲快C.5分钟时两人都跑了500米D.甲跑完800米的平均速度为100米∕分10.关于x的一元二次方程(m﹣2)x2+2x+1=0有实数根,则m的取值X围是()A.m≤3 B.m<3 C.m<3且m≠2D.m≤3且m≠211.如图,分别用火柴棍连续搭建正三角形和正六边形,公共边只用一根火柴棍.如果搭建正三角形和正六边形共用了2016根火柴棍,并且正三角形的个数比正六边形的个数多6个,那么能连续搭建正三角形的个数是()A.222 B.280 C.286 D.29212.如图,在平面直角坐标系中,正方形ABCD的顶点O在坐标原点,点B的坐标为(1,4),点A 在第二象限,反比例函数y=的图象经过点A,则k的值是()A.﹣2 B.﹣4 C.﹣D.二、填空题(本大题6个小题,每小题4分,共24分)13.第十八届中国(某某)国际投资暨全球采购会上,某某共签约528个项目,签约金额602 000 000 000元.把数字602 000 000 000用科学记数法表示为.14.计算:( +1)0+(﹣1)2015+sin45°﹣()﹣1.15.如图,已知D、E分别是△ABC的边AB和AC上的点,DE∥BC,BE与CD相交于点F,如果AE=1,CE=2,那么EF:BF等于.16.如图,Rt△ABC中,∠C=90°,AC=BC=4,点D是线段AB的中点,分别以点A,B为圆心,AD为半径画弧,分别交AC,BC于点E,F.则阴影部分面积为(结果保留π).17.从﹣3,﹣2,﹣1,0,1,2,3这七个数中随机抽取一个数记为a,则a的值是不等式组的解,但不是方程x2﹣3x+2=0的实数解的概率为.18.如图,在平面直角坐标系中,点P的坐标为(0,4),直线y=x﹣3与x轴、y轴分别交于点A,B,点M是直线AB上的一个动点,则PM长的最小值为.三、解答题(本大题2个小题,共14分)19.如图,点C,E,F,B在同一直线上,点A,D在BC异侧,AB∥CD,AE=DF,∠A=∠D.求证:AB=CD.20.为了解外来务工子女就学情况,某校对七年级各班级外来务工子女的人数情况进行了统计,发现各班级中外来务工子女的人数有1名、2名、3名、4名、5名、6名共六种情况,并制成如下两幅统计图:(1)求该校七年级平均每个班级有多少名外来务工子女?并将该条形统计图补充完整;(2)学校决定从只有2名外来务工子女的这些班级中,任选两名进行生活资助,请用列表法或画树状图的方法,求出所选两名外来务工子女来自同一个班级的概率.四、解答题(本大题4个小题,共40分)21.化简下列各式(1)(a﹣b)2+(2a﹣b)(a﹣2b)(2).22.现从A,B向甲、乙两地运送蔬菜,A,B两个蔬菜市场各有蔬菜14吨,其中甲地需要蔬菜15吨,乙地需要蔬菜13吨,从A到甲地运费50元/吨,到乙地30元/吨;从B地到甲运费60元/吨,到乙地45元/吨.(1)设A地到甲地运送蔬菜x吨,请完成下表:运往甲地(单位:吨)运往乙地(单位:吨)A xB(2)设总运费为W元,请写出W与x的函数关系式.(3)怎样调运蔬菜才能使运费最少?23.阅读下列材料:(1)关于x的方程x2﹣3x+1=0(x≠0)方程两边同时乘以得:即,(2)a3+b3=(a+b)(a2﹣ab+b2);a3﹣b3=(a﹣b)(a2+ab+b2).根据以上材料,解答下列问题:(1)x2﹣4x+1=0(x≠0),则=, =, =;(2)2x2﹣7x+2=0(x≠0),求的值.24.如图,高36米的楼房AB正对着斜坡CD,点E在斜坡CD的中点处,已知斜坡的坡角(即∠DCG)为30°,AB⊥BC.(1)若点A、B、C、D、E、G在同一个平面内,从点E处测得楼顶A的仰角α为37°,楼底B的俯角β为24°,问点A、E之间的距离AE长多少米?(精确到十分位)(2)现计划在斜坡中点E处挖去部分斜坡,修建一个平行于水平线BC的平台EF和一条新的斜坡DF,使新斜坡DF的坡比为:1.某施工队承接这项任务,为尽快完成任务,增加了人手,实际工作效率提高到原计划的1.5倍,结果比原计划提前2天完成任务,施工队原计划平均每天修建多少米?(参考数据:cos37°≈0.80,tan37°≈0.75,tan24°≈0.45,cos24°≈0.91)五、解答题(本大题2个小题,共24分)25.如图1,△ABC是等腰直角三角形,AC=BC,∠ACB=90°,直线l经过点C,AF⊥l于点F,AE⊥l 于点E,点D是AB的中点,连接ED.(1)求证:△ACF≌△CBE;(2)求证:AF=BE+DE;(3)如图2,将直线l旋转到△ABC的外部,其他条件不变,(2)中的结论是否仍然成立,如果成立请说明理由,如果不成立AF、BE、DE又满足怎样的关系?并说明理由.26.如图,抛物线y=﹣x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).(1)求抛物线的表达式;(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;(3)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.2016年某某市铜梁区巴川中学中考数学模拟试卷(一)参考答案与试题解析一、选择题(本大题共12个小题,每小题4分,共48分)1.的算术平方根是()A.2 B.±2C.D.±【考点】算术平方根.【专题】计算题.【分析】先求得的值,再继续求所求数的算术平方根即可.【解答】解:∵ =2,而2的算术平方根是,∴的算术平方根是,故选:C.【点评】此题主要考查了算术平方根的定义,解题时应先明确是求哪个数的算术平方根,否则容易出现选A的错误.2.计算(﹣2a2b)3的结果是()A.﹣6a6b3B.﹣8a6b3C.8a6b3 D.﹣8a5b3【考点】幂的乘方与积的乘方.【分析】根据幂的乘方和积的乘方的运算法则求解.【解答】解:(﹣2a2b)3=﹣8a6b3.故选B.【点评】本题考查了幂的乘方和积的乘方,解答本题的关键是掌握幂的乘方和积的乘方的运算法则.3.下列四个图形中,既是轴对称图形又是中心对称图形的是()A. B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形.故错误;B、不是轴对称图形,是中心对称图形.故错误;C、不是轴对称图形,是中心对称图形.故错误;D、是轴对称图形,也是中心对称图形.故正确.故选D.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.函数y=+中自变量x的取值X围是()A.x≤2 B.x≤2且x≠1C.x<2且x≠1D.x≠1【考点】函数自变量的取值X围.【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解.【解答】解:根据二次根式有意义,分式有意义得:2﹣x≥0且x﹣1≠0,解得:x≤2且x≠1.故选:B.【点评】本题考查函数自变量的取值X围,涉及的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.5.下列说法不正确的是()A.了解全市中学生对某某“三个名城”含义的知晓度的情况,适合用抽样调查B.若甲组数据方差=0.39,乙组数据方差=0.27,则乙组数据比甲组数据稳定C.某种彩票中奖的概率是,买100X该种彩票一定会中奖D.数据﹣1、1.5、2、2、4的中位数是2.【考点】全面调查与抽样调查;中位数;方差;概率的意义.【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似;以及方差的意义,概率公式中位数的定义对各选项分析判断后利用排除法求解.【解答】解:A、了解全市中学生对某某“三个名城”含义的知晓度的情况,知道大概情况即可,适合用抽样调查,正确,故本选项错误;B、0.39<0.27,乙组数据比甲组数据稳定,正确,故本选项错误;C、概率是针对数据非常多时,趋近的一个数,所以概率是,并不能说买100X该种彩票就一定能中奖,错误,故本选项正确;D、五个数按照从小到大排列,第3个数是2,所以,中位数是2,正确,故本选项错误.故选C.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查,方差的意义,概率的意义以及中位数的定义.6.如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A.132°B.134°C.136°D.138°【考点】平行线的性质.【分析】过E作EF∥AB,求出AB∥CD∥EF,根据平行线的性质得出∠C=∠FEC,∠BAE=∠FEA,求出∠BAE,即可求出答案.【解答】解:过E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠C=∠FEC,∠BAE=∠FEA,∵∠C=44°,∠AEC为直角,∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,∴∠1=180°﹣∠BAE=180°﹣46°=134°,故选B.【点评】本题考查了平行线的性质的应用,能正确作出辅助线是解此题的关键.7.如图,▱ABCD的周长为20cm,AE平分∠BAD,若CE=2cm,则AB的长度是()A.10cm B.8cm C.6cm D.4cm【考点】平行四边形的性质.【分析】根据平行四边形的性质得出AB=CD,AD=BC,AD∥BC,推出∠DAE=∠BAE,求出∠BAE=∠AEB,推出AB=BE,设AB=CD=xcm,则AD=BC=(x+2)cm,得出方程x+x+2=10,求出方程的解即可.【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,AD∥BC,∴∠DAE=∠BAE,∵AE平分∠BAD,∴∠DAE=∠BAE,∴∠BAE=∠AEB,∴AB=BE,设AB=CD=xcm,则AD=BC=(x+2)cm,∵▱ABCD的周长为20cm,∴x+x+2=10,解得:x=4,即AB=4cm,故选D.【点评】本题考查了平行四边形的在,平行线的性质,等腰三角形的判定的应用,解此题的关键是能推出AB=BE,题目比较好,难度适中.8.如图,已知AB是⊙O的切线,点A为切点,连接OB交⊙O于点C,∠B=38°,点D是⊙O上一点,连接CD,AD.则∠D等于()A.76° B.38° C.30° D.26°【考点】切线的性质.【专题】计算题.【分析】先根据切线的性质得到∠OAB=90°,再利用互余计算出∠AOB=52°,然后根据圆周角定理求解.【解答】解:∵AB是⊙O的切线,∴OA⊥AB,∴∠OAB=90°,∵∠B=38°,∴∠AOB=90°﹣38°=52°,∴∠D=∠AOB=26°.故选D.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了圆周角定理的运用.9.