【真卷】2016年四川省成都市中考数学试卷及解析PDF
2024年四川省成都市中考数学试题(含答案)
2024年四川省成都市中考数学A 卷(共100分)第I 卷(选择题,共32分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1.﹣5的绝对值是()A.5 B.﹣5C.15-D.15【答案】A 【解析】【分析】根据负数的绝对值等于它的相反数可得答案.【详解】解:|﹣5|=5.故选A .2.如图所示的几何体是由5个大小相同的小立方块搭成,它的主视图是()A. B. C. D.【答案】A 【解析】【分析】本题考查简单几何体的三视图,根据主视图是从正面看到的图形求解即可.【详解】解:该几何体的主视图为,故选:A .3.下列计算正确的是()A.()2233x x = B.336x y xy +=C.()222x y x y +=+ D.()()2224x x x +-=-【答案】D 【解析】【分析】本题主要考查了积的乘方运算,同类项的合并,完全平方公式以及平方差公式,根据积的乘方运算法则,同类项的合并法则以及完全平方公式以及平方差公式一一计算判断即可.【详解】解:A .()2239x x =,原计算错误,故该选项不符合题意;B .3x 和3y 不是同类项,不能合并,故该选项不符合题意;C .()2222x y x y xy +=++,原计算错误,故该选项不符合题意;D .()()2224x x x +-=-,原计算正确,故该选项符合题意;故选:D .4.在平面直角坐标系xOy 中,点()1,4P -关于原点对称的点的坐标是()A.()1,4-- B.()1,4- C.()1,4 D.()1,4-【答案】B 【解析】【分析】本题考查了求关于原点对称的点的坐标.关于原点对称的两点,则其横、纵坐标互为相反数,由点关于原点对称的坐标特征即可求得对称点的坐标.【详解】解:点()1,4P -关于原点对称的点的坐标为()1,4-;故选:B .5.为深入贯彻落实《中共中央、国务院关于学习运用“千村示范、万村整治”工程经验有力有效推进乡村全面振兴的意见》精神,某镇组织开展“村BA ”、村超、村晚等群众文化赛事活动,其中参赛的六个村得分分别为:55,64,51,50,61,55,则这组数据的中位数是()A.53B.55C.58D.64【答案】B 【解析】【分析】本题主要考查了中位数的定义,根据中位数的定义求解即可.【详解】解:参赛的六个村得分分别为:55,64,51,50,61,55,把这6个数从小到大排序:50,51,55,55,61,64,∴这组数据的中位数是:5555552+=,故选:B .6.如图,在矩形ABCD 中,对角线AC 与BD 相交于点O ,则下列结论一定正确的是()A.AB AD= B.AC BD ⊥ C.AC BD = D.ACB ACD∠=∠【答案】C 【解析】【分析】本题考查矩形的性质,根据矩形的性质逐项判断即可.【详解】解:∵四边形ABCD 是矩形,∴AB CD =,AC BD =,AD BC ∥,则ACB DAC ∠=∠,∴选项A 中AB AD =不一定正确,故不符合题意;选项B 中AC BD ⊥不一定正确,故不符合题意;选项C 中AC BD =一定正确,故符合题意;选项D 中ACB ACD ∠=∠不一定正确,故不符合题意,故选:C .7.中国古代数学著作《九章算术》中记载了这样一个题目:今有共买琎,人出半,盈四;人出少半,不足三.问人数,琎价各几何?其大意是:今有人合伙买琎石,每人出12钱,会多出4钱;每人出13钱,又差了3钱.问人数,琎价各是多少?设人数为x ,琎价为y ,则可列方程组为()A.142133y x y x ⎧=+⎪⎪⎨⎪=+⎪⎩B.142133y x y x ⎧=-⎪⎪⎨⎪=+⎪⎩ C.142133y x y x ⎧=-⎪⎪⎨⎪=-⎪⎩ D.142133y x y x ⎧=+⎪⎪⎨⎪=-⎪⎩【答案】B 【解析】【分析】本题主要考查了列二元一次方程组,根据题意列出二元一次方程组即可.【详解】解:设人数为x ,琎价为y ,根据每人出12钱,会多出4钱可得出1y x 42=-,每人出13钱,又差了3钱.可得出133y x =+,则方程组为:142133y x y x ⎧=-⎪⎪⎨⎪=+⎪⎩,故选:B .8.如图,在ABCD Y 中,按以下步骤作图:①以点B 为圆心,以适当长为半径作弧,分别交BA ,BC 于点M ,N ;②分别以M ,N 为圆心,以大于12MN 的长为半径作弧,两弧在ABC ∠内交于点O ;③作射线BO ,交AD 于点E ,交CD 延长线于点F .若3CD =,2DE =,下列结论错误的是()A.ABE CBE ∠=∠B.5BC =C.DE DF= D.53BE EF =【答案】D 【解析】【分析】本题考查角平分线的尺规作图、平行四边形的性质、等腰三角形的判定以及相似性质与判定的综合.先由作图得到BF为ABC ∠的角平分,利用平行线证明AEB ABE ∠=∠,从而得到3AE AB CD ===,再利用平行四边形的性质得到325BC AD AE ED ==+=+=,再证明AEB DEF △∽△,分别求出32BE EF =,2DF =,则各选项可以判定.【详解】解:由作图可知,BF 为ABC ∠的角平分,∴ABE CBE ∠=∠,故A 正确;∵四边形ABCD 为平行四边形,∴,,AD BC AB CD AD BC == ,∵AD BC ∥∴AEB CBE ∠=∠,∴AEB ABE ∠=∠,∴3AE AB CD ===,∴325BC AD AE ED ==+=+=,故B 正确;∵AB CD =,∴ABE F ∠=∠,∵AEB DEF ∠=∠,∴AEB DEF △∽△,∴BE AB AEEF DF ED ==,∴332BE EF DF ==,∴32BE EF =,2DF =,故D 错误;∵2DE =,∴DE DF =,故C 正确,故选:D .第II 卷(非选择题,共68分)二、填空题(本大题共5个小题,每小题4分,共20分)9.若m ,n 为实数,且()240m ++=,则()2m n +的值为______.【答案】1【解析】【分析】本题考查非负数的性质,根据平方式和算术平方数的非负数求得m 、n 值,进而代值求解即可.【详解】解:∵()240m +=,∴40m +=,50n -=,解得4m =-,5n =,∴()()22451m n +=-+=,故答案为:1.10.分式方程132x x=-的解是____.【答案】x=3【解析】【详解】试题分析:分式方程去分母转化为整式方程x=3(x ﹣2),求出整式方程的解得到x=3,经检验x=3是分式方程的解,即可得到分式方程的解.考点:解分式方程11.如图,在扇形AOB 中,6OA =,120AOB ∠=︒,则 AB 的长为______.【答案】4π【解析】【分析】此题考查了弧长公式,把已知数据代入弧长公式计算即可.【详解】解:由题意得 AB 的长为π120π64π180180n r ⨯==,故答案为:4π12.盒中有x 枚黑棋和y 枚白棋,这些棋除颜色外无其他差别.从盒中随机取出一枚棋子,如果它是黑棋的概率是38,则xy的值为______.【答案】35【解析】【分析】本题考查简单的概率计算、比例性质,根据随机取出一枚棋子,它是黑棋的概率是38,可得38x x y =+,进而利用比例性质求解即可.【详解】解:∵随机取出一枚棋子,它是黑棋的概率是38,∴38x x y =+,则35x y =,故答案为:35.13.如图,在平面直角坐标系xOy 中,已知()3,0A ,()0,2B ,过点B 作y 轴的垂线l ,P 为直线l 上一动点,连接PO ,PA ,则PO PA +的最小值为______.【答案】5【解析】【分析】本题考查轴对称—最短问题以及勾股定理和轴对称图形的性质.先取点A 关于直线l 的对称点A ',连A O '交直线l 于点C ,连AC ,得到AC A C '=,A A l '⊥,再由轴对称图形的性质和两点之间线段最短,得到当,,O P A '三点共线时,PO PA +的最小值为A O ',再利用勾股定理求A O '即可.【详解】解:取点A 关于直线l 的对称点A ',连A O '交直线l 于点C ,连AC ,则可知AC A C '=,A A l '⊥,∴PO PA PO PA A O ''+=+≥,即当,,O P A '三点共线时,PO PA +的最小值为A O ',∵直线l 垂直于y 轴,∴A A x '⊥轴,∵()3,0A ,()0,2B ,∴3,4AO AA '==,∴在Rt A AO '中,5A O '===,故答案为:5三、解答题(本大题共5个小题,共48分)14.(1)计算:()02sin60π20242+︒--+-.(2)解不等式组:2311123x x x+≥-⎧⎪⎨--<⎪⎩①②【答案】(1)5;(2)29x -≤<【解析】【分析】本题考查实数的混合运算、解一元一次不等式组,熟练掌握相关运算法则并正确求解是解答的关键.(1)先计算算术平方根、特殊角的三角函数值、零指数幂、化简绝对值,然后加减运算即可;(2)先求得每个不等式的解集,再求得它们的公共部分即为不等式组的解集.【详解】解:(1()02sin6020242π+︒--+42122=+⨯-+-5=+5=;(2)解不等式①,得2x ≥-,解不等式②,得9x <,∴该不等式组的解集为29x -≤<.15.2024年成都世界园艺博览会以“公园城市美好人居”为主题,秉持“绿色低碳、节约持续、共享包容”的理念,以园艺为媒介,向世界人民传递绿色发展理念和诗意栖居的美好生活场景.在主会场有多条游园线路,某单位准备组织全体员工前往参观,每位员工从其中四条线路(国风古韵观赏线、世界公园打卡线、亲子互动慢游线、园艺小清新线)中选择一条.现随机选取部分员工进行了“线路选择意愿”的摸底调查,并根据调查结果绘制成如下统计图表.游园线路人数国风古韵观赏线44世界公园打卡线x亲子互动慢游线48园艺小清新线y根据图表信息,解答下列问题:(1)本次调查的员工共有______人,表中x 的值为______:(2)在扇形统计图中,求“国风古韵观赏线”对应的圆心角度数;(3)若该单位共有2200人,请你根据调查结果,估计选择“园艺小清新线”的员工人数.【答案】(1)160,40(2)99︒(3)385【解析】【分析】本题考查统计表和扇形统计图的关联、用样本估计总体,理解题意,能从统计图中获取有用信息是解答的关键.(1)根据选择“亲子互动慢游线”的人数及其所占的百分比可求得调查总人数,再根据选择“世界公园打卡线”对应的圆心角是90︒可求解x 值;(2)由360︒乘以选择“国风古韵观赏线”所占的百分比可得答案;(3)先求得选择“园艺小清新线”的人数,再由单位总人数乘以样本中选择“园艺小清新线”所占的比例求解即可.【小问1详解】解:调查总人数为4830160÷%=(人),选择“世界公园打卡线”的人数为9016040360⨯=(人),故答案为:160,40;【小问2详解】解:“国风古韵观赏线”对应的圆心角度数为4436099160︒⨯=︒;【小问3详解】解:选择“园艺小清新线”的人数为16044404828---=(人),∴该单位选择“园艺小清新线”的员工人数为282200385160⨯=(人).16.中国古代运用“土圭之法”判别四季.夏至时日影最短,冬至时日影最长,春分和秋分时日影长度等于夏至和冬至日影长度的平均数.某地学生运用此法进行实践探索,如图,在示意图中,产生日影的杆子AB 垂直于地面,AB 长8尺.在夏至时,杆子AB 在太阳光线AC 照射下产生的日影为BC ;在冬至时,杆子AB 在太阳光线AD 照射下产生的日影为BD .已知73.4ACB ∠=︒,26.6ADB ∠=︒,求春分和秋分时日影长度.(结果精确到0.1尺;参考数据:sin26.60.45︒≈,cos26.60.89︒≈,tan26.60.50︒≈,sin73.40.96︒≈,cos73.40.29︒≈,tan73.4 3.35︒≈)【答案】9.2尺【解析】【分析】本题主要考查解直角三角形和求平均数,利用正切分别求得BC 和BD ,结合题意利用平均数即可求得春分和秋分时日影长度.【详解】解:∵73.4ACB ∠=︒,杆子AB 垂直于地面,AB 长8尺.∴tan ∠=AB ACB BC ,即82.393.35BC ≈≈,∵26.6ADB ∠=︒,∴tan ABADB BD ∠=,即8160.50BD ≈=,∵春分和秋分时日影长度等于夏至和冬至日影长度的平均数.∴春分和秋分时日影长度为2.39169.22+≈.答:春分和秋分时日影长度9.2尺.17.如图,在Rt ABC △中,90C ∠=︒,D 为斜边AB 上一点,以BD 为直径作O ,交AC 于E ,F 两点,连接BE ,BF ,DF .(1)求证:BC DF BF CE ⋅=⋅;(2)若A CBF ∠=∠,tan 5BFC ∠=,45AF =CF 的长和O 的直径.【答案】(1)见详解;(2536.【解析】【分析】(1)先证明EBC DBF ∽,然后利用对应边成比例,即可证明;(2)利用EBC DBF ∽,知道EBC DBF ∠=∠,从而推出CBF EBA ∠=∠,结合A CBF ∠=∠,知道A EBA ∠=∠,推出AE BE =,接下来证明BFC ABC ∠=∠,那么有tan tan BFC ∠=∠即CB AC CF BC==不妨设CF x =,代入求得CF 的长度,不妨设EF y =,在Rt CEB △和Rt CFB △中利用勾股定理求得EF 和BF 的长度,最后利用tan tan CEB FDB ∠=∠,求得DF 的长度,然后在利用勾股定理求得BD 的长度.【小问1详解】BD Q 是O 的直径90BFD C∴∠=︒=∠又CEB FDB∠∠= EBC DBF∴ ∽EC CBDF FB∴=BC DF BF CE⋅=⋅∴【小问2详解】由(1)可知,EBC DBF∽EBC DBF∴∠=∠EBC FBE DBF FBE∴∠-∠=∠-∠CBF EBA∴∠=∠A CBF∠=∠ A EBA∴∠=∠AE BE∴=A CBF∠=∠ 9090A CBF∴︒-∠=︒-∠ABC CFB∴∠=∠tan BFC ∠=tan tan BFC ∠∴=∠CBACCF BC ∴==不妨设CF x =,那么CB =AF ==x ∴=CF ∴=,5CB ==不妨设EF y =,那么AE AF EF y BE=-==在Rt CEB △中,CE EF CF y =+=,5CB =,BE y=222(5)y y ∴++=-y ∴=EF ∴=在Rt CFB △中,CF =,5BC =BF ∴==CEB FDB∠∠= tan tan CEB FDB∴∠=∠CB BF CE DF ∴=DF=DF ∴=BD ∴===∴O 的直径是故答案为:CF =,O 直径是.【点睛】本题考查了同弧所对的圆周角相等,直径所对的圆周角是直角,三角形相似的判定与性质,勾股定理,解直角三角形,等腰三角形的性质,二次根式的化简,熟练掌握以上知识点是解题的关键.18.如图,在平面直角坐标系xOy 中,直线y x m =-+与直线2y x =相交于点()2,A a ,与x 轴交于点(),0B b ,点C 在反比例函数()0k y k x=<图象上.(1)求a ,b ,m 的值;(2)若O ,A ,B ,C 为顶点的四边形为平行四边形,求点C 的坐标和k 的值;(3)过A ,C 两点的直线与x 轴负半轴交于点D ,点E 与点D 关于y 轴对称.若有且只有一点C ,使得ABD △与ABE 相似,求k 的值.【答案】(1)4a =,6m =,6b =(2)点C 的坐标为()4,4-或()4,4-,16k =-(3)1-【解析】【分析】(1)利用待定系数法求解即可;(2)设(),C t s ,根据平行四边形的性质,分当OA 为对角线时,当OB 为对角线时,当OC 为对角线时三种情况,分别利用中点坐标公式列方程组求解即可;(3)设点(),0D x ,则(),0E x -,0x <,利用相似三角形的性质得2AB BE BD =⋅,进而解方程得2x =-,则()2,0D -,利用待定系数法求得直线AC 的表达式为2y x =+,联立方程组得220x x k +-=,根据题意,方程220x x k +-=有且只有一个实数根,利用根的判别式求解即可.【小问1详解】解:由题意,将()2,A a 代入2y x =中,得224a =⨯=,则()2,4A ,将()2,4A 代入y x m =-+中,得42m =-+,则6m =,∴6y x =-+,将(),0B b 代入6y x =-+中,得06b =-+,则6b =;【小问2详解】解:设(),C t s ,由(1)知()2,4A ,()6,0B 若O ,A ,B ,C 为顶点的四边形为平行四边形,分以下情况:当OA 为对角线时,则026040t s +=+⎧⎨+=+⎩,解得44t s =-⎧⎨=⎩,∴()4,4C -,则4416k =-⨯=-;当OB 为对角线时,则062004t s +=+⎧⎨+=+⎩,解得44t s =⎧⎨=-⎩,∴()4,4C -,则4416k =-⨯=-;当OC 为对角线时,依题意,这种情况不存在,综上所述,满足条件的点C 的坐标为()4,4-或()4,4-,16k =-;【小问3详解】解:如图,设点(),0D x ,则(),0E x -,0x <,若ABD EBA △∽△,则AB BDBE AB =,即2AB BE BD =⋅,∴()()()()22264066x x -+-=+-,即24x =,解得2x =±,∵0x <,∴2x =-,则()2,0D -,设直线AC 的表达式为y px q =+,则2420p q p q +=⎧⎨-+=⎩,解得12p q =⎧⎨=⎩,∴直线AC 的表达式为2y x =+,联立方程组2y x k y x=+⎧⎪⎨=⎪⎩,得220x x k +-=,∵有且只有一点C ,∴方程220x x k +-=有且只有一个实数根,∴2402k +==∆,解得1k =-;由题意,ABD ABE ∽V V 不存在,故满足条件的k 值为1-.【点睛】本题考查一次函数与反比例函数的综合、反比例函数与几何的综合,涉及待定系数法、相似三角形的性质、平行四边形的性质、坐标与图形、一元二次方程根的判别式等知识,熟练掌握相关知识的联系与运用,利用分类讨论思想求解是解答的关键.B 卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分)19.如图,ABC CDE △≌△,若35D ∠=︒,45ACB ∠=︒,则DCE ∠的度数为______.【答案】100︒##100度【解析】【分析】本题考查了三角形的内角和定理和全等三角形的性质,先利用全等三角形的性质,求出45CED ACB ∠=∠=︒,再利用三角形内角和求出DCE ∠的度数即可.【详解】解:由ABC CDE △≌△,35D ∠=︒,∴45CED ACB ∠=∠=︒,∵35D ∠=︒,∴1801803545100DCE D CED ∠=︒-∠-∠=︒-︒-︒=︒,故答案为:100︒20.若m ,n 是一元二次方程2520x x -+=的两个实数根,则()22m n +-的值为______.【答案】7【解析】【分析】本题考查了根与系数的关系和完全平方公式和已知式子的值,求代数式的值.先利用已知条件求出2520n n -+=,5b m n a+=-=,从而得到252n n =-,再将原式利用完全平方公式展开,利用252n n =-替换2n 项,整理后得到m n 2++,再将5m n +=代入即可.【详解】解:∵m ,n 是一元二次方程2520x x -+=的两个实数根,∴2520n n -+=,5b m n a+=-=,则252n n =-∴()22m n +-244m n n =+-+5244m n n =+--+2m n =++52=+7=故答案为:721.在综合实践活动中,数学兴趣小组对1n 这n 个自然数中,任取两数之和大于n 的取法种数k 进行了探究.发现:当2n =时,只有{}1,2一种取法,即1k =;当3n =时,有{}1,3和{}2,3两种取法,即2k =;当4n =时,可得4k =;…….若6n =,则k 的值为______;若24n =,则k 的值为______.【答案】①.9②.144【解析】【分析】本题考查数字类规律探究,理解题意,能够从特殊到一般,得到当n 为偶数或奇数时的不同取法是解答的关键.先根据前几个n 值所对应k 值,找到变化规律求解即可.【详解】解:当2n =时,只有{}1,2一种取法,则1k =;当3n =时,有{}1,3和{}2,3两种取法,则2k =;当4n =时,有{}1,4,{}2,4,{}3,4,{}2,3四种取法,则243144k =+==;故当5n =时,有{}1,5,{}2,5,{}3,5,{}4,5,{}2,4,{}3,4六种取法,则426k =+=;当6n =时,有{}1,6,{}2,6,{}3,6,{}4,6,{}5,6,{}2,5,{}3,5,{}4,5,{}3,4九种取法,则2653194k =++==;依次类推,当n 为偶数时,()()2135314n k n n =-+-++++= ,故当24n =时,2242321195311444k =++++++== ,故答案为:9,144.22.如图,在Rt ABC △中,90C ∠=︒,AD 是ABC 的一条角平分线,E 为AD 中点,连接BE .若BE BC =,2CD =,则BD =______.【答案】12+【解析】【分析】连接CE ,过E 作EF CD ⊥于F ,设BD x =,EF m =,根据直角三角形斜边上的中线性质和等腰三角形的性质证得112CF DF CD ===,EAC ECA =∠∠,ECD EDC BEC ∠=∠=∠,进而利用三角形的外角性质和三角形的中位线性质得到2CED CAE ∠=∠,22AC EF m ==,证明CBE CED ∽,利用相似三角形的性质和勾股定理得到232m x =+;根据角平分线的定义和相似三角形的判定与性质证明CAB FBE ∽得到()()2212m x x =++,进而得到关于x 的一元二次方程,进而求解即可.【详解】解:连接CE ,过E 作EF CD ⊥于F ,设BD x =,EF m =,∵90ACB ∠=︒,E 为AD 中点,∴CE AE DE ==,又2CD =,∴112CF DF CD ===,EAC ECA =∠∠,ECD EDC ∠=∠,∴2CED CAE ∠=∠,22AC EF m ==,∵BE BC =,∴BEC ECB ∠=∠,则BEC EDC ∠=∠,又BCE ECD ∠=∠,∴CBE CED ∽,∴CE CB CD CE=,2CBE CED CAE ∠=∠=∠,∴()22242CE CD CB x x =⋅=+=+,则222232m EF CE CF x ==-=+;∵AD 是ABC 的一条角平分线,∴2CAB CAE CBE ∠=∠=∠,又90ACB BFE ∠=∠=︒,∴CAB FBE ∽,∴AC BC BF EF =∴221m x x m +=+,则()()2212m x x =++,∴()()()23212x x x +=++,即240x x --=,解得1712x +=(负值已舍去),故答案为:1712+.【点睛】本题考查了相似三角形的判定与性质、直角三角形的性质、等腰三角形的性质、三角形的中位线性质、三角形的外角性质、角平分线的定义以及解一元二次方程等知识,是一道填空压轴题,有一定的难度,熟练掌握三角形相关知识是解答的关键.23.在平面直角坐标系xOy 中,()11,A x y ,()22,B x y ,()33,C x y 是二次函数241y x x =-+-图象上三点.若101x <<,24x >,则1y ______2y (填“>”或“<”);若对于11m x m <<+,212m x m +<<+,323m x m +<<+,存在132y y y <<,则m 的取值范围是______.【答案】①.>②.112m -<<【解析】【分析】本题考查二次函数的性质、不等式的性质以及解不等式组,熟练掌握二次函数的性质是解答的关键.先求得二次函数的对称轴,再根据二次函数的性质求解即可.【详解】解:由()224123y x x x =-+-=--+得抛物线的对称轴为直线2x =,开口向下,∵101x <<,24x >,∴1222x x -<-,∴12y y >;∵12m m m <+<+,11m x m <<+,212m x m +<<+,323m x m +<<+,∴123x x x <<,∵存在132y y y <<,∴12x <,32x >,且()11,A x y 离对称轴最远,()22,B x y 离对称轴最近,∴132222x x x ->->-,即134x x +<,且234x x +>,∵132224m x x m +<+<+,232325m x x m +<+<+,∴224m +<且254m +>,解得112m -<<,故答案为:>;112m -<<.二、解答题(本大题共3个小题,共30分)24.推进中国式现代化,必须坚持不懈夯实农业基础,推进乡村全面振兴.某合作社着力发展乡村水果网络销售,在水果收获的季节,该合作社用17500元从农户处购进A ,B 两种水果共1500kg 进行销售,其中A 种水果收购单价10元/kg ,B 种水果收购单价15元/kg .(1)求A ,B 两种水果各购进多少千克;(2)已知A 种水果运输和仓储过程中质量损失4%,若合作社计划A 种水果至少要获得20%的利润,不计其他费用,求A 种水果的最低销售单价.【答案】(1)A 种水果购进1000千克,B 种水果购进500千克(2)A 种水果的最低销售单价为12.5元/kg【解析】【分析】本题主要考查一元二次方程的应用和一元一次不等式的应用,(1)设A 种水果购进x 千克,B 种水果购进y 千克,根据题意列出二元一次方程组求解即可.(2)根据题意列出关于利润和进价与售价的不等式求解即可.【小问1详解】解:设A 种水果购进x 千克,B 种水果购进y 千克,根据题意有:1500101517500x y x y +=⎧⎨+=⎩,解得:1000500x y =⎧⎨=⎩,∴A 种水果购进1000千克,B 种水果购进500千克【小问2详解】设A 种水果的销售单价为a 元/kg ,根据题意有:()()100014%120%100010a -≥+⨯⨯,解得12.5a ≥,故A 种水果的最低销售单价为12.5元/kg25.如图,在平面直角坐标系xOy 中,抛物线L :()2230y ax ax a a =-->与x 轴交于A ,B 两点(点A 在点B 的左侧),其顶点为C ,D 是抛物线第四象限上一点.(1)求线段AB 的长;(2)当1a =时,若ACD 的面积与ABD △的面积相等,求tan ABD ∠的值;(3)延长CD 交x 轴于点E ,当AD DE =时,将ADB 沿DE 方向平移得到A EB '' .将抛物线L 平移得到抛物线L ',使得点A ',B '都落在抛物线L '上.试判断抛物线L '与L 是否交于某个定点.若是,求出该定点坐标;若不是,请说明理由.【答案】(1)4AB =(2)10tan 3ABD ∠=(3)抛物线L '与L 交于定点()3,0【解析】【分析】(1)根据题意可得2230ax ax a --=,整理得2230x x --=,即可知()()1,0,3,0,A B -则有4AB =;(2)由题意得抛物线L :()222314y x x x =--=--,则()1,4,C -设()2,23,D n n n --()03n <<,可求得2246ABD S n n =-++△,结合题意可得直线AD 解析式为()()31y n x =-+,设直线AD 与抛物线对称轴交于点E ,则()1,26E n -,即可求得21ACD S n =- ,进一步解得点720,39D ⎛⎫- ⎪⎝⎭,过D 作DH AB ⊥于点H ,则220,39BH DH ==,即可求得tan DH ABD BH∠=;(3)设()2,23,D n an an a --可求得直线AD 解析式为()()31y a n x =-+,过点D 作DM AB ⊥,可得21,23AM n DM an an a =+=-++,结合题意得1,EM n =+()2,23,A n an an a -++'()24,23,B n an an a '+-++设抛物线L '解析式为()20y ax bx c a =++>,由于过点A ',B '可求得抛物线L '解析式为()22463y ax an a x an a =+--++,根据()22232463ax ax a ax an a x an a --=+--++解得3x =,即可判断抛物线L '与L 交于定点()3,0.【小问1详解】解:∵抛物线L :()2230y ax ax a a =-->与x 轴交于A ,B 两点,∴2230ax ax a --=,整理得2230x x --=,解得121,3,x x =-=∴()()1,0,3,0,A B -则()314AB =--=;【小问2详解】当1a =时,抛物线L :()222314y x x x =--=--,则()1,4,C -设()2,23,D n n n --()03n <<,则()221142324622ABD D S AB y n n n n =⋅=-⨯⨯--=-++ ,设直线AD 解析式为()1y k x =+,∵点D 在直线AD 上,∴()2231n n k n --=+,解得3k n =-,则直线AD 解析式为()()31y n x =-+,设直线AD 与抛物线对称轴交于点E ,则()1,26E n -,∴()()()2112641122ACD D A S CE x x n n n ⎡⎤=⋅-=⨯---⨯+=-⎣⎦ ,∵ACD 的面积与ABD △的面积相等,∴222461n n n -++=-,解得1271,3n n =-=,∴点720,39D ⎛⎫- ⎪⎝⎭,过点D 作DH AB ⊥于点H ,则72203,339BH DH =-==,则10tan 3DH ABD BH ∠==;【小问3详解】设()2,23,D n an an a --直线AD 解析式为()11y k x =+,则()21231an an a k n --=+,解得13k an a =-,那么直线AD 解析式为()()31y a n x =-+,过点D 作DM AB ⊥,如图,则21,23AM n DM an an a =+=-++,∵AD DE =,∴1EM n =+,∵将ADB 沿DE 方向平移得到A EB '' ,()()1,0,3,0,A B -∴()()22,23,4,23,A n an an aB n an an a -+++-++''由题意知抛物线L 平移得到抛物线L ',设抛物线L '解析式为()20y ax bx c a =++>,∵点A ',B '都落在抛物线L '上∴()()2222232344an an a an bn c an an a a n b n c ⎧-++=++⎪⎨-++=++++⎪⎩,解得2463b an a c an a =--⎧⎨=+⎩,则抛物线L '解析式为()22463y ax an a x an a =+--++∵()22232463ax ax a ax an a x an a --=+--++整理得()133n x n +=+,解得3x =,∴抛物线L '与L 交于定点()3,0.【点睛】本题主要考查二次函数的性质、两点之间的距离、一次函数的性质、求正切值、二次函数的平移、等腰三角形的性质和抛物线过定点,解题的关键是熟悉二次函数的性质和平移过程中数形结合思想的应用.26.数学活动课上,同学们将两个全等的三角形纸片完全重合放置,固定一个顶点,然后将其中一个纸片绕这个顶点旋转,来探究图形旋转的性质.已知三角形纸片ABC 和ADE 中,3AB AD ==,4BC DE ==,90ABC ADE ∠=∠=︒.【初步感知】(1)如图1,连接BD ,CE ,在纸片ADE 绕点A 旋转过程中,试探究BD CE的值.【深入探究】(2)如图2,在纸片ADE 绕点A 旋转过程中,当点D 恰好落在ABC 的中线BM 的延长线上时,延长ED 交AC 于点F ,求CF 的长.【拓展延伸】(3)在纸片ADE 绕点A 旋转过程中,试探究C ,D ,E 三点能否构成直角三角形.若能,直接写出所有直角三角形CDE的面积;若不能,请说明理由.【答案】(1)BD CE 的值为35;(2)7039CF =;(3)直角三角形CDE 的面积分别为4,16,12,4813【解析】【分析】(1)根据3AB AD ==,4BC DE ==,90ABC ADE ∠=∠=︒.证明ADE ABC ≌,5AC AE ===,继而得到DAE BAC ∠=∠,DAE DAC BAC DAC ∠-∠=∠-∠即CAE BAD ∠=∠,再证明CAE BAD ∽,得到35BD AB CE AC ==.(2)连接CE ,延长BM 交CE 于点Q ,根据(1)得CAE BAD ∽,得到ABD ACE ∠=∠,根据中线BM 得到1522BM AM CM AC ====,继而得到MBC MCB ∠=∠,结合90ABD MBC ∠+∠=︒,得到90ACE MCB ∠+∠=︒即90BCE ∠=︒,得到AB CQ ,再证明ABM CQM ≌,得证矩形ABCQ ,再利用勾股定理,三角形相似的判定和性质计算即可.(3)运用分类思想解答即可.【详解】(1)∵3AB AD ==,4BC DE ==,90ABC ADE ∠=∠=︒.∴()SAS ADE ABC ≌,∴5AC AE ==,DAE BAC ∠=∠,∴DAE DAC BAC DAC ∠-∠=∠-∠即CAE BAD ∠=∠,∵1AB AC AD AE==∴CAE BAD ∽,∴35BD AB CE AC ==.(2)连接CE ,延长BM 交CE 于点Q ,根据(1)得CAE BAD ∽,∴ABD ACE ∠=∠,∵BM 是中线∴1522BM AM CM AC ====,∴MBC MCB ∠=∠,∵90ABD MBC ∠+∠=︒,∴90ACE MCB ∠+∠=︒即90BCE ∠=︒,∴AB CQ ,∴,BAM QCM ABM CQM ∠=∠∠=∠,∵BAM QCMABM CQM AM CM∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AAS BAM QCM ≌,∴BM QM =,∴四边形ABCQ 是平行四边形,∵90ABC ∠=︒∴四边形ABCQ 矩形,∴3,4,90AB CQ BC AQ AQC ====∠=︒,∴,3PQ CN EQ == ,∴313EP EQPN QC ===,∴12PQ CN =,设,2PQ x CN x ==,则4AP x =-,∵903EPQ APDEQP ADP EQ AD ∠=∠⎧⎪∠=∠=︒⎨⎪==⎩,∴()AAS EQP ADP ≌,∴4AP EP x ==-,∵222EP PQ EQ =+,∴()22243x x -=+,解得78x =;∴2548AP x =-=,724CN x ==,∵,5PQ CN AC = ,∴APF CNF ∽,∴AP AFCN CF =,∴AP CN AFCFCN CF ++=,∴25758474CF +=,解得7039CF =.(3)如图,当AD 与AC 重合时,此时DE AC ⊥,此时CDE 是直角三角形,故()111·244222CDE S CD DE AC AD DE ==⨯-⨯=⨯⨯=;如图,当AD 在CA 的延长线上时,此时DE AC ⊥,此时CDE 是直角三角形,故()111·8416222CDE S CD DE AC AD DE ==⨯+⨯=⨯⨯= ;如图,当DE EC ⊥时,此时CDE 是直角三角形,过点A 作AQ EC ⊥于点Q ,∵5AE AC ==,∴12EQ QC EC ==,∵AQ EC ⊥,DE EC ⊥,DE AD ⊥,∴四边形ADEQ 是矩形,∴132AD EQ QC EC ====,∴6EC =,故11641222CDE S EC DE ==⨯⨯= ;如图,当DC EC ⊥时,此时CDE 是直角三角形,过点A 作AQ EC ⊥于点Q ,交DE 于点N ,∴12EQ QC EC x ===,NQ CD ∥,∴1EN EQDN QC ==,∴122DN EN DE ===,12QN DC =,∵,90AND ENQ ADN EQN ∠=∠∠=∠=︒,∴DAN QEN ∠=∠,∴tan tan DAN QEN ∠=∠,∴23QN DN EQ AD ==,∴23QN x =,∴4,23DC x CE x ==,∵222ED DC EC =+,∴()2224423x x ⎛⎫=+ ⎪⎝⎭,∴23613x =,解得13x =;故21144436482223331313CDE S EC DC x x x ==⨯⨯==⨯= .【点睛】本题考查了旋转的性质,三角形相似的判定和性质,三角形中位线定理的判定和应用,三角形全等的判定和性质,三角函数的应用,勾股定理,熟练掌握三角函数的应用,三角形相似的判定和性质,矩形的判定和性质,中位线定理是解题的关键.。
四川省成都市中考数学试卷(含标准答案)
