传感器应用9章-仪表

合集下载

传感器题库及答案

传感器题库及答案

第一章 检测技术的基本概念一、填空题:1、传感器有 、 、 组成2、传感器的灵敏度是指稳态标准条件下,输出 与输入 的比值。

3、从输出曲线看,曲线越陡,灵敏度 。

4、下面公式是计算传感器的 。

9)-(1 %100minmax max L L ⨯-=y y Δγ 5、某位移传感器的输入变化量为5mm ,输出变化量为800mv ,其灵敏度为 。

二、 选择题:1、标准表的指示值100KPa ,甲乙两表的读书各为101.0 KPa 和99.5 KPa 。

它们的绝对误差为 。

A 1.0KPa 和-0.5KPaB 1.2、以下哪种误差不属于按误差数值表示 。

A 绝对误差B 相对误差C 随机误差D 引用误差3、 有一台测量仪表,其标尺范围0—500 KPa ,已知绝对误差最大值∆P max=4 KPa ,则该仪表的精度等级 。

A4、选购线性仪表时,必须在同一系列的仪表中选择适当的量程。

应选购的仪表量程为测量值的 倍。

A5、电工实验中,常用平衡电桥测量电阻的阻值,是属于 测量,而用水银温度计测量水温的微小变化,是属于 测量。

A 偏位式B 零位式C 微差式6、因精神不集中写错数据属于 。

系统误差 B 随机误差 C 粗大误差7、有一台精度2.5级,测量范围0—100 KPa ,则仪表的最小分 格。

A45 B40 C30 D 208、重要场合使用的元件或仪表,购入后进行高、低温循环老化试验,目的是为了 。

A 提高精度B 加速其衰老C 测试其各项性能指标D 提高可靠性9、传感器能感知的输入量越小,说明 越高。

A 线性度好B 迟滞小C 重复性好D 分辨率高三、 判断题1、回差在数值上等于不灵敏度 ( )2、灵敏度越大,仪表越灵敏 〔 〕3、同一台仪表,不同的输入输出段灵敏度不同 〔 〕4、灵敏度其实就是放大倍数 〔 〕5、测量值小数点后位数越多,说明数据越准确 〔 〕6、测量数据中所有的非零数字都是有效数字 〔 〕7、测量结果中小数点后最末位的零数字为无效数字〔〕四、问答题1、什么是传感器的静态特性,有哪些指标。

霍尔传感器在电气仪表中的应用

霍尔传感器在电气仪表中的应用

霍尔传感器在电气仪表中的应用摘要:近年来,随着科学技术的不断发展,霍尔传感器作为一种基于霍尔效应、具备非电量参数与电量参数转换功能的装置,在电气仪表测量领域中得到广泛应用,对电气仅表运行质量及效率的提升有着重要意义。

因此,为充分发挥霍尔传感器的性能优势,本文对霍尔传感器的工作原理、霍尔元件定义、霍尔效应进行阐述,对霍尔传感器在电气仪表中的具体应用情况进行探讨,希望藉此总结应用经验,对霍尔传感器应用体系进行创新优化。

关键词:霍尔传感器:电气仪表:应用1、霍尔传感器的基本概述1.1霍尔效应霍尔效应是由于物体运动产生的电荷受到磁场作用力和电场作用力的共同影响而产生的,属于电磁效应的一种现象。

霍尔效应首先是在研究金属导体的时候发现的,后来在半导体和导电流体中也发现了这种现象,并且比金属导体强的多。

当载流导体装置处于静止状态,并且置于磁场运行系统中时,如果该导体的电流运动方向与磁场的运动方向不一致的时候,该载流导体装置上平行于磁场方向和电流方向的两个不同面之间会产生一个电压,即电动势,这个电动势就叫做霍尔电动势,而这种现象就是霍尔效应。

霍尔效应从发现至今100多年的时间,经历了三个阶段:第一阶段,由于没有得到充分的重视,应用价值不大,基本处于停顿状态:第二阶段, .随着半导体材料的广泛应用,推动了霍尔元件的应用:第三阶段,随着集成电路的快速发展,人们开始将霍尔元件进行集成,形成霍尔传感器,并实现了工业化,目前得以广泛的应用”。

