2019年四川省成都市中考数学试卷及解析

合集下载

2019年四川省成都市中考数学试题(含解析)

2019年四川省成都市中考数学试题(含解析)

2019年四川省成都市初中毕业、升学考试数学(满分150分,考试时间120分钟)一、选择题:本大题共10小题,每小题3分,共30分.不需写出解答过程,请把最后结果填在题后括号内.1.(2019四川省成都市,1,3)比-3大5的数是(A)-15 (B)-8 (C)2 (D)8【答案】C【解析】列式子计算:-3+5=2,故选C【知识点】有理数加法2.(2019四川省成都市,2,3)如图所示的几何体是由6个大小相同的小立方块搭成,它的左视图是(A)(B)(C)(D)【答案】B【解析】从左面看,上层有1个,下层有2个,故选B.【知识点】三视图3.(2019四川省成都市,3,3)2019年4月10日,人类首张黑洞照片面世,该黑洞位于室女座一个巨椭圆星系M87的中心,距离地球约5500万光年,将数据5500万用科学记数法表示为(A)5500×104(B)55×106(C)5.5×107(D)5.5×108【答案】C【解析】用科学记数法可以把一个数表示a×10n的形式,其中1≤a<10,n的值可由小数点移动情况来决定,若原数大于1,n为正整数;若原数小于1,则n为负整数;小数点移动几位,n的绝对值就是几.【知识点】科学记数法4.(2019四川省成都市,4,3)在平面直角坐标系中,将点(-2,3)向右平移4个单位长度后得到的点的坐标为(A)(2,3)(B)(-6,3)(C)(-2,7)(D)(-2,-1)【答案】A【解析】点的坐标向右(左)平移a个单位,则点的横坐标加(减)a,本题中点向右平移了4个单位,故横坐标加4,纵坐标不变,选A.【知识点】点平移的坐标变化规律5.(2019四川省成都市,5,3)将等腰直角三角形纸片和矩形纸片按如图方式叠放在一起,若∠1=30°,则∠2的度数为(A)10°(B)15°(C)20°(D)30°【答案】B【解析】由平行线的性质可得∠1的内错角也为30°,再用45°减去30°即得∠2度数,故选B . 【知识点】平行线的性质;等腰直角三角形的性质6.(2019四川省成都市,6,3)下列计算正确的是 (A )5ab-3a=2b (B )(-3a 2b )2=6a 4b 2 (C )(a-1)2=a 2-1 (D )2a 2b ÷b=2a 2 【答案】D【解析】选项A 不是同类项,不能合并;选项B 中-3的平方不能是6;选项C 中完全平方公式用错;D 选项符合单项式除法法则,故选D.【知识点】幂的乘方;积的乘方;合并同类项;单项式除法法则7.(2019四川省成都市,7,3)分式方程1215=+--xx x 的解为 (A )x=-1 (B )x=1 (C )x=2 (D )x=-2【答案】A【解析】通过去分母在方程两边同时乘以x (x-1),将分式方程转化为一元一次方程,通过解一元一次方程求得分式方程的解,通过检验验证是否有解. 【知识点】解分式方程8.(2019四川省成都市,8,3)某校开展了主题为“青春·梦想”的艺术作品征集活动,从九年级五个班收集到的作品数量(单位:件)分别为:42,50,45,46,50,则这组数据的中位数是 (A )42件 (B )45件 (C )46件 (D )50件 【答案】C【思路分析】将所有数据按照从小到大(或从大到小)排列,位于最中间的数或者位于最中间的两个数的平均数即为所求中位数.【解题过程】将5个数据按照从小到大排列:42,45,46,50,50.位于最中间的数是46,故选C. 【知识点】中位数9.(2019四川省成都市,9,3)如图,正五边形ABCDE 内接于⊙O ,P 为DE 上的一点(点P 不与点D 重合),则∠CPD 的度数为(A )30° (B )36° (C )60° (D )72°【答案】B【思路分析】求圆周角的度数,可以考虑求所对弧对的圆心角的度数,利用一条弧所对的圆周角等于它所对的圆心角的一半求解.【解题过程】连接OC 、OD ,∵五边形ABCDE 是正五边形,∴∠COD=72°,∴∠CPD=36°,故选B. 【知识点】正多边形与圆;圆周角定理E DCBOAP10.(2019四川省成都市,10,3)如图,二函数y=ax 2+bx+c 的图象经过点A (1,0),B (5,0),下列说法正确的是(A )c <0 (B )b 2-4ac <0 (C )a-b+c <0 (D )图象的对称轴是直线x=3【答案】D【思路分析】根据二次函数图象的性质及特征点的坐标判断选项的正确性.【解题过程】根据图象,显然c >0,故A 错;抛物线与x 轴有两个交点,则Δ>0,故B 错;当x=-1时,函数值y >0,所以a-b+c >0,故C 错;A 、B 两点的纵坐标相同,其中点横坐标为3,故D 正确. 【知识点】二次函数图象的性质二、填空题:本大题共4小题,每小题3分,共12分.不需写出解答过程,请把最后结果填在题中横线上. 11.(2019四川省成都市,11,3)若m-1与-2互为相反数,则m 的值为_______. 【答案】1【解析】由两数互为相反数,其和为零列出方程:m+1-2=0,解m=1. 【知识点】相反数;一元一次方程应用 12.(2019四川省成都市,12,3)如图,在△ABC 中,AB=AC ,点D ,E 都在边BC 上,∠BAD=∠CAE ,若BD=9,则CE 点长为_________.B【答案】9【解析】∵AB=AC ,∴∠B=∠C ,∵∠BAD=∠CAE ,∴△ABD ≌△AEC ,∴CE=BD=9. 【知识点】等腰三角形的性质;全等三角形的判定和性质 13.(2019四川省成都市,13,3)已知一次函数y=(k-3)x+1的图象经过一、二、四象限,则k 的取值范围是_______. 【答案】k <3【解析】一次函数同时经过了二、四象限,所以k-3<0,解得k <3. 【知识点】一次函数图象的性质14.(2019四川省成都市,14,3)如图,ABCD 的对角线AC 与BD 相交于点O ,按以下步骤作图:①以点A 为圆心,以任意长为半径作弧,分别交AO ,AB 于点M ,N ;②以点O 为圆心,以AM 长为半径作弧,交OC 于点M ′;③以点M ′为圆心,以MN 长为半径作弧,在∠COB 内部交前面的弧于点N ′;④过点N ′作射线ON ′交BC 于点E.若AB=8,则线段OE 的长为________.A【答案】4【解析】根据尺规作图可以判定∠COE=∠CAB ,所以OE ∥AB ,可得OE 为△CAB 的中位线,从而得到OE 等于AB 的一半.【知识点】尺规作图;三角形中位线三、解答题(本大题共6小题,满分102分,解答应写出文字说明、证明过程或演算步骤) 15.(2019四川省成都市,15,12)(本小题满分12分,每题6分)(1)计算:(π-2)0-2cos30°-16+3-1. (2)解不等式组:⎪⎩⎪⎨⎧+--≤-②①(x x x x 21142554)23【思路分析】(1)利用零指数幂、特殊角三角函数值、二次根式化简、去绝对值等知识逐项求得各项结果,相加即可;(2)通过解不等式①和不等式②得到两个解集,求公共解集即可. 【解题过程】(1)原式=1-2×23-4+3-1=-4 (2)解不等式①得x ≥-1,解不等式②得x <2,故不等式组的解集为-1≤x <2. 【知识点】零指数幂;特殊角三角函数值;二次根式化简;绝对值;解不等式组16.(2019四川省成都市,16,6)(本小题满分6分)先化简,再求值:621234-12++-÷⎪⎭⎫ ⎝⎛+x x x x ,其中x=2+1.【思路分析】先利用分式的加减乘除运算法则将分式化简,再将x 值代入求解. 【解题过程】()()1213231)3(2)1(3433621234-1222-=-+⨯+-=+-÷⎪⎭⎫ ⎝⎛+-++=++-÷⎪⎭⎫ ⎝⎛+x x x x x x x x x x x x x x 当x=2+1时,原式=22=2【知识点】分式的加减;分式的乘除;二次根式化简 17.(2019四川省成都市,17,8)(本小题满分8分)随着科技的进步和网络资源的丰富,在线学习已经成为更多人的自主学习选择,某校计划为学生提供以下四类在线学习方式:在线阅读,在线听课,在线答题和在线讨论,为了解学生需求,该校随机对本校部分学生进行了“你对哪类在线学习方式最感兴趣”的调查,并根据调查结果绘制成如下两幅不完整的统计图. 根据图中信息解答下列问题:(1)求本次调查的学生总人数,并补全条形统计图;(2)求扇形统计图中“在线讨论”对应的扇形圆心角的度数;(3)该校共有学生2100人,请你估计该校对“在线阅读”最感兴趣的学生人数.3642483024181260在线答题在线讨论在线阅读在线听课人数【思路分析】(1)由在线答题的人数占总人数的百分比及人数求出总人数,再求出在线听课的人数,补充完整条形统计图;(2)用在线讨论的人数除以总人数求出百分比,用这个百分比乘以360°得到圆心角度数;(3)求出在线阅读人数的百分比,乘以该校总人数即可. 【解题过程】(1)18÷20%=90;90-24-18-12=36,补全图如下:361218243642483024181260在线答题在线讨论在线阅读在线听课人数方式(2)360×9012=48° (3)2100×9024=560答:估计该校对“在线阅读”最感兴趣的学生人数大约有560人. 【知识点】条形统计图;扇形统计图;用样本估计总体18.(2019四川省成都市,18,8)(本小题满分8分)2019年成都马拉松成为世界马拉松大满贯联盟的候选赛事,这大幅提升了成都市的国际影响力.如图,在一场马拉松比赛中,某人在大楼A 处测得起点拱门CD 的顶部C 的俯角为35°,底部D 的俯角为45°,如果A 处离地面的高度AB=20米,求起点拱门CD 的高度.(结果精确到1米:参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70)【思路分析】过点C 作CE ⊥AB 于点E ,在Rt △ADB 中求出BD ,在Rt △ACE 中求AE ,用AB 减去AE 即可. 【解题过程】过点C 作CE ⊥AB 于点E ,在RtABD 中,BD=45tan AB=20,∴CE=20,在Rt △ACE 中,AE=CE · tan35°=20×0.70=14,∴CD=BE=20-14=6.答:拱门高6米.【知识点】解直角三角形的应用19.(2019四川省成都市,19,10)(本小题满分10分)如图,在平面直角坐标系xOy 中,一次函数y=21x+5和Ey=-2x 的图象相交于点A ,反比例函数y=xk的图象经过点A. (1)求反比例函数的表达式; (2)设一次函数y=21x+5点图象与反比例函数y=xk的图象的另一个交点为B ,连接OB ,求△ABO 的面积.x【思路分析】(1)先通过一次函数y=21x+5和y=-2x 的图象求出交点A 的坐标,将点A 坐标代入y=xk求出k 值;(2) 通过一次函数y=21x+5与反比例函数组成的方程组求出B 点坐标,进而求△OAB 的面积. 【解题过程】解:(1)解方程组⎪⎩⎪⎨⎧-=+=x y x y 2521得⎩⎨⎧=-=42y x ,∴点A (-2,4),将点A 坐标代入y=x k 得k=-8,故反比例函数解析式为y=x8-(2)解方程组⎪⎪⎩⎪⎪⎨⎧-=+=x y x y 8521得⎩⎨⎧==1y 8-x ,∴点B (-8,1),设直线AB 与x 轴交于点F ,与y 轴交于点G ,当x=0时,y=5,当y=0时,x=-10,故F (-10,0),G (0,5),∴S △FOG =21×5×10=25,S △FBO =21×1×10=5,S △AOG =21×2×5=5,∴S △AOB =25-5-5=15.x【知识点】一次函数;反比例函数20.(2019四川省成都市,20,10)(本小题满分10分)如图,AB 为⊙O 的直径,C ,D 为圆上的两点,OC ∥BD ,弦AD ,BC 相交于点E. (1)求证:=AC CD(2)若CE=1,EB=3,求⊙O 的半径;(3)在(2)的条件下,过点C 作⊙O 的切线,交BA 的延长线于点P ,过点P 作PQ ∥CB 交⊙O 于F ,Q 两点(点F 在线段PQ 上),求PQ 的长.BA【思路分析】(1)连接OD ,利用证明两条弧所对的圆心角相等证明弧等;(2)通过已知证明△CBA ∽△CAE 得比例式求CA ,再进一步利用勾股定理求解;(3)根据已知证明PC ∥AE ,得比例式求PA ,进而求PO ,再证△OHP ∽△ACB 列比例式求OH 、PH ,进而利用勾股定理求HQ ,得PQ.【解题过程】解:(1)连接OD ∵OC ∥BD , ∴∠OCB=∠DBC ∵OB=OC,∴∠OCB=∠OBC ∴∠OBC=∠DBC ∴∠AOC=∠COD ∴=AC CD(2)连接AC ,∵=AC CD ∴∠CBA=∠CAD ∵∠BCA=∠ACE ∴△CBA ∽△CAE ∴CA CBCE CA=∴CA 2=CE ·CB=CE ·(CE+EB )=1×(1+3)=4 ∴CA=2∵AB 为⊙O 的直径 ∴∠ACB=90°在Rt △ACB 中,由勾股定理,得2222=2+4=25CA CB +∴⊙O 5(3)如图,设AD 与CO 相交于点N. ∵AB 为⊙O 的直径, ∴∠ADB=90° ∵OC ∥BD ,∴∠ANO=∠ADB=90° ∵PC 为⊙O 的切线 ∴∠PCO=90° ∴∠ANO=∠PCO ∴PC ∥AE ∴1==3PA CE AB EB ∴PA=13AB=13×525∴25555 过点O 作OH ⊥PQ 于点H ,则∠OHP=90°=∠ACB∵PQ ∥CB∴∠BPQ=∠ABC ∴△OHP ∽△ACB ∴OP OH PHAB AC BC==∴OH=55253==325AC OP AB ⨯,PH 554103==325BC OP AB ⨯连接OQ在Rt △OHQ 中,由勾股定理,得HQ=()2222525-=5-=33OQ OH ⎛⎫ ⎪⎝⎭∴PQ=PH+HQ=10+253【知识点】圆中三组量关系;圆周角定理;切线的性质;相似三角形的判定和性质;勾股定理B 卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上) 21.(2019四川省成都市,21,4) 估算:7.37≈________(结果精确到1).【答案】6【解析】从被开方数看,值在6~7之间,而6.5的平方为42.25,故其值在6~6.5之间,四舍五入,故精确后为6.【知识点】算术平方根 22.(2019四川省成都市,22,4)已知x 1、x 2是关于x 的一元二次方程x 2+2x+k-1=0的两个实数根,且x 12+x 22-x 1x 2=13,则k 的值为________.【答案】-2【解题过程】利用根与系数关系可得x 1+x 2=-2,x 1·x 2=k-1,∴x 12+x 22-x 1x 2=(x 1+x 2)2-3x 1x 2=13,即(-2)2-3(k-1)=13,解得k=-2.【知识点】根与系数关系;解一元一次方程;配方 23.(2019四川省成都市,23,4)一个盒子中装有10个红球和若干个白球,这些球除颜色外都相同,再往该盒子中放入5个相同的白球,摇匀后从中随机摸出一个球,若摸到白球的概率为75,则盒子中原有的白球的个数为_______.【答案】20【解题过程】设原来有白球x 个,根据题意列方程5+51057x x =++,解x=20 【知识点】概率的求法24.(2019四川省成都市,24,4)如图,在边长为1的菱形ABCD 中,∠ABC=60°,将△ABD 沿射线BD 的方向平移得到△A ′B ′D ′,分别连接A ′C ,A ′D ,B ′C ,则A ′C+B ′C 的最小值为________.D′A'D AB C B′【答案】3【解题过程】解:∵在边长为1的菱形ABCD 中,∠ABC =60°,∴AB =1,∠ABD =30°,∵将△ABD 沿射线BD 的方向平移得到△A 'B 'D ',∴A ′B ′=AB =1,∠A ′B ′D =30°,当B ′C ⊥A ′B ′时,A 'C +B 'C 的值最小,∵AB ∥A ′B ′,AB =A ′B ′,AB =CD ,AB ∥CD ,∴A ′B ′=CD ,A ′B ′∥CD ,∴四边形A ′B ′CD 是矩形,∠B ′A ′C =30°,∴B ′C =,A ′C =,∴A 'C +B 'C 的最小值为,故答案为:.D′A'D AB C B′F【知识点】菱形的性质;解直角三角形;矩形的性质25.(2019四川省成都市,25,4) 如图,在平面直角坐标系xOy 中,我们把横、纵坐标都是整数的点称为“整点”,已知点A 的坐标为(5,0),点B 在x 轴的上方,△OAB 的面积为215,则△OAB 的内部(不含边界)的整点的个数为____________.【答案】4或5或6【解题过程】解:设B (m ,n ),∵点A 的坐标为(5,0),∴OA =5,∵△OAB 的面积=5•n =, ∴n =3,结合图象可以找到其中的一种情况:(以一种为例)当2<m <3时,有6个整数点;当3<m <时,有5个整数点;当m =3时,有4个整数点;可知有6个或5个或4个整数点;故答案为4或5或6;【知识点】点的坐标二、解答题(本大题共三个小题,共30分,解答过程写在答题卡上)26.(2019四川省成都市,26,8)(本小题满分8分)随着5G 技术的发展,人们对各类5G 产品的使用充满期待,某公司计划在某地区销售一款5G 产品,根据市场分析,该产品的销售价格将随销售周期的变化而变化,设该产品在第x (x 为整数)个销售周期每台的销售价格为x 元,y 与x 之间的满足如图所示的一次函数关系.(1)求y 与x 之间的关系式;(2)设该产品在第x 个销售周期的销售数量为p (万台),p 与x 的关系可以用p=21x+21来描述,根据以上信息,试问:哪个销售周期的销售收入最大?此时该产品每台的销售价格是多少元?【思路分析】(1)利用待定系数法求解即可;(2)设销售收入为w ,列出w 关于x 的函数关系式,利用二次函数顶点坐标公式求出最大销售收入时x 的值,再代入(1)中函数关系式求y 值即可.【解题过程】(1)设函数解析式为y=kx+b则700055000k b k b +=⎧⎨+=⎩解得5007500k b =-⎧⎨=⎩,∴函数关系式为y=-500x+7500 (2)设第x 个销售周期的销售收入为w ,则w=(-500x+7500)(21x+21)=-250x 2+3500x+3750 当x=7时,w 有最大值为4000答:第7个销售周期的销售收入最大,此时该产品每台的销售价格是4000元【知识点】一次函数;待定系数法;二次函数顶点坐标27.(2019四川省成都市,27,10)(本小题满分10分)如图1,在△ABC 中,AB=AC=20,tanB=43,点D 为BC 边上的动点(点D 不与点B 、C 重合),以D 为顶点作∠ADE=∠B ,射线DE 交AC 边于点E ,过点A 作AF ⊥AD 交射线DE 于点F ,连接CF.(1)求证:△ABD ∽△DCE ;(2)当DE ∥AB 时(如图2),求AE 的长;(3)点D 在BC 边上运动的过程中,是否存在某个位置,使得DF=CF ?若存在,求出此时BD 的长;若不存在,请说明理由.【思路分析】(1)利用一线三等角证明出∠BAD=∠CDE,再利用等腰三角形得到角等证明相似;(2)作AM⊥BC 于点M,解直角三角形求出BM,进而求得BC,易证∠BAD=∠ADE=∠EDC=∠B=∠ACB,从而得∴△ABD∽△CBA,通过比例式求BD,再利用平行线得比例式求AE长;(3)过点F作FH⊥BC于点H,过点A作AM⊥BC 于点M,AN⊥FH于点N,易得△AFN∽△ADM,从而利用AM、BM的值求得tanB的值,进而求得AN、CH,利用DF=CF条件求出CD,进而求BD长.【解题过程】解:(1)∵AB=AC∴∠B=∠ACB∵∠ADE+∠CDE=∠B+∠BAD,∠ADE=∠B∴∠BAD=∠CDE∴△ABD∽△DCE.(2)过点A作AM⊥BC于点M.在Rt△ABM中,设BM=4k,则AM=BM·tanB=4k·34=3k由勾股定理,得AB2=AM2+BM2∴202=(3k)2+(4k)2∴k=4∵AB=AC,AM⊥BC∴BC=2BM=2·4k=32∵DE∥AB∴∠BAD=∠ADE又∵∠ADE=∠B,∠B=∠ACB ∴∠BAD=∠ACB∵∠ABD=∠CBA∴△ABD∽△CBA∴AB DB CB AB=∴DB=222025322 ABCB==∵DE∥AB∴AE BD AC BC=∴AE=25202=32AC BDBC⨯=12516(3)点D 在BC 边上运动的过程中,存在某个位置,使得DF=CF.过点F 作FH ⊥BC 于点H ,过点A 作AM ⊥BC 于点M ,AN ⊥FH 于点N ,则∠NHM=∠AMH=∠ANH=90°.∴四边形AMHN 为矩形,∴∠MAN=90°,MH=AN ,∵AB=AC ,AM ⊥BC ,∴BM=CM=12BC=12×32=16 在Rt △ABM 中,由勾股定理,得AM=2222201612AB BM -=-= ∵AN ⊥FH ,AM ⊥BC∴∠ANF=90°=∠AMD∵∠DAF=90°=∠MAN∴∠NAF=∠MAD∴△AFN ∽△ADM∴3==tan =tan =4AN AF ADF B AM AD ∠∴AN=34AM=34×12=9 ∴CH=CM-MH=CM-AN=16-9=7当DF=CF 时,由点D 不与点C 重合,可知△DFC 为等腰三角形又∵FH ⊥DC∴CD=2CH=14∴BD=BC-CD=32-14=18所以,点D 在BC 边上运动的过程中,存在某个位置,使得DF=CF ,此时BD=18【知识点】相似三角形的判定和性质;解直角三角形;矩形的性质和判定;等腰三角形的性质28.(2019四川省成都市,28,12)(本小题满分12分)如图,抛物线y=ax 2+bx+c 经过点A (-2,5),与x 轴相交于B (-1,0),C (3,0)两点.(1)求抛物线的函数表达式;(2)点D 在抛物线的对称轴上,且位于x 轴的上方,将△BCD 沿直线BD 翻折得到△BC ′D ,若点C ′恰好落在抛物线的对称轴上,求点C ′和点D 的坐标;(3)设P 是抛物线上位于对称轴右侧的一点,点Q 在抛物线的对称轴上,当△CPQ 为等边三角形时,求直线BP 的函数表达式.【思路分析】(1)直接利用待定系数法求解;(2)设抛物线的轴对称性与x 轴交于点H ,可得BH=12BC=12BC ′,则利用三角函数易得∠ABC=60°,从而通过直角三角形和等腰三角形易得C ′和D 点坐标;(3)分类讨论:①当点P 在x 轴上方时,点Q 在x 轴上方,连接BQ ,C ′P ,利用(2)条件构造△BCQ ≌△C ′CP ,进而得到C ′P=CQ=CP ,从而得到BP 是CC ′垂直平分线,可得D 点在BP 上,利用B 、D 坐标求直线解析式;②当点P 在x 轴下方时,点Q 在x 轴下方同理可求.【解题过程】解:(1)由题意,得4250930a b c a b c a b c -+=⎧⎪-+=⎨⎪++=⎩解得123a b c =⎧⎪=-⎨⎪=-⎩∴抛物线的函数表达式为y=x 2-2x-3(2)∵抛物线与x 轴的交点为B (-1,0)、C (3,0)∴BC=4,抛物线的对称轴为直线x=1设抛物线的对称轴与x 轴交于点H ,则H 点的坐标为(1,0),BH=2由翻折得C ′B=CB=4在Rt △BHC ′中,由勾股定理,得C ′2222-=4-2=23C B BH ′∴点C ′的坐标为(3),tan ∠C ′BH=23=3C H BH ′∴∠C ′BH=60°由翻折得∠DBH=12∠C ′BH=30° 在Rt △BHD 中,DH=BH ·tan ∠DBH=2·tan30°=233∴点D的坐标为(1,233)(3)取(2)中的点C′,D,连接CC′∵BC′=BC,∠C′BC=60°,∴△C′CB为等边三角形分类讨论如下:①当点P在x轴上方时,点Q在x轴上方连接BQ,C′P,∵△PCQ,△C′CB为等边三角形∴CQ=CP,BC=C′C,∠PCQ=∠C′CB=60°∴∠BCQ=∠C′CP∴△BCQ≌△C′CP∴BQ=C′P∵点Q在抛物线的对称轴上,∴BQ=CQ∴C′P=CQ=CP又∵BC′=BC∴BP垂直平分CC′由翻折可知BD垂直平分CC′∴点D在直线BP上设直线BP的函数表达式为y=kx+b则0=-k+b23⎧解得3333kb⎧=⎪⎪⎨⎪=⎪⎩∴直线BP的函数表达式为33②当点P在x轴下方时,点Q在x轴下方∵△QCP,△C′CB为等边三角形∴CP = CQ,BC=C′C,∠C′CB=∠QCP=60°∴∠BCP=∠C′CQ∴△BCP≌△C′CQ∴∠CBP=∠CC′Q∵BC′=CC′,C′H⊥BC∴∠CC′Q=12∠CC′B=30°∴∠CBP=30°设BP与y轴相交于点E在Rt△BOE中,OE=OB·tan∠CBP=OB·tan30°=1×33=33∴点E的坐标为(0,-33)设直线BP的函数表达式为y=k′x+b′则0-+3-=3k bb=⎧⎪⎨⎪⎩′′解得3=-33=-3kb⎧⎪⎪⎨⎪⎪⎩′′∴直线BP的函数表达式为y=-33x-33综上所述,直线BP的函数表达式为y=33x+33或y=-33x-33【知识点】待定系数法;轴对称性;等边三角形的性质;全等三角形的判定和性质;解直角三角形。

2019-2020年中考数学试卷及解析.docx

2019-2020年中考数学试卷及解析.docx

2019-2020 年中考数学试卷及解析一、选择题(本题有8 小题,每小题 3 分,共 24 分)1.- 3 的是【】1A . 3B .- 3C.- 3D. 32.下列形中,既是称形,又是中心称形的是【】A .平行四形B .等三角形C.等腰梯形3.今年我市参加中考的人数大有41300 人,将 41300 用科学数法表示【D .正方形】A . 413× 102B. 41.3× 103C. 4.13× 1044.已知⊙ O1、⊙ O2的半径分3cm、 5cm,且它的心距系是【】8cm,⊙D. 0.413× 103O1与⊙ O2的位置关A .外切B.相交C.内切 D .内含5.如是由几个相同的小立方搭成的几何体的三,几个几何体的小立方的个数是【】A . 4 个B. 5 个C. 6 个D. 7 个6.将抛物 y= x2+ 1 先向左平移 2 个位,再向下平移 3 个位,那么所得抛物的函数关系式是【】A . y= ( x+ 2) 2+ 2B. y= ( x+ 2) 2- 2C. y= ( x-2) 2+ 2D. y= ( x- 2) 2- 27.某校在开展“ 心捐助”的活中,初三一班六名同学捐款的数分:8, 10,10, 4, 8,10( 位:元 ) ,数据的众数是【】A . 10B .9C. 8D. 43= 3+ 5, 33= 7+ 9+ 11,8.大于 1 的正整数 m 的三次可“分裂”成若干个奇数的和,如243= 13+ 15+ 17+ 19,⋯若 m3分裂后,其中有一个奇数是2013 , m 的是【】A . 43B .44C. 45 D .46二、填空题(本大题共10 小题,每小题 3 分,共 30 分)9.州市某天的最高气温是6℃,最低气温是- 2℃,那么当天的日温差是.10.一个角是 38 度,它的余角是度.11.已知 2a- 3b2= 5, 10- 2a+ 3b2的是.12.已知梯形的中位是4cm,下底是 5cm,它的上底是cm.13.在平面直角坐系中,点P( m, m- 2) 在第一象限内, m 的取范是.14.如, PA、 PB 是⊙ O 的切,切点分A、 B 两点,点 C 在⊙ O 上,如果∠ ACB= 70°,那么∠ P 的度数是.AB= 2,则 tan ∠DCF 的15.如图,将矩形 ABCD 沿 CE 折叠,点 B 恰好落在边 AD 的 F 处.若 BC3 值是 .16.如图,线段 AB 的长为等腰直角三角形△ ACD2,C 为 AB 上一个动点,分别以和△ BCE ,那么 DE 长的最小值是AC 、BC为斜边在.AB 的同侧作两个17 .已知一个圆锥的母线长为 10cm ,将侧面展开后所得扇形的圆心角是144 °,则这个圆锥的底面圆的半径是 cm .18k经过 Rt △ OMN 斜边上的点 A ,与直角边 MN 相交于点 B ,已知 OA = 2AN ,.如图, 双曲线 y = x△OAB 的面积为 5,则 k 的值是 .三、解答题(本大题共有10 小题,共 96 分)19 . ( 1) 计算:- ( - 1)2 + ( - 2012) 0;3( 2) 因式分 解: m n - 9mn .920 a - 1 ÷ a 2- 1a 值代入计算..先化简: 1-2 ,再选取一个合适的aa + 2a21.扬州市中小学全面开展“体艺 2+ 1”活动,某校根据学校实际,决定开设 A :篮球, B :乒乓球, C :声乐, D :健美操等四中活动项目,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制了两幅不完整的统计图.请回答下列问题:( 1)这次被调查的学生共有人.( 2)请你将统计图 1 补充完整.( 3)统计图 2 中 D 项目对应的扇形的圆心角是度.( 4)已知该校学生2400 人,请根据调查结果估计该校最喜欢乒乓球的学生人数.22.一个不透明的布袋里装有4 个大小,质地都相同的乒乓球,球面上分别标有数字1,- 2, 3,-4,小明先从布袋中随机摸出一个球 ( 不放回去 ) ,再从剩下的 3 个球中随机摸出第二个乒乓球.( 1)共有种可能的结果.( 2)请用画树状图或列表的方法求两次摸出的乒乓球的数字之积为偶数的概率.23.如图,在四边形ABCD 中, AB=BC ,∠ ABC=∠ CDA = 90°,BE ⊥AD ,垂足为 E.求证: BE= DE.24.为了改善生态环境,防止水土流失,某村计划在荒坡上种480 棵树,由于青年志愿者的支援,每日比原计划多种1,结果提前 4 天完成任务,原计划每天种多少棵树?325.如图,一艘巡逻艇航行至海面 B 处时,得知正北方向上距 B 处 20 海里的 C 处有一渔船发生故障,就立即指挥港口 A 处的救援艇前往 C 处营救.已知 C 处位于 A 处的北偏东45°的方向上,港口 A 位于 B 的北偏西30°的方向上.求A、 C 之间的距离 ( 结果精确到0.1 海里,参考数据:2≈ 1.41,3≈ 1.73) .26.如图, AB 是⊙ O 的直径, C 是⊙ O 上一点, AD 垂直于过点 C 的切线,垂足为 D .( 1) 求证: AC 平分 BAD ;( 2) 若 AC= 2 5, CD=2,求⊙ O 的直径.27.已知抛物线y= ax2+ bx+ c 经过 A( -1, 0) 、B( 3,0) 、C( 0,3) 三点,直线l 是抛物线的对称轴.( 1)求抛物线的函数关系式;( 2)设点 P 是直线 l 上的一个动点,当△PAC 的周长最小时,求点P 的坐标;( 3)在直线 l 上是否存在点 M,使△ MAC 为等腰三角形?若存在,直接写出所有符合条件的点 M 的坐标;若不存在,请说明理由.28.如图 1,在平面直角坐标系中,矩形OABC 的顶点 O 在坐标原点,顶点A、 C 分别在 x 轴、 y 轴的正半轴上,且OA =2, OC= 1,矩形对角线AC、 OB 相交于 E,过点 E 的直线与边OA、BC 分别相交于点G、 H.( 1) ①直接写出点 E 的坐标:;②求证:AG=CH.( 2)如图 2,以 O 为圆心, OC 为半径的圆弧交OA 与 D,若直线 GH 与弧 CD 所在的圆相切于矩形内一点 F,求直线 GH 的函数关系式.( 3)在 ( 2 ) 的结论下,梯形 ABHG 的内部有一点P,当⊙ P 与 HG、 GA、 AB 都相切时,求⊙ P 的半径.一、选择题( 本题有8 小题,每小题参考答案3 分,共 24 分 )1. ( 2012?扬州 ) - 3 的绝对值是 ( A. 3B.- 3)C.-3D.考点:绝对值。

中考数学真题知识分类练习试卷:代数式(含解析)

中考数学真题知识分类练习试卷:代数式(含解析)

中考数学真题知识分类练习试卷:代数式(含解析)【一】单项选择题1.以下运算:①a2•a3=a6,②〔a3〕2=a6,③a5÷a5=a,④〔ab〕3 =a3b3,其中结果正确的个数为〔〕A. 1B. 2C. 3D. 4【来源】山东省滨州市2019年中考数学试题2.计算的结果是〔〕A. B. C. D.【来源】江苏省南京市2019年中考数学试卷【解析】分析:根据幂的乘方的性质和同底数幂的乘法计算即可.详解:应选:B.点睛:此题主要考查了幂的乘方,同底数幂的乘法,熟练掌握运算法那么和性质是解题的关键.3.以下计算结果等于的是〔〕A. B. C. D.【来源】2019年甘肃省武威市〔凉州区〕中考数学试题4.以下运算正确的选项是〔〕A. B.C. D.【来源】湖南省娄底市2019年中考数学试题【解析】【分析】根据同底数幂的乘法、积的乘方、完全平方公式、多项式乘法的法那么逐项进行计算即可得.【详解】A. ,故A选项错误,不符合题意;B. ,故B选项错误,不符合题意;C. ,故C选项错误,不符合题意;D. ,正确,符合题意,应选D.【点睛】此题考查了整式的运算,熟练掌握同底数幂的乘法、积的乘方、完全平方公式、多项式乘法的运算法那么是解题的关键.5.以下运算正确的选项是〔〕A. B. C. D.【来源】山东省德州市2019年中考数学试题6.我国南宋数学家杨辉所著的«详解九章算术»一书中,用以下图的三角形解释二项式的展开式的各项系数,此三角形称为〝杨辉三角〞.A. 84B. 56C. 35D. 28【来源】山东省德州市2019年中考数学试题7.以下运算正确的选项是〔〕A. B. C. D.【来源】安徽省2019年中考数学试题【解析】【分析】根据幂的乘方、同底数幂乘法、同底数幂除法、积的乘方的运算法那么逐项进行计算即可得.【详解】A. ,故A选项错误;B. ,故B选项错误;C. ,故C选项错误;D. ,正确,应选D.【点睛】此题考查了有关幂的运算,熟练掌握幂的乘方,同底数幂的乘法、除法,积的乘方的运算法那么是解题的关键.8.据省××局发布,2019年我省有效发明专利数比2019年增长22.1%假定2019年的平均增长率保持不变,2019年和2019年我省有效发明专利分别为a万件和b万件,那么〔〕A. B.C. D.【来源】安徽省2019年中考数学试题【解析】【分析】根据题意可知2019年我省有效发明专利数为〔1+22. 1%〕a万件,2019年我省有效发明专利数为〔1+22.1%〕•〔1+22.1%〕a,由此即可得.【详解】由题意得:2019年我省有效发明专利数为〔1+22.1%〕a万件,2019年我省有效发明专利数为〔1+22.1%〕•〔1+22.1%〕a万件,即b=〔1+22.1%〕2a万件,应选B.【点睛】此题考查了增长率问题,弄清题意,找到各量之间的数量关系是解题的关键.9.以下运算正确的选项是〔〕A. B. C. D.【来源】山东省泰安市2019年中考数学试题10.按如下图的运算程序,能使输出的结果为的是〔〕A. B. C. D.【来源】【全国省级联考】2019年重庆市中考数学试卷〔A卷〕11.以下运算正确的选项是〔〕A. B. C. D.【来源】江苏省宿迁市2019年中考数学试卷12.以下运算正确的选项是〔〕A. x﹣2x=﹣xB. 2x﹣y=xyC. x2+x2=x4D. 〔x﹣1〕2=x2﹣1【来源】江苏省连云港市2019年中考数学试题13.以下运算正确的选项是〔〕A. B. C. D.【来源】江苏省盐城市2019年中考数学试题14.以下计算正确的选项是〔〕A. B.C. D.【来源】湖北省孝感市2019年中考数学试题详解:A、,正确;B、〔a+b〕2=a2+2ab+b2,故此选项错误;C、2+,无法计算,故此选项错误;D、〔a3〕2=a6,故此选项错误;应选:A、点睛:此题主要考查了完全平方公式以及二次根式加减运算和幂的乘方运算,正确掌握相关运算法那么是解题关键.15.假设单项式am﹣1b2与的和仍是单项式,那么nm的值是〔〕A. 3B. 6C. 8D. 9【来源】山东省淄博市2019年中考数学试题【解析】分析:首先可判断单项式am﹣1b2与是同类项,再由同类项的定义可得m、n的值,代入求解即可.详解:∵单项式am﹣1b2与的和仍是单项式,∴单项式am﹣1b2与是同类项,∴m﹣1=2,n=2,∴m=3,n=2,∴nm=23=8.应选:C、点睛:此题考查了合并同类项的知识,解答此题的关键是掌握同类项中的两个相同.16.以下运算正确的选项是( )A. B. C. D.【来源】广东省深圳市2019年中考数学试题17.以下运算结果正确的选项是A. 3a3·2a2=6a6B. (-2a)2= -4a2C. tan45°=D. cos3 0°=【来源】湖北省黄冈市2019年中考数学试题【解析】分析:根据同底数幂的乘法、幂的乘方与积的乘方、特殊角的三角函数值进行计算.详解:A、原式=6a5,故本选项错误;B、原式=4a2,故本选项错误;C、原式=1,故本选项错误;D、原式=,故本选项正确.应选D、点睛:考查了同底数幂的乘法、幂的乘方与积的乘方、特殊角的三角函数值,属于基础计算题.18.以下计算正确的选项是〔〕A. B.C. D.【来源】四川省成都市2019年中考数学试题19.以下计算正确的选项是( )A. B. C. D.【来源】山东省潍坊市2019年中考数学试题【解析】分析】根据同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;合并同类项法那么,把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;积的乘方法那么:把每一个因式分别乘方,再把所得的幂相乘;对各选项分析判断后利用排除法求解.详解:A、a2•a3=a5,故A错误;B、a3÷a=a2,故B错误;C、a-〔b-a〕=2a-b,故C正确;D、〔-a〕3=-a3,故D错误.应选C、点睛:此题考查合并同类项、积的乘方、同底数幂的乘除法,熟练掌握运算性质和法那么是解题的关键.20.计算〔﹣a〕3÷a结果正确的选项是〔〕A. a2B. ﹣a2C. ﹣a3D. ﹣a4【来源】浙江省金华市2019年中考数学试题详解:〔-a〕3÷a=-a3÷a=-a3-1=-a2,应选B、点睛:此题主要考查了幂的乘方运算以及同底数幂的除法运算,正确掌握运算法那么是解题关键.21.把三角形按如下图的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个三角形,第③个图案中有8个三角形,…,按此规律排列下去,那么第⑦个图案中三角形的个数为〔〕A. 12B. 14C. 16D. 18【来源】【全国省级联考】2019年重庆市中考数学试卷〔A卷〕22.下面是一位同学做的四道题:①.②.③.④.其中做对的一道题的序号是〔〕A. ①B. ②C. ③D. ④【来源】2019年浙江省绍兴市中考数学试卷解析【二】填空题23.将从1开始的自然数按以下规律排列,例如位于第3行、第4列的数是12,那么位于第45行、第8列的数是__________.【来源】山东省淄博市2019年中考数学试题∴第45行、第8列的数是2025﹣7=2019,点睛:此题考查规律型﹣数字问题,解题的关键是学会观察,探究规律,利用规律解决问题.24.我国古代数学家杨辉发现了如下图的三角形,我们称之为〝杨辉三角〞,从图中取一列数:1,3,6,10,…,记,,,,…,那么的值是__________.【来源】湖北省孝感市2019年中考数学试题25.假设a-=,那么a2+值为_______________________.【来源】湖北省黄冈市2019年中考数学试题详解:∵a-=,∴〔a-〕2=6,∴a2-2+=6,∴a2+=8.点睛:此题考查完全平方公式的变形运算,解题的关键是熟练运用完全平方公式.26.,,,,,,…〔即当为大于1的奇数时,;当为大于1的偶数时,〕,按此规律,__________.【来源】四川省成都市2019年中考数学试题27.计算的结果等于__________.【来源】天津市2019年中考数学试题【解析】分析:依据单项式乘单项式的运算法那么进行计算即可.详解:原式=2x4+3=2x7.点睛:此题主要考查的是单项式乘单项式,掌握相关运算法那么是解题的关键.28.假设是关于的完全平方式,那么__________.【来源】贵州省安顺市2019年中考数学试题详解:∵x2+2〔m-3〕x+16是关于x的完全平方式,∴2〔m-3〕=±8,解得:m=-1或7,点睛:此题主要考查了完全平方公式,正确掌握完全平方公式的基本形式是解题关键.29.化简〔x﹣1〕〔x+1〕的结果是_____.【来源】浙江省金华市2019年中考数学试题30.观察以下各式:请利用你所发现的规律,计算+++…+,其结果为_______.【来源】山东省滨州市2019年中考数学试题详解:由题意可得:=+1++1++ (1)=9+〔1﹣+﹣+﹣+…+﹣〕=9+=9.点睛:此题主要考查了数字变化规律,正确将原式变形是解题关键.【来源】湖南省娄底市2019年中考数学试题32.如图是一个运算程序的示意图,假设开始输入的值为625,那么第2019次输出的结果为__________.【来源】2019年甘肃省武威市〔凉州区〕中考数学试题【三】解答题33.先化简,再求值:a〔a+2b〕﹣〔a+1〕2+2a,其中.【来源】山东省淄博市2019年中考数学试题【解析】分析:先计算单项式乘以多项式与和的完全平方,再合并同类项,最后代入计算即可.详解:原式=a2+2ab﹣〔a2+2a+1〕+2a=a2+2ab﹣a2﹣2a﹣1+2a=2ab﹣1,当,时,原式=2〔+1〕〔-1〕﹣1=2﹣1=1.点睛:此题考查了整式的混合运算﹣化简求值,能正确根据整式的运算法那么进行化简是解此题的关键.34.〔1〕计算:;〔2〕化简:(m+2)2 +4(2-m)【来源】浙江省温州市2019年中考数学试卷35.我们常用的数是十进制数,如,数要用10个数码〔又叫数字〕:0、1、2、3、4、5、6、7、8、9,在电子计算机中用的二进制,只要两个数码:0和1,如二进制中等于十进制的数6,等于十进制的数53.那么二进制中的数101011等于十进制中的哪个数?【来源】四川省凉山州2019年中考数学试题【解析】分析:利用新定义得到101011=1×25+0×24+1×23+0×22+1×21+1×20,然后根据乘方的定义进行计算.详解:101011=1×25+0×24+1×23+0×22+1×21+1×20=43,所以二进制中的数101011等于十进制中的43.点睛:此题考查了有理数的乘方:有理数乘方的定义:求n个相同因数积的运算,叫做乘方.36.〔1〕计算:;〔2〕解不等式:【来源】江西省2019年中等学校招生考试数学试题37.计算或化简.〔1〕;〔2〕.【来源】江苏省扬州市2019年中考数学试题【解析】分析:〔1〕根据负整数幂、绝对值的运算法那么和特殊三角函数值即可化简求值.〔2〕利用完全平方公式和平方差公式即可.详解:〔1〕〔〕-1+|−2|+tan60°=2+〔2-〕+=2+2-+=4〔2〕〔2x+3〕2-〔2x+3〕〔2x-3〕=〔2x〕2+12x+9-[〔2x2〕-9]=〔2x〕2+12x+9-〔2x〕2+9=12x+18点睛:此题考查实数的混合运算和乘法公式,负整数指数幂的运算和相反数容易混淆,运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.38.观察以下等式:第1个等式:,第2个等式:,第3个等式:,第4个等式:,第5个等式:,按照以上规律,解决以下问题:〔1〕写出第6个等式:;〔2〕写出你猜想的第n个等式:(用含n的等式表示),并证明.【来源】安徽省2019年中考数学试题【解析】【分析】〔1〕根据观察到的规律写出第6个等式即可;〔2〕根据观察到的规律写出第n个等式,然后根据分式的运算对等式的左边进行化简即可得证.39.计算:〔1〕〔2〕【来源】【全国省级联考】2019年重庆市中考数学试卷〔A卷〕40.对任意一个四位数n,如果千位与十位上的数字之和为9,百位与个位上的数字之和也为9,那么称n为〝极数〞.〔1〕请任意写出三个〝极数〞;并猜想任意一个〝极数〞是否是99的倍数,请说明理由;〔2〕如果一个正整数a是另一个正整数b的平方,那么称正整数a 是完全平方数,假设四位数m为〝极数〞,记D〔m〕=.求满足D〔m〕是完全平方数的所有m.【来源】【全国省级联考】2019年重庆市中考数学试卷〔A卷〕41.有一张边长为a厘米的正方形桌面,因为实际需要,需将正方形边长增加b厘米,木工师傅设计了如下图的三种方案:小明发现这三种方案都能验证公式:a2+2ab+b2=〔a+b〕2,对于方案一,小明是这样验证的:a2+ab+ab+b2=a2+2ab+b2=〔a+b〕2请你根据方案【二】方案三,写出公式的验证过程.方案二:方案三:【来源】浙江省衢州市2019年中考数学试卷。