年四川省成都市中考数学试卷(含答案)————————————————————————————————作者:————————————————————————————————日期:22016年四川省成都市中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分1.(3分)(2016•成都)在﹣3,﹣1,1,3四个数中,比﹣2小的数是()A.﹣3 B.﹣1 C.1 D.32.(3分)(2016•成都)如图所示的几何体是由5个大小相同的小立方块搭成,它的俯视图是()A.B.C.D.3.(3分)(2016•成都)成都地铁自开通以来,发展速度不断加快,现已成为成都市民主要出行方式之一.今年4月29日成都地铁安全运输乘客约181万乘次,又一次刷新客流纪录,这也是今年以来第四次客流纪录的刷新,用科学记数法表示181万为()A.18.1×105B.1.81×106C.1.81×107D.181×1044.(3分)(2016•成都)计算(﹣x3y)2的结果是()A.﹣x5y B.x6y C.﹣x3y2D.x6y25.(3分)(2016•成都)如图,l1∥l2,∠1=56°,则∠2的度数为()A.34°B.56°C.124°D.146°6.(3分)(2016•成都)平面直角坐标系中,点P(﹣2,3)关于x轴对称的点的坐标为()A.(﹣2,﹣3)B.(2,﹣3)C.(﹣3,﹣2)D.(3,﹣2)7.(3分)(2016•成都)分式方程=1的解为()A.x=﹣2 B.x=﹣3 C.x=2 D.x=38.(3分)(2016•成都)学校准备从甲、乙、丙、丁四个科创小组中选出一组代表学校参加青少年科技创新大赛,各组的平时成绩的平均数(单位:分)及方差s2如表所示:甲乙丙丁788 7s211.2 11.8如果要选出一个成绩较好且状态稳定的组去参赛,那么应选的组是()A.甲B.乙C.丙D.丁9.(3分)(2016•成都)二次函数y=2x2﹣3的图象是一条抛物线,下列关于该抛物线的说法,正确的是()A.抛物线开口向下B.抛物线经过点(2,3)C.抛物线的对称轴是直线x=1 D.抛物线与x轴有两个交点10.(3分)(2016•成都)如图,AB为⊙O的直径,点C在⊙O上,若∠OCA=50°,AB=4,则的长为()A.π B.π C.πD.π二、填空题:本大题共4个小题,每小题4分,共16分11.(4分)(2016•成都)已知|a+2|=0,则a=.12.(4分)(2016•成都)如图,△ABC≌△A′B′C′,其中∠A=36°,∠C′=24°,则∠B=.13.(4分)(2016•成都)已知P1(x1,y1),P2(x2,y2)两点都在反比例函数y=的图象上,且x1<x2<0,则y1y2(填“>”或“<”).14.(4分)(2016•成都)如图,在矩形ABCD中,AB=3,对角线AC,BD相交于点O,AE垂直平分OB于点E,则AD的长为.三、解答题:本大共6小题,共54分15.(12分)(2016•成都)(1)计算:(﹣2)3+﹣2sin30°+(2016﹣π)0(2)已知关于x的方程3x2+2x﹣m=0没有实数解,求实数m的取值范围.16.(6分)(2016•成都)化简:(x﹣)÷.17.(8分)(2016•成都)在学习完“利用三角函数测高”这节内容之后,某兴趣小组开展了测量学校旗杆高度的实践活动,如图,在测点A处安置测倾器,量出高度AB=1.5m,测得旗杆顶端D的仰角∠DBE=32°,量出测点A到旗杆底部C的水平距离AC=20m,根据测量数据,求旗杆CD的高度.(参考数据:sin32°≈0.53,cos32°≈0.85,tan32°≈0.62)18.(8分)(2016•成都)在四张编号为A,B,C,D的卡片(除编号外,其余完全相同)的正面分别写上如图所示正整数后,背面朝上,洗匀放好,现从中随机抽取一张(不放回),再从剩下的卡片中随机抽取一张.(1)请用树状图或列表的方法表示两次抽取卡片的所有可能出现的结果(卡片用A,B,C,D表示);(2)我们知道,满足a2+b2=c2的三个正整数a,b,c成为勾股数,求抽到的两张卡片上的数都是勾股数的概率.19.(10分)(2016•成都)如图,在平面直角坐标xOy中,正比例函数y=kx的图象与反比例函数y=的图象都经过点A(2,﹣2).(1)分别求这两个函数的表达式;(2)将直线OA向上平移3个单位长度后与y轴交于点B,与反比例函数图象在第四象限内的交点为C,连接AB,AC,求点C的坐标及△ABC的面积.20.(10分)(2016•成都)如图,在Rt△ABC中,∠ABC=90°,以CB为半径作⊙C,交AC于点D,交AC的延长线于点E,连接ED,BE.(1)求证:△ABD∽△AEB;(2)当=时,求tanE;(3)在(2)的条件下,作∠BAC的平分线,与BE交于点F,若AF=2,求⊙C的半径.四、填空题:每小题4分,共20分21.(4分)(2016•成都)第十二届全国人大四次会议审议通过的《中华人民共和国慈善法》将于今年9月1日正式实施,为了了解居民对慈善法的知晓情况,某街道办从辖区居民中随机选取了部分居民进行调查,并将调查结果绘制成如图所示的扇形图.若该辖区约有居民9000人,则可以估计其中对慈善法“非常清楚”的居民约有人.22.(4分)(2016•成都)已知是方程组的解,则代数式(a+b)(a﹣b)的值为.23.(4分)(2016•成都)如图,△ABC内接于⊙O,AH⊥BC于点H,若AC=24,AH=18,⊙O的半径OC=13,则AB=.24.(4分)(2016•成都)实数a,n,m,b满足a<n<m<b,这四个数在数轴上对应的点分别为A,N,M,B(如图),若AM2=BM•AB,BN2=AN•AB,则称m为a,b的“大黄金数”,n为a,b的“小黄金数”,当b﹣a=2时,a,b的大黄金数与小黄金数之差m﹣n=.25.(4分)(2016•成都)如图,面积为6的平行四边形纸片ABCD中,AB=3,∠BAD=45°,按下列步骤进行裁剪和拼图.第一步:如图①,将平行四边形纸片沿对角线BD剪开,得到△ABD和△BCD纸片,再将△ABD纸片沿AE剪开(E为BD上任意一点),得到△ABE和△ADE纸片;第二步:如图②,将△ABE纸片平移至△DCF处,将△ADE纸片平移至△BCG处;第三步:如图③,将△DCF纸片翻转过来使其背面朝上置于△PQM处(边PQ与DC重合,△PQM和△DCF在DC同侧),将△BCG纸片翻转过来使其背面朝上置于△PRN处,(边PR与BC重合,△PRN和△BCG在BC同侧).则由纸片拼成的五边形PMQRN中,对角线MN长度的最小值为.五、解答题:共3个小题,共30分26.(8分)(2016•成都)某果园有100颗橙子树,平均每颗树结600个橙子,现准备多种一些橙子树以提高果园产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子,假设果园多种了x棵橙子树.(1)直接写出平均每棵树结的橙子个数y(个)与x之间的关系;(2)果园多种多少棵橙子树时,可使橙子的总产量最大?最大为多少个?27.(10分)(2016•成都)如图①,△ABC中,∠ABC=45°,AH⊥BC于点H,点D在AH 上,且DH=CH,连结BD.(1)求证:BD=AC;(2)将△BHD绕点H旋转,得到△EHF(点B,D分别与点E,F对应),连接AE.①如图②,当点F落在AC上时,(F不与C重合),若BC=4,tanC=3,求AE的长;②如图③,当△EHF是由△BHD绕点H逆时针旋转30°得到时,设射线CF与AE相交于点G,连接GH,试探究线段GH与EF之间满足的等量关系,并说明理由.28.(12分)(2016•成都)如图,在平面直角坐标系xOy中,抛物线y=a(x+1)2﹣3与x 轴交于A,B两点(点A在点B的左侧),与y轴交于点C(0,﹣),顶点为D,对称轴与x轴交于点H,过点H的直线l交抛物线于P,Q两点,点Q在y轴的右侧.(1)求a的值及点A,B的坐标;(2)当直线l将四边形ABCD分为面积比为3:7的两部分时,求直线l的函数表达式;(3)当点P位于第二象限时,设PQ的中点为M,点N在抛物线上,则以DP为对角线的四边形DMPN能否为菱形?若能,求出点N的坐标;若不能,请说明理由.2016年四川省成都市中考数学试卷参考答案一、选择题1.A2.C3.B4.D5.C6.A7.B8.C9.D10.B二、填空题11.﹣212.120°13.>14.3三、解答题15.m<16.解:原式=•=•=x+1.17.解:由题意得AC=20米,AB=1.5米,∵∠DBE=32°,∴DE=BEtan32°≈20×0.62=12.4米,∴CD=DE+CE=DE+AB=12.4+1.5≈13.9(米).答:旗杆CD的高度约13.9米.18.解:(1)画树状图为:共有12种等可能的结果数;(2)抽到的两张卡片上的数都是勾股数的结果数为6,所以抽到的两张卡片上的数都是勾股数的概率==.19.解:(1)根据题意,将点A(2,﹣2)代入y=kx,得:﹣2=2k,解得:k=﹣1,∴正比例函数的解析式为:y=﹣x,将点A(2,﹣2)代入y=,得:﹣2=,解得:m=﹣4;∴反比例函数的解析式为:y=﹣;(2)直线OA:y=﹣x向上平移3个单位后解析式为:y=﹣x+3,则点B的坐标为(0,3),联立两函数解析式,解得:或,∴第四象限内的交点C的坐标为(4,﹣1),∴S△ABC=×(1+5)×4﹣×5×2﹣×2×1=6.20.解:(1)∵∠ABC=90°,∴∠ABD=90°﹣∠DBC,由题意知:DE是直径,∴∠DBE=90°,∴∠E=90°﹣∠BDE,∵BC=CD,∴∠DBC=∠BDE,∴∠ABD=∠E,∵∠A=∠A,∴△ABD∽△AEB;(2)∵AB:BC=4:3,∴设AB=4,BC=3,∴AC==5,∵BC=CD=3,∴AD=AC﹣CD=5﹣3=2,由(1)可知:△ABD∽△AEB,∴==,∴AB2=AD•AE,∴42=2AE,∴AE=8,在Rt△DBE中tanE====;(3)过点F作FM⊥AE于点M,∵AB:BC=4:3,∴设AB=4x,BC=3x,∴由(2)可知;AE=8x,AD=2x,∴DE=AE﹣AD=6x,∵AF平分∠BAC,∴=,∴==,∵tanE=,∴cosE=,sinE=,∴=,∴BE=,∴EF=BE=,∴sinE==,∴MF=,∵tanE=,∴ME=2MF=,∴AM=AE﹣ME=,∵AF2=AM2+MF2,∴4=+,∴x=,∴⊙C的半径为:3x=.四、填空题21.解:根据题意得:9000×(1﹣30%﹣15%﹣×100%)=9000×30%=2700(人).答:可以估计其中对慈善法“非常清楚”的居民约有2700人.故答案为:2700.22.﹣823..24.﹣4.25..五、解答题26.解:(1)y=600﹣5x(0≤x<120);(2)设果园多种x棵橙子树时,可使橙子的总产量为w,则w=(600﹣5x)(100+x)=﹣5x2+100x+60000=﹣5(x﹣10)2+60500,则果园多种10棵橙子树时,可使橙子的总产量最大,最大为60500个.27.解:(1)在Rt△AHB中,∠ABC=45°,∴AH=BH,在△BHD和△AHC中,,∴△BHD≌△AHC,∴BD=AC,(2)①如图,在Rt△AHC中,∵tanC=3,∴=3,设CH=x,∴BH=AH=3x,∵BC=4,∴3x+x=4,∴x=1,∴AH=3,CH=1,由旋转知,∠EHF=∠BHD=∠AHC=90°,EH=AH=3,CH=DH=FH,∴∠EHA=∠FHC,,∴△EHA≌△FHC,∴∠EAH=∠C,∴tan∠EAH=tanC=3,过点H作HP⊥AE,∴HP=3AP,AE=2AP,在Rt△AHP中,AP2+HP2=AH2,∴AP2+(3AP)2=9,∴AP=,∴AE=;②由①有,△AEH和△FHC都为等腰三角形,∴∠GAH=∠HCG=90°,∴△AGQ∽△CHQ,∴,∴,∵∠AQC=∠GQE,∴△AQC∽△GQH,∴=sin30°=.28.解:(1)∵抛物线与y轴交于点C(0,﹣).∴a﹣3=﹣,解得:a=,∴y=(x+1)2﹣3当y=0时,有(x+1)2﹣3=0,∴x1=2,x2=﹣4,∴A(﹣4,0),B(2,0).(2)∵A(﹣4,0),B(2,0),C(0,﹣),D(﹣1,﹣3)∴S四边形ABCD=S△ADH+S梯形OCDH+S△BOC=×3×3+(+3)×1+×2×=10.从面积分析知,直线l只能与边AD或BC相交,所以有两种情况:①当直线l边AD相交与点M1时,则S=×10=3,∴×3×(﹣y)=3∴y=﹣2,点M 1(﹣2,﹣2),过点H(﹣1,0)和M1(﹣2,﹣2)的直线l的解析式为y=2x+2.②当直线l边BC相交与点M2时,同理可得点M2(,﹣2),过点H(﹣1,0)和M2(,﹣2)的直线l的解析式为y=﹣x﹣.综上所述:直线l的函数表达式为y=2x+2或y=﹣x﹣.(3)设P(x1,y1)、Q(x2,y2)且过点H(﹣1,0)的直线PQ的解析式为y=kx+b,∴﹣k+b=0,∴b=k,∴y=kx+k.由,∴+(﹣k)x﹣﹣k=0,∴x1+x2=﹣2+3k,y1+y2=kx1+k+kx2+k=3k2,∵点M是线段PQ的中点,∴由中点坐标公式的点M(k﹣1,k2).假设存在这样的N点如图,直线DN∥PQ,设直线DN的解析式为y=kx+k﹣3由,解得:x1=﹣1,x2=3k﹣1,∴N(3k﹣1,3k2﹣3)∵四边形DMPN是菱形,∴DN=DM,∴(3k)2+(3k2)2=()2+()2,整理得:3k4﹣k2﹣4=0,∵k2+1>0,∴3k2﹣4=0,解得k=±,∵k<0,∴k=﹣,∴P(﹣3﹣1,6),M(﹣﹣1,2),N(﹣2﹣1,1)∴PM=DN=2,∵PM∥DN,∴四边形DMPN是平行四边形,∵DM=DN,∴四边形DMPN为菱形,∴以DP为对角线的四边形DMPN能成为菱形,此时点N的坐标为(﹣2﹣1,1).。
2016年四川省内江市中考数学试卷及答案,推荐文档
360
2
故选 C. 11.已知等边三角形的边长为 3,点 P 为等边三角形内任意一点,则点 P 到三边的距离之和
为( )
A.
3 2
B. 3 3 2
C. 3 2
D. 不能确定
【解析】如图所示,△ABC 是等边三角形,AB=3,点 P 是三角形内任意一点,过点 P 分
别向三边 AB,BC,CA 作垂线,垂足依次为 D,E,F,过点 A 作 AH⊥BC 于 H.
故选 B. 8.甲、乙两人同时分别从 A,B 两地沿同一条公路骑自行车到 C 地,已知 A,C 两地间的 距离为 110 千米,B,C 两地间的距离为 100 千米,甲骑自行车的平均速度比乙快 2 千米/ 时,结果两人同时到达 C 地,求两人的平均速度分别为多少.为解决此问题,设乙骑自行 车的平均速度为 x 千米/时,由题意列出方程,其中正确的是( )
A.75° B.65° C.45° D.30° 【解析】方法一:∠1 的对顶角所在的三角形中另两个角的度数分别为 60°和 45°,
∴∠1=180°-(60°+45°)=75°. 方法二:∠1 可看作是某个三角形的外角,根据三角形的外角等于与它不相邻的两个内角
的和计算.
故选 A.
4. 下列标志既是轴对称图形又是中心对称图形的是( )
x2 x
故选 A. 9.下列命题中,真命题是( ) A.对角 线相等的四边形是矩形 B.对角线互相垂 直的四边形是菱形 C.对角线互相平分的 四边形是平行四边形 D.对角线互相垂直 平分的四边形是正方形
【解析】满足选项 A 或选项 B 中的条件时,不能推出四边形是平行四边形,因此它们都是 假命题.由选项 D 中的条件只能推出四边形是菱形,因此也是假命题.只有选项 C 中的命 题是真命题.
2023年四川省成都市数学中考真题(解析版)
【点睛】本题考查了平行四边形的性质,熟练掌握平行四边形的性质是解题的关键.
6. 为贯彻教育部《大中小学劳动教育指导纲要(试行)》文件精神,某学校积极开设种植类劳动教育课.某
班决定每位学生随机抽取一张卡片来确定自己的种植项目,老师提供 6 张背面完全相同的卡片,其中蔬菜
类有 4 张,正面分别印有白菜、辣椒、豇豆、茄子图案;水果类有 2 张,正面分别印有草莓、西瓜图案,
【详解】解:由平移性质得: EF BC 8 , ∴ CF EF CE 8 5 3 ,
故答案为:3. 【点睛】本题考查平移性质,熟练掌握平移性质是解答的关键.
12. 在平面直角坐标系 xOy 中,点 P 5, 1 关于 y 轴对称的点的坐标是___________. 【答案】 5, 1
6 1
6
,
∵ 2 6 ,
∴ y1 y2 , 故答案为: .
【点睛】本题考查了比较反比例函数值,熟练掌握反比例函数的性质是解题的关键.
11. 如图,已知△ABC ≌△DEF ,点 B,E,C,F 依次在同一条直线上.若 BC 8,CE 5 ,则 CF 的
长为___________.
【答案】3 【解析】 【分析】利用平移性质求解即可.
2023 年四川省成都市数学中考真题
A 卷(共 100 分) 第 I 卷(选择题,共 32 分) 一、选择题(本大题共 8 个小题,每小题 4 分,共 32 分,每小题均有四个选项,其中只有一 项符合题目要求)
1 1. 在 3 , 7 , 0 , 9 四个数中,最大的数是( )
A. 3
B. 7
C. 0
每个图案对应该种植项目.把这 6 张卡片背面朝上洗匀,小明随机抽取一张,他恰好抽中水果类卡片的概
数学丨四川省成都市第七中学2025届高三11月期中考数学试卷及答案
2024~2025 学年度上期高 2025届半期考试高三数学试卷考试时间:120 分钟总分:150 分注意事项:1.答卷前,考生务必将自己的姓名、班级、准考证号填写在答题卡上.2.回答选择题时,必须使用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.3.答非选择题时,必须使用0.5毫米黑色签字笔将答案书写在答题卡规定的位置上.4.所有题目必须在答题卡上作答,在试题卷上作答无效.5.考试结束后,请考生个人留存试卷并将答题卡交回给监考教师.一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的1.复数i i 4321-+的虚部是( )A.51-B .5 1 C .5 2 - D .52 2.式子15tan 115tan 1-+的 值为() A.3 B .2 C .5 D .63.由正数组成的等比数列{}n a ,n S 为其前n 项和,若241a a =,37S =,则5S 等于() A.152 B.314 C.3 34 D .1 72 4.在24 3)1()1()1(+++++++n x x x 的展开式中,含2x 项的系数是() A.33+n C B .123- +n C C.133- +n C D .331+-n C 5.已知函数()f x 对x R ∀∈都有()(4)f x f x =-,且其导函数()f x '满足当2x ≠时(2)()0x f x '->,则当24a <<时,有()A.2(2)(2)(log )a f f f a << B.2(log )(2)(2)a f a f f <<C.2(log )(2)(2)a f a f f << D.2(2)(log )(2)a f f a f <<6.若向量,,abc 满足,22a b c == = ,则()()a b c b-⋅- 的最大值为()A.10B .12C . D . 7.若对R x ∈∀,函数a x x f +=2)(的函数值都不超过函数⎪⎩⎪⎨⎧≥+<+=1,21,2)(x x x x x x g 的函数值,则实数a 的取值范围是()A.2-≥a B .2≤a C.22≤≤-a D.2<a 8.在三棱柱1 1 1C B A ABC -中, 1CC CB CA ==,3 =AB ,1C 在面ABC 的投影为ABC ∆的外心,二面角1 1B CC A --为3π,该三棱柱的侧面积为() A.33 4 +B .3 7 C .3 6 D .35在校运动会上,只有甲、乙、丙三名同学参加铅球比赛,比赛成绩达到m 50.9以上(含m 50.9)的同学将获得优秀奖.为预测获得优秀奖的人数及冠军得主,收集了甲、乙、丙以往的比赛成绩,并整理得到如下数据(单位:m ):甲:9.80,9.70,9.55,9.54,9.48,9.42,9.40,9.35,9.30,9.25;乙:9.78,9.56,9.51,9.36,9.32,9.23;丙:9.85,9.65,9.20,9.16假设用频率估计概率,且甲、乙、丙的比赛成绩相互独立.(I)估计甲在校运动会铅球比赛中获得优秀奖的概率;(II)设X 是甲、乙、丙在校运动会铅球比赛中获优秀奖的总人数,估计X 的数学期望)(X E .17.(本小题满分15分)如图,在三棱柱11 1 ABC A B C -中,1CC ⊥平面,,2ABC AC BC AC BC ⊥==,1 3CC =, 点,D E 分别在棱1AA 和棱1CC 上,且12,AD C E M ==为棱11A B 的中点.(I )求证:11C M B D ⊥;(II )求二面角1B B E D --的正弦值;(III )求直线AB 与平面1DB E 所成角的正弦值.椭圆)0(1:2 2 2 2>>=+b a by a x E 左焦点F 和),0(),0,(b B a A 构成一个面积为)12 (2+的F AB ∆,且22cos =∠AFB .(I )求椭圆E 的标准方程;(II )点P 是E 在三象限的点,P A 与y 轴交于M ,PB 与x 轴交于N ①求四边形ABNM 的面积;② 求PMN ∆面积最大值及相应P 点的坐标.19.(本小题满分17分)已知函数1)(2---=x ax e x f x .( 其中71828.2≈e )(I )当0=a 时,证明:0)(≥x f (II )若0>x 时,0)(>x f ,求实数a 的取值范围;(Ⅲ)记函数x xe x g x ln 21)(--=的最小值为m ,求证:)1,2023(-∈e m2024~2025 学年度上期高 2025届半期考试高三数学试卷参考答案一、单选题DABC D BCC二、多选题9.ABD 1 0.AC 1 1.BCD三、填空题12.2 00 ,1x N x ∃ ∈≤13.25)2()3( 2 2=-+-y x 14.22四、解答题15.【解】(I )21cos cos sin 32=-C C C ,12cos 212sin 23=-∴C C ,即sin(216C π-=,π<<C 0 ,262 C ππ ∴-=, 解得3π=C 。
2023年四川省成都市中考数学试卷(解析版)
2023年四川省成都市中考数学试卷一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1.(4分)在3,﹣7,0,四个数中,最大的数是()A.3B.﹣7C.0D.【分析】运用有理数大小比较的知识进行求解.【解答】解:∵﹣7<0<<3,∴最大的数是3,故选:A.【点评】此题考查了有理数大小比较的能力,关键是能准确理解并运用以上知识.2.(4分)2023年5月17日10时49分,我国在西昌卫星发射中心成功发射第五十六颗北斗导航卫星,北斗系统作为国家重要基础设施,深刻改变着人们的生产生活方式.目前,某地图软件调用的北斗卫星日定位量超3000亿次.将数据3000亿用科学记数法表示为()A.3×108B.3×109C.3×1010D.3×1011【分析】运用科学记数法进行变形、求解.【解答】解:3000亿=3000×108=3×1011,故选:D.【点评】此题考查了科学记数法的应用能力,关键是能准确理解并运用以上知识.3.(4分)下列计算正确的是()A.(﹣3x)2=﹣9x2B.7x+5x=12x2C.(x﹣3)2=x2﹣6x+9D.(x﹣2y)(x+2y)=x2+4y2【分析】利用幂的乘方与积的乘方的性质,合并同类项的法则,完全平方公式和平方差公式对每个选项进行逐一判断即可得出结论.【解答】解:∵(﹣3x)2=9x2,∴A选项的运算不正确,不符合题意;∵7x+5x=12x,∴B选项的运算不正确,不符合题意;∵(x﹣3)2=x2﹣6x+9,∴C选项的运算正确,符合题意;∵(x﹣2y)(x+2y)=x2﹣4y2,∴D选项的运算不正确,不符合题意.故选:C.【点评】本题主要考查了整式的混合运算,幂的乘方与积的乘方的性质,合并同类项的法则,完全平方公式和平方差公式,熟练掌握上述性质与公式是解题的关键.4.(4分)近年来,随着环境治理的不断深入,成都已构建起“青山绿道蓝网”生态格局.如今空气质量越来越好,杜甫那句“窗含西岭千秋雪”已成为市民阳台外一道靓丽的风景.下面是成都市今年三月份某五天的空气质量指数(AQI):33,27,34,40,26,则这组数据的中位数是()A.26B.27C.33D.34【分析】根据中位数的定义即可得出答案.【解答】解:把这些数从小到大排列为:26,27,33,34,40,则这组数据的中位数是33.故选:C.【点评】此题考查了中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会错误地将这组数据最中间的那个数当作中位数.5.(4分)如图,在▱ABCD中,对角线AC与BD相交于点O,则下列结论一定正确的是()A.AC=BD B.OA=OC C.AC⊥BD D.∠ADC=∠BCD 【分析】利用平行四边形的性质一一判断即可解决问题.【解答】解:A、错误.平行四边形的对角线互相平分,但不一定相等,不合题意;B、正确.因为平行四边形的对角线互相平分,符合题意;C、错误.平行四边形的对角线不一定垂直,不合题意;D、错误.平行四边形的对角相等,但邻角不一定相等,不合题意;故选:B.【点评】本题考查平行四边形的性质,熟练掌握平行四边形的性质是解题的关键.6.(4分)为贯彻教育部《大中小学劳动教育指导纲要(试行)》文件精神,某学校积极开设种植类劳动教育课.某班决定每位学生随机抽取一张卡片来确定自己的种植项目,老师提供6张背面完全相同的卡片,其中蔬菜类有4张,正面分别印有白菜、辣椒、豇豆、茄子图案;水果类有2张,正面分别印有草莓、西瓜图案,每个图案对应该种植项目.把这6张卡片背面朝上洗匀,小明随机抽取一张,他恰好抽中水果类卡片的概率是()A.B.C.D.【分析】根据概率公式直接计算即可.【解答】解:∵卡片共6张,其中水果类卡片有2张,∴恰好抽中水果类卡片的概率是.故选:B.【点评】本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.7.(4分)《孙子算经》是中国古代重要的数学著作,是《算经十书》之一,书中记载了这样一个题目:今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?其大意是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺,问木长多少尺?设木长x尺,则可列方程为()A.(x+4.5)=x﹣1B.(x+4.5)=x+1C.(x+1)=x﹣4.5D.(x﹣1)=x+4.5【分析】设木长x尺,根据题意列出方程解答即可.【解答】解:设木长x尺,根据题意可得:,故选:A.【点评】此题主要考查了由实际问题抽象出一元一次方程,正确得出等量关系是解题的关键.8.(4分)如图,二次函数y=ax2+x﹣6的图象与x轴交于A(﹣3,0),B两点,下列说法正确的是()A.抛物线的对称轴为直线x=1B.抛物线的顶点坐标为(﹣,﹣6)C.A,B两点之间的距离为5D.当x<﹣1时,y的值随x值的增大而增大【分析】A将点A的坐标代入即可解答即可判定A;B先运用二次函数图象的性质确定B;C利用两点间的距离公式解答即可;D根据函数图象即可解答.【解答】解:A、把A(﹣3,0)代入y=ax2+x﹣6得,0=9a﹣3﹣6,解得a=1,∴y=x2+x﹣6,对称轴直线为:x=﹣,故A错误;令y=0,0=x2+x﹣6,解得x1=﹣3,x2=2,∴AB=2﹣(﹣3)=5,∴A,B两点之间的距离为5,故C正确;当x=﹣时,y=,故B错误;故选:C.【点评】本题主要考查二次函数图象的性质,掌握二次函数图象的性质,对称轴的计算方法,函数最值的计算方法是解题的关键.二、填空题(本大题共5个小题,每小题4分,共20分)9.(4分)因式分解:m2﹣3m=m(m﹣3).【分析】直接找出公因式m,进而分解因式得出答案.【解答】解:m2﹣3m=m(m﹣3).故答案为:m(m﹣3).【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.10.(4分)若点A(﹣3,y1),B(﹣1,y2)都在反比例函数y=的图象上,则y1>y2(填“>”或“<”).【分析】根据反比例函数的性质得出答案即可.【解答】解:∵y=中k=6>0,∴在每个象限内,y随x的增大而减小,∵﹣3<﹣1<0,∴y1>y2.故答案为:>.【点评】本题考查了反比例函数图象上点的坐标特征,能熟记反比例函数的性质是解此题的关键,反比例函数y=,①当k>0时,y随x的增大而减小,②当k<0时,y随x的增大而增大.11.(4分)如图,已知△ABC≌△DEF,点B,E,C,F依次在同一条直线上.若BC=8,CE=5,则CF的长为3.【分析】根据全等三角形的对应边相等得到EF=BC=7,计算即可.【解答】解:∵△ABC≌△DEF,∴BC=EF,又BC=8,∴EF=8,∵EC=5,∵CF=EF﹣EC=8﹣5=3.故答案为:3.【点评】本题考查的是全等三角形的性质,掌握全等三角形的对应边相等、全等三角形的对应角相等是解题的关键.12.(4分)在平面直角坐标系xOy中,点P(5,﹣1)关于y轴对称的点的坐标是(﹣5,﹣1).【分析】根据关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变即可得出答案.【解答】解:∵关于y轴对称,∴横坐标互为相反数,纵坐标不变,∴点P(5,﹣1)关于y轴对称的点的坐标是(﹣5,﹣1).故答案为:(﹣5,﹣1).【点评】本题考查了关于x轴,y轴对称的点的坐标,掌握关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变是解题的关键.13.(4分)如图,在△ABC中,D是边AB上一点,按以下步骤作图:①以点A为圆心,以适当长为半径作弧,分别交AB,AC于点M,N;②以点D为圆心,以AM长为半径作弧,交DB于点M′;③以点M′为圆心,以MN长为半径作弧,在∠BAC内部交前面的弧于点N′;④过点N′作射线DN′交BC于点E.若△BDE与四边形ACED的面积比为4:21,则的值为.【分析】由作图知∠A=∠BDE,由平行线的性质得到DE∥AC,证得△BDE∽△BAC,根据相似三角形的性质即可求出答案.【解答】解:由作图知,∠A=∠BDE,∴DE∥AC,∴△BDE∽△BAC,△BAC的面积:△BDE的面积=(△BDE的面积+四边形ACED的面积):△BDE的面积=1+四边形ACED的面积:△BDE的面积=1+=,∴△BDC的面积:△BAC的面积=()2=,∴=,∴=.故答案为:.【点评】本题考查作图﹣复杂作图,相似三角形的性质和判定,平行线的判定和性质等知识,解题的关键是读懂图象信息,灵活运用所学知识解决问题.三、解答题(本大题共5个小题,共48分)14.(12分)(1)计算:+2sin45°﹣(π﹣3)0+|﹣2|.(2)解不等式组:.【分析】(1)分别根据算术平方根的定义,特殊角的三角函数值,零指数幂的定义以及绝对值的性质计算即可;(2)先求出不等式组中每一个不等式的解集,再求出它们的公共部分即可.【解答】解:(1)原式=2+2×﹣1+2﹣=2+﹣1+2﹣=3;(2),解不等式①,得x≤1,解不等式②,得x>﹣4,所以原不等式组的解集为﹣4<x≤1.【点评】本题考查了实数的运算以及解一元一次不等式组,掌握相关定义与运算法则是解答本题的关键.15.(8分)文明是一座城市的名片,更是一座城市的底蕴.成都市某学校于细微处着眼,于贴心处落地,积极组织师生参加“创建全国文明典范城市志愿者服务”活动,其服务项目有“清洁卫生”“敬老服务”“文明宣传”“交通劝导”,每名参加志愿者服务的师生只参加其中一项.为了解各项目参与情况,该校随机调查了参加志愿者服务的部分师生,将调查结果绘制成如下两幅不完整的统计图.根据统计图信息,解答下列问题:(1)本次调查的师生共有300人,请补全条形统计图;(2)在扇形统计图中,求“敬老服务”对应的圆心角度数;(3)该校共有1500名师生,若有80%的师生参加志愿者服务,请你估计参加“文明宣传”项目的师生人数.【分析】(1)根据“清洁卫生”的人数和所占的百分比求出样本容量,再用样本容量减去其他三个项目的人数,可得“文明宣传”的人数,进而补全条形统计图;(2)用360°乘“敬老服务”所占的百分比即可得出“敬老服务”对应的圆心角度数;(3)用参加志愿者服务的人数乘样本中参加“文明宣传”的人数所占的百分比即可.【解答】解:(1)本次调查的师生共有:60÷20%=300(人),“文明宣传”的人数为:300﹣60﹣120﹣30=90(人),补全条形统计图如下:(2)在扇形统计图中,求“敬老服务”对应的圆心角度数为:360°×=144°;答:估计参加“文明宣传”项目的师生人数大约为360名.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.16.(8分)为建设美好公园社区,增强民众生活幸福感,某社区服务中心在文化活动室墙外安装遮阳篷,便于社区居民休憩.如图,在侧面示意图中,遮阳篷AB长为5米,与水平面的夹角为16°,且靠墙端离地高BC为4米,当太阳光线AD与地面CE的夹角为45°时,求阴影CD的长.(结果精确到0.1米;参考数据:sin16°≈0.28,cos16°≈0.96,tan16°≈0.29)【分析】过A作AT⊥BC于T,AK⊥CE于K,在Rt△ABT中,BT=AB•sin∠BAT=1.4(米),AT=AB•cos∠BAT≈4.8(米),可得CK=AT=4.8米,AK=CT=BC﹣BT=4﹣1.4=2.6(米),而∠ADK=45°,知DK=AK=2.6米,故CD=CK﹣DK=4.8﹣2.6=2.2米.【解答】解:过A作AT⊥BC于T,AK⊥CE于K,如图:在Rt△ABT中,BT=AB•sin∠BAT=5×sin16°≈1.4(米),AT=AB•cos∠BAT=5×cos16°≈4.8(米),∵∠ATC=∠C=∠CKA=90°,∴四边形ATCK是矩形,∴CK=AT=4.8米,AK=CT=BC﹣BT=4﹣1.4=2.6(米),在Rt△AKD中,∵∠ADK=45°,∴DK=AK=2.6米,∴CD=CK﹣DK=4.8﹣2.6=2.2(米),∴阴影CD的长约为2.2米.【点评】本题考查解直角三角形的应用,解题的关键是掌握锐角三角函数的定义,求出相关线段的长度.17.(10分)如图,以△ABC的边AC为直径作⊙O,交BC边于点D,过点C作CE∥AB 交⊙O于点E,连接AD,DE,∠B=∠ADE.(1)求证:AC=BC;(2)若tan B=2,CD=3,求AB和DE的长.【分析】(1)结合已知条件,根据同弧所对的圆周角相等易证得∠ADE=∠ACE=∠BAC =∠B,再由等边对等角即可证得结论;(2)连接AE,易证得△ABC∽△ADE,根据已知条件,利用直径所对的圆周角为直角可得∠ADB=∠ADC=90°,根据三角函数值可得AD=2BD,再结合,CD=3,AC=3+BD,利用勾股定理列得方程,求得CD的长度,从而得出AD,BC,AB的长度,再利用相似三角形的对应边成比例即可求得答案.【解答】(1)证明:∵∠ADE=∠ACE,∠ADE=∠B,∴∠B=∠ACE,∵CE∥AB,∴∠BAC=∠ACE,∴∠B=∠BAC,∴AC=BC;(2)解:如图,连接AE,∵∠ADE=∠B,∠AED=∠ACB,∴△ADE∽△ABC,∴=,∵AC为⊙O的直径,∴∠ADB=∠ADC=90°,∴tan B==2,∴AD=2BD,∵CD=3,∴AC=BC=BD+CD=BD+3,∵AD2+CD2=AC2,∴(2BD)2+32=(BD+3)2,解得:BD=2或BD=0(舍去),∴AD=2BD=4,AB===2,BC=2+3=5,∵=,∴=,∴DE=2.【点评】本题主要考查圆与相似三角形的综合应用,(2)中利用三角函数值可得AD=2BD,再根据勾股定理列得方程是解题的关键.18.(10分)如图,在平面直角坐标系xOy中,直线y=﹣x+5与y轴交于点A,与反比例函数y=的图象的一个交点为B(a,4),过点B作AB的垂线l.(1)求点A的坐标及反比例函数的表达式;(2)若点C在直线l上,且△ABC的面积为5,求点C的坐标;(3)P是直线l上一点,连接PA,以P为位似中心画△PDE,使它与△PAB位似,相似比为m.若点D,E恰好都落在反比例函数图象上,求点P的坐标及m的值.【分析】(1)解方程得到点A的坐标为(0,5),将B(a,4)代入y=﹣x+5得,4=﹣a+5,求得B(1,4),将B(1,4)代入y=得,求得反比例函数的表达式为y=;(2)设直线l与y轴交于M,直线y=﹣x+5与x轴交于N,解方程得到N(S,0),求得OA=ON=5,根据两点间的距离的结论公式得到=,求得M(0,3),待定系数法求得直线l的解析式为y=4x+3,设点C的坐标为(t,t+3),根据三角形的面积公式列方程得到t=﹣4或t=6,求得点C的坐标为(6,9)或(﹣4,﹣1);(3)解方程组求得E(﹣4,﹣1),根据相似三角形的性质得到∠PAB=∠PDE,根据平行线的判定定理得到AB∥DE,求得直线DE的解析式为y=﹣x﹣5,解方程组得到D(﹣1,﹣4),则直线AD的解析式为y=9x+5,于是得到P(﹣,),根据两点间的距离距离公式即可得到结论.【解答】解:(1)令x=0,则y=﹣x+5=5,∴点A的坐标为(0,5),将B(a,4)代入y=﹣x+5得,4=﹣a+5,∴a=1,∴B(1,4),将B(1,4)代入y=得,4=,解得k=4,∴反比例函数的表达式为y=;(2)设直线l与y轴交于M,直线y=﹣x+5与x轴交于N,令y=﹣x+5=0得,x=5,∴N(5,0),∴OA=ON=5,∵∠AON=90°,∴∠OAN=45°,∵A(0,5),B(1,4),∴=,∵直线l是AB的垂线,即∠ABM=90°,∠OAN=45°,∴,∴M(0,3),设直线l的解析式为y=k1x+b1,将M(0,3),B(1,4)代入y=k1x+b1得,,解得,∴直线l的解析式为y=x+3,设点C的坐标为(t,t+3),∵•|x B﹣x C|=,解得t=﹣4或t=6,当t=﹣4时,t+3=﹣1,当t=6时,t+3=9,∴点C的坐标为(6,9)或(﹣4,﹣1);(3)∵位似图形的对应点与位似中心三点共线,∴点B的对应点也在直线l上,不妨设为E点,则点A的对应点为D,将直线l与双曲线的解析式联立方程组,解得,或,∴E(﹣4,﹣1),画出图形如图所示,∵△PAB∽△PDE,∴∠PAB=∠PDE,∴AB∥DE,∴直线AB与直线DE的一次项系数相等,设直线DE的解析式为y=﹣x+b2,∴﹣1=﹣(﹣4)+b2,∴b2=﹣5,∴直线DE的解析式为y=﹣x﹣5,∵点D在直线DE与双曲线的另一个交点,∴解方程组得,或,∴D(﹣1,﹣4),则直线AD的解析式为y=9x+5,解方程组得,,∴P(﹣,),∴,,∴m=.