1.2霍尔元件霍尔元件是在发现霍尔效应的基础上发展起来的一种特殊的磁敏感元件。

它是以半导体为材料,选择溅射工艺进行制作形成的,具有体积小、性能高、成本低等显著优点,广泛应用于计算机、自动化、测量等领域。

由于半导体材料的使用,使霍尔元件的敏感性大幅度提高,能够有效的感应到温度等参数的变化情况。

一般情况下,霍尔元件分为霍尔线性器件和霍尔开关器件两种类型。

霍尔线性器件能够直接检测出受测体本身的磁特性,能够输出模拟信号,一般用于测量电流、电压等参数。

超声波传感器及应用PPT

超声波传感器及应用PPT
空气的密度很小,将引起3个界面间强烈 的杂乱反射波,造成干扰,而且空气也 将对超声波造成很大的衰减。
常用的耦合剂有水、机油、甘油、水玻 璃、胶水、化学浆糊等。耦合剂的厚度 应尽量薄一些,以减小耦合损耗。
43
耦合剂
超声探头与被测物体接触时,探头与被测物 体表面间存在一层空气薄层,空气将引起三个界面 间强烈的杂乱反射波,造成干扰,并造成很大的衰 减。为此,必须将接触面之间的空气排挤掉,使超 声波能顺利地入射到被测介质中。在工业中,经常 使用一种称为耦合剂的液体物质,使之充满在接触 层中,起到传递超声波的作用。常用的耦合剂有自 来水、机油、甘油、水玻璃、胶水、化学浆糊等。
2
主要章节
9.1超声波及其物理性质 9.2超声波探头及耦合技术 9.3超声波传感器的应用
3
9.1超声波及其物理性质
9.1.1 超声波的基本概念
1.超声波的概念和波形 机械振动在弹性介质内的传播称为波动,简称
为波。人能听见声音的频率为20Hz~20kHz, 即为声波,超出此频率范围的声音,即20Hz 以下的声音称为次声波,20kHz以上的声音称 为超声波,一般说话的频率范围为100Hz~ 8kHz。 超声波为直线传播方式,频率越高,绕射能力 越弱,但反射能力越强
26
1.单晶直探头
用于固体介质的单晶直探头(俗称直探 头),压电晶片采用PZT压电陶瓷材料 制作,外壳用金属制作,保护膜用于防 止压电晶片磨损。保护膜可以用三氧化 二铝(钢玉)、碳化硼等硬度很高的耐 磨材料制作。阻尼吸收块用于吸收压电 晶片背面的超声脉冲能量,防止杂乱反 射波产生,提高分辨力。阻尼吸收块用 钨粉、环氧树脂等浇注。
根据发射和接收换能器的功能,传感器又可分 为单换能器和双换能器。单换能器的传感器发 射和接收超声波均使用一个换能器,而双换能 器的传感器发射和接收各由一个换能器担任。

化工仪表及自动化答案--9---物位检测及仪表

化工仪表及自动化答案--9---物位检测及仪表

三、电容式物位传感器
1.测量原理★ 2.液位的测量★ 3.料位的测量
1.测量原理
【引】电容式物位传感器是利用圆筒形电容器的电容值随物位 变化而变化的原理而工作的。
1.测量原理:在电容器的极板之间充以不同的介质时,由于 介电系数的不同,电容量的大小也会不同。测出电容量的 变化即可检测物位的高低。 H→△C
⇒ 此时,仪表的输出I0不能正确反映出液位的数值H。
⇒ 需要对差压变送器进行零点迁移,使得:
H = 0时,差压变送器输出I0 = 4mA; H = Hmax时,差压变送器输出I0 = 20mA。 即使液位的零值和满量程能与变送器输出的上下限相对应。
2.零点迁移问题
(3)差压变送器零点迁移的方法:可调节变送器上的迁移 弹簧,使得当液位H=0时,尽管差压变送器的输入信号Δ p≠0,但变送器的输出为最小值(对DDZ Ⅲ型,即 I0=4mA)。 H=0时, 尽管Δp≠0,但仍使I0=4mA
习题
Ex50.思考:
若 H = 2 m, 被 测 液 体 的 密 度 ρ min = 1.0 × 10 3 kg / m 3 , ρ max = 1 .5 × 1 0 3 kg / m 3。 求 差 压 变 送 器 的 差 压 变 化 范 围 。 ( g取 9.8N/kg)
解 : ∆p min =Hgρ min = 2 × 9.8 × 1.0 × 103 N/m 2 = 19600 Pa ∆p max =Hgρ max = 2 × 9.8 ×1.5 ×103 N/m 2 = 29400 Pa
⇒ 范 围 :19600 P a ~ 29400 P a。
(6)声波式物位仪表:由于物位的变化引起声阻抗的变化、 声波的遮断和声波反射距离的不同,测出这些变化即可测 出物位。

仪表传感器知识点总结

仪表传感器知识点总结

仪表传感器知识点总结仪表传感器是一种广泛应用于工业控制领域的传感器,它们能够测量和监测各种物理量,例如温度、压力、流量、液位等。

在工业生产过程中,仪表传感器被广泛用于测量和监测各种工艺参数,以保证生产过程的安全和稳定运行。

以下是关于仪表传感器的一些主要知识点总结:1. 传感器类型:仪表传感器通常根据其检测原理和测量范围来分类。

常见的仪表传感器类型包括温度传感器、压力传感器、流量传感器、液位传感器等。

每种传感器类型都有其特定的测量原理和适用范围。

2. 传感器检测原理:仪表传感器的检测原理多种多样,常见的包括电阻式、电容式、压阻式、振动式、光电式等。

不同的检测原理适用于不同的测量场合,选择合适的检测原理可以确保传感器的准确性和稳定性。

3. 传感器工作原理:仪表传感器通常通过将被测物理量转换为电信号来实现测量和监测。

传感器的工作原理包括获取被测物理量信号、转换为电信号、放大和处理信号、最终输出测量结果等。

4. 传感器特性:仪表传感器具有许多特性,包括灵敏度、线性度、重复性、稳定性、精度等。

这些特性直接关系到传感器的测量准确性和可靠性,是评价传感器性能的重要指标。

5. 传感器选型与安装:在选择仪表传感器时,需要根据测量范围、精度要求、工作环境等因素进行综合考虑。

传感器的安装位置和方式也会影响其工作性能,正确的安装可以最大限度地发挥传感器的作用。

6. 传感器信号处理:传感器输出的信号通常需要经过放大、滤波、线性化等处理,才能得到符合要求的测量结果。

传感器信号处理技术对传感器的测量性能具有重要影响,是传感器技术领域的重要研究方向之一。

在工业自动化控制领域,仪表传感器起着至关重要的作用,它们直接关系到生产过程的安全性、稳定性和经济效益。

随着科学技术的不断进步,仪表传感器技术也在不断发展,新的传感器类型和新的传感器技术不断涌现,为工业控制领域的发展提供着强大的支撑。

总的来说,仪表传感器技术是一门综合性的技术领域,它涉及到传感器的原理、结构、工作方式、信号处理、测量精度等方面的知识。

传感器技术及其应用第2版教学课件ppt作者陈黎敏传感器技术答案(2)