甲、乙两人进行慢跑练习,慢跑路程y(米)与所用时间t(分钟)之间的关系如图所示,下列说法错误的是()A.甲乙两人8分钟各跑了800米B.前2分钟,乙的平均速度比甲快C.5分钟时两人都跑了500米D.甲跑完800米的平均速度为100米∕分【考点】函数的图象.【专题】探究型.【分析】根据函数图象可以判断各选项是否正确,从而可以解答本题.【解答】解:由图可得,甲8分钟跑了800米,乙8分钟跑了700米,故选项A错误;前2分钟,乙跑了300米,甲跑的路程小于300米,从而可知前2分钟,乙的平均速度比甲快,故选项B正确;由图可知,5分钟时两人都跑了500米,故选项C正确;由图可知,甲8分钟跑了800米,可得甲跑完800米的平均速度为100米/分,故选项D正确;故选A.【点评】本题考查函数的图象,解题的关键是利用数形结合的思想判断选项中的说法是否正确.10.关于x的一元二次方程(m﹣2)x2+2x+1=0有实数根,则m的取值X围是()A.m≤3 B.m<3 C.m<3且m≠2D.m≤3且m≠2【考点】根的判别式;一元二次方程的定义.【分析】根据一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac的意义得到m﹣2≠0且△≥0,即22﹣4×(m﹣2)×1≥0,然后解不等式组即可得到m的取值X围.【解答】解:∵关于x的一元二次方程(m﹣2)x2+2x+1=0有实数根,∴m﹣2≠0且△≥0,即22﹣4×(m﹣2)×1≥0,解得m≤3,∴m的取值X围是m≤3且m≠2.故选:D.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.11.如图,分别用火柴棍连续搭建正三角形和正六边形,公共边只用一根火柴棍.如果搭建正三角形和正六边形共用了2016根火柴棍,并且正三角形的个数比正六边形的个数多6个,那么能连续搭建正三角形的个数是()A.222 B.280 C.286 D.292【考点】规律型:图形的变化类.【专题】规律型.【分析】设连续搭建三角形x个,连续搭建正六边形y个,根据搭建三角形和正六边形共用了2016根火柴棍,并且三角形的个数比正六边形的个数多6个,列方程组求解【解答】解:设连续搭建三角形x个,连续搭建正六边形y个.由题意得,,解得:.故选D.【点评】本题考查了二元一次方程组的应用及图形的变化类问题,解答本题的关键是读懂题意,仔细观察图形,找出合适的等量关系,列方程组求解.12.如图,在平面直角坐标系中,正方形ABCD的顶点O在坐标原点,点B的坐标为(1,4),点A 在第二象限,反比例函数y=的图象经过点A,则k的值是()A.﹣2 B.﹣4 C.﹣D.【考点】反比例函数图象上点的坐标特征.【分析】作AD⊥x轴于D,CE⊥x轴于E,先通过证得△AOD≌△OCE得出AD=OE,OD=CE,设A(x,),则C(,﹣x),根据正方形的性质求得对角线解得F的坐标,根据直线OB的解析式设出直线AC 的解析式为:y=﹣x+b,代入交点坐标求得解析式,然后把A,C的坐标代入即可求得k的值.【解答】解:作AD⊥x轴于D,CE⊥x轴于E,∵∠AOC=90°,∴∠AOD+∠COE=90°,∵∠AOD+∠OAD=90°,∴∠OAD=∠COE,在△AOD和△OCE中,,∴△AOD≌△OCE(AAS),∴AD=OE,OD=CE,设A(x,),则C(,﹣x),∵点B的坐标为(1,4),∴OB==,直线OB为:y=4x,∵AC和OB互相垂直平分,∴它们的交点F的坐标为(,2),设直线AC的解析式为:y=﹣x+b,代入(,2)得,2=﹣×+b,解得b=,直线AC的解析式为:y=﹣x+,把A(x,),C(,﹣x)代入得,解得k=﹣.故选C.【点评】本题考查了反比例函数图象上点的坐标特征,待定系数法求解析式,正方形的性质,三角形求得的判定和性质,熟练掌握正方形的性质是解题的关键.二、填空题(本大题6个小题,每小题4分,共24分)13.第十八届中国(某某)国际投资暨全球采购会上,某某共签约528个项目,签约金额602 000 000 000元.把数字602 000 000 000用科学记数法表示为 6.02×1011.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:602 000 000 000=6.02×1011,故答案为:6.02×1011.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.计算:( +1)0+(﹣1)2015+sin45°﹣()﹣1.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题;实数.【分析】原式第一项利用零指数幂法则计算,第二项利用乘方的意义计算,第三项利用特殊角的三角函数值计算,最后一项利用负整数指数幂法则计算即可得到结果.【解答】解:原式=1﹣1+1﹣3=﹣2.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.15.如图,已知D、E分别是△ABC的边AB和AC上的点,DE∥BC,BE与CD相交于点F,如果AE=1,CE=2,那么EF:BF等于.【考点】相似三角形的判定与性质.【分析】由DE∥B C,证得△ADE∽△ABC,根据相似三角形的性质得到=,由于△DEF∽△BCF,根据相似三角形的性质即可得到结论.【解答】解:∵AE=1,CE=2,∴AC=3,∵DE∥BC,∴△ADE∽△ABC,∴=,∵DE∥BC,∴△DEF∽△BCF,∴=,故答案为:1:3.【点评】本题考查了相似三角形的判定和性质,熟练正确相似三角形的判定和性质是解题的关键.16.如图,Rt△ABC中,∠C=90°,AC=BC=4,点D是线段AB的中点,分别以点A,B为圆心,AD为半径画弧,分别交AC,BC于点E,F.则阴影部分面积为8﹣2π(结果保留π).【考点】扇形面积的计算.【分析】利用等腰直角三角形的性质得出AD,BD的长,再利用扇形面积求法以及直角三角形面积求法得出答案.【解答】解:∵∠C=90°,AC=BC=4,点D是线段AB的中点,∴AD=BD=2,∴阴影部分面积为:AC•BC﹣2×=8﹣2π.故答案为:8﹣2π.【点评】此题主要考查了扇形面积求法以及等腰直角三角形的性质,得出AD,BD的长是解题关键.17.从﹣3,﹣2,﹣1,0,1,2,3这七个数中随机抽取一个数记为a,则a的值是不等式组的解,但不是方程x2﹣3x+2=0的实数解的概率为.【考点】概率公式;根的判别式;解一元一次不等式组.【分析】首先解不等式组,即可求得a的取值X围,解一元二次方程x2﹣3x+2=0,可求得a的值,然后直接利用概率公式求解即可求得答案.【解答】解:,由①得:x>﹣2,由②得:x>﹣,∵a的值是不等式组的解,∴a=0,1,2,3,∵x2﹣3x+2=0,∴(x﹣1)(x﹣2)=0,解得:x1=1,x2=2,∵a不是方程x2﹣3x+2=0的实数解,∴a=0或3;∴a的值是不等式组的解,但不是方程x2﹣3x+2=0的实数解的概率为:.故答案为:.【点评】此题考查了概率公式的应用、不等式组的解集以及一元二次方程的解法.用到的知识点为:概率=所求情况数与总情况数之比.18.如图,在平面直角坐标系中,点P的坐标为(0,4),直线y=x﹣3与x轴、y轴分别交于点A,B,点M是直线AB上的一个动点,则PM长的最小值为.【考点】一次函数图象上点的坐标特征;垂线段最短.【分析】认真审题,根据垂线段最短得出PM⊥AB时线段PM最短,分别求出PB、OB、OA、AB的长度,利用△PBM∽△ABO,即可求出本题的答案.【解答】解:如图,过点P作PM⊥AB,则:∠PMB=90°,当PM⊥AB时,PM最短,因为直线y=x﹣3与x轴、y轴分别交于点A,B,可得点A的坐标为(4,0),点B的坐标为(0,﹣3),在Rt△AOB中,AO=4,BO=3,AB==5,∵∠BMP=∠AOB=90°,∠B=∠B,PB=OP+OB=7,∴△PBM∽△ABO,∴=,即:,所以可得:PM=.【点评】本题主要考查了垂线段最短,以及三角形相似的性质与判定等知识点,是综合性比较强的题目,注意认真总结.三、解答题(本大题2个小题,共14分)19.如图,点C,E,F,B在同一直线上,点A,D在BC异侧,AB∥CD,AE=DF,∠A=∠D.求证:AB=CD.【考点】全等三角形的判定与性质.【专题】证明题.【分析】根据平行线的性质得出∠B=∠C,再根据AAS证出△ABE≌△DCF,从而得出AB=CD.【解答】解:∵AB∥CD,∴∠B=∠C,在△ABE和△DCF中,,∴△ABE≌△DCF,∴AB=CD.【点评】本题考查了全等三角形的判定与性质,用到的知识点是平行线的性质,全等三角形的判定和性质,关键是根据平行线的性质证出∠B=∠C.20.为了解外来务工子女就学情况,某校对七年级各班级外来务工子女的人数情况进行了统计,发现各班级中外来务工子女的人数有1名、2名、3名、4名、5名、6名共六种情况,并制成如下两幅统计图:(1)求该校七年级平均每个班级有多少名外来务工子女?并将该条形统计图补充完整;(2)学校决定从只有2名外来务工子女的这些班级中,任选两名进行生活资助,请用列表法或画树状图的方法,求出所选两名外来务工子女来自同一个班级的概率.【考点】列表法与树状图法;扇形统计图;条形统计图.【分析】(1)根据外来务工子女有4名的班级占20%,可求得有外来务工子女的总班级数,再减去其它班级数,即可补全统计图;(2)根据班级个数和班级人数,求出总的外来务工子女数,再除以总班级数,即可得出答案;(3)根据(1)可知,只有2名外来务工子女的班级有2个,共4名学生,再设A1,A2来自一个班,B1,B2来自一个班,列出树状图可得出来自一个班的共有4种情况,再根据概率公式即可得出答案.【解答】解:(1)该校班级个数为4÷20%=20(个),只有2名外来务工子女的班级个数为:20﹣(2+3+4+5+4)=2(个),条形统计图补充完整如下该校平均每班外来务工子女的人数为:(1×2+2×2+3×3+4×4+5×5+6×4)÷20=4(个);(2)由(1)得只有2名外来务工子女的班级有2个,共4名学生,设A1,A2来自一个班,B1,B2来自一个班,画树状图如图所示;由树状图可知,共有12种可能的情况,并且每种结果出现的可能性相等,其中来自一个班的共有4种情况,则所选两名外来务工子女来自同一个班级的概率为: =.【点评】本题考查了条形统计图和扇形统计图、树状图的画法以及规律公式;读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.四、解答题(本大题4个小题,共40分)21.化简下列各式(1)(a﹣b)2+(2a﹣b)(a﹣2b)(2).【考点】分式的混合运算;整式的混合运算.【专题】计算题.【分析】(1)利用乘法公式展开,然后合并同类项即可;(2)先把括号内通分后进行同分母的减法运算,再把分子分母因式分解和除法运算化为乘法运算,然后约分即可.