【点评】本题考查了反比例函数的综合题,待定系数法求函数的解析式,反比例函数的性质,勾股定理,相似三角形的判定和性质,正确的作出图形是解题的关键.B卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分)19.(4分)若3ab﹣3b2﹣2=0,则代数式(1﹣)÷的值为.【分析】先根据分式的减法法则进行计算,再根据分式的除法法则把除法变成乘法,算乘法,最后代入求出答案即可.【解答】解:(1﹣)÷=•=•=b(a﹣b)=ab﹣b2,∵3ab﹣3b2﹣2=0,∴3ab﹣3b2=2,∴ab﹣b2=,当ab﹣b2=时,原式=.故答案为:.【点评】本题考查了分式的化简求值,能正确根据分式的运算法则进行计算是解此题的关键.20.(4分)一个几何体由几个大小相同的小立方块搭成,它的主视图和俯视图如图所示,则搭成这个几何体的小立方块最多有6个.【分析】根据正面看与上面看的图形,得到搭成这个几何体底层4个,上面1层最多2个小正方体.【解答】解:根据俯视图发现最底层有4个小立方块,从主视图发现第二层最多有2个小立方块,故最多有4+2=6(个)小立方块.故答案为:6.【点评】本题考查的是三视图知识,以及由三视图判断几何体,利用三视图判断得出几何体形状是解题关键.21.(4分)为传承非遗文化,讲好中国故事,某地准备在一个场馆进行川剧演出.该场馆底面为一个圆形,如图所示,其半径是10米,从A到B有一笔直的栏杆,圆心O到栏杆AB的距离是5米,观众在阴影区域里观看演出,如果每平方米可以坐3名观众,那么最多可容纳183名观众同时观看演出.(π取3.14,取1.73)【分析】过O 作OD ⊥AB ,D 为垂足,可得到∠AOD =60°,所以∠AOB =120°,再求出S 阴影部分=S 扇形OAB ﹣S △OAB =﹣×10×5=π﹣25≈61(m 2),然后乘以3即可得到观看马戏的观众人数约为183人.【解答】解:过O 作OD ⊥AB ,D 为垂足,∴AD =BD ,OD =5m ,∵cos ∠AOD ===,∴∠AOD =60°,AD =OD =5m ,∴∠AOB =120°,AB =10m ,∴S 阴影部分=S 扇形OAB ﹣S △OAB =﹣×10×5=π﹣25≈61(m 2),∴61×3=183(人).∴观看马戏的观众人数约为183人.故答案为:183人.【点评】本题考查的是垂径定理的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键,也考查了三角函数的概念和特殊角的三角函数值.22.(4分)如图,在Rt △ABC 中,∠ABC =90°,CD 平分∠ACB 交AB 于点D ,过D 作DE ∥BC 交AC 于点E ,将△DEC 沿DE 折叠得到△DEF ,DF 交AC 于点G .若,则tan A =.【分析】过点G作GM⊥DE于M,证明△DGE∽△CGD,得出DG2=GE×GC,根据AD∥GM,得==,设GE=3k,AG=7k,EM=3n,DM=7n,则EC=DE=10n,在Rt△DGM中,GM2=DG2﹣DM2,在Rt△GME中GM2=GE2﹣EM2,则DG2﹣DM2=GE2﹣EM2,解方程求得k,则k,GE=3k,用勾股定理求得GM,根据正切的定义,即可求解.【解答】解:过点G作GM⊥DE于M,如图,∵CD平分∠ACB交AB于点D,DE∥BC,∴∠1=∠2,∠2=∠3,∴∠1=∠3,∴ED=EC,∵将△DEC沿DE折叠得到△DEF,∴∠3=∠4,∴∠1=∠4,又∵∠DGE=∠CGD,∴△DGE∽△CGD,∴,∴DG2=GE×GC,∵∠ABC=90°,DE∥BC,∴AD⊥DE,∴AD∥GM,∴=,∠MGE=∠A,∵,∴,设GE=3k,EM=3n,则AG=7k,DM=7n,∴EC=DE=10n,∴DG2=GE×GC=3k×(3k+10n)=9k2+30kn,在Rt△DGM中,GM2=DG2﹣DM2,在Rt△GME中,GM2=GE2﹣EM2,∴DG2﹣DM2=GE2﹣EM2,即9k2+30kn﹣(7n)2=(3k)2﹣(3n)2,解得:k,∴EM=k,∵GE=3k,∴GM===k,∴tan A=tan∠EGM===.故答案为:.【点评】本题考查了求正切,折叠的性质,勾股定理,平行线分线段成比例,相似三角形的性质与判定,熟练掌握以上知识是解题的关键.23.(4分)定义:如果一个正整数能表示为两个正整数m,n的平方差,且m﹣n>1,则称这个正整数为“智慧优数”.例如,16=52﹣32,16就是一个智慧优数,可以利用m2﹣n2=(m+n)(m﹣n)进行研究.若将智慧优数从小到大排列,则第3个智慧优数是15;第23个智慧优数是57.【分析】根据新定义m2﹣n2,可以分别列出m2和n2的值,进而即可求解.【解答】解:根据题意,且m﹣n>1,当m=3,n=1,则第1个智慧优数为:32﹣12=8,当m=4,n=2,则第2个智慧优数为:42﹣22=12,当m=4,n=1,则第3个智慧优数为:42﹣12=15.正整数的平方分别为:1,4,9,16,25,36,49,64,81.当m=5,n=3,则第3个智慧优数为:52﹣32=16,当m=5,n=2,则第3个智慧优数为:52﹣22=21,当m=5,n=1,则第3个智慧优数为:52﹣12=24,以此类推,当m=6时,有4个智慧优数,同理m=7时有5个,m=8时,有6个,1+2+3+4+5+6=21,又两数之间的差越小,平方越小,所以后面也有智慧优数比较小的第22个智慧优数,当m=9时,n=5,第22个智慧优数为:92﹣52=81﹣25=56,第23个智慧优数,当m=11时,n=8,第23个智慧优数为:112﹣82=121﹣64=57,故答案为:15,57.【点评】本题考查新定义下智慧优数的计算和分类,根据规律计算求解,解题的关键是能有分类进行求解.二、解答题(本大题共3个小题,共30分)24.(8分)2023年7月28日至8月8日,第31届世界大学生运动会将在成都举行.“当好东道主,热情迎嘉宾”,成都某知名小吃店计划购买A,B两种食材制作小吃.已知购买1千克A种食材和1千克B种食材共需68元,购买5千克A种食材和3千克B种食材共需280元.(1)求A,B两种食材的单价;(2)该小吃店计划购买两种食材共36千克,其中购买A种食材千克数不少于B种食材千克数的2倍,当A,B两种食材分别购买多少千克时,总费用最少?并求出最少总费用.【分析】(1)根据题意可以列出相应的二元一次方程;(2)设A种食材的单价为m元/千克,B种食材的单价为(36﹣m)元/千克,总费用为w元,由题意得:w=38m+30(36﹣m)=8m+1080,根据题意可以列出相应的不等式,求出m的取值范围,从而可以解答本题.【解答】(1)设A种食材的单价为x元/千克,B种食材的单价为y元/千克,由题意得:,解得:,∴A种食材单价是每千克38元,B种食材单价是每千克30元;(2)设A种食材的单价为m元/千克,B种食材的单价为(36﹣m)元/千克,总费用为w元,由题意得:w=38m+30(36﹣m)=8m+1080,∵m≥2(36﹣m),∴24≤m≤36,∵k=8>0,∴w随m的增大而增大,∴当m=24时,w有最小值为:8×24+1080=1272(元),∴A种食材购买24千克,B种食材购买12千克时,总费用最少,为1272元.【点评】本题主要考查二元一次方程组、一次函数的性质、不等式在实际生活当中的运用,考查学生的理解能力与列式能力.25.(10分)如图,在平面直角坐标系xOy中,已知抛物线y=ax2+c经过点P(4,﹣3),与y轴交于点A(0,1),直线y=kx(k≠0)与抛物线交于B,C两点.(1)求抛物线的函数表达式;(2)若△ABP是以AB为腰的等腰三角形,求点B的坐标;(3)过点M(0,m)作y轴的垂线,交直线AB于点D,交直线AC于点E.试探究:是否存在常数m,使得OD⊥OE始终成立?若存在,求出m的值;若不存在,请说明理由.【分析】(1)用待定系数法求函数的解析式即可;(2)设B(x,y),则AB=,AP=4,BP=,分两种情况讨论:当AB=AP时,B(﹣4,﹣3);当AB=BP时,B(﹣2+2,﹣5+2)或(﹣2﹣2,﹣5﹣2);(3)设B(t,kt),C(s,ks),联立方程整理得x2+4kx﹣4=0,根据根与系数的关系可知t+s=﹣4k,ts=﹣4,直线AB的解析式为y=x+1,直线AC的解析式为y=x+1,求出D(,m),E(,m),过D点作DG⊥x轴交于G点,过点E作EK⊥x轴交于K点,则△DOG∽△OEK,再由=,结合根与系数的关系整理得方程m2=4(m﹣1)2,解得m=2或m=.【解答】解:(1)将P(4,﹣3)、A(0,1)代入y=ax2+c,∴16a+1=﹣3,解得a=﹣,∴y=﹣x2+1;(2)设B(x,y),∵P(4,﹣3),A(0,1),∴AB=,AP=4,BP=,当AB=AP时,4=,∵y=﹣x2+1,∴x=4或x=﹣4,∴B(﹣4,﹣3);当AB=BP时,=,解得x=﹣2+2或x=﹣2﹣2,∴B(﹣2+2,﹣5+2)或(﹣2﹣2,﹣5﹣2);综上所述:B点坐标为(﹣4,﹣3)或(﹣2+2,﹣5+2)或(﹣2﹣2,﹣5﹣2);(3)存在常数m,使得OD⊥OE始终成立,理由如下:设B(t,kt),C(s,ks),联立方程,整理得x2+4kx﹣4=0,∴t+s=﹣4k,ts=﹣4,直线AB的解析式为y=x+1,直线AC的解析式为y=x+1,∴D(,m),E(,m),过D点作DG⊥x轴交于G点,过点E作EK⊥x轴交于K点,∵∠DOE=90°,∴∠DOG+∠EOK=90°,∵∠DOG+∠ODG=90°,∴∠EOK=∠ODG,∴△DOG∽△OEK,∴=,∴m2=﹣,∴m2=4(m﹣1)2,解得m=2或m=.【点评】本题考查二次函数的图象及性质,熟练掌握二次函数的图象及性质,三角形相似的判定及性质,等腰三角形的性质是解题的关键.26.(12分)探究式学习是新课程倡导的重要学习方式,某兴趣小组拟做以下探究.在Rt△ABC中,∠C=90°,AC=BC,D是AB边上一点,且=(n为正整数),E 是AC边上的动点,过点D作DE的垂线交直线BC于点F.【初步感知】(1)如图1,当n=1时,兴趣小组探究得出结论:AE+BF=AB,请写出证明过程.【深入探究】(2)①如图2,当n=2,且点F在线段BC上时,试探究线段AE,BF,AB之间的数量关系,请写出结论并证明;②请通过类比、归纳、猜想,探究出线段AE,BF,AB之间数量关系的一般结论(直接写出结论,不必证明).【拓展运用】(3)如图3,连接EF,设EF的中点为M,若AB=2,求点E从点A运动到点C的过程中,点M运动的路径长(用含n的代数式表示).【分析】(1)由“ASA”可证△CDE≌△BDF,可得CE=BF,即可求解;(2)①先证△ADN和△BDH是等腰直角三角形,可得AN=DN,DH=BH,AD=AN,BD=BH,可求AD=x,BD=2x,通过证明△EDN∽△FDH,可求FH=2NE,即可求解;②分两种情况讨论,由相似三角形的性质可求解;(3)由题意可得点M在线段CD的垂直平分线上运动,由相似三角形的性质可求M'R =1,由勾股定理和相似三角形的性质可求RM″=n,由勾股定理可求解.【解答】(1)证明:连接CD,∵∠C=90°,AC=BC,AD=DB,∴AB=AC,∠A=∠B=∠ACD=45°,AD=CD=BD,CD⊥AB,∵ED⊥FD,∴∠EDF=∠CDB=90°,∴∠CDE=∠BDF,∴△CDE≌△BDF(ASA),∴CE=BF,∴AE+BF=AE+CE=AC=AB;(2)①AE+BF=AB,理由如下:过点D作DN⊥AC于N,DH⊥BC于H,∵∠C=90°,AC=BC,∴∠A=∠B=45°,∵DN⊥AC,DH⊥BC,∴△ADN和△BDH是等腰直角三角形,∴AN=DN,DH=BH,AD=AN,BD=BH,∠A=∠B=45°=∠ADN=∠BDH,∴△ADN∽△BDH,∴=,设AN=DN=x,BH=DH=2x,∴AD=x,BD=2x,∴AB=3x,∵DN⊥AC,DH⊥BC,∠ACB=90°,∴四边形DHCN是矩形,∴∠NDH=90°=∠EDF,∴∠EDN=∠FDH,又∵∠END=∠FHD,∴△EDN∽△FDH,∴=,∴FH=2NE,∴AE+BF=x+NE+(2x﹣FH)=2x=AB;②如图4,当点F在射线BC上时,过点D作DN⊥AC于N,DH⊥BC于H,∵∠C=90°,AC=BC,∴∠A=∠B=45°,∵DN⊥AC,DH⊥BC,∴△ADN和△BDH是等腰直角三角形,∴AN=DN,DH=BH,AD=AN,BD=BH,∠A=∠B=45°=∠ADN=∠BDH,∴△ADN∽△BDH,∴=,设AN=DN=x,BH=DH=nx,∴AD=x,BD=nx,∴AB=(n+1)x,∵DN⊥AC,DH⊥BC,∠ACB=90°,∴四边形DHCN是矩形,∴∠NDH=90°=∠EDF,∴∠EDN=∠FDH,又∵∠END=∠FHD,∴△EDN∽△FDH,∴=,∴FH=nNE,∴AE+BF=x+NE+(nx﹣FH)=2x=AB;当点F在CB的延长线上时,如图5,∵∠C=90°,AC=BC,∴∠A=∠B=45°,∵DN⊥AC,DH⊥BC,∴△ADN和△BDH是等腰直角三角形,∴AN=DN,DH=BH,AD=AN,BD=BH,∠A=∠B=45°=∠ADN=∠BDH,∴△ADN∽△BDH,∴=,设AN=DN=x,BH=DH=nx,∴AD=x,BD=nx,∴AB=(n+1)x,∵DN⊥AC,DH⊥BC,∠ACB=90°,∴四边形DHCN是矩形,∴∠NDH=90°=∠EDF,∴∠EDN=∠FDH,又∵∠END=∠FHD,∴△EDN∽△FDH,∴=,∴FH=nNE,∴AE﹣BF=x+NE﹣(FH﹣nx)=2x=AB;综上所述:当点F在射线BC上时,,当点F在CB延长线上时,;(3)如图,连接CD,CM,DM,∵EF的中点为M,∠ACB=∠EDF=90°,∴CM=DM=EF,∴点M在线段CD的垂直平分线上运动,如图,当点E'与点A重合时,点F'在BC的延长线上,当点E'与点C重合时,点F″在CB的延长线上,过点M'作M'H⊥F'C于R,∴M'R∥AC,∴=,∴M'R=1,F'R=CR,设AN=DN=x,BH=DH=nx,∴AD=x,BD=nx,∴AB=(n+1)x=2,∴x=,∵F'D=BD=nx,∴F'B=2nx,∴CF'=2nx﹣2,∴CR=nx﹣1=﹣1=,由(2)可得:CD==x•,DF″=nDE″=nx•,∴CF″=(1+n2)x,∴CM″===,∴RM″=n,∴M″M'=,∴点M运动的路径长为.【点评】本题是三角形综合题,考查了相似三角形的判定和性质,等腰直角三角形的性质,全等三角形的判定和性质等知识,利用分类讨论思想解决问题是解题的关键.。
2016年四川省泸州市中考数学试卷-答案
(a 2)(a 2) 2(a 1)
a 1
a2
2(a 2) .
【考点】分式的化简
20.【答案】(1)喜欢“娱乐”的学生人数 162 人,喜欢“动画”的学生人数为 135 人.
(2)“动画”部分所对应的扇形的圆心角度数为108 .
(3)估计该地区七年级学生中喜爱“新闻”的学生有 3800 人.
【考点】分解因式
15.【答案】 4
【解析】因为二次函数 y 2x2 4x 1的图像与 x 轴交于 A(x1,0) , B(x2,0) 两点,所以 x1 , x2 是一元二次方
程 2x2 4x 1 0 的两根,所以 x1 x2 2 , x1
x2
1 2
,所以
1 x1
1 x2
x1 x2 x1 x2
四川省泸州市 2016 年高中阶段学校招生考试
数学答案解析
第Ⅰ卷
一、选择题
1.【答案】A
【解析】 6 的相反数为 6 ,故选 A.
【考点】相反数的概念
2.【答案】C
【解析】 3a2 a2 2a2 故选 C.
【考点】整式的加减——合并同类项
3.【答案】C
【解析】A,B,D 都是轴对称图形,C 不是轴对称图形,故选 C.
CD BE,
△ACD △CBE ,
D E .
【考点】全等三角形的判定和性质
19.【答案】 2(a 2) .
【解析】解: 原式 [(a 1)(a 1) 3 ] 2a 2 a 1 a 1 a 2
a2 1 3 2a 2 ( )
a 1 a 1 a 2 a2 4 2a 2 a 1 a 2
【解析】解:(1)从该地区抽取的部分七年级学生样本总数为 90 =450(人) . 20%
2016年四川省成都市中考数学试卷(含详细答案)
数学试卷 第1页(共24页) 数学试卷 第2页(共24页)绝密★启用前四川省成都市2016年高中阶段教育学校统一招生考试数 学本试卷满分150分,考试时间120分钟.A 卷(共100分) 第Ⅰ卷(选择题 共30分)一、选择题(本大题共10个小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.在3-,1-,1,3四个数中,比2-小的数是( ) A .3-B .1-C .1D .32.如图所示的几何体是由5个大小相同的小立方块搭成,它的俯视图是( )ABCD3.成都地铁自开通以来,发展速度不断加快,现已成为成都市民主要出行方式之一.2016年4月29日成都地铁安全运输乘客约181万乘次,又一次刷新客流记录,这也是2016年以来第四次客流记录的刷新.用科学记数法表示181万为( ) A .518.110⨯B .61.8110⨯C .71.8110⨯ D .418110⨯ 4.计算32()x y -的结果是( ) A .5x y -B .6x yC .32x y -D .62x y5.如图,12l l ∥,156∠=,则2∠的度数为( )A .34B .56C .124D .1466.平面直角坐标系中,点3()2,P -关于x 轴对称的点的坐标为( ) A .(2,3)--B .(2,)3-C .()3,2-D .(3,)2- 7.分式方程213xx =-的解为( ) A .2x =-B .3x =-C .2x =D .3x =8.学校准备从甲、乙、丙、丁四个科创小组中选出一组代表学校参加青少年科技创新大赛.x 2如果要选出一个成绩较好且状态稳定的组去参赛,那么应选的组是( )A .甲B .乙C .丙D .丁9.二次函数223y x =-的图象是一条抛物线.下列关于该抛物线的说法,正确的是( ) A .抛物线开口向下B .抛物线经过点(2,3)C .抛物线的对称轴是直线1x =D .抛物线与x 轴有两个交点10.如图,AB 为O 的直径,点C 在O上,若OCA ∠=50,=4AB ,则BC 的长为( )A .10π3B .10π9C .5π9D .5π18第Ⅱ卷(非选择题 共70分)二、填空题(本大题共4个小题,每小题4分,共16分,请把答案填在题中的横线上)-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________数学试卷 第3页(共24页) 数学试卷 第4页(共24页)11.已知|2|0a +=,则a = .12.如图,ABC A B C '''≅△△,其中36=A ∠,=24C '∠,则=B ∠.13.已知111(,)P x y ,222(,)P x y 两点都在反比例函数2y x=的图象上,且120x x <<,则1y 2y (填“>”或“<”).14.如图,在矩形ABCD 中,3AB =,对角线AC ,BD 相交于点O ,AE 垂直平分OB 于点E ,则AD 的长为 .三、解答题(本大题共6个小题,共54分.解答应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分12分,每题6分)(1)计算:30(2)2sin30(2016π)-+-.(2)已知关于x 的方程2320x x m +-=没有实数根,求实数m 的取值范围.16.(本小题满分6分)化简:2212+1()x x x x x x --÷-.17.(本小题满分8分)在学习完“利用三角函数测高”这节内容之后,某兴趣小组开展了测量学校旗杆高度的实践活动.如图,在测点A 处安置测倾器,量出高度=1.5m AB ,测得旗杆顶端D 的仰角32DBE ∠=,量出测点A 到旗杆底部C 的水平距离=20cm AC .根据测量数据,求旗杆CD 的高度.(参考数据:sin 320.53≈,cos320.85≈,tan320.62≈)18.(本小题满分8分)在四张编号为A ,B ,C ,D 的卡片(除编号外,其余完全相同)的正面分别写上如图所示的正整数后,背面向上,洗匀放好.现从中随机抽取一张(不放回),再从剩下的卡片中随机抽取一张.(1)请用画树状图或列表的方法表示两次抽取卡片的所有可能出现的结果;(卡片用A ,B ,C ,D 表示)(2)我们知道,满足222a b c +=的三个正整数a ,b ,c 称为勾股数.求抽到的两张卡片上的数都是勾股数的概率.19.(本小题满分10分)如图,在平面直角坐标系xOy 中,正比例函数y kx =的图象与反比例函数my x=的图象都经过点(2,2)A -.(1)分别求这两个函数的表达式;(2)将直线OA 向上平移3个单位长度后与y 轴相交于点B ,与反比例函数的图象在第四象限内的交点为C ,连接AB ,AC ,求点C 的坐标及ABC △的面积.数学试卷 第5页(共24页) 数学试卷 第6页(共24页)20.(本小题满10分)如图,在Rt ABC △中,90ABC ∠=,以CB 为半径作C ,交AC 于点D ,交AC 的延长线于点E ,连接BD ,BE . (1)求证:ABD AEB △∽△; (2)当43AB BC =时,求tan E ; (3)在(2)的条件下,作BAC ∠的平分线,与BE 交于点F .若2AF =,求C 的半径.B 卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分.请把答案填在题中的横线上) 21.第十二届全国人大四次会议审议通过的《中华人民共和国慈善法》将于2016年9月1日正式实施.为了了解居民对慈善法的知晓情况,某街道办从辖区居民中随机选取了部分居民进行调查,并将调查结果绘制成如图所示的扇形统计图.若该辖区约有居民9 000人,则可以估计其中对慈善法“非常清楚”的居民约有 人.22.已知3,2x y =⎧⎨=-⎩是方程组3,7ax by bx ay +=⎧⎨+=-⎩的解,则代数式()()a b a b +-的值为 .23.如图,ABC △内接于O ,AH BC ⊥于点H .若24AC =,18AH =,O 的半径13OC =,则AB = .24.实数a ,n ,m ,b 满足a n m b <<<,这四个数在数轴上对应的点分别为A ,N ,M ,B (如图),若2AM BM AB =,2BN AN AB =则称m 为a ,b 的“大黄金数”,n 为a ,b 的“小黄金数”.当2b a -=时,a ,b 的大黄金数与小黄金数之差m n -= .25.如图,面积为6的平行四边形纸片ABCD 中,3AB =,45BAD ∠=,按下列步骤进行裁剪和拼图.第一步:如图1,将平行四边形纸片沿对角线BD 剪开,得到ABD △和BCD △纸片,再将ABD △纸片沿AE 剪开(E 为BD 上任意一点),得到ABE △和ADE △纸片; 第二步:如图2,将ABE △纸片平移至DCF △处,将ADE △纸片平移至BCG △处; 第三步:如图3,将DCF △纸片翻转过来使其背面朝上置于PQM △处(边PQ 与DC 重合,PQM △与DCF △在CD 同侧),将BCG △纸片翻转过来使其背面朝上置于PRN △处(边PR 与BC 重合,PRN △与BCG △在BC 同侧).则由纸片拼成的五边形PMQRN 中,对角线MN 长度的最小值为 .二、解答题(本大题共3个小题,共30分,解答应写出必要的文字说明、证明过程或演算步骤)26.(本小题满分8分)某果园有100棵橙子树,平均每棵树结600个橙子.现准备多种一些橙子树以提高果园产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子.假设果园多种x棵橙子-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________数学试卷 第7页(共24页) 数学试卷 第8页(共24页)树.(1)直接写出平均每棵树结的橙子数y (个)与x 之间的关系式;(2)果园多种多少棵橙子树时,可以使橙子的总产量最大?最大为多少个?27.(本小题满分10分)如图1,ABC △中,45ABC ∠=,AH BC ⊥于点H ,点D 在AH 上,且DH CH =,连接BD .(1)求证:BD AC =;(2)将BHD △绕点H 旋转,得到EHF △(点B ,D 分别与点E ,F 对应),连接AE . ⅰ)如图2,当点F 落在AC 上时(F 不与C 重合),若4BC =,tan 3C =,求AE 的长; ⅱ)如图3,当EHF △是由BHD △绕点H 逆时针旋转30得到时,设射线CF 与AE 相交于点G ,连接GH .试探究线段GH 与EF 之间满足的等量关系,并说明理由.28.(本小题满分12分)如图,在平面直角坐标系xOy 中,抛物线2(1)3y a x =+-与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点8(0,)3C -,顶点为D ,对称轴与x 轴交于点H .过点H 的直线l 交抛物线于P ,Q 两点,点Q 在y 轴的右侧.(1)求a 的值及点A ,B 坐标;(2)当直线l 将四边形ABCD 分为面积比为3:7的两部分时,求直线l 的函数表达式;(3)当点P 位于第二象限时,设PQ 的中点为M ,点N 在抛物线上,则以DP 为对角线的四边形DMPN能否数学试卷 第9页(共24页) 数学试卷 第10页(共24页)四川省成都市2016年高中阶段教育学校统一招生考试数学答案解析第Ⅰ卷一、选择题 1.【答案】A【解析】比2-小的数只有3-,故选A .【提示】利用两个负数,绝对值大的其值反而小,进而得出答案.【考点】有理数大小比较 2.【答案】C【解析】从上面看易得横着的“”字,故选C .【提示】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中. 【考点】简单组合体的三视图 3.【答案】B【解析】181万61810000 1.8110==⨯,故选B .【提示】科学记数法的表示形式为10na ⨯的形式,其中11||0a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数.【考点】科学记数法—表示较大的数 4.【答案】D【解析】3262()x y x y -=,故选D .【提示】首先利用积的乘方运算法则化简求出答案. 【考点】幂的乘方与积的乘方5.【答案】C【解析】12l l ∥,13∴∠=∠,156∠=︒,356∴∠=︒,23180∠+∠=︒,2124∴∠=︒,故选C .【提示】根据平行线性质求出3150∠=∠=︒,代入23180∠+∠=︒即可求出2∠.【考点】平行线的性质6.【答案】A【解析】点(2,3)P -关于x 轴对称的点的坐标为(2,3)--,故选A .【提示】直接利用关于x 轴对称点的性质,横坐标不变,纵坐标互为相反数,进而得出答案. 【考点】关于x 轴、y 轴对称的点的坐标 7.【答案】B【解析】23x x =-,3x =-,经检验3x =-是原方程的解,故选B .【提示】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解. 【考点】分式方程的解 8.【答案】C【解析】因为乙组、丙组的平均数比甲组、丁组大,而丙组的方差比乙组的小,所以丙组的成绩比较稳定,所以丙组的成绩较好且状态稳定,应选的组是丙组.故选C . 【提示】先比较平均数得到乙组和丙组成绩较好,然后比较方差得到丙组的状态稳定,于是可决定选丙组去参赛. 【考点】方差,算术平均数9.【答案】D【解析】A :2a =,则抛物线223y x =-的开口向上,所以A 选项错误;B :当2x =时,2435y =⨯-=,则抛物线不经过点(2,3),所以B 选项错误;C :抛物线的对称轴为直线0x =,所以C 选项错误;D :当0y =时,2230x -=,此方程有两个不相等的实数解,所以D 选项正确.故选D . 【提示】根据二次函数的性质对A ,C 进行判断;根据二次函数图象上点的坐标特征对B 进行判断;利用方程2230x -=解的情况对D 进行判断.【考点】二次函数的性质 10.【答案】B 【解析】50OCA ∠=︒,OA OC =,50A ∴∠=︒,100BOC ∴∠=︒,4AB =,2BO ∴=,BC ∴的长为:100π210π1809⨯=,故选B . 【提示】直接利用等腰三角形的性质得出A ∠的度数,再利用圆周角定理得出BOC ∠的度数,再利用弧长公式求出答案.【考点】弧长的计算,圆周角定理第Ⅱ卷二、填空题 11.【答案】2-【解析】由绝对值的意义得20a +=,解得:2a =-;故答案为2-.【提示】根据绝对值的意义得出20a +=,即可得出结果.数学试卷 第11页(共24页)数学试卷 第12页(共24页)【考点】绝对值 12.【答案】120 【解析】A B C A B C '''△≌△,24C C ∴∠=∠'=︒,180120B A C ∴∠=︒-∠-∠=︒,故答案为120°.【提示】根据全等三角形的性质求出C ∠的度数,根据三角形内角和定理计算即可. 【考点】全等三角形的性质 13.【答案】>【解析】在反比例函数2xy =中20k =>,∴该函数在0x <内单调递减.120x x <<,12y y ∴>.【提示】根据一次函数的系数k 的值可知,该函数在0x <内单调递减,再结合120x x <<,即可得出结论.【考点】反比例函数图象上点的坐标特征,反比例函数的性质14.【答案】【解析】四边形ABCD 是矩形,OB OD ∴=,OA OC =,AC BD =,OA OB ∴=,AE 垂直平分OB ,AB AO ∴=,3OA AB OB ∴===,26BD OB ∴==,AD ∴;故答案为: 【提示】由矩形的性质和线段垂直平分线的性质证出3OA AB OB ===,得出26BD OB ==,由勾股定理求出AD 即可.【考点】矩形的性质,线段垂直平分线的性质,等边三角形的判定与性质 三、解答题 15.【答案】(1)4- (2)13m -<【解析】(1)原式1842142=-+-⨯+=-. (2)2320x x m +-=没有实数解, 24443()4120b ac m m ∴=-⨯⨯-=+-<,解得:13m <-,故实数m 的取值范围是:13m <-.【提示】(1)直接利用有理数的乘方运算法则以及特殊角的三角函数值和零指数幂的性质分别化简求出答案; (2)直接利用根的判别式进而求出m 的取值范围. 【考点】实数的运算,根的判别式,特殊角的三角函数值 16.【答案】1x +【解析】原式2221(1)(1)(1)(1)1(1)(1)x x x x x x x x x x x x --+--=÷==+--. 【提示】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果. 【考点】分式的混合运算 17.【答案】13.9【解析】由题意得20AC =米, 1.5AB =米,32DBE ∠=︒,tan32200.6212.4DE BE ∴=︒≈⨯=米,12.4 1.513.9CD DE CE DE AB ∴=+=+=+≈(米).答:旗杆CD 的高度约13.9米.【提示】根据题意得20AC =米, 1.5AB =米,过点B 做BE CD ⊥,交CD 于点E ,利用32DBE ∠=︒,得到tan32DE BE =︒后再加上CE 即可求得CD 的高度.【考点】解直角三角形的应用-仰角俯角问题 18.【答案】(1)图形见解析 (2)12(2)由(1)可知,共有12种可能的结果,每种出现的可能性相同,抽到的两张卡片上的数都是勾股数的有6种:(,)B C ,(,)B D ,(,)C B ,(,)C D ,(,)D B ,(,)D C , 61()==122P ∴抽到的两张卡片上的数都是勾股数. 【提示】(1)利用树状图展示12种等可能的结果数; (2)根据勾股数可判定只有A 卡片上的三个数不是勾股数,则可从12种等可能的结果数中找出抽到的两张卡片上的数都是勾股数的结果数,然后根据概率公式求解.数学试卷 第13页(共24页) 数学试卷 第14页(共24页)【考点】列表法与树状图法,勾股数19.【答案】(1)正比例函数的表达式为y x =-,反比例函数的表达式为4y x=-(2)(4,1)C -,6ABC S ∆=【解析】(1)根据题意,将点(2,2)A -代入y kx =,得:22k -=,解得:1k =-,∴正比例函数的解析式为:y x =-,将点()2,2A -代入my x=,得:22m -=,解得:4m =-;∴反比例函数的解析式为:4y x=-;(2)直线OA :y x =-向上平移3个单位后解析式为:3y x =-+,则点B 的坐标为(0,3),联立两函数解析式34y x y x =-+⎧⎪⎨=-⎪⎩,解得:14x y =-⎧⎨=⎩或41x y =⎧⎨=-⎩, ∴第四象限内的交点C 的坐标为(4,1)-,111(15)452216222ABC S ∴=⨯+⨯-⨯⨯-⨯⨯=△.【提示】(1)将点A 坐标(2,2)-分别代入y kx =、m y x=求得k m 、的值即可;(2)由题意得平移后直线解析式,即可知点B 坐标,联立方程组求解可得第四象限内的交点C 得坐标,割补法求解可得三角形的面积.【考点】反比例函数与一次函数的交点问题20.【答案】(1)证明:在Rt ABC △中,90ABC ∠=︒,90ABD DBC ∴∠=︒-∠,由题意知:DE 是直径,90DBE ∴∠=︒, 90E BDE ∴∠=︒-∠, BC CD =, DBC BDE ∴∠=∠,∴ABD E ∠=∠,A A ∠=∠,ABD AEB ∴△∽△(2)1(3 【解析】(1)证明:在Rt ABC △中,90ABC ∠=︒,90ABD DBC ∴∠=︒-∠,由题意知:DE 是直径,90DBE ∴∠=︒, 90E BDE ∴∠=︒-∠,BC CD =, DBC BDE ∴∠=∠,∴ABD E ∠=∠,A A ∠=∠,ABD AEB ∴△∽△;(2):4:3AB BC =,∴设4AB=,3BC =,5AC ∴,3BC CD ==,532AD AC CD ∴=-=-=,由(1)可知:ABD AEB △∽△,AB AD BDAE AB BE∴==, 2•AB AD AE ∴=, 242AE ∴=,8AE ∴=,在Rt DBE △中,41tan 82BD AB E BE AE ====. (3)过点F 作FM AE ⊥于点M ,:4:3AB BC =,∴设4AB x =,3BC x =,∴由(2)可知8AE x =,2AD x =,6DE AE AD x ∴=-=,AF 平分BAC ∠,BF ABEF AE ∴=, 4182BF x EF x ∴==, 1tan2E =,cos E ∴sin E ,BE DE ∴=BE ∴=,数学试卷 第15页(共24页)数学试卷 第16页(共24页)23EF BE ∴=,sin MF E EF ∴==85MF x ∴=,1tan 2E =,1625ME MF x ∴==, 245AM AE ME x ∴=-=,222AF AM MF =+,222484()()5x x ∴=+,x ∴=, C ∴的半径为:3x =.【提示】(1)要证明ABD AEB △∽△,已经有一组对应角是公共角,只需要再找出另一组对应角相等即可. (2)由于:4:3AB BC =,可设4AB =,3BC =,求出AC 的值,再利用(1)中结论可得2•AB AD AE =,进而求出AE 的值,所以tan BD ABE BE AE==. (3)设4AB x =,3BC x =,由于已知AF 的值,构造直角三角形后利用勾股定理列方程求出x 的值,即可知道半径3x 的值.【考点】圆的综合题 四、填空题 21.【答案】2700【解析】根据题意得:909000(130%15%100%)900030%2700360⨯---⨯=⨯=(人),故答案为2700.【提示】先求出非常清楚所占的百分比,再乘以该辖区的总居民,即可得出答案.【考点】扇形统计图,用样本估计总体 22.【答案】8- 【解析】把32x y =⎧⎨=-⎩代入方程组得:323327a b b a -=⎧⎨-=-⎩①②,32⨯+⨯①②得:55a =-,即1a =-,把1a =-代入①得:3b =-,则原式22198a b ==-=--,故答案为:8-【提示】把x 与y 的值代入方程组求出a 与b 的值,代入原式计算即可得到结果. 【考点】二元一次方程组的解23.【答案】392【解析】作直径AE ,连接CE ,90ACE ∴∠=︒, AH BC ⊥,∴90AHB ∠=︒,ACE ADB ∴∠=∠,B E ∠=∠,ABH AEC ∴△∽△, AB AHAE AC∴=, AH AEAB AC∴=, 24AC =,18AH =,226AE OC ==,182639242AB ⨯∴==,故答案为:392.【提示】首先作直径AE ,连接CE ,易证得ABH AEC △∽△,然后由相似三角形的对应边成比例,即可求得O 半径. 【考点】三角形的外接圆与外心 24.【答案】4 【解析】2AM BM AB =,又BM AB AM =-,2()AM AB AM AB∴=-,又2A B b a =-=,2(2)2AM AM ∴=-⨯,解得1AM =,同理1BN ,4MN AM BN AB ∴=+-=.【提示】先把各线段长表示出来,分别代入到2•AM BM AB =,2•BN AN AB =中,列方程组;两式相减后再将2b a -=和m nx -=整体代入,即可求出. 【考点】实数与数轴25.