传感器技术及其应用第2版教学课件ppt作者陈黎敏传感器技术答案(2)

《传感器技术及其应用》第2版答案第1章1. 答:能感受规定的被测量并按照一定的规律转换成可用输出信号的器件或装置,通常由敏感元件和转换元件组成。

敏感元件是指传感器中能直接感受或响应被测量的部分;转换元件是指传感器中能将敏感元件感受或响应的被测量转换成适于传输或测量的电信号的部分。

2. 答:传感器有许多分类方法,但常用的分类方法有两种:一种是按被测输入量来分;另一种是按传感器的工作原理来分。

前者的优点是便于使用者根据用途选用,后者的优点是对传感器的工作原理比较清楚,类别少,有利于传感器专业工作者对传感器的深入研究分析。

3. 答:传感器测量静态量时表现的输入、输出量的对应关系为静态特性,常用的静态特性技术指标有线性度、灵敏度、迟滞、重复性、分辨力、稳定性、漂移等。

4.答:传感器的灵敏度k=dyyx=6x+35. 答:产生误差的原因有:测量方法的近似、仪表本身的精度限制、测量人员的习惯、外界环境因素影响等多种原因,有的是有规律可循,有的是随机产生的,因此测量误差也可分为系统误差、随机误差和粗大误差。

6. 答:绝对误差Δt=±800−−200×0.5%=±5℃相对误差γ=±5500×100%=±1%7. 相对误差γ1=±5300−−200=±1%γ2=±5800−0=±0.625%答:因为γ1>γ2所以测量范围为0~800℃的仪表精度高8. 相对误差γ1=±600×2.5%500=±3%>2.5%γ2=± 600×2.0% 500=±2.4%<2.5% γ3=± 600×1.5% 500=±1.8%<2.5% 答:可见2.0级与1.5级都能满足测量误差要求,考虑性价比建议选择2.0级,若只需考虑测量精度则选择1.5级。

传感器及应用复习

传感器及应用复习

传感器及应用复习名词解释:10道第1章传感器的基本知识传感器:传感器就是利用物理效应、化学效应、生物效应,把被侧的物理量、化学量、生物量等非电量转换成电量的器件或装置。

应力:截面积为S的物体受到外力F的作用并处于平衡状态时,在物体单位截面积上引起的内力称为应力。

应变:应变是物体受外力作用时产生的相对变形。

εl:纵向应变,εr:横向应变110-6ε胡克定律与弹性模量:胡克定律:当应力未超过某一限值时,应力与应变成正比;E为弹性模量或杨氏模量,单位为N/m2;G为剪切模量或刚性模量,τ为切应力第2张线性位移传感器及应用应变式传感器由弹性敏感元件、电阻应变片和应变电桥组成。

电感式传感器原理:把可移动的铁心称为衔铁,通过测杆与被侧运动物体接触,就可把运动物体的位移转换成电感或互感的变化。

电涡流式传感器原理:电涡流式传感器是一个绕在骨架上的导线所构成的空心线圈,它与正弦交流电源接通,通过线圈的电流会在线圈的周围空间产生交变磁场。

压电效应:当某些电介质受到一定方向外力作用而变形时,其内部便会产生极化现象,在他们的上下表面会产生符号相反的等量电荷;当外力的方向改变时,其表面产生的电荷极性也随之改变;当外力消失后又恢复不带电状态,这种现象称为压电效应。

霍尔效应:在通有电流的金属板上加一匀强磁场,当电流方向与磁场方向垂直时,在与电流和磁场都垂直的金属板的两表面间出现电势差,这个现象称为霍尔效应。

光电效应:当物质受光照射后,物质的电子吸收了光子的能量所产生的电现象称为光电效应。

①外光电效应:外光电效应即光电子发射效应,在光的作用下使电子逸出物体表面;②内光电效应:内光电效应有光电导效应、光电动势效应及热电效应。

第3章位移传感器在制造业中的应用第4章力与运动学量传感器及应用第5章压力、流量和物位传感器及应用第6章温度传感器及应用热电效应(赛克威尔效应):将两种不同导体A、B两端连接在一起组成闭合回路,并使两端处于不同温度环境,在回路中会产生热电动势而形成电流,这一现象称为热电效应。

仪表工作原理

仪表工作原理

仪表工作原理
仪表工作原理简介
仪表是用来测量、监测和控制电气、电子、机械等系统中各种物理量的装置。

仪表的工作原理主要涉及传感器、信号处理和显示三个方面。

1. 传感器:仪表中的传感器负责将待测物理量转化为电信号。

传感器可以根据测量物理量的性质选择不同的传感原理,如电阻、电容、电感、压电效应、光电效应等。

传感器的输出信号通常是微弱的模拟电信号,需要经过信号处理模块进行放大和滤波处理。

2. 信号处理:信号处理模块起到放大、滤波和线性化等功能。

放大模块将传感器输出的微弱信号放大到合适的电平,以便进行后续处理。

滤波模块可以去除噪声,提高信号的质量。

线性化模块主要用于解决信号非线性问题,将非线性信号转化为线性信号。

3. 显示:显示模块将经过处理的信号转化为人们能够直观理解的形式。

常见的显示方式包括指针式、数字式、液晶显示等。

显示模块根据不同的仪表需要,可以输出不同的信号形式,如电压、电流、频率等。

总体而言,仪表工作的基本原理是通过传感器将测量物理量转化为电信号,经过信号处理模块进行处理后,再通过显示模块将结果以人们能够理解的形式进行展示。

不同的仪表会根据测量需求选择适当的传感器和信号处理方式。

传感器技术及应用 教学大纲

传感器技术及应用  教学大纲

传感器技术及应用——教学大纲一、课程基本信息课程编号:17z8315课程名称:传感器技术及应用Sensor Technology and Application学分/学时:3/42先修课程:主要有:物理、材料力学(工程力学)、电工基础、电子技术基础、自动控制元件、自动控制理论。