四川省成都市都江堰市2019年中考数学零诊试卷 含解析

四川省成都市都江堰市2019年中考数学零诊试卷  含解析

2019-2020学年都江堰市九年级零诊数学试卷(解析版)一、选择题(每小题3分,本题满分30分)1.在下列实数中,有理数是()A.﹣3 B.C. 1 D.π2.自2018年起,我国将每年秋分日设立为“中国农民丰收节”.据预测,2018年我国粮食生产将稳定在12000亿斤以上.将数据“12000亿”用科学记数法可表示为()A.12×1011B.12×1012C.1.2×1011D.1.2×10123.使分式有意义的x的取值范围是()A.x≠3B.x=3 C.x≠0D.x=04.如图,由六个完全相同的小正方体搭成一个几何体,在这个几何体的“三视图”中是轴对称图形的是A.主视图B.左视图C.俯视图D.主视图和俯视图5.在下列各式中,运算结果正确的是()A.x2+x2=x4 B.x﹣2x=﹣x C.x2•x3=x6D.(x﹣1)2=x2﹣16.如图,若l1∥l2,l3∥l4,则图中与∠1互补的角有()A.1个B.2个C.3个D.4个7.下列方程中,没有实数根的是()A.2x+3=0 B.x2﹣1=0 C.D.x2+x+1=08.两个全等的直角三角形不能拼成的图形是()A.平行四边形B.矩形C.菱形D.等腰三角形9.同一时刻,小明在阳光下的影长为2米,与他邻近的旗杆的影长为6米,小明的身高为1.6米,则旗杆的高为()A.3.2米B.4.8米C.5.2米D.5.6米10.下列两个图形,一定相似的是()A.两个等腰三角形B.两个直角三角形C.两个等边三角形D.两个矩形二、填空题:(每小题4分,本题满分16分)11.不等式3x﹣1>﹣4的最小整数解是.12.已知在平面直角坐标系中,点P在第二象限,且到x轴的距离为3,到y轴的距离为4,则点P 的坐标为.13.一组数据3,4,x,6,8的平均数是5,则这组数据的中位数是.14.如图,直线y=ax+b过点A(0,2)和点B(﹣3,0),则方程ax+b=0的解是.15.若a+b=4,a﹣b=1,则(a+1)2﹣(b﹣1)2的值为.16.把边长相等的正五边形ABCDE和正方形ABFG,按照如图所示的方式叠合在一起,连结AD,则∠DAG=.17.已知关于x的一元二次方程x2﹣4x+m﹣1=0的实数根x1,x2,满足3x1x2﹣x1﹣x2>2,则m的取值范围是.18.如图,在平面直角坐标系中,矩形OABC的两边OA,OC分别在x轴和y轴上,并且OA=5,OC=3.若把矩形OABC绕着点O逆时针旋转,使点A恰好落在BC边上的A1处,则点C的对应点C1的坐标为.19.如图,在△ABC纸板中,AC=4,BC=2,AB=5,P是AC上一点,过点P沿直线剪下一个与△ABC 相似的小三角形纸板,如果有4种不同的剪法,那么AP长的取值范围是.三、解答题:(本大题共6个小题,共54分)20.解答下列各题:(1)计算:30﹣﹣|﹣2|×2﹣1.(2)用配方法解方程:x2﹣4x﹣2=0.21.如图,在由边长为1个单位长度的小正方形组成的10×10网格中,已知点O,A,B均为网格线的交点.(1)在给定的网格中,以点O为位似中心,将线段AB放大为原来的2倍,得到线段A1B1(点A,B的对应点分别为A1,B1),画出线段A1B1;(2)将线段A1B1绕点B1逆时针旋转90°得到线段A2B1,画出线段A2B1;(3)以A,A1,B1,A2为顶点的四边形AA1B1A2的面积是个平方单位.22.先化简,再求值:(x﹣)•()﹣y,其中x=,y=.23.下列表格是某学校女子排球队队员年龄统计表:年龄(岁)13 14 15 16人数(人) 1 2 4 5 (1)该排球队队员年龄的众数是岁;(2)事件“从该排球队随机选择一名队员,其年龄为13岁”发生的概率为;(3)教练決定从年龄为13岁和14岁的A、B、C三名队员中,随机选取两名队员进行“接发球”训练,求队员A、B同时被选中的概率.(树状图或列表法)24.如图,直线:y=﹣+4与x轴、y轴分别別交于点M、点N,等边△ABC的高为3,边BC在x轴上,将△ABC沿着x轴的正方向平移,在平移过程中,得到△A1B1C1,当点B1与原点O重合时,解答下列问题:(1)点A1的坐标为.(2)求△A1B1C1的边A1C1所在直线的解析式;(3)若以P、A1、C1、M为顶点的四边形是平行四边形,请直接写出P点坐标.25.如图,在等腰三角形ABC中,∠BAC=120°,AB=AC=2,点D在BC边上(不与B、C重合),在AC上取一点E,使∠ADE=30°.(1)求证:△ABD∽△DCE;(2)若BD=n(0<n<2),求线段AE的长;(用含n的代数式表示)(3)当△ADE是等腰三角形时,请直接写出AE的长.26.小敏的爸爸是一家水果店的经理.一天,他去水果批发市场,用100元购进甲种水果,用100元购进乙种水果,已知乙种水果比甲种水果多10千克,乙种水果的批发价比甲种水果的批发价低0.5元.(1)求甲、乙两种水果各购进了多少千克?(2)如果当天甲、乙两种水果都按2.80元出售,乙种水果很快售完,而甲种水果先售出,剩余的按售价打5折售完.请你通过计算,说明这一天的水果买卖是否赚钱?如果赚钱,赚了多少元?如果不赚钱,那么赔了多少元?27.如图,在矩形ABCD中,点E是AD上的一个动点,连接BE,作点A关于BE的对称点F,且点F落在矩形ABCD的内部,连结AF、BF、EF,过点F作GF⊥AF交AD于点G,设AD:AE=n.(1)线段AE和线段EG的数量关系是:;(2)如图②,当点F落在AC上时,用含n的代数式表示AD:AB的值;(3)若AD=4AB,且△FCG为直角三角形,求n的值.(直接写出结果).28.定义:若关于x的一元二次方程ax2+bx+c=0(a≠0)的两个实数根为x1,x2(x1<x2),分别以x1,x2为横坐标和纵坐标得到点M(x1,x2),则称点M为该一元二次方程的衍生点.(1)若方程为x2﹣2x=0,写出该方程的衍生点M的坐标.(2)若关于x的一元二次方程x2﹣(2m+1)x+2m=0(m<0)的衍生点为M,过点M向x轴和y轴作垂线,两条垂线与坐标轴恰好围成一个正方形,求m的值.(3)是否存在b,c,使得不论k(k≠0)为何值,关于x的方程x2+bx+c=0的衍生点M始终在直线y=kx ﹣2(k﹣2)的图象上,若有请直接写出b,c的值,若没有说明理由.参考答案与试题解析一.选择题(共10小题)1.在下列实数中,有理数是()A.﹣3 B.C. 1 D.π【分析】依据有理数和无理数的概念进行判断即可.【解答】解:﹣3是有理数,,﹣1,π是无理数.故选:A.2.自2018年起,我国将每年秋分日设立为“中国农民丰收节”.据预测,2018年我国粮食生产将稳定在12000亿斤以上.将数据“12000亿”用科学记数法可表示为()A.12×1011B.12×1012C.1.2×1011D.1.2×1012【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将数据“12000亿”用科学记数法可表示为12000×108=1.2×1012.故选:D.3.使分式有意义的x的取值范围是()A.x≠3B.x=3 C.x≠0D.x=0【分析】直接利用分式有意义的条件进而得出答案.【解答】解:分式有意义,则3﹣x≠0,解得:x≠3.故选:A.4.如图,由六个完全相同的小正方体搭成一个几何体,在这个几何体的“三视图”中是轴对称图形的是()A.主视图B.左视图C.俯视图D.主视图和俯视图【分析】先得到该几何体的三视图,再根据轴对称图形的定义即可求解.【解答】解:如图所示:在这个几何体的“三视图”中是轴对称图形的是左视图.故选:B.5.在下列各式中,运算结果正确的是()A.x2+x2=x4B.x﹣2x=﹣xC.x2•x3=x6D.(x﹣1)2=x2﹣1【分析】根据合并同类项、完全平方公式及同底数幂的乘法法则进行各选项的判断即可.【解答】解:A、x2+x2=2x2,故本选项错误;B、x﹣2x=﹣x,故本选项正确;C、x2•x3=x5,故本选项错误;D、(x﹣1)2=x2﹣2x+1,故本选项错误.故选:B.6.如图,若l1∥l2,l3∥l4,则图中与∠1互补的角有()A.1个B.2个C.3个D.4个【分析】直接利用平行线的性质得出相等的角以及互补的角进而得出答案.【解答】解:∵l1∥l2,l3∥l4,∴∠1+∠2=180°,2=∠4,∵∠4=∠5,∠2=∠3,∴图中与∠1互补的角有:∠2,∠3,∠4,∠5共4个.故选:D.7.下列方程中,没有实数根的是()A.2x+3=0 B.x2﹣1=0 C.D.x2+x+1=0【分析】A、解一元一次方程可得出一个解,从而得知A中方程有一个实数根;B、根据根的判别式△=4>0,可得出B中方程有两个不等实数根;C、解分式方程得出x的值,通过验证得知该解成立,由此得出C中方程有一个实数根;D、根据根的判别式△=﹣3<0,可得出D中方程没有实数根.由此即可得出结论.【解答】解:A、2x+3=0,解得:x=﹣,∴A中方程有一个实数根;B、在x2﹣1=0中,△=02﹣4×1×(﹣1)=4>0,∴B中方程有两个不相等的实数根;C、=1,即x+1=2,解得:x=1,经检验x=1是分式方程=1的解,∴C中方程有一个实数根;D、在x2+x+1=0中,△=12﹣4×1×1=﹣3<0,∴D中方程没有实数根.故选:D.8.两个全等的直角三角形不能拼成的图形是()A.平行四边形B.矩形C.菱形D.等腰三角形【分析】根据直角三角形的性质,拼成的图形可能是等腰三角形、平行四边形、矩形;因为拼成的四边形的两组对边分别是两条直角边或一条直角边和斜边,不能得出四边相等,所以不可能拼成菱形.【解答】解:如果让直角三角形的直角边重合,可能拼成等腰三角形或平行四边形;如果让直角三角形的斜边重合,可能拼成矩形.∵拼成的四边形的两组对边分别是两条直角边或一条直角边和斜边,∴不可能拼成菱形.故选:C.9.同一时刻,小明在阳光下的影长为2米,与他邻近的旗杆的影长为6米,小明的身高为1.6米,则旗杆的高为()A.3.2米B.4.8米C.5.2米D.5.6米【分析】由成比例关系,列出关系式,代入数据即可求出结果.【解答】解:设旗杆的高为x,有,可得x=4.8米.故选:B.10.下列两个图形,一定相似的是()A.两个等腰三角形B.两个直角三角形C.两个等边三角形D.两个矩形【分析】根据相似三角形的判定方法一一判断即可;【解答】解:∵两个等边三角形的内角都是60°,∴两个等边三角形一定相似,故选:C.二.填空题(共9小题)11.不等式3x﹣1>﹣4的最小整数解是0.【分析】先求出不等式的解集,再求出不等式的最小整数解即可.【解答】解:3x﹣1>﹣4,3x>﹣3,x>﹣1,所以不等式3x﹣1>﹣3的最小整数解是0,故答案为:0.12.已知在平面直角坐标系中,点P在第二象限,且到x轴的距离为3,到y轴的距离为4,则点P 的坐标为(﹣4,3).【分析】根据第二象限点的横坐标是负数,纵坐标是正数,点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度解答.【解答】解:∵点P在第二象限,且到x轴的距离为3,到y轴的距离为4,∴点P的横坐标为﹣4,纵坐标为3,∴点P的坐标为(﹣4,3).故答案为:(﹣4,3).13.一组数据3,4,x,6,8的平均数是5,则这组数据的中位数是4.【分析】根据数据3,4,x,6,8的平均数是5,求出x的值,再将该组数据从小到大依次排列即可找到该组数据的中位数.【解答】解:∵3,4,x,6,8的平均数是5,∴3+4+x+6+8=5×5,解得x=4,则该组数据为3,4,4,6,8.中位数为4.故答案为:4.14.如图,直线y=ax+b过点A(0,2)和点B(﹣3,0),则方程ax+b=0的解是x=﹣3.【分析】所求方程的解,即为函数y=ax+b图象与x轴交点横坐标,确定出解即可.【解答】解:方程ax+b=0的解,即为函数y=ax+b图象与x轴交点的横坐标,∵直线y=ax+b过B(﹣3,0),∴方程ax+b=0的解是x=﹣3,故答案为:x=﹣3.15.若a+b=4,a﹣b=1,则(a+1)2﹣(b﹣1)2的值为12.【分析】对所求代数式运用平方差公式进行因式分解,然后整体代入求值.【解答】解:∵a+b=4,a﹣b=1,∴(a+1)2﹣(b﹣1)2=(a+1+b﹣1)(a+1﹣b+1)=(a+b)(a﹣b+2)=4×(1+2)=12.故答案是:12.16.把边长相等的正五边形ABCDE和正方形ABFG,按照如图所示的方式叠合在一起,连结AD,则∠DAG=18°.【分析】如图连接BD.根据正五边形.正方形的性质求出∠DAB,∠GAB,由∠GAD=∠GAB﹣∠DAB计算即可.【解答】解:如图连接BD.∵ABCDE是正五边形,∵∠E=∠EAB=108°,ED=EA,∴∠EAD=∠EDA=36°,∴∠DAB=108°﹣36°=72°,∵四边形ABFG是正方形,∴∠GAB=90°,∴∠GAD=∠GAB﹣∠DAB=90°﹣72°=18°.故答案为18°.17.已知关于x的一元二次方程x2﹣4x+m﹣1=0的实数根x1,x2,满足3x1x2﹣x1﹣x2>2,则m的取值范围是3<m≤5.【分析】根据根的判别式△>0、根与系数的关系列出关于m的不等式组,通过解该不等式组,求得m的取值范围.【解答】解:依题意得:,解得3<m≤5.故答案是:3<m≤5.18.如图,在平面直角坐标系中,矩形OABC的两边OA,OC分别在x轴和y轴上,并且OA=5,OC=3.若把矩形OABC绕着点O逆时针旋转,使点A恰好落在BC边上的A1处,则点C的对应点C1的坐标为(﹣,).【分析】直接利用相似三角形的判定与性质得出△ONC1三边关系,再利用勾股定理得出答案.【解答】解:过点C1作C1N⊥x轴于点N,过点A1作A1M⊥x轴于点M,由题意可得:∠C1NO=∠A1MO=90°,∠1=∠2=∠3,则△A1OM∽△OC1N,∵OA=5,OC=3,∴OA1=5,A1M=3,∴OM=4,∴设NO=3x,则NC1=4x,OC1=3,则(3x)2+(4x)2=9,解得:x=±(负数舍去),则NO=,NC1=,故点C的对应点C1的坐标为:(﹣,).故答案为:(﹣,).19.如图,在△ABC纸板中,AC=4,BC=2,AB=5,P是AC上一点,过点P沿直线剪下一个与△ABC 相似的小三角形纸板,如果有4种不同的剪法,那么AP长的取值范围是3≤AP<4.【分析】分四种情况讨论,依据相似三角形的对应边成比例,即可得到AP的长的取值范围.【解答】解:如图所示,过P作PD∥AB交BC于D或PE∥BC交AB于E,则△PCD∽△ACB或△APE∽△ACB,此时0<AP<4;如图所示,过P作∠APF=∠B交AB于F,则△APF∽△ABC,此时0<AP≤4;如图所示,过P作∠CPG=∠CBA交BC于G,则△CPG∽△CBA,此时,△CPG∽△CBA,当点G与点B重合时,CB2=CP×CA,即22=CP×4,∴CP=1,AP=3,∴此时,3≤AP<4;综上所述,AP长的取值范围是3≤AP<4.故答案为:3≤AP<4.三.解答题(共9小题)20.解答下列各题:(1)计算:30﹣﹣|﹣2|×2﹣1.(2)用配方法解方程:x2﹣4x﹣2=0.【分析】(1)根据零指数幂的意义以及负整数指数幂的意义即可求出答案;(2)根据配方法即可求出答案.【解答】解:(1)原式=1﹣2﹣2×=﹣2;(2)∵x2﹣4x﹣2=0,∴x2﹣4x+4=6,∴(x﹣2)2=6,∴x=2±21.如图,在由边长为1个单位长度的小正方形组成的10×10网格中,已知点O,A,B均为网格线的交点.(1)在给定的网格中,以点O为位似中心,将线段AB放大为原来的2倍,得到线段A1B1(点A,B的对应点分别为A1,B1),画出线段A1B1;(2)将线段A1B1绕点B1逆时针旋转90°得到线段A2B1,画出线段A2B1;(3)以A,A1,B1,A2为顶点的四边形AA1B1A2的面积是20个平方单位.【分析】(1)以点O为位似中心,将线段AB放大为原来的2倍,即可画出线段A1B1;(2)将线段A1B1绕点B1逆时针旋转90°得到线段A2B1,即可画出线段A2B1;(3)连接AA2,即可得到四边形AA1B1A2为正方形,进而得出其面积.【解答】解:(1)如图所示,线段A1B1即为所求;(2)如图所示,线段A2B1即为所求;(3)由图可得,四边形AA1B1A2为正方形,∴四边形AA1B1A2的面积是()2=()2=20.故答案为:20.22.先化简,再求值:(x﹣)•()﹣y,其中x=,y=.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将x、y的值代入计算可得.【解答】解:原式=•﹣y=﹣=﹣,当x=,y=时,原式=﹣=﹣.23.下列表格是某学校女子排球队队员年龄统计表:年龄(岁)13 14 15 16人数(人) 1 2 4 5 (1)该排球队队员年龄的众数是16岁;(2)事件“从该排球队随机选择一名队员,其年龄为13岁”发生的概率为;(3)教练決定从年龄为13岁和14岁的A、B、C三名队员中,随机选取两名队员进行“接发球”训练,求队员A、B同时被选中的概率.(树状图或列表法)【分析】(1)根据众数的定义求解;(2)根据概率公式求解;(3)画树状图展示所有6种等可能的结果数,找出队员A、B同时被选中的结果数,然后根据概率公式求解.【解答】解:(1)该排球队队员年龄的众数是16岁;(2)事件“从该排球队随机选择一名队员,其年龄为13岁”发生的概率==;故答案为16,;(3)画树状图为:共有6种等可能的结果数,其中队员A、B同时被选中的结果数为2,所以队员A、B同时被选中的概率==.24.如图,直线:y=﹣+4与x轴、y轴分别別交于点M、点N,等边△ABC的高为3,边BC在x轴上,将△ABC沿着x轴的正方向平移,在平移过程中,得到△A1B1C1,当点B1与原点O重合时,解答下列问题:(1)点A1的坐标为(,4).(2)求△A1B1C1的边A1C1所在直线的解析式;(3)若以P、A1、C1、M为顶点的四边形是平行四边形,请直接写出P点坐标.【分析】(1)当点B1与原点O重合时,过点A1作A1D⊥x轴于点D,则A1D=3,则B1D=A1D tan30°=3×=,当x=时,y=﹣+4=3=A1D,故点A1在直线上,点A1(,4);(2)将点C1(2,0)、A1的坐标代入一次函数表达式:y=kx+b,即可求解;(3)分A1C1是平行四边形的边、A1C1是平行四边形的对角线两种情况,分别求解即可.【解答】解:(1)直线:y=﹣+4与x轴、y轴分别別交于点M、点N,则点M(4,0),当点B1与原点O重合时,过点A1作A1D⊥x轴于点D,则A1D=3,则B1D=A1D tan30°=3×=,当x=时,y=﹣+4=3=A1D,故点A1在直线上,点A1(,4),故答案为:(,4);(2)将点C1(2,0)、A1的坐标代入一次函数表达式:y=kx+b并解得:直线A1C1的表达式为:y=﹣x+6;(3)设点P(m,n)①当A1C1是平行四边形的边时,则4=m,0﹣3=n或4=m,0+3=n,解得:m=3或5,n=3或﹣3,故点P的坐标为:(3,3)或(5,﹣3);②当A1C1是平行四边形的对角线时,由中点公式得:2=m+4,3=n,解得:m=﹣,n=3,故点P(﹣,3);综上点P的坐标为:(3,3)或(5,﹣3)或(﹣,3).25.如图,在等腰三角形ABC中,∠BAC=120°,AB=AC=2,点D在BC边上(不与B、C重合),在AC上取一点E,使∠ADE=30°.(1)求证:△ABD∽△DCE;(2)若BD=n(0<n<2),求线段AE的长;(用含n的代数式表示)(3)当△ADE是等腰三角形时,请直接写出AE的长.【分析】(1)根据相似三角形的判定定理即可得到结论;(2)如图1,作高AF,根据直角三角形30°的性质求AF的长,根据勾股定理求BF的长,则可得BC的长,根据(1)中的相似列比例式可得函数关系式,并确定取值;(3)分三种情况进行讨论:①当AD=DE时,如图2,由(1)可知:此时△ABD≌△DCE,则AB=CD,即2=2﹣x;②当AE=ED时,如图3,则ED=EC,即y=(2﹣y);③当AD=AE时,∠AED=∠EDA=30°,∠EAD=120°,此时点D与点B重合,不符合题意,此情况不存在.【解答】证明:(1)∵△ABC是等腰三角形,且∠BAC=120°,∴∠ABD=∠ACB=30°,∴∠ABD=∠ADE=30°,∵∠ADC=∠ADE+∠EDC=∠ABD+∠DAB,∴∠EDC=∠DAB,∴△ABD∽△DCE;(2)如图1,∵AB=AC=2,∠BAC=120°,过A作AF⊥BC于F,∴∠AFB=90°,∵AB=2,∠ABF=30°,∴AF=AB=1,∴BF=,∴BC=2BF=2,则DC=2﹣n,EC=2﹣AE,∵△ABD∽△DCE,∴=,∴=,解得:AE=n2﹣n+2(0<x<2);(3)当AD=DE时,如图2,由(1)可知:此时△ABD≌△DCE,则AB=CD,即2=2﹣n,n=2﹣2,代入AE=n2﹣n+2,解得:AE=4﹣2,当AE=ED时,如图3,∠EAD=∠EDA=30°,∠AED=120°,∴∠DEC=60°,∠EDC=90°,则ED=EC,即AE=(2﹣AE),解得:AE=,当AD=AE时,∠AED=∠EDA=30°,∠EAD=120°,此时点D与点B重合,不符合题意,此情况不存在,∴当△ADE是等腰三角形时,AE=4﹣2或.26.小敏的爸爸是一家水果店的经理.一天,他去水果批发市场,用100元购进甲种水果,用100元购进乙种水果,已知乙种水果比甲种水果多10千克,乙种水果的批发价比甲种水果的批发价低0.5元.(1)求甲、乙两种水果各购进了多少千克?(2)如果当天甲、乙两种水果都按2.80元出售,乙种水果很快售完,而甲种水果先售出,剩余的按售价打5折售完.请你通过计算,说明这一天的水果买卖是否赚钱?如果赚钱,赚了多少元?如果不赚钱,那么赔了多少元?【分析】(1)先设出甲种水果的批发价为x元,购进了y千克,则乙种水果的批发价为(x﹣0.5)元,购进了(y+10)千克.根据100=水果批发价×购进数量,列方程组求解;(2)根据利润=总销售额﹣购买水果的本钱求解.【解答】解:(1)设甲种水果的批发价为x元,购进了y千克,则乙种水果的批发价为(x﹣0.5)元,购进了(y+10)千克.则有,解得:x=2.5,x﹣0.5=2;y=40,y+10=50.故甲、乙两种水果各购进了40千克和50千克.(2)这一天的利润=50×(2.8﹣2)+40×(2.8﹣2.5)+40×(1.4﹣2.5)=40+7.2﹣17.6=29.6>0,这一天的水果买卖赚钱,赚了29.6元.27.如图,在矩形ABCD中,点E是AD上的一个动点,连接BE,作点A关于BE的对称点F,且点F落在矩形ABCD的内部,连结AF、BF、EF,过点F作GF⊥AF交AD于点G,设AD:AE=n.(1)线段AE和线段EG的数量关系是:AE=EG;(2)如图②,当点F落在AC上时,用含n的代数式表示AD:AB的值;(3)若AD=4AB,且△FCG为直角三角形,求n的值.(直接写出结果).【分析】(1)直接利用等角的余角相等得出∠FGA=∠EFG,即可得出EG=EF,代换即可;(2)先判断出△ABE∽△DAC,得出比例式用AB=DC代换化简即可得出结论;(3)先判断出只有∠CFG=90°或∠CGF=90°,分两种情况建立方程求解即可.【解答】解:设AE=a,则AD=na,(1)由对称知,AE=FE,∴∠EAF=∠EF A,∵GF⊥AF,∴∠EAF+∠FGA=∠EF A+∠EFG=90°,∴∠FGA=∠EFG,∴EG=EF,∴AE=EG,故答案为:AE=EG;(2)如图1,当点F落在AC上时,由对称知,BE⊥AF,∴∠ABE+∠BAC=90°,∵∠DAC+∠BAC=90°,∴∠ABE=∠DAC,∵∠BAE=∠D=90°,∴△ABE∽△DAC,∴=,∵AB=DC,∴AB2=AD•AE=na2,∵AB>0,∴AB=a,∴==;(3)若AD=4AB,则AB=a,如图2,当点F落在线段BC上时,EF=AE=AB=a,此时a=a,∴n=4,∴当点F落在矩形内部时,n>4,∵∠CGF=90°,如图3,∴∠CGD+∠AGF=90°,∵∠F AG+∠AGF=90°,∴∠CGD=∠F AG=∠ABE,∵∠BAE=∠D=90°,∴△ABE∽△DGC,∴=,∴AB•DC=DG•AE,∵DG=AD﹣AE﹣EG=na﹣2a=(n﹣2)a,∴(a)2=(n﹣2)a•a,∴n=8+4或n=8﹣4(由于n>4,所以舍),即:n=8+428.定义:若关于x的一元二次方程ax2+bx+c=0(a≠0)的两个实数根为x1,x2(x1<x2),分别以x1,x2为横坐标和纵坐标得到点M(x1,x2),则称点M为该一元二次方程的衍生点.(1)若方程为x2﹣2x=0,写出该方程的衍生点M的坐标.(2)若关于x的一元二次方程x2﹣(2m+1)x+2m=0(m<0)的衍生点为M,过点M向x轴和y 轴作垂线,两条垂线与坐标轴恰好围成一个正方形,求m的值.(3)是否存在b,c,使得不论k(k≠0)为何值,关于x的方程x2+bx+c=0的衍生点M始终在直线y=kx﹣2(k﹣2)的图象上,若有请直接写出b,c的值,若没有说明理由.【分析】(1)求出方程的两根,根据一元二次方程的衍生点即可解决问题;(2)求出方程的两根,根据一元二次方程的衍生点的定义,再利用正方形的性质构建方程即可解决问题;(3)求出定点,利用根与系数的关系解决问题即可;【解答】解:(1)∵x2﹣2x=0,∴x(x﹣2)=0,解得:x1=0,x2=2故方程x2﹣2x=0的衍生点为M(0,2).(2)x2﹣(2m+1)x+2m=0(m<0)∵m<0∴2m<0解得:x1=2m,x2=1,方程x2﹣(2m+1)x+2m=0(m<0)的衍生点为M(2m,1).点M在第二象限内且纵坐标为1,由于过点M向两坐标轴做垂线,两条垂线与x轴y轴恰好围城一个正方形,所以2m=﹣1,解得.(3)存在.直线y=kx﹣2(k﹣2)=k(x﹣2)+4,过定点M(2,4),∴x2+bx+c=0两个根为x1=2,x2=4,∴2+4=﹣b,2×4=c,∴b=﹣6,c=8.。

四川省乐山市2019年中考数学试题(含解析)和答案

四川省乐山市2019年中考数学试题(含解析)和答案

2019年四川省乐山市中考数学试卷注:请使用office word软件打开,wps word会导致公式错乱一、选择题(本大题共10小题,共30.0分)1.-3的绝对值是()A. 3B.C.D.2.下列四个图形中,可以由图通过平移得到的是()A. B. C. D.3.小强同学从-1,0,1,2,3,4这六个数中任选一个数,满足不等式x+1<2的概率是()A. B. C. D.4.-a一定是()A. 正数B. 负数C. 0D. 以上选项都不正确5.如图,直线a∥b,点B在a上,且AB⊥BC.若∠1=35°,那么∠2等于()A. B. C. D.6.不等式组的解集在数轴上表示正确的是()A. B.C. D.7.《九章算术》第七卷“盈不足”中记载:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”译为:“今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又差4钱.问人数、物价各多少?”根据所学知识,计算出人数、物价分别是()A. 1,11B. 7,53C. 7,61D. 6,508.把边长分别为1和2的两个正方形按如图的方式放置.则图中阴影部分的面积为()A.B.C.D.9.如图,在边长为的菱形ABCD中,∠B=30°,过点A作AE⊥BC于点E,现将△ABE沿直线AE翻折至△AFE的位置,AF与CD交于点G.则CG等于()A. B. 1 C. D.10.如图,抛物线y=x2-4与x轴交于A、B两点,P是以点C(0,3)为圆心,2为半径的圆上的动点,Q是线段PA的中点,连结OQ.则线段OQ的最大值是()A. 3B.C.D. 4二、填空题(本大题共6小题,共18.0分)11.-的相反数是______.12.某地某天早晨的气温是-2℃,到中午升高了6℃,晚上又降低了7℃.那么晚上的温度是______℃.13.若3m=9n=2.则3m+2n=______.14.如图,在△ABC中,∠B=30°,AC=2,cos C=.则AB边的长为______.15.如图,点P是双曲线C:y=(x>0)上的一点,过点P作x轴的垂线交直线AB:y=x-2于点Q,连结OP,OQ.当点P在曲线C上运动,且点P在Q的上方时,△POQ面积的最大值是______.16.如图1,在四边形ABCD中,AD∥BC,∠B=30°,直线l⊥AB.当直线l沿射线BC方向,从点B开始向右平移时,直线l与四边形ABCD的边分别相交于点E、F.设直线l向右平移的距离为x,线段EF的长为y,且y与x的函数关系如图2所示,则四边形ABCD 的周长是______.三、解答题(本大题共10小题,共102.0分)17.计算:()-1-(2019-π)0+2sin30°.18.如图,点A、B在数轴上,它们对应的数分别为-2,,且点A、B到原点的距离相等.求x的值.19.如图,线段AC、BD相交于点E,AE=DE,BE=CE.求证:∠B=∠C.20.化简:÷.21.如图,已知过点B(1,0)的直线l1与直线l2:y=2x+4相交于点P(-1,a).(1)求直线l1的解析式;(2)求四边形PAOC的面积.22.某校组织学生参加“安全知识竞赛”,测试结束后,张老师从七年级720名学生中随机地抽取部分学生的成绩绘制了条形统计图,如图所示.试根据统计图提供的信息,回答下列问题:(1)张老师抽取的这部分学生中,共有______名男生,______名女生;(2)张老师抽取的这部分学生中,女生成绩的众数是______;(3)若将不低于27分的成绩定为优秀,请估计七年级720名学生中成绩为优秀的学生人数大约是多少.23.已知关于x的一元二次方程x2-(k+4)x+4k=0.(1)求证:无论k为任何实数,此方程总有两个实数根;(2)若方程的两个实数根为x1、x2,满足+=,求k的值;(3)若Rt△ABC的斜边为5,另外两条边的长恰好是方程的两个根x1、x2,求Rt△ABC 的内切圆半径.24.如图,直线l与⊙O相离,OA⊥l于点A,与⊙O相交于点P,OA=5.C是直线l上一点,连结CP并延长交⊙O于另一点B,且AB=AC.(1)求证:AB是⊙O的切线;(2)若⊙O的半径为3,求线段BP的长.25.在△ABC中,已知D是BC边的中点,G是△ABC的重心,过G点的直线分别交AB、AC于点E、F.(1)如图1,当EF∥BC时,求证:+=1;(2)如图2,当EF和BC不平行,且点E、F分别在线段AB、AC上时,(1)中的结论是否成立?如果成立,请给出证明;如果不成立,请说明理由.(3)如图3,当点E在AB的延长线上或点F在AC的延长线上时,(1)中的结论是否成立?如果成立,请给出证明;如果不成立,请说明理由.26.如图,已知抛物线y=a(x+2)(x-6)与x轴相交于A、B两点,与y轴交于C点,且tan∠CAB=.设抛物线的顶点为M,对称轴交x轴于点N.(1)求抛物线的解析式;(2)P为抛物线的对称轴上一点,Q(n,0)为x轴上一点,且PQ⊥PC.①当点P在线段MN(含端点)上运动时,求n的变化范围;②当n取最大值时,求点P到线段CQ的距离;③当n取最大值时,将线段CQ向上平移t个单位长度,使得线段CQ与抛物线有两个交点,求t的取值范围.答案和解析1.【答案】A【解析】解:|-3|=-(-3)=3.故选:A.根据一个负数的绝对值等于它的相反数得出.考查绝对值的概念和求法.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.【答案】D【解析】解:∵只有D的图形的形状和大小没有变化,符合平移的性质,属于平移得到;故选:D.根据平移的性质解答即可.本题考查的是平移的性质,熟知图形平移后所得图形与原图形全等是解答此题的关键.3.【答案】C【解析】解:在-1,0,1,2,3,4这六个数中,满足不等式x+1<2的有-1、0这两个,所以满足不等式x+1<2的概率是=,故选:C.找到满足不等式x+1<2的结果数,再根据概率公式计算可得.本题主要考查概率公式,用到的知识点为:概率等于所求情况数与总情况数之比.4.【答案】D【解析】解:-a中a的符号无法确定,故-a的符号无法确定.故选:D.利用正数与负数定义分析得出答案.此题主要考查了正数和负数,正确理解正负数的定义是解题关键.5.【答案】C【解析】解:∵a∥b,∠1=35°,∴∠BAC=∠1=35°.∵AB⊥BC,∴∠2=∠BCA=90°-∠BAC=55°.故选:C.先根据∠1=35°,a∥b求出∠BAC的度数,再由AB⊥BC即可得出答案.本题考查的是平行线的性质、垂线的性质,熟练掌握垂线的性质和平行线的性质是解决问题的关键.6.【答案】B【解析】解:,解①得:x>-6,解②得:x≤13,故不等式组的解集为:-6<x≤13,在数轴上表示为:.故选:B.分别解不等式进而得出不等式组的解集,进而得出答案.此题主要考查了解一元一次不等式组,正确解不等式是解题关键.7.【答案】B【解析】解:设有x人,物价为y,可得:,解得:,故选:B.设有x人,物价为y,根据该物品价格不变,即可得出关于x、y的二元一次方程组,此题得解.本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.8.【答案】A【解析】解:如图,设BC=x,则CE=1-x易证△ABC∽△FEC∴===解得x=∴阴影部分面积为:S△ABC=××1=故选:A.如图,易证△ABC∽△FEC,可设BC=x,只需求出BC即可.本题主要考查正方形的性质及三角形的相似,本题要充分利用正方形的特殊性质.利用比例的性质,直角三角形的性质等知识点的理解即可解答9.【答案】A【解析】解:在Rt△ABE中,∠B=30°,AB=,∴BE=.根据折叠性质可得BF=2BE=3.∴CF=3-.∵AD∥CF,∴△ADG∽△FCG.∴.设CG=x,则,解得x=-1.故选:A.先利用30°直角三角形的性质,求出BE,再根据折叠性质求得BF,从而得到CF长,最后根据△ADG∽△FCG得出与CG有关的比例式,即可求解CG长.本题主要考查了菱形的性质、相似三角形的判定和性质、折叠的性质,解题的关键是找到与CG相关的三角形,利用相似知识求解.10.【答案】C【解析】解:连接BP,如图,当y=0时,x2-4=0,解得x1=4,x2=-4,则A(-4,0),B(4,0),∵Q是线段PA的中点,∴OQ为△ABP的中位线,∴OQ=BP,当BP最大时,OQ最大,而BP过圆心C时,PB最大,如图,点P运动到P′位置时,BP最大,∵BC==5,∴BP′=5+2=7,∴线段OQ的最大值是.故选:C.连接BP,如图,先解方程x2-4=0得A(-4,0),B(4,0),再判断OQ为△ABP的中位线得到OQ=BP,利用点与圆的位置关系,BP过圆心C时,PB最大,如图,点P运动到P′位置时,BP最大,然后计算出BP′即可得到线段OQ的最大值.本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.也考查了三角形中位线.11.【答案】【解析】解:的相反数是,故答案为:.根据只有符号不同的两个数互为相反数,可得一个数的相反数.本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.12.【答案】-3【解析】解:-2+6-7=-3,故答案为:-3由题意列出算式进行计算求解即可.本题主要考查有理数的加减法,正确列出算式是解题的关键.13.【答案】4【解析】解:∵3m=32n=2,∴3m+2n=3m•32n=2×2=4,故答案为:4根据幂的乘方与积的乘方进行解答即可.此题考查幂的乘方与积的乘方,关键是根据幂的乘方与积的乘方解答.14.【答案】【解析】解:如图,作AH⊥BC于H.在Rt△ACH中,∵∠AHC=90°,AC=2,COSC=,∴=,∴CH=,∴AH===,在Rt△ABH中,∵∠AHB=90°,∠B=30°,∴AB=2AH=,故答案为.如图,作AH⊥BC于H.解直角三角形求出AH,再根据AB=2AH即可解决问题.本题考查解直角三角形,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.15.【答案】3【解析】解:∵PQ⊥x轴,∴设P(x,),则Q(x,x-2),∴PQ=-x+2,∴S△POQ=(-+2)•x=-(x-2)2+3,∵-<0,∴△POQ面积有最大值,最大值是3,故答案为3.设P(x,),则Q(x,x-2),得到PQ=-x+2,根据三角形面积公式得到S△POQ=-(x-2)2+3,根据二次函数的性质即可求得最大值.本题考查了一次函数图象上点的坐标特征,二次函数的性质,反比例函数y=(k≠0)系数k的几何意义:从反比例函数y=(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.16.【答案】【解析】解:∵∠B=30°,直线l⊥AB,∴BE=2EF,由图可得,AB=4cos30°=4×=2,BC=5,AD=7-4=3,当EF平移到点F与点D重合时,如右图所示,∵∠EFB=60°,∴∠DEC=60°,∵DE=CE=2,∴△DEC为等边三角形,∴CD=2.∴四边形ABCD的周长是:AB+BC+AD+CD=2+5+3+2=10+2,故答案为:10+2.根据题意和函数图象中的数据,可以得到AB、BC、AD的长,再根据平行线的性质和图形中的数据可以得到CD的长,从而可以求得四边形ABCD的周长.本题考查动点问题的函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.17.【答案】解:原式=,=2-1+1,=2.【解析】根据实数的混合计算解答即可.此题考查实数的运算,关键是根据实数的混合计算解答.18.【答案】解:根据题意得:,去分母,得x=2(x+1),去括号,得x=2x+2,解得x=-2经检验,x=-2是原方程的解.【解析】根据题意得出分式方程解答即可.此题考查解分式方程,关键是根据解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论解答.19.【答案】证明:在△AEB和△DEC中,∵∴△AEB≌△DEC,∴∠B=∠C.【解析】根据AE=DE,∠AEB=∠DEC,BE=CE,证出△AEB≌△DEC,即可得出∠B=∠C.此题主要考查学生对全等三角形的判定与性质这一知识点的理解和掌握,此题难度不大,要求学生应熟练掌握.20.【答案】解:原式=÷,=×,=.【解析】首先将分式的分子与分母分解因式,进而约分得出答案.此题主要考查了分式的乘除运算,正确分解因式是解题关键.21.【答案】解:(1)∵点P(-1,a)在直线l2:y=2x+4上,∴2×(-1)+4=a,即a=2,则P的坐标为(-1,2),设直线l1的解析式为:y=kx+b(k≠0),那么,解得:.∴l1的解析式为:y=-x+1.(2)∵直线l1与y轴相交于点C,∴C的坐标为(0,1),又∵直线l2与x轴相交于点A,∴A点的坐标为(-2,0),则AB=3,而S四边形PAOC=S△PAB-S△BOC,∴S四边形PAOC=.【解析】(1)由点P(-1,a)在直线l2上,利用一次函数图象上点的坐标特征,即可求出a值,再利用点P的坐标和点B的坐标可求直线l1的解析式;(2)根据面积差可得结论.本题考查了两条直线相交或平行问题、一次函数图象上点的坐标特征和三角形的面积,在函数的图象上的点,就一定满足函数解析式.并利用数形结合的思想解决问题.22.【答案】40 40 27【解析】解:(1)男生:1+2+2+4+9+14+5+2+1=40(人)女生:1+1+2+3+11++13+7+1+1=40(人)故答案为40,40;(2)女生成绩27的人数最多,所以众数为27,故答案为27;(3)(人),七年级720名学生中成绩为优秀的学生人数大约是396人.(1)男生:1+2+2+4+9+14+5+2+1=40(人)女生:1+1+2+3+11++13+7+1+1=40(人);(2)女生成绩27的人数最多,所以众数为27;(3)(人).此题同时考查了条形统计图,考查了利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、认真分析、认真研究统计图,只有这样才能作出正确的判断,准确地解决问题.23.【答案】(1)证明:∵△=(k+4)2-16k=k2-8k+16=(k-4)2≥0,∴无论k为任何实数时,此方程总有两个实数根;(2)解:由题意得:x1+x2=k+4,x1•x2=4k,∵,∴,即,解得:k=2;(3)解:解方程x2-(k+4)x+4k=0得:x1=4,x2=k,根据题意得:42+k2=52,即k=3,设直角三角形ABC的内切圆半径为r,如图,由切线长定理可得:(3-r)+(4-r)=5,∴直角三角形ABC的内切圆半径r=.【解析】(1)根据根的判别式△=(k+4)2-16k=k2-8k+16=(k-4)2≥0,即可得到结论;(2)由题意得到x1+x2=k+4,x1•x2=4k,代入,解方程即可得到结论;(3)解方程x2-(k+4)x+4k=0得到x1=4,x2=k,根据题意根据勾股定理列方程得到k=3,设直角三角形ABC的内切圆半径为r,根据切线长定理即可得到结论.本题考查了三角形的内切圆和内心,切线的性质,一元二次方程根的判别式,一元二次方程根与系数的关系,熟练掌握切线长定理是解题的关键.24.【答案】(1)证明:如图,连结OB,则OP=OB,∴∠OBP=∠OPB=∠CPA,AB=AC,∴∠ACB=∠ABC,而OA⊥l,即∠OAC=90°,∴∠ACB+∠CPA=90°,即∠ABP+∠OBP=90°,∴∠ABO=90°,OB⊥AB,故AB是⊙O的切线;(2)解:由(1)知:∠ABO=90°,而OA=5,OB=OP=3,由勾股定理,得:AB=4,过O作OD⊥PB于D,则PD=DB,∵∠OPD=∠CPA,∠ODP=∠CAP=90°,∴△ODP∽△CAP,∴,又∵AC=AB=4,AP=OA-OP=2,∴,∴,∴.【解析】(1)连接OB,由AB=AC得∠ABC=∠ACB,由OP=OB得∠OPB=∠OBP,由OA⊥l得∠OAC=90°,则∠ACB+∠APC=90°,而∠APC=∠OPB=∠OBP,所以∠OBP+∠ABC=90°,即∠OBA=90°,于是根据切线的判定定理得到直线AB是⊙O的切线;(2)根据勾股定理求得AB=4,PC=2,过O作OD⊥PB于D,则PD=DB,通过证得△ODP∽△CAP,得到,求得PD,即可求得PB.本题考查了切线的判定和性质,勾股定理的应用研究三角形相似的判定和性质,熟练掌握性质定理是解题的关键.25.【答案】(1)证明:∵G是△ABC重心,∴,又∵EF∥BC,∴,,则;(2)解:(1)中结论成立,理由如下:如图2,过点A作AN∥BC交EF的延长线于点N,FE、CB的延长线相交于点M,则△BME∽△ANE,△CMF∽△ANF,,,∴,又∵BM+CM=BM+CD+DM,而D是BC的中点,即BD=CD,∴BM+CM=BM+BD+DM=DM+DM=2DM,∴,又∵,∴,故结论成立;(3)解:(1)中结论不成立,理由如下:当F点与C点重合时,E为AB中点,BE=AE,点F在AC的延长线上时,BE>AE,∴,则,同理:当点E在AB的延长线上时,,∴结论不成立.【解析】(1)根据三角形重心定理和平行线分线段成比例解答即可;(2)过点A作AN∥BC交EF的延长线于点N,FE、CB的延长线相交于点M,得出△BME∽△ANE,△CMF∽△ANF,得出比例式解答即可;(3)分两种情况:当F点与C点重合时,E为AB中点,BE=AE;点F在AC的延长线上时,BE>AE,得出,则,同理:当点E在AB的延长线上时,,即可得出结论.此题是相似三角形综合题,考查了相似三角形的判定与性质、三角形重心定理、平行线分线段成比例定理等知识;本题综合性强,熟练掌握三角形的重心定理和平行线分线段成比例定理,证明三角形相似是解题的关键.26.【答案】解:(1)根据题意得:A(-2,0),B(6,0),在Rt△AOC中,∵,且OA=2,得CO=3,∴C(0,3),将C点坐标代入y=a (x+2)(x-6)得:,抛物线解析式为:;整理得:y=-故抛物线解析式为:得:y=-;(2)①由(1)知,抛物线的对称轴为:x=2,顶点M(2,4),设P点坐标为(2,m)(其中0≤m≤4),则PC2=22+(m-3)2,PQ2=m2+(n-2)2,CQ2=32+n2,∵PQ⊥PC,∴在Rt△PCQ中,由勾股定理得:PC2+PQ2=CQ2,即22+(m-3)2+m2+(n-2)2=32+n2,整理得:=(0≤m≤4),∴当时,n取得最小值为;当m=4时,n取得最大值为4,所以,;②由①知:当n取最大值4时,m=4,∴P(2,4),Q(4,0),则,,CQ=5,设点P到线段CQ距离为h,由,得:,故点P到线段CQ距离为2;③由②可知:当n取最大值4时,Q(4,0),∴线段CQ的解析式为:,设线段CQ向上平移t个单位长度后的解析式为:,当线段CQ向上平移,使点Q恰好在抛物线上时,线段CQ与抛物线有两个交点,此时对应的点Q'的纵坐标为:,将Q'(4,3)代入得:t=3,当线段CQ继续向上平移,线段CQ与抛物线只有一个交点时,联解得:,化简得:x2-7x+4t=0,由△=49-16t=0,得,∴当线段CQ与抛物线有两个交点时,.【解析】(1)由函数解析式,可以求出点A、B的坐标分别为(-2,0),(6,0),在Rt△OAC中由tan∠CAB=,可以求出点C的坐标为(0,3),进而可以求出抛物线的解析式;(2)①抛物线的对称轴为:x=2,顶点M(2,4),在Rt△PCQ中,由勾股定理得:PC2+PQ2=CQ2,把三角形三边长用点P,Q的坐标表达出来,整理得:,利用0≤m≤4,求出n的取值范围;②由,得:,求出点P到线段CQ距离为2;③设线段CQ向上平移t个单位长度后的解析式为:,联立抛物线方程,可求出x2-7x+4t=0,由△=49-16t=0,得,∴当线段CQ与抛物线有两个交点时,主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,处理问题和解决问题.。

2019年四川省自贡市中考数学试卷(附答案解析)

2019年四川省自贡市中考数学试卷(附答案解析)