【解析】ABE CDF PMQ △≌△≌△,AE D F PM ∴==,EAB FDC MPQ ∠=∠=∠,ADE BCG PNR △≌△≌△,AE BG PN ∴==,DAE CBG RPN ∠=∠=∠, PM PN ∴=,四边形ABCD 是平行四边形,数学试卷 第17页(共24页) 数学试卷 第18页(共24页)45DAB DCB ∴∠=∠=︒, 90MPN ∴∠=︒,MPN ∴△是等腰直角三角形,当PM 最小时,对角线MN 最小,即AE 取最小值,∴当AE BD ⊥时,AE 取最小值,过D 作D F A B ⊥于F ,平行四边形ABCD 的面积为6,3AB =,2DF ∴=,45DAB ∠=︒,2AF D F ∴==, 1BF ∴=,BD ∴DF AB AE BD ∴===,MN ∴==【提示】根据平移和翻折的性质得到MPN △是等腰直角三角形,于是得到当PM 最小时,对角线MN 最小,即AE 取最小值,当AE BD ⊥时,AE 取最小值,过D 作D F A B ⊥于F ,根据平行四边形的面积得到2DF =,根据等腰直角三角形的性质得到2A F D F ==,由勾股定理得到BD =,根据三角形的面积得到DF AB AE BD ==【考点】平移的性质 五、解答题26.【答案】(1)6005y x =-(2)果园多种10棵橙子树时,可使橙子的总产量最大,最大为60500个【解析】(1)平均每棵树结的橙子个数y (个)与x 之间的关系为:6005(0120)y x x =-≤<;(2)设果园多种x 棵橙子树时,可使橙子的总产量为w , 则225100600005(10)60500w x x x =-++=--+, 则果园多种10棵橙子树时,可使橙子的总产量最大,最大为60500个.【提示】(1)根据每多种一棵树,平均每棵树就会少结5个橙子列式即可;(2)根据题意列出函数解析式,利用配方法把二次函数化为顶点式,根据二次函数的性质进行解答即可. 【考点】二次函数的应用 27.【答案】(1)见解析 (2)①AE =②12GH EF =【解析】(1)在Rt AHB △中,45ABC ∠=︒,AH BH ∴=,在BHD △和AHC △中,90AH BH BHD AHC DH CH =⎧⎪∠=∠=︒⎨⎪=⎩, BHD AHC ∴△≌△,BD AC ∴=.(2)①如图,在Rt AHC △中,tan 3C =,3AHCH∴=, 设CH x =,3BH AH x ∴==, 4BC =,34x x ∴+=, 1x ∴=,3AH ∴=,1CH =,由旋转知,90EHF BHD AHC ∠=∠=∠=︒,3EH AH ==,CH DH FH ==, EHA FHC ∴∠=∠,1EH FHAH HC==, EHA FHC ∴△≌△,EAH C ∴∠=∠,tan tan 3EAH C ∴∠==,过点H 作HP AE ⊥,3HP AP ∴=,2AE AP =,在Rt AHP △中222AP HP AH +=,2239AP AP ∴+=(),数学试卷 第19页(共24页)数学试卷 第20页(共24页)AP ∴=AE ∴= ②由①有,AEH △和FHC △都为等腰三角形,设直线AH ,CG 相交于Q ,90GAH HCG ∴∠=∠=︒,AGQ CHQ ∴△∽△,AQ GQ CQ HQ ∴=, AQ CQGQ HQ∴=, AQC GQE ∠=∠,AQC GQH ∴△∽△, 12sin30EF AC AQ GH GH GQ ∴====︒, 12GH EF ∴=【提示】(1)先判断出A H B H =,再判断出BHD AHC △≌△即可;(2)①先根据tan 3C =,求出3AH =,1CH =,然后根据EHA FHC △≌△,得到3HP AP =,2AE AP =,最后用勾股定理即可;②先判断出AGQ CHQ △∽△,得到AQ CQCQ HQ=,然后判断出AQC GQH ∽△,用相似比即可. 【考点】几何变换综合题28.【答案】(1)13a =,(4,0)A -,(2,0)B (2)直线l 的函数表达式为22y x =+或4433y x =-- (3)能,(1,1)N -【解析】(1)抛物线与y 轴交于点8(0,)3C -.833a ∴-=-,解得:13a =,21(1)33y x ∴=+-当0y =时,有21(1)303x +-=,12x ∴=,24x =-,(4,0)A ∴-,(2,0)B(2)(4,0)A -,(2,0)B ,8(0,)3C -,(1,3)D --,1181833(3)121022323ADH BOC ABCD OCDH S S S S ∴=++=⨯⨯++⨯+⨯⨯=△△四边形梯形.从面积分析知,直线l 只能与边AD 或BC 相交,所以有两种情况:①当直线l 与边AD 相交于点1M 时,则1310310AHM S =⨯=△,113()32M y ∴⨯⨯-=- 1=2M y ∴-,点1(2,2)M --,过点(1,0)H -和1(2,2)M --的直线l 的解析式为22y x =+.②当直线l 与边BC 相交于点2M 时,同理可得点21(,2)2M -,过点(1,0)H -和21(,2)2M -的直线l 的解析式为4433y x =--.综上所述:直线l 的函数表达式为22y x =+或4433y x =--(3)设12(,)P x x 、22(,)Q x y 且过点(1,0)H -的直线PQ的解析式为y kx b =+,0k b ∴+=﹣, b k ∴=,y kx k ∴=+. 由2128333y kx k y x x =+⎧⎪⎨=+-⎪⎩,2128()0333x k x k ∴+---=, 1223x x k ∴+=-+,212123y y kx k kx k k +=+++=,点M 是线段PQ 的中点,由中点坐标公式的点233(1,)22M k k -.假设存在这样的N 点如图,直线DN PQ ∥,设直线DN 的解析式为3y kx k =+- 由23128333y kx k y x x =+-⎧⎪⎨=+-⎪⎩,解得:11x =-,231x k =-,2(3133)N k k ∴--,四边形DMPN 是菱形,DN DM ∴=,22222233(3)3()()(3)22k k k k ∴+=++, 整理得:42340k k --=,210k +>,2340k ∴-=,解得k =,0k <,k ∴=,(1,6)P ∴-,(1,2)M,(1,1)N -,PM DN ∴==PM DN ∥,∴四边形DMPN 是平行四边形,数学试卷 第21页(共24页)数学试卷 第22页(共24页)DM DN =,∴四边形DMPN 为菱形,∴以DP 为对角线的四边形DMPN 能成为菱形,此时点N的坐标为(1,1)-.【提示】(1)把点C 代入抛物线解析式即可求出a ,令0y =,列方程即可求出点A 、B 坐标.(2)先求出四边形ABCD 面积,分两种情形:①当直线l 边AD 相交与点1M 时,根据1310310AHM S =⨯=△,求出点1M 坐标即可解决问题.②当直线l 边BC 相交与点2M 时,同理可得点2M 坐标.(3)设11(),P x y 、22(),Q x y 且过点(1,0)H -的直线PQ的解析式为y kx b =+,得到b k =,利用方程组求出点M坐标,求出直线DN 解析式,再利用方程组求出点N 坐标,列出方程求出k ,即可解决问题.【考点】二次函数综合题成为菱形?若能,求出点N的坐标;若不能,请说明理由.数学试卷第23页(共24页)数学试卷第24页(共24页)。
2023年四川省成都市中考数学真题+答案解析
2023年四川省成都市中考数学真题+答案解析(真题部分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1.在3,﹣7,0,四个数中,最大的数是()A.3 B.﹣7 C.0 D.2.2023年5月17日10时49分,我国在西昌卫星发射中心成功发射第五十六颗北斗导航卫星,北斗系统作为国家重要基础设施,深刻改变着人们的生产生活方式.目前,某地图软件调用的北斗卫星日定位量超3000亿次.将数据3000亿用科学记数法表示为()A.3×108B.3×109C.3×1010D.3×10113.下列计算正确的是()A.(﹣3x)2=﹣9x2B.7x+5x=12x2C.(x﹣3)2=x2﹣6x+9 D.(x﹣2y)(x+2y)=x2+4y24.近年来,随着环境治理的不断深入,成都已构建起“青山绿道蓝网”生态格局.如今空气质量越来越好,杜甫那句“窗含西岭千秋雪”已成为市民阳台外一道靓丽的风景.下面是成都市今年三月份某五天的空气质量指数(AQI):33,27,34,40,26,则这组数据的中位数是()A.26 B.27 C.33 D.345.如图,在▱ABCD中,对角线AC与BD相交于点O,则下列结论一定正确的是()A.AC=BD B.OA=OC C.AC⊥BD D.∠ADC=∠BCD6.为贯彻教育部《大中小学劳动教育指导纲要(试行)》文件精神,某学校积极开设种植类劳动教育课.某班决定每位学生随机抽取一张卡片来确定自己的种植项目,老师提供6张背面完全相同的卡片,其中蔬菜类有4张,正面分别印有白菜、辣椒、豇豆、茄子图案;水果类有2张,正面分别印有草莓、西瓜图案,每个图案对应该种植项目.把这6张卡片背面朝上洗匀,小明随机抽取一张,他恰好抽中水果类卡片的概率是()A.B.C.D.7.《孙子算经》是中国古代重要的数学著作,是《算经十书》之一,书中记载了这样一个题目:今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?其大意是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺,问木长多少尺?设木长x尺,则可列方程为()A.(x+4.5)=x﹣1 B.(x+4.5)=x+1C.(x+1)=x﹣4.5 D.(x﹣1)=x+4.58.如图,二次函数y=ax2+x﹣6的图象与x轴交于A(﹣3,0),B两点,下列说法正确的是()A.抛物线的对称轴为直线x=1 B.抛物线的顶点坐标为(﹣,﹣6)C.A,B两点之间的距离为5 D.当x<﹣1时,y的值随x值的增大而增大二、填空题(本大题共5个小题,每小题4分,共20分)9.因式分解:m2﹣3m=.10.若点A(﹣3,y1),B(﹣1,y2)都在反比例函数y=的图象上,则y1y2(填“>”或“<”).11.如图,已知△ABC≌△DEF,点B,E,C,F依次在同一条直线上.若BC=8,CE=5,则CF的长为.12.在平面直角坐标系xOy中,点P(5,﹣1)关于y轴对称的点的坐标是.13.如图,在△ABC中,D是边AB上一点,按以下步骤作图:①以点A为圆心,以适当长为半径作弧,分别交AB,AC于点M,N;②以点D为圆心,以AM长为半径作弧,交DB于点M′;③以点M′为圆心,以MN长为半径作弧,在∠BAC内部交前面的弧于点N′;④过点N′作射线DN′交BC于点E.若△BDE与四边形ACED的面积比为4:21,则的值为.三、解答题(本大题共5个小题,共48分)14.(12分)(1)计算:+2sin45°﹣(π﹣3)0+|﹣2|.(2)解不等式组:.15.(8分)文明是一座城市的名片,更是一座城市的底蕴.成都市某学校于细微处着眼,于贴心处落地,积极组织师生参加“创建全国文明典范城市志愿者服务”活动,其服务项目有“清洁卫生”“敬老服务”“文明宣传”“交通劝导”,每名参加志愿者服务的师生只参加其中一项.为了解各项目参与情况,该校随机调查了参加志愿者服务的部分师生,将调查结果绘制成如下两幅不完整的统计图.根据统计图信息,解答下列问题:(1)本次调查的师生共有人,请补全条形统计图;(2)在扇形统计图中,求“敬老服务”对应的圆心角度数;(3)该校共有1500名师生,若有80%的师生参加志愿者服务,请你估计参加“文明宣传”项目的师生人数.16.(8分)为建设美好公园社区,增强民众生活幸福感,某社区服务中心在文化活动室墙外安装遮阳篷,便于社区居民休憩.如图,在侧面示意图中,遮阳篷AB长为5米,与水平面的夹角为16°,且靠墙端离地高BC为4米,当太阳光线AD与地面CE的夹角为45°时,求阴影CD的长.(结果精确到0.1米;参考数据:sin16°≈0.28,cos16°≈0.96,tan16°≈0.29)17.(10分)如图,以△ABC的边AC为直径作⊙O,交BC边于点D,过点C作CE∥AB交⊙O于点E,连接AD,DE,∠B=∠ADE.(1)求证:AC=BC;(2)若tan B=2,CD=3,求AB和DE的长.18.(10分)如图,在平面直角坐标系xOy中,直线y=﹣x+5与y轴交于点A,与反比例函数y=的图象的一个交点为B(a,4),过点B作AB的垂线l.(1)求点A的坐标及反比例函数的表达式;(2)若点C在直线l上,且△ABC的面积为5,求点C的坐标;(3)P是直线l上一点,连接P A,以P为位似中心画△PDE,使它与△P AB位似,相似比为m.若点D,E恰好都落在反比例函数图象上,求点P的坐标及m的值.B卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分)19.若3ab﹣3b2﹣2=0,则代数式(1﹣)÷的值为.20.一个几何体由几个大小相同的小立方块搭成,它的主视图和俯视图如图所示,则搭成这个几何体的小立方块最多有个.21.为传承非遗文化,讲好中国故事,某地准备在一个场馆进行川剧演出.该场馆底面为一个圆形,如图所示,其半径是10米,从A到B有一笔直的栏杆,圆心O到栏杆AB的距离是5米,观众在阴影区域里观看演出,如果每平方米可以坐3名观众,那么最多可容纳名观众同时观看演出.(π取3.14,取1.73)22.如图,在Rt△ABC中,∠ABC=90°,CD平分∠ACB交AB于点D,作DE∥BC交AC于点E,将△DEC沿DE折叠得到△DEF,DF交AC于点G.若,则tan A=.23.定义:如果一个正整数能表示为两个正整数m,n的平方差,且m﹣n>1,则称这个正整数为“智慧优数”.例如,16=52﹣32,16就是一个智慧优数,可以利用m2﹣n2=(m+n)(m﹣n)进行研究.若将智慧优数从小到大排列,则第3个智慧优数是;第23个智慧优数是.二、解答题(本大题共3个小题,共30分)24.(8分)2023年7月28日至8月8日,第31届世界大学生运动会将在成都举行.“当好东道主,热情迎嘉宾”,成都某知名小吃店计划购买A,B两种食材制作小吃.已知购买1千克A种食材和1千克B种食材共需68元,购买5千克A种食材和3千克B种食材共需280元.(1)求A,B两种食材的单价;(2)该小吃店计划购买两种食材共36千克,其中购买A种食材千克数不少于B种食材千克数的2倍,当A,B两种食材分别购买多少千克时,总费用最少?并求出最少总费用.25.(10分)如图,在平面直角坐标系xOy中,已知抛物线y=ax2+c经过点P(4,﹣3),与y轴交于点A(0,1),直线y=kx(k≠0)与抛物线交于B,C两点.(1)求抛物线的函数表达式;(2)若△ABP是以AB为腰的等腰三角形,求点B的坐标;(3)过点M(0,m)作y轴的垂线,交直线AB于点D,交直线AC于点E.试探究:是否存在常数m,使得OD⊥OE始终成立?若存在,求出m的值;若不存在,请说明理由.26.(12分)探究式学习是新课程倡导的重要学习方式,某兴趣小组拟做以下探究.在Rt△ABC中,∠C=90°,AC=BC,D是AB边上一点,且=(n为正整数),E是AC边上的动点,过点D作DE的垂线交直线BC于点F.【初步感知】(1)如图1,当n=1时,兴趣小组探究得出结论:AE+BF=AB,请写出证明过程.【深入探究】(2)①如图2,当n=2,且点F在线段BC上时,试探究线段AE,BF,AB之间的数量关系,请写出结论并证明;②请通过类比、归纳、猜想,探究出线段AE,BF,AB之间数量关系的一般结论(直接写出结论,不必证明).【拓展运用】(3)如图3,连接EF,设EF的中点为M,若AB=2,求点E从点A运动到点C的过程中,点M运动的路径长(用含n的代数式表示).2023年四川省成都市中考数学真题+答案解析(答案部分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1.在3,﹣7,0,四个数中,最大的数是()A.3 B.﹣7 C.0 D.【分析】运用有理数大小比较的知识进行求解.【解析】解:∵﹣7<0<<3,∴最大的数是3,故选:A.【点评】此题考查了有理数大小比较的能力,关键是能准确理解并运用以上知识.2.2023年5月17日10时49分,我国在西昌卫星发射中心成功发射第五十六颗北斗导航卫星,北斗系统作为国家重要基础设施,深刻改变着人们的生产生活方式.目前,某地图软件调用的北斗卫星日定位量超3000亿次.将数据3000亿用科学记数法表示为()A.3×108B.3×109C.3×1010D.3×1011【分析】运用科学记数法进行变形、求解.【解析】解:3000亿=3000×108=3×1011,故选:D.【点评】此题考查了科学记数法的应用能力,关键是能准确理解并运用以上知识.3.下列计算正确的是()A.(﹣3x)2=﹣9x2B.7x+5x=12x2C.(x﹣3)2=x2﹣6x+9 D.(x﹣2y)(x+2y)=x2+4y2【分析】利用幂的乘方与积的乘方的性质,合并同类项的法则,完全平方公式和平方差公式对每个选项进行主要判断即可得出结论.【解析】解:∵(﹣3x)2=9x2,∴A选项的运算不正确,不符合题意;∵7x+5x=12x,∴B选项的运算不正确,不符合题意;∵(x﹣3)2=x2﹣6x+9,∴C选项的运算正确,符合题意;∵(x﹣2y)(x+2y)=x2﹣4y2,∴D选项的运算不正确,不符合题意.故选:C.【点评】本题主要考查了整式的混合运算,幂的乘方与积的乘方的性质,合并同类项的法则,完全平方公式和平方差公式,熟练掌握上述性质与公式是解题的关键.4.近年来,随着环境治理的不断深入,成都已构建起“青山绿道蓝网”生态格局.如今空气质量越来越好,杜甫那句“窗含西岭千秋雪”已成为市民阳台外一道靓丽的风景.下面是成都市今年三月份某五天的空气质量指数(AQI):33,27,34,40,26,则这组数据的中位数是()A.26 B.27 C.33 D.34【分析】根据中位数的定义即可得出答案.【解析】解:把这些数从小到大排列为:26,27,33,34,40,则这组数据的中位数是33.故选:C.【点评】此题考查了中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会错误地将这组数据最中间的那个数当作中位数.5.如图,在▱ABCD中,对角线AC与BD相交于点O,则下列结论一定正确的是()A.AC=BD B.OA=OC C.AC⊥BD D.∠ADC=∠BCD【分析】利用平行四边形的性质一一判断即可解决问题.【解析】解:A、错误.平行四边形的对角线互相平分,但不一定相等,不合题意;B、正确.因为平行四边形的对角线互相平分,符合题意;C、错误.平行四边形的对角线不一定垂直,不合题意;D、错误.平行四边形的对角相等,但邻角不一定相等,不合题意;故选:B.【点评】本题考查平行四边形的性质,熟练掌握平行四边形的性质是解题的关键.6.为贯彻教育部《大中小学劳动教育指导纲要(试行)》文件精神,某学校积极开设种植类劳动教育课.某班决定每位学生随机抽取一张卡片来确定自己的种植项目,老师提供6张背面完全相同的卡片,其中蔬菜类有4张,正面分别印有白菜、辣椒、豇豆、茄子图案;水果类有2张,正面分别印有草莓、西瓜图案,每个图案对应该种植项目.把这6张卡片背面朝上洗匀,小明随机抽取一张,他恰好抽中水果类卡片的概率是()A.B.C.D.【分析】根据概率公式直接计算即可.【解析】解:∵卡片共6张,其中水果类卡片有2张,∴恰好抽中水果类卡片的概率是.故选:B.【点评】本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.7.《孙子算经》是中国古代重要的数学著作,是《算经十书》之一,书中记载了这样一个题目:今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?其大意是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺,问木长多少尺?设木长x尺,则可列方程为()A.(x+4.5)=x﹣1 B.(x+4.5)=x+1C.(x+1)=x﹣4.5 D.(x﹣1)=x+4.5【分析】设木长x尺,根据题意列出方程解答即可.【解析】解:设木长x尺,根据题意可得:,故选:A.【点评】此题主要考查了由实际问题抽象出一元一次方程,正确得出等量关系是解题的关键.8.如图,二次函数y=ax2+x﹣6的图象与x轴交于A(﹣3,0),B两点,下列说法正确的是()A.抛物线的对称轴为直线x=1B.抛物线的顶点坐标为(﹣,﹣6)C.A,B两点之间的距离为5D.当x<﹣1时,y的值随x值的增大而增大【分析】A将点A的坐标代入即可解答即可判定A;B先运用二次函数图象的性质确定B;C利用两点间的距离公式解答即可;D根据函数图象即可解答.【解析】解:A、把A(﹣3,0)代入y=ax2+x﹣6得,0=9a﹣3﹣6,解得a=1,∴y=x2+x﹣6,对称轴直线为:x=﹣,故A错误;令y=0,0=x2+x﹣6,解得x1=﹣3,x2=2,∴AB=2﹣(﹣3)=5,∴A,B两点之间的距离为5,故C正确;当x=﹣时,y=,故B错误;由图象可知当x时,y的值随x值的增大而增大,故D错误.故选:C.【点评】本题主要考查二次函数图象的性质,掌握二次函数图象的性质,对称轴的计算方法,函数最值的计算方法是解题的关键.二、填空题(本大题共5个小题,每小题4分,共20分)9.因式分解:m2﹣3m=m(m﹣3).【分析】直接找出公因式m,进而分解因式得出答案.【解析】解:m2﹣3m=m(m﹣3).故答案为:m(m﹣3).【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.10.若点A(﹣3,y1),B(﹣1,y2)都在反比例函数y=的图象上,则y1>y2(填“>”或“<”).【分析】根据反比例函数的性质得出答案即可.【解析】解:∵y=中k=6>0,∴在每个象限内,y随x的增大而减小,∵﹣3<﹣1<0,∴y1>y2.故答案为:>.【点评】本题考查了反比例函数图象上点的坐标特征,能熟记反比例函数的性质是解此题的关键,反比例函数y=,①当k>0时,y随x的增大而减小,②当k<0时,y随x的增大而增大.11.如图,已知△ABC≌△DEF,点B,E,C,F依次在同一条直线上.若BC=8,CE=5,则CF 的长为3.【分析】根据全等三角形的对应边相等得到EF=BC=7,计算即可.【解析】解:∵△ABC≌△DEF,∴BC=EF,又BC=8,∴EF=8,∵EC=5,∵CF=EF﹣EC=8﹣5=3.故答案为:3.【点评】本题考查的是全等三角形的性质,掌握全等三角形的对应边相等、全等三角形的对应角相等是解题的关键.12.在平面直角坐标系xOy中,点P(5,﹣1)关于y轴对称的点的坐标是(﹣5,﹣1).【分析】根据关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变即可得出答案.【解析】解:∵关于y轴对称,∴横坐标互为相反数,纵坐标不变,∴点P(5,﹣1)关于y轴对称的点的坐标是(﹣5,﹣1).故答案为:(﹣5,﹣1).【点评】本题考查了关于x轴,y轴对称的点的坐标,掌握关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变是解题的关键.13.如图,在△ABC中,D是边AB上一点,按以下步骤作图:①以点A为圆心,以适当长为半径作弧,分别交AB,AC于点M,N;②以点D为圆心,以AM长为半径作弧,交DB于点M′;③以点M′为圆心,以MN长为半径作弧,在∠BAC内部交前面的弧于点N′;④过点N′作射线DN′交BC于点E.若△BDE与四边形ACED的面积比为4:21,则的值为.【分析】由作图知∠A=∠BDE,由平行线的性质得到DE∥AC,证得△BDE∽△BAC,根据相似三角形的性质即可求出答案.【解析】解:由作图知,∠A=∠BDE,∴DE∥AC,∴△BDE∽△BAC,△BAC的面积:△BDE的面积=(△BDE的面积+四边形ACED的面积):△BDE的面积=1+四边形ACED的面积:△BDE的面积=1+=,∴△BDC的面积:△BAC的面积=()2=,∴=,∴=.故答案为:.【点评】本题考查作图﹣复杂作图,相似三角形的性质和判定,平行线的判定和性质等知识,解题的关键是读懂图象信息,灵活运用所学知识解决问题.三、解答题(本大题共5个小题,共48分)14.(12分)(1)计算:+2sin45°﹣(π﹣3)0+|﹣2|.(2)解不等式组:.【分析】(1)分别根据算术平方根的定义,特殊角的三角函数值,零指数幂的定义以及绝对值的性质计算即可;(2)先求出不等式组中每一个不等式的解集,再求出它们的公共部分即可.【解析】解:(1)原式=2+2×﹣1+2﹣=2+﹣1+2﹣=3;(2),解不等式①,得x≤1,解不等式②,得x>﹣4,所以原不等式组的解集为﹣4<x≤1.【点评】本题考查了实数的运算以及解一元一次不等式组,掌握相关定义与运算法则是解答本题的关键.15.(8分)文明是一座城市的名片,更是一座城市的底蕴.成都市某学校于细微处着眼,于贴心处落地,积极组织师生参加“创建全国文明典范城市志愿者服务”活动,其服务项目有“清洁卫生”“敬老服务”“文明宣传”“交通劝导”,每名参加志愿者服务的师生只参加其中一项.为了解各项目参与情况,该校随机调查了参加志愿者服务的部分师生,将调查结果绘制成如下两幅不完整的统计图.根据统计图信息,解答下列问题:(1)本次调查的师生共有300人,请补全条形统计图;(2)在扇形统计图中,求“敬老服务”对应的圆心角度数;(3)该校共有1500名师生,若有80%的师生参加志愿者服务,请你估计参加“文明宣传”项目的师生人数.【分析】(1)根据“清洁卫生”的人数和所占的百分比求出样本容量,再用样本容量减去其他三个项目的人数,可得“文明宣传”的人数,进而补全条形统计图;(2)用360°乘“敬老服务”所占的百分比即可得出“敬老服务”对应的圆心角度数;(3)用参加志愿者服务的人数乘样本中参加“文明宣传”的人数所占的百分比即可.【解析】解:(1)本次调查的师生共有:60÷20%=300(人),“文明宣传”的人数为:300﹣60﹣120﹣30=90(人),补全条形统计图如下:故答案为:300;(2)在扇形统计图中,求“敬老服务”对应的圆心角度数为:360°×=144°;(3)1500×80%×=360(名),答:估计参加“文明宣传”项目的师生人数大约为360名.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.16.(8分)为建设美好公园社区,增强民众生活幸福感,某社区服务中心在文化活动室墙外安装遮阳篷,便于社区居民休憩.如图,在侧面示意图中,遮阳篷AB长为5米,与水平面的夹角为16°,且靠墙端离地高BC为4米,当太阳光线AD与地面CE的夹角为45°时,求阴影CD的长.(结果精确到0.1米;参考数据:sin16°≈0.28,cos16°≈0.96,tan16°≈0.29)【分析】过A作AT⊥BC于T,AK⊥CE于K,在Rt△ABT中,BT=AB•sin∠BAT=1.4(米),AT =AB•cos∠BAT≈4.8(米),可得CK=AT=4.8米,AK=CT=BC﹣BT=4﹣1.4=2.6(米),而∠ADK =45°,知DK=AK=2.6米,故CD=CK﹣DK=4.8﹣2.6=2.2米.【解析】解:过A作AT⊥BC于T,AK⊥CE于K,如图:在Rt△ABT中,BT=AB•sin∠BAT=5×sin16°≈1.4(米),AT=AB•cos∠BAT=5×cos16°≈4.8(米),∵∠ATC=∠C=∠CKA=90°,∴四边形ATCK是矩形,∴CK=AT=4.8米,AK=CT=BC﹣BT=4﹣1.4=2.6(米),在Rt△AKD中,∵∠ADK=45°,∴DK=AK=2.6米,∴CD=CK﹣DK=4.8﹣2.6=2.2(米),∴阴影CD的长约为2.2米.【点评】本题考查解直角三角形的应用,解题的关键是掌握锐角三角函数的定义,求出相关线段的长度.17.(10分)如图,以△ABC的边AC为直径作⊙O,交BC边于点D,过点C作CE∥AB交⊙O于点E,连接AD,DE,∠B=∠ADE.(1)求证:AC=BC;(2)若tan B=2,CD=3,求AB和DE的长.【分析】(1)结合已知条件,根据同弧所对的圆周角相等易证得∠ADE=∠ACE=∠BAC=∠B,再由等边对等角即可证得结论;(2)连接AE,易证得△ABC∽△ADE,根据已知条件,利用直径所对的圆周角为直角可得∠ADB =∠ADC=90°,根据三角函数值可得AD=2BD,再结合,CD=3,AC=3+BD,利用勾股定理列得方程,求得CD的长度,从而得出AD,BC,AB的长度,再利用相似三角形的对应边成比例即可求得答案.【解析】(1)证明:∵∠ADE=∠ACE,∠ADE=∠B,∴∠B=∠ACE,∵CE∥AB,∴∠BAC=∠ACE,∴∠B=∠BAC,∴AC=BC;(2)解:如图,连接AE,∵∠ADE=∠B,∠AED=∠ACB,∴△ADE∽△ABC,∴=,∵AC为⊙O的直径,∴∠ADB=∠ADC=90°,∴tan B==2,∴AD=2BD,∵CD=3,∴AC=BC=BD+CD=BD+3,∵AD2+CD2=AC2,∴(2BD)2+32=(BD+3)2,解得:BD=2或BD=0(舍去),∴AD=2BD=4,AB===2,BC=2+3=5,∵=,∴=,∴DE=2.【点评】本题主要考查圆与相似三角形的综合应用,(2)中利用三角函数值可得AD=2BD,再根据勾股定理列得方程是解题的关键.18.(10分)如图,在平面直角坐标系xOy中,直线y=﹣x+5与y轴交于点A,与反比例函数y=的图象的一个交点为B(a,4),过点B作AB的垂线l.(1)求点A的坐标及反比例函数的表达式;(2)若点C在直线l上,且△ABC的面积为5,求点C的坐标;(3)P是直线l上一点,连接P A,以P为位似中心画△PDE,使它与△P AB位似,相似比为m.若点D,E恰好都落在反比例函数图象上,求点P的坐标及m的值.【分析】(1)解方程得到点A的坐标为(0,5),将B(a,4)代入y=﹣x+5得,4=﹣a+5,求得B(1,4),将B(1,4)代入y=得,求得反比例函数的表达式为y=;(2)设直线l与y轴交于M,直线y=﹣x+5与x轴交于N,解方程得到N(S,0),求得OA=ON =5,根据两点间的距离的结论公式得到=,求得M(0,3),待定系数法求得直线l的解析式为y=4x+3,设点C的坐标为(t,t+3),根据三角形的面积公式列方程得到t=﹣4或t=6,求得点C的坐标为(6,9)或(﹣4,﹣1);(3)解方程组求得E(﹣4,﹣1),根据相似三角形的性质得到∠P AB=∠PDE,根据平行线的判定定理得到AB∥DE,求得直线DE的解析式为y=﹣x﹣5,解方程组得到D(﹣1,﹣4),则直线AD的解析式为y=9x+5,于是得到P(﹣,),根据两点间的距离距离公式即可得到结论.【解析】解:(1)令x=0,则y=﹣x+5=5,∴点A的坐标为(0,5),将B(a,4)代入y=﹣x+5得,4=﹣a+5,∴a=1,∴B(1,4),将B(1,4)代入y=得,4=,解得k=4,∴反比例函数的表达式为y=;(2)设直线l与y轴交于M,直线y=﹣x+5与x轴交于N,令y=﹣x+5=0得,x=5,∴N(5,0),∴OA=ON=5,∵∠AON=90°,∴∠OAN=45°,∵A(0,5),B(1,4),∴=,∵直线l是AB的垂线,即∠ABM=90°,∠OAN=45°,∴,∴M(0,3),设直线l的解析式为y=k1x+b1,将M(0,3),B(1,4)代入y=k1x+b1得,,解得,∴直线l的解析式为y=4x+3,设点C的坐标为(t,t+3),∵•|x B﹣x C|=,解得t=﹣4或t=6,当t=﹣4时,t+3=﹣1,当t=6时,t+3=9,∴点C的坐标为(6,9)或(﹣4,﹣1);(3)∵位似图形的对应点与位似中心三点共线,∴点B的对应点也在直线l上,不妨设为E点,则点A的对应点为D,将直线l与双曲线的解析式联立方程组,解得,或,∴E(﹣4,﹣1),画出图形如图所示,∵△P AB∽△PDE,∴∠P AB=∠PDE,∴AB∥DE,∴直线AB与直线DE的一次项系数相等,设直线DE的解析式为y=﹣x+b2,∴﹣1=﹣(﹣4)+b2,∴b2=﹣5,∴直线DE的解析式为y=﹣x﹣5,∵点D在直线DE与双曲线的另一个交点,∴解方程组得,或,∴D(﹣1,﹣4),则直线AD的解析式为y=9x+5,解方程组得,,∴P(﹣,),∴,,∴m=.【点评】本题考查了反比例函数的综合题,待定系数法求函数的解析式,反比例函数的性质,勾股定理,相似三角形的判定和性质,正确的作出图形是解题的关键.B卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分)19.若3ab﹣3b2﹣2=0,则代数式(1﹣)÷的值为.【分析】先根据分式的减法法则进行计算,再根据分式的除法法则把除法变成乘法,算乘法,最后代入求出答案即可.【解析】解:(1﹣)÷=•=•=b(a﹣b)=ab﹣b2,∵3ab﹣3b2﹣2=0,∴3ab﹣3b2=2,∴ab﹣b2=,当ab﹣b2=时,原式=.故答案为:.【点评】本题考查了分式的化简求值,能正确根据分式的运算法则进行计算是解此题的关键.20.一个几何体由几个大小相同的小立方块搭成,它的主视图和俯视图如图所示,则搭成这个几何体的小立方块最多有6个.【分析】根据正面看与上面看的图形,得到搭成这个几何体底层4个,上面1层最多2个小正方体.【解析】解:根据俯视图发现最底层有4个小立方块,从主视图发现第二层最多有2个小立方块,故最多有4+2=6(个)小立方块.故答案为:6.【点评】本题考查的是三视图知识,以及由三视图判断几何体,利用三视图判断得出几何体形状是解题关键.21.为传承非遗文化,讲好中国故事,某地准备在一个场馆进行川剧演出.该场馆底面为一个圆形,如图所示,其半径是10米,从A到B有一笔直的栏杆,圆心O到栏杆AB的距离是5米,观众在阴影区域里观看演出,如果每平方米可以坐3名观众,那么最多可容纳183名观众同时观看演出.(π取3.14,取1.73)=S 【分析】过O作OD⊥AB,D为垂足,可得到∠AOD=60°,所以∠AOB=120°,再求出S阴影部分扇形OAB ﹣S△OAB=﹣×10×5=π﹣25≈61(m2),然后乘以3即可得到观看马戏的观众人数约为183人.【解析】解:过O作OD⊥AB,D为垂足,∴AD=BD,OD=5m,∵cos∠AOD===,∴∠AOD=60°,AD=OD=5m,∴∠AOB=120°,AB=10m,∴S阴影部分=S扇形OAB﹣S△OAB=﹣×10×5=π﹣25≈61(m2),∴61×3=183(人).∴观看马戏的观众人数约为183人.故答案为:183人.【点评】本题考查的是垂径定理的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键,也考查了三角函数的概念和特殊角的三角函数值.22.如图,在Rt△ABC中,∠ABC=90°,CD平分∠ACB交AB于点D,过D作DE∥BC交AC于点E,将△DEC沿DE折叠得到△DEF,DF交AC于点G.若,则tan A=.【分析】过点G作GM⊥DE于M,证明△DGE∽△CGD,得出DG2=GE×GC,根据AD∥GM,得==,设GE=3k,AG=7k,EM=3n,DM=7n,则EC=DE=10n,在Rt△DGM中,GM2=DG2﹣DM2,在Rt△GME中GM2=GE2﹣EM2,则DG2﹣DM2=GE2﹣EM2,解方程求得k,则k,GE=3k,用勾股定理求得GM,根据正切的定义,即可求解.【解析】解:过点G作GM⊥DE于M,如图,∵CD平分∠ACB交AB于点D,DE∥BC,∴∠1=∠2,∠2=∠3,∴∠1=∠3,∴ED=EC,∵将△DEC沿DE折叠得到△DEF,∴∠3=∠4,∴∠1=∠4,又∵∠DGE=∠CGD,∴△DGE∽△CGD,∴,∴DG2=GE×GC,∵∠ABC=90°,DE∥BC,∴AD⊥DE,∴AD∥GM,∴=,∠MGE=∠A,∵,∴,设GE=3k,EM=3n,则AG=7k,DM=7n,∴EC=DE=10n,∴DG2=GE×GC=3k×(3k+10n)=9k2+30kn,在Rt△DGM中,GM2=DG2﹣DM2,在Rt△GME中,GM2=GE2﹣EM2,∴DG2﹣DM2=GE2﹣EM2,即9k2+30kn﹣(7n)2=(3k)2﹣(3n)2,解得:k,∴EM=k,∵GE=3k,∴GM===k,∴tan A=tan∠EGM===.故答案为:.【点评】本题考查了求正切,折叠的性质,勾股定理,平行线分线段成比例,相似三角形的性质与判定,熟练掌握以上知识是解题的关键.23.定义:如果一个正整数能表示为两个正整数m,n的平方差,且m﹣n>1,则称这个正整数为“智慧优数”.例如,16=52﹣32,16就是一个智慧优数,可以利用m2﹣n2=(m+n)(m﹣n)进行研究.若将智慧优数从小到大排列,则第3个智慧优数是15;第23个智慧优数是57.【分析】根据新定义m2﹣n2,可以分别列出m2和n2的值,进而即可求解.【解析】解:根据题意,且m﹣n>1,当m=3,n=1,则第1个智慧优数为:32﹣12=8,当m=4,n=2,则第2个智慧优数为:42﹣22=12,当m=4,n=1,则第3个智慧优数为:42﹣12=15.正整数的平方分别为:1,4,9,16,25,36,49,64,81.当m=5,n=3,则第3个智慧优数为:52﹣32=16,当m=5,n=2,则第3个智慧优数为:52﹣22=21,当m=5,n=1,则第3个智慧优数为:52﹣12=24,以此类推,当m=6时,有4个智慧优数,同理m=7时有5个,m=8时,有6个,1+2+3+4+5+6=21,又两数之间的差越小,平方越小,所以后面也有智慧优数比较小的第22个智慧优数,当m=9时,n=5,第22个智慧优数为:92﹣52=81﹣25=56,。
2016年成都中考数学真题及答案word版