二、课程教学目的本课程是仪器科学与光电工程学院测控技术与仪器专业本科生的专业课。

其目标是:提供了解、使用、分析和初步设计常用传感器的敏感元件及系统的理论与实践基础,为后续其他专业课打下较坚实的基础。

三、课程教学任务通过本课程的学习,让学生了解传感器技术的发展现状、特点,在信息技术中的重要地位、作用;掌握信息获取范畴的广义理解;掌握常用传感器的基本工作原理,实现方式与结构;了解传感器技术在国防工业和一般工业领域中的典型应用;同时使学生能够在自动化系统、智能化系统中正确应用常用的传感器技术。

四、教学内容及基本要求本课程理论与实践紧密结合。

主要讲授传感器的性能评估,目前在工业领域中常用的几种典型的、有代表性的传感器的敏感元件的物理效应、变换原理、工作特性、主要结构、信号转换电路、误差及其补偿、合理应用等。

同时本课程也重视对新型传感器技术及应用的介绍。

传感器结构设计、工艺及所用材料只作一般介绍。

本课程主要内容可以分为三部分。

第一部分是关于传感器技术的基础理论与知识,共15个学时;第二部分是关于典型传感器的讨论,这是课程的重点,共21个学时;第三部分是关于近年来出现的新型传感器、应用示例的讨论,共6个学时。

教学的基本知识模块顺序及对应的单元教学任务。

五、教学安排及方式第1章绪论(6学时,基本掌握,讲授为主)1.1 传感器的作用与功能1.2 传感器的分类1.3 传感器技术的特点1.4 传感器技术的发展1.5 与传感器技术相关的一些基本概念1.6 本教材的特点及主要内容第2章传感器的特性(5学时,掌握,讲授为主,讨论为辅)2.1 传感器静态特性的一般描述2.2 传感器的静态标定2.3 传感器的主要静态性能指标及其计算第3章基本弹性敏感元件的力学特性(4学时,掌握,讲授为主)3.1 概述3.2 弹性敏感元件的基本特性3.3 基本弹性敏感元件的力学特性3.4 弹性敏感元件的材料第4章电位器式传感器(1学时,掌握,讨论为主,讲授为辅)4.1 概述4.2 线绕式电位器的特性4.3 非线性电位器4.4 电位器的负载特性及负载误差4.5 非线绕式电位器4.6 典型的电位器式传感器第5章应变式传感器(5学时,掌握,讲授为主,讨论为辅)5.1 应变式变换原理5.2 金属应变片5.3 应变片的动态响应特性5.4 应变片的温度误差及其补偿5.5 电桥原理5.6 典型的应变式传感器第6章压阻式传感器(2.5学时,掌握,讲授为主)6.1 压阻式变换原理6.2 典型的压阻式传感器第7章热电式传感器(2.5学时,掌握,讲授为主,讨论为辅) 7.1 概述7.2 热电阻测温传感器7.3 热电偶测温7.4 半导体P-N结测温传感器7.5 其他测温系统第8章电容式传感器(1学时,掌握,讲授为主,讨论为辅)8.1 基本电容式敏感元件8.2 电容式敏感元件的主要特性8.3 电容式变换元件的信号转换电路8.4 典型的电容式传感器8.5 电容式传感器的结构及抗干扰问题第9章变磁路式传感器(2学时,掌握,讨论为主,讲授为辅)9.1 电感式变换原理9.2 差动变压器式变换元件9.3 电涡流式变换原理9.4 霍尔效应及元件9.5 典型的变磁路式传感器第10章压电式传感器(1学时,基本掌握,讲授为主)10.1 石英晶体10.2 压电陶瓷10.3 聚偏二氟乙烯10.4 压电换能元件的等效电路10.5 压电换能元件的信号转换电路10.6 压电式传感器的抗干扰问题10.7 典型的压电式传感器第11章谐振式传感器(6学时,基本掌握,讲授为主)11.1 谐振状态及其评估11.2 闭环自激系统的实现11.3 振动筒压力传感器11.4 谐振膜式压力传感器11.5 石英谐振梁式压力传感器11.6 谐振式科里奥利直接质量流量传感器第12章微机械与智能化传感器技术(5时,基本掌握,讲授为主,讨论为辅)12.1 概述12.2 几种典型的微硅机械传感器12.3 几种典型的智能化传感器12.4 若干新型传感器应用实例分析课程总结(1学时,讲授为主,讨论为辅)六、教学的基本思路“传感器技术及应用”教学以“一条主线、二个基础、三个重点、多个独立模块”的基本原则来进行。