2019四川省各市中考数学试题汇总(附答案解析)目录2019年四川省自贡市中考数学试卷 (2)2019年四川省资阳市中考数学试卷 (26)2019年四川省宜宾市中考数学试卷 (48)2019年四川省遂宁市中考数学试卷 (68)2019年四川省攀枝花市中考数学试卷 (89)2019年四川省南充市中考数学试卷 (111)2019年四川省绵阳市中考数学试卷 (143)2019年四川省凉山州中考数学试卷 (168)乐山市2019年初中学业水平考试 (191)2019年四川省广安市中考数学试卷 (205)2019年四川省达州市中考数学试卷 (224)2019年四川省成都市中考数学试卷 (248)2019年四川省巴中市中考数学试卷 (273)2019年四川省绵阳市中考数学试卷 (294)2019年四川省自贡市中考数学试卷一、选择题[共12个小题,每小题4分,共48分,在每题给出的四个选项中,只有一项是符合题目要求的)1.(4分)﹣2019的倒数是()A.﹣2019B.−12019C.12019D.20192.(4分)近年来,中国高铁发展迅速,高铁技术不断走出国门,成为展示我国实力的新名片.现在中国高速铁路营运里程将达到23000公里,将23000用科学记数法表示应为()A.2.3×104B.23×103C.2.3×103D.0.23×105 3.(4分)下列图案中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.(4分)在5轮“中国汉字听写大赛”选拔赛中,甲、乙两位同学的平均分都是90分,甲的成绩方差是15,乙的成绩方差是3,下列说法正确的是()A.甲的成绩比乙的成绩稳定B.乙的成绩比甲的成绩稳定C.甲、乙两人的成绩一样稳定D.无法确定甲、乙的成绩谁更稳定5.(4分)如图是一个水平放置的全封闭物体,则它的俯视图是()A.B.C.D.6.(4分)已知三角形的两边长分别为1和4,第三边长为整数,则该三角形的周长为()A.7B.8C.9D.107.(4分)实数m,n在数轴上对应点的位置如图所示,则下列判断正确的是()A.|m|<1B.1﹣m>1C.mn>0D.m+1>0 8.(4分)关于x的一元二次方程x2﹣2x+m=0无实数根,则实数m的取值范围是()A.m<1B.m≥1C.m≤1D.m>19.(4分)一次函数y=ax+b与反比列函数y=cx的图象如图所示,则二次函数y=ax2+bx+c的大致图象是()A.B.C.D.10.(4分)均匀的向一个容器内注水,在注满水的过程中,水面的高度h与时间t的函数关系如图所示,则该容器是下列四个中的()A.B.C.D.11.(4分)图中有两张型号完全一样的折叠式饭桌,将正方形桌面边上的四个弓形面板翻折起来后,就能形成一个圆形桌面(可近似看作正方形的外接圆),正方形桌面与翻折成的圆形桌面的面积之比最接近()A .45B .34C .23D .12 12.(4分)如图,已知A 、B 两点的坐标分别为(8,0)、(0,8),点C 、F 分别是直线x =﹣5和x 轴上的动点,CF =10,点D 是线段CF 的中点,连接AD 交y 轴于点E ,当△ABE 面积取得最小值时,tan ∠BAD 的值是( )A .817B .717C .49D .59 二、填空题(共6个小题,每小题4分,共24分)13.(4分)如图,直线AB 、CD 被直线EF 所截,AB ∥CD ,∠1=120°,则∠2= .14.(4分)在一次有12人参加的数学测试中,得100分、95分、90分、85分、75分的人数分别是1、3、4、2、2,那么这组数据的众数是 分.15.(4分)分解因式:2x 2﹣2y 2= .16.(4分)某活动小组购买了4个篮球和5个足球,一共花费了466元,其中篮球的单价比足球的单价多4元,求篮球的单价和足球的单价.设篮球的单价为x 元,足球的单价为y 元,依题意,可列方程组为 .17.(4分)如图,在Rt △ABC 中,∠ACB =90°,AB =10,BC =6,CD ∥AB ,∠ABC 的平分线BD 交AC 于点E ,DE = .18.(4分)如图,在由10个完全相同的正三角形构成的网格图中,∠α、∠β如图所示,则cos(α+β)=.三、解答題(共8个题,共78分)19.(8分)计算:|﹣3|﹣4sin45°+√8+(π﹣3)020.(8分)解方程:xx−1−2x=1.21.(8分)如图,⊙O中,弦AB与CD相交于点E,AB=CD,连接AD、BC.求证:(1)AD̂=BĈ;(2)AE=CE.22.(8分)某校举行了自贡市创建全国文明城市知识竞赛活动,初一年级全体同学参加了知识竞赛.收集教据:现随机抽取了初一年级30名同学的“创文知识竞赛”成绩,分数如下(单位:分):90 85 68 92 81 84 95 93 87 89 78 99 89 85 9788 81 95 86 98 95 93 89 86 84 87 79 85 89 82整理分析数据:成绩x(单位:分)频数(人数)60≤x<70170≤x<8080≤x<901790≤x<100(1)请将图表中空缺的部分补充完整;(2)学校决定表彰“创文知识竞赛”成绩在90分及其以上的同学.根据上面统计结果估计该校初一年级360人中,约有多少人将获得表彰;(3)“创文知识竞赛”中,受到表彰的小红同学得到了印有龚扇、剪纸、彩灯、恐龙图案的四枚纪念章,她从中选取两枚送给弟弟,则小红送给弟弟的两枚纪念章中,恰好有恐龙图案的概率是.23.(10分)如图,在平面直角坐标系中,一次函数y1=kx+b(k≠0)的图象与反比例函数y2=mx(m≠0)的图象相交于第一、象限内的A(3,5),B(a,﹣3)两点,与x轴交于点C.(1)求该反比例函数和一次函数的解析式;(2)在y轴上找一点P使PB﹣PC最大,求PB﹣PC的最大值及点P的坐标;(3)直接写出当y1>y2时,x的取值范围.24.(10分)阅读下列材料:小明为了计算1+2+22+…+22017+22018的值,采用以下方法:设S=1+2+22+…+22017+22018①则2S=2+22+…+22018+22019②②﹣①得2S﹣S=S=22019﹣1∴S=1+2+22+…+22017+22018=22019﹣1请仿照小明的方法解决以下问题:(1)1+2+22+…+29=;(2)3+32+…+310=;(3)求1+a+a2+…+a n的和(a>0,n是正整数,请写出计算过程).25.(12分)(1)如图1,E是正方形ABCD边AB上的一点,连接BD、DE,将∠BDE 绕点D逆时针旋转90°,旋转后角的两边分别与射线BC交于点F和点G.①线段DB和DG的数量关系是;②写出线段BE,BF和DB之间的数量关系.(2)当四边形ABCD为菱形,∠ADC=60°,点E是菱形ABCD边AB所在直线上的一点,连接BD、DE,将∠BDE绕点D逆时针旋转120°,旋转后角的两边分别与射线BC交于点F和点G.①如图2,点E在线段AB上时,请探究线段BE、BF和BD之间的数量关系,写出结论并给出证明;②如图3,点E在线段AB的延长线上时,DE交射线BC于点M,若BE=1,AB=2,直接写出线段GM的长度.26.(14分)如图,已知直线AB与抛物线C:y=ax2+2x+c相交于点A(﹣1,0)和点B(2,3)两点.(1)求抛物线C函数表达式;(2)若点M是位于直线AB上方抛物线上的一动点,以MA、MB为相邻的两边作平行四边形MANB,当平行四边形MANB的面积最大时,求此时平行四边形MANB 的面积S及点M的坐标;(3)在抛物线C的对称轴上是否存在定点F,使抛物线C上任意一点P到点F的距离等于到直线y=174的距离?若存在,求出定点F的坐标;若不存在,请说明理由.2019年四川省自贡市中考数学试卷参考答案与试题解析一、选择题[共12个小题,每小题4分,共48分,在每题给出的四个选项中,只有一项是符合题目要求的)1.(4分)﹣2019的倒数是()A.﹣2019B.−12019C.12019D.2019【解答】解:﹣2019的倒数是−1 2019.故选:B.2.(4分)近年来,中国高铁发展迅速,高铁技术不断走出国门,成为展示我国实力的新名片.现在中国高速铁路营运里程将达到23000公里,将23000用科学记数法表示应为()A.2.3×104B.23×103C.2.3×103D.0.23×105【解答】解:23000=2.3×104,故选:A.3.(4分)下列图案中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,但不是中心对称图形,故此选项错误;B、不是轴对称图形,是中心对称图形,故此选项错误;C、不是轴对称图形,是中心对称图形,故此选项错误;D、既是中心对称图形也是轴对称图形,故此选项正确.故选:D.4.(4分)在5轮“中国汉字听写大赛”选拔赛中,甲、乙两位同学的平均分都是90分,甲的成绩方差是15,乙的成绩方差是3,下列说法正确的是()A.甲的成绩比乙的成绩稳定B.乙的成绩比甲的成绩稳定C.甲、乙两人的成绩一样稳定D.无法确定甲、乙的成绩谁更稳定【解答】解:∵乙的成绩方差<甲成绩的方差,∴乙的成绩比甲的成绩稳定,故选:B.5.(4分)如图是一个水平放置的全封闭物体,则它的俯视图是()A.B.C.D.【解答】解:从上面观察可得到:.故选:C.6.(4分)已知三角形的两边长分别为1和4,第三边长为整数,则该三角形的周长为()A.7B.8C.9D.10【解答】解:设第三边为x,根据三角形的三边关系,得:4﹣1<x<4+1,即3<x<5,∵x为整数,∴x的值为4.三角形的周长为1+4+4=9.故选:C.7.(4分)实数m,n在数轴上对应点的位置如图所示,则下列判断正确的是()A.|m|<1B.1﹣m>1C.mn>0D.m+1>0【解答】解:利用数轴得m<0<1<n,所以﹣m>0,1﹣m>1,mn<0,m+1<0.故选:B.8.(4分)关于x的一元二次方程x2﹣2x+m=0无实数根,则实数m的取值范围是()A.m<1B.m≥1C.m≤1D.m>1【解答】解:根据题意得△=(﹣2)2﹣4m<0,解得m>1.故选:D.9.(4分)一次函数y=ax+b与反比列函数y=cx的图象如图所示,则二次函数y=ax2+bx+c的大致图象是()A.B.C.D.【解答】解:∵一次函数y1=ax+c图象过第一、二、四象限,∴a<0,b>0,∴−b2a>0,∴二次函数y3=ax2+bx+c开口向下,二次函数y3=ax2+bx+c对称轴在y轴右侧;∵反比例函数y2=cx的图象在第一、三象限,∴c>0,∴与y轴交点在x轴上方.满足上述条件的函数图象只有选项A.故选:A.10.(4分)均匀的向一个容器内注水,在注满水的过程中,水面的高度h与时间t的函数关系如图所示,则该容器是下列四个中的()A .B .C .D .【解答】解:相比较而言,前一个阶段,用时较少,高度增加较快,那么下面的物体应较细.由图可得上面圆柱的底面半径应大于下面圆柱的底面半径. 故选:D .11.(4分)图中有两张型号完全一样的折叠式饭桌,将正方形桌面边上的四个弓形面板翻折起来后,就能形成一个圆形桌面(可近似看作正方形的外接圆),正方形桌面与翻折成的圆形桌面的面积之比最接近( )A .45B .34C .23D .12【解答】解:连接AC , 设正方形的边长为a , ∵四边形ABCD 是正方形, ∴∠B =90°, ∴AC 为圆的直径, ∴AC =√2AB =√2a ,则正方形桌面与翻折成的圆形桌面的面积之比为:2π×(√22a)=2π≈23,故选:C .12.(4分)如图,已知A 、B 两点的坐标分别为(8,0)、(0,8),点C 、F 分别是直线x =﹣5和x 轴上的动点,CF =10,点D 是线段CF 的中点,连接AD 交y 轴于点E ,当△ABE 面积取得最小值时,tan ∠BAD 的值是( )A .817B .717C .49D .59【解答】解:如图,设直线x =﹣5交x 轴于K .由题意KD =12CF =5,∴点D 的运动轨迹是以K 为圆心,5为半径的圆, ∴当直线AD 与⊙K 相切时,△ABE 的面积最小, ∵AD 是切线,点D 是切点, ∴AD ⊥KD , ∵AK =13,DK =5, ∴AD =12,∵tan ∠EAO =OEOA =DKAD , ∴OE 8=512,∴OE =103,∴AE =√OE 2+OA 2=263,作EH⊥AB于H.∵S△ABE=12•AB•EH=S△AOB﹣S△AOE,∴EH=7√2 3,∴AH=√AE2−EH2=17√2 3,∴tan∠BAD=EHAH=7√2317√23=717,故选:B.二、填空题(共6个小题,每小题4分,共24分)13.(4分)如图,直线AB、CD被直线EF所截,AB∥CD,∠1=120°,则∠2=60°.【解答】解:∵∠1=120°,∴∠3=180°﹣120°=60°,∵AB∥CD,∴∠2=∠3=60°.故答案为:60°.14.(4分)在一次有12人参加的数学测试中,得100分、95分、90分、85分、75分的人数分别是1、3、4、2、2,那么这组数据的众数是90分.【解答】解:这组数据的众数是90分,故答案为:90.15.(4分)分解因式:2x2﹣2y2=2(x+y)(x﹣y).【解答】解:2x2﹣2y2=2(x2﹣y2)=2(x+y)(x﹣y).故答案为:2(x+y)(x﹣y).16.(4分)某活动小组购买了4个篮球和5个足球,一共花费了466元,其中篮球的单价比足球的单价多4元,求篮球的单价和足球的单价.设篮球的单价为x元,足球的单价为y 元,依题意,可列方程组为 {x −y =44x +5y =466 .【解答】解:设篮球的单价为x 元,足球的单价为y 元,由题意得: {x −y =44x +5y =466, 故答案为:{x −y =44x +5y =466,17.(4分)如图,在Rt △ABC 中,∠ACB =90°,AB =10,BC =6,CD ∥AB ,∠ABC 的平分线BD 交AC 于点E ,DE =95√5.【解答】解:∵∠ACB =90°,AB =10,BC =6, ∴AC =8, ∵BD 平分∠ABC , ∴∠ABE =∠CDE , ∵CD ∥AB , ∴∠D =∠ABE , ∴∠D =∠CBE , ∴CD =BC =6, ∴△AEB ∽△CED , ∴AE EC=BE ED=AB CD=106=53,∴CE =38AC =38×8=3,BE =√BC 2+CE 2=√62+32=3√5, DE =35BE =35×3√5=95√5, 故答案为95√5.18.(4分)如图,在由10个完全相同的正三角形构成的网格图中,∠α、∠β如图所示,则cos (α+β)=√217.【解答】解:给图中各点标上字母,连接DE ,如图所示. 在△ABC 中,∠ABC =120°,BA =BC , ∴∠α=30°.同理,可得出:∠CDE =∠CED =30°=∠α. 又∵∠AEC =60°,∴∠AED =∠AEC +∠CED =90°.设等边三角形的边长为a ,则AE =2a ,DE =2×sin60°•a =√3a , ∴AD =√AE 2+DE 2=√7a , ∴cos (α+β)=DE AD =√217. 故答案为:√217.三、解答題(共8个题,共78分)19.(8分)计算:|﹣3|﹣4sin45°+√8+(π﹣3)0 【解答】解:原式=3﹣4×√22+2√2+1=3﹣2√2+2√2+1=4.20.(8分)解方程:x x−1−2x=1.【解答】解:去分母得:x 2﹣2x +2=x 2﹣x , 解得:x =2,检验:当x =2时,方程左右两边相等, 所以x =2是原方程的解.21.(8分)如图,⊙O 中,弦AB 与CD 相交于点E ,AB =CD ,连接AD 、BC . 求证:(1)AD ̂=BC ̂;(2)AE =CE .【解答】证明(1)∵AB=CD,̂=CD̂,即AD̂+AĈ=BĈ+AĈ,∴AB̂=BĈ;∴AD̂=BĈ,(2)∵AD∴AD=BC,又∵∠ADE=∠CBE,∠DAE=∠BCE,∴△ADE≌△CBE(ASA),∴AE=CE.22.(8分)某校举行了自贡市创建全国文明城市知识竞赛活动,初一年级全体同学参加了知识竞赛.收集教据:现随机抽取了初一年级30名同学的“创文知识竞赛”成绩,分数如下(单位:分):90 85 68 92 81 84 95 93 87 89 78 99 89 85 9788 81 95 86 98 95 93 89 86 84 87 79 85 89 82整理分析数据:成绩x(单位:分)频数(人数)60≤x<70170≤x<80280≤x<901790≤x<10010(1)请将图表中空缺的部分补充完整;(2)学校决定表彰“创文知识竞赛”成绩在90分及其以上的同学.根据上面统计结果估计该校初一年级360人中,约有多少人将获得表彰;(3)“创文知识竞赛”中,受到表彰的小红同学得到了印有龚扇、剪纸、彩灯、恐龙图案的四枚纪念章,她从中选取两枚送给弟弟,则小红送给弟弟的两枚纪念章中,恰好有恐龙图案的概率是12.【解答】解:(1)补全图表如下:(2)估计该校初一年级360人中,获得表彰的人数约为360×1030=120(人); (3)将印有龚扇、剪纸、彩灯、恐龙图案分别记为A 、B 、C 、D , 画树状图如下:则共有12种等可能的结果数,其中小红送给弟弟的两枚纪念章中,恰好有恐龙图案的结果数为6,所以小红送给弟弟的两枚纪念章中,恰好有恐龙图案的概率为12,故答案为:12.23.(10分)如图,在平面直角坐标系中,一次函数y 1=kx +b (k ≠0)的图象与反比例函数y 2=mx(m ≠0)的图象相交于第一、象限内的A (3,5),B (a ,﹣3)两点,与x 轴交于点C .(1)求该反比例函数和一次函数的解析式;(2)在y 轴上找一点P 使PB ﹣PC 最大,求PB ﹣PC 的最大值及点P 的坐标; (3)直接写出当y 1>y 2时,x 的取值范围.【解答】解:(1)把A (3,5)代入y 2=mx(m ≠0),可得m =3×5=15, ∴反比例函数的解析式为y 2=15x ; 把点B (a ,﹣3)代入,可得a =﹣5, ∴B (﹣5,﹣3).把A (3,5),B (﹣5,﹣3)代入y 1=kx +b ,可得{3k +b =5−5k +b =−3,解得{k =1b =2,∴一次函数的解析式为y 1=x +2;(2)一次函数的解析式为y 1=x +2,令x =0,则y =2, ∴一次函数与y 轴的交点为P (0,2), 此时,PB ﹣PC =BC 最大,P 即为所求, 令y =0,则x =﹣2, ∴C (﹣2,0),∴BC =√(−5+2)2+32=3√2. (3)当y 1>y 2时,﹣5<x <0或x >3.24.(10分)阅读下列材料:小明为了计算1+2+22+…+22017+22018的值,采用以下方法: 设S =1+2+22+…+22017+22018① 则2S =2+22+…+22018+22019② ②﹣①得2S ﹣S =S =22019﹣1 ∴S =1+2+22+…+22017+22018=22019﹣1 请仿照小明的方法解决以下问题: (1)1+2+22+…+29= 210﹣1 ; (2)3+32+…+310=311−32;(3)求1+a +a 2+…+a n 的和(a >0,n 是正整数,请写出计算过程). 【解答】解:(1)设S =1+2+22+…+29① 则2S =2+22+…+210② ②﹣①得2S ﹣S =S =210﹣1 ∴S =1+2+22+…+29=210﹣1; 故答案为:210﹣1(2)设S =3+3+32+33+34+…+310 ①, 则3S =32+33+34+35+…+311 ②, ②﹣①得2S =311﹣1,所以S =311−12,即3+32+33+34+…+310=311−12;故答案为:311−12;(3)设S =1+a +a 2+a 3+a 4+..+a n ①, 则aS =a +a 2+a 3+a 4+..+a n +a n +1②, ②﹣①得:(a ﹣1)S =a n +1﹣1,a =1时,不能直接除以a ﹣1,此时原式等于n +1;a不等于1时,a﹣1才能做分母,所以S=a n+1−1 a−1,即1+a+a2+a3+a4+..+a n=a n+1−1 a−1,25.(12分)(1)如图1,E是正方形ABCD边AB上的一点,连接BD、DE,将∠BDE 绕点D逆时针旋转90°,旋转后角的两边分别与射线BC交于点F和点G.①线段DB和DG的数量关系是DB=DG;②写出线段BE,BF和DB之间的数量关系.(2)当四边形ABCD为菱形,∠ADC=60°,点E是菱形ABCD边AB所在直线上的一点,连接BD、DE,将∠BDE绕点D逆时针旋转120°,旋转后角的两边分别与射线BC交于点F和点G.①如图2,点E在线段AB上时,请探究线段BE、BF和BD之间的数量关系,写出结论并给出证明;②如图3,点E在线段AB的延长线上时,DE交射线BC于点M,若BE=1,AB=2,直接写出线段GM的长度.【解答】解:(1)①DB=DG,理由是:∵∠DBE绕点B逆时针旋转90°,如图1,由旋转可知,∠BDE=∠FDG,∠BDG=90°,∵四边形ABCD是正方形,∴∠CBD=45°,∴∠G=∠CBD=45°,∴DB=DG;故答案为:DB=DG;②BF+BE=√2BD,理由如下:由①知:∠FDG=∠EDB,∠G=∠DBE=45°,BD=DG,∴△FDG≌△EDB(ASA),∴BE=FG,∴BF+FG=BF+BE=BC+CG,Rt△DCG中,∵∠G=∠CDG=45°,∴CD=CG=CB,∵DG=BD=√2BC,即BF+BE=2BC=√2BD;(2)①如图2,BF+BE=√3BD,理由如下:在菱形ABCD中,∠ADB=∠CDB=12∠ADC=12×60°=30°,由旋转120°得∠EDF=∠BDG=120°,∠EDB=∠FDG,在△DBG中,∠G=180°﹣120°﹣30°=30°,∴∠DBG=∠G=30°,∴DB=DG,∴△EDB≌△FDG(ASA),∴BE=FG,∴BF+BE=BF+FG=BG,过点D作DM⊥BG于点M,如图2,∵BD=DG,∴BG=2BM,在Rt△BMD中,∠DBM=30°,设DM =a ,则BD =2a , DM =√3a , ∴BG =2√3a , ∴BD BG=2√3a=√3,∴BG =√3BD , ∴BF +BE =BG =√3BD ;②过点A 作AN ⊥BD 于N ,过D 作DP ⊥BG 于P ,如图3,Rt △ABN 中,∠ABN =30°,AB =2, ∴AN =1,BN =√3, ∴BD =2BN =2√3, ∵DC ∥BE , ∴CD BE=CM BM=21,∵CM +BM =2, ∴BM =23,Rt △BDP 中,∠DBP =30°,BD =2√3, ∴BP =3,由旋转得:BD =BF , ∴BF =2BP =6,∴GM =BG ﹣BM =6+1−23=193.26.(14分)如图,已知直线AB 与抛物线C :y =ax 2+2x +c 相交于点A (﹣1,0)和点B (2,3)两点.(1)求抛物线C 函数表达式;(2)若点M 是位于直线AB 上方抛物线上的一动点,以MA 、MB 为相邻的两边作的面积S 及点M 的坐标;(3)在抛物线C 的对称轴上是否存在定点F ,使抛物线C 上任意一点P 到点F 的距离等于到直线y =174的距离?若存在,求出定点F 的坐标;若不存在,请说明理由.【解答】解:(1)由题意把点(﹣1,0)、(2,3)代入y =ax 2+2x +c , 得,{a −2+c =04a +4+c =3,解得a =﹣1,c =3,∴此抛物线C 函数表达式为:y =﹣x 2+2x +3;(2)如图1,过点M 作MH ⊥x 轴于H ,交直线AB 于K , 将点(﹣1,0)、(2,3)代入y =kx +b 中, 得,{−k +b =02k +b =3,解得,k =1,b =1, ∴y AB =x +1,设点M (a ,﹣a 2+2a +3),则K (a ,a +1), 则MK =﹣a 2+2a +3﹣(a +1) =﹣(a −12)2+94,根据二次函数的性质可知,当a =12时,MK 有最大长度94,∴S △AMB 最大=S △AMK +S △BMK =12MK •AH +12MK •(x B ﹣x H ) =12MK •(x B ﹣x A ) =12×94×3∴以MA 、MB 为相邻的两边作平行四边形MANB ,当平行四边形MANB 的面积最大时,S 最大=2S △AMB 最大=2×278=274,M (12,154);(3)存在点F , ∵y =﹣x 2+2x +3 =﹣(x ﹣1)2+4, ∴对称轴为直线x =1, 当y =0时,x 1=﹣1,x 2=3,∴抛物线与点x 轴正半轴交于点C (3,0), 如图2,分别过点B ,C 作直线y =174的垂线,垂足为N ,H , 抛物线对称轴上存在点F ,使抛物线C 上任意一点P 到点F 的距离等于到直线y =174的距离,设F (1,a ),连接BF ,CF , 则BF =BN =174−3=54,CF =CH =174, 由题意可列:{(2−1)2+(a −3)2=(54)2(3−1)2+a 2=(174)2,解得,a =154, ∴F (1,154).2019年四川省资阳市中考数学试卷一、选择题:(本大题共10个小题,每小题4分,共40分)在每小题给出的四个选项中,只有一个选项符合题意1.(4分)﹣3的倒数是()A.−13B.13C.﹣3D.32.(4分)如图是正方体的展开图,每个面都标注了字母,如果b在下面,c在左面,那么d在()A.前面B.后面C.上面D.下面3.(4分)下列各式中,计算正确的是()A.a3•a2=a6B.a3+a2=a5C.a6÷a3=a2D.(a3)2=a6 4.(4分)如图,l1∥l2,点O在直线l1上,若∠AOB=90°,∠1=35°,则∠2的度数为()A.65°B.55°C.45°D.35°5.(4分)在一个布袋中装有红、白两种颜色的小球,它们除颜色外没有任何其他区别.其能性大,则红球的个数是()A.4个B.5个C.不足4个D.6个或6个以上6.(4分)设x=√15,则x的取值范围是()A.2<x<3B.3<x<4C.4<x<5D.无法确定7.(4分)爷爷在离家900米的公园锻炼后回家,离开公园20分钟后,爷爷停下来与朋友聊天10分钟,接着又走了15分钟回到家中.下面图形中表示爷爷离家的距离y (米)与爷爷离开公园的时间x(分)之间的函数关系是()A.B.C.D.8.(4分)如图,直径为2cm的圆在直线l上滚动一周,则圆所扫过的图形面积为()A.5πB.6πC.20πD.24π9.(4分)4张长为a、宽为b(a>b)的长方形纸片,按如图的方式拼成一个边长为(a+b)的正方形,图中空白部分的面积为S1,阴影部分的面积为S2.若S1=2S2,则a、b满足()A.2a=5b B.2a=3b C.a=3b D.a=2b 10.(4分)如图是函数y=x2﹣2x﹣3(0≤x≤4)的图象,直线l∥x轴且过点(0,m),范围是()A.m≥1B.m≤0C.0≤m≤1D.m≥1或m≤0二、填空题:(本大题共6个小题,每小题4分,共24分)11.(4分)截止今年4月2日,华为官方应用市场“学习强国”APP下载量约为88300000次.将数88300000科学记数法表示为.12.(4分)一组数据1,2,5,x,3,6的众数为5.则这组数据的中位数为.13.(4分)若正多边形的一个外角是60°,则这个正多边形的内角和是.14.(4分)a是方程2x2=x+4的一个根,则代数式4a2﹣2a的值是.15.(4分)如图,在△ABC中,已知AC=3,BC=4,点D为边AB的中点,连结CD,过点A作AE⊥CD于点E,将△ACE沿直线AC翻折到△ACE′的位置.若CE′∥AB,则CE′=.16.(4分)给出以下命题:①平分弦的直径垂直于这条弦;②已知点A(﹣1,y1)、B(1,y2)、C(2,y3)均在反比例函数y=k x(k<0)的图象上,则y2<y3<y1;③若关于x的不等式组{x<−1x>a无解,则a≥﹣1;④将点A(1,n)向左平移3个单位到点A1,再将A1绕原点逆时针旋转90°到点A2,则A2的坐标为(﹣n,﹣2).其中所有真命题的序号是.三、解答题:(本大题共8个小题,共86分)解答应写出必要的文字说明、证明过程或演算步骤.18.(10分)为了解“哈啰单车”的使用情况,小月对部分用户的骑行时间t(分)进行了随机抽查,将获得的数据分成四组(A:0<t≤30;B:30<t≤60;C:60<t≤120;D:t>120),并绘制出如图所示的两幅不完整的统计图.(1)求D组所在扇形的圆心角的度数,并补全条形统计图;(2)小月打算在C、D两组中各随机选一名用户进行采访,若这两组中各有两名女士,请用列表或画树状图的方法求出恰好选中一男一女的概率.19.(10分)如图,AC是⊙O的直径,P A切⊙O于点A,PB切⊙O于点B,且∠APB =60°.(1)求∠BAC的度数;(2)若P A=1,求点O到弦AB的距离.20.(10分)为了参加西部博览会,资阳市计划印制一批宣传册.该宣传册每本共10页,由A、B两种彩页构成.已知A种彩页制版费300元/张,B种彩页制版费200元/张,共计2400元.(注:彩页制版费与印数无关)(1)每本宣传册A、B两种彩页各有多少张?(2)据了解,A种彩页印刷费2.5元/张,B种彩页印刷费1.5元/张,这批宣传册的制版费与印刷费的和不超过30900元.如果按到资阳展台处的参观者人手一册发放宣传册,预计最多能发给多少位参观者?21.(11分)如图,直线y=x与双曲线y=kx(x>0)相交于点A,且OA=√2,将直线向左平移一个单位后与双曲线相交于点B,与x轴、y轴分别交于C、D两点.(1)求直线BC的解析式及k的值;(2)连结OB、AB,求△OAB的面积.22.(11分)如图,南海某海域有两艘外国渔船A、B在小岛C的正南方向同一处捕鱼.一段时间后,渔船B沿北偏东30°的方向航行至小岛C的正东方向20海里处.(1)求渔船B航行的距离;(2)此时,在D处巡逻的中国渔政船同时发现了这两艘渔船,其中B渔船在点D的南偏西60°方向,A渔船在点D的西南方向,我渔政船要求这两艘渔船迅速离开中国海域.请分别求出中国渔政船此时到这两艘外国渔船的距离.(注:结果保留根号)23.(12分)在矩形ABCD中,连结AC,点E从点B出发,以每秒1个单位的速度沿着B→A→C的路径运动,运动时间为t(秒).过点E作EF⊥BC于点F,在矩形ABCD的内部作正方形EFGH.(1)如图,当AB=BC=8时,①若点H在△ABC的内部,连结AH、CH,求证:AH=CH;②当0<t≤8时,设正方形EFGH与△ABC的重叠部分面积为S,求S与t的函数关系式;(2)当AB=6,BC=8时,若直线AH将矩形ABCD的面积分成1:3两部分,求t 的值.24.(13分)如图,抛物线y=−12x2+bx+c过点A(3,2),且与直线y=﹣x+72交于B、C两点,点B的坐标为(4,m).(1)求抛物线的解析式;(2)点D为抛物线上位于直线BC上方的一点,过点D作DE⊥x轴交直线BC于点E,点P为对称轴上一动点,当线段DE的长度最大时,求PD+P A的最小值;(3)设点M为抛物线的顶点,在y轴上是否存在点Q,使∠AQM=45°?若存在,求点Q的坐标;若不存在,请说明理由.2019年四川省资阳市中考数学试卷参考答案与试题解析一、选择题:(本大题共10个小题,每小题4分,共40分)在每小题给出的四个选项中,只有一个选项符合题意1.(4分)﹣3的倒数是()A.−13B.13C.﹣3D.3【解答】解:∵﹣3×(−13)=1,∴﹣3的倒数是−1 3.故选:A.2.(4分)如图是正方体的展开图,每个面都标注了字母,如果b在下面,c在左面,那么d在()A.前面B.后面C.上面D.下面【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“a”与“f”是相对面,“b”与“d”是相对面,“d”在上面,“c”与“e”是相对面,“c”在左面,“e”在右面.故选:C.3.(4分)下列各式中,计算正确的是()A.a3•a2=a6B.a3+a2=a5C.a6÷a3=a2D.(a3)2=a6【解答】解:A、a3•a2=a5,错误;B、a3+a2不能合并,错误;C、a6÷a3=a3,错误;D、(a3)2=a6,正确;故选:D.4.(4分)如图,l1∥l2,点O在直线l1上,若∠AOB=90°,∠1=35°,则∠2的度数为()A.65°B.55°C.45°D.35°【解答】解:∵l1∥l2,∠1=35°,∴∠OAB=∠1=35°.∵OA⊥OB,∴∠2=∠OBA=90°﹣∠OAB=55°.故选:B.5.(4分)在一个布袋中装有红、白两种颜色的小球,它们除颜色外没有任何其他区别.其中红球若干,白球5个,袋中的球已搅匀.若从袋中随机取出1个球,取出红球的可能性大,则红球的个数是()A.4个B.5个C.不足4个D.6个或6个以上【解答】解:∵袋子中白球有5个,且从袋中随机取出1个球,取出红球的可能性大,∴红球的个数比白球个数多,∴红球个数满足6个或6个以上,故选:D.6.(4分)设x=√15,则x的取值范围是()A.2<x<3B.3<x<4C.4<x<5D.无法确定【解答】解:∵9<15<16,∴3<√15<4,故选:B.7.(4分)爷爷在离家900米的公园锻炼后回家,离开公园20分钟后,爷爷停下来与朋友聊天10分钟,接着又走了15分钟回到家中.下面图形中表示爷爷离家的距离y (米)与爷爷离开公园的时间x(分)之间的函数关系是()A.B.C.D.【解答】解:由题意,爷爷在公园回家,则当x=0时,y=900;从公园回家一共用了20+10+15=45分钟,则当x=45时,y=0;结合选项可知答案B.故选:B.8.(4分)如图,直径为2cm的圆在直线l上滚动一周,则圆所扫过的图形面积为()A.5πB.6πC.20πD.24π【解答】解:圆所扫过的图形面积=π+2π×2=5π,故选:A.9.(4分)4张长为a、宽为b(a>b)的长方形纸片,按如图的方式拼成一个边长为(a+b)的正方形,图中空白部分的面积为S1,阴影部分的面积为S2.若S1=2S2,则a、b满足()A.2a=5b B.2a=3b C.a=3b D.a=2b【解答】解:S1=12b(a+b)×2+12ab×2+(a﹣b)2=a2+2b2,S2=(a+b)2﹣S1=(a+b)2﹣(a2+2b2)=2ab﹣b2,∵S1=2S2,∴a2+2b2=2(2ab﹣b2),整理,得(a﹣2b)2=0,∴a﹣2b=0,∴a=2b.故选:D.10.(4分)如图是函数y=x2﹣2x﹣3(0≤x≤4)的图象,直线l∥x轴且过点(0,m),将该函数在直线l上方的图象沿直线l向下翻折,在直线1下方的图象保持不变,得到一个新图象.若新图象对应的函数的最大值与最小值之差不大于5,则m的取值范围是()A.m≥1B.m≤0C.0≤m≤1D.m≥1或m≤0【解答】解:如图1所示,当t等于0时,∵y=(x﹣1)2﹣4,∴顶点坐标为(1,﹣4),当x=0时,y=﹣3,∴A(0,﹣3),当x=4时,y=5,∴C(4,5),∴当m=0时,D(4,﹣5),∴此时最大值为0,最小值为﹣5;如图2所示,当m=1时,此时最小值为﹣4,最大值为1.综上所述:0≤m≤1,故选:C.二、填空题:(本大题共6个小题,每小题4分,共24分)11.(4分)截止今年4月2日,华为官方应用市场“学习强国”APP 下载量约为88300000次.将数88300000科学记数法表示为 8.83×107 . 【解答】解:将88300000用科学记数法表示为:8.83×107. 故答案为:8.83×107.12.(4分)一组数据1,2,5,x ,3,6的众数为5.则这组数据的中位数为 4 . 【解答】解:∵数据1,2,5,x ,3,6的众数为5, ∴x =5,则数据为1,2,3,5,5,6, ∴这组数据的中位数为3+52=4,故答案为:4.13.(4分)若正多边形的一个外角是60°,则这个正多边形的内角和是 720° . 【解答】解:该正多边形的边数为:360°÷60°=6, 该正多边形的内角和为:(6﹣2)×180°=720°. 故答案为:720°.14.(4分)a 是方程2x 2=x +4的一个根,则代数式4a 2﹣2a 的值是 8 . 【解答】解:∵a 是方程2x 2=x +4的一个根, ∴2a 2﹣a =4,∴4a 2﹣2a =2(2a 2﹣a )=2×4=8. 故答案为:8.15.(4分)如图,在△ABC 中,已知AC =3,BC =4,点D 为边AB 的中点,连结CD ,过点A 作AE ⊥CD 于点E ,将△ACE 沿直线AC 翻折到△ACE ′的位置.若CE ′∥AB ,则CE ′=95.【解答】解:如图,作CH ⊥AB 于H .由翻折可知:∠AE ′C =∠AEC =90°,∠ACE =∠ACE ′, ∵CE ′∥AB , ∴∠ACE ′=∠CAD , ∴∠ACD =∠CAD , ∴DC =DA , ∵AD =DB , ∴DC =DA =DB , ∴∠ACB =90°, ∴AB =√AC 2+BC 2=5, ∵12•AB •CH =12•AC •BC ,∴CH =125,∴AH =√AC 2−CH 2=95, ∵CE ∥AB ,∴∠E ′CH +∠AHC =180°, ∵∠AHC =90°, ∴∠E ′CH =90°, ∴四边形AHCE ′是矩形, ∴CE ′=AH =95, 故答案为95.16.(4分)给出以下命题: ①平分弦的直径垂直于这条弦;②已知点A (﹣1,y 1)、B (1,y 2)、C (2,y 3)均在反比例函数y =kx (k <0)的图象上,则y2<y3<y1;③若关于x的不等式组{x<−1x>a无解,则a≥﹣1;④将点A(1,n)向左平移3个单位到点A1,再将A1绕原点逆时针旋转90°到点A2,则A2的坐标为(﹣n,﹣2).其中所有真命题的序号是②③④.【解答】解:①平分弦的直径垂直于这条弦,应该为:平分弦(不是直径)的直径垂直于这条弦,故错误;②反比例函数y=k x(k<0)在二、四象限,当x<0时,y>0;x>0时,y<0,且x 增大,y增大,故y1>y3>y2,故正确;③若关于x的不等式组{x<−1x>a无解,a≥﹣1,正确;④将点A(1,n)向左平移3个单位到点A1,则A1(﹣2,n),将A1绕原点逆时针旋转90°到点A2,A2的坐标为(﹣n,﹣2),正确.以上正确的都为真命题,故答案为:②③④.三、解答题:(本大题共8个小题,共86分)解答应写出必要的文字说明、证明过程或演算步骤.17.(9分)化简求值:(x2x2−1−1)÷1x2+x,其中x=2.【解答】解:原式=[x2(x+1)(x−1)−x2−1(x+1)(x−1)]•x(x+1)=1(x+1)(x−1)•x(x+1)=x x−1,当x=2时,原式=22−1=2.18.(10分)为了解“哈啰单车”的使用情况,小月对部分用户的骑行时间t(分)进行了随机抽查,将获得的数据分成四组(A:0<t≤30;B:30<t≤60;C:60<t≤120;D:t>120),并绘制出如图所示的两幅不完整的统计图.。

2019年四川省绵阳市中考数学试题(含答案)

2019年四川省绵阳市中考数学试题(含答案)

2019年四川省绵阳市中考数学试题(含答案)2019年四川省绵阳市中考数学试卷一、选择题(本大题共12小题,共36.0分)1.若√a=2,则a的值为()A。

-4B。

4C。

-2D。

√22.据生物学可知,卵细胞是人体细胞中最大的细胞,其直径约为0.0002米.将数0.0002用科学记数法表示为()A。

0.2×10^-3B。

0.2×10^-4C。

2×10^-3D。

2×10^-43.对如图的对称性表述,正确的是()A。

轴对称图形B。

中心对称图形C。

既是轴对称图形又是中心对称图形D。

既不是轴对称图形又不是中心对称图形4.下列几何体中,主视图是三角形的是()A。

B。

C。

D。

5.如图,在平面直角坐标系中,四边形OABC为菱形,AB=BC=2,(OA,OC)∠AOC=60°,则对角线交点E的坐标为()A。

(2,√3)B。

(√3,2)C。

(√3,3)D。

(3,√3)6.已知x是整数,当|x-√30|取最小值时,x的值是()A。

5B。

6C。

7D。

87.帅帅收集了南街米粉店今年6月1日至6月5日每天的用水量(单位:吨),整理并绘制成如下折线统计图.下列结论正确的是()A。

极差是6B。

众数是7C。

中位数是5D。

方差是88.已知4m=a,8n=b,其中m,n为正整数,则22m+6n=()A。

ab^2B。

a+b/2C。

a^2b^3D。

a^2+b^39.红星商店计划用不超过4200元的资金,购进甲、乙两种单价分别为60元、100元的商品共50件,据市场行情,销售甲、乙商品各一件分别可获利10元、20元,两种商品均售完.若所获利润大于750元,则该店进货方案有()A。

3种B。

4种C。

5种D。

6种10.公元三世纪,我国汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”如图所示,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形.如果大正方形的面积是125,小正方形面积是25,则(sinθ-cosθ)^2=()A。

年四川省成都市中考数学试卷及解析

年四川省成都市中考数学试卷及解析

2018年四川省成都市中考数学试卷一、选择题(每小题3分,共30分)1.(3分)实数a,b,c,d在数轴上对应的点的位置如图所示,这四个数中最大的是()A.a B.b C.c D.d2.(3分)2018年5月21日,西昌卫星发射中心成功发射探月工程嫦娥四号任务“鹊桥号”中继星,卫星进入近地点高度为200公里、远地点高度为40万公里的预定轨道.将数据40万用科学记数法表示为()A.4×104B.4×105C.4×106D.0.4×1063.(3分)如图所示的正六棱柱的主视图是()A.B.C.D.4.(3分)在平面直角坐标系中,点P(﹣3,﹣5)关于原点对称的点的坐标是()A.(3,﹣5)B.(﹣3,5)C.(3,5)D.(﹣3,﹣5)5.(3分)下列计算正确的是()A.x2+x2=x4B.(x﹣y)2=x2﹣y2C.(x2y)3=x6y D.(﹣x)2•x3=x56.(3分)如图,已知∠ABC=∠DCB,添加以下条件,不能判定△ABC≌△DCB的是()A.∠A=∠D B.∠ACB=∠DBCC.AC=DB D.AB=DC7.(3分)如图是成都市某周内最高气温的折线统计图,关于这7天的日最高气温的说法正确的是()第7题第9题A.极差是8℃B.众数是28℃C.中位数是24℃ D.平均数是26℃8.(3分)分式方程=1的解是()A.x=1 B.x=﹣1 C.x=3 D.x=﹣39.(3分)如图,在▱ABCD中,∠B=60°,⊙C的半径为3,则图中阴影部分的面积是()A.πB.2πC.3πD.6π10.(3分)关于二次函数y=2x2+4x﹣1,下列说法正确的是()A.图象与y轴的交点坐标为(0,1)B.图象的对称轴在y轴的右侧C.当x<0时,y的值随x值的增大而减小D.y的最小值为﹣3二、填空题(每小题4分,共16分)11.(4分)等腰三角形的一个底角为50°,则它的顶角的度数为.12.(4分)在一个不透明的盒子中,装有除颜色外完全相同的乒乓球共16个,从中随机摸出一个乒乓球,若摸到黄色乒乓球的概率为,则该盒子中装有黄色乒乓球的个数是.13.(4分)已知==,且a+b﹣2c=6,则a的值为.14.(4分)如图,在矩形ABCD中,按以下步骤作图:①分别以点A和C为圆心,以大于AC 的长为半径作弧,两弧相交于点M和N;②作直线MN交CD于点E.若DE=2,CE=3,则矩形的对角线AC的长为.三、解答题(本大题共6个小题,共54分)15.(12分)(1)22+﹣2sin60°+|﹣|(2)化简:(1﹣)÷16.(6分)若关于x的一元二次方程x2﹣(2a+1)x+a2=0有两个不相等的实数根,求a的取值范围.17.(8分)为了给游客提供更好的服务,某景区随机对部分游客进行了关于“景区服务工作满意度”的调查,并根据调查结果绘制成如下不完整的统计图表.满意度学生数(名)百分比非常满意12 10%满意54 m比较满意n 40%不满意 6 5%根据图表信息,解答下列问题:(1)本次调查的总人数为,表中m的值;(2)请补全条形统计图;(3)据统计,该景区平均每天接待游客约3600人,若将“非常满意”和“满意”作为游客对景区服务工作的肯定,请你估计该景区服务工作平均每天得到多少名游客的肯定.18.(8分)由我国完全自主设计、自主建造的首艘国产航母于2018年5月成功完成第一次海上实验任务.如图,航母由西向东航行,到达A处时,测得小岛C位于它的北偏东70°方向,且与航母相距80海里,再航行一段时间后到达B处,测得小岛C位于它的北偏东37°方向.如果航母继续航行至小岛C的正南方向的D处,求还需航行的距离BD的长.(参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2,75,sin37°≈0.6,cos37°≈0.80,tan37°≈0.75)19.(10分)如图,在平面直角坐标系xOy中,一次函数y=x+b的图象经过点A(﹣2,0),与反比例函数y=(x>0)的图象交于B(a,4).(1)求一次函数和反比例函数的表达式;(2)设M是直线AB上一点,过M作MN∥x轴,交反比例函数y=(x>0)的图象于点N,若A,O,M,N为顶点的四边形为平行四边形,求点M的坐标.20.(10分)如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,O为AB上一点,经过点A,D的⊙O分别交AB,AC于点E,F,连接OF交AD于点G.(1)求证:BC是⊙O的切线;(2)设AB=x,AF=y,试用含x,y的代数式表示线段AD的长;(3)若BE=8,sinB=,求DG的长,四、填空题(每小题4分,共20分)21.(4分)已知x+y=0.2,x+3y=1,则代数式x2+4xy+4y2的值为.22.(4分)汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”是我国古代数学的瑰宝.如图所示的弦图中,四个直角三角形都是全等的,它们的两直角边之比均为2:3.现随机向该图形内掷一枚小针,则针尖落在阴影区域的概率为.第22题第24题第25题23.(4分)已知a>0,S1=,S2=﹣S1﹣1,S3=,S4=﹣S3﹣1,S5=,…(即当n为大于1的奇数时,S n=;当n为大于1的偶数时,S n=﹣S n﹣1﹣1),按此规律,S2018=.24.(4分)如图,在菱形ABCD中,tanA=,M,N分别在边AD,BC上,将四边形AMNB 沿MN翻折,使AB的对应线段EF经过顶点D,当EF⊥AD时,的值为.25.(4分)设双曲线y=(k>0)与直线y=x交于A,B两点(点A在第三象限),将双曲线在第一象限的一支沿射线BA的方向平移,使其经过点A,将双曲线在第三象限的一支沿射线AB的方向平移,使其经过点B,平移后的两条曲线相交于P,Q两点,此时我们称平移后的两条曲线所围部分(如图中阴影部分)为双曲线的“眸”,PQ为双曲线的“眸径“,当双曲线y=(k>0)的眸径为6时,k的值为.五、解答题(本大题共3小题,共30分)26.(8分)为了美化环境,建设宜居成都,我市准备在一个广场上种植甲、乙两种花卉,经市场调查,甲种花卉的种植费用y(元)与种植面积x(m2)之间的函数关系如图所示,乙种花卉的种植费用为每平方米100元.(1)直接写出当0≤x≤300和x>300时,y与x的函数关系式;(2)广场上甲、乙两种花卉的种植面积共1200m2,若甲种花卉的种植面积不少于200m2,且不超过乙种花卉种植面积的2倍,那么应该怎样分配甲、乙两种花卉的种植面积才能使种植总费用最少?最少总费用为多少元?\27.(10分)在Rt△ABC中,∠ACB=90°,AB=,AC=2,过点B作直线m∥AC,将△ABC 绕点C顺时针旋转得到△A′B′C′(点A,B的对应点分别为A',B′),射线CA′,CB′分別交直线m于点P,Q.(1)如图1,当P与A′重合时,求∠ACA′的度数;(2)如图2,设A′B′与BC的交点为M,当M为A′B′的中点时,求线段PQ的长;(3)在旋转过程中,当点P,Q分别在CA′,CB′的延长线上时,试探究四边形PA'B′Q的面积是否存在最小值.若存在,求出四边形PA′B′Q的最小面积;若不存在,请说明理由.28.(12分)如图,在平面直角坐标系xOy中,以直线x=对称轴的抛物线y=ax2+bx+c与直线l:y=kx+m(k>0)交于A(1,1),B两点,与y轴交于C(0,5),直线与y轴交于点D.(1)求抛物线的函数表达式;(2)设直线l与抛物线的对称轴的交点为F,G是抛物线上位于对称轴右侧的一点,若=,且△BCG与△BCD面积相等,求点G的坐标;(3)若在x轴上有且仅有一点P,使∠APB=90°,求k的值.2018年四川省成都市中考数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)【考点】2A:实数大小比较;29:实数与数轴.【分析】根据实数的大小比较解答即可.【解答】解:由数轴可得:a<b<c<d,故选:D.【点评】此题考查实数大小比较,关键是根据实数的大小比较解答.2.(3分)【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.万=10000=104.【解答】解:40万=4×105,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)【考点】U1:简单几何体的三视图.【分析】根据主视图是从正面看到的图象判定则可.【解答】解:从正面看是左右相邻的3个矩形,中间的矩形的面积较大,两边相同.故选:A.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.【考点】R6:关于原点对称的点的坐标.【分析】根据关于原点对称的点的坐标特点解答.【解答】解:点P(﹣3,﹣5)关于原点对称的点的坐标是(3,5),故选:C.【点评】本题考查的是关于原点的对称的点的坐标,平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),即关于原点的对称点,横纵坐标都变成相反数.5.(3分)【考点】47:幂的乘方与积的乘方;35:合并同类项;46:同底数幂的乘法;4C:完全平方公式.【分析】根据合并同类项法则、完全平方公式、积的乘方法则、同底数幂的乘法法则计算,判断即可.【解答】解:x2+x2=2x2,A错误;(x﹣y)2=x2﹣2xy+y2,B错误;(x2y)3=x6y3,C错误;(﹣x)2•x3=x2•x3=x5,D正确;故选:D.【点评】本题考查的是合并同类项、完全平方公式、积的乘方、同底数幂的乘法,掌握它们的运算法则是解题的关键.6.(3分)【考点】KD:全等三角形的判定与性质.【分析】全等三角形的判定方法有SAS,ASA,AAS,SSS,根据定理逐个判断即可.【解答】解:A、∠A=∠D,∠ABC=∠DCB,BC=BC,符合AAS,即能推出△ABC≌△DCB,故本选项错误;B、∠ABC=∠DCB,BC=CB,∠ACB=∠DBC,符合ASA,即能推出△ABC≌△DCB,故本选项错误;C、∠ABC=∠DCB,AC=BD,BC=BC,不符合全等三角形的判定定理,即不能推出△ABC≌△DCB,故本选项正确;D、AB=DC,∠ABC=∠DCB,BC=BC,符合SAS,即能推出△ABC≌△DCB,故本选项错误;【点评】本题考查了全等三角形的性质和判定,等腰三角形的性质的应用,能正确根据全等三角形的判定定理进行推理是解此题的关键,注意:全等三角形的判定方法有SAS,ASA,AAS,SSS.7.(3分)【考点】VD:折线统计图;W1:算术平均数;W4:中位数;W5:众数;W6:极差.【分析】根据折线统计图中的数据可以判断各个选项中的数据是否正确,从而可以解答本题.【解答】解:由图可得,极差是:30﹣20=10℃,故选项A错误,众数是28℃,故选项B正确,这组数按照从小到大排列是:20、22、24、26、28、28、30,故中位数是26℃,故选项C 错误,平均数是:=℃,故选项D错误,故选:B.【点评】本题考查折线统计图、极差、众数、中位数、平均数,解答本题的关键是明确题意,能够判断各个选项中结论是否正确.8.(3分)【考点】B3:解分式方程.【分析】观察可得最简公分母是x(x﹣2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:=1,去分母,方程两边同时乘以x(x﹣2)得:(x+1)(x﹣2)+x=x(x﹣2),x2﹣x﹣2+x=x2﹣2x,x=1,经检验,x=1是原分式方程的解,故选:A.【点评】考查了解分式方程,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.【考点】MO:扇形面积的计算;L5:平行四边形的性质.【分析】根据平行四边形的性质可以求得∠C的度数,然后根据扇形面积公式即可求得阴影部分的面积.【解答】解:∵在▱ABCD中,∠B=60°,⊙C的半径为3,∴∠C=120°,∴图中阴影部分的面积是:=3π,故选:C.【点评】本题考查扇形面积的计算、平行四边形的性质,解答本题的关键是明确题意,利用扇形面积的计算公式解答.10.(3分)【考点】H3:二次函数的性质;H7:二次函数的最值.【分析】根据题目中的函数解析式可以判断各个选项中的结论是否成立,从而可以解答本题.【解答】解:∵y=2x2+4x﹣1=2(x+1)2﹣3,∴当x=0时,y=﹣1,故选项A错误,该函数的对称轴是直线x=﹣1,故选项B错误,当x<﹣1时,y随x的增大而减小,故选项C错误,当x=﹣1时,y取得最小值,此时y=﹣3,故选项D正确,故选:D.【点评】本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答.二、填空题(每小题4分,共16分)11.(4分)【考点】KH:等腰三角形的性质;K7:三角形内角和定理.【分析】本题给出了一个底角为50°,利用等腰三角形的性质得另一底角的大小,然后利用三角形内角和可求顶角的大小.【解答】解:∵等腰三角形底角相等,∴180°﹣50°×2=80°,∴顶角为80°.【点评】本题考查等腰三角形的性质,即等边对等角.找出角之间的关系利用三角形内角和求角度是解答本题的关键.12.(4分)【考点】X4:概率公式.【分析】直接利用摸到黄色乒乓球的概率为,利用总数乘以概率即可得出该盒子中装有黄色乒乓球的个数.【解答】解:∵装有除颜色外完全相同的乒乓球共16个,从中随机摸出一个乒乓球,若摸到黄色乒乓球的概率为,∴该盒子中装有黄色乒乓球的个数是:16×=6.故答案为:6.【点评】此题主要考查了概率公式,正确利用摸到黄色乒乓球的概率求出黄球个数是解题关键.13.(4分)【考点】S1:比例的性质.【分析】直接利用已知比例式假设出a,b,c的值,进而利用a+b﹣2c=6,得出答案.【解答】解:∵==,∴设a=6x,b=5x,c=4x,∵a+b﹣2c=6,∴6x+5x﹣8x=6,解得:x=2,故a=12.故答案为:12.【点评】此题主要考查了比例的性质,正确表示出各数是解题关键.14.(4分)【考点】N2:作图—基本作图;KG:线段垂直平分线的性质;LB:矩形的性质.【分析】连接AE,如图,利用基本作图得到MN垂直平分AC,则EA=EC=3,然后利用勾股定理先计算出AD,再计算出AC.【解答】解:连接AE,如图,由作法得MN垂直平分AC,∴EA=EC=3,在Rt△ADE中,AD==,在Rt△ADC中,AC==.故答案为.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).三、解答题(本大题共6个小题,共54分)15.(12分)【考点】6C:分式的混合运算;2C:实数的运算;T5:特殊角的三角函数值.【分析】(1)根据立方根的意义,特殊角锐角三角函数,绝对值的意义即可求出答案.(2)根据分式的运算法则即可求出答案.【解答】解:(1)原式=4+2﹣2×+=6(2)原式=×=×=x﹣1【点评】本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.16.(6分)【考点】AA:根的判别式.【分析】根据方程的系数结合根的判别式△>0,即可得出关于a的一元一次不等式,解之即可得出a的取值范围.【解答】解:∵关于x的一元二次方程x2﹣(2a+1)x+a2=0有两个不相等的实数根,∴△=[﹣(2a+1)]2﹣4a2=4a+1>0,解得:a>﹣.【点评】本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.17.(8分)【考点】VC:条形统计图;V5:用样本估计总体;W2:加权平均数.【分析】(1)利用12÷10%=120,即可得到m的值;用120×40%即可得到n的值.(2)根据n的值即可补全条形统计图;(3)根据用样本估计总体,3600××100%,即可答.【解答】解:(1)12÷10%=120,故m=120,n=120×40%=48,m==45%.故答案为120.45%.(2)根据n=48,画出条形图:(3)3600××100%=1980(人),答:估计该景区服务工作平均每天得到1980名游客的肯定.【点评】本题考查了条形统计图、扇形统计图等知识,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.18.(8分)【考点】TB:解直角三角形的应用﹣方向角问题.【分析】根据题意得:∠ACD=70°,∠BCD=37°,AC=80海里,在直角三角形ACD中,由三角函数得出CD=27.2海里,在直角三角形BCD中,得出BD,即可得出答案.【解答】解:由题意得:∠ACD=70°,∠BCD=37°,AC=80海里,在直角三角形ACD中,CD=AC•cos∠ACD=27.2海里,在直角三角形BCD中,BD=CD•tan∠BCD=20.4海里.答:还需航行的距离BD的长为20.4海里.【点评】此题考查了解直角三角形的应用﹣方向角问题,三角函数的应用;求出CD的长度是解决问题的关键.19.(10分)【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)根据一次函数y=x+b的图象经过点A(﹣2,0),可以求得b的值,从而可以解答本题;(2)根据平行四边形的性质和题意,可以求得点M的坐标,注意点M的横坐标大于0.【解答】解:(1)∵一次函数y=x+b的图象经过点A(﹣2,0),∴0=﹣2+b,得b=2,∴一次函数的解析式为y=x+2,∵一次函数的解析式为y=x+2与反比例函数y=(x>0)的图象交于B(a,4),∴4=a+2,得a=2,∴4=,得k=8,即反比例函数解析式为:y=(x>0);(2)∵点A(﹣2,0),∴OA=2,设点M(m﹣2,m),点N(,m),当MN∥AO且MN=AO时,四边形AOMN是平行四边形,||=2,解得,m=2或m=+2,∴点M的坐标为(﹣2,)或(,2+2).【点评】本题考查反比例函数与一次函数的交点问题,解答本题的关键是明确题意,利用数形结合的思想解答.20.(10分)【考点】MR:圆的综合题.【分析】(1)连接OD,由AD为角平分线得到一对角相等,再由等边对等角得到一对角相等,等量代换得到内错角相等,进而得到OD与AC平行,得到OD与BC垂直,即可得证;(2)连接DF,由(1)得到BC为圆O的切线,由弦切角等于夹弧所对的圆周角,进而得到三角形ABD与三角形ADF相似,由相似得比例,即可表示出AD;(3)连接EF,设圆的半径为r,由sinB的值,利用锐角三角函数定义求出r的值,由直径所对的圆周角为直角,得到EF与BC平行,得到sin∠AEF=sinB,进而求出DG的长即可.【解答】(1)证明:如图,连接OD,∵AD为∠BAC的角平分线,∴∠BAD=∠CAD,∵OA=OD,∴∠ODA=∠OAD,∴∠ODA=∠CAD,∴OD∥AC,∵∠C=90°,∴∠ODC=90°,∴OD⊥BC,∴BC为圆O的切线;(2)解:连接DF,由(1)知BC为圆O的切线,∴∠FDC=∠DAF,∴∠CDA=∠CFD,∴∠AFD=∠ADB,∵∠BAD=∠DAF,∴△ABD∽△ADF,∴=,即AD2=AB•AF=xy,则AD=;(3)解:连接EF,在Rt△BOD中,sinB==,设圆的半径为r,可得=,解得:r=5,∴AE=10,AB=18,∵AE是直径,∴∠AFE=∠C=90°,∴EF∥BC,∴∠AEF=∠B,∴sin∠AEF==,∴AF=AE•sin∠AEF=10×=,∵AF∥OD,∴===,即DG=AD,∴AD===,则DG=×=.【点评】此题属于圆的综合题,涉及的知识有:切线的判定与性质,相似三角形的判定与性质,锐角三角函数定义,勾股定理,以及平行线的判定与性质,熟练掌握各自的性质是解本题。