O一六高中阶段教育学校统一招生考试成都市二(含成都市初三毕业会考)学数 100分)A卷(共 30分)第Ⅰ卷(选择题,共分。
每小题有四个选项,其中只有一分,共30一、选择题(本大题共10个小题,每小题3 项符合题目要求,答案涂在答题卡上))-2小的数是(1、在-3,-1,1,3四个数中,比3、 1 D B、-1 C、A、-3)2、如图所示的几何体是由5个大小相同的小立方块搭成,它的俯视图是(日成都地铁安293、成都地铁自开通以来,现已成为成都市民主要出行方式之一,今年4月用科这也是今年以来第四次客流记录的刷新,全运输乘客181万乘次,又一刷新客流记录,)学记数法表示181万为(54671081?1.10?811.?101.81?10181 D、B、C、A、23)x(?y的结果是(4、计算)266235yyxxy?yx?x B、C、D、A、l//l2??1?56?,,)则的度数为(5 、如图,21D146°C 、124°A、34°B、56°x)P(-2、平面直角坐标系中,点,3)关于对称的点的坐标为(5(3,-2)D、C、、A(-2,-3) B(2,-3) 、(-3,2)x21?、分式方程7 )的解是(3x?3x?xx?x??2?3?2、、、 B 、 C D A8、学校准备从甲、乙、丙、丁四个科创小组中选出一组代表学校参加青少年科技创新大赛,2S各组的平时成绩的平均数是(单位:分)及方差如下表所示:x甲乙丙丁7878x21.8 1 1 1.2 S如果要选出一个成绩较好且状态较稳定的组去参赛,那么应选的组是()12/ 1D、丁C A、甲B、乙、丙232y?x?的图象是一条抛物线,下列关于该抛物线的说法,正确的是(9、二次函数)2,3B、抛物线经过()、抛物线开口向下Ax1x?轴有两个交点C、抛物线个的对称轴是直线D、抛物线与??OCA?50,则,为圆10、如图,ABO的直径,点C在圆O上,若AB=4 )BC弧的长度为(????101055、D A C、、 B 、93918第Ⅱ卷(非选择题,共70分)二、填空题(本大题共4个小题,每小题4分,,共16分,答案写在答题卡上)a,0?2|?|a。
2024年四川省成都市中考真题数学试卷含答案解析
2024年四川省成都市中考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.﹣5的绝对值是()A .5B .﹣5C .15-D .15【答案】A【分析】根据负数的绝对值等于它的相反数可得答案.【详解】解:|﹣5|=5.故选A .2.如图所示的几何体是由5个大小相同的小立方块搭成,它的主视图是()A .B .C .D .【答案】A【分析】本题考查简单几何体的三视图,根据主视图是从正面看到的图形求解即可.【详解】解:该几何体的主视图为,故选:A .3.下列计算正确的是()A .()2233x x =B .336x y xy+=C .()222x y x y +=+D .()()2224x x x +-=-【答案】D【分析】本题主要考查了积的乘方运算,同类项的合并,完全平方公式以及平方差公式,根据积的乘方运算法则,同类项的合并法则以及完全平方公式以及平方差公式一一计算判断即可.【详解】解:A .()2239x x =,原计算错误,故该选项不符合题意;B .3x 和3y 不是同类项,不能合并,故该选项不符合题意;C .()2222x y x y xy +=++,原计算错误,故该选项不符合题意;D .()()2224x x x +-=-,原计算正确,故该选项符合题意;故选:D .4.在平面直角坐标系xOy 中,点()1,4P -关于原点对称的点的坐标是()A .()1,4--B .()1,4-C .()1,4D .()1,4-【答案】B【分析】本题考查了求关于原点对称的点的坐标.关于原点对称的两点,则其横、纵坐标互为相反数,由点关于原点对称的坐标特征即可求得对称点的坐标.【详解】解:点()1,4P -关于原点对称的点的坐标为()1,4-;故选:B .5.为深入贯彻落实《中共中央、国务院关于学习运用“千村示范、万村整治”工程经验有力有效推进乡村全面振兴的意见》精神,某镇组织开展“村BA ”、村超、村晚等群众文化赛事活动,其中参赛的六个村得分分别为:55,64,51,50,61,55,则这组数据的中位数是()A .53B .55C .58D .646.如图,在矩形ABCD 中,对角线AC 与BD 相交于点O ,则下列结论一定正确的是()A .AB AD =B .AC BD ⊥C .AC BD =D .ACB ACD∠=∠【答案】C【分析】本题考查矩形的性质,根据矩形的性质逐项判断即可.【详解】解:∵四边形ABCD 是矩形,∴AB CD =,AC BD =,AD BC ∥,则ACB DAC ∠=∠,∴选项A 中AB AD =不一定正确,故不符合题意;选项B 中AC BD ⊥不一定正确,故不符合题意;选项C 中AC BD =一定正确,故符合题意;选项D 中ACB ACD ∠=∠不一定正确,故不符合题意,故选:C .7.中国古代数学著作《九章算术》中记载了这样一个题目:今有共买琎,人出半,盈四;人出少半,不足三.问人数,琎价各几何?其大意是:今有人合伙买琎石,每人出12钱,会多出4钱;每人出13钱,又差了3钱.问人数,琎价各是多少?设人数为x ,琎价为y ,则可列方程组为()A .142133y x y x ⎧=+⎪⎪⎨⎪=+⎪⎩B .142133y x y x ⎧=-⎪⎪⎨⎪=+⎪⎩C .142133y x y x ⎧=-⎪⎪⎨⎪=-⎪⎩D .142133y x y x ⎧=+⎪⎪⎨⎪=-⎪⎩8.如图,在ABCD Y 中,按以下步骤作图:①以点B 为圆心,以适当长为半径作弧,分别交BA ,BC 于点M ,N ;②分别以M ,N 为圆心,以大于12MN 的长为半径作弧,两弧在ABC ∠内交于点O ;③作射线BO ,交AD 于点E ,交CD 延长线于点F .若3CD =,2DE =,下列结论错误的是()A .ABE CBE ∠=∠B .5BC =C .DE DF =D .53BE EF =【答案】D【分析】本题考查角平分线的尺规作图、平行四边形的性质、等腰三角形的判定以及相似性质与判定的综合.先由作图得到BF 为ABC ∠的角平分,利用平行线证明AEB ABE ∠=∠,从而得到3AE AB CD ===,再利用平行四边形的性质得到325BC AD AE ED ==+=+=,再证明AEB DEF △∽△,分别求出32BE EF =,2DF =,则各选项可以判定.【详解】解:由作图可知,BF 为ABC ∠的角平分,∴ABE CBE ∠=∠,故A 正确;∵四边形ABCD 为平行四边形,∴,,AD BC AB CD AD BC == ,∵AD BC∥∴AEB CBE ∠=∠,∴AEB ABE ∠=∠,∴3AE AB CD ===,∴325BC AD AE ED ==+=+=,故B 正确;∵AB CD =,∴ABE F ∠=∠,∵AEB DEF ∠=∠,∴AEB DEF △∽△,∴BE AB AEEF DF ED ==,∴332BE EF DF ==,∴32BE EF =,2DF =,故D 错误;∵2DE =,∴DE DF =,故C 正确,故选:D .二、填空题9.若m ,n 为实数,且()240m +=,则()2m n +的值为.10.分式方程2x x=-的解是.【答案】x=3【详解】试题分析:分式方程去分母转化为整式方程x=3(x ﹣2),求出整式方程的解得到x=3,经检验x=3是分式方程的解,即可得到分式方程的解.考点:解分式方程11.如图,在扇形AOB 中,6OA =,120AOB ∠=︒,则 AB 的长为.12.盒中有x 枚黑棋和y 枚白棋,这些棋除颜色外无其他差别.从盒中随机取出一枚棋子,如果它是黑棋的概率是38,则xy的值为.13.如图,在平面直角坐标系xOy 中,已知()3,0A ,()0,2B ,过点B 作y 轴的垂线l ,P 为直线l 上一动点,连接PO ,PA ,则PO PA +的最小值为.【答案】5【分析】本题考查轴对称—最短问题以及勾股定理和轴对称图形的性质.先取点A 关于直线l 的对称点A ',连A O '交直线l 于点C ,连AC ,得到AC A C '=,A A l '⊥,再由轴对称图形的性质和两点之间线段最短,得到当,,O P A '三点共线时,PO PA +的最小值为A O ',再利用勾股定理求A O '即可.【详解】解:取点A 关于直线l 的对称点A ',连A O '交直线l 于点C ,连AC ,则可知AC A C '=,A A l '⊥,∴PO PA PO PA A O ''+=+≥,即当,,O P A '三点共线时,PO PA +的最小值为A O ',∵直线l 垂直于y 轴,∴A A x '⊥轴,∵()3,0A ,()0,2B ,三、解答题14.(1)计算:()0162sin60π20242+︒--+-.(2)解不等式组:2311123x x x+≥-⎧⎪⎨--<⎪⎩①②15.2024年成都世界园艺博览会以“公园城市美好人居”为主题,秉持“绿色低碳、节约持续、共享包容”的理念,以园艺为媒介,向世界人民传递绿色发展理念和诗意栖居的美好生活场景.在主会场有多条游园线路,某单位准备组织全体员工前往参观,每位员工从其中四条线路(国风古韵观赏线、世界公园打卡线、亲子互动慢游线、园艺小清新线)中选择一条.现随机选取部分员工进行了“线路选择意愿”的摸底调查,并根据调查结果绘制成如下统计图表.游园线路人数国风古韵观赏线44世界公园打卡线x亲子互动慢游线48园艺小清新线y根据图表信息,解答下列问题:(1)本次调查的员工共有______人,表中x的值为______:(2)在扇形统计图中,求“国风古韵观赏线”对应的圆心角度数;(3)若该单位共有2200人,请你根据调查结果,估计选择“园艺小清新线”的员工人数.【答案】(1)160,40(2)99︒(3)385【分析】本题考查统计表和扇形统计图的关联、用样本估计总体,理解题意,能从统计图中获取有用信息是解答的关键.(1)根据选择“亲子互动慢游线”的人数及其所占的百分比可求得调查总人数,再根据选择“世界公园打卡线”对应的圆心角是90︒可求解x值;(2)由360︒乘以选择“国风古韵观赏线”所占的百分比可得答案;(3)先求得选择“园艺小清新线”的人数,再由单位总人数乘以样本中选择“园艺小清新线”16.中国古代运用“土圭之法”判别四季.夏至时日影最短,冬至时日影最长,春分和秋分时日影长度等于夏至和冬至日影长度的平均数.某地学生运用此法进行实践探索,如图,在示意图中,产生日影的杆子AB 垂直于地面,AB 长8尺.在夏至时,杆子AB 在太阳光线AC 照射下产生的日影为BC ;在冬至时,杆子AB 在太阳光线AD 照射下产生的日影为BD .已知73.4ACB ∠=︒,26.6ADB ∠=︒,求春分和秋分时日影长度.(结果精确到0.1尺;参考数据:sin26.60.45︒≈,cos26.60.89︒≈,tan26.60.50︒≈,sin73.40.96︒≈,cos73.40.29︒≈,tan73.4 3.35︒≈)17.如图,在Rt ABC △中,90C ∠=︒,D 为斜边AB 上一点,以BD 为直径作O ,交AC 于E ,F 两点,连接BE ,BF ,DF .(1)求证:BC DF BF CE ⋅=⋅;(2)若A CBF ∠=∠,tan BFC ∠=,AF =CF 的长和O 的直径.18.如图,在平面直角坐标系xOy 中,直线y x m =-+与直线2y x =相交于点()2,A a ,与x 轴交于点(),0B b ,点C 在反比例函数()0k y k x=<图象上.(1)求a ,b ,m 的值;(2)若O ,A ,B ,C 为顶点的四边形为平行四边形,求点C 的坐标和k 的值;(3)过A ,C 两点的直线与x 轴负半轴交于点D ,点E 与点D 关于y 轴对称.若有且只有一点C ,使得ABD △与ABE 相似,求k 的值.【答案】(1)4a =,6m =,6b =(2)点C 的坐标为()4,4-或()4,4-,16k =-(3)1-【分析】(1)利用待定系数法求解即可;(2)设(),C t s ,根据平行四边形的性质,分当OA 为对角线时,当OB 为对角线时,当OC 为对角线时三种情况,分别利用中点坐标公式列方程组求解即可;(3)设点(),0D x ,则(),0E x -,0x <,利用相似三角形的性质得2AB BE BD =⋅,进而解方程得2x =-,则()2,0D -,利用待定系数法求得直线AC 的表达式为2y x =+,联立方程组得220x x k +-=,根据题意,方程220x x k +-=有且只有一个实数根,利用根的判别式求解即可.【详解】(1)解:由题意,将()2,A a 代入2y x =中,得224a =⨯=,则()2,4A ,将()2,4A 代入y x m =-+中,得42m =-+,则6m =,∴6y x =-+,将(),0B b 代入6y x =-+中,得06b =-+,则6b =;(2)解:设(),C t s ,由(1)知()2,4A ,()6,0B 若O ,A ,B ,C 为顶点的四边形为平行四边形,分以下情况:当OA 为对角线时,则026040t s +=+⎧⎨+=+⎩,解得44t s =-⎧⎨=⎩,∴()4,4C -,则4416k =-⨯=-;当OB 为对角线时,则062004t s+=+⎧⎨+=+⎩,解得44t s =⎧⎨=-⎩,∴()4,4C -,则4416k =-⨯=-;当OC 为对角线时,依题意,这种情况不存在,综上所述,满足条件的点C 的坐标为()4,4-或()4,4-,16k =-;(3)解:如图,设点(),0D x ,则(),0E x -,0x <,四、填空题19.如图,ABC CDE △≌△,若35D ∠=︒,45ACB ∠=︒,则DCE ∠的度数为.【答案】100︒/100度【分析】本题考查了三角形的内角和定理和全等三角形的性质,先利用全等三角形的性质,求出45CED ACB ∠=∠=︒,再利用三角形内角和求出DCE ∠的度数即可.【详解】解:由ABC CDE △≌△,35D ∠=︒,∴45CED ACB ∠=∠=︒,∵35D ∠=︒,∴1801803545100DCE D CED ∠=︒-∠-∠=︒-︒-︒=︒,故答案为:100︒20.若m ,n 是一元二次方程2520x x -+=的两个实数根,则()22m n +-的值为.21.在综合实践活动中,数学兴趣小组对1n 这n 个自然数中,任取两数之和大于n 的取法种数k 进行了探究.发现:当2n =时,只有{}1,2一种取法,即1k =;当3n =时,有{}1,3和{}2,3两种取法,即2k =;当4n =时,可得4k =;…….若6n =,则k 的值为;若24n =,则k 的值为.【答案】9144【分析】本题考查数字类规律探究,理解题意,能够从特殊到一般,得到当n 为偶数或奇数时的不同取法是解答的关键.先根据前几个n 值所对应k 值,找到变化规律求解即可.22.如图,在Rt ABC △中,90C ∠=︒,AD 是ABC 的一条角平分线,E 为AD 中点,连接BE .若BE BC =,2CD =,则BD =.∵90ACB ∠=︒,E 为AD 中点,∴CE AE DE ==,又2CD =∴112CF DF CD ===,EAC ∠23.在平面直角坐标系xOy 中,()11,A x y ,()22,B x y ,()33,C x y 是二次函数241y x x =-+-图象上三点.若101x <<,24x >,则1y 2y (填“>”或“<”);若对于11m x m <<+,212m x m +<<+,323m x m +<<+,存在132y y y <<,则m 的取值范围是.五、解答题24.推进中国式现代化,必须坚持不懈夯实农业基础,推进乡村全面振兴.某合作社着力发展乡村水果网络销售,在水果收获的季节,该合作社用17500元从农户处购进A ,B 两种水果共1500kg 进行销售,其中A 种水果收购单价10元/kg ,B 种水果收购单价15元/kg .(1)求A ,B 两种水果各购进多少千克;(2)已知A 种水果运输和仓储过程中质量损失4%,若合作社计划A 种水果至少要获得20%的利润,不计其他费用,求A 种水果的最低销售单价.【答案】(1)A 种水果购进1000千克,B 种水果购进500千克(2)A 种水果的最低销售单价为12.5元/kg【分析】本题主要考查一元二次方程的应用和一元一次不等式的应用,(1)设A 种水果购进x 千克,B 种水果购进y 千克,根据题意列出二元一次方程组求解即可.(2)根据题意列出关于利润和进价与售价的不等式求解即可.【详解】(1)解:设A 种水果购进x 千克,B 种水果购进y 千克,根据题意有:1500101517500x y x y +=⎧⎨+=⎩,解得:1000500x y =⎧⎨=⎩,∴A 种水果购进1000千克,B 种水果购进500千克(2)设A 种水果的销售单价为a 元/kg ,根据题意有:()()100014%120%100010a -≥+⨯⨯,解得12.5a ≥,故A 种水果的最低销售单价为12.5元/kg25.如图,在平面直角坐标系xOy 中,抛物线L :()2230y ax ax a a =-->与x 轴交于A ,B两点(点A 在点B 的左侧),其顶点为C ,D 是抛物线第四象限上一点.(1)求线段AB 的长;(2)当1a =时,若ACD 的面积与ABD △的面积相等,求tan ABD ∠的值;(3)延长CD 交x 轴于点E ,当AD DE =时,将ADB 沿DE 方向平移得到A EB '' .将抛物线L 平移得到抛物线L ',使得点A ',B '都落在抛物线L '上.试判断抛物线L '与L 是否交于某个定点.若是,求出该定点坐标;若不是,请说明理由.∴(12ACD D S CE x x =⋅- ∵ACD 的面积与ABD △∴222461n n n -++=-720⎛⎫则21,23AM n DM an an a =+=-++,∵AD DE =,∴1EM n =+,∵将ADB 沿DE 方向平移得到A EB '' ,()()1,0,3,0,A B -∴()()22,23,4,23,A n an an aB n an an a -+++-++''由题意知抛物线L 平移得到抛物线L ',设抛物线L '解析式为()20y ax bx c a =++>,∵点A ',B '都落在抛物线L '上∴()()2222232344an an a an bn c an an a a n b n c ⎧-++=++⎪⎨-++=++++⎪⎩,解得2463b an a c an a =--⎧⎨=+⎩,则抛物线L '解析式为()22463y ax an a x an a=+--++∵()22232463ax ax a ax an a x an a--=+--++整理得()133n x n +=+,解得3x =,∴抛物线L '与L 交于定点()3,0.【点睛】本题主要考查二次函数的性质、两点之间的距离、一次函数的性质、求正切值、二次函数的平移、等腰三角形的性质和抛物线过定点,解题的关键是熟悉二次函数的性质和平移过程中数形结合思想的应用.26.数学活动课上,同学们将两个全等的三角形纸片完全重合放置,固定一个顶点,然后将其中一个纸片绕这个顶点旋转,来探究图形旋转的性质.已知三角形纸片ABC 和ADE 中,3AB AD ==,4BC DE ==,90ABC ADE ∠=∠=︒.【初步感知】(1)如图1,连接BD ,CE ,在纸片ADE 绕点A 旋转过程中,试探究BD CE的值.【深入探究】(2)如图2,在纸片ADE 绕点A 旋转过程中,当点D 恰好落在ABC 的中线BM 的延长线上时,延长ED 交AC 于点F ,求CF 的长.【拓展延伸】(3)在纸片ADE绕点A旋转过程中,试探究C,D,E三点能否构成直角三角形.若能,直接写出所有直角三角形CDE的面积;若不能,请说明理由.(2)连接CE,延长BM交∠=∠,∴ABD ACE∵中线BM(3)如图,当AD与故1·2CDES CD DE==如图,当AD 在CA 的延长线上时,此时故(11·22CDE S CD DE ==⨯ 如图,当DE EC ⊥时,此时过点A 作AQ EC ⊥于点Q ∵5AE AC ==,1EQ QC EC ==,如图,当DC EC ⊥时,此时过点A 作AQ EC ⊥于点∴12EQ QC EC x ===,1EN EQ ==【点睛】本题考查了旋转的性质,用,三角形全等的判定和性质,三角函数的应用,勾股定理,熟练掌握三角函数的应用,三角形相似的判定和性质,矩形的判定和性质,中位线定理是解题的关键.。
2024年四川省成都市中考数学真题卷(含答案与解析)_1953
2024年四川省成都市初中学业水平考试数 学本试卷满分150分,考试时间120分钟注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.第I 卷(选择题,共32分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1. ﹣5的绝对值是( ) A. 5B. ﹣5C. 15-D.152. 如图所示的几何体是由5个大小相同的小立方块搭成,它的主视图是( )A. B. C. D.3. 下列计算正确的是( ) A. ()2233x x = B. 336x y xy += C. ()222x y x y +=+D. ()()2224x x x +-=-4. 在平面直角坐标系xOy 中,点()1,4P -关于原点对称的点的坐标是( ) A. ()1,4--B. ()1,4-C. ()1,4D. ()1,4-5. 为深入贯彻落实《中共中央、国务院关于学习运用“千村示范、万村整治”工程经验有力有效推进乡村全面振兴的意见》精神,某镇组织开展“村BA ”、村超、村晚等群众文化赛事活动,其中参赛的六个村得分分别为:55,64,51,50,61,55,则这组数据的中位数是( )A. 53B. 55C. 58D. 646. 如图,在矩形ABCD 中,对角线AC 与BD 相交于点O ,则下列结论一定正确的是( )A. AB AD =B. AC BD ⊥C. AC BD =D. ACB ACD ∠=∠7. 中国古代数学著作《九章算术》中记载了这样一个题目:今有共买琎,人出半,盈四;人出少半,不足三.问人数,琎价各几何?其大意是:今有人合伙买琎石,每人出12钱,会多出4钱;每人出13钱,又差了3钱.问人数,琎价各是多少?设人数为x ,琎价为y ,则可列方程组为( )A. 142133y x y x ⎧=+⎪⎪⎨⎪=+⎪⎩B. 142133y x y x ⎧=-⎪⎪⎨⎪=+⎪⎩C. 142133y x y x ⎧=-⎪⎪⎨⎪=-⎪⎩D. 142133y x y x ⎧=+⎪⎪⎨⎪=-⎪⎩8. 如图,在ABCD Y 中,按以下步骤作图:①以点B 为圆心,以适当长为半径作弧,分别交BA ,BC 于点M ,N ;②分别以M ,N 为圆心,以大于12MN 的长为半径作弧,两弧在ABC ∠内交于点O ;③作射线BO ,交AD 于点E ,交CD 延长线于点F .若3CD =,2DE =,下列结论错误的是( )A. ABE CBE ∠=∠B. 5BC = CDE DF=D.53BE EF = 第II 卷(非选择题,共68分)二、填空题(本大题共5个小题,每小题4分,共20分)9. 若m ,n 为实数,且()240m ++=,则()2m n +的值为______. 10. 分式方程132x x=-解是____. 11. 如图,在扇形AOB 中,6OA =,120AOB ∠=︒,则 AB 的长为______..的12. 盒中有x 枚黑棋和y 枚白棋,这些棋除颜色外无其他差别.从盒中随机取出一枚棋子,如果它是黑棋的概率是38,则xy的值为______. 13. 如图,在平面直角坐标系xOy 中,已知()3,0A ,()0,2B ,过点B 作y 轴垂线l ,P 为直线l 上一动点,连接PO ,PA ,则PO PA +的最小值为______.三、解答题(本大题共5个小题,共48分)14. (1()02sin60π20242+︒---.(2)解不等式组:2311123x x x +≥-⎧⎪⎨--<⎪⎩①②15. 2024年成都世界园艺博览会以“公园城市美好人居”为主题,秉持“绿色低碳、节约持续、共享包容”的理念,以园艺为媒介,向世界人民传递绿色发展理念和诗意栖居的美好生活场景.在主会场有多条游园线路,某单位准备组织全体员工前往参观,每位员工从其中四条线路(国风古韵观赏线、世界公园打卡线、亲子互动慢游线、园艺小清新线)中选择一条.现随机选取部分员工进行了“线路选择意愿”的摸底调查,并根据调查结果绘制成如下统计图表. 游园线路人数 国风古韵观赏线 44世界公园打卡线 x 亲子互动慢游线48的园艺小清新线y根据图表信息,解答下列问题:(1)本次调查的员工共有______人,表中x 的值为______: (2)在扇形统计图中,求“国风古韵观赏线”对应的圆心角度数;(3)若该单位共有2200人,请你根据调查结果,估计选择“园艺小清新线”的员工人数.16. 中国古代运用“土圭之法”判别四季.夏至时日影最短,冬至时日影最长,春分和秋分时日影长度等于夏至和冬至日影长度的平均数.某地学生运用此法进行实践探索,如图,在示意图中,产生日影的杆子AB 垂直于地面,AB 长8尺.在夏至时,杆子AB 在太阳光线AC 照射下产生的日影为BC ;在冬至时,杆子AB 在太阳光线AD 照射下产生的日影为BD .已知73.4ACB ∠=︒,26.6ADB ∠=︒,求春分和秋分时日影长度.(结果精确到0.1尺;参考数据:sin26.60.45︒≈,cos26.60.89︒≈,tan26.60.50︒≈,sin73.40.96︒≈,cos73.40.29︒≈,tan73.4 3.35︒≈)17. 如图,在Rt ABC △中,90C ∠=︒,D 为斜边AB 上一点,以BD 为直径作O ,交AC 于E ,F 两点,连接BE ,BF ,DF .(1)求证:BC DF BF CE ⋅=⋅;(2)若A CBF ∠=∠,tan BFC ∠=,AF =CF 的长和O 的直径.18. 如图,在平面直角坐标系xOy 中,直线y x m =-+与直线2y x =相交于点()2,A a ,与x 轴交于点(),0B b ,点C 在反比例函数()0ky k x=<图象上.(1)求a ,b ,m 值;(2)若O ,A ,B ,C 为顶点的四边形为平行四边形,求点C 的坐标和k 的值;(3)过A ,C 两点的直线与x 轴负半轴交于点D ,点E 与点D 关于y 轴对称.若有且只有一点C ,使得ABD △与ABE 相似,求k 的值.B 卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分)19. 如图,ABC CDE △≌△,若35D ∠=︒,45ACB ∠=︒,则DCE ∠的度数为______.20. 若m ,n 是一元二次方程2520x x -+=的两个实数根,则()22m n +-的值为______.21. 在综合实践活动中,数学兴趣小组对1n 这n 个自然数中,任取两数之和大于n 的取法种数k 进行了探究.发现:当2n =时,只有{}1,2一种取法,即1k =;当3n =时,有{}1,3和{}2,3两种取法,即2k =;当4n =时,可得4k =;…….若6n =,则k 的值为______;若24n =,则k 的值为______.22. 如图,在Rt ABC △中,90C ∠=︒,AD 是ABC 的一条角平分线,E 为AD 中点,连接BE .若BE BC =,2CD =,则BD =______.的23. 在平面直角坐标系xOy 中,()11,A x y ,()22,B x y ,()33,C x y 是二次函数241y x x =-+-图象上三点.若101x <<,24x >,则1y ______2y (填“>”或“<”);若对于11m x m <<+,212m x m +<<+,323m x m +<<+,存在132y y y <<,则m 的取值范围是______. 二、解答题(本大题共3个小题,共30分)24. 推进中国式现代化,必须坚持不懈夯实农业基础,推进乡村全面振兴.某合作社着力发展乡村水果网络销售,在水果收获季节,该合作社用17500元从农户处购进A ,B 两种水果共1500kg 进行销售,其中A 种水果收购单价10元/kg ,B 种水果收购单价15元/kg . (1)求A ,B 两种水果各购进多少千克;(2)已知A 种水果运输和仓储过程中质量损失4%,若合作社计划A 种水果至少要获得20%的利润,不计其他费用,求A 种水果的最低销售单价.25. 如图,在平面直角坐标系xOy 中,抛物线L :()2230y ax ax a a =-->与x 轴交于A ,B 两点(点A在点B 的左侧),其顶点为C ,D 是抛物线第四象限上一点.(1)求线段AB 的长;(2)当1a =时,若ACD 的面积与ABD △的面积相等,求tan ABD ∠的值;(3)延长CD 交x 轴于点E ,当AD DE =时,将ADB 沿DE 方向平移得到A EB '' .将抛物线L 平移得到抛物线L ',使得点A ',B '都落在抛物线L '上.试判断抛物线L '与L 是否交于某个定点.若是,求出该定点坐标;若不是,请说明理由.26. 数学活动课上,同学们将两个全等的三角形纸片完全重合放置,固定一个顶点,然后将其中一个纸片绕这个顶点旋转,来探究图形旋转的性质.已知三角形纸片ABC 和ADE 中,3AB AD ==,4BC DE ==,90ABC ADE ∠=∠=︒.【初步感知】(1)如图1,连接BD ,CE ,在纸片ADE 绕点A 旋转过程中,试探究BDCE的值.的【深入探究】(2)如图2,在纸片ADE绕点A旋转过程中,当点D恰好落在ABC的中线BM的延长线上时,延长ED交AC于点F,求CF的长.【拓展延伸】(3)在纸片ADE绕点A旋转过程中,试探究C,D,E三点能否构成直角三角形.若能,直接写出所有直角三角形CDE的面积;若不能,请说明理由.参考答案一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1. ﹣5的绝对值是()A. 5B. ﹣5C.15D.15【答案】A【解析】【分析】根据负数的绝对值等于它的相反数可得答案.【详解】解:|﹣5|=5.故选A.2. 如图所示的几何体是由5个大小相同的小立方块搭成,它的主视图是()A. B. C. D. 【答案】A【解析】【分析】本题考查简单几何体的三视图,根据主视图是从正面看到的图形求解即可. 【详解】解:该几何体的主视图为,故选:A .3. 下列计算正确的是( ) A. ()2233x x = B. 336x y xy += C. ()222x y x y +=+ D. ()()2224x x x +-=-【答案】D 【解析】【分析】本题主要考查了积的乘方运算,同类项的合并,完全平方公式以及平方差公式,根据积的乘方运算法则,同类项的合并法则以及完全平方公式以及平方差公式一一计算判断即可. 【详解】解:A .()2239x x =,原计算错误,故该选项不符合题意; B .3x 和3y 不是同类项,不能合并,故该选项不符合题意; C .()2222x y x y xy +=++,原计算错误,故该选项不符合题意; D .()()2224x x x +-=-,原计算正确,故该选项符合题意;故选:D .4. 在平面直角坐标系xOy 中,点()1,4P -关于原点对称的点的坐标是( ) A. ()1,4-- B. ()1,4-C. ()1,4D. ()1,4-【答案】B 【解析】【分析】本题考查了求关于原点对称的点的坐标.关于原点对称的两点,则其横、纵坐标互为相反数,由点关于原点对称的坐标特征即可求得对称点的坐标.【详解】解:点()1,4P -关于原点对称的点的坐标为()1,4-; 故选:B .5. 为深入贯彻落实《中共中央、国务院关于学习运用“千村示范、万村整治”工程经验有力有效推进乡村全面振兴的意见》精神,某镇组织开展“村BA ”、村超、村晚等群众文化赛事活动,其中参赛的六个村得分分别为:55,64,51,50,61,55,则这组数据的中位数是( )A. 53B. 55C. 58D. 64【答案】B 【解析】【分析】本题主要考查了中位数的定义,根据中位数的定义求解即可. 【详解】解:参赛的六个村得分分别为:55,64,51,50,61,55, 把这6个数从小到大排序:50,51,55,55,61,64, ∴这组数据的中位数是:5555552+=, 故选:B .6. 如图,在矩形ABCD 中,对角线AC 与BD 相交于点O ,则下列结论一定正确的是( )A AB AD =B. AC BD ⊥C. AC BD =D. ACB ACD ∠=∠【答案】C 【解析】【分析】本题考查矩形的性质,根据矩形的性质逐项判断即可. 【详解】解:∵四边形ABCD 是矩形,∴AB CD =,AC BD =,AD BC ∥,则ACB DAC ∠=∠, ∴选项A 中AB AD =不一定正确,故不符合题意; 选项B 中AC BD ⊥不一定正确,故不符合题意; 选项C 中AC BD =一定正确,故符合题意;选项D 中ACB ACD ∠=∠不一定正确,故不符合题意, 故选:C .7. 中国古代数学著作《九章算术》中记载了这样一个题目:今有共买琎,人出半,盈四;人出少半,不足三.问人数,琎价各几何?其大意是:今有人合伙买琎石,每人出12钱,会多出4钱;每人出13钱,又差了3钱.问人数,琎价各是多少?设人数为x ,琎价为y ,则可列方程组为( ).A. 142133y x y x ⎧=+⎪⎪⎨⎪=+⎪⎩B. 142133y x y x ⎧=-⎪⎪⎨⎪=+⎪⎩C. 142133y x y x ⎧=-⎪⎪⎨⎪=-⎪⎩D. 142133y x y x ⎧=+⎪⎪⎨⎪=-⎪⎩【答案】B 【解析】【分析】本题主要考查了列二元一次方程组,根据题意列出二元一次方程组即可. 【详解】解:设人数为x ,琎价为y , 根据每人出12钱,会多出4钱可得出1y x 42=-, 每人出13钱,又差了3钱.可得出133y x =+,则方程组为:142133y x y x ⎧=-⎪⎪⎨⎪=+⎪⎩,故选:B .8. 如图,在ABCD Y 中,按以下步骤作图:①以点B 为圆心,以适当长为半径作弧,分别交BA ,BC 于点M ,N ;②分别以M ,N 为圆心,以大于12MN 的长为半径作弧,两弧在ABC ∠内交于点O ;③作射线BO ,交AD 于点E ,交CD 延长线于点F .若3CD =,2DE =,下列结论错误的是( )A. ABE CBE ∠=∠B. 5BC =C.DE DF =D.53BE EF = 【答案】D 【解析】【分析】本题考查角平分线的尺规作图、平行四边形的性质、等腰三角形的判定以及相似性质与判定的综合.先由作图得到BF 为ABC ∠的角平分,利用平行线证明AEB ABE ∠=∠,从而得到3AE AB CD ===,再利用平行四边形的性质得到325BC AD AE ED ==+=+=,再证明AEB DEF △∽△,分别求出32BE EF =,2DF =,则各选项可以判定. 【详解】解:由作图可知,BF 为ABC ∠的角平分,∴ABE CBE ∠=∠,故A 正确;∵四边形ABCD 为平行四边形,∴,,AD BC AB CD AD BC == ,∵AD BC ∥∴AEB CBE ∠=∠,∴AEB ABE ∠=∠,∴3AE AB CD ===,∴325BC AD AE ED ==+=+=,故B 正确;∵AB CD =,∴ABE F ∠=∠,∵AEB DEF ∠=∠,∴AEB DEF △∽△, ∴BE AB AE EF DF ED==, ∴332BE EF DF ==, ∴32BE EF =,2DF =,故D 错误; ∵2DE =,∴DE DF =,故C 正确,故选:D .第II 卷(非选择题,共68分)二、填空题(本大题共5个小题,每小题4分,共20分)9. 若m ,n 为实数,且()240m ++=,则()2m n +的值为______.【答案】1【解析】【分析】本题考查非负数的性质,根据平方式和算术平方数的非负数求得m 、n 值,进而代值求解即可.【详解】解:∵()240m +=,∴40m +=,50n -=,解得4m =-,5n =,∴()()22451m n +=-+=,故答案为:1.10. 分式方程132x x=-的解是____. 【答案】x=3【解析】【详解】试题分析:分式方程去分母转化为整式方程x=3(x ﹣2),求出整式方程的解得到x=3,经检验x=3是分式方程的解,即可得到分式方程的解.考点:解分式方程11. 如图,在扇形AOB 中,6OA =,120AOB ∠=︒,则 AB 的长为______.【答案】4π【解析】【分析】此题考查了弧长公式,把已知数据代入弧长公式计算即可.【详解】解:由题意得 AB 的长为π120π64π180180n r ⨯==, 故答案为:4π12. 盒中有x 枚黑棋和y 枚白棋,这些棋除颜色外无其他差别.从盒中随机取出一枚棋子,如果它是黑棋的概率是38,则x y的值为______. 【答案】35【解析】 【分析】本题考查简单的概率计算、比例性质,根据随机取出一枚棋子,它是黑棋的概率是38,可得38x x y =+,进而利用比例性质求解即可. 【详解】解:∵随机取出一枚棋子,它是黑棋的概率是38, ∴38x x y =+,则35x y =, 故答案为:35. 13. 如图,在平面直角坐标系xOy 中,已知()3,0A ,()0,2B ,过点B 作y 轴的垂线l ,P 为直线l 上一动点,连接PO ,PA ,则PO PA +的最小值为______.【答案】5【解析】【分析】本题考查轴对称—最短问题以及勾股定理和轴对称图形的性质.先取点A 关于直线l 的对称点A ',连A O '交直线l 于点C ,连AC ,得到AC A C '=,A A l '⊥,再由轴对称图形的性质和两点之间线段最短,得到当,,O P A '三点共线时,PO PA +的最小值为A O ',再利用勾股定理求A O '即可.