传感器技术与应用第3版习题答案

传感器技术与应用第3版习题答案

《传感器技术与应用第3版》习题参考答案习题11.什么叫传感器?它由哪几部分组成?答:传感器是能感受规定的被测量并按照一定的规律转换成可用输出信号的器件或装置。

传感器通常由敏感元件和转换元件组成。

其中敏感元件是指传感器中能直接感受或响应被测量的部分;转换元件是指传感器中能将敏感元件感受或响应的被测量转换成适于传输或测量的电信号部分。

2. 传感器在自动测控系统中起什么作用?答:自动检测和自动控制技术是人们对事物的规律定性了解、定量分析预期效果所从事的一系列技术措施。

自动测控系统是完成这一系列技术措施之一的装置。

一个完整的自动测控系统,一般由传感器、测量电路、显示记录装置或调节执行装置、电源四部分组成。

传感器的作用是对通常是非电量的原始信息进行精确可靠的捕获和转换为电量,提供给测量电路处理。

3. 传感器分类有哪几种?各有什么优、缺点?答:传感器有许多分类方法,但常用的分类方法有两种,一种是按被测输入量来分,如温度传感器、湿度传感器、压力传感器、位移传感器、流量传感器、液位传感器、力传感器、加速度传感器、转矩传感器等;另一种是按传感器的工作原理来分,如电学式传感器、磁学式传感器、光电式传感器、电势型传感器、电荷传感器、半导体传感器、谐振式传感器、电化学式传感器等。

还有按能量的关系分类,即将传感器分为有源传感器和无源传感器;按输出信号的性质分类,即将传感器分为模拟式传感器和数字式传感器。

按被测输入量分类的优点是比较明确地表达了传感器的用途,便于使用者根据其用途选用;缺点是没有区分每种传感器在转换机理上有何共性和差异,不便使用者掌握其基本原理及分析方法。

按工作原理分类的优点是对传感器的工作原理比较清楚,有利于专业人员对传感器的深入研究分析;缺点是不便于使用者根据用途选用。

4. 什么是传感器的静态特性?它由哪些技术指标描述?答:传感器测量静态量时表现的输入、输出量的对应关系为静态特性。

它有线性度、灵敏度、重复性、迟滞现象、分辨力、稳定性、漂移等技术指标。

CH9光电式传感器含答案传感器与检测技术第2版习题及解答

CH9光电式传感器含答案传感器与检测技术第2版习题及解答

第9章光电式传感器一、单项选择题1、下列光电式传感器中属于有源光敏传感器的是()。

A. 光电效应传感器B. 红外热释电探测器C. 固体图像传感器D. 光纤传感器2、下列光电器件是根据外光电效应做出的是()。

A. 光电管B. 光电池C. 光敏电阻D. 光敏二极管3、当光电管的阳极和阴极之间所加电压一定时,光通量与光电流之间的关系称为光电管的()。

A. 伏安特性B. 光照特性C. 光谱特性D. 频率特性4、下列光电器件是基于光导效应的是()。

A. 光电管B. 光电池C. 光敏电阻D. 光敏二极管5、光敏电阻的相对灵敏度与入射波长的关系称为()。

A. 伏安特性B. 光照特性C. 光谱特性D. 频率特性6、下列关于光敏二极管和光敏三极管的对比不正确的是()。

A. 光敏二极管的光电流很小,光敏三极管的光电流则较大B. 光敏二极管与光敏三极管的暗点流相差不大C. 工作频率较高时,应选用光敏二极管;工作频率较低时,应选用光敏三极管D. 光敏二极管的线性特性较差,而光敏三极管有很好的线性特性7、光电式传感器是利用()把光信号转换成电信号。

A. 被测量B. 光电效应C. 光电管D. 光电器件8、光敏电阻的特性是()A.有光照时亮电阻很大 B.无光照时暗电阻很小C.无光照时暗电流很大 D.受一定波长范围的光照时亮电流很大9、基于光生伏特效应工作的光电器件是()A.光电管 B.光敏电阻C.光电池 D.光电倍增管10、CCD以()为信号A. 电压B.电流C.电荷 D.电压或者电流11、构成CCD的基本单元是()A. P型硅B.PN结C. 光电二极管D.MOS电容器12、基于全反射被破坏而导致光纤特性改变的原理,可以做成()传感器,用于探测位移、压力、温度等变化。

A.位移B.压力C.温度D.光电13、光纤传感器一般由三部分组成,除光纤之外,还必须有光源和( )两个重要部件。

A.反射镜B.透镜C.光栅D.光探测器14、按照调制方式分类,光调制可以分为强度调制、相位调制、频率调制、波长调制以及( )等,所有这些调制过程都可以归结为将一个携带信息的信号叠加到载波光波上。

热电式传感器介绍

热电式传感器介绍

第9章 热电式传感器
1、均质导体定律 两种均质导体,其电势大小与热电极直径、长 度及沿热电极长度上的温度分布无关,只与热 电极材料和两端温度有关。 材质不均匀,则当热电极上各处温度不同时, 将产生附加热电势,造成无法估计的测量误差。
第9章 热电式传感器

2、中间导体定律
如果将热电偶T0端断开, 接入第三导体C,回路中 电势EAB(T,T0)应写为:
温度是诸多物理现象中具有代表性的物理量,现代生活中准确的温度是不 可缺少的信息内容,如家用电器有:电饭煲、电冰箱、空调、微波炉这些家 用电器中都少不了热电式传感器。
热电式传感器是一种将温度变化转换为电 量的装置。 它是利用某些材料或元件的性能随温度变 化的特性来进行测量的。例如将温度变化 转换为电阻、热电动势、热膨胀、导磁率 等的变化,再通过适当的测量电路达到检 测温度的目的。
NA K T T0 ln e NB
第9章 热电式传感器
2、单一导体的温差电势(汤姆逊电势)
对单一金属如果两边温度不同,两端也产生电势。 产生这个电势是由于导体内自由电子在高温端具 有较大的动能,会向低温端扩散。由于高温端失 去电子带正电,低温端得到电子带负电。
T>T0


第9章 热电式传感器
-200~O℃
2 3 Rt R0 1 t bt c t 100 t 2 Rt R0 1 t bt
+0~850℃
式中:
R0 Rt 为温度
温度
0 时, 0 C
00 C 和 t 0 C 时的电阻值。
R0
的公值是
100 。
EAB t ,0 EAB t , t0 EAB t0 ,0