【解答】解:(1)原式=a2﹣2ab+b2+2a2﹣ab﹣4ab+2b2=3a2﹣7ab+3b2;(2)原式=、====.【点评】本题考查了分式的混合运算:分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的.最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.也考查了整式的混合运算.22.现从A,B向甲、乙两地运送蔬菜,A,B两个蔬菜市场各有蔬菜14吨,其中甲地需要蔬菜15吨,乙地需要蔬菜13吨,从A到甲地运费50元/吨,到乙地30元/吨;从B地到甲运费60元/吨,到乙地45元/吨.(1)设A地到甲地运送蔬菜x吨,请完成下表:运往甲地(单位:吨)运往乙地(单位:吨)A x 14﹣xB 15﹣x x﹣1(2)设总运费为W元,请写出W与x的函数关系式.(3)怎样调运蔬菜才能使运费最少?【考点】一次函数的应用.【专题】压轴题.【分析】(1)根据题意A,B两个蔬菜市场各有蔬菜14吨,其中甲地需要蔬菜15吨,乙地需要蔬菜13吨,可得解.(2)根据从A到甲地运费50元/吨,到乙地30元/吨;从B地到甲运费60元/吨,到乙地45元/吨可列出总费用,从而可得出答案.(3)首先求出x的取值X围,再利用w与x之间的函数关系式,求出函数最值即可.【解答】解:(1)如图所示:运往甲地(单位:吨)运往乙地(单位:吨)A x 14﹣xB 15﹣x x﹣1(2)由题意,得W=50x+30(14﹣x)+60(15﹣x)+45(x﹣1)=5x+1275(1≤x≤14).(3)∵A,B到两地运送的蔬菜为非负数,∴,解不等式组,得:1≤x≤14,在W=5x+1275中,∵k=5>0,∴W随x增大而增大,∴当x最小为1时,W有最小值,∴当x=1时,A:x=1,14﹣x=13,B:15﹣x=14,x﹣1=0,即A向甲地运1吨,向乙地运13吨,B向甲地运14吨,向乙地运0吨才能使运费最少.【点评】本题考查了利用一次函数的有关知识解答实际应用题,一次函数是常用的解答实际问题的数学模型,是中考的常见题型,同学们应重点掌握.23.阅读下列材料:(1)关于x的方程x2﹣3x+1=0(x≠0)方程两边同时乘以得:即,(2)a3+b3=(a+b)(a2﹣ab+b2);a3﹣b3=(a﹣b)(a2+ab+b2).根据以上材料,解答下列问题:(1)x2﹣4x+1=0(x≠0),则= 4 , = 14 , = 194 ;(2)2x2﹣7x+2=0(x≠0),求的值.【考点】一元二次方程的解.【专题】阅读型.【分析】(1)模仿例题利用完全平方公式即可解决.(2)模仿例题利用完全平方公式以及立方和公式即可.【解答】解;(1)∵x2﹣4x+1=0,∴x+=4,∴(x+)2=16,∴x2+2+=16,∴x2+=14,∴(x2+)2=196,∴x4++2=196,∴x4+=194.故答案为4,14,194.(2)∵2x2﹣7x+2=0,∴x+=,x2+=,∴=(x+)(x2﹣1+)=×(﹣1)=.【点评】本题考查一元一次方程的解、完全平方公式、立方和公式,解决问题的关键是灵活应用完全平方公式,记住两边平方不能漏项(利用完全平方公式整体平方),属于中考常考题型.24.如图,高36米的楼房AB正对着斜坡CD,点E在斜坡CD的中点处,已知斜坡的坡角(即∠DCG)为30°,AB⊥BC.(1)若点A、B、C、D、E、G在同一个平面内,从点E处测得楼顶A的仰角α为37°,楼底B的俯角β为24°,问点A、E之间的距离AE长多少米?(精确到十分位)(2)现计划在斜坡中点E处挖去部分斜坡,修建一个平行于水平线BC的平台EF和一条新的斜坡DF,使新斜坡DF的坡比为:1.某施工队承接这项任务,为尽快完成任务,增加了人手,实际工作效率提高到原计划的1.5倍,结果比原计划提前2天完成任务,施工队原计划平均每天修建多少米?(参考数据:cos37°≈0.80,tan37°≈0.75,tan24°≈0.45,cos24°≈0.91)【考点】解直角三角形的应用-坡度坡角问题;分式方程的应用;解直角三角形的应用-仰角俯角问题.【分析】(1)延长FE交AB于M,设ME=x,根据直角三角形函数得出AM=tanα•x,BM=tanβ•x,然后根据tanα•x+tanβ•x=36,即可求得EM的长,然后通过余弦函数即可求得AE;(2)根据BM=NG=DN,得到DN的长,然后解直角三角形函数求得EN和FN,进而求得EF和DF的长,然后根据题意列出方程,解方程即可求得.【解答】解:(1)延长FE交AB于M,∵EF∥BC,∴MN⊥AB,MN⊥DG,设ME=x,∴AM=tanα•x,BM=tanβ•x,∵AB=36,∴tanα•x+tanβ•x=36,∴tan37°x+tan24°x=36,0.75x+0.45x=36,解得x=30,∴AE==≈37.5(米);(2)延长EF交DG于N,∵GN=BM=tan24°•30=13.5,DE=CE,EF∥BC,∴DN=GN=13.5(米),∵∠DCG=30°,∴∠DEN=30°,∴EN=DN•cot30°=13.5×,∵=,∴∠DFN=60°,∴∠EDF=30°,FN=DN•cot60°=13.5×,∴DF=EF=EN﹣FN=13.5×,∴EF+DF=27×=18,设施工队原计划平均每天修建y米,根据题意得, =+2,解得x=3(米),经检验,是方程的根,答:施工队原计划平均每天修建3米.【点评】本题考查了解直角三角形的应用,题目中涉及到了仰俯角和坡度角的问题,解题的关键是构造直角三角形.五、解答题(本大题2个小题,共24分)25.如图1,△ABC是等腰直角三角形,AC=BC,∠ACB=90°,直线l经过点C,AF⊥l于点F,AE⊥l 于点E,点D是AB的中点,连接ED.(1)求证:△ACF≌△CBE;(2)求证:AF=BE+DE;(3)如图2,将直线l旋转到△ABC的外部,其他条件不变,(2)中的结论是否仍然成立,如果成立请说明理由,如果不成立AF、BE、DE又满足怎样的关系?并说明理由.【考点】全等三角形的判定与性质;等腰直角三角形.【分析】(1)根据垂直的定义得到∠BEC=∠ACB=90°,根据全等三角形的性质得到∠EBC=∠CAF,。
2016年中考模拟数学试题(附答案)
2016年中考模拟数学试题注意事项:1.本试卷满分130分,考试时间为120分钟.2.卷中除要求近似计算的结果取近似值外,其余各题均应给出精确结果. 一、细心填一填(本大题共有14小题,16个空,每空2分,共32分.请把结果直接填在题中的横线上.只要你理解概念,仔细运算,相信你一定会填对的!) 1.13-的相反数是 ,16的算术平方根是 . 2. 分解因式:29x -= .3. 据无锡市假日办发布的信息,“五一”黄金周无锡旅游市场接待量出现罕见的“井喷”,1日至7日全市旅游总收入达23.21亿元,把这一数据用科学记数法表示为 亿元. 4.如果x =1是方程x a x 243-=+的解,那么a = . 5. 函数11y x =-中,自变量x 的取值范围是 . 6. 不等式组31530x x -<⎧⎨+≥⎩的解集是 .7. 如图,两条直线AB 、CD 相交于点O ,若∠1=35o,则∠2= °.8. 如图,D 、E 分别是△ABC 的边AC 、AB 上的点,请你添加一个条件: , 使△ADE 与△ABC 相似.9. 如图,在⊙O 中,弦AB =1.8cm ,圆周角∠ACB =30︒,则⊙O 的直径为__________cm .10. 若两圆的半径是方程2780x x -+=的两个根,且圆心距等于7,则两圆的位置关系是___________________.11. 为了调查太湖大道清扬路口某时段的汽车流量,交警记录了一个星期同一时段通过该路口的汽车辆数,记录的情况如下表:那么这一个星期在该时段通过该路口的汽车平均每天为_______辆.12. 无锡电视台“第一看点”节目从接到的5000个热线电话中,抽取10名“幸运观众”,小颖打通了一次热线电话,她成为“幸运观众”的概率是 .A (第7题) E D CB A (第8题) (第9题) 班级 姓名 准考号 ------------------------------------------------------------------------------------------------------------------------------------------------------------------- (密封线内不准答题)13. 小明自制一个无底圆锥形纸帽,圆锥底面圆的半径为5cm ,母线长为16cm ,那么围成这个纸帽的面积(不计接缝)是_________2cm (结果保留三个有效数字). 14. 用黑白两种颜色的正方形纸片,按如下规律拼成一列图案,则(1)第5个图案中有白色纸片 张;(2)第n 个图案中有白色纸片 张.二、精心选一选(本大题共有6小题,每小题3分,共18分.在每小题给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填在题后的括号内.只要你掌握概念,认真思考,相信你一定会选对的!)15.下列运算中,正确的是 ( ) A .4222a a a =+ B .236a a a •= C .236a a a =÷ D .()4222b a ab =16.下列运算正确的是 ( ) A.y yx y x y=----B.2233x y x y +=+C.22x y x y x y+=++ D.221y x x y x y-=--+17.某物体的三视图如下,那么该物体形状可能是 ( )A .长方体B . 圆锥体C .立方体D . 圆柱体 18.下列事件中,属于随机事件的是 ( ) A .掷一枚普通正六面体骰子所得点数不超过6 B .买一张体育彩票中奖C .太阳从西边落下D .口袋中装有10个红球,从中摸出一个白球. 19.一个钢球沿坡角31o的斜坡向上滚动了5米,此时钢球距地面的高度是( )米 A.5sin 31oB.5cos31oC.5tan31oD.正视图左视图俯视图第3个第2个第1个20.二次函数2y ax bx c =++的图象如图所示,则下列各式:①0abc <;②0a b c ++<;③a c b +>;④2c ba -<中成立的个数是 ( ) A . 1个 B . 2个 C . 3个 D . 4个三、认真答一答(本大题共有8小题,共62分.解答需写出必要的文字说明、演算步骤或证明过程.只要你积极思考,细心运算,你一定会解答正确的!) 21.(本题满分8分)(1)计算:221-⎪⎭⎫ ⎝⎛-ο45sin 2 +121+; (2)解方程:11222=--+x x22. (本题满分6分)已知:如图,△ABC 中,∠ACB =90°,AC =BC ,E 是BC 延长线上的一点,D 为AC 边上的一点,且CE =CD .