四川省成都市2019中考数学试卷(版、解析版)

四川省成都市2019中考数学试卷(版、解析版)

2019年四川省成都市中考数学试卷一、选择题(本大题共10小题,共30.0分) 1. 比-3大5的数是( )A. −15B. −8C. 2D. 82. 如图所示的几何体是由6个大小相同的小立方块搭成,它的左视图是( )A.B.C.D.3. 2019年4月10日,人类首张黑洞照片面世,该黑洞位于室女座一个巨椭圆星系M 87的中心,距离地球约5500万光年.将数据5500万用科学记数法表示为( )A. 5500×104B. 55×106C. 5.5×107D. 5.5×1084. 在平面直角坐标系中,将点(-2,3)向右平移4个单位长度后得到的点的坐标为( )A. (2,3)B. (−6,3)C. (−2,7)D. (−2.−1)5. 将等腰直角三角形纸片和矩形纸片按如图方式叠放在起,若∠1=30°,则∠2的度数为( )A. 10∘B. 15∘C. 20∘D. 30∘6. 下列计算正确的是( )A. 5ab −3a =2bB. (−3a 2b)2=6a 4b 2C. (a −1)2=a 2−1D. 2a 2b ÷b =2a 27. 分式方程x−5x−1+2x =1的解为( )A. x =−1B. x =1C. x =2D. x =−28. 某校开展了主题为“青春•梦想”的艺术作品征集活动.从九年级五个班收集到的作品数量(单位:件)分别为:42,50,45,46,50,则这组数据的中位数是( )A. 42件B. 45件C. 46件D. 50件9. 如图,正五边形ABCDE 内接于⊙O ,P 为DE⏜上的一点(点P 不与点D 重命),则∠CPD 的度数为( )A. 30∘B. 36∘C. 60∘D. 72∘10. 如图,二次函数y =ax 2+bx +c 的图象经过点A (1,0),B (5,0),下列说法正确的是( )A. c <0B. b 2−4ac <0C. a −b +c <0D. 图象的对称轴是直线x =3二、填空题(本大题共9小题,共36.0分)11. 若m +1与-2互为相反数,则m 的值为______.12. 如图,在△ABC 中,AB =AC ,点D ,E 都在边BC 上,∠BAD =∠CAE ,若BD =9,则CE 的长为______.13. 已知一次函数y =(k -3)x +1的图象经过第一、二、四象限,则k 的取值范围是______.14. 如图,▱ABCD 的对角线AC 与BD 相交于点O ,按以下步骤作图:①以点A 为圆心,以任意长为半径作弧,分别交AO ,AB 于点M ,N ;②以点O 为圆心,以AM 长为半径作弧,交OC 于点M ';③以点M '为圆心,以MN 长为半径作弧,在∠COB 内部交前面的弧于点N ';④过点N '作射线ON '交BC 于点E .若AB =8,则线段OE 的长为______.15. 估算:√37.7≈______(结果精确到1)16. 已知x 1,x 2是关于x 的一元二次方程x 2+2x +k -1=0的两个实数根,且x 12+x 22-x 1x 2=13,则k 的值为______.17. 一个盒子中装有10个红球和若干个白球,这些球除颜色外都相同.再往该盒子中放入5个相同的白球,摇匀后从中随机摸出一个球,若摸到白球的概率为57,则盒子中原有的白球的个数为______ 18. 如图,在边长为1的菱形ABCD 中,∠ABC =60°,将△ABD沿射线BD 的方向平移得到△A 'B 'D ',分别连接A 'C ,A 'D ,B 'C ,则A 'C +B 'C 的最小值为______.19. 如图,在平面直角坐标系xOy 中,我们把横、纵坐标都是整数的点为“整点”,已知点A 的坐标为(5,0),点B 在x 轴的上方,△OAB 的面积为152,则△OAB 内部(不含边界)的整点的个数为______.三、计算题(本大题共1小题,共6.0分) 20. 先化简,再求值:(1-4x+3)÷x 2−2x+12x+6,其中x =√2+1.四、解答题(本大题共8小题,共78.0分)21. (1)计算:(π-2)0-2cos30°-√16+|1-√3|. (2)解不等式组:{3(x −2)≤4x −5,①5x−24<1+12x .②22. 随着科技的进步和网络资源的丰富,在线学习已经成为更多人的自主学习选择.某校计划为学生提供以下四类在线学习方式:在线阅读、在线听课、在线答题和在线讨论.为了解学生需求,该校随机对本校部分学生进行了“你对哪类在线学习方式最感兴趣”的调查,并根据调查结果绘制成如下两幅不完整的统计图.根据图中信息,解答下列问题:(1)求本次调查的学生总人数,并补全条形统计图;(2)求扇形统计图中“在线讨论”对应的扇形圆心角的度数;(3)该校共有学生2100人,请你估计该校对在线阅读最感兴趣的学生人数.23. 2019年,成都马拉松成为世界马拉松大满贯联盟的候选赛事,这大幅提升了成都市的国际影响力,如图,在一场马拉松比赛中,某人在大楼A 处,测得起点拱门CD 的顶部C 的俯角为35°,底部D 的俯角为45°,如果A 处离地面的高度AB =20米,求起点拱门CD 的高度.(结果精确到1米;参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70)24. 如图,在平面直角坐标系xOy 中,一次函数y =12x +5和y =-2x 的图象相交于点A ,反比例函数y =kx 的图象经过点A . (1)求反比例函数的表达式;(2)设一次函数y =12x +5的图象与反比例函数y =kx 的图象的另一个交点为B ,连接OB ,求△ABO 的面积.25. 如图,AB 为⊙O 的直径,C ,D 为圆上的两点,OC ∥BD ,弦AD ,BC 相交于点E .(1)求证:AC⏜=CD ⏜; (2)若CE =1,EB =3,求⊙O 的半径;(3)在(2)的条件下,过点C 作⊙O 的切线,交BA 的延长线于点P ,过点P 作PQ ∥CB 交⊙O 于F ,Q 两点(点F 在线段PQ 上),求PQ 的长.26. 随着5G 技术的发展,人们对各类5G 产品的使用充满期待,某公司计划在某地区销售一款5G 产品,根据市场分析,该产品的销售价格将随销售周期的变化而变化.设该产品在第x (x 为正整数)个销售周期每台的销售价格为y 元,y 与x 之间满足如图所示的一次函数关系. (1)求y 与x 之间的关系式;(2)设该产品在第x 个销售周期的销售数量为p (万台),p 与x 的关系可以用p =12x +12来描述.根据以上信息,试问:哪个销售周期的销售收入最大?此时该产品每台的销售价格是多少元?27. 如图1,在△ABC 中,AB =AC =20,tan B =34,点D 为BC 边上的动点(点D 不与点B ,C 重合).以D 为顶点作∠ADE =∠B ,射线DE 交AC 边于点E ,过点A 作AF ⊥AD交射线DE 于点F ,连接CF . (1)求证:△ABD ∽△DCE ;(2)当DE ∥AB 时(如图2),求AE 的长;(3)点D 在BC 边上运动的过程中,是否存在某个位置,使得DF =CF ?若存在,求出此时BD 的长;若不存在,请说明理由.28.如图,抛物线y=ax2+bx+c经过点A(-2,5),与x轴相交于B(-1,0),C(3,0)两点.(1)求抛物线的函数表达式;(2)点D在抛物线的对称轴上,且位于x轴的上方,将△BCD沿直线BD翻折得到△BC'D,若点C'恰好落在抛物线的对称轴上,求点C'和点D的坐标;(3)设P是抛物线上位于对称轴右侧的一点,点Q在抛物线的对称轴上,当△CPQ 为等边三角形时,求直线BP的函数表达式.答案和解析1.【答案】C【解析】解:-3+5=2.故选:C.比-3大5的数是-3+5,根据有理数的加法法则即可求解.本题考查了有理数加法运算,首先判断两个加数的符号:是同号还是异号,是否有0,从而确定用哪一条法则.在应用过程中,要牢记“先符号,后绝对值”.2.【答案】B【解析】解:从左面看易得第一层有2个正方形,第二层左边有1个正方形,如图所示:故选:B.找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.本题考查了三视图的知识,左视图是从物体的左面看得到的视图.3.【答案】C【解析】解:科学记数法表示:5500万=55000000=5.5×107故选:C.根据科学记数法的表示形式即可本题主要考查科学记数法的表示,把一个数表示成a与10的n次幂相乘的形式(1≤a<10,n为整数),这种记数法叫做科学记数法.4.【答案】A【解析】解:点(-2,3)向右平移4个单位长度后得到的点的坐标为(2,3).故选:A.把点(-2,3)的横坐标加4,纵坐标不变得到点(-2,3)平移后的对应点的坐标.本题考查了坐标与图形变化-平移:在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.5.【答案】B【解析】解:∵AB∥CD,∴∠1=∠ADC=30°,又∵等腰直角三角形ADE中,∠ADE=45°,∴∠1=45°-30°=15°,故选:B.根据平行线的性质,即可得出∠1=∠ADC=30°,再根据等腰直角三角形ADE 中,∠ADE=45°,即可得到∠1=45°-30°=15°.本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.6.【答案】D【解析】解:A选项,5ab与3b不属于同类项,不能合并,选项错误,B选项,积的乘方(-3a2b)2=(-3)2a4b2=9a4b2,选项错误,C选项,完全平方公式(a-1)2=a2-2a+1,选项错误D选项,单项式除法,计算正确故选:D.注意到A选项中,5ab与3b不属于同类项,不能合并;B选项为积的乘方,C 选项为完全平方公式,D选项为单项式除法,运用相应的公式进行计算即可.此题主要考查整式的混合运算,熟记整式的各个公式并掌握计算的步骤是解题的关键.7.【答案】A【解析】解:方程两边同时乘以x(x-1)得,x(x-5)+2(x-1)=x(x-1),解得x=-1,把x=-1代入原方程的分母均不为0,故x=-1是原方程的解.故选:A.先把整式方程化为分式方程求出x的值,再代入最简公分母进行检验即可.此题主要考查了解分式方程,注意,解分式方程时需要验根.8.【答案】C【解析】解:将数据从小到大排列为:42,45,46,50,50,∴中位数为46,故选:C.将数据从小到大排列,根据中位数的定义求解即可.本题考查了中位数的知识,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,9.【答案】B【解析】解:如图,连接OC,OD.∵ABCDE是正五边形,∴∠COD==72°,∴∠CPD=∠COD=36°,故选:B.连接OC,OD.求出∠COD的度数,再根据圆周角定理即可解决问题;本题考查正多边形和圆、圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.10.【答案】D【解析】解:A.由于二次函数y=ax2+bx+c的图象与y轴交于正半轴,所以c>0,故A 错误;B.二次函数y=ax2+bx+c的图象与x轴由2个交点,所以b2-4ac>0,故B错误;C.当x=-1时,y<0,即a-b+c<0,故C错误;D.因为A(1,0),B(5,0),所以对称轴为直线x==3,故D正确.故选:D.二次函数y=ax2+bx+c(a≠0)①常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c).②抛物线与x轴交点个数.△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.本题考查了二次函数图象与系数的关系,熟练掌握二次函数图象的性质是解题的关键.11.【答案】1【解析】解:根据题意得:m+1-2=0,解得:m=1,故答案为:1.根据“m+1与-2互为相反数”,得到关于m的一元一次方程,解之即可.本题考查了解一元一次方程和相反数,正确掌握相反数的定义和一元一次方程的解法是解题的关键.12.【答案】9【解析】解:∵AB=AC,∴∠B=∠C,在△BAD和△CAE中,,∴△BAD≌△CAE,∴BD=CE=9,故答案为:9.利用等腰三角形的性质和题目的已知条件证得△BAD≌△CAE后即可求得CE 的长.本题考查了等腰三角形的性质,解题的关键是利用已知和隐含条件证得三角形全等.13.【答案】k<3【解析】解:y=(k-3)x+1的图象经过第一、二、四象限,∴k-3<0,∴k<3;故答案为k<3;根据y=kx+b,k<0,b>0时,函数图象经过第一、二、四象限,则有k-3<0即可求解;本题考查一次函数图象与系数的关系;熟练掌握一次函数y=kx+b,k与b对函数图象的影响是解题的关键.14.【答案】4【解析】解:由作法得∠COE=∠OAB,∴OE∥AB,∵四边形ABCD为平行四边形,∴OC=OA,∴CE=BE,∴OE为△ABC的中位线,∴OE=AB=×8=4.故答案为4.利用作法得到∠COE=∠OAB,则OE∥AB,利用平行四边形的性质判断OE为△ABC的中位线,从而得到OE的长.本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了平行四边形的性质.15.【答案】6【解析】解:∵,∴,∴≈6.故答案为:6根据二次根式的性质解答即可.本题主要考查了无理数的估算,熟练掌握二次根式的性质是解答本题的关键.16.【答案】-2【解析】解:根据题意得:x1+x2=-2,x1x2=k-1,+-x1x2=-3x1x2=4-3(k-1)=13,k=-2,故答案为:-2.根据“x1,x2是关于x的一元二次方程x2+2x+k-1=0的两个实数根,且x12+x22-x1x2=13”,结合根与系数的关系,列出关于k的一元一次方程,解之即可.本题考查了根与系数的关系,正确掌握一元二次方程根与系数的关系是解题的关键.17.【答案】20【解析】解:设盒子中原有的白球的个数为x个,根据题意得:=,解得:x=20,经检验:x=20是原分式方程的解;∴盒子中原有的白球的个数为20个.故答案为:20;设盒子中原有的白球的个数为x个,根据题意列出分式方程,解此分式方程即可求得答案.此题考查了概率公式的应用、分式方程的应用.用到的知识点为:概率=所求情况数与总情况数之比.18.【答案】√3【解析】解:∵在边长为1的菱形ABCD中,∠ABC=60°,∴AB=1,∠ABD=30°,∵将△ABD沿射线BD的方向平移得到△A'B'D',∴A′B′=AB=1,∠A′B′D=30°,当B′C⊥A′B′时,A'C+B'C的值最小,∵AB∥A′B′,AB=A′B′,AB=CD,AB∥CD,∴A′B′=CD,A′B′∥CD,∴四边形A′B′CD是矩形,∠B′A′C=30°,∴B′C=,A′C=,∴A'C+B'C的最小值为,故答案为:.根据菱形的性质得到AB=1,∠ABD=30°,根据平移的性质得到A′B′=AB=1,∠A′B′D=30°,当B′C⊥A′B′时,A'C+B'C的值最小,推出四边形A′B′CD是矩形,∠B′A′C=30°,解直角三角形即可得到结论.本题考查了轴对称-最短路线问题,菱形的性质,矩形的判定和性质,解直角三角形,平移的性质,正确的理解题意是解题的关键.19.【答案】4或5或6【解析】解:设B (m ,n ),∵点A 的坐标为(5,0),∴OA=5,∵△OAB 的面积=5•n=,∴n=3,结合图象可以找到其中的一种情况:(以一种为例)当2<m <3时,有6个整数点;当3<m <时,有5个整数点;当m=3时,有4个整数点;可知有6个或5个或4个整数点;故答案为4或5或6;根据面积求出B 点的纵坐标是3,结合平面直角坐标系,多画些图可以观察到整数点的情况;本题考查三角形的面积与平面直角坐标系中点的关系;能够结合图象,多作图是解题的关键.20.【答案】解:原式=(x+3x+3−4x+3)×2(x+3)(x−1)2=x−1x+3×2(x+3)(x−1)2=2x−1将x =√2+1代入原式=√2+1−1=√2【解析】可先对进行通分,可化为,再利用除法法则进行计算即可此题主要考查了方程解的定义和分式的运算,把所求的代数式化简后整理出所找到的相等关系的形式,再把此相等关系整体代入所求代数式,即可求出代数式的值.21.【答案】解:(1)原式=1-2×√32-4+√3-1, =1-√3-4+√3-1,=-4.(2){3(x −2)≤4x −5,①5x−24<1+12x .② 由①得,x ≥-1,由②得,x <2,所以,不等式组的解集是-1≤x <2.【解析】(1)本题涉及零指数幂、平方根、绝对值、特殊角的三角函数4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.(2)先求出两个不等式的解集,再求其公共解.本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).22.【答案】解:(1)本次调查的学生总人数为:18÷20%=90, 在线听课的人数为:90-24-18-12=36,补全的条形统计图如右图所示;(2)扇形统计图中“在线讨论”对应的扇形圆心角的度数是:360°×1290=48°, 即扇形统计图中“在线讨论”对应的扇形圆心角的度数是48°;(3)2100×2490=560(人), 答:该校对在线阅读最感兴趣的学生有560人.【解析】(1)根据在线答题的人数和所占的百分比即可求得本次调查的人数,然后再求出在线听课的人数,即可将条形统计图补充完整;(2)根据统计图中的数据可以求得扇形统计图中“在线讨论”对应的扇形圆心角的度数;(3)根据统计图中的数据可以求得该校对在线阅读最感兴趣的学生人数. 本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.23.【答案】解:作CE ⊥AB 于E ,则四边形CDBE 为矩形,∴CE =AB =20,CD =BE ,在Rt △ADB 中,∠ADB =45°,∴AB =DB =20,在Rt △ACE 中,tan ∠ACE =AE CE , ∴AE =CE •tan ∠ACE ≈20×0.70=14,∴CD =BE =AB -AE =6,答:起点拱门CD 的高度约为6米.【解析】作CE ⊥AB 于E ,根据矩形的性质得到CE=AB=20,CD=BE ,根据正切的定义求出AE ,结合图形计算即可.本题考查的是解直角三角形的应用-仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.24.【答案】解:(1)由{y =12x +5y =−2x得{y =4x=−2, ∴A (-2,4), ∵反比例函数y =kx 的图象经过点A ,∴k =-2×4=-8, ∴反比例函数的表达式是y =-8x ;(2)解{y =−8x y =12x +5得{y =4x=−2或{y =1x=−8, ∴B (-8,1),由直线AB 的解析式为y =12x +5得到直线与x 轴的交点为(-10,0),∴S △AOB =12×10×4-12×10×1=15. 【解析】(1)联立方程求得A 的坐标,然后根据待定系数法即可求得;(2)联立方程求得交点B的坐标,进而求得直线与x轴的交点,然后利用三角形面积公式求得即可.本题考查了一次函数和反比例函数的交点问题,通过方程组求得交点坐标是解题的关键.25.【答案】证明:(1)∵OC=OB∴∠OBC=∠OCB∵OC∥BD∴∠OCB=∠CBD∴∠OBC=∠CBD∴AC⏜=CD⏜(2)连接AC,∵CE=1,EB=3,∴BC=4∵AC⏜=CD⏜∴∠CAD=∠ABC,且∠ACB=∠ACB∴△ACE∽△BCA∴AC CE =CBAC∴AC2=CB•CE=4×1∴AC=2,∵AB是直径∴∠ACB=90°∴AB=√AC2+BC2=2√5∴⊙O的半径为√5(3)如图,过点O作OH⊥FQ于点H,连接OQ,∵PC是⊙O切线,∴∠PCO=90°,且∠ACB=90°∴∠PCA =∠BCO =∠CBO ,且∠CPB =∠CPA∴△APC ∽△CPB ∴PA PC =PC PB =AC BC =24=12 ∴PC =2PA ,PC 2=PA •PB∴4PA 2=PA ×(PA +2√5)∴PA =2√53∴PO =5√53 ∵PQ ∥BC∴∠CBA =∠BPQ ,且∠PHO =∠ACB =90°∴△PHO ∽△BCA∴AC OH =BC PH =AB PO即2OH =4PH =2√55√53=65 ∴PH =103,OH =53∴HQ =√OQ 2−OH 2=2√53∴PQ =PH +HQ =10+2√53 【解析】(1)由等腰三角形的性质和平行线的性质可得∠OBC=∠CBD ,即可证=;(2)通过证明△ACE ∽△BCA ,可得,可得AC=2,由勾股定理可求AB 的长,即可求⊙O 的半径;(3)过点O 作OH ⊥FQ 于点H ,连接OQ ,通过证明△APC ∽△CPB ,可得,可求PA=,即可求PO 的长,通过证明△PHO ∽△BCA ,可求PH ,OH 的长,由勾股定理可求HQ 的长,即可求PQ 的长.本题考查了切线的性质,圆的有关知识,相似三角形的判定和性质,勾股定理,求出PA 的长是本题的关键.26.【答案】解:(1)设函数的解析式为:y =kx +b (k ≠0),由图象可得, {5k +b =5000k+b=7000,解得,{b =7500k=−500,∴y 与x 之间的关系式:y =-500x +7500;(2)设销售收入为w 万元,根据题意得,w =yp =(-500x +7500)(12x +12), 即w =-250(x -7)2+16000,∴当x =7时,w 有最大值为16000,此时y =-500×7+7500=4000(元) 答:第7个销售周期的销售收入最大,此时该产品每台的销售价格是4000元.【解析】(1)根据函数图象上的两点坐标,用待定系数法求出函数的解析式便可;(2)设销售收入为w 万元,根据销售收入=销售单价×销售数量和p=x+,列出w 与x 的函数关系式,再根据函数性质求得结果.本题是一次函数的应用与二次函数的应用的综合题,主要考查了一次函数的实际应用,二次函数的实际应用,待定系数法求函数解析式,求二次函数的最值.关键是正确列出函数解析式.27.【答案】(1)证明:∵AB =AC , ∴∠B =∠ACB ,∵∠ADE +∠CDE =∠B +∠BAD ,∠ADE =∠B ,∴∠BAD =∠CDE ,∴△BAD ∽△DCE .(2)解:如图2中,作AM ⊥BC 于M .在Rt △ABM 中,设BM =4k ,则AM =BM •tan B =4k ×34=3k , 由勾股定理,得到AB 2=AM 2+BM 2,∴202=(3k )2+(4k )2,∴k =4或-4(舍弃),∵AB =AC ,AM ⊥BC ,∴BC =2BM =2•4k =32,∵DE ∥AB ,∴∠BAD =∠ADE ,∵∠ADE =∠B ,∠B =∠ACB ,∴∠BAD =∠ACB ,∵∠ABD =∠CBA ,∴△ABD ∽△CBA , ∴AB CB =DB AB , ∴DB =AB 2CB =20232=252, ∵DE ∥AB ,∴AE AC =BDBC , ∴AE =AC⋅BD BC =20×25232=12516.(3)点D 在BC 边上运动的过程中,存在某个位置,使得DF =CF .理由:作FH ⊥BC 于H ,AM ⊥BC 于M ,AN ⊥FH 于N .则∠NHM =∠AMH =∠ANH =90°,∴四边形AMHN 为矩形,∴∠MAN =90°,MH =AN ,∵AB =AC ,AM ⊥BC ,∴BM =CM =12BC =12×32=16, 在Rt △ABM 中,由勾股定理,得AM =√AB 2−BM 2=√202−162=12,∵AN ⊥FH ,AM ⊥BC ,∴∠ANF =90°=∠AMD , ∵∠DAF =90°=∠MAN , ∴∠NAF =∠MAD ,∴△AFN ∽△ADM ,∴AN AM =AF AD =tan ∠ADF =tan B =34,∴AN =34AM =34×12=9, ∴CH =CM -MH =CM -AN =16-9=7,当DF =CF 时,由点D 不与点C 重合,可知△DFC 为等腰三角形,∵FH ⊥DC ,∴CD =2CH =14,∴BD =BC -CD =32-14=18,∴点D 在BC 边上运动的过程中,存在某个位置,使得DF =CF ,此时BD =18.【解析】(1)根据两角对应相等的两个三角形相似证明即可.(2)解直角三角形求出BC ,由△ABD ∽△CBA ,推出=,可得DB===,由DE ∥AB ,推出=,求出AE 即可. (3)点D 在BC 边上运动的过程中,存在某个位置,使得DF=CF .作FH ⊥BC 于H ,AM ⊥BC 于M ,AN ⊥FH 于N .则∠NHM=∠AMH=∠ANH=90°,由△AFN ∽△ADM ,可得==tan ∠ADF=tanB=,推出AN=AM=×12=9,推出CH=CM-MH=CM-AN=16-9=7,再利用等腰三角形的性质,求出CD 即可解决问题.本题属于相似形综合题,考查了新三角形的判定和性质,解直角三角形,锐角三角函数等,等腰三角形的判定和性质知识,解题的关键是正确寻找相似三角形解决问题,学会添加常用辅助线,构造直角三角形解决问题,属于中考压轴题.28.【答案】解:(1)由题意得:{4a −2b +c =5,a −b +c =09a +3b +c =0,解得{a =1b =−2c =−3,∴抛物线的函数表达式为y =x 2-2x -3.(2)∵抛物线与x 轴交于B (-1,0),C (3,0),∴BC =4,抛物线的对称轴为直线x =1,如图,设抛物线的对称轴与x 轴交于点H ,则H 点的坐标为(1,0),BH =2, 由翻折得C ′B =CB =4,在Rt △BHC ′中,由勾股定理,得C ′H =√C′B 2−BH 2=√42−22=2√3,∴点C′的坐标为(1,2√3),tan∠C′BH=C′HBH =2√32=√3,∴∠C′BH=60°,由翻折得∠DBH=12∠C′BH=30°,在Rt△BHD中,DH=BH•tan∠DBH=2•tan30°=2√33,∴点D的坐标为(1,2√33).(3)取(2)中的点C′,D,连接CC′,∵BC′=BC,∠C′BC=60°,∴△C′CB为等边三角形.分类讨论如下:①当点P在x轴的上方时,点Q在x轴上方,连接BQ,C′P.∵△PCQ,△C′CB为等边三角形,∴CQ=CP,BC=C′C,∠PCQ=∠C′CB=60°,∴∠BCQ=∠C′CP,∴△BCQ≌△C′CP(SAS),∴BQ=C′P.∵点Q在抛物线的对称轴上,∴BQ=CQ,∴C′P=CQ=CP,又∵BC′=BC,∴BP垂直平分CC′,由翻折可知BD垂直平分CC′,∴点D在直线BP上,设直线BP的函数表达式为y=kx+b,则{0=−k+b2√33=k+b,解得{k=√33b=√33,∴直线BP的函数表达式为y=√33x+√33.②当点P在x轴的下方时,点Q在x轴下方.∵△PCQ,△C′CB为等边三角形,∴CP=CQ,BC=CC′,∠CC′B=∠QCP=∠C′CB=60°.∴∠BCP=∠C′CQ,∴△BCP≌△C′CQ(SAS),∴∠CBP=∠CC′Q,∵BC′=CC′,C′H⊥BC,∴∠CC′Q=12∠CC′B=30°.∴∠CBP=30°,设BP与y轴相交于点E,在Rt△BOE中,OE=OB•tan∠CBP=OB•tan30°=1×√33=√33,∴点E的坐标为(0,-√33).设直线BP的函数表达式为y=mx+n,则{0=−m+n−√33=n,解得{m=−√33n=−√33,∴直线BP的函数表达式为y=-√33x−√33.综上所述,直线BP的函数表达式为y=√33x+√33或y=−√33x−√33.【解析】(1)根据待定系数法,把点A(-2,5),B(-1,0),C(3,0)的坐标代入y=ax2+bx+c得到方程组求解即可;(2)设抛物线的对称轴与x轴交于点H,则H点的坐标为(1,0),BH=2,由翻折得C′B=CB=4,求出C′H的长,可得∠C′BH=60°,求出DH的长,则D坐标可求;(3)由题意可知△C′CB为等边三角形,分两种情况讨论:①当点P在x轴的上方时,点Q在x轴上方,连接BQ,C′P.证出△BCQ≌△C′CP,可得BP垂直平分CC′,则D点在直线BP上,可求出直线BP的解析式,②当点P在x轴的下方时,点Q在x轴下方.同理可求出另一直线解析式.本题考查了二次函数的综合题,涉及的知识点有:待定系数法求二次函数解析式,待定系数法求一次函数解析式,轴对称的性质,全等三角形的判定和性质,等边三角形的判定与性质,锐角三角函数等知识,综合性较强,有一定的难度.。

2019年中考数学试卷及答案

2019年中考数学试卷及答案

2019年中考数学试卷及答案一、选择题1.下列计算正确的是( ) A .2a +3b =5abB .( a -b )2=a 2-b 2C .( 2x 2 )3=6x 6D .x 8÷x 3=x 5 2.在数轴上,与表示6的点距离最近的整数点所表示的数是( ) A .1B .2C .3D .43.如图,若一次函数y =﹣2x +b 的图象与两坐标轴分别交于A ,B 两点,点A 的坐标为(0,3),则不等式﹣2x +b >0的解集为( )A .x >32B .x <32C .x >3D .x <34.小军旅行箱的密码是一个六位数,由于他忘记了密码的末位数字,则小军能一次打开该旅行箱的概率是( ) A .110B .19C .16D .155.如图,将△ABC 绕点C (0,1)旋转180°得到△A'B'C ,设点A 的坐标为(,)a b ,则点的坐标为( )A .(,)a b --B .(,1)a b ---C .(,1)a b --+D .(,2)a b --+6.下列命题中,其中正确命题的个数为( )个.①方差是衡量一组数据波动大小的统计量;②影响超市进货决策的主要统计量是众数;③折线统计图反映一组数据的变化趋势;④水中捞月是必然事件. A .1B .2C .3D .47.老师设计了接力游戏,用合作的方式完成分式化简,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:接力中,自己负责的一步出现错误的是()A.只有乙B.甲和丁C.乙和丙D.乙和丁8.如图,AB是一垂直于水平面的建筑物,某同学从建筑物底端B出发,先沿水平方向向右行走20米到达点C,再经过一段坡度(或坡比)为i=1:0.75、坡长为10米的斜坡CD 到达点D,然后再沿水平方向向右行走40米到达点E(A,B,C,D,E均在同一平面内).在E处测得建筑物顶端A的仰角为24°,则建筑物AB的高度约为(参考数据:sin24°≈0.41,cos24°≈0.91,tan24°=0.45)()A.21.7米B.22.4米C.27.4米D.28.8米9.如图,是一个几何体的表面展开图,则该几何体是()A.三棱柱B.四棱锥C.长方体D.正方体10.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D.若AC=5,BC=2,则sin ∠ACD的值为()A.53B.255C.52D.2311.如图,菱形ABCD的两条对角线相交于O,若AC=6,BD=4,则菱形ABCD的周长是()A .24B .16C .413D .2312.如图,O 为坐标原点,菱形OABC 的顶点A 的坐标为(34)-,,顶点C 在x 轴的负半轴上,函数(0)ky x x=<的图象经过顶点B ,则k 的值为( )A .12-B .27-C .32-D .36-二、填空题13.如图,△ABC 的三个顶点均在正方形网格格点上,则tan ∠BAC =_____________.14.如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给小明做了一个简易的秋千.拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为米.15.如图,在平面直角坐标系中,菱形OABC 的边OA 在x 轴上,AC 与OB 交于点D (8,4),反比例函数y=的图象经过点D .若将菱形OABC 向左平移n 个单位,使点C落在该反比例函数图象上,则n 的值为___.16.如图,⊙O的半径为6cm,直线AB是⊙O的切线,切点为点B,弦BC∥AO,若∠A=30°,则劣弧BC的长为 cm.17.用一个圆心角为180°,半径为4的扇形围成一个圆锥的侧面,则这个圆锥的底面圆的半径为_______.18.如图,正方形ABCD的边长为2,点E为边BC的中点,点P在对角线BD上移动,则PE+PC的最小值是.19.等腰三角形一腰上的高与另一腰的夹角的度数为20°,则顶角的度数是.20.从﹣2,﹣1,1,2四个数中,随机抽取两个数相乘,积为大于﹣4小于2的概率是_____.三、解答题21.电器专营店的经营利润受地理位置、顾客消费能力等因素的影响,某品牌电脑专营店设有甲、乙两家分店,均销售A、B、C、D四种款式的电脑,每种款式电脑的利润如表1所示.现从甲、乙两店每月售出的电脑中各随机抽取所记录的50台电脑的款式,统计各种款式电脑的销售数量,如表2所示.表1:四种款式电脑的利润电脑款式A B C D利润(元/台)160200240320表2:甲、乙两店电脑销售情况电脑款式A B C D甲店销售数量(台)2015105乙店销售数量(台)88101418试运用统计与概率知识,解决下列问题:(1)从甲店每月售出的电脑中随机抽取一台,其利润不少于240元的概率为;(2)经市场调查发现,甲、乙两店每月电脑的总销量相当.现由于资金限制,需对其中一家分店作出暂停营业的决定,若从每台电脑的平均利润的角度考虑,你认为应对哪家分店作出暂停营业的决定?并说明理由.22.如图,在Rt△ACB中,∠C=90°,AC=3cm,BC=4cm,以BC为直径作⊙O交AB于点D.(1)求线段AD的长度;(2)点E是线段AC上的一点,试问:当点E在什么位置时,直线ED与⊙O相切?请说明理由.23.某数学小组到人民英雄纪念碑站岗执勤,并在活动后实地测量了纪念碑的高度,方法如下:如图,首先在测量点A处用高为1.5m的测角仪AC测得人民英雄纪念碑MN项部M的仰角为37°,然后在测量点B处用同样的测角仪BD测得人民英雄纪念碑MN顶部M 的仰角为45°,最后测量出A,B两点间的距离为15m,并且N,B,A三点在一条直线上,连接CD并延长交MN于点E.请你利用他们的测量结果,计算人民英雄纪念碑MN 的高度.(参考数据:sin37°≈0.60,cos37°≈0.80,tan35°≈0.75)24.今年5月份,我市某中学开展争做“五好小公民”征文比赛活动,赛后随机抽取了部分参赛学生的成绩,按得分划分为A,B,C,D四个等级,并绘制了如下不完整的频数分布表和扇形统计图:等级成绩(s)频数(人数)A90<s≤1004B80<s≤90xC70<s≤8016D s≤706根据以上信息,解答以下问题:(1)表中的x= ;(2)扇形统计图中m= ,n=,C等级对应的扇形的圆心角为度;(3)该校准备从上述获得A等级的四名学生中选取两人做为学校“五好小公民”志愿者,已知这四人中有两名男生(用a1,a2表示)和两名女生(用b1,b2表示),请用列表或画树状图的方法求恰好选取的是a1和b1的概率.25.某烘焙店生产的蛋糕礼盒分为六个档次,第一档次(即最低档次)的产品每天生产76件,每件利润10元,调查表明:生产提高一个档次的蛋糕产品,该产品每件利润增加2元(1)若生产第五档次的蛋糕,该档次蛋糕每件利润为多少元?(2)由于生产工序不同,蛋糕产品每提高一个档次,一天产量会减少4件.若生产的某档次产品一天的总利润为1024元,该烘焙店生产的是第几档次的产品?【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】分析:A.原式不能合并,错误;B.原式利用完全平方公式展开得到结果,即可做出判断;C.原式利用积的乘方运算法则计算得到结果,即可做出判断;D.原式利用同底数幂的除法法则计算得到结果,即可做出判断.详解:A.不是同类项,不能合并,故A错误;B.(a﹣b)2=a2﹣2ab+b2,故B错误;C.(2x2)3=8x6,故C错误;D.x8÷x3=x5,故D正确.故选D.点睛:本题考查了完全平方公式,合并同类项,幂的乘方及积的乘方,以及同底数幂的除法,熟练掌握公式及法则是解答本题的关键.2.B解析:B【解析】【分析】6的大小,即可得到结果.【详解】<<,46 6.2526 2.5∴<<,则在数轴上,与表示6的点距离最近的整数点所表示的数是2,故选:B.【点睛】此题考查了实数与数轴,以及算术平方根,熟练掌握各自的性质是解本题的关键.3.B解析:B【解析】【分析】根据点A的坐标找出b值,令一次函数解析式中y=0求出x值,从而找出点B的坐标,观察函数图象,找出在x轴上方的函数图象,由此即可得出结论.【详解】解:∵一次函数y=﹣2x+b的图象交y轴于点A(0,3),∴b=3,令y=﹣2x+3中y=0,则﹣2x+3=0,解得:x=32,∴点B(32,0).观察函数图象,发现:当x<32时,一次函数图象在x轴上方,∴不等式﹣2x+b>0的解集为x<32.故选:B.【点睛】本题考查了一次函数与一元一次不等式,解题的关键是找出交点B的坐标.本题属于基础题,难度不大,解决该题型题目时,根据函数图象的上下位置关系解不等式是关键.4.A解析:A【解析】∵密码的末位数字共有10种可能(0、1、 2、 3、4、 5、 6、 7、 8、 9、 0都有可能),∴当他忘记了末位数字时,要一次能打开的概率是1 10.故选A.5.D解析:D 【解析】试题分析:根据题意,点A 、A′关于点C 对称,设点A 的坐标是(x ,y ),则0122a xb y++==,,解得2x a y b =-=-+,,∴点A 的坐标是(2)a b --+,.故选D . 考点:坐标与图形变化-旋转.6.C解析:C 【解析】 【分析】利用方差的意义,众数的定义、折线图及随机事件分别判断后即可确定正确的选项. 【详解】①方差是衡量一组数据波动大小的统计量,正确,是真命题; ②影响超市进货决策的主要统计量是众数,正确,是真命题; ③折线统计图反映一组数据的变化趋势,正确,是真命题; ④水中捞月是随机事件,故错误,是假命题, 真命题有3个, 故选C . 【点睛】本题考查了命题与定理的知识,解题的关键是了解方差的意义,众数的定义、折线图及随机事件等知识,难度不大.7.D解析:D 【解析】【分析】根据分式的乘除运算步骤和运算法则逐一计算即可判断.【详解】∵22211x x x x x-÷--=2221·1x x x x x --- =()2212·1x x x x x---- =()()221·1x x x x x ---- =()2x x--=2xx-,∴出现错误是在乙和丁,故选D.【点睛】本题考查了分式的乘除法,熟练掌握分式乘除法的运算法则是解题的关键. 8.A解析:A【解析】【分析】作BM⊥ED交ED的延长线于M,CN⊥DM于N.首先解直角三角形Rt△CDN,求出CN,DN,再根据tan24°=AMEM,构建方程即可解决问题.【详解】作BM⊥ED交ED的延长线于M,CN⊥DM于N.在Rt△CDN中,∵140.753CNDN==,设CN=4k,DN=3k,∴CD=10,∴(3k)2+(4k)2=100,∴k=2,∴CN=8,DN=6,∵四边形BMNC是矩形,∴BM=CN=8,BC=MN=20,EM=MN+DN+DE=66,在Rt△AEM中,tan24°=AM EM,∴0.45=866AB +,∴AB=21.7(米),故选A.【点睛】本题考查的是解直角三角形的应用-仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.9.A解析:A【解析】【分析】本题可以根据三棱柱展开图的三类情况分析解答 【详解】三棱柱的展开图大致可分为三类:1.一个三角在中间,每边上一个长方体,另一个在某长方形另一端.2.三个长方形并排,上下各一个三角形.3.中间一个三角形,其中两条边上有长方形,这两个长方形某一个的另一端有三角形,在这三角形的一条(只有一条,否则拼不上)边有剩下的那个长方形.此题目中图形符合第2种情况 故本题答案应为:A 【点睛】熟练掌握几何体的展开图是解决本题的关键,有时也可以采用排除法.10.A解析:A 【解析】 【分析】在直角△ABC 中,根据勾股定理即可求得AB ,而∠B =∠ACD ,即可把求sin ∠ACD 转化为求sin B . 【详解】在直角△ABC 中,根据勾股定理可得:AB ===3.∵∠B +∠BCD =90°,∠ACD +∠BCD =90°,∴∠B =∠ACD ,∴sin ∠ACD =sin ∠B AC AB ==. 故选A . 【点睛】本题考查了解直角三角形中三角函数的应用,要熟练掌握好边角之间的关系,难度适中.11.C解析:C 【解析】 【分析】由菱形ABCD 的两条对角线相交于O ,AC=6,BD=4,即可得AC ⊥BD ,求得OA 与OB 的长,然后利用勾股定理,求得AB 的长,继而求得答案. 【详解】∵四边形ABCD 是菱形,AC=6,BD=4, ∴AC ⊥BD ,OA=12AC=3, OB=12BD=2,AB=BC=CD=AD ,∴在Rt △AOB 中,AB=222+3=13,∴菱形的周长为413.故选C .12.C 解析:C【解析】【分析】【详解】∵A (﹣3,4),∴OA=2234+=5,∵四边形OABC 是菱形,∴AO=CB=OC=AB=5,则点B 的横坐标为﹣3﹣5=﹣8,故B 的坐标为:(﹣8,4),将点B 的坐标代入k y x=得,4=8k -,解得:k=﹣32.故选C . 考点:菱形的性质;反比例函数图象上点的坐标特征. 二、填空题13.【解析】分析:在图形左侧添加正方形网格分别延长ABAC 连接它们延长线所经过的格点可构成直角三角形利用正切的定义即可得出答案详解:如图所示由图形可知∴tan∠BAC=故答案为点睛:本题考查了锐角三角函解析:13【解析】分析:在图形左侧添加正方形网格,分别延长AB 、AC ,连接它们延长线所经过的格点,可构成直角三角形,利用正切的定义即可得出答案.详解:如图所示,由图形可知,90AFE ∠=︒,3AF AC =,EF AC =,∴tan ∠BAC =133EF AC AF AC ==.故答案为1 3 .点睛:本题考查了锐角三角函数的定义. 利用网格构建直角三角形进而利用正切的定义进行求解是解题的关键.14.5【解析】【分析】根据题意运用待定系数法建立适当的函数解析式代入求值即可解答【详解】以左边树与地面交点为原点地面水平线为x轴左边树为y轴建立平面直角坐标系由题意可得A(025)B(225)C(051解析:5【解析】【分析】根据题意,运用待定系数法,建立适当的函数解析式,代入求值即可解答.【详解】以左边树与地面交点为原点,地面水平线为x轴,左边树为y轴建立平面直角坐标系,由题意可得A(0,2.5),B(2,2.5),C(0.5,1)设函数解析式为y=ax2+bx+c把A. B. C三点分别代入得出c=2.5同时可得4a+2b+c=2.5,0.25a+0.5b+c=1解得a=2,b=−4,c=2.5.∴y=2x2−4x+2.5=2(x−1)2+0.5.∵2>0∴当x=1时,y min=0.5米.15.【解析】试题分析根据菱形的性质得出CD=ADBC∥OA根据D(84)和反比例函数的图象经过点D求出k=32C点的纵坐标是2×4=8求出C的坐标即可得出答案∵四边形ABCO是菱形∴CD=ADBC∥OA解析:【解析】试题分析根据菱形的性质得出CD=AD,BC∥OA,根据D (8,4)和反比例函数的图象经过点D求出k=32,C点的纵坐标是2×4=8,求出C的坐标,即可得出答案.∵四边形ABCO是菱形,∴CD=AD,BC∥OA,∵D (8,4),反比例函数的图象经过点D,∴k=32,C点的纵坐标是2×4=8,∴,把y=8代入得:x=4,∴n=4﹣2=2,∴向左平移2个单位长度,反比例函数能过C点,故答案为2.16.【解析】根据切线的性质可得出OB⊥AB从而求出∠BOA的度数利用弦BC∥AO及OB=OC可得出∠BOC的度数代入弧长公式即可得出∵直线AB是⊙O 的切线∴OB⊥AB(切线的性质)又∵∠A=30°∴∠B解析:2π.【解析】根据切线的性质可得出OB⊥AB,从而求出∠BOA的度数,利用弦BC∥AO,及OB=OC可得出∠BOC的度数,代入弧长公式即可得出∵直线AB是⊙O的切线,∴OB⊥AB(切线的性质).又∵∠A=30°,∴∠BOA=60°(直角三角形两锐角互余).∵弦BC∥AO,∴∠CBO=∠BOA=60°(两直线平行,内错角相等).又∵OB=OC,∴△OBC是等边三角形(等边三角形的判定).∴∠BOC=60°(等边三角形的每个内角等于60°).又∵⊙O的半径为6cm,∴劣弧BC的长=606=2180ππ⋅⋅(cm).17.2【解析】【分析】设这个圆锥的底面圆的半径为R根据扇形的弧长等于这个圆锥的底面圆的周长列出方程即可解决问题【详解】设这个圆锥的底面圆的半径为R由题意:2πR=解得R=2故答案为2解析:2【解析】【分析】设这个圆锥的底面圆的半径为R,根据扇形的弧长等于这个圆锥的底面圆的周长,列出方程即可解决问题.【详解】设这个圆锥的底面圆的半径为R,由题意:2πR=1804 180π⨯,解得R=2.故答案为2.18.【解析】试题分析:要求PE+PC的最小值PEPC不能直接求可考虑通过作辅助线转化PEPC的值从而找出其最小值求解试题解析:如图连接AE∵点C关于BD 的对称点为点A∴PE+PC=PE+AP根据两点之间【解析】试题分析:要求PE+PC的最小值,PE,PC不能直接求,可考虑通过作辅助线转化PE,PC的值,从而找出其最小值求解.试题解析:如图,连接AE,∵点C关于BD的对称点为点A,∴PE+PC=PE+AP,根据两点之间线段最短可得AE就是AP+PE的最小值,∵正方形ABCD的边长为2,E是BC边的中点,∴BE=1,∴AE=22125+=.考点:1.轴对称-最短路线问题;2.正方形的性质.19.110°或70°【解析】试题分析:此题要分情况讨论:当等腰三角形的顶角是钝角时腰上的高在外部根据三角形的一个外角等于与它不相邻的两个内角的和即可求得顶角是90°+20°=110°;当等腰三角形的顶角解析:110°或70°.【解析】试题分析:此题要分情况讨论:当等腰三角形的顶角是钝角时,腰上的高在外部.根据三角形的一个外角等于与它不相邻的两个内角的和,即可求得顶角是90°+20°=110°;当等腰三角形的顶角是锐角时,腰上的高在其内部,故顶角是90°﹣20°=70°.故答案为110°或70°.考点:1.等腰三角形的性质;2.分类讨论.20.【解析】【分析】列表得出所有等可能结果从中找到积为大于-4小于2的结果数根据概率公式计算可得【详解】列表如下:-2 -1 1 2 -2 2 -2 -4 -1 2 -1 -2 1 -2 -解析:1 2【解析】【分析】列表得出所有等可能结果,从中找到积为大于-4小于2的结果数,根据概率公式计算可得.【详解】列表如下:∴积为大于-4小于2的概率为612=12, 故答案为12. 【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;用到的知识点为:概率=所求情况数与总情况数之比. 三、解答题21.(1)310(2)应对甲店作出暂停营业的决定 【解析】【分析】(1)用利润不少于240元的数量除以总数量即可得;(2)先计算出每售出一台电脑的平均利润值,比较大小即可得.【详解】解:(1)从甲店每月售出的电脑中随机抽取一台,其利润不少于240元的概率为1053201510510+=+++, 故答案为310; (2)甲店每售出一台电脑的平均利润值为160202001524010320550⨯+⨯+⨯+⨯=204(元),乙店每售出一台电脑的平均利润值为160820010240143201850⨯+⨯+⨯+⨯=248(元),∵248>204,∴乙店每售出一台电脑的平均利润值大于甲店;又两店每月的总销量相当,∴应对甲店作出暂停营业的决定.【点睛】本题主要考查概率公式的应用,解题的关键是熟练掌握概率=所求情况数与总情况数之比及加权平均数的定义.22.(1)AD=95;(2)当点E是AC的中点时,ED与⊙O相切;理由见解析.【解析】【分析】(1)由勾股定理易求得AB的长;可连接CD,由圆周角定理知CD⊥AB,易知△ACD∽△ABC,可得关于AC、AD、AB的比例关系式,即可求出AD的长.(2)当ED与 O相切时,由切线长定理知EC=ED,则∠ECD=∠EDC,那么∠A和∠DEC就是等角的余角,由此可证得AE=DE,即E是AC的中点.在证明时,可连接OD,证OD⊥DE 即可.【详解】(1)在Rt△ACB中,∵AC=3cm,BC=4cm,∠ACB=90°,∴AB=5cm;连接CD,∵BC为直径,∴∠ADC=∠BDC=90°;∵∠A=∠A,∠ADC=∠ACB,∴Rt△ADC∽Rt△ACB;∴,∴;(2)当点E是AC的中点时,ED与⊙O相切;证明:连接OD,∵DE是Rt△ADC的中线;∴ED=EC,∴∠EDC=∠ECD;∵OC=OD,∴∠ODC=∠OCD;∴∠EDO=∠EDC+∠ODC=∠ECD+∠OCD=∠ACB=90°;∴ED⊥OD,∴ED与⊙O相切.【点睛】本题考查了圆周角定理、切线的判定、相似三角形的判定与性质,熟练掌握该知识点是本题解题的关键.23.人民英雄纪念碑MN的高度约为36.5米.【解析】【分析】在Rt△MED中,由∠MDE=45°知ME=DE,据此设ME=DE=x,则EC=x+15,在Rt△MEC 中,由ME=EC•tan∠MCE知x≈0.7(x+15),解之求得x的值,根据MN=ME+EN可得答案.【详解】由题意得四边形ABDC、ACEN是矩形,∴EN=AC=1.5,AB=CD=15,在Rt△MED中,∠MED=90°,∠MDE=45°,∴ME=DE,设ME=DE=x,则EC=x+15,在Rt△MEC中,∠MEC=90°,∠MCE=35°,∵ME=EC•tan∠MCE,∴x≈0.7(x+15),解得:x≈35,∴ME≈35,∴MN=ME+EN≈36.5,答:人民英雄纪念碑MN的高度约为36.5米.【点睛】本题考查了解直角三角形中的仰俯角问题,解题的关键是从实际问题中整理出直角三角形并利用解直角三角形的知识解题.24.(1)14;(2)10、40、144;(3)恰好选取的是a1和b1的概率为16.【解析】【分析】(1)根据D组人数及其所占百分比可得总人数,用总人数减去其他三组人数即可得出x的值;(2)用A、C人数分别除以总人数求得A、C的百分比即可得m、n的值,再用360°乘以C等级百分比可得其度数;(3)首先根据题意列出表格,然后由表格求得所有等可能的结果与恰好选取的是a1和b1的情况,再利用概率公式即可求得答案.【详解】(1)∵被调查的学生总人数为6÷15%=40人,∴x=40﹣(4+16+6)=14,故答案为14;(2)∵m%=440×100%=10%,n%=1640×10%=40%,∴m=10、n=40,C等级对应的扇形的圆心角为360°×40%=144°,故答案为10、40、144;(3)列表如下:a1和b1的有2种结果,∴恰好选取的是a1和b1的概率为21 126.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,列表法或树状图法求概率,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小;概率=所求情况数与总情况数之比.25.(1该档次蛋糕每件利润为18元;(2)该烘焙店生产的是四档次的产品.【解析】【分析】(1)依题意可求出产品质量在第五档次的每件的利润.(2)设烘焙店生产的是第x档次的产品,根据单件利润×销售数量=总利润,即可得出关于x的一元二次方程,解之即可得出结论.【详解】(1)10+2×(5-1)=18(元).答:该档次蛋糕每件利润为18元.(2)设烘焙店生产的是第x档次的产品,根据题意得:[10+2(x-1)]×[76-4(x-1)]=1024,整理得:x2﹣16x+48=0,解得:x1=4,x2=12(不合题意,舍去).答:该烘焙店生产的是四档次的产品.【点睛】本题考查了一元二次方程的应用,解题的关键是:(1)根据数量关系,列式计算;(2)根据单件利润×销售数量=总利润,列出关于x的一元二次方程.。