传感器的主要学习知识重点

传感器的主要学习知识重点

绪论一、传感器的定义、组成、分类、发展趋势能够感受规定的被测量并按照一定规律转换成可用输出信号的器件或装置,通常由敏感元件和转换元件构成。

如果传感器信号经信号调理后,输出信号为规定的标准信号(0~10mA,4~20mA;0~2V,1~5V;…),通常称为变送器,分类:按照工作原理分,可分为:物理型、化学型与生物型三大类。

物理型传感器又可分为物性型传感器和结构型传感器。

按照输入量信息:按照应用范围:传感器技术: 是关于传感器的研究、设计、试制、生产、检测和应用的综合技术.发展趋势: 一是开展基础研究,探索新理论,发现新现象,开发传感器的新材料和新工艺;二是实现传感器的集成化、多功能化与智能化。

1.发现新现象;2.发明新材料;3.采用微细加工技术;4.智能传感器;5.多功能传感器;6.仿生传感器。

二、信息技术的三大支柱现在信息科学(技术)的三大支柱是信息的采集、传输与处理技术,即传感器技术、通信技术和计算机技术。

课后习题1、什么叫传感器,它由哪几部分组成?它们的作用与相互关系?传感器(transducer/sensor):能感受规定的被测量并按照一定的规律转换成可用输出信号的器件或装置(国标GB7665—2005)。

通常由敏感元件和转换元件组成。

敏感元件:指传感器中能直接感受或响应被测量并输出与被测量成确定关系的其他量(一般为非电量)部分。

转换元件:指传感器中能将敏感元件感受或响应的被测量转换成适于传输或测量的可用输出信号(一般为电信号)部分。

信号调理电路(Transduction circuit) :由于传感器输出电信号一般较微弱,而且存在非线性和各种误差,为了便于信号处理,需配以适当的信号调理电路,将传感器输出电信号转换成便于传输、处理、显示、记录和控制的有用信号。

第一章传感器的一般特性1.传感器的基本特性动态特性静态特性2.衡量传感器静态特性的性能指标(1)测量范围、量程(2)线性度%100max⨯∆±=⋅SF L y δ 传感器静态特性曲线及其获得的方法传感器的静态特性曲线是在静态标准条件下进行校准的。

第9章--飞机飞行参数传感器及检测

第9章--飞机飞行参数传感器及检测
9.34
航空检测技术
AccuStarⅡ DAS20双轴倾角传感器 详细说明:
类 型:双轴倾角传感器 量 程:±20° 精 确 度:0.01 输 出:比例,脉宽调制 供电电源:5-15vdc 工作温度:-30℃~65℃ 电气连接:板载式 特 点:双轴,双功能,高性价比、高精度的OEM产 品
典型应用:车轮定位,平面水平,测量摇晃,手动吊 9.3臂5 折叠保护,天线平衡
航空检测技术
4239攻角传感器,标准输出:攻角AOA,α (Angle Of Attack)或侧滑角AOS,β (angle of
sideslip ),用于小型、中型飞机,加热。
9.30
航空检测技术
YK100600空速管、攻角 传感器/侧滑角传感器系 统(不加热,直前端),其 输出量有总压、静压、 AOA、AOS。用于非常 高速的飞行器,非结冰条 件。 YK100700空速管、攻角 传感器/侧滑角传感器系 统(加热,高速度)
9.24
航空检测技术
9.25
航空检测技术
3、零差压式迎角传感器
由探头,气室, 浆叶和角度变 换器等组成。
9.26
航空检测技术
安装在机身或机头侧面,探头旋转轴垂直 于飞机对称面,并使进气A、B的对称面与翼弦 方向平行。
零压式迎角传感器有较好的阻尼,输出的 电信号比较平稳,精度也很高(可达0.1°)。传 感器中只有锥形探头(约10厘米长)露在飞 机蒙皮之外,对飞机造成的附加阻力极小。但 传感器结构比较复杂,装配精度要求较高。
9.38
航空检测技术
数字脉宽输出式电子倾角传感器是将角度 值转化为正比于数字脉宽信号输出的传 感器。当给单次触发计时器1#或2#发送 一触发脉冲时,电路便产生相对应PW1或 PW2脉冲。当这两个单次触发计时器同 时给予触发时,便可读出PW1或PW2的差 值△PW。方向输出线可告知用户此时是 顺时针还时逆时针方向。全部设计均内 置EMI/ESD抑制电路。

传感器原理及工程应用习题参考答案

传感器原理及工程应用习题参考答案

传感器原理及工程应用习题参考答案篇一:《传感器原理及工程应用》第四版(郁有文)课后答案第一章传感与检测技术的理论基础1.什么就是测量值的绝对误差、相对误差、提及讹差?请问:某量值的测出值和真值之差称作绝对误差。

相对误差有实际相对误差和标称相对误差两种表示方法。

实际相对误差是绝对误差与被测量的真值之比;标称相对误差是绝对误差与测得值之比。

提及误差就是仪表中通用型的一种误差则表示方法,也用相对误差则表示,它就是相对于仪表满量程的一种误差。

提及误差就是绝对误差(在仪表中指的就是某一刻度点的示值误差)与仪表的量程之比。

2.什么是测量误差?测量误差有几种表示方法?它们通常应用领域在什么场合?答:测量误差是测得值与被测量的真值之差。

测量误差需用绝对误差和相对误差则表示,提及误差也就是相对误差的一种则表示方法。

在实际测量中,有时要用到修正值,而修正值是与绝对误差大小相等符号相反的值。

在计算相对误差时也必须知道绝对误差的大小才能计算。

使用绝对误差难以测评测量精度的多寡,而使用相对误差比较客观地充分反映测量精度。

引用误差是仪表中应用的一种相对误差,仪表的精度是用引用误差表示的。

3.用测量范围为-50~+150kpa的压力传感器测量140kpa压力时,传感器测得示值为142kpa,求该示值的绝对误差、实际相对误差、标称相对误差和引用误差。