求证:AE =BDEDC B A 班级 姓名 准考号------------------------------------------------------------------------------------------------------------------------------------------------------------------- (密封线内不准答题)23. (本题满分7分) “石头、剪刀、布”是同学们广为熟悉的游戏,小明和小林在游戏时,双方约定每一次游戏时只能出“石头”、“剪刀”、“布”这三种手势中的一种.假设双方每次都是等可能地出这三种手势.(1)用树状图(或列表法)表示一次游戏中所有可能出现的情况. (2)一次游戏中两人出现不同手势的概率是多少?24. (本题满分7分)如图,点O 、A 、B 的坐标分别为O )0,0(、A )0,3(-、B )2,4(-,将 △OAB 绕点O 顺时针旋转90°得△B A O ''. (1)请在方格中画出△B A O ''; (2)A '的坐标为( , ),B B '= .x25. (本题满分7分)初三(1)班的何谐同学即将毕业,5月底就要填报升学志愿了,为此她就本班同学的升学志愿作了一次调查统计,通过采集数据后,绘制了两幅不完整的统计图,请根据图中提供的信息,解答下列问题: (1)初三(1)班的总人数是多少?(2)请你把图1、图2的统计图补充完整.(3)若何谐所在年级共有620名学生,请你估计一下全年级想就读职高的学生人数.26. (本题满分9分)今年无锡城市建设又有大手笔:首条穿越太湖内湖---蠡湖的湖底隧道将于年底建成.现有甲、乙两工程队从隧道两端同时开挖,第4天时两队挖的隧道长度相等.施工期间,乙队因另有任务提前离开,余下的工程由甲队单独完成,直至隧道挖通.如图是甲、乙两队所挖隧道的长度y (米)与开挖时间t (天)之间的函数图象,请根据图象提供的信息解答下列问题:(1) 蠡湖隧道的全长是多少米?(2) 乙工程队施工多少天时,两队所挖隧道的长相差10米?图1别图2乙甲班级 姓名 准考号 ------------------------------------------------------------------------------------------------------------------------------------------------------------------- (密封线内不准答题)27. (本题满分9分)如图,梯形ABCD 中,AB ∥CD ,∠ABC =ο90,且AB =BC ,以BC 为直径的⊙O 切AD 于E . (1) 试求AEDE的值; (2) 过点E 作EF ∥AB 交BC 于F ,连结EC .若EC CF =1,求梯形ABCD 的面积.28. (本题满分9分)已知:如图,在平面直角坐标系中,点A 和点B 的坐标分别是A )2,0(,B )6,4(-. (1) 在x 轴上找一点C ,使它到点A 、点B 的距离之和(即CA +CB )最小,并求出点C 的坐标.(2) 求过A 、B 、C 三点的抛物线的函数关系式.(3) 把(2)中的抛物线先向右平移1个单位,再沿y 轴方向平移多少个单位,才能使抛物线与直线BC 只有一个公共点?C BAO四、实践与探索(本大题共有2小题,满分18分.只要你开动脑筋,大胆实践,勇于探索,你一定会成功!)29. (本题满分8分)某研究性学习小组在一次研讨时,将一足够大的等边△AEF 纸片的顶点A 与菱形ABCD 的顶点A 重合,AE 、AF 分别与菱形的边BC 、CD 交于点M 、N .纸片由图①所示位置绕点A 逆时针旋转,设旋转角为α(︒≤≤︒600α),菱形ABCD 的边长为4.(1) 该小组一名成员发现:当︒=0α和︒=60α(即图①、图③所示)时,等边△AEF 纸片与菱形ABCD 的重叠部分的面积恰好是菱形面积的一半,于是他们猜想: 在图②所示位置,上述结论仍然成立,即菱形四边形S S AMCN 21=. 你认为他们的猜想成立吗?若成立,给出证明;若不成立,请说明理由.(2) 连结MN ,当旋转角α为多少度时,△AMN 的面积最小?此时最小面积为多少?请说明理由.EBF图③图②B F 图① 班级 姓名 准考号 -------------------------------------------------------------------------------------------------------------------------------------------------------------- (密封线内不准答题)30. (本题满分10分)直线10-=x y 与x 轴、y 轴分别交于A 、B 两点,点P 从B 点出发,沿线段BA 匀速运动至A 点停止;同时点Q 从原点O 出发,沿x 轴正方向匀速运动 (如 图1),且在运动过程中始终保持PO =PQ ,设OQ =x . (1)试用x 的代数式表示BP 的长.(2)过点O 、Q 向直线AB 作垂线,垂足分别为C 、D (如图2),求证:PC =AD .(3)在(2)的条件下,以点P 、O 、Q 、D 为顶点的四边形面积为S ,试求S 与x 的函数关系式,并写出自变量x 的范围.xx初三数学试题参考答案 2016.5一、填空题1.31,4 2.)3)(3(-+x x 3.110321.2⨯ 4.9 5.1≠x 6.23<≤-x 7.145 8.ACABAE AD C AED B ADE =∠=∠∠=∠或或 9.3.6 10.外切 11.90 12.0.002 13.251 14.16, 13+n二、选择题15.D 16.D 17.D 18.B 19.A 20.B 三、解答题21.(1)原式=122224-+⋅- --------(3分) =3 -------(4分)(2)去分母得 )1)(2()2(2)1(2-+=+--x x x x -------(1分) 整理得 042=++x x -------(2分)∵0161<-=∆ -------(3分) ∴原方程无解 -------(4分) 22.∵BC AC = -------(1分) ︒=∠=∠90ACE ACB -------(2分) CD CE = -------(3分)∴△ACE ≌△BCD (SAS ) -------(5分) ∴BD AE = -------(6分) 23.-------(5分)∴P (出现不同手势)=3296= -------(7分)24.(1)图画对 -------(3分) 25.(1)人50%5025=÷ -------(2分) (2))3,0('A -------(5分) (2)图补正确 -------(5分) 102'=BB -------(7分) (3)人2485020620=⨯-------(7分) 26.(1)法①:由图象可知,乙6天挖了480米 法②:设)60(≤≤=t kt y 乙石头剪刀 布石头剪刀 剪刀 布 石头布 剪刀 布 石头 小林 小明∴乙每天挖80米 ∴4天挖320米 (1分) ∴k 6480= 即甲第4天时也挖了320米 ∴80=k ∴甲从第2天开始每天挖米7024180320=-- (2分) ∴t y 80=乙 -----(1分)∴从第2天到第8天甲挖了米420670=⨯ 米时乙320,4==y t故甲共挖420+180=600米 ----(3分) 设b at y +=甲 )82(≤≤t ∴隧道全长600+480=1080米 ----(4分) 则可得 2a+b=1804a+b=32∴70=a ,40=b ∴4070+=t y 甲 ----(2分) 当t=8时,米甲60040560=+=y (3分)∴隧道全长600+480=1080米 ----(4分)(2)当20≤≤t 时,由图可求得t y 90=甲 ---------(5分)∴t t t y y 108090=-=-乙甲,1010=t∴1=t ----------(6分) 当42≤≤t 时,4010804070+-=-+=-t t t y y 乙甲104010=+-t ∴3=t ----------(7分)当64≤≤t 时,4010407080-=--=-t t t y y 甲乙104010=-t ∴5=t ----------(8分)答:乙队施工1天或3天或5天时,两队所挖隧道长相差10米。
2016年山东省青岛市市北区中考数学一模试卷(解析版)
2016年山东省青岛市市北区中考数学一模试卷(解析版)DA.0个B.1个C.2个D.3个4.据研究,一种H7N9病毒直径为30纳米(1纳米=10﹣9米).下列用科学记数法表示这个病毒直径的大小,正确的是()A.30×10﹣9米B.3.0×10﹣8米C.3.0×10﹣10米D.0.3×10﹣7米5.如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连结BC,若,则∠C等于()A.15°B.30°C.45°D.60°6.当﹣2<x<2时,下列函数中,函数值y随自变量x增大而增大的有()个.①y=2x;②y=2﹣x;③y=﹣;④y=x2+6x+8.A.1 B.2 C.3 D.47.如图,在△ABC为等边三角形,P为BC上一点,△APQ为等边三角形,PQ与AC相交于点M,则下列结论中正确的是()①AB∥CQ;②∠ACQ=60°;③AP2=AM•AC;④若BP=PC,则PQ⊥AC.A.只有①②B.只有①③C.只有①②③D.①②③④8.抛物线y=ax2+bx+c图象如图所示,则一次函数y=﹣bx﹣4ac+b2与反比例函数y=在同一坐标系内的图象大致为()A. B.C.D.二、填空题:(本题满分18分,共有6道小题,每小题3分)9.计算:=______.10.在一个不透明的口袋中装有5个白球和n个黄球,它们出颜色外完全相同,若从中随机摸出一球,摸到白球的概率为,则n的值是______.11.已知甲、乙两地间的铁路长1480千米,列车大提速后,平均速度增加了70千米/时,列车的单程运行时间缩短了3小时.设原来的平均速度为x千米/时,根据题意,可列方程为______.12.如图,小“鱼”与大“鱼”是位似图形,已知小“鱼”上一个“顶点”的坐标为(a,b),那么大“鱼”上对应“顶点”的坐标为______.13.如图,线段AB与⊙O相切于点C,连接OA、OB,OB交⊙O于点D,已知OA=OB=3cm,AB=3cm,则图中阴影部分的面积为______.14.将n+1个腰长为1的等腰直角三角形,按如图所示放在同一直线上.设阴影部分△B2D1C1的面积为S1,△B3D2C2的面积为S2,…,B n+1D n C n的面积为S n,则S2=______;S n=______.(用含n 的式子表示)三、解答题(本大题共10小题,满分78分)15.用圆规、直尺作图,不写作法,但要保留作图痕迹.已知:如图,线段a.求做:Rt△ABC,使∠A=90°,AB=AC=a.结论:______.16.