2019年四川省达州市中考数学试题(word版,含解析)

2019年四川省达州市中考数学试题(word版,含解析)

2019年四川省达州市中考数学试卷一、单项选择题(每小题3分,共30分)1.(3分)﹣2019的绝对值是()A.2019B.﹣2019C.D.﹣2.(3分)剪纸是我国传统的民间艺术,下列剪纸作品中,轴对称图形是()A.B.C.D.3.(3分)下列计算正确的是()A.a2+a3=a5B.a8÷a4=a4C.(﹣2ab)2=﹣4a2b2D.(a+b)2=a2+b24.(3分)如图是由7个小立方块所搭成的几何体的俯视图,小正方形中的数字表示该位置小立方块的个数,这个几何体的左视图是()A.B.C.D.5.(3分)一组数据1,2,1,4的方差为()A.1B.1.5C.2D.2.56.(3分)下列判断正确的是()A.<0.5B.若ab=0,则a=b=0C.=D.3a可以表示边长为a的等边三角形的周长7.(3分)某公司今年4月的营业额为2500万元,按计划第二季度的总营业额要达到9100万元,设该公司5、6两月的营业额的月平均增长率为x.根据题意列方程,则下列方程正确的是()A.2500(1+x)2=9100B.2500(1+x%)2=9100C.2500(1+x)+2500(1+x)2=9100D.2500+2500(1+x)+2500(1+x)2=91008.(3分)a是不为1的有理数,我们把称为a的差倒数,如2的差倒数为=﹣1,﹣1的差倒数=,已知a1=5,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数…,依此类推,a2019的值是()A.5B.﹣C.D.9.(3分)如图,边长都为4的正方形ABCD和正三角形EFG如图放置,AB与EF在一条直线上,点A与点F重合.现将△EFG沿AB方向以每秒1个单位的速度匀速运动,当点F与B重合时停止.在这个运动过程中,正方形ABCD和△EFG重叠部分的面积S与运动时间t的函数图象大致是()A.B.C.D.10.(3分)矩形OABC在平面直角坐标系中的位置如图所示,已知B(2,2),点A在x 轴上,点C在y轴上,P是对角线OB上一动点(不与原点重合),连接PC,过点P作PD⊥PC,交x轴于点D.下列结论:①OA=BC=2;②当点D运动到OA的中点处时,PC2+PD2=7;③在运动过程中,∠CDP是一个定值;④当△ODP为等腰三角形时,点D的坐标为(,0).其中正确结论的个数是()A.1个B.2个C.3个D.4个二、填空题(每小题3分,共18分)11.(3分)2018年,中国贸易进出口总额为4.62万亿美元(美国约为4.278万亿美元),同比增长12.6%,占全球贸易总额的11.75%,贸易总额连续两年全球第一!数据4.62万亿用科学记数法表示为.12.(3分)如图所示的电路中,当随机闭合开关S1、S2、S3中的两个时,能够让灯泡发光的概率为.13.(3分)如图所示,点C位于点A、B之间(不与A、B重合),点C表示1﹣2x,则x 的取值范围是.14.(3分)如图,▱ABCD的对角线AC、BD相交于点O,点E是AB的中点,△BEO的周长是8,则△BCD的周长为.15.(3分)如图,A、B两点在反比例函数y=的图象上,C、D两点在反比例函数y=的图象上,AC⊥x轴于点E,BD⊥x轴于点F,AC=2,BD=4,EF=3,则k2﹣k1=.16.(3分)如图,抛物线y=﹣x2+2x+m+1(m为常数)交y轴于点A,与x轴的一个交点在2和3之间,顶点为B.①抛物线y=﹣x2+2x+m+1与直线y=m+2有且只有一个交点;②若点M(﹣2,y1)、点N(,y2)、点P(2,y3)在该函数图象上,则y1<y2<y3;③将该抛物线向左平移2个单位,再向下平移2个单位,所得抛物线解析式为y=﹣(x+1)2+m;④点A关于直线x=1的对称点为C,点D、E分别在x轴和y轴上,当m=1时,四边形BCDE周长的最小值为+.其中正确判断的序号是.三、解答题:解答时应写出必要的文字说明、证明过程或演算步骤(共72分)17.(5分)计算:(π﹣3.14)0﹣()﹣2+﹣.18.(7分)先化简:(﹣)÷,再选取一个适当的x的值代入求值.19.(7分)随机抽取某小吃店一周的营业额(单位:元)如下表:星期一星期二星期三星期四星期五星期六星期日合计540680640640780111010705460(1)分析数据,填空:这组数据的平均数是元,中位数是元,众数是元.(2)估计一个月的营业额(按30天计算):①星期一到星期五营业额相差不大,用这5天的平均数估算合适么?答(填“合适”或“不合适”):.②选择一个你认为最合适的数据估算这个小吃店一个月的营业额.20.(7分)如图,在Rt△ABC中,∠ACB=90°,AC=2,BC=3.(1)尺规作图:不写作法,保留作图痕迹.①作∠ACB的平分线,交斜边AB于点D;②过点D作BC的垂线,垂足为点E.(2)在(1)作出的图形中,求DE的长.21.(7分)端午节前后,张阿姨两次到超市购买同一种粽子.节前,按标价购买,用了96元;节后,按标价的6折购买,用了72元,两次一共购买了27个.这种粽子的标价是多少?22.(8分)如图,⊙O是△ABC的外接圆,∠BAC的平分线交⊙O于点D,交BC于点E,过点D作直线DF∥BC.(1)判断直线DF与⊙O的位置关系,并说明理由;(2)若AB=6,AE=,CE=,求BD的长.23.(8分)渠县賨人谷是国家AAAA级旅游景区,以“奇山奇水奇石景,古賨古洞古部落”享誉巴渠,被誉为川东“小九寨”.端坐在观音崖旁的一块奇石似一只“啸天犬”,昂首向天,望穿古今.一个周末,某数学兴趣小组的几名同学想测出“啸天犬”上嘴尖与头顶的距离.他们把蹲着的“啸天犬”抽象成四边形ABCD,想法测出了尾部C看头顶B 的仰角为40°,从前脚落地点D看上嘴尖A的仰角刚好60°,CB=5m,CD=2.7m.景区管理员告诉同学们,上嘴尖到地面的距离是3m.于是,他们很快就算出了AB的长.你也算算?(结果精确到0.1m.参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84.≈1.41,≈1.73)24.(11分)箭头四角形模型规律如图1,延长CO交AB于点D,则∠BOC=∠1+∠B=∠A+∠C+∠B.因为凹四边形ABOC形似箭头,其四角具有“∠BOC=∠A+∠B+∠C”这个规律,所以我们把这个模型叫做“箭头四角形”.模型应用(1)直接应用:①如图2,∠A+∠B+∠C+∠D+∠E+∠F=.②如图3,∠ABE、∠ACE的2等分线(即角平分线)BF、CF交于点F,已知∠BEC=120°,∠BAC=50°,则∠BFC=.③如图4,BO i、CO i分别为∠ABO、∠ACO的2019等分线(i=1,2,3, (2017)2018).它们的交点从上到下依次为O1、O2、O3、…、O2018.已知∠BOC=m°,∠BAC =n°,则∠BO1000C=度.(2)拓展应用:如图5,在四边形ABCD中,BC=CD,∠BCD=2∠BAD.O是四边形ABCD内一点,且OA=OB=OD.求证:四边形OBCD是菱形.25.(12分)如图1,已知抛物线y=﹣x2+bx+c过点A(1,0),B(﹣3,0).(1)求抛物线的解析式及其顶点C的坐标;(2)设点D是x轴上一点,当tan(∠CAO+∠CDO)=4时,求点D的坐标;(3)如图2.抛物线与y轴交于点E,点P是该抛物线上位于第二象限的点,线段P A 交BE于点M,交y轴于点N,△BMP和△EMN的面积分别为m、n,求m﹣n的最大值.2019年四川省达州市中考数学试卷参考答案与试题解析一、单项选择题(每小题3分,共30分)1.(3分)﹣2019的绝对值是()A.2019B.﹣2019C.D.﹣【分析】直接利用绝对值的定义进而得出答案.【解答】解:﹣2019的绝对值是:2009.故选:A.【点评】此题主要考查了绝对值,正确把握绝对值的定义是解题关键.2.(3分)剪纸是我国传统的民间艺术,下列剪纸作品中,轴对称图形是()A.B.C.D.【分析】根据轴对称图形的概念进而判断求解.【解答】解:A、不是轴对称图形,故此选项不合题意;B、不是轴对称图形,故此选项不合题意;C、不是轴对称图形,故此选项不合题意;D、是轴对称图形,故此选项符合题意;故选:D.【点评】本题考查了轴对称图形,轴对称图形的判断方法:把某个图象沿某条直线折叠,如果图形的两部分能够重合,那么这个是轴对称图形.3.(3分)下列计算正确的是()A.a2+a3=a5B.a8÷a4=a4C.(﹣2ab)2=﹣4a2b2D.(a+b)2=a2+b2【分析】直接利用合并同类项法则以及同底数幂的乘除运算法则、积的乘方运算法则分别化简得出答案.【解答】解:A、a2+a3,无法计算,故此选项错误;B、a8÷a4=a4,故此选项正确;C、(﹣2ab)2=4a2b2,故此选项错误;D、(a+b)2=a2+2ab+b2,故此选项错误;故选:B.【点评】此题主要考查了合并同类项以及同底数幂的乘除运算、积的乘方运算,正确掌握相关运算法则是解题关键.4.(3分)如图是由7个小立方块所搭成的几何体的俯视图,小正方形中的数字表示该位置小立方块的个数,这个几何体的左视图是()A.B.C.D.【分析】由已知条件可知,左视图有2列,每列小正方形数目分别为3,1.据此可作出判断.【解答】解:从左面看可得到从左到右分别是3,1个正方形.故选:B.【点评】本题考查几何体的三视图.由几何体的俯视图及小正方形内的数字,可知左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.5.(3分)一组数据1,2,1,4的方差为()A.1B.1.5C.2D.2.5【分析】先求得这组数据平均值,再根据方差公式,计算即可【解答】解:平均数为==2方差S2=[(1﹣2)2+(2﹣2)2+(1﹣2)2+(4﹣2)2]=故选:B.【点评】此题主要考查方差的计算公式,熟记方差的计算公式:S2=×[(x1﹣)2+(x2﹣)2+…+(x n﹣1﹣)2+(x n﹣)2]是解题的关键6.(3分)下列判断正确的是()A.<0.5B.若ab=0,则a=b=0C.=D.3a可以表示边长为a的等边三角形的周长【分析】根据实数的大小比较法则、二次根式的乘除法法则、列代数式的一般步骤判断即可.【解答】解:A、2<<3,∴<<1,本选项错误;B、若ab=0,则a=0或b=0或a=b=0,本选项错误;C、当a≥0,b>0时,=,本选项错误;D、3a可以表示边长为a的等边三角形的周长,本选项正确;故选:D.【点评】本题考查的是二次根式的乘除法、实数的大小比较、列代数式,掌握二次根式的乘除法法则、实数的大小比较法则是解题的关键.7.(3分)某公司今年4月的营业额为2500万元,按计划第二季度的总营业额要达到9100万元,设该公司5、6两月的营业额的月平均增长率为x.根据题意列方程,则下列方程正确的是()A.2500(1+x)2=9100B.2500(1+x%)2=9100C.2500(1+x)+2500(1+x)2=9100D.2500+2500(1+x)+2500(1+x)2=9100【分析】分别表示出5月,6月的营业额进而得出等式即可.【解答】解:设该公司5、6两月的营业额的月平均增长率为x.根据题意列方程得:2500+2500(1+x)+2500(1+x)2=9100.故选:D.【点评】此题主要考查了由实际问题抽象出一元二次方程,正确理解题意是解题关键.8.(3分)a是不为1的有理数,我们把称为a的差倒数,如2的差倒数为=﹣1,﹣1的差倒数=,已知a1=5,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数…,依此类推,a2019的值是()A.5B.﹣C.D.【分析】根据差倒数的定义分别求出前几个数便不难发现,每3个数为一个循环组依次循环,用2019除以3,根据余数的情况确定出与a2019相同的数即可得解.【解答】解:∵a1=5,a2===﹣,a3===,a4===5,…∴数列以5,﹣,三个数依次不断循环,∵2019÷3=673,∴a2019=a3=,故选:D.【点评】本题是对数字变化规律的考查,理解差倒数的定义并求出每3个数为一个循环组依次循环是解题的关键.9.(3分)如图,边长都为4的正方形ABCD和正三角形EFG如图放置,AB与EF在一条直线上,点A与点F重合.现将△EFG沿AB方向以每秒1个单位的速度匀速运动,当点F与B重合时停止.在这个运动过程中,正方形ABCD和△EFG重叠部分的面积S与运动时间t的函数图象大致是()A.B.C.D.【分析】根据题意和函数图象可以写出各段对应的函数解析式,从而可以判断哪个选项中的图象符合题意,本题得以解决.【解答】解:当0≤t≤2时,S==,即S与t是二次函数关系,有最小值(0,0),开口向上,当2<t≤4时,S=﹣=,即S与t是二次函数关系,开口向下,由上可得,选项C符合题意,故选:C.【点评】本题考查动点问题的函数过图象,解答本题的关键是明确题意,利用数形结合的思想解答.10.(3分)矩形OABC在平面直角坐标系中的位置如图所示,已知B(2,2),点A在x 轴上,点C在y轴上,P是对角线OB上一动点(不与原点重合),连接PC,过点P作PD⊥PC,交x轴于点D.下列结论:①OA=BC=2;②当点D运动到OA的中点处时,PC2+PD2=7;③在运动过程中,∠CDP是一个定值;④当△ODP为等腰三角形时,点D的坐标为(,0).其中正确结论的个数是()A.1个B.2个C.3个D.4个【分析】①根据矩形的性质即可得到OA=BC=2;故①正确;②由点D为OA的中点,得到OD=OA=,根据勾股定理即可得到PC2+PD2=CD2=OC2+OD2=22+()2=7,故②正确;③如图,过点P作PF⊥OA于F,FP的延长线交BC于E,PE=a,则PF=EF﹣PE=2﹣a,根据三角函数的定义得到BE=PE=a,求得CE=BC﹣BE=2﹣a=(2﹣a),根据相似三角形的性质得到FD=,根据三角函数的定义得到∠PDC=60°,故③正确;④当△ODP为等腰三角形时,Ⅰ、OD=PD,解直角三角形得到OD=OC=,Ⅱ、OP=OD,根据等腰三角形的性质和四边形的内角和得到∠OCP=105°>90°,故不合题意舍去;Ⅲ、OP=PD,根据等腰三角形的性质和四边形的内角和得到∠OCP=105°>90°,故不合题意舍去;于是得到当△ODP为等腰三角形时,点D的坐标为(,0).故④正确.【解答】解:①∵四边形OABC是矩形,B(2,2),∴OA=BC=2;故①正确;②∵点D为OA的中点,∴OD=OA=,∴PC2+PD2=CD2=OC2+OD2=22+()2=7,故②正确;③如图,过点P作PF⊥OA于F,FP的延长线交BC于E,∴PE⊥BC,四边形OFEC是矩形,∴EF=OC=2,设PE=a,则PF=EF﹣PE=2﹣a,在Rt△BEP中,tan∠CBO===,∴BE=PE=a,∴CE=BC﹣BE=2﹣a=(2﹣a),∵PD⊥PC,∴∠CPE+∠FPD=90°,∵∠CPE+∠PCE=90°,∴∠FPD=∠ECP,∵∠CEP=∠PFD=90°,∴△CEP∽△PFD,∴=,∴=,∴FD=,∴tan∠PDC===,∴∠PDC=60°,故③正确;④∵B(2,2),四边形OABC是矩形,∴OA=2,AB=2,∵tan∠AOB==,∴∠AOB=30°,当△ODP为等腰三角形时,Ⅰ、OD=PD,∴∠DOP=∠DPO=30°,∴∠ODP=60°,∴∠ODC=60°,∴OD=OC=,Ⅱ、OP=OD,∴∠ODP=∠OPD=75°,∵∠COD=∠CPD=90°,∴∠OCP=105°>90°,故不合题意舍去;Ⅲ、OP=PD,∴∠POD=∠PDO=30°,∴∠OCP=150°>90°故不合题意舍去,∴当△ODP为等腰三角形时,点D的坐标为(,0).故④正确,故选:D.【点评】此题主要考查了矩形的性质,锐角三角函数的定义,相似三角形的判定和性质,勾股定理,等腰三角形的性质,构造出相似三角形表示出CP和PD是解本题的关键.二、填空题(每小题3分,共18分)11.(3分)2018年,中国贸易进出口总额为4.62万亿美元(美国约为4.278万亿美元),同比增长12.6%,占全球贸易总额的11.75%,贸易总额连续两年全球第一!数据4.62万亿用科学记数法表示为 4.62×1012.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:4.62万亿=4.62×1012,故答案为:4.62×1012【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(3分)如图所示的电路中,当随机闭合开关S1、S2、S3中的两个时,能够让灯泡发光的概率为.【分析】根据题意可得:随机闭合开关S1,S2,S3中的两个,有3种方法,其中有两种能够让灯泡发光,故其概率为.【解答】解:因为随机闭合开关S1,S2,S3中的两个,有3种方法,其中有2种能够让灯泡发光所以P(灯泡发光)=.故本题答案为:.【点评】本题考查的是概率的求法.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.13.(3分)如图所示,点C位于点A、B之间(不与A、B重合),点C表示1﹣2x,则x 的取值范围是﹣<x<0.【分析】根据题意列出不等式组,求出解集即可确定出x的范围.【解答】解:根据题意得:1<1﹣2x<2,解得:﹣<x<0,则x的范围是﹣<x<0,故答案为:﹣<x<0【点评】此题考查了解一元一次不等式组,以及数轴,熟练掌握运算法则是解本题的关键.14.(3分)如图,▱ABCD的对角线AC、BD相交于点O,点E是AB的中点,△BEO的周长是8,则△BCD的周长为16.【分析】根据平行四边形的性质可得BO=DO=BD,进而可得OE是△ABC的中位线,由三角形中位线定理得出BC=2OE,再根据平行四边形的性质可得AB=CD,从而可得△BCD的周长=△BEO的周长×2.【解答】解:∵▱ABCD的对角线AC、BD相交于点O,∴BO=DO=BD,BD=2OB,∴O为BD中点,∵点E是AB的中点,∴AB=2BE,BC=2OE,∵四边形ABCD是平行四边形,∴AB=CD,∴CD=2BE.∵△BEO的周长为8,∴OB+OE+BE=8,∴BD+BC+CD=2OB+2OE+2BE=2(OB+OE+BE)=16,∴△BCD的周长是16,故答案为16.【点评】此题考查了平行四边形的性质,三角形中位线定理以及线段中点的定义.关键是掌握平行四边形的性质:①边:平行四边形的对边平行且相等.②角:平行四边形的对角相等;③对角线:平行四边形的对角线互相平分.15.(3分)如图,A、B两点在反比例函数y=的图象上,C、D两点在反比例函数y=的图象上,AC⊥x轴于点E,BD⊥x轴于点F,AC=2,BD=4,EF=3,则k2﹣k1=4.【分析】设出A(a,),C(a,),B(b,),D(b,),由坐标转化线段长,从而可求出结果等于4.【解答】解:设A(a,),C(a,),B(b,),D(b,),则CA=﹣=2,∴,得a=同理:BD=,得b=又∵a﹣b=3∴﹣=3解得:k2﹣k1=4【点评】本题考查反比例函数上点的坐标关系,根据坐标转化线段长是解题关键.16.(3分)如图,抛物线y=﹣x2+2x+m+1(m为常数)交y轴于点A,与x轴的一个交点在2和3之间,顶点为B.①抛物线y=﹣x2+2x+m+1与直线y=m+2有且只有一个交点;②若点M(﹣2,y1)、点N(,y2)、点P(2,y3)在该函数图象上,则y1<y2<y3;③将该抛物线向左平移2个单位,再向下平移2个单位,所得抛物线解析式为y=﹣(x+1)2+m;④点A关于直线x=1的对称点为C,点D、E分别在x轴和y轴上,当m=1时,四边形BCDE周长的最小值为+.其中正确判断的序号是①③④.【分析】①把y=m+2代入y=﹣x2+2x+m+1中,判断所得一元二次方程的根的情况便可得判断正确;②根据二次函数的性质进行判断;③根据平移的公式求出平移后的解析式便可;④因BC边一定,只要其他三边和最小便可,作点B关于y轴的对称点B′,作C点关于x轴的对称点C′,连接B′C′,与x轴、y轴分别交于D、E点,求出B′C′便是其他三边和的最小值.【解答】解:①把y=m+2代入y=﹣x2+2x+m+1中,得x2﹣2x+1=0,∵△=4﹣4=0,∴此方程两个相等的实数根,则抛物线y=﹣x2+2x+m+1与直线y=m+2有且只有一个交点,故此小题结论正确;②∵抛物线的对称轴为x=1,∴点P(2,y3)关于x=1的对称点为P′(0,y3),∵a=﹣1<0,∴当x<1时,y随x增大而减小,又∵﹣2<0<,点M(﹣2,y1)、点N (,y2)、点P′(0,y3)在该函数图象上,∴y2<y3<y1,故此小题结论错误;③将该抛物线向左平移2个单位,再向下平移2个单位,抛物线的解析式为:y=﹣(x+2)2+2(x+2)x+m+1﹣2,即y=﹣(x+1)2+m,故此小题结论正确;④当m=1时,抛物线的解析式为:y=﹣x2+2x+2,∴A(0,2),C(2,2),B(1,3),作点B关于y轴的对称点B′(﹣1,3),作C点关于x轴的对称点C′(2,﹣2),连接B′C′,与x轴、y轴分别交于D、E点,如图,则BE+ED+CD+BC=B′E+ED+C′D+BC=B′C′+BC,根据两点之间线段最短,知B′C′最短,而BC的长度一定,∴此时,四边形BCDE周长=B′C′+BC最小,为:,故此小题结论正确;故答案为:①③④.【点评】本题考查二次函数的应用、二次函数的图象与性质、二次函数与坐标轴的交点、求线段和的最小值等知识,解题的关键是灵活运用所学知识解决问题,属于中考填空题中的压轴题.三、解答题:解答时应写出必要的文字说明、证明过程或演算步骤(共72分)17.(5分)计算:(π﹣3.14)0﹣()﹣2+﹣.【分析】直接利用零指数幂的性质以及负指数幂的性质和立方根的性质分别化简得出答案.【解答】解:原式=1﹣4+3﹣2=﹣2.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.(7分)先化简:(﹣)÷,再选取一个适当的x的值代入求值.【分析】先对括号里的分式进行整理,,,两式相减进行通分即可进行化简,再代入适当的值即可.【解答】解:化简得,原式===﹣取x=1得,原式=﹣=﹣【点评】此题主要考查分式的化简求值,掌握运用分式的通分技巧及分解因式是解题的关键.19.(7分)随机抽取某小吃店一周的营业额(单位:元)如下表:星期一星期二星期三星期四星期五星期六星期日合计540680640640780111010705460(1)分析数据,填空:这组数据的平均数是780元,中位数是680元,众数是640元.(2)估计一个月的营业额(按30天计算):①星期一到星期五营业额相差不大,用这5天的平均数估算合适么?答(填“合适”或“不合适”):不合适.②选择一个你认为最合适的数据估算这个小吃店一个月的营业额.【分析】(1)根据平均数的定义、中位数的定义、众数的定义进行解答即可;(2)①从极端值对平均数的影响作出判断即可;②可用该店本周一到周日的日均营业额估计当月营业额.【解答】解:(1)这组数据的平均数==780(元);按照从小到大排列为540、640、640、680、780、1070、1110,中位数为680元,众数为640元;故答案为:780,680,640;(2)①因为在周一至周日的营业额中周六、日的营业额明显高于其他五天的营业额,所以去掉周六、日的营业额对平均数的影响较大,故用该店本周星期一到星期五的日平均营业额估计当月的营业总额不合适;故答案为:不合适;②用该店本周一到周日的日均营业额估计当月营业额,当月的营业额为30×780=23400(元).【点评】本题主要考查了众数、平均数、中位数及样本估计总体,解题的关键是掌握算术平均数的定义与样本估计总体思想的运用.20.(7分)如图,在Rt△ABC中,∠ACB=90°,AC=2,BC=3.(1)尺规作图:不写作法,保留作图痕迹.①作∠ACB的平分线,交斜边AB于点D;②过点D作BC的垂线,垂足为点E.(2)在(1)作出的图形中,求DE的长.【分析】(1)利用基本作图,先画出CD平分∠ACB,然后作DE⊥BC于E;(2)利用CD平分∠ACB得到∠BCD=45°,再判断△CDE为等腰直角三角形,所以DE=CE,然后证明△BDE∽△BAC,从而利用相似比计算出DE.【解答】解:(1)如图,DE为所作;(2)∵CD平分∠ACB,∴∠BCD=∠ACB=45°,∵DE⊥BC,∴△CDE为等腰直角三角形,∴DE=CE,∵DE∥AC,∴△BDE∽△BAC,∴=,即=,∴DE=.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.21.(7分)端午节前后,张阿姨两次到超市购买同一种粽子.节前,按标价购买,用了96元;节后,按标价的6折购买,用了72元,两次一共购买了27个.这种粽子的标价是多少?【分析】设这种粽子的标价是x元/个,则节后的价格是0.6x元/个,根据数量=总价÷单价结合两次一共购买了27个,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】解:设这种粽子的标价是x元/个,则节后的价格是0.6x元/个,依题意,得:+=27,解得:x=8,经检验,x=8是原方程的解,且符合题意.答:这种粽子的标价是8元/个.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.22.(8分)如图,⊙O是△ABC的外接圆,∠BAC的平分线交⊙O于点D,交BC于点E,过点D作直线DF∥BC.(1)判断直线DF与⊙O的位置关系,并说明理由;(2)若AB=6,AE=,CE=,求BD的长.【分析】(1)连接OD,根据角平分线的定义得到∠BAD=∠CAD,求得=,根据垂径定理得到OD⊥BC,根据平行线的性质得到OD⊥DF,于是得到DF与⊙O相切;(2)根据相似三角形的判定和性质即可得到结论.【解答】解:(1)DF与⊙O相切,理由:连接OD,∵∠BAC的平分线交⊙O于点D,∴∠BAD=∠CAD,∴=,∴OD⊥BC,∵DF∥BC,∴OD⊥DF,∴DF与⊙O相切;(2)∵∠BAD=∠CAD,∠ADB=∠C,∴△ABD∽△AEC,∴,∴=,∴BD=.【点评】本题主要考查的是直线与圆的位置关系,相似三角形的性质和判定、等腰三角形的性质、切线的判定,证得∠BAD=∠DAC是解题的关键.23.(8分)渠县賨人谷是国家AAAA级旅游景区,以“奇山奇水奇石景,古賨古洞古部落”享誉巴渠,被誉为川东“小九寨”.端坐在观音崖旁的一块奇石似一只“啸天犬”,昂首向天,望穿古今.一个周末,某数学兴趣小组的几名同学想测出“啸天犬”上嘴尖与头顶的距离.他们把蹲着的“啸天犬”抽象成四边形ABCD,想法测出了尾部C看头顶B 的仰角为40°,从前脚落地点D看上嘴尖A的仰角刚好60°,CB=5m,CD=2.7m.景区管理员告诉同学们,上嘴尖到地面的距离是3m.于是,他们很快就算出了AB的长.你也算算?(结果精确到0.1m.参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84.≈1.41,≈1.73)【分析】作BF⊥CE于F,根据正弦的定义求出BF,利用余弦的定义求出CF,利用正切的定义求出DE,结合图形计算即可.【解答】解:作BF⊥CE于F,在Rt△BFC中,BF=BC•sin∠BCF≈3.20,CF=BC•cos∠BCF≈3.85,在Rt△ADE中,DE===≈1.73,∴BH=BF﹣HF=0.20,AH=EF=CD+DE﹣CF=0.58,由勾股定理得,AB=≈0.6(m),答:AB的长约为0.6m.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.24.(11分)箭头四角形模型规律如图1,延长CO交AB于点D,则∠BOC=∠1+∠B=∠A+∠C+∠B.因为凹四边形ABOC形似箭头,其四角具有“∠BOC=∠A+∠B+∠C”这个规律,所以我们把这个模型叫做“箭头四角形”.模型应用(1)直接应用:①如图2,∠A+∠B+∠C+∠D+∠E+∠F=2α.②如图3,∠ABE、∠ACE的2等分线(即角平分线)BF、CF交于点F,已知∠BEC=120°,∠BAC=50°,则∠BFC=85°.③如图4,BO i、CO i分别为∠ABO、∠ACO的2019等分线(i=1,2,3, (2017)2018).它们的交点从上到下依次为O1、O2、O3、…、O2018.已知∠BOC=m°,∠BAC =n°,则∠BO1000C=(m+n)度.(2)拓展应用:如图5,在四边形ABCD中,BC=CD,∠BCD=2∠BAD.O是四边形ABCD内一点,且OA=OB=OD.求证:四边形OBCD是菱形.【分析】(1)①由∠A+∠B+∠C=∠BOC=α,∠D+∠E+∠F=∠DOE=α可得答案;②由∠BEC=∠EBF+∠ECF+∠F,∠F=∠ABF+∠ACF+∠A且∠EBF=∠ABF,∠ECF =∠ACF知∠BEC=∠F﹣∠A+∠F,从而得∠F=,代入计算可得;③由∠BOC=∠OBO1000+∠OCO1000+∠BO1000C=(∠ABO+∠ACO)+∠BO1000C,∠BO1000C=∠ABO1000+∠ACO1000+∠BAC=(∠ABO+∠ACO)+∠BAC知∠ABO+∠ACO=(∠BO1000C﹣∠BAC),代入∠BOC=(∠ABO+∠ACO)+∠BO1000C 得∠BOC=×(∠BO1000C﹣∠BAC)+∠BO1000C,据此得出∠BO1000C=(∠BOC+∠BAC)=∠BOC+∠BAC,代入可得答案;(2)由∠OAB=∠OBA,∠OAD=∠ODA知∠BOD=∠BAD+∠ABO+∠ADO=2∠BAD,结合∠BCD=2∠BAD得∠BCD=∠BOD,连接OC,根据全等三角形的判定和性质以及菱形的判定解答即可.【解答】解:(1)①如图2,在凹四边形ABOC中,∠A+∠B+∠C=∠BOC=α,在凹四边形DOEF中,∠D+∠E+∠F=∠DOE=α,∴∠A+∠B+∠C+∠D+∠E+∠F=2α;②如图3,∵∠BEC=∠EBF+∠ECF+∠F,∠F=∠ABF+∠ACF+∠A,且∠EBF=∠ABF,∠ECF =∠ACF,∴∠BEC=∠F﹣∠A+∠F,∴∠F=,∵∠BEC=120°,∠BAC=50°,∴∠F=85°;③如图3,由题意知∠ABO1000=∠ABO,∠OBO1000=∠ABO,∠ACO1000=∠ACO,∠OCO1000=∠ACO,∴∠BOC=∠OBO1000+∠OCO1000+∠BO1000C=(∠ABO+∠ACO)+∠BO1000C,∠BO1000C=∠ABO1000+∠ACO1000+∠BAC=(∠ABO+∠ACO)+∠BAC,则∠ABO+∠ACO=(∠BO1000C﹣∠BAC),代入∠BOC=(∠ABO+∠ACO)+∠BO1000C得∠BOC=×(∠BO1000C ﹣∠BAC)+∠BO1000C,解得:∠BO1000C=(∠BOC+∠BAC)=∠BOC+∠BAC,∵∠BOC=m°,∠BAC=n°,∴∠BO1000C=m°+n°;故答案为:①2α;②85°;③(m+n);(2)如图5,连接OC,∵OA=OB=OD,∴∠OAB=∠OBA,∠OAD=∠ODA,∴∠BOD=∠BAD+∠ABO+∠ADO=2∠BAD,∵∠BCD=2∠BAD,∴∠BCD=∠BOD,∵BC=CD,OA=OB=OD,OC是公共边,∴△OBC≌△ODC(SSS),∴∠BOC=∠DOC,∠BCO=∠DCO,∵∠BOD=∠BOC+∠DOC,∠BCD=∠BCO+∠DCO,∴∠BOC=∠BOD,∠BCO=∠BCD,又∠BOD=∠BCD,∴∠BOC=∠BCO,∴BO=BC,又OB=OD,BC=CD,∴OB=BC=CD=DO,∴四边形OBCD是菱形.【点评】本题主要考查四边形的综合问题,解题的关键是掌握“箭头四角形”的性质∠BOC=∠A+∠B+∠C及其运用,全等三角形的判定与性质、菱形的判定等知识点.25.(12分)如图1,已知抛物线y=﹣x2+bx+c过点A(1,0),B(﹣3,0).(1)求抛物线的解析式及其顶点C的坐标;(2)设点D是x轴上一点,当tan(∠CAO+∠CDO)=4时,求点D的坐标;(3)如图2.抛物线与y轴交于点E,点P是该抛物线上位于第二象限的点,线段P A 交BE于点M,交y轴于点N,△BMP和△EMN的面积分别为m、n,求m﹣n的最大值.【分析】(1)利用待定系数法,将A,B的坐标代入y=﹣x2+bx+c即可求得二次函数的解析式;(2)设抛物线对称轴与x轴交于点H,在Rt△CHO中,可求得tan∠COH=4,推出∠ACO=∠CDO,可证△AOC∽△ACD,利用相似三角形的性质可求出AD的长度,进一步可求出点D的坐标,由对称性可直接求出另一种情况;(3)设P(a,﹣a2﹣2a+3),P(a,﹣a2﹣2a+3),A(1,0)代入y=kx+b,求出直线P A的解析式,求出点N的坐标,由S△BPM=S△BP A﹣S四边形BMNO﹣S△AON,S△EMN=S△EBO ﹣S四边形BMNO,可推出S△BPM﹣S△EMN=S△BP A﹣S△EBO﹣S△AON,再用含a的代数式表示出来,最终可用函数的思想来求出其最大值.【解答】解:(1)由题意把点(1,0),(﹣3,0)代入y=﹣x2+bx+c,。

2019年数学中考试卷及答案

2019年数学中考试卷及答案

2019年数学中考试卷及答案一、选择题1.通过如下尺规作图,能确定点D是BC边中点的是()A.B.C.D.2.下列几何体中,其侧面展开图为扇形的是( )A.B.C.D.3.有31位学生参加学校举行的“最强大脑”智力游戏比赛,比赛结束后根据每个学生的最后得分计算出中位数、平均数、众数和方差,如果去掉一个最高分和一个最低分,则一定不发生变化的是()A.中位数B.平均数C.众数D.方差4.如图,在矩形ABCD中,AD=2AB,∠BAD的平分线交BC于点E,DH⊥AE于点H,连接BH并延长交CD于点F,连接DE交BF于点O,下列结论:①∠AED=∠CED;②OE=OD;③BH=HF;④BC﹣CF=2HE;⑤AB=HF,其中正确的有()A.2个B.3个C.4个D.5个5.如图,⊙O的半径为5,AB为弦,点C为AB的中点,若∠ABC=30°,则弦AB的长为()A.12B.5C53D.36.在某篮球邀请赛中,参赛的每两个队之间都要比赛一场,共比赛36场,设有x 个队参赛,根据题意,可列方程为()A .()11362x x -=B .()11362x x += C .()136x x -= D .()136x x +=7.如图,是由四个相同的小正方体组成的立体图形,它的左视图是( )A .B .C .D .8.估6的值应在( ) A .3和4之间 B .4和5之间 C .5和6之间 D .6和7之间9.如图,将▱ABCD 沿对角线BD 折叠,使点A 落在点E 处,交BC 于点F ,若ABD 48∠=,CFD 40∠=,则E ∠为( )A .102B .112C .122D .9210.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x 万平方米,则下面所列方程中正确的是( ) A .606030(125%)x x -=+ B .606030(125%)x x -=+ C .60(125%)6030x x ⨯+-= D .6060(125%)30x x⨯+-= 11.如图中的几何体是由一个圆柱和个长方体组成的,该几何体的俯视图是( )A .B .C .D .12.如图,在平行四边形ABCD 中,M 、N 是BD 上两点,BM DN =,连接AM 、MC 、CN 、NA ,添加一个条件,使四边形AMCN 是矩形,这个条件是( )A .12OM AC =B .MB MO =C .BD AC ⊥ D .AMB CND ∠=∠二、填空题13.如图,直线l x ⊥轴于点P ,且与反比例函数11k y x=(0x >)及22k y x =(0x >)的图象分别交于A 、B 两点,连接OA 、OB ,已知OAB ∆的面积为4,则12k k =﹣________.14.如图:已知AB=10,点C 、D 在线段AB 上且AC=DB=2; P 是线段CD 上的动点,分别以AP 、PB 为边在线段AB 的同侧作等边△AEP 和等边△PFB ,连结EF ,设EF 的中点为G ;当点P 从点C 运动到点D 时,则点G 移动路径的长是________.15.如图,在平面直角坐标系中,点O 为原点,菱形OABC 的对角线OB 在x 轴上,顶点A 在反比例函数y=2x的图像上,则菱形的面积为_______.16.如图所示,过正五边形ABCDE 的顶点B 作一条射线与其内角EAB ∠的角平分线相交于点P ,且60ABP ∠=︒,则APB ∠=_____度.17.不等式组3241112x x x x ≤-⎧⎪⎨--<+⎪⎩的整数解是x= . 18.如图,在平行四边形ABCD 中,连接BD ,且BD =CD ,过点A 作AM ⊥BD 于点M ,过点D 作DN ⊥AB 于点N ,且DN =32,在DB 的延长线上取一点P ,满足∠ABD =∠MAP +∠PAB ,则AP =_____.19.正六边形的边长为8cm ,则它的面积为____cm 2.20.对于有理数a 、b ,定义一种新运算,规定a ☆b =a 2﹣|b|,则2☆(﹣3)=_____.三、解答题21.解方程:x 21x 1x-=-. 22.某种蔬菜的销售单价y 1与销售月份x 之间的关系如图1所示,成本y 2与销售月份x 之间的关系如图2所示(图1的图象是线段,图2的图象是抛物线)(1)已知6月份这种蔬菜的成本最低,此时出售每千克的收益是多少元?(收益=售价﹣成本)(2)哪个月出售这种蔬菜,每千克的收益最大?简单说明理由.(3)已知市场部销售该种蔬菜4、5两个月的总收益为22万元,且5月份的销售量比4月份的销售量多2万千克,求4、5两个月的销售量分别是多少万千克?23.“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A 、B 、C 、D 表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:(1)本次参加抽样调查的居民有多少人?(2)将两幅不完整的图补充完整;(3)若居民区有8000人,请估计爱吃D 粽的人数;(4)若有外型完全相同的A 、B 、C 、D 粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C 粽的概率.24.解方程组:226,320.x y x xy y +=⎧⎨-+=⎩25.将平行四边形纸片ABCD 按如图方式折叠,使点C 与A 重合,点D 落到D '处,折痕为EF .(1)求证:ABE AD F '≌;(2)连结CF ,判断四边形AECF 是什么特殊四边形?证明你的结论.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】作线段BC的垂直平分线可得线段BC的中点.【详解】作线段BC的垂直平分线可得线段BC的中点.由此可知:选项A符合条件,故选A.【点睛】本题考查作图﹣复杂作图,解题的关键是熟练掌握五种基本作图.2.C解析:C【解析】【分析】根据特殊几何体的展开图逐一进行分析判断即可得答案.【详解】A、圆柱的侧面展开图是矩形,故A错误;B、三棱柱的侧面展开图是矩形,故B错误;C、圆锥的侧面展开图是扇形,故C正确;D、三棱锥的侧面展开图是三个三角形拼成的图形,故D错误,故选C.【点睛】本题考查了几何体的展开图,熟记特殊几何体的侧面展开图是解题关键.3.A解析:A【解析】【分析】根据中位数的定义:位于中间位置或中间两数的平均数可以得到去掉一个最高分和一个最低分不影响中位数.【详解】去掉一个最高分和一个最低分对中位数没有影响,故选A.【点睛】考查了统计量的选择,解题的关键是了解中位数的定义.4.C解析:C【解析】【分析】【详解】试题分析:∵在矩形ABCD中,AE平分∠BAD,∴∠BAE=∠DAE=45°,∴△ABE是等腰直角三角形,∴AB,∵AB,∴AE=AD,又∠ABE=∠AHD=90°∴△ABE≌△AHD(AAS),∴BE=DH,∴AB=BE=AH=HD,∴∠ADE=∠AED=12(180°﹣45°)=67.5°,∴∠CED=180°﹣45°﹣67.5°=67.5°,∴∠AED=∠CED,故①正确;∵∠AHB=12(180°﹣45°)=67.5°,∠OHE=∠AHB(对顶角相等),∴∠OHE=∠AED,∴OE=OH,∵∠OHD=90°﹣67.5°=22.5°,∠ODH=67.5°﹣45°=22.5°,∴∠OHD=∠ODH,∴OH=OD,∴OE=OD=OH,故②正确;∵∠EBH=90°﹣67.5°=22.5°,∴∠EBH=∠OHD,又BE=DH,∠AEB=∠HDF=45°∴△BEH≌△HDF(ASA),∴BH=HF,HE=DF,故③正确;由上述①、②、③可得CD=BE、DF=EH=CE,CF=CD-DF,∴BC-CF=(CD+HE)-(CD-HE)=2HE,所以④正确;∵AB=AH,∠BAE=45°,∴△ABH不是等边三角形,∴AB≠BH,∴即AB≠HF,故⑤错误;综上所述,结论正确的是①②③④共4个.故选C.【点睛】考点:1、矩形的性质;2、全等三角形的判定与性质;3、角平分线的性质;4、等腰三角形的判定与性质5.D解析:D【解析】【分析】连接OC、OA,利用圆周角定理得出∠AOC=60°,再利用垂径定理得出AB即可.【详解】连接OC、OA,∵∠ABC=30°,∴∠AOC=60°,∵AB为弦,点C为AB的中点,∴OC⊥AB,53在Rt△OAE中,∴AB=53,故选D.【点睛】此题考查圆周角定理,关键是利用圆周角定理得出∠AOC=60°.6.A解析:A【解析】【分析】共有x个队参加比赛,则每队参加(x-1)场比赛,但2队之间只有1场比赛,根据共安排36场比赛,列方程即可.【详解】解:设有x个队参赛,根据题意,可列方程为:1x(x﹣1)=36,2故选:A.【点睛】此题考查由实际问题抽象出一元二次方程,解题关键在于得到比赛总场数的等量关系. 7.A【解析】【分析】【详解】从左面看,这个立体图形有两层,且底层有两个小正方形,第二层的左边有一个小正方形.故选A .8.C解析:C【解析】【分析】 先化简后利用的范围进行估计解答即可.【详解】 =6-3=3, ∵1.7<<2, ∴5<3<6,即5<<6, 故选C .【点睛】此题主要考查了无理数的估算能力,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.9.B解析:B【解析】【分析】由平行四边形的性质和折叠的性质,得出ADB BDF DBC ∠∠∠==,由三角形的外角性质求出1BDF DBC DFC 202∠∠∠===,再由三角形内角和定理求出A ∠,即可得到结果.【详解】 AD //BC ,ADB DBC ∠∠∴=,由折叠可得ADB BDF ∠∠=,DBC BDF ∠∠∴=,又DFC 40∠=,DBC BDF ADB 20∠∠∠∴===,又ABD 48∠=,ABD ∴中,A 1802048112∠=--=,E A 112∠∠∴==,【点睛】本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理的综合应用,熟练掌握平行四边形的性质,求出ADB ∠的度数是解决问题的关键.10.C解析:C【解析】分析:设实际工作时每天绿化的面积为x 万平方米,根据工作时间=工作总量÷工作效率结合提前 30 天完成任务,即可得出关于x 的分式方程.详解:设实际工作时每天绿化的面积为x 万平方米,则原来每天绿化的面积为125%x +万平方米, 依题意得:606030125%x x -=+,即()60125%6030x x ⨯+-=. 故选C .点睛:考查了由实际问题抽象出分式方程.找到关键描述语,找到合适的等量关系是解决问题的关键.11.D解析:D【解析】【分析】根据从上边看得到的图形是俯视图,可得答案.【详解】解:从上边看是一个圆形,圆形内部是一个虚线的正方形.故选:D .【点睛】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.12.A解析:A【解析】【分析】由平行四边形的性质可知:OA OC =,OB OD =,再证明OM ON =即可证明四边形AMCN 是平行四边形.【详解】∵四边形ABCD 是平行四边形,∴OA OC =,OB OD =,∵对角线BD 上的两点M 、N 满足BM DN =,∴OB BM OD DN -=-,即OM ON =,∴四边形AMCN 是平行四边形, ∵12OM AC =, ∴MN AC =,∴四边形AMCN 是矩形.故选:A .【点睛】本题考查了矩形的判定,平行四边形的判定与性质,解题的关键是灵活运用所学知识解决问题.二、填空题13.【解析】【分析】根据反比例函数的几何意义可知:的面积为的面积为然后两个三角形面积作差即可求出结果【详解】解:根据反比例函数的几何意义可知:的面积为的面积为∴的面积为∴∴故答案为8【点睛】本题考查反比 解析:【解析】【分析】根据反比例函数k 的几何意义可知:AOP ∆的面积为112k ,BOP ∆的面积为212k ,然后两个三角形面积作差即可求出结果.【详解】解:根据反比例函数k 的几何意义可知:AOP ∆的面积为112k ,BOP ∆的面积为212k , ∴AOB ∆的面积为121122k k -,∴1211422k k -=,∴128k k -=. 故答案为8.【点睛】本题考查反比例函数k 的几何意义,解题的关键是正确理解k 的几何意义,本题属于基础题型. 14.3【解析】【分析】分别延长AEBF 交于点H 易证四边形EPFH 为平行四边形得出G 为PH 中点则G 的运行轨迹为三角形HCD 的中位线MN 再求出CD 的长运用中位线的性质求出MN 的长度即可【详解】如图分别延长A解析:3【解析】【分析】分别延长AE 、BF 交于点H ,易证四边形EPFH 为平行四边形,得出G 为PH 中点,则G 的运行轨迹为三角形HCD 的中位线MN .再求出CD 的长,运用中位线的性质求出MN 的长度即可.【详解】如图,分别延长AE、BF交于点H.∵∠A=∠FPB=60°,∴AH∥PF,∵∠B=∠EPA=60°,∴BH∥PE,∴四边形EPFH为平行四边形,∴EF与HP互相平分.∵G为EF的中点,∴G也正好为PH中点,即在P的运动过程中,G始终为PH的中点,所以G的运行轨迹为三角形HCD的中位线MN.∵CD=10-2-2=6,∴MN=3,即G的移动路径长为3.故答案为:3.【点睛】本题考查了等腰三角形及中位线的性质,以及动点问题,是中考的热点.15.4【解析】【分析】【详解】解:连接AC交OB于D∵四边形OABC是菱形∴AC⊥OB∵点A在反比例函数y=的图象上∴△AOD的面积=×2=1∴菱形OABC的面积=4×△AOD的面积=4故答案为:4解析:4【解析】【分析】【详解】解:连接AC交OB于D.∵四边形OABC是菱形,∴AC⊥OB.∵点A 在反比例函数y=2x 的图象上, ∴△AOD 的面积=12×2=1, ∴菱形OABC 的面积=4×△AOD 的面积=4故答案为:416.66【解析】【分析】首先根据正五边形的性质得到度然后根据角平分线的定义得到度再利用三角形内角和定理得到的度数【详解】解:∵五边形为正五边形∴度∵是的角平分线∴度∵∴故答案为:66【点睛】本题考查了多 解析:66【解析】【分析】首先根据正五边形的性质得到108EAB ∠=度,然后根据角平分线的定义得到54PAB ∠=度,再利用三角形内角和定理得到APB ∠的度数.【详解】解:∵五边形ABCDE 为正五边形,∴108EAB ∠=度,∵AP 是EAB ∠的角平分线,∴54PAB ∠=度,∵60ABP ∠=︒,∴180605466APB ∠=︒-︒-︒=︒.故答案为:66.【点睛】本题考查了多边形内角与外角,题目中还用到了角平分线的定义及三角形内角和定理.17.﹣4【解析】【分析】先求出不等式组的解集再得出不等式组的整数解即可【详解】解:∵解不等式①得:x≤﹣4解不等式②得:x >﹣5∴不等式组的解集为﹣5<x≤﹣4∴不等式组的整数解为x=﹣4故答案为﹣4【解析:﹣4.【解析】【分析】先求出不等式组的解集,再得出不等式组的整数解即可.【详解】 解:3241112x x x x ≤-⎧⎪⎨--<+⎪⎩①②, ∵解不等式①得:x≤﹣4,解不等式②得:x >﹣5,∴不等式组的解集为﹣5<x≤﹣4,∴不等式组的整数解为x=﹣4,故答案为﹣4.【点睛】本题考查了解一元一次不等式组和不等式组的整数解,能根据不等式的性质求出不等式组的解集是解此题的关键.18.6【解析】分析:根据BD=CDAB=CD可得BD=BA再根据AM⊥BDDN⊥AB即可得到DN=AM=3依据∠ABD=∠MAP+∠PAB∠ABD=∠P+∠BAP即可得到△APM是等腰直角三角形进而得到解析:6【解析】分析:根据BD=CD,AB=CD,可得BD=BA,再根据AM⊥BD,DN⊥AB,即可得到,依据∠ABD=∠MAP+∠PAB,∠ABD=∠P+∠BAP,即可得到△APM是等腰直角三角形,进而得到AM=6.详解:∵BD=CD,AB=CD,∴BD=BA,又∵AM⊥BD,DN⊥AB,∴,又∵∠ABD=∠MAP+∠PAB,∠ABD=∠P+∠BAP,∴∠P=∠PAM,∴△APM是等腰直角三角形,∴AM=6,故答案为6.点睛:本题主要考查了平行四边形的性质以及等腰直角三角形的性质的运用,解决问题给的关键是判定△APM是等腰直角三角形.19.【解析】【分析】【详解】如图所示正六边形ABCD中连接OCOD过O作OE⊥CD;∵此多边形是正六边形∴∠COD=60°;∵OC=OD∴△COD是等边三角形∴OE=CE•tan60°=cm∴S△OCD【解析】【分析】【详解】如图所示,正六边形ABCD中,连接OC、OD,过O作OE⊥CD;∵此多边形是正六边形,∴∠COD=60°;∵OC=OD,∴△COD是等边三角形,∴OE=CE•tan60°=83432⨯=cm,∴S△OCD=12CD•OE=12×8×43=163cm2.∴S正六边形=6S△OCD=6×163=963cm2.考点:正多边形和圆20.1【解析】解:2☆(﹣3)=22﹣|﹣3|=4﹣3=1故答案为1点睛:此题考查有理数的混合运算掌握规定的运算方法是解决问题的关键解析:1【解析】解:2☆(﹣3)=22﹣|﹣3|=4﹣3=1.故答案为1.点睛:此题考查有理数的混合运算,掌握规定的运算方法是解决问题的关键.三、解答题21.2x=.【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】去分母得:x2-2x+2=x2-x,解得:x=2,检验:当x=2时,方程左右两边相等,所以x=2是原方程的解.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.22.(1)6月份出售这种蔬菜每千克的收益是2元.(2)5月份出售这种蔬菜,每千克的收益最大.(3)4月份的销售量为4万千克,5月份的销售量为6万千克.【解析】分析:(1)找出当x=6时,y1、y2的值,二者作差即可得出结论;(2)观察图象找出点的坐标,利用待定系数法即可求出y1、y2关于x的函数关系式,二者作差后利用二次函数的性质即可解决最值问题;(3)求出当x=4时,y1﹣y2的值,设4月份的销售量为t万千克,则5月份的销售量为(t+2)万千克,根据总利润=每千克利润×销售数量,即可得出关于t 的一元一次方程,解之即可得出结论.详解:(1)当x=6时,y 1=3,y 2=1,∵y 1﹣y 2=3﹣1=2,∴6月份出售这种蔬菜每千克的收益是2元.(2)设y 1=mx+n ,y 2=a (x ﹣6)2+1.将(3,5)、(6,3)代入y 1=mx+n ,3563m n m n +=⎧⎨+=⎩,解得:237m n ⎧=-⎪⎨⎪=⎩, ∴y 1=﹣23x+7; 将(3,4)代入y 2=a (x ﹣6)2+1,4=a (3﹣6)2+1,解得:a=13, ∴y 2=13(x ﹣6)2+1=13x 2﹣4x+13. ∴y 1﹣y 2=﹣23x+7﹣(13x 2﹣4x+13)=﹣13x 2+103x ﹣6=﹣13(x ﹣5)2+73. ∵﹣13<0, ∴当x=5时,y 1﹣y 2取最大值,最大值为73, 即5月份出售这种蔬菜,每千克的收益最大. (3)当t=4时,y 1﹣y 2=﹣13x 2+103x ﹣6=2. 设4月份的销售量为t 万千克,则5月份的销售量为(t+2)万千克,根据题意得:2t+73(t+2)=22, 解得:t=4,∴t+2=6.答:4月份的销售量为4万千克,5月份的销售量为6万千克.点睛:本题考查了待定系数法求一次(二次)函数解析式、二次函数的性质以及一元一次方程的应用,解题的关键是:(1)观察函数图象,找出当x=6时y 1﹣y 2的值;(2)根据点的坐标,利用待定系数法求出y 1、y 2关于x 的函数关系式;(3)找准等量关系,正确列出一元一次方程.23.(1)600(2)见解析(3)3200(4)【解析】(1)60÷10%=600(人).答:本次参加抽样调查的居民有600人.(2分)(2)如图;…(5分)(3)8000×40%=3200(人).答:该居民区有8000人,估计爱吃D 粽的人有3200人.…(7分)(4)如图;(列表方法略,参照给分).…(8分)P (C 粽)==.答:他第二个吃到的恰好是C 粽的概率是.…(10分)24.114,2;x y =⎧⎨=⎩223,3.x y =⎧⎨=⎩ 【解析】【分析】 先对x 2-3xy+2y 2=0分解因式转化为两个一元一次方程,然后联立①,组成两个二元一次方程组,解之即可.【详解】将方程22320x xy y -+= 的左边因式分解,得20x y -=或0x y -=.原方程组可以化为6,20x y x y +=⎧⎨-=⎩或6,0.x y x y +=⎧⎨-=⎩解这两个方程组得114,2;x y =⎧⎨=⎩ 223,3.x y =⎧⎨=⎩ 所以原方程组的解是114,2;x y =⎧⎨=⎩ 223,3.x y =⎧⎨=⎩ 【点睛】本题考查了高次方程组,将高次方程化为一次方程是解题的关键.25.(1)证明见解析;(2)四边形AECF 是菱形.证明见解析.【解析】【分析】(1)根据平行四边形的性质及折叠的性质我们可以得到∠B=∠D′,AB=AD′,∠1=∠3,从而利用ASA 判定△ABE ≌△AD′F ;(2)四边形AECF 是菱形,我们可以运用菱形的判定,有一组邻边相等的平行四边形是菱形来进行验证.【详解】解:(1)由折叠可知:∠D=∠D′,C D=AD′,∠C=∠D′AE .∵四边形ABCD 是平行四边形,∴∠B=∠D ,AB=CD ,∠C=∠BAD .∴∠B=∠D′,AB=AD′,∠D′AE=∠BAD ,即∠1+∠2=∠2+∠3.∴∠1=∠3.在△ABE 和△AD′F 中∵{13D BAB AD ∠'=∠='∠=∠∴△ABE ≌△AD′F (ASA ).(2)四边形AECF 是菱形.证明:由折叠可知:AE=EC ,∠4=∠5.∵四边形ABCD 是平行四边形,∴AD ∥BC .∴∠5=∠6.∴∠4=∠6.∴AF=AE .∵AE=EC ,∴AF=EC .又∵AF ∥EC ,∴四边形AECF 是平行四边形.又∵AF=AE ,∴平行四边形AECF是菱形.考点:1.全等三角形的判定;2.菱形的判定.。