【详解】解:取点A 关于直线l 的对称点A ',连A O '交直线l 于点C ,连AC ,则可知AC A C '=,A A l '⊥,∴PO PA PO PA A O ''+=+≥,即当,,O P A '三点共线时,PO PA +的最小值为A O ',∵直线l 垂直于y 轴,∴A A x '⊥轴,∵()3,0A ,()0,2B ,∴3,4AO AA '==,∴在Rt A AO ' 中,5A O '===,故答案为:5三、解答题(本大题共5个小题,共48分)14. (1()02sin60π20242+︒---.(2)解不等式组:2311123x x x +≥-⎧⎪⎨--<⎪⎩①② 【答案】(1)5;(2)29x -≤<【解析】【分析】本题考查实数的混合运算、解一元一次不等式组,熟练掌握相关运算法则并正确求解是解答的关键.(1)先计算算术平方根、特殊角的三角函数值、零指数幂、化简绝对值,然后加减运算即可;(2)先求得每个不等式的解集,再求得它们的公共部分即为不等式组的解集.【详解】解:(1()02sin6020242π+︒---4212=+-+-5=+-5=;(2)解不等式①,得2x ≥-,解不等式②,得9x <,∴该不等式组的解集为29x -≤<.15. 2024年成都世界园艺博览会以“公园城市美好人居”为主题,秉持“绿色低碳、节约持续、共享包容”的理念,以园艺为媒介,向世界人民传递绿色发展理念和诗意栖居的美好生活场景.在主会场有多条游园线路,某单位准备组织全体员工前往参观,每位员工从其中四条线路(国风古韵观赏线、世界公园打卡线、亲子互动慢游线、园艺小清新线)中选择一条.现随机选取部分员工进行了“线路选择意愿”的摸底调查,并根据调查结果绘制成如下统计图表. 游园线路人数 国风古韵观赏线44 世界公园打卡线x 亲子互动慢游线48 园艺小清新线 y根据图表信息,解答下列问题:(1)本次调查的员工共有______人,表中x 的值为______:(2)在扇形统计图中,求“国风古韵观赏线”对应的圆心角度数;(3)若该单位共有2200人,请你根据调查结果,估计选择“园艺小清新线”的员工人数.【答案】(1)160,40(2)99︒(3)385【解析】【分析】本题考查统计表和扇形统计图的关联、用样本估计总体,理解题意,能从统计图中获取有用信息 是解答的关键.(1)根据选择“亲子互动慢游线”人数及其所占的百分比可求得调查总人数,再根据选择“世界公园打卡线”对应的圆心角是90︒可求解x 值;(2)由360︒乘以选择“国风古韵观赏线”所占的百分比可得答案;(3)先求得选择“园艺小清新线”的人数,再由单位总人数乘以样本中选择“园艺小清新线”所占的比例求解即可.【小问1详解】解:调查总人数为4830160÷%=(人), 的选择“世界公园打卡线”的人数为9016040360⨯=(人), 故答案为:160,40;【小问2详解】 解:“国风古韵观赏线”对应的圆心角度数为4436099160︒⨯=︒; 【小问3详解】 解:选择“园艺小清新线”的人数为16044404828---=(人),∴该单位选择“园艺小清新线”的员工人数为282200385160⨯=(人). 16. 中国古代运用“土圭之法”判别四季.夏至时日影最短,冬至时日影最长,春分和秋分时日影长度等于夏至和冬至日影长度的平均数.某地学生运用此法进行实践探索,如图,在示意图中,产生日影的杆子AB 垂直于地面,AB 长8尺.在夏至时,杆子AB 在太阳光线AC 照射下产生的日影为BC ;在冬至时,杆子AB 在太阳光线AD 照射下产生的日影为BD .已知73.4ACB ∠=︒,26.6ADB ∠=︒,求春分和秋分时日影长度.(结果精确到0.1尺;参考数据:sin26.60.45︒≈,cos26.60.89︒≈,tan26.60.50︒≈,sin73.40.96︒≈,cos73.40.29︒≈,tan73.4 3.35︒≈)【答案】9.2尺【解析】【分析】本题主要考查解直角三角形和求平均数,利用正切分别求得BC 和BD ,结合题意利用平均数即可求得春分和秋分时日影长度.【详解】解:∵73.4ACB ∠=︒,杆子AB 垂直于地面,AB 长8尺. ∴tan ∠=AB ACB BC ,即8 2.393.35BC ≈≈, ∵26.6ADB ∠=︒, ∴tan AB ADB BD ∠=,即8160.50BD ≈=, ∵春分和秋分时日影长度等于夏至和冬至日影长度的平均数.∴春分和秋分时日影长度为2.39169.22+≈. 答:春分和秋分时日影长度9.2尺.17. 如图,在Rt ABC △中,90C ∠=︒,D 为斜边AB 上一点,以BD 为直径作O ,交AC 于E ,F 两点,连接BE ,BF ,DF .(1)求证:BC DF BF CE ⋅=⋅;(2)若A CBF ∠=∠,tan BFC ∠=,AF =CF 的长和O 的直径. 【答案】(1)见详解;(2.【解析】【分析】(1)先证明EBC DBF ∽,然后利用对应边成比例,即可证明;(2)利用EBC DBF ∽,知道EBC DBF ∠=∠,从而推出CBF EBA ∠=∠,结合A CBF ∠=∠,知道A EBA ∠=∠,推出AE BE =,接下来证明BFC ABC ∠=∠,那么有tan tan BFC ∠=∠即CB AC CF BC==CF x =,代入求得CF 的长度,不妨设EF y =,在Rt CEB △和Rt CFB △中利用勾股定理求得EF 和BF 的长度,最后利用tan tan CEB FDB ∠=∠,求得DF 的长度,然后在利用勾股定理求得BD 的长度.【小问1详解】BD Q 是O 的直径90BFD C ∴∠=︒=∠又CEB FDB ∠∠=EBC DBF ∴ ∽EC CB DF FB∴= BC DF BF CE ⋅=⋅∴【小问2详解】由(1)可知,EBC DBF ∽EBC DBF ∴∠=∠EBC FBE DBF FBE ∴∠-∠=∠-∠CBF EBA ∴∠=∠A CBF ∠=∠A EBA ∴∠=∠AE BE ∴=A CBF ∠=∠9090A CBF ∴︒-∠=︒-∠ABC CFB ∴∠=∠tan BFC ∠=tan tan BFC ∠∴=∠CB AC CF BC∴==不妨设CF x =,那么CB =AF ==x ∴=CF ∴=5CB ===不妨设EF y =,那么AE AF EF y BE =-==在Rt CEB △中,CE EF CF y =+=,5CB =,BE y =222(5)y y ∴++=-y ∴=EF ∴=在Rt CFB △中,CF =,5BC =BF ∴===CEB FDB ∠∠=tan tan CEB FDB ∴∠=∠CB BF CE DF ∴==DF ∴=BD ∴===∴O 的直径是故答案为:CF =,O 直径是.【点睛】本题考查了同弧所对的圆周角相等,直径所对的圆周角是直角,三角形相似的判定与性质,勾股定理,解直角三角形,等腰三角形的性质,二次根式的化简,熟练掌握以上知识点是解题的关键. 18. 如图,在平面直角坐标系xOy 中,直线y x m =-+与直线2y x =相交于点()2,A a ,与x 轴交于点(),0B b ,点C 在反比例函数()0k y k x=<图象上.(1)求a ,b ,m 的值;(2)若O ,A ,B ,C 为顶点的四边形为平行四边形,求点C 的坐标和k 的值;(3)过A ,C 两点的直线与x 轴负半轴交于点D ,点E 与点D 关于y 轴对称.若有且只有一点C ,使得ABD △与ABE 相似,求k 的值.【答案】(1)4a =,6m =,6b =(2)点C 的坐标为()4,4-或()4,4-,16k =-(3)1-【解析】【分析】(1)利用待定系数法求解即可;(2)设(),C t s ,根据平行四边形的性质,分当OA 为对角线时,当OB 为对角线时,当OC 为对角线时三种情况,分别利用中点坐标公式列方程组求解即可;(3)设点(),0D x ,则(),0E x -,0x <,利用相似三角形的性质得2AB BE BD =⋅,进而解方程得2x =-,则()2,0D -,利用待定系数法求得直线AC 的表达式为2y x =+,联立方程组得220x x k +-=,根据题意,方程220x x k +-=有且只有一个实数根,利用根的判别式求解即可.【小问1详解】解:由题意,将()2,A a 代入2y x =中,得224a =⨯=,则()2,4A ,将()2,4A 代入y x m =-+中,得42m =-+,则6m =,∴6y x =-+,将(),0B b 代入6y x =-+中,得06b =-+,则6b =;【小问2详解】解:设(),C t s ,由(1)知()2,4A ,()6,0B若O ,A ,B ,C 为顶点的四边形为平行四边形,分以下情况:当OA 为对角线时,则026040t s +=+⎧⎨+=+⎩,解得44t s =-⎧⎨=⎩, ∴()4,4C -,则4416k =-⨯=-;当OB 为对角线时,则062004t s +=+⎧⎨+=+⎩,解得44t s =⎧⎨=-⎩, ∴()4,4C -,则4416k =-⨯=-;当OC 为对角线时,依题意,这种情况不存在,综上所述,满足条件的点C 的坐标为()4,4-或()4,4-,16k =-;【小问3详解】解:如图,设点(),0D x ,则(),0E x -,0x <,若ABD EBA △∽△,则AB BD BE AB =,即2AB BE BD =⋅, ∴()()()()22264066x x -+-=+-,即24x =,解得2x =±,∵0x <,∴2x =-,则()2,0D -,设直线AC 的表达式为y px q =+,则2420p q p q +=⎧⎨-+=⎩,解得12p q =⎧⎨=⎩, ∴直线AC 的表达式为2y x =+, 联立方程组2y x k y x =+⎧⎪⎨=⎪⎩,得220x x k +-=, ∵有且只有一点C ,∴方程220x x k +-=有且只有一个实数根,∴2402k +==∆,解得1k =-;由题意,ABD ABE ∽V V 不存在,故满足条件的k 值为1-.【点睛】本题考查一次函数与反比例函数的综合、反比例函数与几何的综合,涉及待定系数法、相似三角形的性质、平行四边形的性质、坐标与图形、一元二次方程根的判别式等知识,熟练掌握相关知识的联系与运用,利用分类讨论思想求解是解答的关键.B 卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分)19. 如图,ABC CDE △≌△,若35D ∠=︒,45ACB ∠=︒,则DCE ∠的度数为______.【答案】100︒##100度【解析】【分析】本题考查了三角形的内角和定理和全等三角形的性质,先利用全等三角形的性质,求出45CED ACB ∠=∠=︒,再利用三角形内角和求出DCE ∠的度数即可.【详解】解:由ABC CDE △≌△,35D ∠=︒,∴45CED ACB ∠=∠=︒,∵35D ∠=︒,∴1801803545100DCE D CED ∠=︒-∠-∠=︒-︒-︒=︒,故答案为:100︒20. 若m ,n 是一元二次方程2520x x -+=的两个实数根,则()22m n +-的值为______.【答案】7【解析】【分析】本题考查了根与系数的关系和完全平方公式和已知式子的值,求代数式的值.先利用已知条件求出2520n n -+=,5b m n a+=-=,从而得到252n n =-,再将原式利用完全平方公式展开,利用252n n =-替换2n 项,整理后得到m n 2++,再将5m n +=代入即可.【详解】解:∵m ,n 是一元二次方程2520x x -+=的两个实数根,∴2520n n -+=,5b m n a+=-=, 则252n n =-∴()22m n +- 244m n n =+-+5244m n n =+--+2m n =++52=+7=故答案为:721. 在综合实践活动中,数学兴趣小组对1n 这n 个自然数中,任取两数之和大于n 的取法种数k 进行了探究.发现:当2n =时,只有{}1,2一种取法,即1k =;当3n =时,有{}1,3和{}2,3两种取法,即2k =;当4n =时,可得4k =;…….若6n =,则k 的值为______;若24n =,则k 的值为______.【答案】①. 9 ②. 144【解析】【分析】本题考查数字类规律探究,理解题意,能够从特殊到一般,得到当n 为偶数或奇数时的不同取法是解答的关键.先根据前几个n 值所对应k 值,找到变化规律求解即可.【详解】解:当2n =时,只有{}1,2一种取法,则1k =;当3n =时,有{}1,3和{}2,3两种取法,则2k =;当4n =时,有{}1,4,{}2,4,{}3,4,{}2,3四种取法,则243144k =+==; 故当5n =时,有{}1,5,{}2,5,{}3,5,{}4,5,{}2,4,{}3,4六种取法,则426k =+=;当6n =时,有{}1,6,{}2,6,{}3,6,{}4,6,{}5,6,{}2,5,{}3,5,{}4,5,{}3,4九种取法,则2653194k =++==; 依次类推,当n 为偶数时,()()2135314n k n n =-+-++++= , 故当24n =时,2242321195311444k =++++++== , 故答案为:9,144.22. 如图,在Rt ABC △中,90C ∠=︒,AD 是ABC 的一条角平分线,E 为AD 中点,连接BE .若BE BC =,2CD =,则BD =______.【解析】 【分析】连接CE ,过E 作EF CD ⊥于F ,设BD x =,EF m =,根据直角三角形斜边上的中线性质和等腰三角形的性质证得112CF DF CD ===,EAC ECA =∠∠,ECD EDC BEC ∠=∠=∠,进而利用三角形的外角性质和三角形的中位线性质得到2CED CAE ∠=∠,22AC EF m ==,证明CBE CED ∽,利用相似三角形的性质和勾股定理得到232m x =+;根据角平分线的定义和相似三角形的判定与性质证明CAB FBE ∽得到()()2212m x x =++,进而得到关于x 的一元二次方程,进而求解即可.【详解】解:连接CE ,过E 作EFCD ⊥于F ,设BD x =,EF m =,∵90ACB ∠=︒,E 为AD 中点,∴CE AE DE ==,又2CD =, ∴112CF DF CD ===,EAC ECA =∠∠,ECD EDC ∠=∠, ∴2CED CAE ∠=∠,22AC EF m ==,∵BE BC =,∴BEC ECB ∠=∠,则BEC EDC ∠=∠,又BCE ECD ∠=∠,∴CBE CED ∽, ∴CE CB CD CE=,2CBE CED CAE ∠=∠=∠, ∴()22242CE CD CB x x =⋅=+=+,则222232m EF CE CF x ==-=+;∵AD 是ABC 的一条角平分线,∴2CAB CAE CBE ∠=∠=∠,又90ACB BFE ∠=∠=︒,∴CAB FBE ∽, ∴AC BC BF EF= ∴221m x x m +=+,则()()2212m x x =++, ∴()()()23212x x x +=++,即240x x --=,解得x =(负值已舍去),. 【点睛】本题考查了相似三角形的判定与性质、直角三角形的性质、等腰三角形的性质、三角形的中位线性质、三角形的外角性质、角平分线的定义以及解一元二次方程等知识,是一道填空压轴题,有一定的难度,熟练掌握三角形相关知识是解答的关键.23. 在平面直角坐标系xOy 中,()11,A x y ,()22,B x y ,()33,C x y 是二次函数241y x x =-+-图象上三点.若101x <<,24x >,则1y ______2y (填“>”或“<”);若对于11m x m <<+,212m x m +<<+,323m x m +<<+,存在132y y y <<,则m 的取值范围是______.【答案】①. > ②. 112m -<< 【解析】【分析】本题考查二次函数的性质、不等式的性质以及解不等式组,熟练掌握二次函数的性质是解答的关键.先求得二次函数的对称轴,再根据二次函数的性质求解即可.【详解】解:由()224123y x x x =-+-=--+得抛物线对称轴为直线2x =,开口向下,∵101x <<,24x >, ∴1222x x -<-,∴12y y >;∵12m m m <+<+,11m x m <<+,212m x m +<<+,323m x m +<<+, 的∴123x x x <<,∵存在132y y y <<,∴12x <,32x >,且()11,A x y 离对称轴最远,()22,B x y 离对称轴最近, ∴132222x x x ->->-,即134x x +<,且234x x +>,∵132224m x x m +<+<+,232325m x x m +<+<+,∴224m +<且254m +>, 解得112m -<<, 故答案为:>;112m -<<. 二、解答题(本大题共3个小题,共30分)24. 推进中国式现代化,必须坚持不懈夯实农业基础,推进乡村全面振兴.某合作社着力发展乡村水果网络销售,在水果收获的季节,该合作社用17500元从农户处购进A ,B 两种水果共1500kg 进行销售,其中A 种水果收购单价10元/kg ,B 种水果收购单价15元/kg .(1)求A ,B 两种水果各购进多少千克;(2)已知A 种水果运输和仓储过程中质量损失4%,若合作社计划A 种水果至少要获得20%的利润,不计其他费用,求A 种水果的最低销售单价.【答案】(1)A 种水果购进1000千克,B 种水果购进500千克(2)A 种水果的最低销售单价为12.5元/kg【解析】【分析】本题主要考查一元二次方程的应用和一元一次不等式的应用,(1)设A 种水果购进x 千克, B 种水果购进y 千克,根据题意列出二元一次方程组求解即可. (2)根据题意列出关于利润和进价与售价的不等式求解即可.【小问1详解】解:设A 种水果购进x 千克, B 种水果购进y 千克, 根据题意有:1500101517500x y x y +=⎧⎨+=⎩,解得:1000500x y =⎧⎨=⎩, ∴A 种水果购进1000千克,B 种水果购进500千克【小问2详解】设A 种水果的销售单价为a 元/kg ,根据题意有:()()100014%120%100010a -≥+⨯⨯,解得12.5a ≥,故A 种水果的最低销售单价为12.5元/kg25. 如图,在平面直角坐标系xOy 中,抛物线L :()2230y ax ax a a =-->与x 轴交于A ,B 两点(点A 在点B 的左侧),其顶点为C ,D 是抛物线第四象限上一点.(1)求线段AB 的长;(2)当1a =时,若ACD 的面积与ABD △的面积相等,求tan ABD ∠的值;(3)延长CD 交x 轴于点E ,当AD DE =时,将ADB 沿DE 方向平移得到A EB '' .将抛物线L 平移得到抛物线L ',使得点A ',B '都落在抛物线L '上.试判断抛物线L '与L 否交于某个定点.若是,求出该定点坐标;若不是,请说明理由.【答案】(1)4AB =(2)10tan 3ABD ∠= (3)抛物线L '与L 交于定点()3,0【解析】【分析】(1)根据题意可得2230ax ax a --=,整理得2230x x --=,即可知()()1,0,3,0,A B -则有4AB =;(2)由题意得抛物线L :()222314y x x x =--=--,则()1,4,C -设()2,23,D n n n --是。
2024年四川省成都市中考数学试卷正式版含答案解析
绝密★启用前2024年四川省成都市中考数学试卷学校:___________姓名:___________班级:___________考号:___________注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,本试卷和答题卡一并交回。
1.−5的绝对值是( )A. 5B. −5C. 15D. −152.如图所示的几何体是由5个大小相同的小立方块搭成,它的主视图是( )A. B.C. D.3.下列计算正确的是( )A. (3x)2=3x2B. 3x+3y=6xyC. (x+y)2=x2+y2D. (x+2)(x−2)=x2−44.在平面直角坐标系xOy中,点P(1,−4)关于原点对称的点的坐标是( )A. (−1,−4)B. (−1,4)C. (1,4)D. (1,−4)5.为深人贯彻落实《中共中央、国务院关于学习运用“千村示范、万村整治”工程经验有力有效推进乡村全面振兴的意见》精神,某镇组织开展“村BA ”、村超、村晚等群众文化赛事活动,其中参赛的六个村得分分别为:55,64,51,50,61, 55,则这组数据的中位数是( ) A. 53B. 55C. 58D. 646.如图,在矩形ABCD 中,对角线AC 与BD 相交于点O ,则下列结论一定正确的是( )A. AB =ADB. AC ⊥BDC. AC =BDD. ∠ACB =∠ACD7.中国古代数学著作《九章算术》中记载了这样一个题目:今有共买进,人出半,盈四;人出少半,不足三.问人数,班价各几何?其大意是:今有人合伙买班石,每人出12钱,会多出4钱;每人出13钱,又差了3钱.问人数,班价各是多少?设人数为x ,班价为y ,则可列方程组为( ) A. {y =12x +4,y =13x +3B. {y =12x −4,y =13x +3C. {y =12x −4,y =13x −3D. {y =12x +4,y =13x −38.如图,在▱ABCD 中,按以下步骤作图: ①以点B 为圆心,以适当长为半径作弧,分别交BA ,BC 于点M ,N; ②分别以M ,N 为圆心,以大于12MN 的长为半径作弧,两弧在∠ABC 内交于点O; ③作射线BO ,交AD 于点E ,交CD 延长线于点F.若CD =3, DE =2,下列结论错误的是( )A. ∠ABE =∠CBEB. BC =5C. DE =DFD. BEEF =539.若m ,n 为实数,且(m +4)2+√ n −5=0,则(m +n)2的值为 .10.分式方程1x−2=3x 的解是 .11.如图,在扇形AOB 中,OA =6,∠AOB =120∘,则AB⏜的长为 .12.盒中有x 枚黑棋和y 枚白棋,这些棋除颜色外无其他差别.从盒中随机取出一枚棋子,如果它是黑棋的概率是38,则x y的值为 .13.如图,在平面直角坐标系xOy 中,已知A(3,0),B(0,2),过点B 作y 轴的垂线l ,P 为直线l 上一动点,连接PO ,PA ,则PO +PA 的最小值为 .14.(1)计算:√ 16+2sin60∘−(π−2024)0+|√ 3−2|. (2)解不等式组:{2x +3⩾−1,①x−12−1<x3.②15.2024年成都世界园艺博览会以“公园城市美好人居”为主题,秉持“绿色低碳、节约持续、共享包容”的理念,以园艺为媒介,向世界人民传递绿色发展理念和诗意栖居的美好生活场景.在主会场有多条游园线路,某单位准备组织全体员工前往参观,每位员工从其中四条线路(国风古韵观赏线、世界公园打卡线、亲子互动慢游线、园艺小清新线)中选择一条.现随机选取部分员工进行了“线路选择意愿”的摸底调查,并根据调查结果绘制成如下统计图表.根据图表信息,解答下列问题:(1)本次调查的员工共有 人,表中x 的值为 ; (2)在扇形统计图中,求“国风古韵观赏线”对应的圆心角度数;(3)若该单位共有2200人,请你根据调查结果,估计选择“园艺小清新线”的员工人数.16.中国古代运用“土圭之法”判别四季.夏至时日影最短,冬至时日影最长,春分和秋分时日影长度等于夏至和冬至日影长度的平均数.某地学生运用此法进行实践探索,如图,在示意图中,产生日影的杆子AB垂直于地面,AB长8尺.在夏至时,杆子AB在太阳光线AC照射下产生的日影为BC;在冬至时,杆子AB在太阳光线AD照射下产生的日影为BD.已知∠ACB=73.4∘,∠ADB=26.6∘,求春分和秋分时日影长度.(结果精确到0.1尺;参考数据:sin26.6∘≈0.45,cos26.6∘≈0.89,tan26.6∘≈0.50,sin73.4∘≈0.96,cos73.4∘≈0.29,tan73.4∘≈3.35).17.如图,在Rt△ABC中,∠C=90∘,D为斜边AB上一点,以BD为直径作⊙O,交AC于E,F两点,连接BE,BF,DF.(1)求证:BC⋅DF=BF⋅CE;(2)若∠A=∠CBF,tan∠BFC=√ 5,AF=4√ 5,求CF的长和⊙O的直径.18.如图,在平面直角坐标系xOy中,直线y=−x+m与直线y=2x相交于点A(2,a),与x轴交于点B(b,0),(k<0)图象上.点C在反比例函数y=kx(1)求a,b,m的值;(2)若O,A,B,C为顶点的四边形为平行四边形,求点C的坐标和k的值;(3)过A,C两点的直线与x轴负半轴交于点D,点E与点D关于y轴对称.若有且只有一点C,使得△ABD与△ABE 相似,求k的值.19.如图,△ABC≌△CDE,若∠D=35∘,∠ACB=45∘,则∠DCE的度数为.20.若m,n是一元二次方程x2−5x+2=0的两个实数根,则m+(n−2)2的值为.21.在综合实践活动中,数学兴趣小组对1∽n这n个自然数中,任取两数之和大于n的取法种数k进行了探究.发现:当n=2时,只有{1,2}一种取法,即k=1;当n=3时,有{1,3}和{2,3}两种取法,即k=2;当n=4时,可得k=4;⋯⋯若n=6,则k的为;若n=24,则k的值为.22.如图,在Rt△ABC中,∠C=90∘,AD是△ABC的一条角平分线,E为AD中点,连接BE.若BE=BC,CD=2,则BD=.23.在平面直角坐标系xOy中,A(x1,y1),B(x2,y2),C(x3,y3)是二次函数y=−x2+4x−1图象上三点.若0< x1<1,x2>4,则y1y2(填“>”或“<”);若对于m<x1<m+1,m+1<x2<m+2,m+2< x3<m+3,存在y1<y3<y2,则m的取值范围是.24.推进中国式现代化,必须坚持不懈夯实农业基础,推进乡村全面振兴.某合作社着力发展乡村水果网络销售,在水果收获的季节,该合作社用17500元从农户处购进A,B两种水果共1500kg进行销售,其中A种水果收购单价10元/kg,B种水果收购单价15元/kg.(1)求A,B两种水果各购进多少千克;(2)已知A种水果运输和仓储过程中质量损失4%,若合作社计划A种水果至少要获得20%的利润,不计其他费用,求A种水果的最低销售单价.25.如图,在平面直角坐标系xOy中,抛物线L:y=ax2−2ax−3a(a>0)与x轴交于A,B两点(点A在点B的左侧),其顶点为C,D是抛物线第四象限上一点.(1)求线段AB的长;(2)当a=1时,若△ACD的面积与△ABD的面积相等,求tan∠ABD的值;(3)延长CD交x轴于点E,当AD=DE时,将△ADB沿DE方向平移得到△A′EB′.将抛物线L平移得到抛物线L′,使得点A′,B′都落在抛物线L′上.试判断抛物线L′与L是否交于某个定点.若是,求出该定点坐标;若不是,请说明理由.26.数学活动课上,同学们将两个全等的三角形纸片完全重合放置,固定一个顶点,然后将其中一个纸片绕这个顶点旋转,来探究图形旋转的性质.已知三角形纸片ABC和ADE中,AB=AD=3,BC=DE=4,∠ABC=∠ADE=90∘.【初步感知】的值.(1)如图1,连接BD,CE,在纸片ADE绕点A旋转过程中,试探究BDCE【深入探究】(2)如图2,在纸片ADE绕点A旋转过程中,当点D恰好落在△ABC的中线BM的延长线上时,延长ED交AC于点F,求CF的长.【拓展延伸】(3)在纸片ADE绕点A旋转过程中,试探究C,D,E三点能否构成直角三角形.若能,直接写出所有直角三角形CDE的面积;若不能,请说明理由.答案和解析1.【答案】A【解析】【分析】本题考查了绝对值.一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.【解答】解:−5<0,所以它的绝对值是它的相反数,即−5的绝对值是5.故选A.2.【答案】A【解析】【分析】本题考查了几何体的三视图.根据主视图是从正面看到的图形判定则可.【解答】解:从正面看,底层是三个小正方形,上层的左边是一个小正方形.故选:A.3.【答案】D【解析】【分析】本题考查了乘法公式,积的乘方,合并同类项等知识.【解答】解:A选项,(3x)2=9x²≠3x2;故A错误;B选项,3x和3y不是同类项,不能合并;故B错误;C选项,(x+y)2=x2+2xy+y2≠x2+y2;故C错误;D选项,(x+2)(x−2)=x2−4;故D正确.故选D.4.【答案】B【解析】【分析】本题主要考查了关于原点对称的点的坐标.平面直角坐标系中任意一点P(x,y),关于原点的对称点是(−x,−y),记忆方法是结合平面直角坐标系的图形记忆. 【解答】解:点(1,−4)关于原点对称的点的坐标是(−1,4), 故选:B .5.【答案】B【解析】【分析】本题考查中位数,解答本题的关键是明确中位数的定义,找出这组数据的中位数. 【解答】解:先对这组数据进行从小到大进行排序:50,51,55,55,61,64 所以中位数是:(55+55)÷2=55, 故选B .6.【答案】C【解析】【分析】 本题考查了矩形的性质.结合矩形的性质,对选项对比分析即可. 【解答】解:因为四边形ABCD 是矩形,所以对边平行且相等,AB =CD ,AD =BC ,AD//BC ,AB//CD 对角线相等,AC =BD .矩形的邻边不一定相等,故选项A 错误,矩形的对角线互相平分且相等,但不一定垂直,故B 错,C 正确; 矩形的对角线不一定平分每组对角,故选项D 错误. 故选C .7.【答案】B【解析】【分析】本题考查了二元一次方程组的应用,找准等量关系,列出方程是解题的关键. 设出未知数,根据每人出12钱,会多出4钱;每人出13钱,又差了3钱列出方程组. 【解答】解:根据题意有:{y =12x −4,y =13x +3故选B .8.【答案】D【解析】【分析】本题考查了平行四边形的性质以及等腰三角形的判定和性质,解题的关键是根据作图过程判断角平分线进而判定等腰三角形. 【解答】解:由作图过程可知∠CBE =∠ABE ,故选项A 正确; ∵四边形ABCD 是平行四边形,∴AD =BC ,AB =CD ,AD//BC ,AB//CD ∴∠CBE =∠AEB ,∠ABE =∠F ∴∠ABE =∠AEB ,∠CBE =∠F ∴AB =AE ,AE =CD =3,BC =CF∴BC =AD =AE +DE =3+2=5,CF =BC =5, ∴DF =CF −CD =2 ∴DE =DF故选项B ,C 均正确; 又∵AB//CD ∴△ABE ∽△DFE∴BEEF =ABDF =32,故选项D 错误; 故选D .9.【答案】1【解析】【分析】 本题考查了非负数的性质.利用非负数的性质列出方程组,求出方程组的解得到m 与n 的值,代入原式计算即可求出值. 【解答】解:∵m ,n 为实数,(m +4)2+√ n −5=0, ∴{m +4=0n −5=0,解得:{m =−4n =5(m +n)2=(−4+5)2=1故答案为1.10.【答案】x =3【解析】【分析】本题考查了分式方程的解法,属于基础题,熟记分式方程的解法是解题的关键.方程两边都乘以x(x −2),化成整式方程,然后再代入检验即可求解.【解答】解:方程两边都乘以x(x −2)得:x =3(x −2),解得:x =3,检验:∵当x =3时,x(x −2)≠0,∴x =3是原方程的解,故答案为:x =3.11.【答案】4π【解析】【分析】本题考查了弧长公式.将半径OA =6和圆心角∠AOB =120∘,代入弧长公式l =nπr 180求解即可.【解答】解:∵OA =6,∠AOB =120∘,∴AB ⏜=120×π×6180=4π 故答案为4π.12.【答案】35【解析】【分析】本题考查概率公式:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种可能,那么事件A 的概率P(A)=m n .根据盒中有x 枚黑棋和y 枚白棋,得出袋中共有(x +y)个棋,再根据概率公式列出关系式即可.【解答】解:∵盒中有x枚黑棋和y枚白棋,∴袋中共有(x+y)个棋,∵黑棋的概率是38,∴x x+y =38,解得xy =35故答案为35.13.【答案】5【解析】【分析】本题考查轴对称一最短问题以及勾股定理和轴对称图形的性质.先取点A关于直线l的对称点A′,连A′O交直线l于点C,连AC,得到AC=A′C,A′A⊥l,再由轴对称图形的性质和两点之间线段最短,得到当O,P,A′三点共线时,PO+PA的最小值为A′O,再利用勾股定理求A′O即可.【解答】解:取点A关于直线l的对称点A′,连A′O交直线l于点C,连AC,则可知AC=A′C,A′A⊥l,∴PO+PA=PO+PA′≥A′O,即当O,P,A′三点共线时,PO+PA的最小值为A′O,∵直线l垂直于y轴,∴A′A⊥x轴,∵A(3,0),B(0,2),∴AO=3,AA′=4,∴在Rt △A′AO 中,A′O =√ OA 2+AA ′2=√ 32+42=5,故答案为:514.【答案】(1)√ 16+2sin60∘−(π−2024)0+|√ 3−2|=4+2×√ 32−1+2−√ 3=4+√ 3−1+2−√ 3=5(2)由不等式①得,x ⩾−2,由不等式②得,x <9所以不等式组的解集为−2⩽x <9.【解析】本题考查了实数的运算及解不等式组.(1)根据算术平方根,特殊角三角函数值,零次幂,绝对值进行化简即可;(2)根据解不等式的步骤,分别解出各个不等式,再求出不等式组的解集即可.15.【答案】解:(1)调查总人数为48÷30%=160(人),选择“世界公园打卡线”的人数为160×90360=40(人);(2)“国风古韵观赏线”对应的圆心角度数为360∘×44160=99∘;(3)选择“园艺小清新线”的人数为160−44−40−48=28(人),∴该单位选择“园艺小清新线”的员工人数为2200×28160=385(人).【解析】本题考查统计表和扇形统计图的关联、用样本估计总体,理解题意,能从统计图中获取有用信息是解答的关键.(1)根据选择“亲子互动慢游线”的人数及其所占的百分比可求得调查总人数,再根据选择“世界公园打卡线”对应的圆心角是90∘可求解x 值;(2)由360∘乘以选择“国风古韵观赏线”所占的百分比可得答案;(3)先求得选择“园艺小清新线”的人数,再由单位总人数乘以样本中选择“园艺小清新线”所占的比例求解即可. 16.【答案】解:∵∠ACB =73.4∘,杆子AB 垂直于地面,AB 长8尺.∴tan∠ACB =AB BC ,即BC ≈83.35=2.39,∵∠ADB =26.6∘,∴tan∠ADB =AB BD ,即BD ≈80.50=16,∵春分和秋分时日影长度等于夏至和冬至日影长度的平均数.∴春分和秋分时日影长度为2.39+162≈9.2答:春分和秋分时日影长度9.2尺.【解析】本题主要考查解直角三角形和求平均数,利用正切分别求得BC和BD,结合题意利用平均数即可求得春分和秋分时日影长度.17.【答案】(1)∵BD是⊙O的直径∴∠BFD=90∘=∠C又∵∠CEB=∠FDB∴△EBC∽△DBF∴ECDF=CBFB∴BC⋅DF=BF⋅CE(2)由(1)可知,△EBC∽△DBF ∴∠EBC=∠DBF∴∠EBC−∠FBE=∠DBF−∠FBE ∴∠CBF=∠EBA∵∠A=∠CBF∴∠A=∠EBA∴AE=BE∵∠A=∠CBF∴90∘−∠A=90∘−∠CBF∴∠ABC=∠CFB∵tan∠BFC=√ 5∴tan∠BFC=tan∠ABC=√ 5∴CBCF=ACBC=√ 5不妨设CF=x,那么CB=√ 5x ∵AF=4√ 5∴√ 5√ 5x=√ 5∴x=√ 5∴CF=√ 5,CB=√ 5x=√ 5×√ 5=5不妨设EF=y,那么AE=AF−EF=4√ 5−y=BE在Rt△CEB中,CE=EF+CF=y+√ 5,CB=5,BE=4√ 5−y ∴(y+√ 5)2+52=(4√ 5−y)2∴y=√ 5∴EF=√ 5在Rt△CFB中,CF=√ 5,BC=5∴BF=√ CF2+BC2=√ (√ 5)2+52=√ 30∵∠CEB=∠FDB∴tan∠CEB=tan∠FDB∴CBCE=BFDF∴√ 5+√ 5=√ 30DF∴DF=2√ 6∴BD=√ DF2+BF2=√ (2√ 6)2+(√ 30)2=3√ 6∴CF=√ 5,⊙O的直径是3√ 6【解析】本题考查了同弧所对的圆周角相等,直径所对的圆周角是直角,三角形相似的判定与性质,勾股定理,解直角三角形,等腰三角形的性质,二次根式的化简,熟练掌握以上知识点是解题的关键.(1)先证明△EBC∽△DBF,然后利用对应边成比例,即可证明;(2)利用△EBC∽△DBF,知道∠EBC=∠DBF,从而推出∠CBF=∠EBA,结合∠A=∠CBF,知道∠A=∠EBA,推出AE=BE,接下来证明∠BFC=∠ABC,那么有tam∠BFC=tan∠ABC=√ 5,即CBCF =ACBC=√ 5,不妨设CF=x,代入求得CF的长度,不妨设EF=y,在Rt△CEB和Rt△CFB中利用勾股定理求得EF和BF的长度,最后利用tan∠CEB=tan∠FDB,求得DF的长度,然后在利用勾股定理求得BD的长度.18.【答案】解:(1)由题意,将A(2,a)代入y=2x中,得a=2×2=4,则A(2,4),将A(2,4)代入y=−x+m中,得4=−2+m,则m=6,∴y=−x+6,将B(b,0)代入y=−x+6中,得0=−b +6,则b =6;(2)设C(t,s),由(1)知A(2,4),B(6,0),若O ,A ,B ,C 为顶点的四边形为平行四边形,分以下情况:当OA 为对角线时,则{0+2=t +60+4=0+s ,解得{t =−4s =4, ∴C(−4,4),则k =−4×4=−16;当OB 为对角线时,则{0+6=2+t 0+0=4+s 解得{t =4s =−4, ∴C(4,−4),则k =−4×4=−16;当OC 为对角线时,则{t +0=2+6s +0=4+0解得{t =8s =4, ∴C(8,4),则k =32不符合题意故这种情况不存在,综上所述,满足条件的点C 的坐标为(−4,4)或(4,−4),k =−16;(3)如图,设点D(x,0),则E(−x,0),x <0,若△ABD ∽△EBA ,则AB BE =BD AB ,即AB 2=BE ⋅BD , ∴(2−6)2+(4−0)2=(6+x)(6−x),即x 2=4,解得x =±2,∵x <0,∴x =−2,则D(−2,0),设直线AC 的表达式为y =px +q ,则{2p +q =4−2p +q =0,解得{p =1q =2, ∴直线AC 的表达式为y =x +2,联立方程组{y =x +2y =k x,得x 2+2x −k =0, ∵有且只有一点C ,∴方程x2+2x−k=0有且只有一个实数根,∴Δ=22+4k=0,解得k=−1;若△ABD∽△ABE,ABAB =BDBE=ADAE.