(1)化简:(2)解不等式组:.17.某餐厅为了吸引顾客,举行吃套餐优惠活动,套餐每套20元,每消费一套即可直接获得10元餐劵,或者参与游戏赢得餐劵.游戏规则如下:设立了一个可以自由转动的转盘(如图,转盘被平均分成12份),顾客每消费一套套餐,就可以获得一次转动转盘的机会,如果转盘停止后,指针正好对准红色、黄色、绿色、空白区域,那么顾客就可以分别获得20元、15元、10元、5元餐劵,下次就餐时可以代替现金消费.(1)求顾客任意转动一次转盘的平均收益是多少;(2)如果你是餐厅经理,你希望顾客参与游戏还是直接获得10元餐劵?请说明理由.18.某校要从甲、乙两名跳远运动员中挑选一人参加一项校际比赛,在最近的10次选拔赛中,这两个人的跳远成绩(单位:cm)如图所示,请根据图中信息,解答下列问题:(1)通过计算,补充完成下面的统计分析表.运动员平均数众数中位数方差甲601.8 600 600 50.56乙599.3 ______ ______ 284.21 (2)请依据对上述统计信息的数据分析,说明这两名运动员的成绩各有什么特点?19.某厂家新开发的一种电动车如图,它的大灯A射出的光线AB,AC 与地面MN 所夹的锐角分别为8°和10°,大灯A与地面离地面的距离为1m求该车大灯照亮地面的宽度BC.(不考虑其它因素)(参数数据:sin8°=,tan8°=,sin10°=,tan10°=)20.某水果店计划购进苹果和丑桔共140千克,这两种水果的进价、售价如表所示:进价(元/千售价(元/千克)克)苹果 5 8丑桔9 13(1)若该水果店购进这两种水果的进货款为1000元,求水果店购进这两种水果各多少千克.(2)若该水果店决定丑桔的进货量不超过苹果进货量的3倍,应怎样安排进货才能使水果店在销售完这批水果时获利最多?21.如图,在△ABC中,AD是BC边上的中线,过点A作AF∥BC,且AF=BC,连接BF、BF,线段BF与AD相交于点E.(1)求证:E是AD的中点;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.22.某公园有一个抛物线形状的观景拱桥ACB,其横截面如图所示,量得该拱桥占地面最宽处AB=20米,最高处点C距地面5米(即OC=5米)(1)分别以AB、OC所在直线为x轴、y轴,建立如图所示的平面直角坐标系,求该抛物线的解析式;(2)夜晚,公园沿着抛物线ACB用彩灯勾勒拱桥的形状;现公园管理处打算在观景拱桥ABC 的横截面前放置一个长为10米的矩形广告牌EFMN,为安全起见,要求广告牌高拱桥的桥面至少0.35米,求矩形广告牌的最大高度,并说明理由.23.设ω是一个平面图形,如果用直尺和圆规经过有限步作图(简称尺规作图),画出一个正方形与ω的面积相等(简称等积),那么这样的等积转化称为ω的“化方”.(1)阅读填空如图①,已知矩形ABCD,延长AD到E,使DE=DC,以AE为直径作半圆,延长CD交半圆于点H,以DH为边作正方形DFGH,则正方形DFFH与ABCD等积.理由:连接AH,EH.∵AE为直径∴∠AHE=90°∴∠HAE+∠HEA=90°.∵DH⊥AE∴∠ADH=∠EDH=90°∴∠HAD+∠AHD=90°∴∠AHD=∠HED∴△ADH∽______.∴=,即DH2=AD×DE.又∵DE=DC∴DH2=______.即正方形DFGH与矩形ABCD等积.(2)类比思考平行四边形的“化方”思路是,先把平行四边形转化为等积的矩形,再把矩形转化为等积的正方形.(3)解决问题三角形的“化方”思路是:先把三角形转化为等积的______(填写图形各称),再转化为等积的正方形.如图②,△ABC的顶点在正方形网格的格点上,请用尺规或借助作出与△ABC等积的正方形的一条边.(不要求写具体作法,但要保留作图痕迹)(4)拓展探究n边形(n>3)的“化方”思路之一是:把n边形转化为n﹣1边形,…,直至转化为等积三角形,从而可以化方.如图③,四边形ABCD的顶点在正方形网格的格点上,请用尺规或借助网格作出与四边形ABCD等积的三角形(不要求写具体作法,但要保留作图痕迹).24.已知:如图,在平行四边形ABCD中,AB=10cm,BC=12cm,对角线AC=10cm,点P 从点C出发沿着边CB向点B匀速运动,速度为每秒1个单位:同时,点Q从点B开始沿着边AB向点A匀速运动,到达A点后立刻以原来的速度沿AB返回,点Q的速度为每秒1个单位,过P点与AB平行的直线交线段AD于点E,交AC于点F,连接PQ,设运动时间为t(s).(1)当0<t<10时,设四边形AQPE的面积为y(cm2),求y与t之间的函数关系式;(2)当0<t<10时,是否存在某一时刻t,使四边形AQPE的面积为平行四边形ABCD面积的一半?若存在,求出t的值;若不存在,请说明理由;(3)当0<t<10时,是否存在某一时刻t,使PQ⊥PE?若存在,求出t的值;不存在,请说明理由;(4)当0<t<12时,是否存在某一时刻t,使线段PQ的垂直平分线恰好经过点B?存在,请直接给出相应的t值;若不存在,请说明理由.2016年山东省青岛市市北区中考数学一模试卷参考答案与试题解析一、选择题(本题满分24分,共有8道小题,每小题3分)1.的绝对值是()A.﹣6 B.6 C.﹣D.【考点】绝对值.【分析】根据计算绝对值的方法可以得到的绝对值,本题得以解决.【解答】解:∵,∴的绝对值是,故选D.2.如图是某班全体学生外出时乘车、步行、骑车的人数分布直方图和扇形统计图,(两图都不完整),则下列结论中正确的是()A.步行人数为30人 B.骑车人数占总人数的10%C.该班总人数为50人 D.乘车人数是骑车人数的40%【考点】频数(率)分布直方图;扇形统计图.【分析】根据乘车的人数和所占的百分比求出总人数,用总人数乘以步行所占的百分比求出步行的人数,用骑车的人数除以总人数求出骑车人数占总人数的百分比,用乘车的人数除以骑车人数,求出乘车人数是骑车人数的倍数.【解答】解:A、步行的人数有:×30%=15人,故本选项错误;B、骑车人数占总人数10÷=20%,故本选项错误;C、该班总人数为=50人,故本选项正确;D、乘车人数是骑车人数的=2.5倍,故本选项错误;故选:C.3.下列四个图形能围成棱柱的有几个()A.0个B.1个C.2个D.3个【考点】展开图折叠成几何体.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【解答】解:第一个图形缺少一个面,不能围成棱柱;第三个图形折叠后底面重合,不能折成棱柱;第二个图形,第四个图形都能围成四棱柱;故选:C.4.据研究,一种H7N9病毒直径为30纳米(1纳米=10﹣9米).下列用科学记数法表示这个病毒直径的大小,正确的是()A.30×10﹣9米B.3.0×10﹣8米C.3.0×10﹣10米D.0.3×10﹣7米【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:由题意可得:30×10﹣9=3.0×10﹣8.故选:B.5.如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连结BC,若,则∠C等于()A.15°B.30°C.45°D.60°【考点】切线的性质;含30度角的直角三角形.【分析】连接OB,构造直角△ABO,结合已知条件推知直角△ABO的直角边OB等于斜边OA 的一半,则∠A=30°.【解答】解:如图,连接OB.∵AB与⊙O相切于点B,∴∠ABO=90°.∵OB=OC,,∴∠C=∠OBC,OB=OA,∴∠A=30°,∴∠AOB=60°,则∠C+∠OBC=60°,∴∠C=30°.故选B.6.当﹣2<x<2时,下列函数中,函数值y随自变量x增大而增大的有()个.①y=2x;②y=2﹣x;③y=﹣;④y=x2+6x+8.A.1 B.2 C.3 D.4【考点】二次函数的性质;一次函数的性质;正比例函数的性质;反比例函数的性质.【分析】一次函数当a>0时,函数值y总是随自变量x增大而增大,反比例函数当k<0时,在每一个象限内,y随自变量x增大而增大,二次函数根据对称轴及开口方向判断增减性.【解答】解:①为一次函数,且a>0时,函数值y总是随自变量x增大而增大;②为一次函数,且a<0时,函数值y总是随自变量x增大而减小;③为反比例函数,当x>0或者x<0时,函数值y随自变量x增大而增大,当﹣2<x<2时,就不能确定增减性了;④为二次函数,对称轴为x=﹣3,开口向上,故当﹣2<x<2时,函数值y随自变量x增大而增大,符合题意的是①④,故选B.7.如图,在△ABC为等边三角形,P为BC上一点,△APQ为等边三角形,PQ与AC相交于点M,则下列结论中正确的是()①AB∥CQ;②∠ACQ=60°;③AP2=AM•AC;④若BP=PC,则PQ⊥AC.A.只有①②B.只有①③C.只有①②③D.①②③④【考点】相似三角形的判定与性质;全等三角形的判定与性质;等边三角形的性质.【分析】根据等边三角形性质得出AB=AC,AP=AQ,∠BAC=∠B=∠PAQ=60°,求出∠BAP=∠CAQ,根据SAS证△ABP≌△ACQ,推出∠ACQ=∠B=60°=∠BAC,根据平行线的判定推出即可,再根据等腰三角形性质求出∠BAP=30°,求出∠PMA=90°,即可得出答案.【解答】证明:如图,∵△ABC和△APQ是等边三角形,∴AB=AC,AP=AQ,∠BAC=∠B=∠PAQ=60°,∴∠BAP=∠CAQ=60°﹣∠PAC,在△ABP和△ACQ中,,∴△ABP≌△ACQ(SAS),∴∠ACQ=∠B=60°=∠BAC,故②正确,∴AB∥CQ,故①正确,∵∠APQ=∠ACQ=60°,∠PAC=∠PAC,∴△APM∽△ACP,∴,∴AP2=AC•AM,故③正确,∵BP=PC,∴∠BAP=30°,∴∠PAC=30°,∵∠APC=60°,∴∠AMP=90°,∴PQ⊥AC,故④正确.故选D.8.抛物线y=ax2+bx+c图象如图所示,则一次函数y=﹣bx﹣4ac+b2与反比例函数y=在同一坐标系内的图象大致为()A. B.C.D.【考点】二次函数图象与系数的关系;反比例函数的图象.【分析】首先观察抛物线y=ax2+bx+c图象,由抛物线的对称轴的位置由其开口方向,即可判定﹣b的正负,由抛物线与x轴的交点个数,即可判定﹣4ac+b2的正负,则可得到一次函数y=﹣bx ﹣4ac+b2的图象过第几象限,由当x=1时,y=a+b+c<0,即可得反比例函数y=过第几象限,继而求得答案.【解答】解:∵抛物线y=ax2+bx+c开口向上,∴a>0,∵抛物线y=ax2+bx+c的对称轴在y轴右侧,∴x=﹣>0,∴b<0,∴﹣b>0,∵抛物线y=ax2+bx+c的图象与x轴有两个交点,∴△=b2﹣4ac>0,∴一次函数y=﹣bx﹣4ac+b2的图象过第一、二、三象限;∵由函数图象可知,当x=1时,抛物线y=a+b+c <0,∴反比例函数y=的图象在第二、四象限.故选D.二、填空题:(本题满分18分,共有6道小题,每小题3分)9.