2023年四川省成都市锦江区中考数学二诊试卷及答案解析

2023年四川省成都市锦江区中考数学二诊试卷及答案解析

2023年四川省成都市锦江区中考数学二诊试卷一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.(4分)如图所示的几何体由5个大小相同的立方块搭成,则该几何体的左视图是()A.B.C.D.2.(4分)ChatGPT是一种人工智能技术驱动的自然语言处理工具.Snapchat将推出基于ChatGPT的自有聊天机器人,最终目标让Snapchat的7.5亿月活跃用户都可以使用该机器人.其中7.5亿用科学记数法表示为()A.7.5×108B.75×108C.7.5×109D.0.75×109 3.(4分)下列运算正确的是()A.2a+3b=5ab B.(2a2+a)÷a=2aC.ab2•(﹣a2b)=﹣a3b3D.(﹣a2b3)2=a4b54.(4分)如图,AB∥CD,∠D=40°,∠F=30°,则∠B的度数是()A.40°B.50°C.60°D.70°5.(4分)若关于x的分式方程的解为x=3,则m的值为()A.1B.2C.3D.56.(4分)如图,⊙O是正方形ABCD的外接圆,点P在⊙O上,则∠APB等于()A.30°B.45°C.55°D.60°7.(4分)某小组7名同学在一周内参加家务劳动的时间如表所示,关于“劳动时间”的这组数据,以下说法正确的是()劳动时间(小时)3456人数3211A.中位数是4,平均数是3B.众数是3,平均数是3C.中位数是4,平均数是4D.众数是6,平均数是48.(4分)已知竖直上抛物体的高度h(m)与运动时间t(s)的关系可以近似地用公式h =﹣5t2+v0t+h0表示,其中h0(m)是物体抛出时离地面的高度,v0(m/s)是物体抛出时的速度.如图是一个竖直向上抛出的物体离地面的高度h(m)与运动时间t(s)的函数图象,下列选项中错误的是()A.h0=0B.物体经过8秒后落地C.物体抛出时的速度为40m/sD.小球运动过程中的最高点距离地面40m二、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)9.(4分)分解因式:xy2﹣16x=.10.(4分)如图,在平面直角坐标系xOy中,正方形OABC的顶点A在x轴上,顶点C在y轴上,且OA=2.若反比例函数的图象经过点B,则k的值为.11.(4分)如图,△ABC与△DEF位似,位似中心为点O.已知OA:OD=2:5,若△ABC 的周长等于4,则△DEF的周长等于.12.(4分)如图,AC,BD是菱形ABCD的对角线,若AC=AB=2,则菱形ABCD的面积为.13.(4分)如图,在△ABC中,按以下步骤作图:①分别以B,C为圆心,大于的长为半径画弧,两弧相交于M,N两点;②作直线MN交AB于点D,连接CD.若∠B=24°,则∠CDA的度数为.三、解答题(本大题共5个小题,共48分,解答过程写在答题卡上)14.(12分)(1)计算:;(2)解不等式组:.15.(8分)2019年11月,联合国教科文组织将每年的3月14日定为“国际数学日”,也被许多人称为“π节”.我区某校在今年的“数学π节”活动中开展了如下四项活动:A.趣味魔方;B.折纸活动;C.数独比赛;D.唱响数学.为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有人;(2)请补全条形统计图;(3)在数独比赛项目中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中随机选取两名参加数独决赛,请利用画树状图或列表的方法,求恰好选中甲、乙两位同学的概率.16.(8分)如图,一名患者体内某重要器官后面有一肿瘤.在接受放射性治疗时,为了最大限度地保证疗效,并且防止伤害器官,射线必须从侧面照射肿瘤,已知肿瘤在皮肤A 点的正下方C处,若射线从距A点5cm的B处进入身体照射肿瘤C,恰好会紧挨器官,测得∠ABC=50°.为保证器官不受伤害,需要将射线照射点沿AB方向继续右移,当∠BCD=10°时,既可以保证器官安全,也能够保证疗效.(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.20)(1)求肿瘤C距皮肤A点的距离;(2)求射线照射点从点B到点D右移的距离.17.(10分)如图,在Rt△ABC中,∠BAC=90°,BO平分∠ABC,交AC于点O.以点O 为圆心,OA为半径作⊙O,交BO于点D,连接AD.(1)求证:BC为⊙O的切线;(2)若OA=3,OC=,求AB的长;(3)在(2)的条件下,求tan∠BAD的值.18.(10分)如图,在平面直角坐标系xOy中,一次函数y=2x+b的图象与x轴交于点A(﹣2,0),与反比例函数交于点B(1,m).(1)求反比例函数的表达式;(2)点M为反比例函数在第一象限图象上的一点,过点M作x轴垂线,交一次函数y =2x+b图象于点N,连接BM,若△BMN是以MN为底边的等腰三角形,求△BMN的面积;(3)点P为反比例函数图象上一点,连接PB,若∠PBA=∠BAO,求点P的坐标.一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)19.(4分)已知a,b是一元二次方程x2﹣3x﹣5=0的两个根,则的值为.20.(4分)口袋中有10个球(每个球除颜色外都相同),其中白球x个,红球2x个,其余为蓝球.从袋中随机摸出一个球,摸到红球则甲获胜,摸到蓝球则乙获胜.要使游戏对甲、乙双方公平,则x应该等于.21.(4分)定义:如图1,在△ABC中,点P在BC边上,连接AP,若AP的长恰好为整数,则称点P为BC边上的“整点”.如图2,已知等腰三角形的腰长为,底边长为6,则底边上的“整点”个数为;如图3,在△ABC中,AB=2,AC=,且BC边上有6个“整点”,则BC的长为.22.(4分)如图,在矩形ABCD中,,AD=5.折叠矩形ABCD使得点A恰好落在边BC上,折痕与边AD相交于点E,与矩形另一边相交于点F.若DE=2,则BF的长为.23.(4分)已知关于x的多项式ax2+bx+c(a≠0),二次项系数、一次项系数和常数项分别a,b,c,且满足a2+2ac+c2<b2.若当x=t+2和x=﹣t+2(t为任意实数)时ax2+bx+c的值相同;当x=﹣2时,ax2+bx+c的值为2,则二次项系数a的取值范围是.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)24.(8分)某生物学习小组正在研究同一盆栽内两种植物的共同生长情况.当他们尝试施用某种药物时,发现会对A,B两种植物分别产生促进生长和抑制生长的作用.通过实验数据统计发现,药物施用量x(mg)与A,B植物的生长高度y A(cm),y B(cm)的关系如图所示.(1)请分别求植物A、植物B生长高度y(cm)与药物施用量x(mg)的函数关系式;(2)请求出两种植物生长高度相同时,药物的施用量x(mg)为多少?(3)同学们研究发现,当两种植物高度差距不超过6cm时,两种植物的生长会处于一种良好的平衡状态,请求出满足平衡状态时,该药物施用量x(mg)的取值范围.25.(10分)如图1,已知一次函数y=﹣x+3的图象与y轴,x轴相交于点A,B,抛物线y =﹣x2+bx+c与y轴交于点C,顶点M在直线AB上,设点M横坐标为m.(1)如图2,当m=3时,求此时抛物线y=﹣x2+bx+c的函数表达式;(2)求当m为何值时,点C的纵坐标最大;(3)如图3,当m=0时,此时的抛物线y=﹣x2+bx+c与直线y=kx+2相交于D,E两点,连接AD,AE并延长,分别与x轴交于P,Q两点.试探究OP•OQ是否为定值?若是,请求出该定值;若不是,请说明理由.26.(12分)如图1,已知平行四边形ABCD,点E在BC上,点G在CD上,连接AE,EG,∠AEG=∠B.过点D作DF∥AE交EG的延长线于点F.(1)求证:△ECG∽△DFG;(2)当E为BC中点时.①若DF=FG,求证:AE=EG;②如图2,连接AG,过点G作GH⊥AG交BC于点H,若CG=FG,求的值.2023年四川省成都市锦江区中考数学二诊试卷参考答案与试题解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.【分析】根据左视图是从左面看到的图形判定则可.【解答】解:从左边看,底层是两个小正方形,上层的左边是一个小正方形.故选:A.【点评】本题考查了简单组合体的三视图,掌握三视图是解题的关键.2.【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:7.5亿=750000000=7.5×108.故选:A.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.3.【分析】根据合并同类项的法则判断A;根据多项式除以单项式的法则判断B;根据单项式乘单项式的法则判断C;根据积的乘方的法则判断D.【解答】解:A、2a与3b不是同类项,不能合并成一项,故本选项运算错误,不符合题意;B、原式=2a+1,故本选项运算错误,不符合题意;C、原式=﹣a3b3,故本选项运算正确,符合题意;D、原式=a4b6,故本选项运算错误,不符合题意;故选:C.【点评】本题考查了整式的运算,掌握运算法则是解题的关键.4.【分析】根据三角形内角和定理及平行线的性质求解即可.【解答】解:∵∠CEF=∠D+∠F,∠D=40°,∠F=30°,∴∠CEF=70°,∵AB∥CD,∴∠B=∠CEF=70°,故选:D.【点评】此题考查了平行线的性质,熟记“两直线平行,同位角相等”是解题的关键.5.【分析】根据题意可得:把x=3代入方程中得:﹣=3,然后进行计算即可解答.【解答】解:由题意得:把x=3代入方程中得:﹣=3,∴m+2=3,解得:m=1,故选:A.【点评】本题考查了分式方程的解,熟练掌握分式方程的解的意义是解题的关键.6.【分析】连接OA,OB.根据正方形的性质,得∠AOB=90°再根据圆周角定理,即可求解.【解答】解:连接OA,OB.根据正方形的性质,得∠AOB=90°.再根据圆周角定理,得∠APB=45°.故选:B.【点评】此题综合运用了正方形的性质以及圆周角定理.7.【分析】根据中位数和众数、平均数的定义求解即可.【解答】解:这组数据的中位数为4,众数为3,平均数为=4,故选:C.【点评】本题主要考查众数、中位数和平均数,解题的关键是掌握中位数和众数、平均数的定义.8.【分析】根据题意和函数图象中的数据,可以得到h0的值和物体经过8秒后落地,从而可以判断A和B;再根据图象过点(8,0),即可计算出物体抛出时的速度,从而可以判断C;将函数解析式化为顶点式,即可判断D.【解答】解:由图象可得,h0=0,故选项A正确,不符合题意;物体经过8秒后落地,故选项B正确,不符合题意;∵点(8,0)在该函数图象上,∴0=﹣5×82+v0×8,解得v0=40,故选项C正确,不符合题意;∴h=﹣5t2+40t=﹣5(t﹣4)2+80,∴小球运动过程中的最高点距离地面80m,故选项D错误,符合题意;故选:D.【点评】本题考查二次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.二、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)9.【分析】先提取公因式,再利用平方差公式分解.【解答】解:xy2﹣16x=x(y2﹣16)=x(y+4)(y﹣4).故答案为:x(y+4)(y﹣4).【点评】本题考查了整式的因式分解,掌握因式分解的提公因式法和公式法是解决本题的关键.10.【分析】由正方形的性质得出B(2,2),代入即可求得k的值.【解答】解:∵正方形OABC的顶点A在x轴上,顶点C在y轴上,且OA=2,∴B(2,2),∵反比例函数的图象经过点B,∴k=2×2=4,故答案为:4.【点评】本题考查了反比例函数图象上点的坐标特征,正方形的性质,求得点B的坐标是解题的关键.11.【分析】根据位似变换的概念得到△ABC∽△DEF,AC∥DF,得到△OAC∽△ODF,根据相似三角形的性质求出=,再根据相似三角形的性质解答即可.【解答】解:∵△ABC与△DEF位似,∴△ABC∽△DEF,AC∥DF,∴△OAC∽△ODF,∴==,∴△ABC的周长:△DEF的周长=2:5,∵△ABC的周长=4,∴△DEF的周长=10,故答案为:10.【点评】本题考查的是位似变换的概念和性质、相似三角形的性质,熟记相似三角形的周长比等于相似比是解题的关键.12.【分析】由菱形的性质得OA=OC,OB=OD,BD⊥AC,再证AC=AB=BC=2,则OA =OC=1,然后由勾股定理得OB=,则BD=2,即可解决问题.【解答】解:如图,设AC与BD交于点O,∵四边形ABCD是菱形,∴OA=OC,OB=OD,BD⊥AC,∵AC=AB=2,∴AC=AB=BC=2,∴OA=OC=1,在Rt△AOB中,由勾股定理得:OB===,∴BD=2OB=2,=AC•BD=×2×2=2,∴S菱形ABCD故答案为:2.【点评】本题考查了菱形的性质、等边三角形的性质以及勾股定理等知识,熟练掌握菱形的性质是解题的关键.13.【分析】由作图得,MN垂直平分BC,再根据三角形的外角定理求解.【解答】解:由作图得:MN垂直平分BC,∴CD=BD,∴∠DCB=∠CBD=24°,∴∠CDA=∠DCB+∠CBD=48°,故答案为:48°.【点评】本题考查了基本作图,掌握线段的垂直平分线的性质及外角定理是解题的关键.三、解答题(本大题共5个小题,共48分,解答过程写在答题卡上)14.【分析】(1)分别进行计算,然后根据实数的运算法则求得计算结果;(2)首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:(1)(1﹣)0+|﹣|﹣2cos45°+()﹣1=1+﹣2×+4=1+﹣+4=5;(2),解①得:x≤1,解②得:x>﹣1.故不等式组的解集是:﹣1<x≤1.【点评】本题主要考查了解一元一次不等式组、实数的运算、零指数幂、负整数指数幂、特殊角的三角函数值,解答本题的关键是掌握解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,确定解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.15.【分析】(1)结合两个图中D的人数与比例,即可求被调查的总人数;(2)结合(1)求出C的人数,再补充完整图形即可;(3)作出相应的表格,再分析即可.【解答】解:(1)被调查的学生共有:40÷=200(人).故答案为:200;(2)参加数独比赛的人数为:200﹣20﹣80﹣40=60(人),(3)列表如下:共有12种等可能的结果,其中恰好选中甲,乙两位同学的结果有2种,则P=.(恰好选中甲,乙两位同学)【点评】本题主要考查列表法与树状图法,扇形统计图,条形统计图,解答的关键是能据图分析出存在的数据.16.【分析】(1)在Rt△ABC中,利用正切的定义,可得出tan∠ABC=,进而可求出AC的长;(2)由∠ABC与∠ACB互余,可求出∠ACB的度数,结合∠ACD=∠ACB+∠BCD,可求出∠ACD的度数,在Rt△ADC中,利用正切的定义,可得出tan∠ACD=,进而可求出AD的长,再将其代入BD=AD﹣AB中,即可求出结论.【解答】解:(1)在Rt△ABC中,tan∠ABC=,∴AC=AB•tan∠ABC≈5×1.20=6(cm).答:肿瘤C距皮肤A点的距离约为6cm;(2)∵∠ABC=50°,∴∠ACB=90°﹣∠ABC=90°﹣50°=40°,∴∠ACD=∠ACB+∠BCD=40°+10°=50°.在Rt△ADC中,tan∠ACD=,∴AD=AC•tan∠ACD≈6×1.20=7.2(cm),∴BD=AD﹣AB=7.2﹣5=2.2(cm).答:射线照射点从点B到点D右移的距离约为2.2cm.【点评】本题考查了解直角三角形的应用,解题的关键是:(1)通过解直角三角形,求出AC的长度;(2)通过解直角三角形,求出AD的长度.17.【分析】(1)过点O作OE⊥BC于点E,利用角平分线的性质和圆的切线的定义解答即可;(2)在Rt△OEC中,利用直角三角形的边角关系定理求得tan C==,在Rt△ABC中,利用直角三角形的边角关系定理得到tan C=,从而得到关于AB的比例式,解比例式即可得出结论;(3)过点D作DF⊥OA于点F,利用相似三角形的判定定理与性质定理,勾股定理,相似三角形的边角关系定理求得tan∠ADF,再利用平行线的判定与性质得到∠BAD=∠ADF,则结论可得.【解答】(1)证明:过点O作OE⊥BC于点E,如图,∵BO平分∠ABC,OA⊥AB,OE⊥BC,∴OA=OE,∵OA为⊙O的半径,∴点O到直线BC的距离等于半径,∴BC为⊙O的切线;(2)解:在Rt△OEC中,∵OE=OA=3,OC=,∴EC==,∴tan C==.在Rt△ABC中,AC=OA+OC=,∵tan C=,∴,∴,∴AB=6;(3)解:在Rt△ABO中,∵OA=3,AB=6,∴OB==9,过点D作DF⊥OA于点F,则∠DFO=90°,∵∠BAC=90°,∴∠DFO=∠BAC,∴DF∥AB,∴△DOF∽△BOA,∴,∴,∴DF=2.∴OF==1.∴AF=OA﹣OF=2,∴tan∠ADF=.∵DF∥AB,∴∠BAD=∠ADF,∴tan∠BAD=tan∠ADF=.【点评】本题主要考查了圆的有关性质,圆周角定理,圆的切线的判定定理,勾股定理,直角三角形的性质,直角三角形的边角关系定理,平行线的判定与性质,相似三角形的判定与性质,过圆心作直线的垂线段是解决此类问题常添加的辅助线.18.【分析】(1)用待定系数法即可求解;(2)若△BMN是以MN为底边的等腰三角形,则点B在MN的中垂线上,进而求解;(3)取AB的中点M,过点M作MH⊥AB交x轴于点H,点M是AB的中点且MH⊥AB,则∠PBA=∠BAO,进而求解.【解答】解:(1)将点A的坐标代入一次函数表达式得:0=﹣4+b,解得:b=4,即一次函数的表达式为:y=2x+4,当x=1时,y=2x+4=6,则点B(1,6),将点B的坐标代入反比例函数表达式得:k=1×6=6,即反比例函数表达式为:y=;(2)设点N的坐标为(t,2t+4),则点M(t,),若△BMN是以MN为底边的等腰三角形,则点B在MN的中垂线上,则(2t+4+)=6,解得:t=1(舍去)或3,则点M、N的坐标分别为:(3,10)、(3,2),则△BMN的面积=MN•(x M﹣x B)=(10﹣2)×(3﹣1)=8;(3)取AB的中点M,过点M作MH⊥AB交x轴于点H,∵点M是AB的中点且MH⊥AB,则∠PBA=∠BAO,由中点坐标公式得,点M(﹣,3),在Rt△AMH中,由AB的表达式知,tan∠BAO=2,则tan∠MHA=,则直线MH表达式中的k值为﹣,则直线MH的表达式为:y=﹣(x+)+3,令y=﹣(x+)+3=0,则x=,即点H(,0),由点B、H的坐标得,直线BH的表达式为:y=﹣x+,联立y=﹣x+和y=并解得:x=1(舍去)或,则点P的坐标为:(,).【点评】本题为反比例函数综合题,涉及到一次函数和反比例函数的图象和性质、解直角三角形、等腰三角形的性质等,综合性强,难度适中.一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)19.【分析】利用根与系数的关系求得a+b=3,ab=﹣5,然后将其代入整理后的代数式求值即可.【解答】解:∵a,b是一元二次方程x2﹣3x﹣5=0的两个根,∴a+b=3,ab=﹣5,∴a2+b2=(a+b)2﹣2ab=32﹣2×(﹣5)=19,∴=1+++1=+2=+2=﹣.故答案为:﹣.【点评】此题主要考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.20.【分析】根据题意要使游戏对甲、乙双方公平则使红球和篮球的个数相等即可.【解答】解:由题意知,篮球的个数与红球的个数相等,即2x+x+2x=10,解得x=2,故答案为:2.【点评】本题主要考查游戏的公平性,熟练掌握游戏的公平性与概率的关系是解题的关键.21.【分析】求出底边上的高,根据大于1小于的整数有2,3,即可得底边上一共有5个“整点“;由小于2的最大整数为4,小于的最大整数为5,根据BC边上有6个“整点”,可得AG=2,用勾股定理可得答案.【解答】解:如图,AH⊥BC于H,∴BH=CH=BC=3,∴AH==1,∴H为BC上的一个“整点“,∵大于1小于的整数有2,3,∴BH上还有两个“整点“(不包括H),CH上也还有两个“整点“(不包括H),∴BC上一共有5个“整点“;如图,AG⊥BC于G,∵小于2的最大整数为4,小于的最大整数为5,∴G左侧的“整点“比G右侧的“整点“少一个,∵BC边上有6个“整点”,∴G左侧的“整点”到A的距离分别为4,3,G右侧的“整点”到A的距离为5,4,3,且AG=2,∴BG==4,CG==5,∴BC=BG+CG=9;故答案为:5,9.【点评】本题考查三角形的三边关系,涉及二次根式,垂线段最短,勾股定理等知识,解题的关键是读懂题意,理解“整点“的意义.22.【分析】过E作EH⊥BC于H,可得四边形ABEH,四边形DCHE是矩形,故EH=AB =2,AE=AD﹣DE=3=BH,分两种情况:当F在AB上时,在Rt△A'EH中,求出A'H==1,得A'B=BH﹣A'H=2,设BF=m,在Rt△A'BF中,有m2+22=(2﹣m)2,当F在BC上时,设BF=n,在Rt△ABF中,有(2)2+n2=(4﹣n)2,解方程可得答案.【解答】解:过E作EH⊥BC于H,∵四边形ABCD是矩形,∴∠A=∠B=∠C=∠D=∠BHE=∠CHE=90°,∴四边形ABEH,四边形DCHE是矩形,∴EH=AB=2,∴AE=AD﹣DE=5﹣2=3=BH,当F在AB上时,如图:∵折叠矩形ABCD使得点A恰好落在边BC上,∴A'E=AE=3,在Rt△A'EH中,A'H===1,∴A'B=BH﹣A'H=3﹣1=2,设BF=m,则A'F=AF=2﹣m,在Rt△A'BF中,BF2+A'B2=A'F2,∴m2+22=(2﹣m)2,解得m=;∴BF=;当F在BC上时,如图:同理可得A'E=AE=3,∴A'H==1,∴A'B=BH+A'H=3+1=4,设BF=n,则A'F=4﹣n=AF,在Rt△ABF中,AB2+BF2=AF2,∴(2)2+n2=(4﹣n)2,解得n=1,∴BF=1,综上所述,BF的长为或1,故答案为:或1.【点评】本题考查矩形中的翻折问题,解题的关键是掌握翻折的性质,熟练应用勾股定理列方程.23.【分析】先根据二次函数的对称性可得其对称轴是:﹣==2,得b与a的关系:b=﹣4a,将(﹣2,2)代入y=ax2+bx+c中可得:c=2﹣12a,代入a2+2ac+c2<b2中可解答.【解答】解:∵当x=t+2和x=﹣t+2(t为任意实数)时ax2+bx+c的值相同,∴﹣==2,∴b=﹣4a,∵当x=﹣2时,ax2+bx+c的值为2,∴函数y=ax2+bx+c经过点(﹣2,2),∴4a﹣2b+c=2,∴4a+8a+c=2,∴c=2﹣12a,∵a2+2ac+c2<b2,∴(a+c)2<b2,∴(a+c)2﹣b2<0,∴(a+c+b)(a+c﹣b)<0,∵b=﹣4a,c=2﹣12a,∴(a+2﹣12a﹣4a)(a+2﹣12a+4a)<0,∴(2﹣15a)(2﹣7a)<0,∴<a<.故答案为:<a<.【点评】本题考查了二次函数的性质,解不等式,掌握二次函数的对称性,解不等式的方法是关键.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)24.【分析】(1)利用待定系数法解答即可;(2)根据(1)的结论列方程解答即可;(3)根据(1)的结论列不等式求解即可.【解答】解:(1)设植物A生长高度y(cm)与药物施用量x(mg)的函数关系式为y A =kx+10,根据题意得:2k+10=14,解得k=2,∴y A=2x+10(x≥0);设植物B生长高度y(cm)与药物施用量x(mg)的函数关系式为y B=mx+25,根据题意得:25m+25=0,解得m=﹣1,∴y B=﹣x+25(0≤x≤25);(2)当两种植物生长高度相同时,2x+10=﹣x+25,解得x=5,答:两种植物生长高度相同时,药物的施用量为5mg;(3)由题意得:,解得3≤x≤7,故该药物施用量x(mg)的取值范围为3≤x≤7.【点评】本题考查了待定系数法求一次函数解析式,难度适中,解题的关键是读懂题意,把实际问题转化为数学问题.25.【分析】(1)求出M(3,0),即可得抛物线的函数表达式为y=﹣(x﹣3)2+0=﹣x2+6x ﹣9;(2)设抛物线顶点M(m,﹣m+3),则y=﹣(x﹣m)2﹣m+3=﹣x2+2mx﹣m2﹣m+3,可得C的纵坐标为﹣m2﹣m+3,根据二次函数性质可得答案;(3)求得抛物线顶点M坐标为(0,3),A(0,3),知抛物线解析式为y=﹣x2+3,联立有x2+kx﹣1=0,可得x D+x E=﹣k,x D•x E=﹣1,设直线AD解析式为y=k1x+3,由,得x D=﹣k1,设直线AE解析式为y=k2x+3,同理得x E=﹣k2,故k1•k2=x D•x E=﹣1,而由y=k1x+3知P(﹣,0),同理Q(﹣,0),从而可得OP•OQ=|﹣|•|﹣|=9.【解答】解:(1)在y=﹣x+3中,令x=3得y=0,∴M(3,0),∴抛物线y=﹣x2+bx+c的顶点为(3,0),∴抛物线的函数表达式为y=﹣(x﹣3)2+0=﹣x2+6x﹣9;(2)设抛物线顶点M(m,﹣m+3),∴y=﹣(x﹣m)2﹣m+3=﹣x2+2mx﹣m2﹣m+3,令x=0得y=﹣m2﹣m+3,∴C的纵坐标为﹣m2﹣m+3,∵﹣m2﹣m+3=﹣(m+)2+,∴m=﹣时,C的纵坐标最大,最大为;(3)OP•OQ为定值,OP•OQ=9,理由如下:如图:由m=0,把x=0代入y=﹣x+3得y=3,∴抛物线顶点M坐标为(0,3),A(0,3),∴抛物线解析式为y=﹣x2+3,联立得:﹣x2+3=kx+2,即x2+kx﹣1=0,∴x D+x E=﹣k,x D•x E=﹣1,设直线AD解析式为y=k1x+3,联立,解得或,∴x D=﹣k1,设直线AE解析式为y=k2x+3,联立,解得或,∴x E=﹣k2,∴k1•k2=(﹣x D)•(﹣x E)=x D•x E=﹣1,在y=k1x+3中,令y=0得x=﹣,∴P(﹣,0),同理Q(﹣,0),∴OP=|﹣|,OQ=|﹣|,∴OP•OQ=|﹣|•|﹣|==9.【点评】本题考查二次函数的综合应用,涉及待定系数法,一次函数,一元二次方程等知识,解题的关键是用含字母的式子表示相关点坐标和相关线段的长度.26.【分析】(1)由平行线的性质可得∠AEF+∠F=180°,再由平行四边形的性质可得∠B+∠C=180°,结合∠AEG=∠B,可推出∠F=∠C,根据对顶角相等可得∠EGC=∠DGF,即可证得结论;(2)①以点E为圆心,EB长为半画弧交AB于点P,连接EP,则EP=EB,可证得△EPA≌△GCE(AAS),即可证得结论;②以点E为圆心,EB长为半画弧交AB于点P,连接EP,连接DE,可证得△ECG∽△APE,得出==,再证得△AEG≌△ADG(SSS),得出∠AGE=∠AGD,利用等角的余角相等可得出∠EGH=∠CGH,根据角平分线性质可得点H到EG和CG的距离相等,进而得出===.【解答】(1)证明:∵DF∥AE,∴∠AEF+∠F=180°,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠B+∠C=180°,∵∠AEG=∠B,∴∠F=∠C,∵∠EGC=∠DGF,∴△ECG∽△DFG;(2)①证明:如图1,以点E为圆心,EB长为半画弧交AB于点P,连接EP,则EP =EB,∴∠B=∠BPE,∵∠B+∠C=180°,∠BPE+∠3=180°,∴∠3=∠C,∵DF=FG,△ECG∽△DFG,∴CG=CE,∵点E为BC中点,∴BE=EC,∴EP=CG,∵∠AEG=∠B,∴∠2+∠AEB=∠1+∠AEB,∴∠2=∠1,在△EPA和△GCE中,,∴△EPA≌△GCE(AAS),∴AE=EG;②解:以点E为圆心,EB长为半画弧交AB于点P,连接EP,连接DE,如图2,∵CG=FG,△ECG∽△DFG,∴EG=DG,∴∠DEG=∠EDG,∵∠AEG=∠B=∠ADG,∴∠AED=∠ADE,∴AE=AD,∵=,BC=AD,∴=,由①可知:∠2=∠1,∠C=∠3,∴△ECG∽△APE,∴==,∵AE=AD,EG=DG,AG=AG,∴△AEG≌△ADG(SSS),∴∠AGE=∠AGD,∵AG⊥GH,∴∠AGH=90°,∴∠AGE+∠EGH=90°=∠AGD+∠CGH,∴∠EGH=∠CGH,∴点H到EG和CG的距离相等,∴===.【点评】本题属于四边形综合题,考查了平行线性质,平行四边形性质,等腰三角形性质,全等三角形的判定和性质,角平分线性质,三角形面积等知识,解题的关键是学会添加常用辅助线,构造全等三角形和相似三角形。

2019年四川省成都市石室天府中学中考数学模拟试卷(4月)(解析版)

2019年四川省成都市石室天府中学中考数学模拟试卷(4月)(解析版)