求解:绝对误差??142?140?2kpa实际相对误差标称相对误差引用误差??142?140?100%?1.43%140??142?140?100%?1.41%142142?140?100%?1%150?(?50)??4.什么就是随机误差?随机误差产生的原因就是什么?如何减小随机误差对测量结果的影响?请问:在同一测量条件下,多次测量同一被测量时,其绝对值和符号以不容原订方式变化着的误差称作随机误差。

随机误差是由很多不便掌握或暂时未能掌握的微小因素(测量装置方面的因素、环境方面的因素、人员方面的因素),如电磁场的微变,零件的摩擦、间隙,热起伏,空气扰动,气压及湿度的变化,测量人员感觉器官的生理变化等,对测量值的综合影响所造成的。

传感器原理及其应用(第二版)部分习题答案

传感器原理及其应用(第二版)部分习题答案
精品
第1章 传感器的一般特性
2、简述传感器的组成及其各部分的功能。 答:传感器通常由敏感元件、转换元件以及基本转换电 路所组成。 敏感元件:指传感器中能直接感受或响应被测量(输入 量)的部分,并以确定关系输出某一物理量。 转换元件:指传感器中能将敏感元件感受的或响应的被 探测量(如位移、应变、光强等) 转换成适于传输和测量 的电信号(如电阻、电感等)的部分。 基本转换电路:将电路参数转换成便于测量的电量,如 电压、电流、频率等。
第3章 电感式传感器及其应用
9、已知变气隙电感传感器的铁芯截面积 S=1.5cm2,磁路长度L=20cm,相对磁导率 μ=5000,气隙δ0=0.5cm,Δδ=±0.1mm,真空磁 导率μc=4π×10-7H/m,线圈匝数W=3000,求单 端式传感器的灵敏度△L/△δ,若做成差动结构 形式,其灵敏度将如何变化?
精品
第3章 电感式传感器及其应用
解:(1)传感器的两个线圈作为电桥的两个桥臂Z1和Z2,另外两 个相邻的桥臂用纯电阻代替。 在R3=R4=R的情况下, 电桥的输出 电压为:
U 0 Z 1 Z 2 U Z 2 R 3 R 4 U R 4 U Z 1 Z 2 Z 2 R 3 R 4 R 4 U 2Z Z 1 2 Z Z 2 1
精品
第2章 电阻应变式传感器及其应用
解:(1)如图a,当重力F作用梁短部后,梁上表面R1和R3产生正
应变电阻变化而下表面R2和R4则产生负应变电阻变化,其应变的
绝对值应相等,即:
1 = 3 = 2 4 b 6 h F 2 L E 6 b m h 2 g E L
电阻相对变化量为:
R1R3R2 R4 Rk
第3章 电感式传感器及其应用
(2) 接成单臂电桥后的电桥输出电压值为: U 0 U 2 Z Z 1 2 Z Z 2 1 U 2 Z Z 0 0 Z Z 0 Z Z 0 U 2 2 Z Z 0 2 4 2 1 8 0 5 . 3 5 - 0 . 1 1 7 V

第9章-电气测量与传感器技术

第9章-电气测量与传感器技术

兆欧表的结构原理
23/75
章目录 上一页 下一页 返回
退出
第 9章
4. 电桥法 (1) 平衡电桥
在电桥平衡状态下,若有 三个电阻阻值已知,则可 精确求出另一电阻阻值。 (2) 不平衡电桥
24/75
在电桥原来已调整到平衡 状态,若由于外界某种原 因使桥臂电阻发生变化, 则在BD之间就有不平衡的 电压输出,根据电压UBD 的大小可以推断出电阻的 相对变化值。
测量电阻的原理线路
21/75
章目录 上一页 下一页 返回
退出
第 9章
(2) 数字式万用表
数字式万用表是用数字式电压表为基础加上多种转 换电路以后构成的便携式数字仪表,用数字直接显 示被测量。
测量电阻的原理线路
22/75
章目录 上一页 下一页 返回
退出
第 9章
3. 兆欧表法
又称摇表,是由手摇发电机与磁电式比率计构成的测 量绝缘电阻的仪表
16/75
章目录 上一页 下一页 返回 退出
第 9章
4. 电能的测量 (1) 单相电度表 ①感应式测量机构
17/75
章目录 上一页 下一页 返回
退出
第 9章
②电子式测量机构
18/75
章目录 上一页 下一页 返回
退出
第 9章
(2) 三相电度表
19/75
章目录 上一页 下一页 返回
退出
9.1.4 电阻的测量 1. 电流表、电压表法
另外,霍尔传感器也可用于位置、位移、转速、 转角及移动速度的检测。
33/75
章目录 上一页 下一页 返回
退出
第 9章
9.2.3 发电传感器 发电传感器是指被测物理量的变化能使传感器 产生电动势,直接对外输出,通过检测电动势的大小 或方向确定被测物理量。 1. 磁电式传感器 磁电式传感器是利 用线圈在固定磁场气隙 中运动产生感应电动势 的原理工作的,它是动 态检测传感器。