计算:=﹣.【考点】二次根式的混合运算.【分析】先把各二次根式化为最简二次根式,然后把分子合并后进行二次根式的除法运算.【解答】解:原式===﹣.故答案为﹣.10.在一个不透明的口袋中装有5个白球和n个黄球,它们出颜色外完全相同,若从中随机摸出一球,摸到白球的概率为,则n的值是10.【考点】概率公式.【分析】根据摸到白球的概率为,列出方程求解即可.【解答】解:∵在一个不透明的布袋中装有5个白球和n个黄球,∴共有(5+n)个球,根据古典型概率公式知:P(白球)=,解得n=10.故答案为:10.11.已知甲、乙两地间的铁路长1480千米,列车大提速后,平均速度增加了70千米/时,列车的单程运行时间缩短了3小时.设原来的平均速度为x千米/时,根据题意,可列方程为.【考点】由实际问题抽象出分式方程.【分析】设原来的平均速度为x千米/时,列车大提速后平均速度为x+70千米/时,根据走过相同的距离时间缩短了3小时,列方程即可.【解答】解:设原来的平均速度为x千米/时,可得:,故答案为:12.如图,小“鱼”与大“鱼”是位似图形,已知小“鱼”上一个“顶点”的坐标为(a,b),那么大“鱼”上对应“顶点”的坐标为(﹣2a,﹣2b).【考点】位似变换.【分析】先找一对应点是如何变化,那么所求点也符合这个变化规律.【解答】解:小鱼最大鱼翅的顶端坐标为(5,3),大鱼对应点坐标为(﹣10,﹣6);小“鱼”上一个“顶点”的坐标为(a,b),那么大“鱼”上对应“顶点”的坐标为(﹣2a,﹣2b).13.如图,线段AB与⊙O相切于点C,连接OA、OB,OB交⊙O于点D,已知OA=OB=3cm,AB=3cm,则图中阴影部分的面积为.【考点】扇形面积的计算;切线的性质.【分析】由AB为圆的切线,得到OC⊥AB,再由OA=OB,利用三线合一得到C为AB中点,且OC为角平分线,在直角三角形AOC中,利用30度所对的直角边等于斜边的一半求出OC 的长,利用勾股定理求出AC的长,进而确定出AB的长,求出∠AOB度数,阴影部分面积=三角形AOB面积﹣扇形AOB面积,求出即可.【解答】解:连接OC,∵AB与圆O相切,∴OC⊥AB,∵OA=OB,∴AC=BC=AB=,∴sin∠AOC==,∴∠AOC=60°,∴∠AOB=120°∴OC=OA=,∴S 阴影=S△AOB﹣S扇形=×3×﹣,故图中阴影部分的面积为,故答案为:.14.将n+1个腰长为1的等腰直角三角形,按如图所示放在同一直线上.设阴影部分△B2D1C1的面积为S1,△B3D2C2的面积为S2,…,B n+1D n C n的面积为S n,则S2=;S n=.(用含n的式子表示)【考点】相似三角形的判定与性质;等腰直角三角形.【分析】连接B1、B2、B3、B4、B5点,显然它们共线且平行于AC1,依题意可知△B1C1B2是等腰直角三角形,知道△B1B2D1与△C1AD1相似,求出相似比,根据三角形面积公式可得出S1,同理:B2B3:AC2=1:2,所以B2D2:D2C2=1:2,进而S2的值可求出,同样的道理,即可求出S3,S4…S n 的值.【解答】解:∵n+1个边长为1的等腰三角形有一条边在同一直线上,∴S△AB1C1=×1×1=,连接B1、B2、B3、B4、B5点,显然它们共线且平行于AC1∵∠B1C1B2=90°∴A1B1∥B2C1∴△B1C1B2是等腰直角三角形,且边长=1,∴△B1B2D1∽△C1AD1,∴B1D1:D1C1=1:1,∴S1=×=,同理:B2B3:AC2=1:2,∴B2D2:D2C2=1:2,∴S2=×=,同理:B3B4:AC3=1:3,∴B3D3:D3C3=1:3,∴S3=×=,∴S4=×=,…∴S n=故答案为:;.三、解答题(本大题共10小题,满分78分)15.用圆规、直尺作图,不写作法,但要保留作图痕迹.已知:如图,线段a.求做:Rt△ABC,使∠A=90°,AB=AC=a.结论:△ABC为等腰直角三角形.【考点】作图—复杂作图.【分析】先在一直线上截取AB=a,再过A作AB的垂线,接着在此垂线上截取AC=a,则△ABC满足条件.【解答】解:如图,△ABC为所作,△ABC为等腰直角三角形.故答案为△ABC为等腰直角三角形.16.(1)化简:(2)解不等式组:.【考点】分式的加减法;解一元一次不等式组.【分析】(1)原式通分并利用同分母分式的减法法则计算即可得到结果;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分即可.【解答】解:(1)原式=+===;(2),由①得:x>,由②得:x≤3,则不等式组的解集为<x≤3.17.某餐厅为了吸引顾客,举行吃套餐优惠活动,套餐每套20元,每消费一套即可直接获得10元餐劵,或者参与游戏赢得餐劵.游戏规则如下:设立了一个可以自由转动的转盘(如图,转盘被平均分成12份),顾客每消费一套套餐,就可以获得一次转动转盘的机会,如果转盘停止后,指针正好对准红色、黄色、绿色、空白区域,那么顾客就可以分别获得20元、15元、10元、5元餐劵,下次就餐时可以代替现金消费.(1)求顾客任意转动一次转盘的平均收益是多少;(2)如果你是餐厅经理,你希望顾客参与游戏还是直接获得10元餐劵?请说明理由.【考点】概率公式.【分析】(1)根据转盘停止后,指针正好对准红色、黄色、绿色、空白区域,那么顾客就可以分别获得20元、15元、10元、5元餐劵得:顾客任意转动一次转盘的平均收益是×(20+15×2+10×3+5×6),再计算即可;(2)根据(1)的结果与10比较即可.【解答】解:(1)顾客任意转动一次转盘的平均收益是×(20+15×2+10×3+5×6)=(元),答:顾客任意转动一次转盘的平均收益是元;(2)∵<10,∴如果是餐厅经理,希望顾客参与游戏,这样能减少支出.18.某校要从甲、乙两名跳远运动员中挑选一人参加一项校际比赛,在最近的10次选拔赛中,这两个人的跳远成绩(单位:cm)如图所示,请根据图中信息,解答下列问题:(1)通过计算,补充完成下面的统计分析表.运动员平均数众数中位数方差甲601.8 600 600 50.56乙599.3 618596.5284.21 (2)请依据对上述统计信息的数据分析,说明这两名运动员的成绩各有什么特点?【考点】折线统计图;中位数;众数;方差.【分析】(1)根据中位数、众数的概念求值即可;(2)答案不惟一,如:甲的成绩比较稳定,波动小;乙成绩不稳定,波动较大.【解答】解:(1)根据折线统计图知乙10次成绩从小到大依次排列为:574,580,585,590,595,598,613,618,618,624,则其众数为:618,中位数为:=596.5;(2)甲的平均水平和跳远在600及以上要优于乙且甲的方差小说明甲成绩比医德成绩稳定,乙跳远的最好成绩大于甲的最好成绩.故答案为:(1)618,596.5.19.某厂家新开发的一种电动车如图,它的大灯A射出的光线AB,AC 与地面MN 所夹的锐角分别为8°和10°,大灯A与地面离地面的距离为1m求该车大灯照亮地面的宽度BC.(不考虑其它因素)(参数数据:sin8°=,tan8°=,sin10°=,tan10°=)【考点】解直角三角形的应用.【分析】通过构造直角三角形来解答,过A作AD⊥MN于D,就有了∠ABN、∠ACN的度数,又已知AE的长,可在直角三角形ABE、ACE 中分别求出BE、CE的长,BC就能求出.【解答】解:如图,过A作AD⊥MN于点D,在Rt△ACD中,tan∠ACD==,CD=5.6(m),在Rt△ABD中,tan∠ABD==,BD=7(m),则BC=7﹣5.6=1.4(m).答:该车大灯照亮地面的宽度BC是1.4m.20.某水果店计划购进苹果和丑桔共140千克,这两种水果的进价、售价如表所示:进价(元/千售价(元/千克)克)苹果 5 8丑桔9 13(1)若该水果店购进这两种水果的进货款为1000元,求水果店购进这两种水果各多少千克.(2)若该水果店决定丑桔的进货量不超过苹果进货量的3倍,应怎样安排进货才能使水果店在销售完这批水果时获利最多?【考点】一元一次不等式的应用;一元一次方程的应用.【分析】(1)设购进苹果x千克,则购进丑桔千克,根据进货钱数=单价×数量,列出关于x的一元一次方程,解方程即可得出结论;(2)设购进苹果x千克时售完这批水果将获利y元,由丑桔的进货量不超过苹果进货量的3倍可列出关于x的一元一次不等式,解不等式可找出x的取值范围,再根据总利润=每千克利润×千克数可找出y关于x的函数关系式,根据函数的性质即可解决最值问题.【解答】解:(1)设购进苹果x千克,则购进丑桔千克,依题意得:5x+9=1000,解得:x=65,则140﹣65=75(千克),答:水果店购进苹果65千克,丑桔75千克.(2)设购进苹果x千克时售完这批水果将获利y元,由题意得:140﹣x≤3x,解得:x≥35.获得利润y=(8﹣5)x+(13﹣9)=﹣x+560.故当x=35时,y有最大值,最大值为525元.140﹣35=105(千克).答:购进苹果35千克,丑桔105千克时水果店在销售完这批水果时获利最多.21.如图,在△ABC中,AD是BC边上的中线,过点A作AF∥BC,且AF=BC,连接BF、BF,线段BF与AD相交于点E.(1)求证:E是AD的中点;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.【考点】相似三角形的判定与性质;直角三角形斜边上的中线;平行四边形的判定与性质;菱形的判定.【分析】(1)先连接DF,判定四边形ABDF是平行四边形,再根据平行四边形的性质,得出DE=AE即可;(2)先判定四边形ADCF是平行四边形,再根据直角三角形的性质,得出AD=CD,最后判断四边形ADCF是菱形.【解答】(1)连接DF,∵AD是BC边上的中线,∴DB=BC,∵AF=BC,∴DB=AF,又∵AF∥BC,∴四边形ABDF是平行四边形,∴DE=AE即E是AD的中点;(2)四边形ADCF是菱形.∵AD是BC边上的中线,∴DC=BC,∵AF=BC,∴DC=AF,又∵AF∥BC,∴四边形ADCF是平行四边形,又∵AB⊥AC,AD是BC边上的中线,∴AD=BC=CD,∴四边形ADCF是菱形.22.某公园有一个抛物线形状的观景拱桥ACB,其横截面如图所示,量得该拱桥占地面最宽处AB=20米,最高处点C距地面5米(即OC=5米)(1)分别以AB、OC所在直线为x轴、y轴,建立如图所示的平面直角坐标系,求该抛物线的解析式;(2)夜晚,公园沿着抛物线ACB用彩灯勾勒拱桥的形状;现公园管理处打算在观景拱桥ABC 的横截面前放置一个长为10米的矩形广告牌EFMN,为安全起见,要求广告牌高拱桥的桥面至少0.35米,求矩形广告牌的最大高度,并说明理由.【考点】二次函数的应用.【分析】(1)根据题意可设抛物线解析式为y=ax2+c,将点C(0,5),点B(10,0)代入求得a、c的值即可求解;(2)令x=5求得y的值,将y的值减去0.35可得广告牌最大高度.