2019年四川省成都市石室天府中学中考数学模拟试卷(4月)一.选择题(共10小题,满分30分,每小题3分)1.有一透明实物如图,它的主视图是()A.B.C.D.2.抛物线y=(x﹣1)2+2的顶点坐标是()A.(1,2)B.(﹣1,2)C.(1,﹣2)D.(﹣1,﹣2)3.如图,在△ABC中,∠C=90°,AC=5,若cos∠A=,则BC的长为()A.8B.12C.13D.184.已知反比例函数y=﹣,下列结论中错误的是()A.图象在二,四象限内B.图象必经过(﹣2,4)C.当﹣1<x<0时,y>8D.y随x的增大而减小5.如图,在菱形ABCD中,∠A=130°,连接BD,∠DBC等于()A.25°B.35°C.50°D.65°6.三角形两边长分别为2和4,第三边是方程x2﹣6x+8=0的解,则这个三角形的周长是()A.10B.8或10C.8D.8和107.如图,正方形ABCD的边长为4cm,则它的外接圆的半径长是()A.cm B.2cm C.3cm D.4cm8.某存折的密码是一个六位数字(每位可以是0),由于小王忘记了密码的首位数字,则他能一次说对密码的概率是()A.B.C.D.9.关于x的方程mx2+2x+1=0有实数根,则m的取值范围是()A.m≤1B.m≥1C.m<1D.m≤1且m≠010.在方格图中,称每个小正方形的顶点为“格点”,以格点为顶点的三角形叫做“格点三角形”.如图,在5×5的正方形方格中,每个小正方形的边长都是1,△ABC是格点三角形,sin∠ACB的值为()A.B.C.D.二.填空题(共4小题,满分16分,每小题4分)11.已知,则xy=.12.如图,已知▱ABCD中,点E在CD上,=,BE交对角线AC于点F.则=.13.已知A(﹣2,y1)、B(﹣3,y2)是抛物线y=(x﹣1)2+c上两点,则y1y2.(填“>”、“=”或“<”)14.如图,在△ABC中,∠ACB=90°,∠A=30°,BC=4,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于BD的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,则AF的长为.三.解答题(共2小题,满分18分)15.(12分)(1)计算:()﹣1﹣6cos30°﹣()0+(2)解方程:4x2+x﹣3=0.16.(6分)为积极响应市委,市政府提出的“实现伟大中国梦,建设美丽鄂尔多斯”的号召,康巴什区某校在八,九年级开展征文活动,校学生会对这两个年级各班内的投稿情况进行统计,并制成了如图所示的两幅不完整的统计图.(1)扇形统计图中投稿篇数为3所对应的扇形的圆心角的度数是;该校八,九年级各班在这一周内投稿的平均篇数是;并将该条形统计图补充完整.(2)如果要求该校八、九年级的投稿班级个数为30个,估计投稿篇数为5篇的班级个数.(3)在投稿篇数为9篇的4个班级中,八,九年级各有两个班,校学生会准备从这四个班级中选出两个班参加全市的表彰会,请你用列表法或画树状图的方法求出所选两个班正好不在同一年级的概率.四.解答题(共2小题,满分16分,每小题8分)17.(8分)在一次数学综合实践活动中,小明计划测量城门大楼的高度,在点B处测得楼顶A的仰角为22°,他正对着城楼前进21米到达C处,再登上3米高的楼台D处,并测得此时楼顶A 的仰角为45°.(1)求城门大楼的高度;(2)每逢重大节日,城门大楼管理处都要在A,B之间拉上绳子,并在绳子上挂一些彩旗,请你求出A,B之间所挂彩旗的长度(结果保留整数).(参考数据:sin22°≈,cos22°≈,tan22°≈)18.(8分)如图,正方形ABCD的对角线AC,BD相交于点O,点P是BC延长线上一点,连接AP,分别交BD,CD于点E,F,过点B作BG⊥AP于G,交线段AC于H.(1)若∠P=25°,求∠AHG的大小;(2)求证:AE2=EF•EP.五.解答题(共2小题,满分20分,每小题10分)19.(10分)如图,在平面直角坐标系xOy中,已知正比例函数y1=﹣2x的图象与反比例函数y2=的图象交于A(﹣1,n),B两点.(1)求出反比例函数的解析式及点B的坐标;(2)观察图象,请直接写出满足y≤2的取值范围;(3)点P是第四象限内反比例函数的图象上一点,若△POB的面积为1,请直接写出点P的横坐标.20.(10分)已知,AB是⊙O的直径,点C在⊙O上,点P是AB延长线上一点,连接CP.(1)如图1,若∠PCB=∠A.①求证:直线PC是⊙O的切线;②若CP=CA,OA=2,求CP的长;(2)如图2,若点M是弧AB的中点,CM交AB于点N,MN•MC=9,求BM的值.六.填空题(共5小题,满分20分,每小题4分)21.设m,n是方程x2﹣x﹣2019=0的两实数根,则m3+2020n﹣2019=.22.如图,四边形ABCD内接于⊙O,对角线AC过圆心O,且AC⊥BD,P为BC延长线上一点,PD⊥BD,若AC=10,AD=8,则BP的长为.23.如图,将矩形OABC置于一平面直角坐标系中,顶点A,C分别位于x轴,y轴的正半轴上,点B的坐标为(5,6),双曲线y=(k≠0)在第一象限中的图象经过BC的中点D,与AB交于点E,P为y轴正半轴上一动点,把△OAP沿直线AP翻折,使点O落在点F处,连接FE,若FE∥x轴,则点P的坐标为.24.如图,AC是▱ABCD的对角线,且AC⊥AB,在AD上截取AH=AB,连接BH交AC于点F,过点C作CE平分∠ACB交BH于点G,且GF=,CG=3,则AC=.25.如图,在平面直角坐标系中,菱形OABC的一个顶点在原点O处,且∠AOC=60°,A点的坐标是(0,4),则直线AC的表达式是.七.解答题(共1小题,满分8分,每小题8分)26.(8分)嘉兴某公司抓住“一带一路”的机遇不断创新发展,生产销售某产品,该产品销售量y (万件)与售价x(元件)之间存在图1(一条线段)所示的变化趋势,总成本P(万元)与销售量y(万件)之间存在图2所示的变化趋势,当6≤y≤10时可看成一条线段,当10≤y≤18时可看成抛物线P=﹣y2+8y+m(1)写出y与x之间的函数关系式(2)若销售量不超过10万件时,利润为45万元,求此时的售价为多少元/件?(3)当售价为多少元时,利润最大,最大值是多少万元?(利润=销售总额一总成本)八.解答题(共1小题,满分10分,每小题10分)27.(10分)在平面直角坐标系中,O为原点,点A(﹣,0),点B(0,1)把△ABO绕点O 顺时针旋转,得△A'B'O,点A,B旋转后的对应点为A',B',记旋转角为α(0°<α<360°).(Ⅰ)如图①,当点A′,B,B′共线时,求AA′的长.(Ⅱ)如图②,当α=90°,求直线AB与A′B′的交点C的坐标;(Ⅲ)当点A′在直线AB上时,求BB′与OA′的交点D的坐标(直接写出结果即可)九.解答题(共1小题,满分12分,每小题12分)28.(12分)抛物线y=x2+bx+c经过点A、B、C,已知A(﹣1,0),C(0,﹣3).(1)求抛物线的解析式;(2)如图1,抛物线顶点为E,EF⊥x轴于F点,M(m,0)是x轴上一动点,N是线段EF上一点,若∠MNC=90°,请指出实数m的变化范围,并说明理由.(3)如图2,将抛物线平移,使其顶点E与原点O重合,直线y=kx+2(k>0)与抛物线相交于点P、Q(点P在左边),过点P作x轴平行线交抛物线于点H,当k发生改变时,请说明直线QH过定点,并求定点坐标.2019年四川省成都市石室天府中学中考数学模拟试卷(4月)参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.【分析】细心观察图中几何体摆放的位置和形状,根据主视图是从正面看到的图象判定则可.【解答】解:正面看,它是中间小两头大的一个图形,里面有两条虚线,表示看不到的轮廓线.故选:B.【点评】本题考查了立体图形的三视图,要注意几何体看得见部分的轮廓线画成实线,被其他部分遮挡而看不见的部分的轮廓线化成虚线.2.【分析】由抛物线解析式即可求得答案.【解答】解:∵y=(x﹣1)2+2,∴抛物线顶点坐标为(1,2),故选:A.【点评】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x﹣h)2+k中,顶点坐标为(h,k),对称轴为x=h.3.【分析】先根据∠C=90°,AC=5,cos∠A=,即可得到AB的长,再根据勾股定理,即可得到BC的长.【解答】解:∵△ABC中,∠C=90°,AC=5,cos∠A=,∴=,∴AB=13,∴BC==12,故选:B.【点评】本题考查的是锐角三角函数的定义,锐角A的邻边b与斜边c的比叫做∠A的余弦,记作cos A.4.【分析】依据反比例函数的性质以及图象进行判断,即可得到错误的选项.【解答】解:∵反比例函数y=﹣中,k=﹣8<0,∴图象在二,四象限内,故A选项正确;∵﹣2×4=﹣8,∴图象必经过(﹣2,4),故B选项正确;由图可得,当﹣1<x<0时,y>8,故C选项正确;∵反比例函数y=﹣中,k=﹣8<0,∴在每个象限内,y随x的增大而增大,故D选项错误;故选:D.【点评】本题主要考查了反比例函数的图象与性质,当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.5.【分析】直接利用菱形的性质得出∠C的度数,再利用等腰三角形的性质得出答案.【解答】解:∵在菱形ABCD中,∠A=130°,∴∠C=130°,BC=DC,∴∠DBC=∠CDB=(180°﹣130°)=25°.故选:A.【点评】此题主要考查了菱形的性质以及等腰三角形的性质,正确应用菱形的性质是解题关键.6.【分析】利用因式分解法求出已知方程的解确定出第三边,即可求出三角形周长.【解答】解:方程x2﹣6x+8=0,分解因式得:(x﹣2)(x﹣4)=0,解得:x=2或x=4,当x=2时,三角形三边为2,2,4,不能构成三角形,舍去;当x=4时,三角形三边为2,4,4,周长为2+4+4=10,故选:A.【点评】此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解本题的关键.7.【分析】作OE⊥AD于E,连接OD,在Rt△ADE中,根据垂径定理和勾股定理即可求解.【解答】解:作OE⊥AD于E,连接OD,则AE=DE=2cm,OE=2cm.在Rt△ADE中,OD==2cm.故选:B.【点评】本题需仔细分析图形,利用勾股定理即可解决问题.8.【分析】由一共有10种等可能的结果,小王能一次打开该旅行箱的只有1种情况,直接利用概率公式求解即可求得答案.【解答】解:∵一共有10种等可能的结果,小王能一次打开该旅行箱的只有1种情况,∴他能一次说对密码的概率是;故选:D.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.9.【分析】分两种情况考虑:当m=0时,方程为一元一次方程,有实数根,符合题意;当m不为0时,方程为一元二次方程,得到根的判别式大于等于0,求出m的范围,综上,得到满足题意m的范围.【解答】解:当m=0时,方程化为2x+1=0,解得:x=﹣,符合题意;当m≠0时,得到△=4﹣4m≥0,解得:m≤1,综上,m的取值范围是m≤1且m≠0.故选:D.【点评】此题考查了根的判别式,以及一元二次方程的定义,根的判别式的值大于0,方程有两个不相等的实数根;根的判别式的值等于0,方程有两个相等的实数根;根的判别式的值小于0,方程没有实数根.10.【分析】根据题意,作出合适的辅助线,然后根据等积法可以求得BD的长,然后根据锐角三角函数即可解答本题.【解答】解:作BD⊥AC于点D,作CE⊥AB交AB的延长线于点E,如右图所示,∵每个小正方形的边长都是1,∴AB=2,CE=1,AC=,BC=,∵,∴BD=,∴sin∠ACB==,故选:C.【点评】本题考查解直角三角形,解答本题的关键是明确题意,利用数形结合的思想解答.二.填空题(共4小题,满分16分,每小题4分)11.【分析】根据两内项之积等于两外项之积解答即可.【解答】解:∵=,∴xy=6.故答案为:6.【点评】本题主要考查比例的性质,可根据比例的基本性质直接求解.12.【分析】根据平行四边形的性质可得出CD∥AB,CD=AB,由=可得出CE=AB,由CD∥AB,可得出△CEF∽△ABF,再利用相似三角形的性质即可求出的值.【解答】解:∵四边形ABCD为平行四边形,∴CD∥AB,CD=AB.∵点E在CD上,=,∴CE=CD=AB.∵CD∥AB,∴△CEF∽△ABF∴==.故答案为:.【点评】本题考查了相似三角形的判定与性质以及平行四边形的性质,利用平行四边形的性质找出△CEF∽△ABF及CE=AB是解题的关键.13.【分析】根据二次函数的性质得到x<1时,y随y的增大而减小,然后根据自变量的大小得到对应函数值的大小.【解答】解:抛物线的对称轴为直线x=1,而x<1时,y随y的增大而减小,所以y1<y2.故答案为<.【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.14.【分析】连接CD,根据在△ABC中,∠ACB=90°,∠A=30°,BC=4可知AB=2BC=8,再由作法可知BC=CD=4,CE是线段BD的垂直平分线,据此可得出BD的长,进而可得出结论.【解答】解:如图,连接CD,∵在△ABC中,∠ACB=90°,∠A=30°,BC=4,∴AB=2BC=8.由题可知BC=CD=4,CE是线段BD的垂直平分线,∴∠CDB=∠CBD=60°,DF=BD,∴AD=CD=BC=4,∴BD=AD=4,∴BF=DF=2,∴AF=AD+DF=4+2=6.故答案为:6.【点评】本题考查的是作图﹣基本作图,熟知线段垂直平分线的作法和直角三角形的性质是解答此题的关键.解题时注意:在直角三角形中,30°角所对的直角边等于斜边的一半.三.解答题(共2小题,满分18分)15.【分析】(1)原式利用零指数幂、负整数指数幂法则,特殊角的三角函数值,以及二次根式性质计算即可得到结果;(2)方程利用因式分解法求出解即可.【解答】解:(1)原式=2﹣6×﹣1+3=1;(2)分解因式得:(4x﹣3)(x+1)=0,解得:x=或x=﹣1.【点评】此题考查了解一元二次方程﹣因式分解法,以及实数的运算,熟练掌握运算法则是解本题的关键.16.【分析】(1)根据投稿6篇的班级个数是3个,所占的比例是25%,可求总共班级个数,利用投稿篇数为2的比例乘以360°即可求解;根据加权平均数公式可求该校八,九年级各班在这一周内投稿的平均篇数,再用总共班级个数﹣不同投稿情况的班级个数即可求解;(2)由12个班级中5篇所占的比值即可估算出班级个数为30个时,投稿篇数为5篇的班级个数;(3)利用树状图法,然后利用概率的计算公式即可求解.【解答】解:(1)投稿班级的总个数为:3÷25%=12(个),∴×360°=30°.∵投稿5篇的班级有12﹣1﹣2﹣3﹣4=2(个),∴各班在这一周内投稿的平均篇数为×(2+3×2+5×2+6×3+9×4)=×72=6(篇),该条形统计图补充完整为:故答案为:30°,6篇;(2)30××100%=5(个);(3)画树状图如下:总共12画树状图如下:总共12种情况,不在同一年级的有8种情况,所选两个班正好不在同一年级的概率为:=.【点评】本题考查的是条形统计图和扇形统计图以及用树状图法求概率的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.四.解答题(共2小题,满分16分,每小题8分)17.【分析】(1)根据题意作出合适的辅助线,然后根据题意和锐角三角函数可以求得城门大楼的高度;(2)根据(1)中的结果和锐角三角函数可以求得A,B之间所挂彩旗的长度.【解答】解:(1)作AF⊥BC交BC于点F,交DE于点E,如右图所示,由题意可得,CD=EF=3米,∠B=22°,∠ADE=45°,BC=21米,DE=CF,∵∠AED=∠AFB=90°,∴∠DAE=45°,∴∠DAE=∠ADE,∴AE=DE,设AF=a米,则AE=(a﹣3)米,∵tan∠B=,∴tan22°=,即,解得,a=12,答:城门大楼的高度是12米;(2)∵∠B=22°,AF=12米,sin∠B=,∴sin22°=,∴AB=32,即A,B之间所挂彩旗的长度是32米.【点评】本题考查解直角三角形的应用﹣仰角俯角问题,解答本题的关键是明确题意,利用锐角三角函数和数形结合的思想解答.18.【分析】(1)由∠ACB=∠P+∠CAP,求出∠CAP即可解决问题;(2)连接EC,证明△ECF∽△EPC即可解决问题;【解答】(1)解:∵四边形ABCD是正方形,∴∠ACB=45°,∵∠ACB=∠P+∠CAP,∴∠CAP=20°,∵BG⊥AP,∴∠AGH=90°,∴AHG=90°﹣20°=70°.(2)证明:∵四边形ABCD是正方形,∴A,C关于BD对称,∠ACB=∠ACD=45°,∴EA=EC,∴∠EAC=∠ECA,∵∠ACB=∠P+∠CAE=45°,∠ECF+∠ECA=45°,∴∠ECF=∠P,∵∠CEF=∠PEC,∴△CEF∽△PEC,∴=,∴EC2=EF•EP,∴EA2=EF•EP.【点评】本题考查正方形的性质,相似三角形的判定和性质等知识,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.五.解答题(共2小题,满分20分,每小题10分)19.【分析】(1)把A (﹣1,n )代入y =﹣2x ,可得A (﹣1,2),把A (﹣1,2)代入y =,可得反比例函数的表达式为y =﹣,再根据点B 与点A 关于原点对称,即可得到B 的坐标; (2)观察函数图象即可求解;(3)设P (m ,﹣),根据S 梯形MBPN =S △POB =1,可得方程(2+)(m ﹣1)=1或(2+)(1﹣m )=1,求得m 的值,即可得到点P 的横坐标.【解答】解:(1)把A (﹣1,n )代入y =﹣2x ,可得n =2,∴A (﹣1,2),把A (﹣1,2)代入y =,可得k =﹣2,∴反比例函数的表达式为y =﹣,∵点B 与点A 关于原点对称,∴B (1,﹣2).(2)∵A (﹣1,2),∴y ≤2的取值范围是x <﹣1或x >0;(3)作BM ⊥x 轴于M ,PN ⊥x 轴于N ,∵S 梯形MBPN =S △POB =1,设P (m ,﹣),则(2+)(m ﹣1)=1或(2+)(1﹣m )=1整理得,m 2﹣m ﹣1=0或m 2+m +1=0,解得m =或m =,∴P 点的横坐标为.【点评】本题主要考查了反比例函数与一次函数的交点问题,解题时注意:反比例函数与一次函数的图象的交点坐标满足两函数的解析式.20.【分析】(1)①欲证明PC是⊙O的切线,只要证明OC⊥PC即可;②想办法证明∠P=30°即可解决问题;(2)如图2中,连接MA.由△AMC∽△NMA,可得,由此即可解决问题;【解答】(1)①证明:如图1中,∵OA=OC,∴∠A=∠ACO,∵∠PCB=∠A,∴∠ACO=∠PCB,∵AB是⊙O的直径,∴∠ACO+∠OCB=90°,∴∠PCB+∠OCB=90°,即OC⊥CP,∵OC是⊙O的半径,∴PC是⊙O的切线.②∵CP=CA,∴∠P=∠A,∴∠COB=2∠A=2∠P,∵∠OCP=90°,∴∠P=30°,∵OC=OA=2,∴OP=2OC=4,∴.(2)解:如图2中,连接MA.∵点M是弧AB的中点,∴=,∴∠ACM=∠BAM,∵∠AMC=∠AMN,∴△AMC∽△NMA,∴,∴AM2=MC•MN,∵MC•MN=9,∴AM=3,∴BM=AM=3.【点评】本题属于圆综合题,考查了切线的判定,解直角三角形,圆周角定理,相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考压轴题.六.填空题(共5小题,满分20分,每小题4分)21.【分析】先利用一元二次方程的定义得到m2=m+2019,m3=2020m+2019,所以m3+2020n﹣2019=2020(m+n),然后利用根与系数的关系得到m+n=1,最后利用整体代入的方法计算.【解答】解:∵m是方程x2﹣x﹣2019=0的根,∴m2﹣m﹣2019=0,∴m2=m+2019,m3=m2+2019m=m+2019+2019m=2020m+2019,∴m3+2020n﹣2019=2020m+2019+2020n﹣2019=2020(m+n),∵m,n是方程x2﹣x﹣2019=0的两实数根,∴m+n=1,∴m3+2020n﹣2019=2020.故答案为2020.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.22.【分析】根据圆周角定理得到∠ADC=90°,根据勾股定理得到CD==6,推出点C是PB的中点,根据直角三角形的性质即可得到结论.【解答】解:∵AC是⊙O的直径,∴∠ADC=90°,∵AC=10,AD=8,∴CD==6,∵AC⊥BD,∴AC平分BD,∵PD⊥BD,∴AC∥PD,∴点C是PB的中点,∴PB=2CD=12,故答案为:12.【点评】本题考查了圆周角定理,垂径定理,平行线的判定和性质,直角三角形的性质,正确的识别图形是解题的关键.23.【分析】延长EF交CO于G,依据反比例函数图象上点的坐标特征,即可得到点E的横坐标为5,点E的纵坐标为3,再根据勾股定理可得EF的长,设OP=x,则PG=3﹣x,分两种情况讨论,依据Rt△FGP中,FG2+PG2=PF2,即可得到x的值,进而得出点P的坐标.【解答】解:如图所示,延长EF交CO于G,∵EF∥x轴,∴∠FGP=90°=∠AEF,∵双曲线y=(k≠0)经过矩形OABC的边BC的中点D,点B的坐标为(5,6),∴点D(,6),∴k=15,又∵点E的横坐标为5,∴点E的纵坐标为=3,即AE=3,①当点F在AB左侧时,由折叠可得,AF=AO=5,∴Rt△AEF中,EF===4,∴GF=5﹣4=1,设OP=x,则PG=3﹣x,∵Rt△FGP中,FG2+PG2=PF2,∴12+(3﹣x)2=x2,解得x=,∴点P的坐标为(0,);②当点F在AB右侧时,同理可得EF=4,∴GF=5+4=9,设OP=x,则PG=x﹣3,∵Rt△FGP中,FG2+PG2=PF2,∴92+(x﹣3)2=x2,解得x=15,∴点P的坐标为(0,15);故答案为:(0,)或(0,15).【点评】本题考查了反比例函数图象上点的坐标特征,翻折变换、勾股定理等知识的综合运用,解题时,常常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.24.【分析】如图,连接AG,作GN⊥AC于N,FM⊥EC于M.想办法证明等G是△ABC的内心,推出∠FGN=∠CAG=45°,解直角三角形即可解决问题.【解答】解:如图,连接AG,作GN⊥AC于N,FM⊥EC于M.∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AHB=∠HBC,∵AB=AH,∴∠ABH=∠AHB,∴∠ABH=∠CBH,∵∠ECA=∠ECB,∠ABC+∠ACB=90°,∴∠GBC+∠GCB=45°,∴∠FGC=∠GBC+∠GCB=45°,∵FM⊥CG,GN⊥AC,FG=,∴FM=GM=1,∵CG=3,∴CM=2,∴tan∠FCM===,∴CN=2CG,∴GN=,CN=,∵BG,CG是△ABC的角平分线,∴AG也是△ABC的角平分线,∴∠NAG=45°,∴AN=GN=,∴AC=AN+NC=.故答案为.【点评】本题考查平行四边形的性质,解直角三角形,三角形的内心等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.25.【分析】根据菱形的性质,可得OC的长,根据三角函数,可得OD与CD,根据待定系数法,可得答案.【解答】解:如图,由菱形OABC的一个顶点在原点O处,A点的坐标是(0,4),得OC=OA=4.又∵∠1=60°,∴∠2=30°.sin∠2==,∴CD=2.cos∠2=cos30°==,OD=2,∴C(2,2).设AC的解析式为y=kx+b,将A,C点坐标代入函数解析式,得,解得,直线AC的表达式是y=﹣x+4,故答案为:y=﹣x+4.【点评】本题考查了待定系数法求一次函数解析式,利用锐角三角函数得出C点坐标是解题关键,又利用了菱形的性质及待定系数法求函数解析式.七.解答题(共1小题,满分8分,每小题8分)26.【分析】(1)将点(18,6)、(6,18)代入一次函数表达式:y=kx+b得:,解得:,即可求解;(2)当6≤y≤10时,同理可得:P=10y,由题意得:利润w=yx﹣P=﹣(x﹣10)(x﹣24)=45,即可求解;(3)分6≤y≤10、10≤y≤18两种情况,分别求解即可.【解答】解:(1)将点(18,6)、(6,18)代入一次函数表达式:y=kx+b得:,解得:,函数表达式为:y=﹣x+24;(2)当6≤y≤10时,同理可得:P=10y,由题意得:利润w=yx﹣P=﹣(x﹣10)(x﹣24)=45,解得:x=15或19,即:此时的售价为15或19元;(3)①当6≤y≤10时,w1=yx﹣P=﹣(x﹣10)(x﹣24),当x=17时,w1有最大值为49万元;②10≤y≤18时,把点(10,100)代入二次函数并解得:m=40,w2=yx﹣P=﹣(24﹣x)2+(24﹣x)(x﹣8)﹣40=﹣x2+x﹣,当x=﹣=14时,w2的最大值为40万元,49>40,故:x=17元时,w有最大值为49万元.【点评】本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.其中要注意应该在自变量的取值范围内求最大值(或最小值),也就是说二次函数的最值不一定在x=时取得.八.解答题(共1小题,满分10分,每小题10分)27.【分析】(Ⅰ)如图①,只要证明△AOA′是等边三角形即可;(Ⅱ)如图②,当α=90°,点A′在y轴上,作CH⊥OA′于H.解直角三角形求出BH,CH 即可解决问题;(Ⅲ)如图③,设A′B′交x轴于点K.首先证明A′B′⊥x轴,求出OK,A′K即可解决问题;【解答】解:(Ⅰ)如图①,∵A(﹣,0),B(0,1),∴OA=,OB=1,∴tan∠BAO==,∴∠BAO=30°,∠ABO=60°,∵△A′OB′是由△AOB旋转得到,∴∠B′=∠ABO=60°,OB=OB′,OA=OA′,∴∠BOB′=α=∠AOA′=60°,∴△AOA′是等边三角形,∴AA′=OA=.(Ⅱ)如图②,当α=90°,点A′在y轴上,作CH⊥OA′于H.∵∠A′B′O=60°,∠CAB′=30°,∴∠ACB′=90°,∵A′B=OA′﹣OB=﹣1,∠BA′C=30°,∴BC=A′B=,∵∠HBC=60°,∴BH=BC=,CH=BH=,∴OH=1+BH=,∴点C的坐标(,).(Ⅲ)如图③中,设A′B′交x轴于点K.当A′在AB上时,∵OA=OA′,∴∠OAA′=∠AA′O=30°,∵∠OA′B′=30°,∴∠AKA′=90°,∵OA′=,∠OA′K=30°,∴OK=OA′=,A′K=OK=,∴A′(,).【点评】本题属于三角形综合题,考查了解直角三角形,等边三角形的判定和性质,直角三角形30度角的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.九.解答题(共1小题,满分12分,每小题12分)28.【分析】(1)把点A(﹣1,0),C(0,﹣3)代入抛物线表达式求得b,c,即可得出抛物线的解析式;(2)作CH⊥EF于H,设N的坐标为(1,n),证明Rt△NCH∽△MNF,可得m=n2+3n+1,因为﹣4≤n≤0,即可得出m的取值范围;(3)设点P(x1,y1),Q(x2,y2),则点H(﹣x1,y1),设直线HQ表达式为y=ax+t,用x1,t=﹣2,即可得出直线QH过定点(0,﹣2).待定系数法和韦达定理可求得a=x2﹣【解答】解:(1)∵抛物线y=x2+bx+c经过点A、C,把点A(﹣1,0),C(0,﹣3)代入,得:,解得,∴抛物线的解析式为y=x2﹣2x﹣3;(2)如图,作CH⊥EF于H,∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线的顶点坐标E(1,﹣4),设N的坐标为(1,n),﹣4≤n≤0∵∠MNC=90°,∴∠CNH+∠MNF=90°,又∵∠CNH+∠NCH=90°,∴∠NCH=∠MNF,又∵∠NHC=∠MFN=90°,∴Rt△NCH∽△MNF,∴,即解得:m=n2+3n+1=,∴当时,m最小值为;当n=﹣4时,m有最大值,m的最大值=16﹣12+1=5.∴m的取值范围是.(3)设点P(x1,y1),Q(x2,y2),∵过点P作x轴平行线交抛物线于点H,∴H(﹣x1,y1),∵y=kx+2,y=x2,消去y得,x2﹣kx﹣2=0,x1+x2=k,x1x2=﹣2,设直线HQ表达式为y=ax+t,将点Q(x2,y2),H(﹣x1,y1)代入,得,x1)=ka,∴y2﹣y1=a(x1+x2),即k(x2﹣x1,∴a=x2﹣∵=(x2﹣x1)x2+t,∴t=﹣2,∴直线HQ表达式为y=(x2﹣x1)x﹣2,∴当k发生改变时,直线QH过定点,定点坐标为(0,﹣2).【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了配方法求二次函数的最值、待定系数法求一次函数的解析式、(2)问通过相似三角形建立m与n的函数关系式是解题的关键.。

2019年中考数学试卷(含答案)

2019年中考数学试卷(含答案)

80
90
100
人数/人
1
3
x
1
已知该小组本次数学测验的平均分是 85 分,则测验成绩的众数是( )
A.80 分
B.85 分
C.90 分
D.80 分和 90 分
5.如图,在 ABC 中, ACB 90 ,分别以点 A 和点 C 为圆心,以大于 1 AC 的长为 2
半径作弧,两弧相交于点 M 和点 N ,作直线 MN 交 AB 于点 D ,交 AC 于点 E ,连接
A.a-7>b-7
二、填空题
B.6+a>b+6
C. a >b 55
ቤተ መጻሕፍቲ ባይዱ
D.-3a>-3b
13.如图,在菱形 ABCD 中,AB=5,AC=8,则菱形的面积是 .
14.如图,在平面直角坐标系中,点 O 为原点,菱形 OABC 的对角线 OB 在 x 轴上,顶点
A 在反比例函数 y= 2 的图像上,则菱形的面积为_______. x
2019 年中考数学试卷(含答案)
一、选择题
1.“厉行勤俭节约,反对铺张浪费”势在必行,最新统计数据显示,中国每年浪费食物总量 折合粮食大约是 230000000 人一年的口粮,将 230000000 用科学记数法表示为( ) A.2.3×109 B.0.23×109 C.2.3×108 D.23×107
CD .若 B 34 ,则∠BDC 的度数是( )
A. 68
B.112
C.124
D.146
6.为了绿化校园,30 名学生共种 78 棵树苗,其中男生每人种 3 棵,女生每人种 2 棵,设
男生有 x 人,女生有 y 人,根据题意,所列方程组正确的是( )

四川省成都市武侯区2019年中考数学二诊试卷

四川省成都市武侯区2019年中考数学二诊试卷

四川省成都市武侯区2019年中考数学二诊试卷一、选择题:(每小题4分,共40分)1.下列每组多边形均有若干块中,其中不能铺满地面(镶嵌)的一组是()A.正三角形和正方形B.正方形和正六边形C.正三角形和正六边形D.正五边形和正十边形2.已知某几何体的三视图(单位:cm),则这个圆锥的侧面积等于()A.12πcm2 B.15πcm2 C.24πcm2 D.30πcm23.已知a﹣b=2+,b﹣c=2﹣,则a2+b2+c2﹣ab﹣bc﹣ac的值为()A.10B.12C.10 D.154.下列说法中正确的是()A.3,4,3,5,5,2这组数据的众数是3B.为了解参加运动会的运动员的年龄情况,从中抽了100名运动员的年龄,在这里100名运动员是抽取的一个样本C.如果数据x1,x2…x n的平均数是,那么(x1﹣)+(x2﹣)+…+(x n ﹣)=0D.一组表据的方差是S2,将这组数据中的每个数据都乘以3,所得的一组新数据的方差是3S25.在Rt△ABC中,各边的长度都扩大两倍,那么锐角A的各三角函数值()A.都扩大两倍B.都缩小两倍C.不变D.都扩大四倍6.如图,点P是边长为1的菱形ABCD对角线AC上一个动点,点M,N分别为AB,BC边上的中点,则MP+NP的最小值是()A. 2 B. 1 C.D.7.下列运算中正确的是()A.(a﹣b)2=a2﹣b2 B.(﹣a+1)(﹣a﹣1)=a2﹣1C.(﹣)﹣2=1 D.﹣(﹣2ab2)2=4a2b48.有一新娘去商店买新婚衣服,购买了不同款式的上衣2件,不同颜色的裙子3条,利用“树状图”表示搭配衣服所有可能出项的结果数为()A. 2 B. 3 C. 5 D. 69.如图,P是Rt△ABC的斜边BC上异于B、C的一点,过P点作直线截△ABC,使截得的三角形与△ABC相似,满足这样条件的直线共有()A.1条B.2条C.3条D.4条10.如图,矩形ABCD的顶点A在第一象限,AB∥x轴,AD∥y轴,且对角线的交点与原点O重合.在边AB从小于AD到大于AD的变化过程中,若矩形ABCD的周长始终保持不变,则经过动点A的反比例函数y=(k≠0)中k的值的变化情况是()A.一直增大B.一直减小C.先增大后减小D.先减小后增大二、填空题:(每小题4分,共20分;将答案直接写在该题目中的横线上)11.已知是方程组的解,则a+2b的值为.12.如图,一拱形公路桥,圆弧形桥拱的水面跨度AB=80米,如果要通过最大轮船的水面高度为20米,则设计拱桥的半径应是m.13.从﹣1,1,2三个数中任取一个,作为一次函数y=kx+3的k值,则所得一次函数中y随x的增大而增大的概率是.14.据有关媒体披露,2014年全国高校毕业生人数达727万人,创历史新高,将727万用科学记数法表示应为.15.如图,梯形ABCD中,AD∥BC,DC⊥BC,AB=8,BC=5,若以AB为直径的⊙O与DC相切于E,则DC=.三、解答题:(本大题共5个小题,每小题8分,共40分)16.计算:|﹣|+sin45°+tan60°﹣(﹣)﹣1﹣+(π﹣3)0.17.化简求值:已知:a是4的小数部分,求代数式+的值.18.甲、乙两地之间的高速公路全长200千米,比原来国道的长度减少了20千米,高速公路通车后,有一长途汽车的行驶速度提高了45千米/小时,从甲地到乙地的行驶时间减少了一半,求该长途汽车在原来国道上行驶的速度.19.去年某省将地处A、B两地的两所大学合并成一所综合大学,为了方便A、B两地师生的交往,学校准备在相距2千米的A、B两地之间修筑一条笔直公路.如图中线段AB,经测量,在A地北偏东60°方向,B地西偏北45°方向的C 处有一个半径为0.7千米的公园,问计划修筑的这条公路会不会穿过公园?为什么?20.如图所示,正方形ABCD的边长为1,AC是对角线,AE平分∠BAC,EF⊥AC于点F.(1)求证:BE=CF;(2)求BE的长.四、灵活应用:(本大题共5个小题,每小题10分,共50分)21.(10分)(2015•蓬溪县校级模拟)某学区为了解教师对网上教研活动的满意度,利用“网上短信平台”,对本区在20~60岁之间的300名教师,进行短信抽样调查.被抽查人中,各年龄段人数所占比例如图甲所示,各年龄段对活动感到满意的人数如图乙(部分)所示,根据图形信息回答下列问题:(1)被抽查的教师中,人数最多的年龄段是岁;(2)被抽查的300人中有83%的人对网上教研活动感到满意,请你求出26~30岁年龄段的满意人数,并补全图乙;(3)比较26~30岁和41~50岁这两个年龄段对网上教研活动的满意度的高低(四舍五入到1%).(注:某年龄段满意度=该年龄段满意人数÷该年龄段被抽查人数×100%).22.(10分)如图,已知抛物线y=ax2+bx+c(a>0,c<0)交x轴于点A,B,交y轴于点C,设过点A,B,C的圆与y轴的另一个交点为D.已知点A,B,C的坐标分别为(﹣2,0),(8,0),(0,﹣4).(1)求此抛物线的表达式与点D的坐标;(2)若点M为抛物线上的一动点,且位于第四象限,求△BDM面积的最大值.23.(10分)数学活动课上,小颖同学用两块完全一样的透明等腰直角三角板ABC、DEF进行探究活动.操作:使点D落在线段AB的中点处并使DF过点C(如图1),然后将其绕点D 顺时针旋转,直至点E落在AC的延长线上时结束操作,在此过程中,线段DE 与AC或其延长线交于点K,线段BC与DF相交于点G(如图2,3).探究1:在图2中,求证:△ADK∽△BGD.探究2:在图2中,求证:KD平分∠AKG.探究3:①在图3中,KD仍平分∠AKG吗?若平分,请加以证明;若不平分,请说明理由.②在以上操作过程中,若设AC=BC=8,KG=x,△DKG的面积为y,请求出y与x的函数关系式,并直接写出x的取值范围.24.(10分)如图,AB=AC=8,∠BAC=90°,直线l与以AB为直径的⊙O相切于点B,点D是直线l上任意一动点,连接DA交⊙O于点E.(1)当点D在AB上方且BD=6时,求AE的长.(2)当点D在什么位置时,CE恰好与⊙O相切?请说明理由.25.(10分)在平面直角坐标系中,抛物线y=x2+(k﹣1)x﹣k与直线y=kx+1交于A,B两点,点A在点B的左侧.(1)如图1,当k=1时,直接写出A,B两点的坐标;(2)在(1)的条件下,点P为抛物线上的一个动点,且在直线AB下方,试求出△ABP面积的最大值及此时点P的坐标;(3)如图2,抛物线y=x2+(k﹣1)x﹣k(k>0)与x轴交于点C、D两点(点C在点D的左侧),在直线y=kx+1上是否存在唯一一点Q,使得∠OQC=90°?若存在,请求出此时k的值;若不存在,请说明理由.四川省成都市武侯区2019年中考数学二诊试卷参考答案与试题解析一、选择题:(每小题4分,共40分)1.下列每组多边形均有若干块中,其中不能铺满地面(镶嵌)的一组是()A.正三角形和正方形B.正方形和正六边形C.正三角形和正六边形D.正五边形和正十边形考点:平面镶嵌(密铺).分析:正多边形的组合能否铺满地面,关键是看位于同一顶点处的几个角之和能否为360°.若能,则说明能铺满;反之,则说明不能铺满.解答:解:A、正三角形的每个内角是60°,正方形的每个内角是90°,3×60°+2×90°=360°,故能铺满,不合题意;B、正方形和正六边形内角分别为90°、120°,显然不能构成360°的周角,故不能铺满,符合题意;C、正三角形和正六边形内角分别为60°、120°,2×60°+2×120°=360°,故能铺满,不合题意;D、正五边形和正十边形内角分别为108°、144°,2×108°+1×144°=360°,故能铺满,不合题意.故选:B.点评:此题主要考查了平面镶嵌,几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.2.已知某几何体的三视图(单位:cm),则这个圆锥的侧面积等于()A.12πcm2 B.15πcm2 C.24πcm2 D.30πcm2考点:圆锥的计算.专题:计算题.分析:俯视图为圆的只有圆锥,圆柱,球,根据主视图和左视图都是三角形可得到此几何体为圆锥,那么侧面积=底面周长×母线长÷2.解答:解:∵底面半径为3,高为4,∴圆锥母线长为5,∴侧面积=2πrR÷2=15πcm2.故选:B.点评:由该三视图中的数据确定圆锥的底面直径和高是解本题的关键;本题体现了数形结合的数学思想,注意圆锥的高,母线长,底面半径组成直角三角形.3.已知a﹣b=2+,b﹣c=2﹣,则a2+b2+c2﹣ab﹣bc﹣ac的值为()A.10B.12C.10 D.15考点:二次根式的化简求值.分析:由a﹣b=2+,b﹣c=2﹣可得,a﹣c=4然后整体代入.解答:解:∵a﹣b=2+,b﹣c=2﹣,∴a﹣c=4,∴原式====15.故选D.点评:此题的关键是把原式转化为的形式,再整体代入.4.下列说法中正确的是()A.3,4,3,5,5,2这组数据的众数是3B.为了解参加运动会的运动员的年龄情况,从中抽了100名运动员的年龄,在这里100名运动员是抽取的一个样本C.如果数据x1,x2…x n的平均数是,那么(x1﹣)+(x2﹣)+…+(x n ﹣)=0D.一组表据的方差是S2,将这组数据中的每个数据都乘以3,所得的一组新数据的方差是3S2考点:方差;总体、个体、样本、样本容量;算术平均数;众数.分析:利用方差、算术平均数、众数的定义分别判断后即可确定正确的选项.解答:解:A、3,4,3,5,5,2这组数据的众数是3和5,故错误;B、为了解参加运动会的运动员的年龄情况,从中抽了100名运动员的年龄,在这里100名运动员的年龄是抽取的一个样本,故错误;C、如果数据x1,x2…x n的平均数是,那么(x1﹣)+(x2﹣)+…+(x n﹣)=0,正确;D、一组表据的方差是S2,将这组数据中的每个数据都乘以3,所得的一组新数据的方差是9S2,故错误,故选C.点评:本题考查了方差、算术平均数、众数的定义,属于统计的基础知识,难度较小.5.在Rt△ABC中,各边的长度都扩大两倍,那么锐角A的各三角函数值()A.都扩大两倍B.都缩小两倍C.不变D.都扩大四倍考点:锐角三角函数的定义.专题:常规题型;压轴题.分析:根据三边对应成比例,两三角形相似,可知扩大后的三角形与原三角形相似,再根据相似三角形对应角相等解答.解答:解:∵各边的长度都扩大两倍,∴扩大后的三角形与Rt△ABC相似,∴锐角A的各三角函数值都不变.故选C.点评:本题考查了锐角三角形函数的定义,理清锐角的三角函数值与角度有关,与三角形中所对应的边的长度无关是解题的关键.6.如图,点P是边长为1的菱形ABCD对角线AC上一个动点,点M,N分别为AB,BC边上的中点,则MP+NP的最小值是()A. 2 B. 1 C.D.考点:轴对称-最短路线问题;菱形的性质.专题:压轴题;动点型.分析:首先作点M关于AC的对称点M′,连接M′N交AC于P,此时MP+NP 有最小值.然后证明四边形PMBN为菱形,即可求出MP+NP=BM+BN=BC=1.解答:解:作点M关于AC的对称点M′,连接M′N交AC于P,此时MP+NP 有最小值.∵菱形ABCD关于AC对称,M是AB边上的中点,∴M′是AD的中点,又N是BC边上的中点,∴AM′∥BN,AM′=BN,∴四边形AM′BN是平行四边形,∴PN∥AB,又N是BC边上的中点,∴PN是△CAB的中位线,∴P是AC中点,∴PM∥BN,PM=BN,∴四边形PMBN是平行四边形,∵BM=BN,∴平行四边形PMBN是菱形.∴MP+NP=BM+BN=BC=1.故选B.点评:考查菱形的性质和轴对称及平行四边形的判定等知识的综合应用.7.下列运算中正确的是()A.(a﹣b)2=a2﹣b2 B.(﹣a+1)(﹣a﹣1)=a2﹣1C.(﹣)﹣2=1 D.﹣(﹣2ab2)2=4a2b4考点:完全平方公式;幂的乘方与积的乘方;平方差公式;负整数指数幂.专题:计算题.分析:A、原式利用完全平方公式化简得到结果,即可做出判断;B、原式利用平方差公式化简得到结果,即可做出判断;C、原式利用负整数指数幂法则计算得到结果,即可做出判断;D、原式利用幂的乘方与积的乘方运算法则计算得到结果,即可做出判断.解答:解:A、原式=a2+b2﹣2ab,错误;B、原式=a2﹣1,正确;C、原式=4,错误;D、原式=﹣4a2b4,错误,故选B点评:此题考查了完全平方公式,幂的乘方与积的乘方,平方差公式,以及负整数指数幂法则,熟练掌握公式及法则是解本题的关键.8.有一新娘去商店买新婚衣服,购买了不同款式的上衣2件,不同颜色的裙子3条,利用“树状图”表示搭配衣服所有可能出项的结果数为()A. 2 B. 3 C. 5 D. 6考点:列表法与树状图法.专题:计算题.分析:列出得出所有等可能的情况数即可.解答:解:列表如下:上衣用a,b表示,裙子用c,d,e表示,a bc (a,c)(b,c)d (a,d)(b,d)e (a,e)(b,e)所有等可能的情况有6种,故选D点评:此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.9.如图,P是Rt△ABC的斜边BC上异于B、C的一点,过P点作直线截△ABC,使截得的三角形与△ABC相似,满足这样条件的直线共有()A.1条B.2条C.3条D.4条考点:相似三角形的判定.分析:过点P作直线与另一边相交,使所得的三角形与原三角形有一个公共角,只要再作一个直角就可以.解答:解:由于△ABC是直角三角形,过P点作直线截△ABC,则截得的三角形与△ABC有一公共角,所以只要再作一个直角即可使截得的三角形与Rt△ABC相似,过点P可作AB的垂线、AC的垂线、BC的垂线,共3条直线.故选:C.点评:本题主要考查三角形相似判定定理及其运用.解题时,运用了两角法(有两组角对应相等的两个三角形相似)来判定两个三角形相似.10.如图,矩形ABCD的顶点A在第一象限,AB∥x轴,AD∥y轴,且对角线的交点与原点O重合.在边AB从小于AD到大于AD的变化过程中,若矩形ABCD的周长始终保持不变,则经过动点A的反比例函数y=(k≠0)中k的值的变化情况是()A.一直增大B.一直减小C.先增大后减小D.先减小后增大考点:反比例函数图象上点的坐标特征;矩形的性质.专题:压轴题;数形结合.分析:设矩形ABCD中,AB=2a,AD=2b,由于矩形ABCD的周长始终保持不变,则a+b为定值.根据矩形对角线的交点与原点O重合及反比例函数比例系数k的几何意义可知k=AB•AD=ab,再根据a+b一定时,当a=b时,ab最大可知在边AB从小于AD到大于AD的变化过程中,k的值先增大后减小.解答:解:设矩形ABCD中,AB=2a,AD=2b.∵矩形ABCD的周长始终保持不变,∴2(2a+2b)=4(a+b)为定值,∴a+b为定值.∵矩形对角线的交点与原点O重合∴k=AB•AD=ab,又∵a+b为定值时,当a=b时,ab最大,∴在边AB从小于AD到大于AD的变化过程中,k的值先增大后减小.故选:C.点评:本题考查了矩形的性质,反比例函数比例系数k的几何意义及不等式的性质,有一定难度.根据题意得出k=AB•AD=ab是解题的关键.二、填空题:(每小题4分,共20分;将答案直接写在该题目中的横线上)11.已知是方程组的解,则a+2b的值为7.考点:二元一次方程组的解.分析:把代入方程组中,得出关于a,b的值,再计算即可.解答:解:把代入方程组中,可得:,解得:,把代入a+2b=7,故答案为:7.点评:本题主要考查了方程组的解的定义:能使方程组中每个方程的左右两边相等的未知数的值即是方程组的解.12.如图,一拱形公路桥,圆弧形桥拱的水面跨度AB=80米,如果要通过最大轮船的水面高度为20米,则设计拱桥的半径应是50m.考点:垂径定理的应用;勾股定理.分析:根据垂径定理和勾股定理求解.解答:解:如图,点E是拱桥所在的圆的圆心,作EF⊥AB,延长交圆于点D,则由垂径定理知,点F是AB的中点,AF=FB=AB=40,EF=ED﹣FD=AE﹣DF,由勾股定理知,AE2=AF2+EF2=AF2+(AE﹣DF)2,设圆的半径是r.则:r2=402+(r﹣20)2,解得:r=50故答案是:50.点评:本题利用了垂径定理和勾股定理求解.建立数学模型是关键.13.从﹣1,1,2三个数中任取一个,作为一次函数y=kx+3的k值,则所得一次函数中y随x的增大而增大的概率是.考点:概率公式;一次函数图象与系数的关系.分析:从﹣1,1,2三个数中任取一个,共有三种取法,其中函数y=﹣1•x+3是y随x增大而减小的,函数y=1•x+3和y=2•x+3都是y随x增大而增大的,所以符合题意的概率为.解答:解:P(y随x增大而增大)=.故本题答案为:.点评:用到的知识点为:概率=所求情况数与总情况数之比;一次函数未知数的比例系数大于0,y随x的增大而增大.14.据有关媒体披露,2014年全国高校毕业生人数达727万人,创历史新高,将727万用科学记数法表示应为7.27×106.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.解答:解:将727万用科学记数法表示为:7.27×106.故答案为:7.27×106.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.15.如图,梯形ABCD中,AD∥BC,DC⊥BC,AB=8,BC=5,若以AB为直径的⊙O与DC相切于E,则DC=2.考点:切线的性质;勾股定理;梯形中位线定理.分析:如图:连接OE,过D作DF∥AB,则OE⊥CD;OE是梯形ABCD的中位线,故OE=(BC+AD),则AD=2OE﹣BC=2×4﹣5=3,可求BF=AD=3,故CF可求,进而可求出CD的长.解答:解:连接OE,过D作DF∥AB,梯形ABCD中,AD∥BC,DC⊥BC,AB为直径的⊙O与DC相切于E,故OE⊥CD,OE是梯形ABCD的中位线,OE=(BC+AD),即AD=2OE﹣BC=2×4﹣5=3.∵AD∥BC,AB∥DF,∴四边形ABFD是平行四边形,BF=AD=3,CF=BC﹣BF=5﹣3=2,DF=AB=8,CD===2.点评:本题考查的是切线的性质,勾股定理及中位线定理,解答此题的关键是作出辅助线,构造出直角三角形解答.三、解答题:(本大题共5个小题,每小题8分,共40分)16.计算:|﹣|+sin45°+tan60°﹣(﹣)﹣1﹣+(π﹣3)0.考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.专题:计算题.分析:原式第一项利用绝对值的代数意义化简,第二、三项利用特殊角的三角函数值计算,第四项利用负指数幂法则计算,第五项化为最简二次根式,最后一项利用零指数幂法则计算即可得到结果.解答:解:原式=+×+﹣(﹣3)﹣2+1=+1++3﹣2+1=5.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.17.化简求值:已知:a是4的小数部分,求代数式+的值.考点:二次根式的化简求值.分析:先求出4的范围,求出a的值,再求出每一部分的值,最后代入求出即可.解答:解:∵4=,∴6<4<7,∴a=4﹣6,∴a﹣1<0,∴+=+=a﹣1+=a﹣1﹣=4﹣6﹣1﹣=4﹣7﹣=4﹣7﹣﹣=﹣7.点评:本题考查了二次根式的混合运算的应用,解此题的关键是能根据a的值化简二次根式,有一定的难度.18.甲、乙两地之间的高速公路全长200千米,比原来国道的长度减少了20千米,高速公路通车后,有一长途汽车的行驶速度提高了45千米/小时,从甲地到乙地的行驶时间减少了一半,求该长途汽车在原来国道上行驶的速度.考点:分式方程的应用.分析:设该长途汽车在原来国道上行驶的速度为x千米/时,根据“甲、乙两地之间的高速公路全长200千米,比原来国道的长度减少了20千米.高速公路通车后,某长途汽车的行驶速度提高了45千米/时,从甲地到乙地的行驶时间缩短了一半”,可列出方程.解答:解:设该长途汽车在原来国道上行驶的速度为x千米/时,根据题意得=•,解得:x=55,经检验:x55是原分式方程的解,答:该长途汽车在原来国道上行驶的速度55千米/时.点评:本题主要查了分式方程的应用,关键是设出速度,以时间做为等量关系列方程.19.去年某省将地处A、B两地的两所大学合并成一所综合大学,为了方便A、B两地师生的交往,学校准备在相距2千米的A、B两地之间修筑一条笔直公路.如图中线段AB,经测量,在A地北偏东60°方向,B地西偏北45°方向的C 处有一个半径为0.7千米的公园,问计划修筑的这条公路会不会穿过公园?为什么?考点:解直角三角形的应用-方向角问题.专题:应用题.分析:本题要求的实际上是C到AB的距离,过C点作CD⊥AB,CD就是所求的线段,由于CD是条公共直角边,可用CD表示出AD,BD,然后根据AB 的长,来求出CD的长.解答:解:过C点作CD⊥AB于D,由题可知:∠CAD=30°,设CD=x千米,tan∠CAD=,所以AD==x,由CD⊥AB,得到∠CDB=90°,又∠CBD=45°,所以△CDB为等腰直角三角形,则BD=CD=x,∵AB=2,∴x+x=2,∴x====﹣1>0.7.∴计划修筑的这条公路不会穿过公园.点评:解直角三角形的应用关键是构建直角三角形,如果有共用直角边的,可以利用公共边来进行求解.20.如图所示,正方形ABCD的边长为1,AC是对角线,AE平分∠BAC,EF⊥AC 于点F.(1)求证:BE=CF;(2)求BE的长.考点:正方形的性质;角平分线的性质;等腰直角三角形.分析:(1)由角平分线的性质可得到BE=EF,再证明△CEF为等腰直角三角形,可证明BE=CF;(2)设BE=x,在△CEF中可表示出CE,由BC=1,可列出方程,可求得BE.解答:(1)证明:∵四边形ABCD为正方形,∴∠B=90°,∵EF⊥AC,∴∠EFA=90°,∵AE平分∠BAC,∴BE=EF,又∵AC平分∠BCD,∴∠ACB=45°,∴∠FEC=∠FCE,∴EF=FC,∴BE=CF;(2)解:设BE=x,则EF=CF=x,在Rt△CEF中可求得CE=x,∵BC=1,∴x+x=1,解得x=﹣1,即BE的长为﹣1.点评:本题主要考查正方形的性质,掌握正方形的四边相等、对角线平分每一对对角是解题的关键.四、灵活应用:(本大题共5个小题,每小题10分,共50分)21.(10分)某学区为了解教师对网上教研活动的满意度,利用“网上短信平台”,对本区在20~60岁之间的300名教师,进行短信抽样调查.被抽查人中,各年龄段人数所占比例如图甲所示,各年龄段对活动感到满意的人数如图乙(部分)所示,根据图形信息回答下列问题:(1)被抽查的教师中,人数最多的年龄段是26~30岁;(2)被抽查的300人中有83%的人对网上教研活动感到满意,请你求出26~30岁年龄段的满意人数,并补全图乙;(3)比较26~30岁和41~50岁这两个年龄段对网上教研活动的满意度的高低(四舍五入到1%).(注:某年龄段满意度=该年龄段满意人数÷该年龄段被抽查人数×100%).考点:条形统计图;扇形统计图.专题:图表型.分析:(1)根据图甲的百分比解答即可;(2)求出感到满意的总人数,然后列式计算即可求出26~30岁年龄段的满意人数;(3)分别用满意的人数除以被调查的人数,计算后比较即可得解.解答:解:(1)由图甲可知,被抽查的教师中,人数最多的年龄段是26~30岁;故答案为:26~30;(2)感到满意的总人数=300×83%=249人,26~30岁年龄段的满意人数=249﹣41﹣50﹣40﹣18﹣7=249﹣156=93人;补全统计图如图所示;(3)26~30岁满意度=×100%≈79%,41~50岁满意度=×100%≈89%,所以,41~50岁年龄段比26~30岁年龄段对网上教研活动的满意度高.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.(10分)如图,已知抛物线y=ax2+bx+c(a>0,c<0)交x轴于点A,B,交y轴于点C,设过点A,B,C的圆与y轴的另一个交点为D.已知点A,B,C的坐标分别为(﹣2,0),(8,0),(0,﹣4).(1)求此抛物线的表达式与点D的坐标;(2)若点M为抛物线上的一动点,且位于第四象限,求△BDM面积的最大值.考点:二次函数综合题.分析:(1)利用待定系数法求抛物线的解析式;利用勾股定理的逆定理证明∠ACB=90°,由圆周角定理得AB为圆的直径,再由垂径定理知点C、D关于AB对称,由此得出点D的坐标;(2)求出△BDM面积的表达式,再利用二次函数的性质求出最值.解答中提供了两种解法,请分析研究.解答:解:(1)∵抛物线y=ax2+bx+c过点A(﹣2,0),B(8,0),C(0,﹣4),∴,解得,∴抛物线的解析式为:y=x2﹣x﹣4;∵OA=2,OB=8,OC=4,∴AB=10.如答图1,连接AC、BC,由勾股定理得:AC=,BC=.∵AC2+BC2=AB2=100,∴∠ACB=90°,∴AB为圆的直径.由垂径定理可知,点C、D关于直径AB对称,∴D(0,4);(2)解法一:设直线BD的解析式为y=kx+b,∵B(8,0),D(0,4),∴,解得,∴直线BD解析式为:y=﹣x+4.设M(x,x2﹣x﹣4),如答图2﹣1,过点M作ME∥y轴,交BD于点E,则E(x,﹣x+4).∴ME=(﹣x+4)﹣(x2﹣x﹣4)=﹣x2+x+8.∴S△BDM=S△MED+S△MEB=ME(x E﹣x D)+ME(x B﹣x E)=ME(x B﹣x D)=4ME,∴S△BDM=4(﹣x2+x+8)=﹣x2+4x+32=﹣(x﹣2)2+36.∴当x=2时,△BDM的面积有最大值为36;解法二:如答图2﹣2,过M作MN⊥y轴于点N.设M(m,m2﹣m﹣4),∵S△OBD=OB•OD==16,S梯形OBMN=(MN+OB)•ON=(m+8)[﹣(m2﹣m﹣4)]=﹣m(m2﹣m﹣4)﹣4(m2﹣m﹣4),S△MND=MN•DN=m[4﹣(m2﹣m﹣4)]=2m﹣m(m2﹣m﹣4),∴S△BDM=S△OBD+S梯形OBMN﹣S△MND=16﹣m(m2﹣m﹣4)﹣4(m2﹣m﹣4)﹣2m+m(m2﹣m﹣4)=16﹣4(m2﹣m﹣4)﹣2m=﹣m2+4m+32=﹣(m﹣2)2+36;∴当m=2时,△BDM的面积有最大值为36.点评:本题考查了待定系数法求解析式,直角三角形的判定及性质,图形面积计算,三角形相似的判定和性质,二次函数的系数与x轴的交点的关系等,在解答此题时要注意构造出辅助线,利用勾股定理求解.23.(10分)数学活动课上,小颖同学用两块完全一样的透明等腰直角三角板ABC、DEF进行探究活动.操作:使点D落在线段AB的中点处并使DF过点C(如图1),然后将其绕点D 顺时针旋转,直至点E落在AC的延长线上时结束操作,在此过程中,线段DE 与AC或其延长线交于点K,线段BC与DF相交于点G(如图2,3).探究1:在图2中,求证:△ADK∽△BGD.探究2:在图2中,求证:KD平分∠AKG.探究3:①在图3中,KD仍平分∠AKG吗?若平分,请加以证明;若不平分,请说明理由.②在以上操作过程中,若设AC=BC=8,KG=x,△DKG的面积为y,请求出y与x的函数关系式,并直接写出x的取值范围.考点:相似形综合题.分析:探究1,根据△ABC、△DEF是等腰直角三角形可知∠KAD=∠KDG=∠DBG=45°,由三角形内角和定理可知∠KDA+∠BDG=135°.∠BDG+∠BGD=135°,故可得出△ADK∽△BGD;探究2,根据△ADK∽△BGD可知=,再由点D是线段AB的中点得出BD=AD,故可得出△ADK∽△DCK,∠AKD=∠DKC,由此可得出结论;探究3,①同探究1可得△ADK∽△BGD,同探究2可得,△ADK∽△DGK,故可得出结论;②过点D作DM⊥AC于点M,DN⊥KG于点N,由①知线段KD平分∠AKG,故DM=DN.再由AC=BC=8,点D是线段AB的中点,∠KAD=45°,可知DM=DN=4.根据三角形的面积公式即可得出结论.解答:解:探究1,∵∠KAD=∠KDG=∠DBG=45°,∴∠KDA+∠BDG=135°.∵∠BDG+∠BGD=135°,∴∠KDA=∠BGD,∴△ADK∽△BGD;探究2,∵△ADK∽△BGD,∴=,∵点D是线段AB的中点,∴BD=AD,∴=,∴=,∵∠KAD=∠KDG=45°,∴△ADK∽△DCK,∴∠AKD=∠DKC,∴KD平分∠AKG.探究3,①KD仍平分∠AKG.理由如下:∵同探究1可得△ADK∽△BGD,同探究2可得,△ADK∽△DGK,∴∠AKD=∠DKG,∴KD仍平分∠AKG;②如图,过点D作DM⊥AC于点M,DN⊥KG于点N,由①知线段KD平分∠AKG,∴DM=DN.∵AC=BC=8,点D是线段AB的中点,∠KAD=45°,∴DM=DN=4.∵KG=x,∴S△DKG=y=×4x=2x,对于图3的情况同理可得y=2x,综上所示,y=2x,其中8﹣8≤x≤8﹣8.点评:本题考查的是相似形综合题,涉及到相似三角形的判定与性质、等腰直角三角形的性质等知识.难度适中.24.(10分)如图,AB=AC=8,∠BAC=90°,直线l与以AB为直径的⊙O相切于点B,点D是直线l上任意一动点,连接DA交⊙O于点E.(1)当点D在AB上方且BD=6时,求AE的长.(2)当点D在什么位置时,CE恰好与⊙O相切?请说明理由.。