则DE重合,不符合题意.故满足条件的k值为−1.【解析】本题考查一次函数与反比例函数的综合、反比例函数与几何的综合,涉及待定系数法、相似三角形的性质、平行四边形的性质、坐标与图形、一元二次方程根的判别式等知识,熟练掌握相关知识的联系与运用,利用分类讨论思想求解是解答的关键.(1)利用待定系数法求解即可;(2)设C(t,s),根据平行四边形的性质,分当OA为对角线时,当OB为对角线时,当OC为对角线时三种情况,分别利用中点坐标公式列方程组求解即可;(3)设点D(x,0),则E(−x,0),x<0,利用相似三角形的性质得AB2=BE⋅BD,进而解方程得x=−2,则D(−2,0),利用待定系数法求得直线AC的表达式为y=x+2,联立方程组得x2+2x−k=0,根据题意,方程x2+2x−k=0有且只有一个实数根,利用根的判别式求解即可.19.【答案】100∘【解析】【分析】本题考查了三角形的内角和定理和全等三角形的性质.先利用全等三角形的性质,求出∠CED=∠ACB=45∘,再利用三角形内角和求出∠DCE的度数即可.【解答】解:由△ABC≌△CDE,∠D=35∘,∴∠CED=∠ACB=45∘,∵∠D=35∘,∴∠DCE=180∘−∠D−∠CED=180∘−35∘−45∘=100∘,故答案为100∘.20.【答案】7【解析】【分析】本题考查一元二次方程根与系数的关系,一元二次方程的解,正确对所求代数式进行变形是解题的关键.根据根与系数的关系以及一元二次方程的解得到m+n=5,mn=2,n²−5n+2=0,然后将所求代数式变形为n²−5n+2+n+m+2,最后将已知条件整体代入计算即可.【解答】解:根据题意得:m +n =5,mn =2,n²−5n +2=0,所以m +(n −2)2=m +n²−4n +4=n²−5n +2+n +m +2=0+5+2=7故答案为:7.21.【答案】9144【解析】【分析】本题考查数字类规律探究,理解题意,能够从特殊到一般,得到当n 为偶数或奇数时的不同取法是解答的关键.先根据前几个n 值所对应k 值,找到变化规律求解即可.【解答】解:当n =2时,只有{1,2}一种取法,则k =1;当n =3时,有{1,3}和{2,3}两种取法,则k =2;当n =4时,有{1,4},{2,4},{3,4},{2,3}四种取法,则k =3+1=4=424; 故当n =5时,有{1,5},{2,5},3,5},4,5,{2,4},{3,4}六种取法,则k =4+2=6;当n =6时,有{1,6},{2,6},{3,6},4,6},{5,6},{2,5},{3,5},{4,5},{3,4}九种取法,则k =5+3+1=9=624; 依次类推,当n 为偶数时,k =(n −1)+(n −3)+⋯+5+3+1=n 24,故当n =24时,k =23+21+19+⋯+5+3+1=2424=144,故答案为:9,144. 22.【答案】√ 17+12【解析】【分析】本题考查了相似三角形的判定与性质、直角三角形的性质、等腰三角形的性质、三角形的中位线性质、三角形的外角性质、角平分线的定义以及解一元二次方程等知识,熟练掌握三角形相关知识是解答的关键.连接CE,过E作EF⊥CD于F,设BD=x,EF=m,根据直角三角形斜边上的中线性质和等腰三角形的性质证得CF=DF=12CD=1,∠EAC=∠ECA,∠ECD=∠EDC=∠BEC,进而利用三角形的外角性质和三角形的中位线性质得到∠CED=2∠CAE,AC=2EF=2m,证明△CBE∽△CED,利用相似三角形的性质和勾股定理得到m2=3+2x;根据角平分线的定义和相似三角形的判定与性质证明△CAB∽△FBE得到2m2=(x+1)(x+2),进而得到关于x的一元二次方程,进而求解即可.【解答】解:连接CE,过E作EF⊥CD于F,设BD=x,EF=m,∵∠ACB=90∘,E为AD中点,∴CE=AE=DE,又CD=2,∴CF=DF=12CD=1,∠EAC=∠ECA,∠ECD=∠EDC,∴∠CED=2∠CAE,AC=2EF=2m,∵BE=BC,∴∠BEC=∠ECB,则∠BEC=∠EDC,又∠BCE=∠ECD,∴△CBE∽△CED,∴CE CD =CBCE,∠CBE=∠CED=2∠CAE,∴CE2=CD⋅CB=2(2+x)=4+2x,则m2=EF2=CE2−CF2=3+2x ∵AD是△ABC的一条角平分线,∴∠CAB=2∠CAE=∠CBE,又∠ACB=∠BFE=90∘,∴△CAB∽△FBE,∴ACBF=BCEF∴2m x+1=x+2m ,则2m 2=(x +1)(x +2),∴2(3+2x)=(x +1)(x +2),即x 2−x −4=0,解得x =√ 17+12(负值已舍去),故答案为:√ 17+12. 23.【答案】>−12<m <1【解析】【分析】本题考查二次函数的性质、不等式的性质以及解不等式组,熟练掌握二次函数的性质是解答的关键. 先求得二次函数的对称轴,再根据二次函数的性质求解即可.【解答】解:由y =−x 2+4x −1=−(x −2)2+3得抛物线的对称轴为直线x =2,开口向下,∵0<x 1<1,x 2>4,∴|x 1−2|<|x 2−2|,∴y 1>y 2;∵m <m +1<m +2,m <x 1<m +1,m +1<x 2<m +2,m +2<x 3<m +3,∴x 1<x 2<x 3,∵存在y 1<y 3<y 2,∴x 1<2,x 3>2,且A(x 1,y 1)离对称轴最远,B(x 2,y 2)离对称轴最近,∴2−x 1>x 3−2>|x 2−2|,即x 1+x 3<4,且x 2+x 3>4,∵2m +2<x 1+x 3<2m +4,2m +3<x 2+x 3<2m +5,∴2m +2<4且2m +5>4,解得:−12<m <1,故答案为:>;−12<m <1. 24.【答案】解:(1)设A 种水果购进x 千克,B 种水果购进y 千克,根据题意有:{x +y =150010x +15y =17500,解得:{x =1000y =500, ∴A 种水果购进1000千克,B 种水果购进500千克(2)设A 种水果的销售单价为a 元/kg ,根据题意有:1000(1−4%)a ≥(1+20%)×1000×10,解得a ≥12.5,故A 种水果的最低销售单价为12.5元/kg .【解析】本题主要考查一元二次方程的应用和一元一次不等式的应用.(1)设A 种水果购进x 千克,B 种水果购进y 千克,根据题意列出二元一次方程组求解即可.(2)根据题意列出关于利润和进价与售价的不等式求解即可.25.【答案】解:(1)∵抛物线L:y =ax 2−2ax −3a(a >0)与x 轴交于A ,B 两点,∴ax 2−2ax −3a =0,整理得x 2−2x −3=0,解得x 1=−1,x 2=3,∴A(−1,0),B(3,0),则AB =3−(−1)=4;(2)当a =1时,抛物线L:y =x 2−2x −3=(x −1)2−4,则C(1,−4),设D(n,n 2−2n −3)(0<n <3),则S △ABD =12AB ⋅|y D |=−12×4×(n 2−2n −3)=−2n 2+4n +6,设直线AD 解析式为y =kx +q将A(−1,0)代入,k =q故AD 解析式可记为:y =k(x +1),∵点D 在直线AD 上,∴n 2−2n −3=k(n +1),解得k =n −3,则直线AD 解析式为y =(n −3)(x +1),设直线AD 与抛物线对称轴交于点E ,则E(1,2n −6),∴S △ACD =12CE ⋅(x D −x A )=12×[2n −6−(−4)]×(n +1)=n 2−1,∵△ACD 的面积与△ABD 的面积相等,∴−2n 2+4n +6=n 2−1,解得n 1=−1,n 2=73, ∴点D(73,−209), 过点D 作DH ⊥AB 于点H ,则BH =3−73=23,DH =209, 则tan∠ABD =DH BH =103; (3)设D(n,an 2−2an −3a),直线AD 解析式为y =k 1(x +1),则an 2−2an −3a =k 1(n +1),解得k 1=an −3a ,那么直线AD 解析式为y =a(n −3)(x +1),过点D 作DM ⊥AB ,如图,则AM =n +1,DM =−an 2+2an +3a ,∵AD =DE ,∴EM =n +1,∵将△ADB 沿DE 方向平移得到△A′EB′,A(−1,0),B(3,0),∴A′(n,−an 2+2an +3a),B′(n +4,−an 2+2an +3a),由题意知抛物线L 平移得到抛物线L′,设抛物线L′解析式为y =ax 2+bx +c(a >0),∵点A′,B′都落在抛物线L′上∴{−an 2+2an +3a =an 2+bn +c−an 2+2an +3a =a(n +4)2+b(n +4)+c解得{b =−2an −4a c =6an +3a, 则抛物线L′解析式为y =ax 2+(−2an −4a)x +6an +3a∵ax 2−2ax −3a =ax 2+(−2an −4a)x +6an +3a整理得(n +1)x =3n +3,解得x =3,∴抛物线L′与L 交于定点(3,0).【解析】本题主要考查二次函数的性质、两点之间的距离、一次函数的性质、求正切值、二次函数的平移、等腰三角形的性质和抛物线过定点,解题的关键是熟悉二次函数的性质和平移过程中数形结合思想的应用.(1)根据题意可得ax2−2ax−3a=0,整理得x2−2x−3=0,即可知A(−1,0),B(3,0),则有AB=4;(2)由题意得抛物线L:y=x2−2x−3=(x−1)2−4,则C(1,−4),设D(n,n2−2n−3),(0<n<3),可求得S△ABD=−2n2+4n+6,结合题意可得直线AD解析式为y=(n−3)(x+1),设直线AD与抛物线对称轴交于点E,则E(1,2n−6),即可求得S△ACD=n2−1,进一步解得点D(73,−209),过D作DH⊥AB于点H,则BH=23,DH=209,即可求得tan∠ABD=DHBH;(3)设D(n,an2−2an−3a),可求得直线AD解析式为y=a(n−3)(x+1),过点D作DM⊥AB,可得AM= n+1,DM=−an2+2an+3a,结合题意得EM=n+1,A′(n,−an2+2an+3a),B′(n+4,−an2+2an+ 3a),设抛物线L′解析式为y=ax2+bx+c(a>0),由于过点A′,B′可求得抛物线L′解析式为y=ax2+ (−2am−4a)x+6an+3a,根据ax2−2ax−3a=ax2+(−2an−4a)x+6an+3a解得x=3,即可判断抛物线L′与L交于定点(3,0).26.【答案】解:(1)∵AB=AD=3,BC=DE=4,∠ABC=∠ADE=90∘.∴△ADE≌△ABC(SAS),∴AC=AE=√ AB2+BC2=√ AD2+DE2=5,∠DAE=∠BAC,∴∠DAE−∠DAC=∠BAC−∠DAC即∠CAE=∠BAD,∵ABAD=ACAE=1∴△CAE∽△BAD,∴BDCE =ABAC=35.(2)连接CE,延长BM交CE于点Q,根据(1)得△CAE∽△BAD,∴∠ABD=∠ACE,∵BM是中线∴BM=AM=CM=12AC=52,∴∠MBC=∠MCB,∵∠ABD+∠MBC=90∘,∴∠ACE+∠MCB=90∘即∠BCE=90∘,∴AB//CQ,∴∠BAM=∠QCM,∠ABM=∠CQM,∵{∠BAM=∠QCM ∠ABM=∠CQM, AM=CM∴△BAM≌△QCM(AAS),∴BM=QM,∴四边形ABCQ是平行四边形,∵∠ABC=90∘∴四边形ABCQ为矩形,∴AB=CQ=3,BC=AQ=4,∠AQC=90∘,∴PQ//CN,EQ=√ AE2−AQ2=3,∴EP PN =EQQC=33=1,∴PQ=12CN,设PQ=x,CN=2x,则AP=4−x,∵{∠EPQ=∠APD∠EQP=∠ADP=90∘EQ=AD=3∴△EQP≌△ADP(AAS),∴AP=EP=4−x,∵EP2=PQ2+EQ2,∴(4−x)2=x2+32,解得x=78;∴AP=4−x=258,CN=2x=74,∵PQ//CN,AC=5,∴△APF∽△CNF,∴AP CN =AFCF,∴AP+CNCN =AF+CFCF,∴258+7474=5CF,解得CF=7039.(3)如图,当AD与AC重合时,此时DE⊥AC,此时△CDE是直角三角形,故S△CDE=12CD⋅DE=12×(AC−AD)×DE=12×2×4=4;如图,当AD在CA的延长线上时,此时DE⊥AC,此时△CDE是直角三角形,故S△CDE=12CD⋅DE=12×(AC+AD)×DE=12×8×4=16;如图,当DE⊥EC时,此时△CDE是直角三角形,过点A作AQ⊥EC于点Q,∵AE=AC=5,∴EQ=QC=12EC,∵AQ⊥EC,DE⊥EC,DE⊥AD,∴四边形ADEQ是矩形,∴AD=EQ=QC=12EC=3,∴EC=6,故S△CDE=12EC⋅DE=12×6×4=12;如图,当DC⊥EC时,此时△CDE是直角三角形,过点A作AQ⊥EC于点Q,交DE于点N,∴EQ=QC=12EC=x,NQ//CD,∴EN DN =EQQC=1,∴DN=EN=12DE=2,QN=12DC,∵∠AND=∠ENQ,∠ADN=∠EQN=90∘,∴∠DAN=∠QEN,∴tan∠DAN=tan∠QEN,∴QNEQ =DNAD=23,∴QN =23x ,∴DC =43x ,CE =2x ,∵ED 2=DC 2+EC 2,∴42=(2x)2+(4x 3)2,∴x 2=3613,解得x =6√ 1313; 故S △CDE =12EC ⋅DC =12×2x ×43x =43x 2=43×3613=4813. 【解析】本题考查了旋转的性质,三角形相似的判定和性质,三角形中位线定理的判定和应用,三角形全等的判定和性质,三角函数的应用,勾股定理,熟练掌握三角函数的应用,三角形相似的判定和性质,矩形的判定和性质,中位线定理是解题的关键.(1)根据AB =AD =3,BC =DE =4,∠ABC =∠ADE =90∘.证明△ADE ≌△ABC ,AC =AE =√ AB 2+BC 2=√ AD 2+DE 2=5,继而得到∠DAE =∠BAC ,∠DAE −∠DAC =∠BAC −∠DAC 即∠CAE =∠BAD ,再证明△CAE ∽△BAD ,得到BD CE =AB AC =35. (2)连接CE ,延长BM 交CE 于点Q ,根据(1)得△CAEC ∽△BAD ,得到∠ABD =∠ACE ,根据中线BM 得到BM =AM =CM =12AC =52,继而得到∠MBC =∠MCB ,结合∠ABD +∠MBC =90∘,得到∠ACE +∠MCB =90∘即∠BCE =90∘,得到AB//CQ ,再证明△ABM ≌△CQM ,得证矩形ABCQ ,再利用勾股定理,三角形相似的判定和性质计算即可.(3)运用分类思想解答即可.。
2016年四川省成都市中考数学试卷-答案
四川省成都市2016年高中阶段教育学校统一招生考试数学答案解析第Ⅰ卷一、选择题1.【答案】A【解析】比2-小的数只有3-,故选A .【提示】利用两个负数,绝对值大的其值反而小,进而得出答案.【考点】有理数大小比较2.【答案】C【解析】从上面看易得横着的“”字,故选C .【提示】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【考点】简单组合体的三视图3.【答案】B【解析】181万61810000 1.8110==⨯,故选B .【提示】科学记数法的表示形式为10n a ⨯的形式,其中11||0a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数.【考点】科学记数法—表示较大的数4.【答案】D【解析】3262()x y x y -=,故选D .【提示】首先利用积的乘方运算法则化简求出答案.【考点】幂的乘方与积的乘方5.【答案】C【解析】12l l ∥,13∴∠=∠,156∠=︒,356∴∠=︒,23180∠+∠=︒,2124∴∠=︒,故选C .【提示】根据平行线性质求出3150∠=∠=︒,代入23180∠+∠=︒即可求出2∠.【考点】平行线的性质6.【答案】A【解析】点(2,3)P -关于x 轴对称的点的坐标为(2,3)--,故选A .【提示】直接利用关于x 轴对称点的性质,横坐标不变,纵坐标互为相反数,进而得出答案.【考点】关于x 轴、y 轴对称的点的坐标7.【答案】B【解析】23x x =-,3x =-,经检验3x =-是原方程的解,故选B .【提示】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【考点】分式方程的解8.【答案】C【解析】因为乙组、丙组的平均数比甲组、丁组大,而丙组的方差比乙组的小,所以丙组的成绩比较稳定,所以丙组的成绩较好且状态稳定,应选的组是丙组.故选C .【提示】先比较平均数得到乙组和丙组成绩较好,然后比较方差得到丙组的状态稳定,于是可决定选丙组去参赛.【考点】方差,算术平均数9.【答案】D【解析】A :2a =,则抛物线223y x =-的开口向上,所以A 选项错误;B :当2x =时,2435y =⨯-=,则抛物线不经过点(2,3),所以B 选项错误;C :抛物线的对称轴为直线0x =,所以C 选项错误;D :当0y =时,2230x -=,此方程有两个不相等的实数解,所以D 选项正确.故选D .【提示】根据二次函数的性质对A ,C 进行判断;根据二次函数图象上点的坐标特征对B 进行判断;利用方程2230x -=解的情况对D 进行判断.【考点】二次函数的性质10.【答案】B【解析】50OCA ∠=︒,OA OC =,50A ∴∠=︒,100BOC ∴∠=︒,4AB =,2BO ∴=,BC ∴的长为:100π210π1809⨯=,故选B . 【提示】直接利用等腰三角形的性质得出A ∠的度数,再利用圆周角定理得出BOC ∠的度数,再利用弧长公式求出答案.【考点】弧长的计算,圆周角定理第Ⅱ卷二、填空题11.【答案】2-【解析】由绝对值的意义得20a +=,解得:2a =-;故答案为2-.【提示】根据绝对值的意义得出20a +=,即可得出结果.【考点】绝对值12.【答案】120【解析】ABC A B C '''△≌△,24C C ∴∠=∠'=︒,180120B A C ∴∠=︒-∠-∠=︒,故答案为120°.【提示】根据全等三角形的性质求出C ∠的度数,根据三角形内角和定理计算即可.【考点】全等三角形的性质13.【答案】> 【解析】在反比例函数2xy =中20k =>,∴该函数在0x <内单调递减.120x x <<,12y y ∴>.【提示】根据一次函数的系数k 的值可知,该函数在0x <内单调递减,再结合120x x <<,即可得出结论.【考点】反比例函数图象上点的坐标特征,反比例函数的性质14.【答案】【解析】四边形ABCD 是矩形,OB OD ∴=,OA OC =,AC BD =,OA OB ∴=,AE 垂直平分OB ,AB AO ∴=,3OA AB OB ∴===,26BD OB ∴==,AD ∴==故答案为:【提示】由矩形的性质和线段垂直平分线的性质证出3OA AB OB ===,得出26BD OB ==,由勾股定理求出AD 即可.【考点】矩形的性质,线段垂直平分线的性质,等边三角形的判定与性质三、解答题15.【答案】(1)4-(2)13m -<【解析】(1)原式1842142=-+-⨯+=-. (2)2320x x m +-=没有实数解,24443()4120b ac m m ∴=-⨯⨯-=+-<, 解得:13m <-,故实数m 的取值范围是:13m <-.【提示】(1)直接利用有理数的乘方运算法则以及特殊角的三角函数值和零指数幂的性质分别化简求出答案;(2)直接利用根的判别式进而求出m 的取值范围.【考点】实数的运算,根的判别式,特殊角的三角函数值16.【答案】1x +【解析】原式2221(1)(1)(1)(1)1(1)(1)x x x x x x x x x x x x --+--=÷==+--. 【提示】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.【考点】分式的混合运算17.【答案】13.9【解析】由题意得20AC =米, 1.5AB =米,32DBE ∠=︒,tan32200.6212.4DE BE ∴=︒≈⨯=米,12.4 1.513.9CD DE CE DE AB ∴=+=+=+≈(米).答:旗杆CD 的高度约13.9米.【提示】根据题意得20AC =米, 1.5AB =米,过点B 做BE CD ⊥,交CD 于点E ,利用32DBE ∠=︒,得到tan32DE BE =︒后再加上CE 即可求得CD 的高度.【考点】解直角三角形的应用-仰角俯角问题18.【答案】(1)图形见解析(2)12或树状图如下:(2)由(1)可知,共有12种可能的结果,每种出现的可能性相同,抽到的两张卡片上的数都是勾股数的有6种:(,)B C ,(,)B D ,(,)C B ,(,)C D ,(,)D B ,(,)D C ,61()==122P ∴抽到的两张卡片上的数都是勾股数. 【提示】(1)利用树状图展示12种等可能的结果数;(2)根据勾股数可判定只有A 卡片上的三个数不是勾股数,则可从12种等可能的结果数中找出抽到的两张卡片上的数都是勾股数的结果数,然后根据概率公式求解.【考点】列表法与树状图法,勾股数19.【答案】(1)正比例函数的表达式为y x =-,反比例函数的表达式为4y x=-(2)(4,1)C -,6ABC S ∆=【解析】(1)根据题意,将点(2,2)A -代入y kx =,得:22k -=,解得:1k =-, ∴正比例函数的解析式为:y x =-,将点()2,2A -代入m y x=,得:22m -=, 解得:4m =-; ∴反比例函数的解析式为:4y x =-;(2)直线OA :y x =-向上平移3个单位后解析式为:3y x =-+,则点B 的坐标为(0,3), 联立两函数解析式34y x y x =-+⎧⎪⎨=-⎪⎩,解得:14x y =-⎧⎨=⎩或41x y =⎧⎨=-⎩, ∴第四象限内的交点C 的坐标为(4,1)-,111(15)452216222ABC S ∴=⨯+⨯-⨯⨯-⨯⨯=△. 【提示】(1)将点A 坐标(2,2)-分别代入y kx =、m y x=求得k m 、的值即可; (2)由题意得平移后直线解析式,即可知点B 坐标,联立方程组求解可得第四象限内的交点C 得坐标,割补法求解可得三角形的面积.【考点】反比例函数与一次函数的交点问题20.【答案】(1)证明:在Rt ABC △中,90ABC ∠=︒,90ABD DBC ∴∠=︒-∠,由题意知:D E 是直径,90DBE ∴∠=︒,90E BDE ∴∠=︒-∠,BC CD =,DBC BDE ∴∠=∠,∴ABD E ∠=∠,A A ∠=∠,ABD AEB ∴△∽△(2)12(3 【解析】(1)证明:在Rt ABC △中,90ABC ∠=︒,90ABD DBC ∴∠=︒-∠,由题意知:DE 是直径,90DBE ∴∠=︒,90E BDE ∴∠=︒-∠,BC CD =,DBC BDE ∴∠=∠,∴ABD E ∠=∠,A A ∠=∠,ABD AEB ∴△∽△;(2):4:3AB BC =,∴设4AB =,3BC =,5AC ∴==,3BC CD ==,532AD AC CD ∴=-=-=,由(1)可知:ABD AEB △∽△,AB AD BD AE AB BE∴==, 2•AB AD AE ∴=,242AE ∴=,8AE ∴=,在Rt DBE △中,41tan 82BD AB E BE AE ====. (3)过点F 作FM AE ⊥于点M ,:4:3AB BC =,∴设4AB x =,3BC x =,∴由(2)可知8AE x =,2AD x =,6DE AE AD x ∴=-=, AF 平分BAC ∠,BF AB EF AE∴=, 4182BF x EF x ∴==, 1tan 2E =,cos E ∴,sin E ,BE DE ∴=BE ∴=,23EF BE x ∴=,sin MF E EF ∴=, 85MF x ∴=, 1tan 2E =, 1625ME MF x ∴==, 245AM AE ME x ∴=-=, 222AF AM MF =+,222484()()5x x ∴=+,x ∴=,C ∴的半径为:38x =.【提示】(1)要证明ABD AEB △∽△,已经有一组对应角是公共角,只需要再找出另一组对应角相等即可.(2)由于:4:3AB BC =,可设4AB =,3BC =,求出AC 的值,再利用(1)中结论可得2•AB AD AE =,进而求出AE 的值,所以tan BD AB E BE AE ==.(3)设4AB x =,3BC x =,由于已知AF 的值,构造直角三角形后利用勾股定理列方程求出x 的值,即可知道半径3x 的值.【考点】圆的综合题四、填空题21.【答案】2700 【解析】根据题意得:909000(130%15%100%)900030%2700360⨯---⨯=⨯=(人),故答案为2700. 【提示】先求出非常清楚所占的百分比,再乘以该辖区的总居民,即可得出答案.【考点】扇形统计图,用样本估计总体22.【答案】8-【解析】把32x y =⎧⎨=-⎩代入方程组得:323327a b b a -=⎧⎨-=-⎩①②, 32⨯+⨯①②得:55a =-,即1a =-,把1a =-代入①得:3b =-,则原式22198a b ==-=--,故答案为:8-【提示】把x 与y 的值代入方程组求出a 与b 的值,代入原式计算即可得到结果.【考点】二元一次方程组的解23.【答案】392【解析】作直径AE ,连接CE ,90ACE ∴∠=︒,AH BC ⊥,∴90AHB ∠=︒,ACE ADB ∴∠=∠,B E ∠=∠,ABH AEC ∴△∽△,AB AH AE AC∴=, AH AE AB AC∴=, 24AC =,18AH =,226AE OC ==,182639242AB ⨯∴==,故答案为:392.【提示】首先作直径AE ,连接CE ,易证得ABH AEC △∽△,然后由相似三角形的对应边成比例,即可求得O 半径.【考点】三角形的外接圆与外心24.【答案】4【解析】2A M B M A B =,又BM AB AM =-,2()AM AB AM AB ∴=-,又2A B b a =-=,2(2)2AM AM ∴=-⨯,解得1AM =,同理1BN =,4MN AM BN AB ∴=+-=.【提示】先把各线段长表示出来,分别代入到2•AM BM AB =,2•BN AN AB =中,列方程组;两式相减后再将2b a -=和m n x -=整体代入,即可求出.【考点】实数与数轴25.【解析】ABE CDF PMQ △≌△≌△,AE DF PM ∴==,EAB FDC MPQ ∠=∠=∠,ADE BCG PNR △≌△≌△,AE BG PN ∴==,DAE CBG RPN ∠=∠=∠,PM PN ∴=,四边形ABCD 是平行四边形,45DAB DCB ∴∠=∠=︒,90MPN ∴∠=︒,MPN ∴△是等腰直角三角形,当PM 最小时,对角线MN 最小,即AE 取最小值,∴当AE BD ⊥时,AE 取最小值,过D 作DF AB ⊥于F ,平行四边形ABCD 的面积为6,3AB =,2DF ∴=,45DAB ∠=︒,2AF DF ∴==,1BF ∴=,BD ∴==DF AB AE BD ∴===,MN ∴==【提示】根据平移和翻折的性质得到MPN △是等腰直角三角形,于是得到当PM 最小时,对角线MN 最小,即AE 取最小值,当AE BD ⊥时,AE 取最小值,过D 作DF AB ⊥于F ,根据平行四边形的面积得到2DF =,根据等腰直角三角形的性质得到2AF DF ==,由勾股定理得到BD ==积得到DF AB AE BD === 【考点】平移的性质五、解答题26.【答案】(1)6005y x =-(2)果园多种10棵橙子树时,可使橙子的总产量最大,最大为60500个【解析】(1)平均每棵树结的橙子个数y (个)与x 之间的关系为:6005(0120)y x x =-≤<; (2)设果园多种x 棵橙子树时,可使橙子的总产量为w ,则225100600005(10)60500w x x x =-++=--+,则果园多种10棵橙子树时,可使橙子的总产量最大,最大为60500个.【提示】(1)根据每多种一棵树,平均每棵树就会少结5个橙子列式即可;(2)根据题意列出函数解析式,利用配方法把二次函数化为顶点式,根据二次函数的性质进行解答即可.【考点】二次函数的应用27.【答案】(1)见解析(2)①AE =②12GH EF = 【解析】(1)在Rt AHB △中,45ABC ∠=︒,AH BH ∴=,在BHD △和AHC △中,90AH BH BHD AHC DH CH =⎧⎪∠=∠=︒⎨⎪=⎩,BHD AHC ∴△≌△,BD AC ∴=.(2)①如图,在Rt AHC △中,tan 3C =,3AH CH∴=, 设CH x =,3BH AH x ∴==,4BC =,34x x ∴+=,1x ∴=,3AH ∴=,1CH =,由旋转知,90EHF BHD AHC ∠=∠=∠=︒,3EH AH ==,CH DH FH ==,EHA FHC ∴∠=∠,1EH FH AH HC==, EHA FHC ∴△≌△,EAH C ∴∠=∠,tan tan 3EAH C ∴∠==,过点H 作HP AE ⊥,3HP AP ∴=,2AE AP =,在Rt AHP △中222AP HP AH +=,2239AP AP ∴+=(),AP ∴=,AE ∴= ②由①有,AEH △和FHC △都为等腰三角形,设直线AH ,CG 相交于Q ,90GAH HCG ∴∠=∠=︒,AGQ CHQ ∴△∽△,AQ GQ CQ HQ∴=, AQ CQ GQ HQ∴=, AQC GQE ∠=∠,AQC GQH ∴△∽△,12sin30EF AC AQ GH GH GQ ∴====︒, 12GH EF ∴= 【提示】(1)先判断出AH BH =,再判断出BHD AHC △≌△即可;(2)①先根据tan 3C =,求出3AH =,1CH =,然后根据EHA FHC △≌△,得到3HP AP =,2AE AP =,最后用勾股定理即可;②先判断出AGQ CHQ △∽△,得到AQ CQ CQ HQ=,然后判断出AQC GQH ∽△,用相似比即可. 【考点】几何变换综合题28.【答案】(1)13a =,(4,0)A -,(2,0)B(2)直线l 的函数表达式为22y x =+或4433y x =--(3)能,(1,1)N -【解析】(1)抛物线与y 轴交于点8(0,)3C -. 833a ∴-=-,解得:13a =, 21(1)33y x ∴=+- 当0y =时,有21(1)303x +-=, 12x ∴=,24x =-,(4,0)A ∴-,(2,0)B(2)(4,0)A -,(2,0)B ,8(0,)3C -,(1,3)D --, 1181833(3)121022323ADH BOC ABCD OCDH S S S S ∴=++=⨯⨯++⨯+⨯⨯=△△四边形梯形. 从面积分析知,直线l 只能与边AD 或BC 相交,所以有两种情况:①当直线l 与边AD 相交于点1M 时,则1310310AHM S =⨯=△, 113()32M y ∴⨯⨯-=- 1=2M y ∴-,点1(2,2)M --,过点(1,0)H -和1(2,2)M --的直线l 的解析式为22y x =+. ②当直线l 与边BC 相交于点2M 时,同理可得点21(,2)2M -,过点(1,0)H -和21(,2)2M -的直线l 的解析式为4433y x =--. 综上所述:直线l 的函数表达式为22y x =+或4433y x =--(3)设12(,)P x x 、22(,)Q x y 且过点(1,0)H -的直线PQ 的解析式为y kx b =+,0k b ∴+=﹣,b k ∴=,y kx k ∴=+. 由2128333y kx k y x x =+⎧⎪⎨=+-⎪⎩, 2128()0333x k x k ∴+---=, 1223x x k ∴+=-+,212123y y kx k kx k k +=+++=,点M 是线段PQ 的中点,由中点坐标公式的点233(1,)22M k k -. 假设存在这样的N 点如图,直线DN PQ ∥,设直线DN 的解析式为3y kx k =+- 由23128333y kx k y x x =+-⎧⎪⎨=+-⎪⎩,解得:11x =-,231x k =-,2(3133)N k k ∴--, 四边形DMPN 是菱形,DN DM ∴=,22222233(3)3()()(3)22k k k k ∴+=++, 整理得:42340k k --=,210k +>,2340k ∴-=,解得k =, 0k <,k ∴=,(1,6)P ∴-,(1,2)M ,(1,1)N -,PM DN ∴==PM DN ∥,∴四边形DMPN 是平行四边形,DM DN =,∴四边形DMPN 为菱形,∴以DP 为对角线的四边形DMPN 能成为菱形,此时点N 的坐标为(1,1)--.【提示】(1)把点C 代入抛物线解析式即可求出a ,令0y =,列方程即可求出点A 、B 坐标. (2)先求出四边形ABCD 面积,分两种情形:①当直线l 边AD 相交与点1M 时,根据1310310AHM S =⨯=△,求出点1M 坐标即可解决问题. ②当直线l 边BC 相交与点2M 时,同理可得点2M 坐标.(3)设11(),P x y 、22(),Q x y 且过点(1,0)H -的直线PQ 的解析式为y kx b =+,得到b k =,利用方程组求出点M 坐标,求出直线DN 解析式,再利用方程组求出点N 坐标,列出方程求出k ,即可解决问题.【考点】二次函数综合题。
2024年四川省成都市中考数学试卷(附答案)