【解答】解:(1)根据题意,设抛物线解析式为y=ax2+c,将点C(0,5),点B(10,0)代入,得:,解得:.故抛物线解析式为:y=﹣x2+5;(2)当x=5时,y=﹣×25+5=3.75(m),3.75﹣0.35=3.4(m).答:矩形广告牌的最大高度为3.4m.23.设ω是一个平面图形,如果用直尺和圆规经过有限步作图(简称尺规作图),画出一个正方形与ω的面积相等(简称等积),那么这样的等积转化称为ω的“化方”.(1)阅读填空如图①,已知矩形ABCD,延长AD到E,使DE=DC,以AE为直径作半圆,延长CD交半圆于点H,以DH为边作正方形DFGH,则正方形DFFH与ABCD等积.理由:连接AH,EH.∵AE为直径∴∠AHE=90°∴∠HAE+∠HEA=90°.∵DH⊥AE∴∠ADH=∠EDH=90°∴∠HAD+∠AHD=90°∴∠AHD=∠HED∴△ADH∽△HDE.∴=,即DH2=AD×DE.又∵DE=DC∴DH2=AD•DC.即正方形DFGH与矩形ABCD等积.(2)类比思考平行四边形的“化方”思路是,先把平行四边形转化为等积的矩形,再把矩形转化为等积的正方形.(3)解决问题三角形的“化方”思路是:先把三角形转化为等积的▱ABDE(填写图形各称),再转化为等积的正方形.如图②,△ABC的顶点在正方形网格的格点上,请用尺规或借助作出与△ABC等积的正方形的一条边.(不要求写具体作法,但要保留作图痕迹)(4)拓展探究n边形(n>3)的“化方”思路之一是:把n边形转化为n﹣1边形,…,直至转化为等积三角形,从而可以化方.如图③,四边形ABCD的顶点在正方形网格的格点上,请用尺规或借助网格作出与四边形ABCD等积的三角形(不要求写具体作法,但要保留作图痕迹).【考点】四边形综合题.【分析】(1)通过直角△ADH和直角△HDE中,∠AHD=∠HED证明△ADH∽△HDE,得DH2=AD×DE,再根据等量代换得出正方形DFGH与矩形ABCD等积;(3)作法:①作BC的中垂线,取BD中点,作▱ABDE;②过B作BF⊥AE,垂足为F,作矩形BDHF;③在直线AE在取BF=FM,以HM 为直径,以点F为圆心作半圆,与直线BF交于点G;④则线段FG就是所求的正方形的一边;(4)作法:①连接BD,②过A作l∥BD,③延长CD交l于E,④连接BE,则S△BEC=S四边形ABCD.【解答】解:(1)答案为:△HDE,AD•DC;(3)如图2,答案为:▱ABDE;(4)如图3,则△BEC的面积=四边形ABCD 的面积;24.已知:如图,在平行四边形ABCD中,AB=10cm,BC=12cm,对角线AC=10cm,点P 从点C出发沿着边CB向点B匀速运动,速度为每秒1个单位:同时,点Q从点B开始沿着边AB向点A匀速运动,到达A点后立刻以原来的速度沿AB返回,点Q的速度为每秒1个单位,过P点与AB平行的直线交线段AD于点E,交AC于点F,连接PQ,设运动时间为t(s).(1)当0<t<10时,设四边形AQPE的面积为y(cm2),求y与t之间的函数关系式;(2)当0<t<10时,是否存在某一时刻t,使四边形AQPE的面积为平行四边形ABCD面积的一半?若存在,求出t的值;若不存在,请说明理由;(3)当0<t<10时,是否存在某一时刻t,使PQ⊥PE?若存在,求出t的值;不存在,请说明理由;(4)当0<t<12时,是否存在某一时刻t,使线段PQ的垂直平分线恰好经过点B?存在,请直接给出相应的t值;若不存在,请说明理由.【考点】四边形综合题.【分析】(1)利用相似三角形的判断和性质,表示出BQ=t,QH=t,PF=t,相似三角形的面积比等于相似比的平方,S△CPF=t2,从而y用三角形的面积的差表示出,即可;(2)假设存在,建立方程,求出方程的解,全不符合题意,得到不存在;(3)假设存在,建立方程,求出方程的解符合题意,即存在时间t,使PQ⊥PE;(4)假设存在,由线段PQ的垂直平分线恰好经过点B,得到BQ=BP,建立方程,求出t,即可.【解答】解:如图1,作AG⊥BC于G,作QH ⊥BC于H,∴QH∥AG,∴=,∵AG⊥BC,AB=AC=10,BC=12,∴BG=BC=×12=6,AG=8,∵BQ=t,∴=,∴QH=t,∵PE∥AB,∴=,∴=,∴PF=t,∵BC=12,AG=8,∴S△ABC=×BC×AG=48,(1)∵PE∥AB,∴=()2==,∴S△CPF=×S△ABC=×48=t2,∵BP=BC﹣PC=12﹣t,QH=t,∴S△BPQ=BP×QH=×(12﹣t)×t,∴y=S四边形AQPE=S△ABC﹣S△BPQ﹣S△CPF=48﹣×(12﹣t)×t﹣t2=﹣t2﹣t+48,(0<t<10)(2)解:假设存在某一时刻t,使四边形AQPE 的面积为平行四边形ABCD面积的一半,由(1)由S四边形AQPE=﹣t2﹣t+48,∴=﹣t2﹣t+48=48,∴t=0(舍)或t=﹣60(舍),∴假设不成立,∴不存在这样某一时刻t,使四边形AQPE的面积为平行四边形ABCD面积的一半;(3)解:假设存在某一时刻t,使PQ⊥PE,∵PE∥AB,∴∠BQP=90°,∴∠BQP=∠AGB,∠B=∠B,∴△BQP∽△BGA,∴,∵BG=6,BQ=t,BP=12﹣t,AB=10,∴=,∴t=,∴存在t=,使PQ⊥PE;(4)假设存在某一时刻t,使线段PQ的垂直平分线恰好经过点B,∴BQ=BP,当0<t<10时,∵BP=12﹣t,BQ=t,∴12﹣t=t,∴t=6,∴存在t=6,使线段PQ的垂直平分线恰好经过点B,当10≤t<12时,∵BQ=20﹣t,BP=12﹣t,∴20﹣t=12﹣t,明显等式不成立,∴不存在某一时刻t,使线段PQ的垂直平分线恰好经过点B,即:存在t=6,使线段PQ的垂直平分线恰好经过点B.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最新中考2016年河南名校名师中考模拟试卷数学注意事项:1.本试卷共6页,三大题,满分120分,考试时间100分钟。
请用钢笔或圆珠笔直接答在试卷上。
2.答卷前将密封线内的项目填写清楚。
参考公式:二次函数2(0)y ax bx c a =++≠图象的顶点坐标为22b ac b aa ⎛⎫-- ⎪⎝⎭4,4.1.-2的绝对值是( ) A .21 B .-21C .±2D .2 2.2015年12月13日上合总理峰会在郑州召开是河南人的骄傲,会议结束后政府决定免费向公众开放会场场馆,开放首日场馆有3.5万人参观.数据3.5万用科学记数法表示为( ) A .3.5³104 B .3.5³105 C .0.35³105 D .0.35³106 3.下列各式计算正确的是( )A .9=±3B .22513-=12C .3-2=1D .314=231 4.等腰三角形的周长为7,其中一边长为3,则这个等腰三角形的底边长为( )A .1B .3C .2或3D .1或35.一组数据1,5,m ,3,2的唯一众数是1,则这组数据的中位数是( ) A .1 B .2 C .3 D .5 6.如图所示,直线l 1//l 2,∠1=40°,∠2=75°,则∠3等于( ) A .55° B .30° C .65° D .70°7.不等式1+2x >a 的解集如图,则整数a 的值为( )A .-2B .-3 C .-1 D .0 一、选择题 (每小题3分,共24分)第7题 第6题8.如图,Rt △ABO 的边OB 在y 轴上,OA =2,OB =1,将△ABO 绕点O 旋转120°得到△A ’B ’O ,则点A ’的坐标为( )A .(-3,1)B .(-2,0) 或(-3,1)C .(0,-2) 或(-3,1)D .(0,-2)(6a 2b 3)= . 10.不等式组⎩⎨⎧+-≥-01135>x x 的解集是 .11.若点A (-1,a ),B (-2,m ),C (3,n )在反比例函数y = -xk 2的图象上,则实数a 、m 、n 中最大的是 .12.从-4,-3,2,5中任取两个数分别作为m 、n 的值,则使一次函数y =mx +n (m ≠0)的y 值随x 的值的增大而减小的概率为 . 13.如图,已知△ABC ,∠ACB =90°,BC =6,AC =8,按如下步骤作图:①分别以A 、C 为圆心,以大于AC 的长为半径在AC 两边作弧,交于两点M 、N ;②连接MN ,分别交AB 、AC 于点D 、O ;③过C 作CE ∥AB 交MN 于点E ,连接AE 、CD .则四边形ADCE 的周长为 . 14.如图,半径为2,圆心角为90°的扇形OAB 中,分别以OA ,OB 为直径作半圆,则图中阴影部分的面积为 .15.如图,在平面直角坐标系中,点A 、C 分别在x 轴、y 轴上,四边形ABCO 为矩形,AB =16,点D 与点A 关于y 轴对称,tan ∠ACB = 43 ,点E 、F 分别是线段AD 、AC 上的动点(点E 不与CEF =∠ACB ,当△EFC 为等腰三角形时,则线段DE 的长为 . 16.(8分)先化简,再求值:aa a 6332--÷(a +2-25-a ),其中a 是方程x 2+3x +31=0的根. 二、填空题 (每小题3分,共21分)三、解答题 (本大题共8小题,共75分)BM N CE OD A(第13题)OAB(第14题)17.(9分)如图,点O 在△ABC 的边AC 上,以点O 为圆心,以OA 为半径作⊙O ,与BC 相切于点D ,与AB 交于点E ,连接OD ,DE . (1)当OD ∥AB 时,请判断△ABC 的形状;(2)在(1)的条件下,当∠C = 度时,四边形AODE 为菱形.18.(9分)郑州市农业路高架桥二层的开通,较大程度缓解了市内交通的压力。