2019年四川省巴中市中考数学真题(答案+解析)

2019年四川省巴中市中考数学真题(答案+解析)

2019年四川省巴中市中考数学试卷一、选择题(本大题共10个小题,每小题4分,共40分,在每小题给出的四个选项中,只有一个选项是正确的)1.下列四个算式中,正确的是()A.a+a=2a B.a5÷a4=2a C.(a5)4=a9D.a5﹣a4=a【答案】A【解析】A.a+a=2a,故本选项正确;B.a5÷a4=a,故本选项错误;C.(a5)4=a20,故本选项错误;D.a5﹣a4,不能合并,故本选项错误.故选:A.2.在平面直角坐标系中,已知点A(﹣4,3)与点B关于原点对称,则点B的坐标为()A.(﹣4,﹣3)B.(4,3)C.(4,﹣3)D.(﹣4,3)【答案】C【解析】∵点A(﹣4,3),点A与点B关于原点对称,∴点B(4,﹣3).故选:C.3.企业家陈某,在家乡投资9300万元,建立产业园区2万余亩.将9300万元用科学记数法表示为()A.93×108元B.9.3×108元C.9.3×107元D.0.93×108元【答案】C【解析】将9300万元用科学记数法表示为:9.3×107元.故选:C.4.如图是由一些小立方体与圆锥组合成的立体图形,它的主视图是()A.B.C.D.【答案】C【解析】如图所示,它的主视图是:.故选:C.5.已知关于x、y的二元一次方程组的解是,则a+b的值是()A.1 B.2 C.﹣1 D.0【答案】B【解析】将代入得:,∴a+b=2;故选:B.6.下列命题是真命题的是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是矩形C.对角线互相垂直的矩形是正方形D.四边相等的平行四边形是正方形【答案】C【解析】A.对角线相等的平行四边形是矩形,所以A选项错误;B.对角线相等的平行四边形是矩形,所以B选项错误;C.对角线互相垂直的矩形是正方形,所以C选项正确;D.四边相等的菱形是正方形,所以D选项错误.故选:C.7.如图所示,是巴中某校对学生到校方式的情况统计图.若该校骑自行车到校的学生有200人,则步行到校的学生有()A.120人B.160人C.125人D.180人【答案】B【解析】学生总数:200÷25%=800(人),步行到校的学生:800×20%=160(人),故选:B.8.如图▱ABCD,F为BC中点,延长AD至E,使DE:AD=1:3,连结EF交DC于点G,则S△DEG:S△CFG=()A.2:3 B.3:2 C.9:4 D.4:9【答案】D【解析】设DE=x,∵DE:AD=1:3,∴AD=3x,∵四边形ABCD是平行四边形,∴AD∥BC,BC=AD=3x,∵点F是BC的中点,∴CF=BC=x,∵AD∥BC,∴△DEG∽△CFG,∴=()2=()2=,故选:D.9.如图,圆锥的底面半径r=6,高h=8,则圆锥的侧面积是()A.15πB.30πC.45πD.60π【答案】D【解析】圆锥的母线l===10,∴圆锥的侧面积=π•10•6=60π,故选:D.10.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论①b2>4ac,②abc<0,③2a+b ﹣c>0,④a+b+c<0.其中正确的是()A.①④B.②④C.②③D.①②③④【答案】A【解析】①∵抛物线与x轴由两个交点,∴b2﹣4ac>0,即b2>4ac,所以①正确;②由二次函数图象可知,a<0,b<0,c>0,∴abc>0,故②错误;③∵对称轴:直线x=﹣=﹣1,∴b=2a,∴2a+b﹣c=4a﹣c,∵a<0,4a<0,c>0,﹣c<0,∴2a+b﹣c=4a﹣c<0,故③错误;④∵对称轴为直线x=﹣1,抛物线与x轴一个交点﹣3<x1<﹣2,∴抛物线与x轴另一个交点0<x2<1,当x=1时,y=a+b+c<0,故④正确.故选:A.二、填空题(本大题共5个小题,每小题4分,共20分)11.函数y=的自变量x的取值范围x≥1,且x≠3.【解析】根据题意得:,解得x≥1,且x≠3,即:自变量x取值范围是x≥1,且x≠3.12.如果一组数据为4、a、5、3、8,其平均数为a,那么这组数据的方差为.【解析】根据题意,得:=a,解得:a=5,则这组数据为4、5、5、3、8,其平均数是5,所以这组数据的方差为×[(4﹣5)2+(5﹣5)2+(5﹣5)2+(3﹣5)2+(8﹣5)2]=,故答案为:.13.如图,反比例函数y=(x>0)经过A、B两点,过点A作AC⊥y轴于点C,过点B 作BD⊥y轴于点D,过点B作BE⊥x轴于点E,连结AD,已知AC=1、BE=1、S矩形BDOE=4.则S△ACD=.【解析】过点A作AH⊥x轴于点H,交BD于点F,则四边形ACOH和四边形ACDF均为矩形,如图:∵S矩形BDOE=4,反比例函数y=(x>0)经过B点,∴k=4,∴S矩形ACOH=4,∵AC=1,∴OC=4÷1=4,∴CD=OC﹣OD=OC﹣BE=4﹣1=3,∴S矩形ACDF=1×3=3,∴S△ACD=,故答案为:.14.若关于x的分式方程+=2m有增根,则m的值为1.【解析】方程两边都乘x﹣2,得x﹣2m=2m(x﹣2),∵原方程有增根,∴最简公分母x﹣2=0,解得x=2,当x=2时,m=1,故m的值是1,故答案为1.15.如图,等边三角形ABC内有一点P,分別连结AP、BP、CP,若AP=6,BP=8,CP =10.则S△ABP+S△BPC=24+16.【解析】如图,将△BPC绕点B逆时针旋转60°后得△AP'B,连接PP′,根据旋转的性质可知,旋转角∠PBP′=∠CAB=60°,BP=BP′,∴△BPP′为等边三角形,∴BP′=BP=8=PP';由旋转的性质可知,AP′=PC=10,在△BPP′中,PP′=8,AP=6,由勾股定理的逆定理得,△APP′是直角三角形,∴S△ABP+S△BPC=S四边形AP'BP=S△BP'B+S△AP'P=BP2+×PP'×AP=24+16,故答案为:24+16.三、解答题(本大题共11个小题,共90分)16.(5分)计算(﹣)2+(3﹣π)0+|﹣2|+2sin60°﹣.解:原式=.17.(5分)已知实数x、y满足+y2﹣4y+4=0,求代数式•÷的值.解:•÷=••=,∵+y2﹣4y+4=0,∴+(y﹣2)2=0,∴x=3,y=2,∴原式==.18.(8分)如图,等腰直角三角板如图放置.直角顶点C在直线m上,分别过点A、B作AE⊥直线m于点E,BD⊥直线m于点D.①求证:EC=BD;②若设△AEC三边分别为a、b、c,利用此图证明勾股定理.①证明:∵∠ACB=90°,∴∠ACE+∠BCD=90°.∵∠ACE+∠CAE=90°,∴∠CAE=∠BCD.在△AEC与△BCD中,∴△CAE≌△BCD(AAS).∴EC=BD;②解:由①知:BD=CE=a,CD=AE=b,∴S梯形AEDB=(a+b)(a+b)=a2+ab+b2.又∵S梯形AEDB=S△AEC+S△BCD+S△ABC=ab+ab+c2=ab+c2.∴a2+ab+b2=ab+c2.整理,得a2+b2=c2.19.(8分)△ABC在边长为l的正方形网格中如图所示.①以点C为位似中心,作出△ABC的位似图形△A1B1C,使其位似比为1:2.且△A1B1C位于点C的异侧,并表示出A1的坐标.②作出△ABC绕点C顺时针旋转90°后的图形△A2B2C.③在②的条件下求出点B经过的路径长.解:①如图,△A1B1C为所作,点A1的坐标为(3,﹣3);②如图,△A2B2C为所作;③OB==,点B经过的路径长==π.20.(8分)在“扶贫攻坚”活动中,某单位计划选购甲、乙两种物品慰问贫困户.已知甲物品的单价比乙物品的单价高10元,若用500元单独购买甲物品与450元单独购买乙物品的数量相同.①请问甲、乙两种物品的单价各为多少?②如果该单位计划购买甲、乙两种物品共55件,总费用不少于5000元且不超过5050元,通过计算得出共有几种选购方案?解:①设乙种物品单价为x元,则甲种物品单价为(x+10)元,由题意得:=,解得x=90,经检验,x=90符合题意,∴甲种物品的单价为100元,乙种物品的单价为90元.②设购买甲种物品y件,则乙种物品购进(55﹣y)件,由题意得:5000≤100y+90(55﹣y)≤5050,解得5≤y≤10,∴共有6种选购方案.21.(10分)如图表示的是某班部分同学衣服上口袋的数目.①从图中给出的信息得到学生衣服上口袋数目的中位数为4,众数为4.②根据如图信息,在给出的图表中绘制频数条形统计图,由此估计该班学生衣服上口袋数目为5≤x<7的概率.解:①由图可知,学生衣服上口袋的数目分别为:3,4,2,6,5,5,3,1,4,2,4,6,10,7,1,4,5,6,2,10,3.按从小到大的顺序排列为:1,1,2,2,2,3,3,3,4,4,4,4,5,5,5,6,6,6,7,10,10.故中位数为4,众数为4,故答案为4,4.(2)条形图如图所示:估计该班学生衣服上口袋数目为5≤x<7的概率==.22.(8分)已知关于x的一元二次方程x2+(2m+1)x+m2﹣1=0有两不相等的实数根.①求m的取值范围.②设x1,x2是方程的两根且x12+x22+x1x2﹣17=0,求m的值.解:①根据题意得:△=(2m+1)2﹣4(m2﹣1)>0,解得:m,②根据题意得:x1+x2=﹣(2m+1),x1x2=m2﹣1,x12+x22+x1x2﹣17=﹣x1x2﹣17=(2m+1)2﹣(m2﹣1)﹣17=0,解得:m1=,m2=﹣3(不合题意,舍去),∴m的值为.23.(8分)某区域平面示意图如图所示,点D在河的右侧,红军路AB与某桥BC互相垂直.某校“数学兴趣小组”在“研学旅行”活动中,在C处测得点D位于西北方向,又在A处测得点D位于南偏东65°方向,另测得BC=414m,AB=300m,求出点D到AB的距离.(参考数据sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)解:如图,过点D作DE⊥AB于E,过D作DF⊥BC于F,则四边形EBFD是矩形,设DE=x,在Rt△ADE中,∠AED=90°,∵tan∠DAE=,∴AE==,∴BE=300﹣,又BF=DE=x,∴CF=414﹣x,在Rt△CDF中,∠DFC=90°,∠DCF=45°,∴DF=CF=414﹣x,又BE=CF,即:300﹣=414﹣x,解得:x=214,故:点D到AB的距离是214m.24.(8分)如图,一次函数y1=k1x+b(k1、b为常数,k1≠0)的图象与反比例函数y2=(k2≠0,x>0)的图象交于点A(m,8)与点B(4,2).①求一次函数与反比例函数的解析式.②根据图象说明,当x为何值时,k1x+b﹣<0.解:①把点B(4,2)代入反比例函数y2=(k2≠0,x>0)得,k2=4×2=8,∴反比例函数的解析式为y2=,将点A(m,8)代入y2得,8=,解得m=1,∴A(1,8),将A、B的坐标代入y1=k1x+b(k1、b为常数,k1≠0)得,解得,∴一次函数的解析式为y1=﹣2x+10;②由图象可知:当0<x<1或x>4时,y1<y2,即k1x+b﹣<0.25.(10分)如图,在菱形ABCD中,连结BD、AC交于点O,过点O作OH⊥BC于点H,以点O为圆心,OH为半径的半圆交AC于点M.①求证:DC是⊙O的切线.②若AC=4MC且AC=8,求图中阴影部分的面积.③在②的条件下,P是线段BD上的一动点,当PD为何值时,PH+PM的值最小,并求出最小值.解:①过点O作OG⊥CD,垂足为G,在菱形ABCD中,AC是对角线,则AC平分∠BCD,∵OH⊥BC,OG⊥CD,∴OH=OG,∴OH、OG都为圆的半径,即DC是⊙O的切线;②∵AC=4MC且AC=8,∴OC=2MC=4,MC=OM=2,∴OH=2,在直角三角形OHC中,HO=CO,∴∠OCH=30°,∠COH=60°,∴HC=,S阴影=S△OCH﹣S扇形OHM=CH•OH﹣OH2=2﹣;③作M关于BD的对称点N,连接HN交BD于点P,∵PM=NP,∴PH+PM=PH+PN=HN,此时PH+PM最小,∵ON=OM=OH,∠MOH=60°,∴∠MNH=30°,∴∠MNH=∠HCM,∴HN=HC=2,即:PH+PM的最小值为2,在Rt△NPO中,OP=ON tan30°=,在Rt△COD中,OD=OC tan30°=,则PD=OP+OD=2.26.(12分)如图,抛物线y=ax2+bx﹣5(a≠0)经过x轴上的点A(1,0)和点B及y轴上的点C,经过B、C两点的直线为y=x+n.①求抛物线的解析式.②点P从A出发,在线段AB上以每秒1个单位的速度向B运动,同时点E从B出发,在线段BC上以每秒2个单位的速度向C运动.当其中一个点到达终点时,另一点也停止运动.设运动时间为t秒,求t为何值时,△PBE的面积最大并求出最大值.③过点A作AM⊥BC于点M,过抛物线上一动点N(不与点B、C重合)作直线AM的平行线交直线BC于点Q.若点A、M、N、Q为顶点的四边形是平行四边形,求点N的横坐标.解:①∵点B、C在直线为y=x+n上,∴B(﹣n,0)、C(0,n),∵点A(1,0)在抛物线上,∴,∴a=﹣1,b=6,∴抛物线解析式:y=﹣x2+6x﹣5;②由题意,得,PB=4﹣t,BE=2t,由①知,∠OBC=45°,∴点P到BC的高h为BP sin45°=(4﹣t),∴S△PBE=BE•h==,当t=2时,△PBE的面积最大,最大值为2;③由①知,BC所在直线为:y=x﹣5,∴点A到直线BC的距离d=2,过点N作x轴的垂线交直线BC于点P,交x轴于点H.设N(m,﹣m2+6m﹣5),则H(m,0)、P(m,m﹣5),易证△PQN为等腰直角三角形,即NQ=PQ=2,∴PN=4,Ⅰ.NH+HP=4,∴﹣m2+6m﹣5﹣(m﹣5)=4解得m1=1,m2=4,∵点A、M、N、Q为顶点的四边形是平行四边形,∴m=4;Ⅱ.NH+HP=4,∴m﹣5﹣(﹣m2+6m﹣5)=4解得m1=,m2=,∵点A、M、N、Q为顶点的四边形是平行四边形,m>5,∴m=,Ⅲ.NH﹣HP=4,∴﹣(﹣m2+6m﹣5)﹣[﹣(m﹣5)]=4,解得m1=,m2=,∵点A、M、N、Q为顶点的四边形是平行四边形,m<0,∴m=,综上所述,若点A、M、N、Q为顶点的四边形是平行四边形,点N的横坐标为:4或或.。

2019年四川省宜宾市中考数学试题(解析版)

2019年四川省宜宾市中考数学试题(解析版)

2019年四川省宜宾市中考数学试卷一、选择题:(本大题共8小题,每小题3分,共24分)在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项填涂在答题卡对应题目上。

1.(3分)2的倒数是()A .B .﹣2C .D .2.(3分)人体中枢神经系统中约含有1千亿个神经元,某种神经元的直径约为52微米,52微米为0.000052米.将0.000052用科学记数法表示为()A .5.2×10﹣6B .5.2×10﹣5C .52×10﹣6D .52×10﹣53.(3分)如图,四边形ABCD 是边长为5的正方形,E 是DC 上一点,DE =1,将△ADE 绕着点A 顺时针旋转到与△ABF 重合,则EF =()A .B .2C .5D .24.(3分)一元二次方程x ﹣2x +b =0的两根分别为x 1和x 2,则x 1+x 2为()A .﹣2B .bC .2D .﹣b5.(3分)已知一个组合体是由几个相同的正方体叠合在一起组成,该组合体的主视图与俯视图如图所示,则该组合体中正方体的个数最多是()A .10B .9C .8D .76.(3分)如表记录了两位射击运动员的八次训练成绩:次数环数运动员甲乙1010757588、898998甲第1次第2次第3次第4次第5次第6次第7次第8次7102根据以上数据,设甲、乙的平均数分别为,甲、乙的方差分别为s,s乙2,则下列结论正确的是()A .C .=>,s 甲<s 乙,s 甲<s 乙2222B .D .=<,s 甲>s 乙,s 甲<s 乙22227.(3分)如图,∠EOF 的顶点O 是边长为2的等边△ABC 的重心,∠EOF 的两边与△ABC 的边交于E ,F ,∠EOF =120°,则∠EOF 与△ABC 的边所围成阴影部分的面积是()A .B .2C .D .8.(3分)已知抛物线y =x ﹣1与y 轴交于点A ,与直线y =kx (k 为任意实数)相交于B ,C 两点,则下列结论不正确的是()A .存在实数k ,使得△ABC 为等腰三角形B .存在实数k ,使得△ABC 的内角中有两角分别为30°和60°C .任意实数k ,使得△ABC 都为直角三角形D .存在实数k ,使得△ABC 为等边三角形二、填空题:(本大题共8小题,每小题3分,共24分)请把答案直接填在答题卡对应题中横上。

(精品考题)四川省成都市中考数学押题卷(含解析)

(精品考题)四川省成都市中考数学押题卷(含解析)

2019年四川省成都市中考数学押题试卷一.选择题(共10小题,每小题3分,满分30分)1.迁安市某天的最低气温为零下9℃,最高气温为零上3℃,则这一天的温差为( )A.6℃B.﹣6℃C.12℃D.﹣12C2.如果y=+2,那么(﹣x)y的值为( )A.1 B.﹣1 C.±1 D.03.下面是小明同学做的四道题:①3m+2m=5m;②5x﹣4x=1;③﹣p2﹣2p2=﹣3p2;④3+x=3x.你认为他做正确了( )A.1道B.2道C.3道D.4道4.2018年10月24日港珠澳大桥全线通车,港珠澳大桥东起香港国际机场附近的香港口岸人工岛,向西横跨伶仃洋海域后连接珠海和澳门人工岛,止于珠海洪湾,它是世界上最长的跨海大桥,被称为“新世界七大奇迹之一”,港珠澳大桥总长度55000米,则数据55000用科学记数法表示为( )A.55×105B.5.5×104C.0.55×105D.5.5×1055.在下列网格中,小正方形的边长为1,点A、B、O都在格点上,则∠A的正弦值是( )A.B.C.D.6.点M(1,2)关于y轴对称点的坐标为( )A.(﹣1,2)B.(﹣1,﹣2)C.(1,﹣2)D.(2,﹣1)7.如图,是某个几何体从不同方向看到的形状图(视图),这个几何体的表面能展开成下面的哪个平面图形?( )A .B .C .D .8.某车间需加工一批零件,车间20名工人每天加工零件数如表所示: 每天加工零件数4 5 6 7 8人数 3 6 5 4 2 每天加工零件数的中位数和众数为( )A .6,5B .6,6C .5,5D .5,69.菱形的两条对角线长分别为6,8,则它的周长是( )A .5B .10C .20D .2410.如图,正方形ABCD 和正△AEF 都内接于⊙O ,EF 与BC 、CD 分别相交于点G 、H .若AE =3,则EG 的长为( )A .B .C .D .二.填空题(共4小题,每小题4分,满分16分)11.若m +n =1,mn =2,则的值为 .12.二次函数y =2(x +3)2﹣4的最小值为 .13.如图,在Rt △ABC 中,∠ACB =90°,∠B =30°,AC =2,E为斜边AB的中点,点P 是射线BC上的一个动点,连接AP 、PE ,将△AEP 沿着边PE 折叠,折叠后得到△EPA ′,当折叠后△EPA ′与△BEP 的重叠部分的面积恰好为△ABP 面积的四分之一,则此时BP 的长为 .14.如图,点P在反比例函数y=(x<0)的图象上,过P分别作x轴、y轴的垂线,垂足分别为点A、B.已知矩形PAOB的面积为8,则k= .三.解答题(共6小题,满分54分)15.(12分)(1)计算:(2)解方程组:16.(6分)如图所示,在菱形ABCD中,AC是对角线,CD=CE,连接DE.(1)若AC=16,CD=10,求DE的长.(2)G是BC上一点,若GC=GF=CH且CH⊥GF,垂足为P,求证: DH=CF.17.(8分)某数学社团成员想利用所学的知识测量某广告牌的宽度(图中线段MN的长),直线MN 垂直于地面,垂足为点P.在地面A处测得点M的仰角为58°、点N的仰角为45°,在B处测得点M的仰角为31°,AB=5米,且A、B、P三点在一直线上.请根据以上数据求广告牌的宽MN 的长.(参考数据:sin58°=0.85,cos58°=0.53,tan58°=1.60,sin31°=0.52,cos31°=0.86,tan31°=0.60.)18.(8分)某中学为了了解学生每周在校体育锻炼时间,在本校随机抽取了若干名学生进行调查,并依据调查结果绘制了以下不完整的统计图表,请根据图表信息解答下列问题:时间(小时) 频数(人数) 频率2≤t<3 4 0.13≤t<4 10 0.254≤t<5 a0.155≤t<6 8 b6≤t<7 12 0.3合计40 1(1)表中的a= ,b= ;(2)请将频数分布直方图补全;(3)若该校共有1200名学生,试估计全校每周在校参加体育锻炼时间至少有4小时的学生约为多少名?19.(10分)如图,在平面直角坐标系中,点P(1,4),Q(m,n)在反比例函数y=(x>0)的图象上,当m>1时,过点P分别作x轴、y轴的垂线,垂足为点A,B;过点Q分别作x轴、y 轴的垂线,垂足为点C,D,QD交PA于点E.(1)求该反比例函数的解析式;(2)用只含n的代数式表示四边形ACQE的面积;(3)随着m的增大,四边形ACQE的面积如何变化?20.(10分)如图,四边形ABCD内接于⊙O.AC为直径,AC、BD交于E,=.(1)求证:AD+CD=BD;(2)过B作AD的平行线,交AC于F,求证:EA2+CF2=EF2;(3)在(2)条件下过E,F分别作AB、BC的垂线垂足分别为G、H,连GH、BO交于M,若AG=3,S四边形AGMO:S四边形CHMO=8:9,求⊙O半径.四.填空题(共5小题,满分20分,每小题4分)21.设α,β是方程x2﹣x﹣2019=0的两个实数根,则α3﹣2021α﹣β的值为 ;22.在一个不透明的口袋中装有除颜色外其它都相同的3个红球和2个黄球,任意从口袋中摸出两个球,摸到一个红球和一个黄球的概率为 .23.某景区有一复古建筑,其窗户的设计如图所示.圆O的圆心与矩形的对角线交点重合,且圆与矩形上下两边相切(切点为E)与AD交于F,G两点,图中阴影部分为不透光区域,其余部分为透光区域,已知圆的半径为2.若∠EOF=45°,则窗户的透光率为 .24.△ABC是等腰三角形,腰上的高为8cm,面积为40cm2,则该三角形的周长是 cm.25.如图1,点E,F,G分别是等边三角形ABC三边AB,BC,CA上的动点,且始终保持AE=BF=CG,设△EFG的面积为y,AE的长为x,y关于x的函数图象大致为图2所示,则等边三角形ABC 的边长为 .五.解答题(共3小题,满分30分)26.(8分)某商店销售A型和B型两种电器,若销售A型电器20台,B型电器10台可获利13000元,若销售A型电器25台,B型电器5台可获利12500元.(1)求销售A型和B型两种电器各获利多少元?(2)该商店计划一次性购进两种型号的电器共100台,其中B型电器的进货量不超过A型电器的2倍,该商店购进A型、B型电器各多少台,才能使销售总利润最大,最大利润是多少?(3)实际进货时,厂家对A型电器出厂价下调a(0<a<200)元,且限定商店最多购进A型电器60台,若商店保持同种电器的售价不变,请你根据以上信息,设计出使这100台电器销售总利润最大的进货方案.27.(10分)如图1在直线BCE的同一侧作两个正方形ABCD与CEFG,连接BG与DE.(1)请证明下列结论:①BG=DE;②直线BG与直线DE之间的夹角为90°;③直线BG与直线DE 相交于点O,连接OC,则OC平分∠BOE;(2)正方形CEFG旋转到如图2的位置,则(1)中的结论是否依然正确?(3)当正方形CEFG旋转到如图3的位置时,(1)中的结论是否依然正确?28.(12分)如图1,在平面直角坐标系中,点O为坐标原点,抛物线y=ax2+bx+5与x轴交于A,点B,与y轴交于点C,过点C作CD⊥y轴交抛物线于点D,过点B作BE⊥x轴,交DC延长线于点E,连接BD,交y轴于点F,直线BD的解析式为y=﹣x+2.(1)点E的坐标为 ;抛物线的解析式为 .(2)如图2,点P在线段EB上从点E向点B以1个单位长度/秒的速度运动,同时,点Q在线段BD上从点B向点D以个单位长度/秒的速度运动,当一个点到达终点时,另一个点随之停止运动,当t为何值时,△PQB为直角三角形?(3)如图3,过点B的直线BG交抛物线于点G,且tan∠ABG=,点M为直线BG上方抛物线上一点,过点M作MH⊥BG,垂足为H,若HF=MF,请直接写出满足条件的点M的坐标.2019年四川省成都市中考数学押题试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.【分析】根据温差是指某天的最高气温与最低气温的差可求解.【解答】解:∵最低气温为零下9℃,最高气温为零上3℃,∴温差为12°故选:C.【点评】本题考查了有理数的减法,熟练掌握有理数的减法法则是解决问题的关键.2.【分析】直接利用二次根式的性质得出x,y的值,进而得出答案.【解答】解:∵y=+2,∴1﹣x≥0,x﹣1≥0,解得:x=1,故y=2,则(﹣1)2=1.故选:A.【点评】此题主要考查了二次根式有意义的条件,正确得出x的值是解题关键.3.【分析】根据合并同类项解答即可.【解答】解:①3m+2m=5m,正确;②5x﹣4x=x,错误;③﹣p2﹣2p2=﹣3p2,正确;④3+x不能合并,错误;故选:B.【点评】此题考查合并同类项,关键是根据合并同类项计算.4.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将数据55000用科学记数法表示为5.5×104.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.【分析】根据勾股定理求出OA,根据正弦的定义解答即可.【解答】解:由题意得,OC=2,AC=4,由勾股定理得,AO==2,∴sin A==,故选:A.【点评】本题考查的是锐角三角函数的定义,在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.6.【分析】根据关于y轴对称的点,纵坐标相同,横坐标互为相反数解答.【解答】解:点M(1,2)关于y轴对称点的坐标为(﹣1,2).故选:A.【点评】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.7.【分析】由主视图和左视图可得此几何体为柱体,根据俯视图是圆可判断出此几何体为圆柱,进一步由展开图的特征选择答案即可.【解答】解:∵主视图和左视图都是长方形,∴此几何体为柱体,∵俯视图是一个圆,∴此几何体为圆柱,因此图A是圆柱的展开图.故选:A.【点评】此题由三视图判断几何体,用到的知识点为:三视图里有两个相同可确定该几何体是柱体,锥体还是球体,由另一个视图确定其具体形状.8.【分析】根据众数、中位数的定义分别进行解答即可.【解答】解:由表知数据5出现了6次,次数最多,所以众数为5;因为共有20个数据,所以中位数为第10、11个数据的平均数,即中位数为=6,故选:A.【点评】本题考查了众数和中位数的定义.用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.9.【分析】根据菱形的性质即可求出答案.【解答】解:由于菱形的两条对角线的长为6和8,∴菱形的边长为:=5,∴菱形的周长为:4×5=20,故选:C.【点评】本题考查菱形的性质,解题的关键是熟练运用菱形的性质,本题属于基础题型.10.【分析】首先设⊙O的半径是r,则OF=r,根据AO是∠EAF的平分线,求出∠COF=60°,在Rt△OIF中,求出FI的值是多少;然后判断出OI、CI的关系,再根据GH∥BD,求出GH的值是多少,即可求EG的值.【解答】解:如图,连接AC、BD、OF,,设⊙O的半径是r,则OF=OA=r,∵AO是∠EAF的平分线,∴∠OAF=60°÷2=30°,AC⊥EF,EG=EF=∵OA=OF,∴∠OFA=∠OAF=30°,∴∠COF=30°+30°=60°,∴FI=r•sin60°=r,∴EF=r×2=r=AE=3,∴r=∴OI=,∴CI=OC﹣OI=,∵EF⊥AC,∠BCA=45°∴∠IGC=∠BCI=45°∴CI=GI=∴EG=EI﹣GI=故选:B.【点评】本题考查了三角形的外接圆和外心,等边三角形的性质,正方形的性质,要熟练掌握,解答此题的关键是要明确正多边形的有关概念.二.填空题(共4小题,满分16分,每小题4分)11.【分析】原式通分并利用同分母分式的加法法则计算,将m+n与mn的值代入计算即可求出值.【解答】解:∵m+n=1,mn=2,∴原式==.故答案为:【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.12.【分析】根据顶点式,可直接得到.【解答】解:二次函数y=2(x+3)2﹣4中当x=﹣3时,取得最小值﹣4,故答案为﹣4.【点评】本题考查二次函数的基本性质,解题的关键是正确掌握二次函数的顶点式,若题目给出是一般式则需进行配方化为顶点式或者直接运用顶点公式.13.【分析】根据30°角所对的直角边等于斜边的一半可求出AB,即可得到AE的值,然后根据勾股定理求出BC.①若PA′与AB交于点F,连接A′B,如图1,易得S△EFP=S△BEP=S△A′EP,即可得到EF=BE=BF,PF=A′P=A′F.从而可得四边形A′EPB是平行四边形,即可得到BP =A′E,从而可求出BP;②若EA′与BC交于点G,连接AA′,交EP与H,如图2,同理可得GP=BG,EG=EA′=1,根据三角形中位线定理可得AP=2=AC,此时点P与点C重合(BP=BC),从而可求出BP.【解答】解:∵∠ACB=90°,∠B=30°,AC=2,E为斜边AB的中点,∴AB=4,AE=AB=2,BC=2.①若PA′与AB交于点F,连接A′B,如图1.由折叠可得S△A′EP=S△AEP,A′E=AE=2,.∵点E是AB的中点,∴S△BEP=S△AEP=S△ABP.由题可得S△EFP=S△ABP,∴S△EFP=S△BEP=S△AEP=S△A′EP,∴EF=BE=BF,PF=A′P=A′F.∴四边形A′EPB是平行四边形,∴BP=A′E=2;②若EA′与BC交于点G,连接AA′,交EP与H,如图2..同理可得GP=BP=BG,EG=EA′=×2=1.∵BE=AE,∴EG=AP=1,∴AP=2=AC,∴点P与点C重合,∴BP=BC=2.故答案为2或2.【点评】本题主要考查了轴对称的性质、30°角所对的直角边等于斜边的一半、勾股定理、平行四边形的判定与性质、等高三角形的面积比等于底的比、三角形中位线定理等知识,运用分类讨论的思想是解决本题的关键.14.【分析】根据反比例函数k的几何意义可得|k|=﹣8,再根据图象在二、四象限可确定k<0,进而得到解析式.【解答】解:∵S矩形PAOB=8,∴|k|=8,∵图象在二、四象限,∴k<0,∴k=﹣8,故答案为:﹣8.【点评】本题考查反比例函数系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|.本知识点是中考的重要考点,同学们应高度关注.三.解答题(共6小题,满分54分)15.【分析】(1)根据特殊角的三角函数值,负整数指数幂的定义,零指数幂的定义,变形为实数的运算,计算求值即可,(2)利用代入消元法解之即可.【解答】解:(1)cos45°﹣+20190=﹣3+1=1﹣3+1=﹣1,(2),把①代入②得:2(y+5)﹣y=8,解得:y=﹣2,把y=﹣2代入①得:x=﹣2+5=3,即原方程组的解为:.【点评】本题考查了解二元一次方程组,实数的运算,零指数幂,负整数指数幂,特殊角的三角函数值,解题的关键:(1)特殊角的三角函数值,负整数指数幂的定义,零指数幂的定义,实数的运算,(2)正确掌握代入消元法.16.【分析】(1)连接BD交AC于K.想办法求出DK,EK,利用勾股定理即可解决问题.(2)证明:过H作HQ⊥CD于Q,过G作GJ⊥CD于J.想办法证明∠CDH=∠HGJ=45°,可得DH =QH解决问题.【解答】(1)解:连接BD交AC于K.∵四边形ABCD是菱形,∴AC⊥BD,AK=CK=8,在Rt△AKD中,DK==6,∵CD=CE,∴EK=CE﹣CK=10﹣8=2,在Rt△DKE中,DE==2.(2)证明:过H作HQ⊥CD于Q,过G作GJ⊥CD于J.∵CH⊥GF,∴∠GJF=∠CQH=∠GPC=90°,∴∠QCH=∠JGF,∵CH=GF,∴△CQH≌△GJF(AAS),∴QH=CJ,∵GC=GF,∴∠QCH=∠JGF=∠CGJ,CJ=FJ=CF,∵GC=CH,∴∠CHG=∠CGH,∴∠CDH+∠QCH=∠HGJ+∠CGJ,∴∠CDH=∠HGJ,∵∠GJF=∠CQH=∠GPC=90°,∴∠CDH=∠HGJ=45°,∴DH=QH,∴DH=2QH=CF.【点评】本题考查菱形的性质,解直角三角形,等腰直角三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.17.【分析】在Rt△APN中根据已知条件得到PA=PN,设PA=PN=x,得到MP=AP•tan∠MAP=1.6x,根据三角函数的定义列方程即可得到结论.【解答】解:在Rt△APN中,∠NAP=45°,∴PA=PN,在Rt△APM中,tan∠MAP=,设PA=PN=x,∵∠MAP=58°,∴MP=AP•tan∠MAP=1.6x,在Rt△BPM中,tan∠MBP=,∵∠MBP=31°,AB=5,∴0.6=,∴x=3,∴MN=MP﹣NP=0.6x=1.8(米),答:广告牌的宽MN的长为1.8米.【点评】此题主要考查了解直角三角形的应用﹣仰角俯角问题,根据已知直角三角形得出AP的长是解题关键.18.【分析】(1)根据题意列式计算即可;(2)根据b的值画出直方图即可;(3)利用样本估计总体的思想解决问题即可;【解答】解:(1)总人数=4÷0.1=40,∴a=40×0.15=6,b==0.2;故答案为6,0.2(2)频数分布直方图如图所示:(3)由题意得,估计全校每周在校参加体育锻炼时间至少有4小时的学生约为1200×(0.15+0.2+0.3)=780名.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.19.【分析】(1)首先利用m和n表示出AC和CQ的长,则四边形ACQE的面积即可利用m、n表示,于是得到结论;(2)根据矩形的面积公式即可得到结论;(3)根据函数的性质判断即可.【解答】解:(1)AC=m﹣1,CQ=n,则S四边形ACQE=AC•CQ=(m﹣1)n=mn﹣n.∵P(1,4)、Q(m,n)在函数y=(x>0)的图象上,∴mn=k=4(常数).∴该反比例函数的解析式为:y=;(2)∴S四边形ACQE=AC•CQ=4﹣n;(3)∵当m>1时,n随m的增大而减小,∴S四边形ACQE=4﹣n随m的增大而增大.【点评】本题考查了反比例函数的性质以及矩形的面积的计算,利用n表示出四边形ACQE的面积是关键.20.【分析】(1)延长DA至W,使AW=CD,连接WB,证△BCD和△BAW全等,得到△WBD是等腰直角三角形,然后推出结论;(2)过B作BE的垂线BN,使BN=BE,连接NC,分别证△AEB和△CNB全等,△BFE和△BFN全等,将EA,CF,EF三条线段转化为直角三角形的三边,即可推出结论;(3)延长GE,HF交于K,通过大量的面积法的运用,将AE,CF,EF三条线段用含相同的字母表示出来,再根据第二问的结论求出相关字母的值,再求出AB的值,进一步求出⊙O半径.【解答】解:(1)延长DA至W,使AW=CD,连接WB,∵=,∴∠ADB=∠CDB=45°,AB=BC,∵四边形ABCD内接于⊙O.∴∠BAD+∠BCD=180°,∵∠BAD+∠WAB=180°,∴∠BCD=∠WAB,在△BCD和△BAW中,,∴△BCD≌△BAW(SAS),∴BW=BD,∴△WBD是等腰直角三角形,∴AD+DC=DW=BD;(2)如图2,设∠ABE=α,∠CBF=β,则α+β=45°,过B作BE的垂线BN,使BN=BE,连接NC,在△AEB和△CNB中,,∴△AEB≌△CNB(SAS),∴AE=CN,∠BCN=∠BAE=45°,∴∠FCN=90°,∵∠FBN=α+β=∠FBE,BE=BN,BF=BF,∴△BFE≌△BFN,∴EF=FN,∵在Rt△NFC中,CF2+CN2=NF2,∴EA2+CF2=EF2;(3)如图3,延长GE,HF交于K,由(2)得EA2+CF2=EF2,∴EA2+CF2=EF2,∴S△AGE+S△CFH=S△EFK,∴S△AGE+S△CFH+S五边形BGEFH=S△EFK+S五边形BGEFH,即S△ABC=S矩形BGKH,∴S△ABC=S矩形BGKH,∴S△GBH=S△ABO=S△CBO,∴S△BGM=S四边形COMH,S△BMH=S四边形AGMO,∵S四边形AGMO:S四边形COMH=8:9,∴S△BMH:S△BGM=8:9,∵BM平分∠GBH,∴BG:BH=9:8,设BG=9k,BH=8k,∴CH=3+k,∴AE=3,CF=(k+3),EF=(8k﹣3),∴(3)2+[(k+3)]2=[(8k﹣3)]2,整理,得7k2﹣6k﹣1=0,解得:k1=﹣(舍去),k2=1,∴AB=12,∴AO=AB=6,∴⊙O半径为6.【点评】本题考查了图形的旋转,三角形的全等,勾股定理,面积法的运用等,综合性非常强,尤其是第(3)问,解题的关键是数学综合能力要非常强.四.填空题(共5小题,满分20分,每小题4分)21.【分析】根据一元二次方程跟与系数的关系,结合“α,β是方程x2﹣x﹣2019=0的两个实数根”,得到α+β的值,代入α3﹣2021α﹣β,再把α代入方程x2﹣x﹣2019=0,经过整理变化,即可得到答案.【解答】解:根据题意得:α+β=1,α3﹣2021α﹣β=α(α2﹣2020)﹣(α+β)=α(α2﹣2020)﹣1,∵α2﹣α﹣2019=0,∴α2﹣2020=α﹣1,把α2﹣2020=α﹣1代入原式得:原式=α(α﹣1)﹣1=α2﹣α﹣1=2019﹣1=2018.【点评】本题考查了根与系数的关系,正确掌握一元二次方程根与系数的关系是解题的关键.22.【分析】根据题意可以用树状图法写出所有的可能性,从而可以求得到一个红球和一个黄球的概率.【解答】解:由题意可得,则摸到一个红球和一个黄球的概率为:=,故答案为:.【点评】本题考查列表法和树状图法,解答本题的关键是明确题意,求出相应的概率.23.【分析】把透光部分看作是两个直角三角形与四个45°的扇形的组合体,其和就是透光的面积,再计算矩形的面积,相比可得结果.【解答】解:设⊙O与矩形ABCD的另一个切M,连接OM、OG,则M、O、E共线,由题意得:∠MOG=∠EOF=45°,∴∠FOG=90°,且OF=OG=2,∴S透明区域=,过O作ON⊥AD于N,∴ON=FG=,∴AB=2ON=2×=2,∴S矩形=,∴,故答案为:.【点评】本题考查了矩形的性质、扇形的面积、直角三角形的面积,将透光部分化分为几个熟知图形的面积是解题的关键.24.【分析】先根据三角形面积公式求出腰长,设AE=xcm,则BC=cm,BE=cm,在Rt△ACE 中,根据勾股定理求出x,进一步得到BC,从而得到该三角形的周长,即可求解.【解答】解:腰长为40×2÷8=10(cm),如图1,等腰三角形顶角是锐角,如图2,等腰三角形顶角是钝角,设AE=x,则BC=,BE=,在Rt△ACE中,x2+()2=102,解得x=±4(负值舍去)或x=±2(负值舍去),∴BC=4或8,∴该三角形的周长是(20+4)或(20+8)cm.故答案为:(20+4)或(20+8).【点评】考查了勾股定理,等腰三角形的性质,三角形面积,难点是根据勾股定理得到底边的长.25.【分析】设出等边三角形ABC边长和BE的长,表示等边三角形ABC的面积,讨论最值即可.【解答】解:设等边三角形ABC边长为a,则可知等边三角形ABC的面积为设BE=x,则BF=a﹣xS△BEF=易证△BEF≌△AGE≌△CFGy=﹣3()=当x=时,△EFG的面积为最小.此时,等边△EFG的面积为,则边长为1EF是等边三角形ABC的中位线,则AC=2故答案为:2【点评】本题是动点函数图象问题,考查了等边三角形的性质及判断.解答时要注意通过设出未知量构造数学模型.五.解答题(共3小题,满分30分)26.【分析】(1)根据销售A型电器20台,B型电器10台可获利13000元,销售A型电器25台,B型电器5台可获利12500元可以列出相应的二元一次方程组,从而可以解答本题;(2)根据题意可以得到利润和甲种型号电器之间的函数关系式,然后根据一次函数的性质解答本题;(3)根据题意,利用分类讨论的方法可以解答本题.【解答】解:(1)设销售A型和B型两种电器分别获利为a元/台,b元/台,,得,答:销售A型和B型两种电器分别获利为400元/台,500元/台;(2)设销售利润为W元,购进A种型号电器x台,W=400x+500(100﹣x)=﹣100x+50000,∵B型电器的进货量不超过A型电器的2倍,∴100﹣x≤2x,解得,x≥,∵x为整数,∴当x=34时,W取得最大值,此时W=﹣100×34+50000=46600,100﹣x=66,答:该商店购进A型、B型电器分别为34台、66台,才能使销售总利润最大,最大利润是46600元;(3)设利润为W元,购进A种型号电器x台,W=(400+a)x+500(100﹣x)=(a﹣100)x+50000,∵0<a<200,0≤x≤60,∴当100<a<200时,x=60时W取得最大值,此时W=60a+44000>50000,100﹣x=40;当a=100时,W=50000;当0<a<100时,x=0时,W取得最大值,此时W=5000,100﹣x=100;由上可得,当100<a<200时,购买A种型号的电器60台,B种型号的电器40台可获得最大利润;当a=100时,利润为定值50000,此时只要A种型号的电器不超过60台即可;当0<a<100时,购买A种型号电器0台,B种型号电器100台可获得最大利润.【点评】本题考查一次函数的应用、二元一次方程组的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用一次函数的性质和分类讨论的方法解答.27.【分析】(1)①由正方形的性质可得BC=CD,CE=CG,∠BCD=∠GCE=90°,可证△BCG≌△DCE,可得BG=DE;②由△BCG≌△DCE,可证BG⊥DE,即直线BG与直线DE之间的夹角为90°;③过点C作CM⊥BG于点M,作CN⊥DE于点N,由△BCG≌△DCE,可得S△BCG=S△DCE,可证CM=CN,根据角平分线的性质可得OC平分∠BOE;(2))由正方形的性质可得BC=CD,CE=CG,∠BCD=∠GCE=90°,可证△BCG≌△DCE,可得BG =DE,∠CDE=∠CBG,可证BG⊥DE,即直线BG与直线DE之间的夹角为90°,过点C作CM⊥BG 于点M,作CN⊥DE于点N,由△BCG≌△DCE,可得S△BCG=S△DCE,可证CM=CN,根据角平分线的性质可得OC平分∠BOE;(3)由正方形的性质可得BC=CD,CE=CG,∠BCD=∠GCE=90°,可证△BCG≌△DCE,可得BG =DE,∠CDE=∠CBG,可证BG⊥DE,即直线BG与直线DE之间的夹角为90°.由点C在∠BOE外部,可得OC平分∠BOE不成立.【解答】解:(1)①∵四边形ABCD,四边形CEFG都是正方形,∴BC=CD,CE=CG,∠BCD=∠GCE=90°,∴△BCG≌△DCE(SAS)∴BG=DE,∵△BCG≌△DCE,∴∠CBG=∠CDE,∵∠CDE+∠DEC=90°∴∠CBG+∠DEC=90°即∠DOG=90°∴BG⊥DE即直线BG与直线DE之间的夹角为90°.③如图,过点C作CM⊥BG于点M,作CN⊥DE于点N,∵△BCG≌△DCE,∴S△BCG=S△DCE,∴×BG×CM=×DE×CN,∴CM=CN,且CM⊥BG,CN⊥DE,∴CO平分∠BOE,(2)结论①②③仍然成立,理由如下:如图,连接CO,过点C作CM⊥BG于点M,作CN⊥DE于点N,∵四边形ABCD,四边形CEFG都是正方形,∴BC=CD,CE=CG,∠BCD=∠GCE=90°,∴∠BCG=∠DCE,∴△BCG≌△DCE(SAS)∴BG=DE,∠CBG=∠CDE,∵∠CBG+∠BHC=90°,且∠BHC=∠DHO,∴∠CDE+∠DHO=90°即∠DOG=90°∴BG⊥DE即直线BG与直线DE之间的夹角为90°.∵△BCG≌△DCE,∴S△BCG=S△DCE,∴×BG×CM=×DE×CN,∴CM=CN,且CM⊥BG,CN⊥DE,∴CO平分∠BOE,(3)结论①②成立,③不成立,如图,延长DE交BC于点H,交BG的延长线于点O,∵四边形ABCD,四边形CEFG都是正方形,∴BC=CD,CE=CG,∠BCD=∠GCE=90°,∴∠BCG=∠DCE,∴△BCG≌△DCE(SAS)∴BG=DE,∠CBG=∠CDE,∵∠CDE+∠CHD=90°,且∠BHO=∠DHC,∴∠CBG+∠BHO=90°即∠DOB=90°∴BG⊥DE即直线BG与直线DE之间的夹角为90°.∵点C在∠BOE外部,∴CO不平分∠BOE.【点评】本题是四边形综合题,考查了正方形的性质,全等三角形的判定和性质,三角形的外角性质,旋转的性质,关键是证出△BCG≌△DCE,主要训练学生的推理能力和观察图形的能力.28.【分析】(1)由待定系数法求点坐标及函数关系式;(2)根据题意,△DEB为等腰直角三角形,通过分类讨论PQB=90°或∠QPB=90°的情况求出满足条件t值;(3)延长MF交GB于K,由∠MHK=90°,HF=MF可推得HF=FK,即F为MK中点,设出M坐标,利用中点坐标性质,表示K点坐标,代入GB解析式,可求得点M坐标.【解答】解:(1)∵直线BD的解析式为y=﹣x+2∴点B坐标为(2,0)由抛物线解析式可知点C坐标为(0,5)∵CD⊥y,BE⊥x轴∴点D纵坐标为5,代入y=﹣x+2得到横坐标x=﹣3,点D坐标为(﹣3,5)则点E坐标为(2,5)将点D(﹣3,5)点B(2,0)代入y=ax2+bx+5解得∴抛物线解析式为:y=﹣x2﹣+5故答案为:(2,5),y=﹣x2﹣+5(2)由已知∠QBE=45°,PE=t,PB=5﹣t,QB=当∠QPB=90°时,△PQB为直角三角形.∵∠QBE=45°∴QB=∴解得t=当∠PQB=90°时,△PQB为直角三角形.△BPQ∽△BDE∴BQ•BD=BP•BE∴5(5﹣t)=解得:t=∴t=或时,△PQB为直角三角形.(3)由已知tan∠ABG=,且直线GB过B点则直线GB解析式为:y=延长MF交直线BG于点K∵HF=MF∴∠FMH=∠FHM∵MH⊥BG时∴∠FMH+∠MKH=90°∠FHK+∠FHM=90°∴∠FKH=∠FHK∴HF=KF∴F为MK中点设点M坐标为(x,﹣ x2﹣x+5)∵F(0,2)∴点K坐标为(﹣x, x2+x﹣1)把K点坐标代入入y=解得x1=0,x2=﹣4,把x=0代入y=﹣x2﹣+5,解得y=5,把x=﹣4代入y=﹣x2﹣+5解得y=3则点M坐标为(﹣4,3)或(0,5).【点评】本题为代数几何综合题,考查了二次函数性质、一次函数性质、三角形相似以及直角三角形的性质,应用了分类讨论和数形结合思想。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档