2024年四川省成都市中考数学试卷(附答案)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1.(4分)﹣5的绝对值是()A.5B.﹣5C.D.﹣2.(4分)如图所示的几何体是由5个大小相同的小立方块搭成,它的主视图是()A.B.C.D.3.(4分)下列计算正确的是()A.(3x)2=3x2B.3x+3y=6xyC.(x+y)2=x2+y2D.(x+2)(x﹣2)=x2﹣44.(4分)在平面直角坐标系xOy中,点P(1,﹣4)关于原点对称的点的坐标是()A.(﹣1,﹣4)B.(﹣1,4)C.(1,4)D.(1,﹣4)5.(4分)为深入贯彻落实《中共中央、国务院关于学习运用“千村示范、万村整治”工程经验有力有效推进乡村全面振兴的意见》精神,某镇组织开展“村BA”、村超、村晚等群众文化赛事活动,其中参赛的六个村得分分别为:55,64,51,50,61,55,则这组数据的中位数是()A.53B.55C.58D.646.(4分)如图,在矩形ABCD中,对角线AC与BD相交于点O,则下列结论一定正确的是()A.AB=AD B.AC⊥BD C.AC=BD D.∠ACB=∠ACD7.(4分)中国古代数学著作《九章算术》中记载了这样一个题目:今有共买进,人出半,盈四;人出少半,不足三.问人数,琎价各几何?其大意是:今有人合伙买进石,每人出钱,会多出4钱;每人出钱,又差了3钱.问人数,琎价各是多少?设人数为x,琎价为y,则可列方程组为()A.B.C.D.8.(4分)在▱ABCD中,按以下步骤作图:①以点B为圆心,以适当长为半径作弧,分别交BA,BC于点M,N;②分别以M,N为圆心,以大于MN的长为半径作弧,两弧在∠ABC内交于点O;③作射线BO,交AD于点E,交CD延长线于点F.若CD=3,DE=2,下列结论错误的是()A.∠ABE=∠CBE B.BC=5C.DE=DF D.=二、填空题(本大题共5个小题,每小题4分,共20分)9.(4分)若m,n为实数,且(m+4)2+=0,则(m+n)2的值为.10.(4分)分式方程的解是.11.(4分)如图,在扇形AOB中,OA=6,∠AOB=120°,则的长为.12.(4分)盒中有x枚黑棋和y枚白棋,这些棋除颜色外无其他差别.从盒中随机取出一枚棋子,如果它是黑棋的概率是,则的值为.13.(4分)如图,在平面直角坐标系xOy中,已知A(3,0),B(0,2),过点B作y轴的垂线l,P为直线l上一动点,连接PO,PA,则PO+PA的最小值为.三、解答题(本大题共5个小题,共48分)14.(12分)(1)计算:+2sin60°﹣(π﹣2024)0+|﹣2|;(2)解不等式组:.15.(8分)2024年成都世界园艺博览会以“公园城市美好人居”为主题,秉持“绿色低碳、节约持续、共享包容”的理念,以园艺为媒介,向世界人民传递绿色发展理念和诗意栖居的美好生活场景.在主会场有多条游园线路,某单位准备组织全体员工前往参观,每位员工从其中四条线路(国风古韵观赏线、世界公园打卡线、亲子互动慢游线、园艺小清新线)中选择一条.现随机选取部分员工进行了“线路选择意愿”的摸底调查,并根据调查结果绘制成如下统计图表.游园线路人数国风古韵观赏线44世界公园打卡线x亲子互动慢游线48园艺小清新线y根据图表信息,解答下列问题:(1)本次调查的员工共有人,表中x的值为;(2)在扇形统计图中,求“国风古韵观赏线”对应的圆心角度数;(3)若该单位共有2200人,请你根据调查结果,估计选择“园艺小清新线”的员工人数.16.(8分)中国古代运用“土圭之法”判别四季.夏至时日影最短,冬至时日影最长,春分和秋分时日影长度等于夏至和冬至日影长度的平均数.某地学生运用此法进行实践探索,如图,在示意图中,产生日影的杆子AB垂直于地面,AB长8尺.在夏至时,杆子AB在太阳光线AC照射下产生的日影为BC;在冬至时,杆子AB在太阳光线AD照射下产生的日影为BD.已知∠ACB=73.4°,∠ADB=26.6°,求春分和秋分时日影长度.(结果精确到0.1尺;参考数据:sin26.6°≈0.45,cos26.6°≈0.89,tan26.6°≈0.50,sin73.4°≈0.96,cos73.4°≈0.29,tan73.4°≈3.35)17.(10分)如图,在Rt△ABC中,∠C=90°,D为斜边AB上一点,以BD为直径作⊙O,交AC于E,F两点,连接BE,BF,DF.(1)求证:BC•DF=BF•CE;(2)若∠A=∠CBF,tan∠BFC=,AF=4,求CF的长和⊙O的直径.18.(10分)如图,在平面直角坐标系xOy中,直线y=﹣x+m与直线y=2x相交于点A(2,a),与x轴交于点B(b,0),点C在反比例函数y=(k<0)图象上.(1)求a,b,m的值;(2)若O,A,B,C为顶点的四边形为平行四边形,求点C的坐标和k的值;(3)过A,C两点的直线与x轴负半轴交于点D,点E与点D关于y轴对称.若有且只有一点C,使得△ABD与△ABE相似,求k的值.一、填空题(本大题共5个小题,每小题4分,共20分)19.(4分)如图,△ABC≌△CDE,若∠D=35°,∠ACB=45°,则∠DCE的度数为.20.(4分)若m,n是一元二次方程x2﹣5x+2=0的两个实数根,则m+(n﹣2)2的值为.21.(4分)在综合实践活动中,数学兴趣小组对1~n这n个自然数中,任取两数之和大于n的取法种数k进行了探究.发现:当n=2时,只有{1,2}一种取法,即k=1;当n=3时,有{1,3}和{2,3}两种取法,即k=2;当n=4时,可得k=4;…….若n=6,则k的值为;若n=24,则k的值为.22.(4分)如图,在Rt△ABC中,∠C=90°,AD是△ABC的一条角平分线,E为AD中点,连接BE.若BE=BC,CD=2,则BD=.23.(4分)在平面直角坐标系xOy中,A(x1,y1),B(x2,y2),C(x3,y3)是二次函数y=﹣x2+4x﹣1图象上三点.若0<x1<1,x2>4,则y1y2(填“>”或“<”);若对于m<x1<m+1,m+1<x2<m+2,m+2<x3<m+3,存在y1<y3<y2,则m的取值范围是.二、解答题(本大题共3个小题,共30分)24.(8分)推进中国式现代化,必须坚持不懈夯实农业基础,推进乡村全面振兴.某合作社着力发展乡村水果网络销售,在水果收获的季节,该合作社用17500元从农户处购进A,B两种水果共1500kg进行销售,其中A种水果收购单价10元/kg,B种水果收购单价15元/kg.(1)求A,B两种水果各购进多少千克;(2)已知A种水果运输和仓储过程中质量损失4%,若合作社计划A种水果至少要获得20%的利润,不计其他费用,求A种水果的最低销售单价.25.(10分)如图,在平面直角坐标系xOy中,抛物线L:y=ax2﹣2ax﹣3a(a>0)与x轴交于A,B两点(点A在点B的左侧),其顶点为C,D是抛物线第四象限上一点.(1)求线段AB的长;(2)当a=1时,若△ACD的面积与△ABD的面积相等,求tan∠ABD的值;(3)延长CD交x轴于点E,当AD=DE时,将△ADB沿DE方向平移得到△A′EB′.将抛物线L 平移得到抛物线L′,使得点A′,B′都落在抛物线L′上.试判断抛物线L′与L是否交于某个定点.若是,求出该定点坐标;若不是,请说明理由.26.(12分)数学活动课上,同学们将两个全等的三角形纸片完全重合放置,固定一个顶点,然后将其中一个纸片绕这个顶点旋转,来探究图形旋转的性质.已知三角形纸片ABC和ADE中,AB=AD=3,BC =DE=4,∠ABC=∠ADE=90°.【初步感知】(1)如图1,连接BD,CE,在纸片ADE绕点A旋转过程中,试探究的值.【深入探究】(2)如图2,在纸片ADE绕点A旋转过程中,当点D恰好落在△ABC的中线BM的延长线上时,延长ED交AC于点F,求CF的长.【拓展延伸】(3)在纸片ADE绕点A旋转过程中,试探究C,D,E三点能否构成直角三角形.若能,直接写出所有直角三角形CDE的面积;若不能,请说明理由.参考答案一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1.A.2.A.3.D.4.B.5.B.6.C.7.B.8.D.二、填空题(本大题共5个小题,每小题4分,共20分)9.【解答】解:∵m,n为实数,且(m+4)2+=0,∴m+4=0,n﹣5=0,解得m=﹣4,n=5,∴(m+n)2=(﹣4+5)2=12=1.故答案为:1.10.【解答】解:去分母得:x=3(x﹣2),去括号得:x=3x﹣6,解得:x=3,经检验x=3是分式方程的解.故答案为:x=3.11.【解答】解:的长为=4π.故答案为:4π.12.【解答】解:∵盒中有x枚黑棋和y枚白棋,共有(x+y)个棋,∵从盒中随机取出一枚棋子,如果它是黑棋的概率是,∴可得关系式=,∴8x=3x+3y,即5x=3y,∴=.故答案为:.13.【解答】解:取点O'(0,4),连接O'P,O'A,如图,∵B(0,2),过点B作y轴的垂线l,∴点O'(0,4)与点O(0,0)关于直线l对称,∴PO'=PO,∴PO+PA=PO'+PA≥O'A,即PO+PA的最小值为O'A的长,在Rt△O'AO中,∵OA=3,OO'=4,∴由勾股定理,得O'A===5,∴PO+PA的最小值为5.故答案为:5.三、解答题(本大题共5个小题,共48分)14.【解答】解:(1)原式=4+2×﹣1+2﹣=4+﹣1+2﹣=5;(2)解不等式①,得x≥﹣2,解不等式②,得x<9,所以不等式组的解集是﹣2≤x<9.15.【解答】解:(1)本次调查的员工共有48÷30%=160(人),表中x的值为160×=40;故答案为:160,40;(2)360°×=99°,答:在扇形统计图中,“国风古韵观赏线”对应的圆心角度数为99°;(3)2200×=385(人),答:估计选择“园艺小清新线”的员工人数为385人.16.【解答】解:在Rt△ABC中,AB=8尺,∠ACB=73.4°,∴tan73.4°=,∵tan73.4°≈3.35,∴BC≈≈2.4(尺);在Rt△ABD中,AB=8尺,∠ADB=26.6°,∴tan26.6°=,∵tan26.6°≈0.50,∴BD≈16.0(尺);∴CD=BD﹣BC=16.0﹣2.4=13.6(尺),观察可知,春分和秋分时日影顶端为CD的中点,∵2.4+=9.2(尺),∴春分和秋分时日影长度为9.2尺.17.【解答】(1)证明:∵BD是⊙O的直径,∴∠BFD=90°,∵∠C=90°,∴∠BFD=∠C,∵=,∴∠BEC=∠BDF,∴△BCE∽△BDF,∴=,∴BC•DF=BF•CE;(2)解:连接DE,过E作EH⊥BD于H,如图:∵∠C=90°,tan∠BFC=,∴=,∴BC=CF,∵∠A=∠CBF,∴90°﹣∠A=90°﹣∠CBF,即∠ABC=∠BFC,∴tan∠ABC=tan∠BFC=,∴=,∴AC=BC=×(CF)=5CF,∵AC﹣CF=AF=4,∴5CF﹣CF=4,∴CF=,∴BC=CF=5,AC=5CF=5,∴AB===5,由(1)知△BCE∽△BDF,∴∠CBE=∠DBF,∴∠CBE﹣∠FBE=∠DBF﹣∠FBE,即∠CBF=∠EBA,∵∠A=∠CBF,∴∠A=∠EBA,∴AE=BE,∴BH=AH=AB=,∵∠BEH=90°﹣∠EBA=90°﹣∠CBF=∠BFC,∴tan∠BEH=tan∠BFC=,∴=,即=,∴EH=,∵BD是⊙O的直径,∴∠BED=90°,∴∠EDH=90°﹣∠DEH=∠BEH,∴tan∠EDH=tan∠BEH=,∴=,即=,∴DH=,∴BD=DH+BH=+=3,∴⊙O的直径为3.答:CF的长为,⊙O的直径为3.18.【解答】解:(1)把A(2,a)代入y=2x得:a=2×2=4,∴A(2,4),把A(2,4)代入y=﹣x+m得:4=﹣2+m,∴m=6;∴直线y=﹣x+m为y=﹣x+6,把B(b,0)代入y=﹣x+6得:0=﹣b+6,∴b=6,∴a的值为4,m的值为6,b的值为6;(2)设C(t,),由(1)知A(2,4),B(6,0),而O(0,0),①当AC,BO为对角线时,AC,BO的中点重合,∴,解得,经检验,t=4,k=﹣16符合题意,此时点C的坐标为(4,﹣4);②当CB,AO为对角线时,CB,AO的中点重合,∴,解得,经检验,t=﹣4,k=﹣16符合题意,此时点C的坐标为(﹣4,4);③当CO,AB为对角线时,CO,AB的中点重合,∴,解得,∵k=32>0,∴这种情况不符合题意;综上所述,C的坐标为(4,﹣4)或(﹣4,4),k的值为﹣16;(3)如图:设直线AC解析式为y=px+q,把A(2,4)代入得:4=2p+q,∴q=4﹣2p,∴直线AC解析式为y=px+4﹣2p,在y=px+4﹣2p中,令y=0得x=,∴D(,0),∵E与点D关于y轴对称,∴E(,0),∵B(6,0),∴BE=6﹣=,BD=6﹣=,∵△ABD与△ABE相似,∴E只能在B左侧,∴∠ABE=∠DBA,故△ABD与△ABE相似,只需=即可,即BE•BD=AB2,∵A(2,4),B(6,0),∴AB2=32,∴×=32,解得p=1,经检验,p=1满足题意,∴直线AC的解析式为y=x+2,∵有且只有一点C,使得△ABD与△ABE相似,∴直线AC与反比例函数y=(k<0)图象只有一个交点,∴x+2=只有一个解,即x2+2x﹣k=0有两个相等实数根,∴Δ=0,即22+4k=0,解得k=﹣1,∴k的值为﹣1.一、填空题(本大题共5个小题,每小题4分,共20分)19.【解答】解:∵△ABC≌△CDE,∴∠ACB=∠CED=45°,∵∠D=35°,∴∠DCE=180°﹣∠CED﹣∠D=180°﹣45°﹣35°=100°,故答案为:100°.20.【解答】解:∵m,n是一元二次方程x2﹣5x+2=0的两个实数根,∴m2﹣5m+2=0,m+n=5,∴m2﹣5m=﹣2,n=5﹣m∴m+(n﹣2)2=m+(3﹣m)2=m2﹣5m+9=﹣2+9=7.故答案为:7.21.【解答】解:当n=6时,从1,2,3,4,5,6中,取两个数的和大于6,这两个数分别是{6,1},{6,2},{6,3},{6,4},{6,5},{5,2},{5,3},{5,4},{4,3},∴k=5+3+1=9;当n=24时,从1,2,3......22,23,24中,取两个数的和大于24,这两个数分别是:{24,1},{24,2}......{24,23},{23,2}{23,3}......{23,22},{22,3},{22,4}......{22,21},......{14,11},{14,12},{14,13},{13,12},∴k=23+21+19+......+3+1=144;故答案为:9,144.22.【解答】解:连接CE,过E作EF⊥BC于F,如图:设BD=x,则BC=BD+CD=x+2,∵∠ACB=90°,E为AD中点,∴CE=AE=DE=AD,∴∠CAE=∠ACE,∠ECD=∠EDC,∴∠CED=2∠CAD,∵BE=BC,∴∠ECD=∠BEC,∴∠BEC=∠EDC,∵∠ECD=∠BCE,∴△ECD∽△BCE,∴=,∠CED=∠CBE,∴CE2=CD•BC=2(x+2)=2x+4,∵AD平分∠CAB,∴∠CAB=2∠CAD,∴∠CAB=∠CED,∴∠CAB=∠CBE,∵∠ACB=90°=∠BFE,∴△ABC∽△BEF,∴=,∵CE=DE,EF⊥BC,∴CF=DF=CD=1,∵E为AD中点,∴AC=2EF,∴=,∴2EF2=(x+1)(x+2),∵EF2=CE2﹣CF2,∴=(2x+4)﹣12,解得x=或x=(小于0,舍去),∴BD=.故答案为:.23.【解答】解:∵y=﹣x2+4x﹣1=﹣(x﹣2)2+3,∴二次函数y=﹣x2+4x﹣1图象的对称轴为直线x=2,开口向下,∵0<x1<1,x2>4,∴2﹣x1<x2﹣2,即(x1,y1)比(x2,y2)离对称轴直线的水平距离近,∴y1>y2;∵m<x1<m+1,m+1<x2<m+2,m+2<x3<m+3,∴x1<x2<x3,∵对于m<x1<m+1,m+1<x2<m+2,m+2<x3<m+3,存在y1<y3<y2,∴x1<2,x3>2,且A(x1,y1)离对称轴最远,B(x2,y2)离对称轴最近,∴2﹣x1>x3﹣2>|x2﹣2|,∴x1+x3<4,且x2+x3>4,∵2m+2<x1+x3<2m+4,2m+3<x2+x3<2m+5,∴2m+2<4,且2m+5>4,解得﹣<m<1,故答案为:>,﹣<m<1.二、解答题(本大题共3个小题,共30分)24.【解答】解:(1)设A种水果购进x千克,B种水果购进y千克,根据题意得:,解得:.答:A种水果购进1000千克,B种水果购进500千克;(2)设A种水果的销售单价为m元/千克,根据题意得:1000×(1﹣4%)m﹣10×1000≥10×1000×20%,解得:m≥12.5,∴m的最小值为12.5.答:A种水果的最低销售单价为12.5元/千克.25.【解答】解:(1)在y=ax2﹣2ax﹣3a中,令y=0得0=ax2﹣2ax﹣3a,∴a(x﹣3)(x+1)=0,∵a>0,∴x=3或x=﹣1,∴A(﹣1,0),B(3,0),∴AB=4;(2)当a=1时,过D作DM∥y轴交x轴于M,DN∥x轴交AC于N,如图:∴y=x2﹣2x﹣3=(x﹣1)2﹣4,∴C(1,﹣4),由A(﹣1,0),C(1,﹣4)得直线AC解析式为y=﹣2x﹣2,设D(n,n2﹣2n﹣3),(0<n<3),在y=﹣2x﹣2中,令y=n2﹣2n﹣3得x=,∴N(,n2﹣2n﹣3),∴DN=n﹣=,=DN•|y A﹣y C|=××4=n2﹣1;∴S△ACD∵△ACD的面积与△ABD的面积相等,=AB•|y D|=×4×(﹣n2+2n+3)=﹣2n2+4n+6,而S△ABD∴n2﹣1=﹣2n2+4n+6,解得n=﹣1(舍去)或n=,∴D(,﹣),∴BM=3﹣=,DM=,∴tan∠ABD===;∴tan∠ABD的值为;(3)抛物线L′与L交于定点,理由如下:过D作DM⊥x轴于M,如图:设D(m,am2﹣2am﹣3a),则AM=m+1,DM=﹣am2+2am+3a,∵AD=DE,∴EM=AM=m+1,将△ADB沿DE方向平移得到△A'EB',相当于将△ADB向右平移(m+1)个单位,再向上平移|am2﹣2am ﹣3a|个单位,又A(﹣1,0),B(3,0),∴A'(m,﹣am2+2am+3a),B'(m+4,﹣am2+2am+3a),设抛物线L'解析式为y=ax2+bx+c(a>0),∵点A′,B'都落在抛物线L′上,∴解得:,∴抛物线L'解析式为y=ax2+(﹣2am﹣4a)x+6am+3a,由ax2﹣2ax﹣3a=ax2+(﹣2am﹣4a)x+6am+3a得:(m+1)x=3m+3,解得:x=3,∴抛物线L′与L交于定点(3,0).26.【解答】解:(1)∵AB=AD=3,BC=DE=4,∠ABC=∠ADE=90°,∴△ADE≌△ABC(SAS),AC=AE==5,∴∠DAE=∠BAC,∴∠DAE﹣∠DAC=∠BAC﹣∠DAC即∠CAE=∠BAD,∵==1,∴△ADB∽△AEC,∴=,∵AB=3,AC=5,∴=;(2)连接CE,延长BM交CE于点Q,连接AQ交EF于P,延长EF交BC于N,如图:同(1)得△ADB∽△AEC,∴∠ABD=∠ACE,∵BM是中线,∴BM=AM=CM=AC=,∴∠MBC=∠MCB,∵∠ABD+∠MBC=90°,∴∠ACE+∠MCB=90°,即∠BCE=90°,∴AB∥CE,∴∠BAM=∠QCM,∠ABM=∠CQM,又AM=CM,∴△BAM≌△QCM(AAS),∴BM=QM,∴四边形ABCQ是平行四边形,∵∠ABC=90°∴四边形ABCQ矩形,∴AB=CQ=3,BC=AQ=4,∠AQC=90°,PQ∥CN,∴EQ===3,∴EQ=CQ,∴PQ是△CEN的中位线,∴PQ=CN,设PQ=x,则CN=2x,AP=4﹣x,∵∠EPQ=∠APD,∠EQP=90°=∠ADP,EQ=AD=3,∴△EQP≌△ADP(AAS),∴EP=AP=4﹣x,∵EP2=PQ2+EQ2,∴(4﹣x)2=x2+32,解得:x=,∴AP=4﹣x=,CN=2x=,∵PQ∥CN,∴△APF∽△CNF,∴=,∴==,∵AC=5,∴=,∴CF=;方法2:∵BM是Rt△ABC斜边AC上的中线,∴AM=BM=CM=AC=,∴∠ABM=∠BAM,∵AB=AD,∴∠ABM=∠ADB,∴∠BAM=∠ADB,∵∠ABM=∠DBA,∴△ABM∽△DBA,∴=,即=,∴BD=,∴DM=BD﹣BM=﹣=,∵∠EAD=∠CAB=∠ABD=∠ADB,∴DM∥AE,∴△FDM∽△FEA,∴=,即=,解得FM=,∴CF=CM﹣FM=﹣=;(3)C,D,E三点能构成直角三角形,理由如下:①当AD在AC上时,DE⊥AC,此时△CDE是直角三角形,如图,=CD•DE=×(5﹣3)×4=4;∴S△CDE②当AD在CA的延长线上时,DE⊥AC,此时△CDE是直角三角形,如图,=CD•DE=×(5+3)×4=16;∴S△CDE③当DE⊥EC时,△CDE是直角三角形,过点A作AQ⊥EC于点Q,如图,∵AQ⊥EC,DE⊥EC,DE⊥AD,∴四边形ADEQ是矩形,∴AD=EQ=3,AQ=DE=4,∵AE=AC=5,∴EQ=CQ=CE,∴CE=3,∴CE=6,=AQ•CE=×4×6=12;∴S△CDE④当DC⊥EC时,△CDE是直角三角形,过点A作AQ⊥EC于点Q,交DE于点N,如图,∵DC⊥EC,AQ⊥EC,∴AQ∥DC,∵AC=AE,AQ⊥EC,∴EQ=CQ,∴NQ是△CDE的中位线,∴ND=NE=DE=2,CD=2NQ,∵∠AND=∠ENQ,∠ADN=∠EQN=90°,∴∠DAN=∠QEN,∴tan∠DAN=tan∠QEN,∴=,∴=,∴NQ=EQ,∵NQ2+EQ2=NE2,∴(EQ)2+EQ2=22,解得EQ=,∴CE=2EQ=,NQ=EQ=,∴CD=2NQ=,=CD•CE=××=.∴S△CDE综上所述,直角三角形CDE的面积为4或16或12或.。
四川省成都市中考数学试卷含答案
2016年四川省成都市中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分1.(3分)(2016•成都)在﹣3,﹣1,1,3四个数中,比﹣2小的数是()A.﹣3 B.﹣1 C.1 D.32.(3分)(2016•成都)如图所示的几何体是由5个大小相同的小立方块搭成,它的俯视图是()A.B.C.D.3.(3分)(2016•成都)成都地铁自开通以来,发展速度不断加快,现已成为成都市民主要出行方式之一.今年4月29日成都地铁安全运输乘客约181万乘次,又一次刷新客流纪录,这也是今年以来第四次客流纪录的刷新,用科学记数法表示181万为()A.18.1×105B.1.81×106C.1.81×107D.181×1044.(3分)(2016•成都)计算(﹣x3y)2的结果是()A.﹣x5y B.x6y C.﹣x3y2D.x6y25.(3分)(2016•成都)如图,l1∥l2,∠1=56°,则∠2的度数为()A.34° B.56°C.124°D.146°6.(3分)(2016•成都)平面直角坐标系中,点P(﹣2,3)关于x轴对称的点的坐标为()A.(﹣2,﹣3)B.(2,﹣3) C.(﹣3,﹣2)D.(3,﹣2)7.(3分)(2016•成都)分式方程=1的解为()A.x=﹣2 B.x=﹣3 C.x=2 D.x=38.(3分)(2016•成都)学校准备从甲、乙、丙、丁四个科创小组中选出一组代表学校参加2甲乙丙丁7s2 1A.甲B.乙C.丙D.丁9.(3分)(2016•成都)二次函数y=2x2﹣3的图象是一条抛物线,下列关于该抛物线的说法,正确的是()A.抛物线开口向下B.抛物线经过点(2,3)C.抛物线的对称轴是直线x=1 D.抛物线与x轴有两个交点10.(3分)(2016•成都)如图,AB为⊙O的直径,点C在⊙O上,若∠OCA=50°,AB=4,则的长为()A.πB.πC.π D.π二、填空题:本大题共4个小题,每小题4分,共16分11.(4分)(2016•成都)已知|a+2|=0,则a=.12.(4分)(2016•成都)如图,△ABC≌△A′B′C′,其中∠A=36°,∠C′=24°,则∠B=.13.(4分)(2016•成都)已知P1(x1,y1),P2(x2,y2)两点都在反比例函数y=的图象上,且x1<x2<0,则y1y2(填“>”或“<”).14.(4分)(2016•成都)如图,在矩形ABCD中,AB=3,对角线AC,BD相交于点O,AE垂直平分OB于点E,则AD的长为.三、解答题:本大共6小题,共54分15.(12分)(2016•成都)(1)计算:(﹣2)3+﹣2sin30°+(2016﹣π)0(2)已知关于x的方程3x2+2x﹣m=0没有实数解,求实数m的取值范围.16.(6分)(2016•成都)化简:(x﹣)÷.17.(8分)(2016•成都)在学习完“利用三角函数测高”这节内容之后,某兴趣小组开展了测量学校旗杆高度的实践活动,如图,在测点A处安置测倾器,量出高度AB=1.5m,测得旗杆顶端D的仰角∠DBE=32°,量出测点A到旗杆底部C的水平距离AC=20m,根据测量数据,求旗杆CD的高度.(参考数据:sin32°≈0.53,cos32°≈0.85,tan32°≈0.62)18.(8分)(2016•成都)在四张编号为A,B,C,D的卡片(除编号外,其余完全相同)的正面分别写上如图所示正整数后,背面朝上,洗匀放好,现从中随机抽取一张(不放回),再从剩下的卡片中随机抽取一张.(1)请用树状图或列表的方法表示两次抽取卡片的所有可能出现的结果(卡片用A,B,C,D表示);(2)我们知道,满足a2+b2=c2的三个正整数a,b,c成为勾股数,求抽到的两张卡片上的数都是勾股数的概率.19.(10分)(2016•成都)如图,在平面直角坐标xOy中,正比例函数y=kx的图象与反比例函数y=的图象都经过点A(2,﹣2).(1)分别求这两个函数的表达式;(2)将直线OA向上平移3个单位长度后与y轴交于点B,与反比例函数图象在第四象限内的交点为C,连接AB,AC,求点C的坐标及△ABC的面积.20.(10分)(2016•成都)如图,在Rt△ABC中,∠ABC=90°,以CB为半径作⊙C,交AC于点D,交AC的延长线于点E,连接ED,BE.(1)求证:△ABD∽△AEB;(2)当=时,求tanE;(3)在(2)的条件下,作∠BAC的平分线,与BE交于点F,若AF=2,求⊙C的半径.四、填空题:每小题4分,共20分21.(4分)(2016•成都)第十二届全国人大四次会议审议通过的《中华人民共和国慈善法》将于今年9月1日正式实施,为了了解居民对慈善法的知晓情况,某街道办从辖区居民中随机选取了部分居民进行调查,并将调查结果绘制成如图所示的扇形图.若该辖区约有居民9000人,则可以估计其中对慈善法“非常清楚”的居民约有人.22.(4分)(2016•成都)已知是方程组的解,则代数式(a+b)(a﹣b)的值为.23.(4分)(2016•成都)如图,△ABC内接于⊙O,AH⊥BC于点H,若AC=24,AH=18,⊙O的半径OC=13,则AB=.24.(4分)(2016•成都)实数a,n,m,b满足a<n<m<b,这四个数在数轴上对应的点分别为A,N,M,B(如图),若AM2=BM•AB,BN2=AN•AB,则称m为a,b的“大黄金数”,n为a,b的“小黄金数”,当b﹣a=2时,a,b的大黄金数与小黄金数之差m﹣n=.25.(4分)(2016•成都)如图,面积为6的平行四边形纸片ABCD中,AB=3,∠BAD=45°,按下列步骤进行裁剪和拼图.第一步:如图①,将平行四边形纸片沿对角线BD剪开,得到△ABD和△BCD纸片,再将△ABD纸片沿AE剪开(E为BD上任意一点),得到△ABE和△ADE纸片;第二步:如图②,将△ABE纸片平移至△DCF处,将△ADE纸片平移至△BCG处;第三步:如图③,将△DCF纸片翻转过来使其背面朝上置于△PQM处(边PQ与DC重合,△PQM和△DCF在DC同侧),将△BCG纸片翻转过来使其背面朝上置于△PRN处,(边PR与BC重合,△PRN和△BCG在BC同侧).则由纸片拼成的五边形PMQRN中,对角线MN长度的最小值为.五、解答题:共3个小题,共30分26.(8分)(2016•成都)某果园有100颗橙子树,平均每颗树结600个橙子,现准备多种一些橙子树以提高果园产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子,假设果园多种了x棵橙子树.(1)直接写出平均每棵树结的橙子个数y(个)与x之间的关系;(2)果园多种多少棵橙子树时,可使橙子的总产量最大?最大为多少个?27.(10分)(2016•成都)如图①,△ABC中,∠ABC=45°,AH⊥BC于点H,点D在AH上,且DH=CH,连结BD.(1)求证:BD=AC;(2)将△BHD绕点H旋转,得到△EHF(点B,D分别与点E,F对应),连接AE.①如图②,当点F落在AC上时,(F不与C重合),若BC=4,tanC=3,求AE的长;②如图③,当△EHF是由△BHD绕点H逆时针旋转30°得到时,设射线CF与AE相交于点G,连接GH,试探究线段GH与EF之间满足的等量关系,并说明理由.28.(12分)(2016•成都)如图,在平面直角坐标系xOy中,抛物线y=a(x+1)2﹣3与x 轴交于A,B两点(点A在点B的左侧),与y轴交于点C(0,﹣),顶点为D,对称轴与x轴交于点H,过点H的直线l交抛物线于P,Q两点,点Q在y轴的右侧.(1)求a的值及点A,B的坐标;(2)当直线l将四边形ABCD分为面积比为3:7的两部分时,求直线l的函数表达式;(3)当点P位于第二象限时,设PQ的中点为M,点N在抛物线上,则以DP为对角线的四边形DMPN能否为菱形?若能,求出点N的坐标;若不能,请说明理由.2016年四川省成都市中考数学试卷参考答案一、选择题1.A2.C3.B4.D5.C6.A7.B8.C9.D10.B二、填空题11.﹣212.120°13.>14.3三、解答题15.m<16.解:原式=•=•=x+1.17.解:由题意得AC=20米,AB=1.5米,∵∠DBE=32°,∴DE=BEtan32°≈20×0.62=12.4米,∴CD=DE+CE=DE+AB=12.4+1.5≈13.9(米).答:旗杆CD的高度约13.9米.18.解:(1)画树状图为:共有12种等可能的结果数;(2)抽到的两张卡片上的数都是勾股数的结果数为6,所以抽到的两张卡片上的数都是勾股数的概率==.19.解:(1)根据题意,将点A(2,﹣2)代入y=kx,得:﹣2=2k,解得:k=﹣1,∴正比例函数的解析式为:y=﹣x,将点A(2,﹣2)代入y=,得:﹣2=,解得:m=﹣4;∴反比例函数的解析式为:y=﹣;(2)直线OA:y=﹣x向上平移3个单位后解析式为:y=﹣x+3,则点B的坐标为(0,3),联立两函数解析式,解得:或,∴第四象限内的交点C的坐标为(4,﹣1),∴S△ABC=×(1+5)×4﹣×5×2﹣×2×1=6.20.解:(1)∵∠ABC=90°,∴∠ABD=90°﹣∠DBC,由题意知:DE是直径,∴∠DBE=90°,∴∠E=90°﹣∠BDE,∵BC=CD,∴∠DBC=∠BDE,∴∠ABD=∠E,∵∠A=∠A,∴△ABD∽△AEB;(2)∵AB:BC=4:3,∴设AB=4,BC=3,∴AC==5,∵BC=CD=3,∴AD=AC﹣CD=5﹣3=2,由(1)可知:△ABD∽△AEB,∴==,∴AB2=AD•AE,∴42=2AE,∴AE=8,在Rt△DBE中tanE====;(3)过点F作FM⊥AE于点M,∵AB:BC=4:3,∴设AB=4x,BC=3x,∴由(2)可知;AE=8x,AD=2x,∴DE=AE﹣AD=6x,∵AF平分∠BAC,∴=,∴==,∵tanE=,∴cosE=,sinE=,∴=,∴BE=,∴EF=BE=,∴sinE==,∴MF=,∵tanE=,∴ME=2MF=,∴AM=AE﹣ME=,∵AF2=AM2+MF2,∴4=+,∴x=,∴⊙C的半径为:3x=.四、填空题21.解:根据题意得:9000×(1﹣30%﹣15%﹣×100%)=9000×30%=2700(人).答:可以估计其中对慈善法“非常清楚”的居民约有2700人.故答案为:2700.22.﹣823..24.﹣4.25..五、解答题26.解:(1)y=600﹣5x(0≤x<120);(2)设果园多种x棵橙子树时,可使橙子的总产量为w,则w=(600﹣5x)(100+x)=﹣5x2+100x+60000=﹣5(x﹣10)2+60500,则果园多种10棵橙子树时,可使橙子的总产量最大,最大为60500个.27.解:(1)在Rt△AHB中,∠ABC=45°,∴AH=BH,在△BHD和△AHC中,,∴△BHD≌△AHC,∴BD=AC,(2)①如图,在Rt△AHC中,∵tanC=3,∴=3,设CH=x,∴BH=AH=3x,∵BC=4,∴3x+x=4,∴x=1,∴AH=3,CH=1,由旋转知,∠EHF=∠BHD=∠AHC=90°,EH=AH=3,CH=DH=FH,∴∠EHA=∠FHC,,∴△EHA≌△FHC,∴∠EAH=∠C,∴tan∠EAH=tanC=3,过点H作HP⊥AE,∴HP=3AP,AE=2AP,在Rt△AHP中,AP2+HP2=AH2,∴AP2+(3AP)2=9,∴AP=,∴AE=;②由①有,△AEH和△FHC都为等腰三角形,∴∠GAH=∠HCG=90°,∴△AGQ∽△CHQ,∴,∴,∵∠AQC=∠GQE,∴△AQC∽△GQH,∴=sin30°=.28.解:(1)∵抛物线与y轴交于点C(0,﹣).∴a﹣3=﹣,解得:a=,∴y=(x+1)2﹣3当y=0时,有(x+1)2﹣3=0,∴x1=2,x2=﹣4,∴A(﹣4,0),B(2,0).(2)∵A(﹣4,0),B(2,0),C(0,﹣),D(﹣1,﹣3)∴S四边形ABCD=S△ADH+S梯形OCDH+S△BOC=×3×3+(+3)×1+×2×=10.从面积分析知,直线l只能与边AD或BC相交,所以有两种情况:①当直线l边AD相交与点M 1时,则S=×10=3,∴×3×(﹣y)=3∴y=﹣2,点M1(﹣2,﹣2),过点H(﹣1,0)和M1(﹣2,﹣2)的直线l的解析式为y=2x+2.②当直线l边BC相交与点M2时,同理可得点M2(,﹣2),过点H(﹣1,0)和M2(,﹣2)的直线l的解析式为y=﹣x﹣.综上所述:直线l的函数表达式为y=2x+2或y=﹣x﹣.(3)设P(x1,y1)、Q(x2,y2)且过点H(﹣1,0)的直线PQ的解析式为y=kx+b,∴﹣k+b=0,∴b=k,∴y=kx+k.由,∴+(﹣k)x﹣﹣k=0,∴x1+x2=﹣2+3k,y1+y2=kx1+k+kx2+k=3k2,∵点M是线段PQ的中点,∴由中点坐标公式的点M(k﹣1,k2).假设存在这样的N点如图,直线DN∥PQ,设直线DN的解析式为y=kx+k﹣3由,解得:x1=﹣1,x2=3k﹣1,∴N(3k﹣1,3k2﹣3)∵四边形DMPN是菱形,∴DN=DM,∴(3k)2+(3k2)2=()2+()2,整理得:3k4﹣k2﹣4=0,∵k2+1>0,∴3k2﹣4=0,解得k=±,∵k<0,∴k=﹣,∴P(﹣3﹣1,6),M(﹣﹣1,2),N(﹣2﹣1,1)∴PM=DN=2,∵PM∥DN,∴四边形DMPN是平行四边形,∵DM=DN,∴四边形DMPN为菱形,∴以DP为对角线的四边形DMPN能成为菱形,此时点N的坐标为(﹣2﹣1,1).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)分别求这两个函数的表达式; (2)将直线 OA 向上平移 3 个单位长度后与 y 轴交于点 B,与反比例函数图象在 第四象限内的交点为 C,连接 AB,AC,求点 C 的坐标及△ABC 的面积.
20. (10 分)如图,在 Rt△ABC 中,∠ABC=90°,以 CB 为半径作⊙C,交 AC 于点 D,交 AC 的延长线于点 E,连接 BD,BE. (1)求证:△ABD∽△AEB; (2)当 = 时,求 tanE;
2016 年四川省成都市中考数学试卷
一、选择题:本大题共 10 小题,每小题 3 分,共 30 分 1. (3 分)在﹣3,﹣1,1,3 四个数中,比﹣2 小的数是( A.﹣3 B.﹣1 C.1 D.3 )
2. (3 分)如图所示的几何体是由 5 个大小相同的小立方块搭成,它的俯视图是 ( )
A.
B.
7. (3 分)分式方程 A.x=﹣2 B.x=﹣3
8. (3 分)学校准备从甲、乙、丙、丁四个科创小组中选出一组代表学校参加青
少年科技创新大赛,各组的平时成绩的平均数 (单位:分)及方差 s2 如表所示: 甲 7 s2 1 乙 8 1.2 丙 8 1 丁 7 1.8 )
如果要选出一个成绩较好且状态稳定的组去参赛,那么应选的组是( A.甲 B.乙 C.丙 D.丁
9. (3 分)二次函数 y=2x2﹣3 的图象是一条抛物线,下列关于该抛物线的说法, 正确的是( )
A.抛物线开口向下 B.抛物线经过点(2,3) C.抛物线的对称轴是直线 x=1 D.抛物线与 x 轴有两个交点 10. (3 分)如图,AB 为⊙O 的直径,点 C 在⊙O 上,若∠OCA=50°,AB=4,则 的长为( )
17. (8 分)在学习完“利用三角函数测高”这节内容之后,某兴趣小组开展了测量 学校旗杆高度的实践活动,如图,在测点 A 处安置测倾器,量出高度 AB=1.5m, 测得旗杆顶端 D 的仰角∠DBE=32°, 量出测点 A 到旗杆底部 C 的水平距离 AC=20m, 根据测量数据, 求旗杆 CD 的高度. (参考数据: sin32°≈0.53, cos32°≈0.85, tan32° ≈0.62)
25. (4 分)如图,面积为 6 的平行四边形纸片 ABCD 中,AB=3,∠BAD=45°,按 下列步骤进行裁剪和拼图.
18. (8 分)在四张编号为 A,B,C,D 的卡片(除编号外,其余完全相同)的正 面分别写上如图所示正整数后,背面朝上,洗匀放好,现从中随机抽取一张(不 放回) ,再从剩下的卡片中随机抽取一张.
(1)请用树状图或列表的方法表示两次抽取卡片的所有可能出现的结果(卡片 用 A,B,C,D 表示) ; (2)我们知道,满足 a2+b2=c2 的三个正整数 a,b,c 成为勾股数,求抽到的两 张卡片上的数都是勾股数的概率. 19. (10 分)如图,在平面直角坐标 xOy 中,正比例函数 y=kx 的图象与反比例 函数 y= 的图象都经过点 A(2,﹣2) .
A.
π B.
π C. π D.
π
二、填空题:本大题共 4 个小题,每小题 4 分,共 16 分 11. (4 分)已知|a+2|=0,则 a= . .
12. (4 分)如图,△ABC≌△A′B′C′,其中∠A=36°,∠C′=24°,则∠B=
13. (4 分)已知 P1(x1,y1) ,P2(x2,y2)两点都在反比例函数 y= 的图象上, 且 x1<x2<0,则 y1 y2(填“>”或“<”) .
4
22. (4 分)已知 为 .
是方程组
的解,则代数式(a+b) (a﹣b)的值
23. (4 分)如图,△ABC 内接于⊙O,AH⊥BC 于点 H,若 AC=24,AH=18,⊙O 的半径 OC=13,则 AB= .
24. (4 分)实数 a,n,m,b 满足 a<n<m<b,这四个数在数轴上对应的点分 别为 A,N,M,B(如图) ,若 AM2=BM•AB,BN2=AN•AB,则称 m 为 a,b 的“大 黄金数”,n 为 a,b 的“小黄金数”,当 b﹣a=2 时,a,b 的大黄金数与小黄金数 之差 m﹣n= .
A.18.1×105
4. (3 分)计算(﹣x3y)2 的结果是( A.﹣x5y B.x6y C.﹣x3y2 D.x6y2
5. (3 分)如图,l1∥l2,∠1=56°,则∠2 的度数为(
)
A.34° B.56° C.124°D.146° 6. (3 分) 平面直角坐标系中, 点 P(﹣2,3)关于 x 轴对称的点的坐标为( A. (﹣2,﹣3) B. (2,﹣3) C. (﹣3,﹣2) =1 的解为( C.x=2 D.x=3 ) D. (3,﹣2) )
C.
D.
3. (3 分)成都地铁自开通以来,发展速度不断加快,现已成为成都市民主要出 行方式之一.今年 4 月 29 日成都地铁安全运输乘客约 181 万乘次,又一次刷新 客流纪录, 这也是今年以来第四次客流纪录的刷新, 用科学记数法表示 181 万为 ( ) B.1.81×106 C.1.81×107 ) D.181×104
14. (4 分)如图,在矩形 ABCD 中,AB=3,对角线 AC,BD 相交于点 O,AE 垂 直平分 OB 于点 E,则 AD 的长为 .
2
三、解答题:本大题共 6 小题,共 54 分 15. (12 分) (1)计算: (﹣2)3+ ﹣2sin30°+(2012+2x﹣m=0 没有实数解,求实数 m 的取值范围. 16. (6 分)化简: (x﹣ )÷ .
(3)在(2)的条件下,作∠BAC 的平分线,与 BE 交于点 F,若 AF=2,求⊙C 的半径.
四、填空题:每小题 4 分,共 20 分 21. (4 分)第十二届全国人大四次会议审议通过的《中华人民共和国慈善法》 将于今年 9 月 1 日正式实施, 为了了解居民对慈善法的知晓情况,某街道办从辖 区居民中随机选取了部分居民进行调查,并将调查结果绘制成如图所示的扇形 图.若该辖区约有居民 9000 人,则可以估计其中对慈善法“非常清楚”的居民约 有 人.