最初设计南阳路口上桥匝道时,其坡角为15°,后来从安全角度考虑将匝道坡角改为5°,如果高架桥高8米,匝道每米造价4500元,那么改造后修建匝道的投资将增加多少元?(参考数据:sin5°≈0.08,sin15°≈0.25,tan5°≈0.09,tan15°≈0.27,结果保留整数)19.(9分)某校九年级数学兴趣小组的同学调查了若干名家长对“初中学生带手机上学”现象的看法,统计整理并制作了如下的条形与扇形统计图.依据图中信息,解答下列问题: (1)接受这次调查的家长人数共有多少人?(2)在扇形统计图中,求“不赞同”的家长部分所对应的扇形圆心角的度数; (3)求表示“无所谓”的家长人数;(4)随机抽查一名接受调查的家长,求恰好抽到“很赞同”的家长的概率.20.(9分)如图,已知A (4,m ),B (1,2)是一次函数y =kx +b 与反比例函数y =xn(n ≠0,n >0)图象的两个交点,AC ⊥x 轴于C ,BD ⊥y 轴于D . (1)求m 、n 的值及一次函数表达式; (2)P 是线段AB 上的一点,连接PC ,PD ,若△PCA 和△PDB 面积相等,求点P 坐标.21.(10分)雾霾天气持续笼罩我国大部分地区,困扰着广大市民的生活,口罩市场出现热销,郑州市某药店用8000元购进甲、乙两种型号的口罩,销售完后共获利2720元,进价和售价如下表:(1)求该药店购进甲、乙两种型号口罩各多少袋? (2)该药店第二次以原价购进甲、乙两种型号口罩,购进甲种型号口罩袋数不变,而购进乙种型号口罩袋数是第一次的2倍.甲种口罩按原售价出售,而效果更好的乙种口罩打折让利销售.若两种型号的口罩全部售完,要使第二次销售活动获利不少于2000元,每袋乙种型号的口罩最低打几折?22.(10分)(1)观察推理:如图1,△ABC 中,∠ACB =90°,AC =BC ,直线l 过点C ,点A 、B 在直线l 同侧,BD ⊥l ,AE ⊥l ,垂足分别为D 、E .求证:△AEC ≌△CDB ;(2)类比探究:如图2,Rt △ABC 中,∠ACB =90°,AC =4,将斜边AB 绕点A 逆时针旋转90°至AB /,连接B /C ,求△AB /C 的面积.(3)拓展提升:如图3,等边△EBC 中,EC =BC =3cm ,点O 在BC 上,且OC =2cm ,动点P 从点E 沿射线EC 以1cm /s 速度运动,连结OP ,将线段OP 绕点O 逆时针旋转120º得到线段OF .要使点F 恰好落在射线EB 上,求点P 运动的时间ts .23.(11分)如图,在平面直角坐标系中,抛物线y =21x 2+bx +c 与x 轴交于A 、B 两点,与y 轴交于点C ,点A 的坐标为(-1,0),点C 的坐标为(0,-2),已知点E (m ,0)是线段AB 上的动点(点E 不与点A 、B 重合),过点E 作PE ⊥x 轴交抛物线于点P ,交BC 于点F . (1)求该抛物线的表达式;(2)当线段EF ,PF 的长度比为1︰2时,请求出m 的值;图 1图 2图3(3)是否存在这样的m值,使得△BEP与△ABC相似?若存在,求出此时m的值;若不存在,请说明理由.附:参考答案、评分标准及解析最新中考2016年河南名校名师中考模拟试卷 数学(第八卷)一、选择题(每小题3分,共24分)1.D 【解析】根据绝对值运算法则,负数的绝对值等于它的相反数,故选D ; 2.A 【解析】科学记数法的形式为a ³10n (0<a <10,n 为整数),故选A ; 3.B 【解析】22513-=212=12,故选B ;4.D 【解析】长度为3的边可为腰或底边,所以该等腰三角形的底边为1或3,故选D ; 5.B 【解析】由众数的定义可知m=1,又根据中位数的定义可得这组数据的中位数为2, 故选B ;6.C 【解析】根据平行线性质及三角形内角和可求得∠3=65°,故选C 7.A 【解析】解1+2x >a 得x >21-a ,由条件可知-2<21-a <-1,解得-3<a <-1,所以整数a = -2,故选A ;8.C 【解析】当△ABO 绕点O 顺时针旋转120°时,如图1,点A 的对应点恰好落在y 轴上,由旋转知OA /=OA=2,则点A /的坐标为(0,-2);当△ABO 绕点O 逆时针旋转120°时,如图2,过点A /作A /C ⊥x 轴于点C ,由旋转知OA /=OA=2,∠A /OC=30°,则A /C=1,OC=3,点A /的坐标为(-3,1), 故选C.二、填空题(每小题3分,共21分) 9.23b 【解析】(-3ab 2)2÷(6a 2b 3)=9a 2b 4÷6a 2b 3=23b ; 10.-1<x ≤2【解析】解不等式组中的每一个不等式得其解集分别为x ≤2, x >-1,则不等式组的解集为-1<x ≤2;11.a 【解析】因为-k 2<0,由-2<-1<0,得a >m >0;由3>0得n <0,故a 最大;12.21【解析】列表可知共有12种情况,能使y 值随x 的值的增大而减小的有6种情况,故其概率为21;13.20【解析】由作图可知MN 垂直平分AC ,则OA =21AC =4,易知OD 为△ABC 的中位线,所以OD =21BC =3,由勾股定理可求AD =5;易证四边形ADCE 为菱形,故其周长为20;14.2【解析】如图,点D 、E 分别为OB 、OA 的中点,以OA 、OBOAB DC E F为直径的两个半圆交于点C ,连接OC ,CD ,CE ,易得四边形OECD 为正方形;可求得弓形OFC 的面积为π41-21,则阴影部分的面积为π-4(π41-21)=2;15.322或4【解析】由条件可求得BC =12,AC =20,因点A 、D 关于y 轴对称,则CD =CA =20,OD =OA =BC =12;△EFC 为等腰三角形,当∠CEF =∠FCE 时,由∠CEF =∠ACB ,∠CAE =∠ACB 可得∠FCE =∠CAE ,从而可得△AEC ∽△ACD ,可得AD AC AC AE =,得AE =350,所以DE =AD -AE =322;当∠CFE =∠FCE 时,易证△AEF ≌△DCE ,得AE =CD =20,所以DE =AD -AE =4;当∠CEF =∠CFE 时,此种情况不成立,故DE 长为322或4.三、解答题 (本大题共8个小题,满分75分) 16.(8分)解:原式=)2(33--a a a ÷25)2)(2(---+a a a =)2(33--a a a ³)3)(3(2-+-a a a=a a 9312+ ………………………………………………5分∵a 是方程x 2+3x +31=0的根,∴a 2+3a = -31,3a 2+9a = -1∴原式=-1 ………………………………………………8分17.(9分)解:(1)△ABC 是直角三角形,理由如下:∵⊙O 与BC 相切于点D ,∴OD ⊥BC ,当OD ∥AB 时,AB ⊥BC ,∴∠B =90°,故△ABC 是直角三角形;…………………5分(2)30°【解析】∵∠B =90°,∠C =30°,∴∠CAB =60°,连接OE ,易得△OAE ,△ODE 均是等边三角形,所以OA =AE =ED =DO ,故四边形AODE 为菱形 ……………………9分 18.(9分)解:如图,sin15°=BDCD,得BD=︒15sin CDBD=25.08=32…………3分 sin5°=ADCD,得AD=︒5sin CD=08.08=100…………6分∴AD -BD=100-32=68,∴68³4500=306000改造后修建匝道的投资将增加306000元. ………………………………9分 19.(9分)解:(1)50÷25%=200,故接受这次调查的家长人数共有200人; ………2分第18题(2)20090³360°=162°, 故“不赞同”的家长部分所对应的扇形圆心角的度数为162°;………4分(3)200³20%=40,故表示“无所谓”的家长人数为40人;……………………6分 (4)“很赞同”的家长人数为200-90-50-40=20,20÷200=101故恰好抽到“很赞同”的家长的概率为101.………………………………9分 20.(9分)解:(1)把B (1,2)代入反比例函数y =xn得n =2,把A (4,m )代入反比例函数y =x 2得m =21……………………2分 设一次函数的表达式为y =kx +b ,y =kx +b 的图象过点(4,),(1,2),则⎪⎩⎪⎨⎧=+=+2214b k b k ,解得k = -21 b =25∴一次函数的表达式为y = -21x +25,m =21, n =2…………………5分 (2)连接PC 、PD ,如图,设P (x ,-21x +25)由△PCA 和△PDB 面积相等得21³21³(4-x )=21³1³(2+21x ﹣25), x =25,y = -21x +25=45, ∴P 点坐标是(25,45).…………………9分21.(10分)解:(1)设该药店购进甲种型号口罩x 袋,乙种型号口罩y 袋,则⎩⎨⎧=+=+272012580002420y x y x …………………3分解得⎩⎨⎧==120256y x ∴该药店购进甲种型号口罩256袋,乙种型号口罩120袋. …………………2分(2)设每袋乙种型号的口罩最低打m 折,则256³5+240(0.1m ³36-24)≥2000……………………………………8分解得m ≥7.5∴每袋乙种型号的口罩最低打7.5折. ……………………………………10分 22.(10分)(1)证明:∵∠ACB =90°,BD ⊥l ,AE ⊥l ,∴∠ACE +∠BCD =∠ACE +∠EAC =90°,∴∠BCD =∠EAC ,∠BDC =∠AEC =90°又AC =BC∴△ADC ≌△CEB ………………………………………………3分(2)解:根据题意得出旋转后图形,AC /⊥AC ,过点B /作B /D ⊥AC 于点D ,过点B /作B / C /⊥A C/于点C /,则∠C /AC =∠AC /B /=∠ADB /=90°,∴四边形C /ADB /是矩形,又由旋转知,∴AC /=B /D =AC =4, ∴△AB /C 的面积=21³AC ³B /D =21³4³4=8.…………………………7分(3)当点F 恰好落在射线EB 上时,如图利用(1)中的方法可证△OBF ≌△PCO ,则CP=OB=3-2=1,可得EP=3+1=4,因此点P 运动的时间t=4s. ………………………10分 23.(11分)解:(1)把点A 的坐标(-1,0),点C 的坐标(0,-2)代入y =21x 2+bx +c 可得 21-b +c =0,c = -2解得b = -23,故该抛物线的表达式为y =21x 2-23x -2……………2分 (2)可求点B 的坐标为(4,0),则直线BC 的表达式为y =21x -2,PE ⊥x 轴于点E (m ,0),可设点F 的坐标为(m ,21m -2),点P 的坐标为(m ,21m 2-23m -2),当点E 在线段OB 上时,EF = -21m +2,PF = -21m 2+2m ,若EF =2PF ,则-21m +2=2(-21m 2+2m ),解得m 1=21,m 2=4(舍去) ……………5分若2EF =PF ,则2 (-21m +2)= -21m 2+2m ,解得m 1=2,m 2=4(舍去) ………………………6分当点E 在线段OA 上时,EF = -21m +2,PF =21m 2-2m ,此时只有EF =2PF ,则-21m +2=2(21m 2-2m ),解得m 1= -21,m 2=4(舍去),故m 的值为21或2或-21………………………………8分(3)由点A (-1,0)、C (0,-2)、B (4,0)可得AC=5,BC=25,AB=5,则△ABC为AFO B E C P D数学²第 11 页²共6页 直角三角形,且BC=2AC ,当△BEP 与△ABC 相似时,BE=2EP 或2BE=EP , BE=4-m ,EP= -21m 2+23m +2,则 4-m=2(-21m 2+23m +2),解得m 1=0,m 2=4(舍去) 或2(4-m)= -21m 2+23m +2,解得m 1=3,m 2=4(舍去) 故当m=0或3时△BEP 与△ABC 相似. ……………………………………………11分。