传感器技术与应用题库

传感器技术与应用题库

传感器技术与应用题库传感器技术与应用知识储备练习题0-1. 传感器特性在检测系统中起到什么作用, 0-2(传感器的性能参数反映了传感器的什么关系,静态参数有哪些,各种参数代表什么意义,动态参数有那些,应如何选择,0-3(解释下列名词术语:1)敏感元件;2)传感器; 3)信号调理器;4)变送器。

0-4(根据电容传感器的工作原理说明它的分类,电容传感器能够测量哪些物理参量,0-5(通常传感器由,,,,,,,,,,,,,,,,,,,部分组成,是能把外界,,,,,,,,转换成,,,,,,,,器件和装置。

0-6(测量系统的静态特性指标主要有哪些,- 1 -传感器技术与应用学习情境1 温度的检测练习题1-1(什么是热电效应,热电势由哪几部分组成, 1-2(热电偶产生热电势的原因和条件是什么,1-3(描述热电偶的四个基本定律和它们的实用价值。

1-4(为什么热电偶需要冷端补偿,冷端补偿有哪几种方法, 1-5(用镍铬-镍硅(K型)热电偶测量温度,已知冷端温度为40?,用高精度毫伏表测得这时的热电动势为29(188mv,求被测点的温度。

1-6(用镍铬-镍硅(K型)热电偶测量炉温,已知热端温度为800?,冷端温度为50?,为了进行炉温的调节及显示,要将热电偶产生的热电动势信号送到仪表室,仪表室的温度为20?,分别求冷端用铜导线与用补偿导线连接到仪表测得的炉温,并比较结果。

1-7(简述热电阻测温原理,常用热电阻有哪些,它们的性能特点是什么,1-8(热敏电阻有哪几种类型,简述它们的特点及用途。

1-9(描述常用的三种温度传感器的异同点。

1-10(联系实际,描述一个测温系统。

指出它的测温范围、使用的器件。

并说出为什么使用该测温器件,1-11(简要描述使用的测温传感器的原理、接线和注意事项等。

- 2 -传感器技术与应用学习情境2 气体的检测练习题2-1(简述气敏电阻的组成、工作原理及特性。

2-2(为什么气敏电阻需要加热使用,2-3(如下图所示为可燃气体报警器电路图,(1)试分析其工作原理,并选用合适的元件参数。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

可实现“通”和“断”两种状态的控
制 ●除了双位控制外,还常用于报警系统,当被监视的参数超出允许范围时, 利用开关信号接通声光报警电路
(2)动圈式三位调节仪表
●仪表内部两组线圈都装有针挡,指针仅能在上、下限之间活动
9.1.2 自动平衡显示仪表
1.基本原理
利用电子放大器代替人眼和检流计,根据误差信号 的极性和大小控制可逆电动机转动,带动测量桥路中的 位置传感器(滑线电位器或差动变压器及凸轮等)对电 路进行调整,自动实现平衡
9.2 数字式仪表
2. 数字显示调节仪表的组成
一般由信号变换、前置放大器、线性化器、模/数 转换、标度变换、数字面板表、调节器、继电器、V/I变 换电路以及电源等部分所组成。其中,模/数转换和数字 显示可直接采用数字面板表。
9.2 数字式仪表
3.数字面板表
●数字面板表简称DPM,是一个由双积分A/D转换器 构成的不带外壳的直流数字电压表,将直流电压信号线 性地转为数字显示 ●常用显示位数为两位半、三位半、四位半等
C1、C2和C3点是 自动平衡电桥与测 温热电阻的连接点 ,采用2.5Ω定值导 线三线制接法
9.1.3 电动单元组合仪表
1.调节系统
2.信号制式
DDZ-Ⅲ系列仪表的联络方式
3.安全火花防爆技术
在DDZ-Ⅲ仪表里,通过采用直流24 V低压 供电、设置安全栅等办法,并对现场变送器采 取种种措施之后,可以将送往危险场所仪表的 能量限制在周围气体的点燃能量以下。这样, 仪表无论在正常运行还是在故障状态下,即使 由于某种原因产生了火花,此火花的能量也不 足以引爆周围易燃易爆气体。这种防爆能力就 称为安全火花防爆。
9.1.4 电磁式和电动式仪表
当线圈通电时,定铁和动铁 同时被磁化,它们之间产生 排斥力矩,使动铁转动,在 游丝反作用力作用下,停于 其刻度值对应电流值的一点 电压线圈与用电器并联,电流线 圈与用电器串联。可以证明,动 线圈的偏转角度是与两个线圈中 电流的乘积成正比。所以,该仪 表就可以用来测量用电器的功率
2.自动电位差计
利用不平衡电桥的输 出电压UAB来补偿热电偶 的热电势Ux ,若UAB ≠Ux,其差值ΔU经放大器 放大输出,控制可逆电机 转动,它带动滑线电阻的 滑点移动,自动调节电桥 输出电压,直到UAB= Ux, 可逆电机停转,整个系统 达到了平衡
3.自动平衡电桥
与自动电位差计桥 路所不同的是传感 器接在桥臂之中
9.2 数字式仪表
1. 数字式显示仪表的分类
(1) 按输入信号的形式:电压型、频率型。 (2) 按被测信号的点数:单点、多点。 (3) 按仪表的功能:显示仪、显示报警仪、 显示输出仪、显示记录仪、具有复合功能的数字 显示报警输出记录仪等。 (4) 按调节方式:继电器触点输出的二位调 节、三位调节,时间比例调节,连续PID调节。
第9章 常用检测仪表
9.1
ቤተ መጻሕፍቲ ባይዱ
模拟式仪表
9.2
数字式仪表
9.1 模拟式仪表
9.1.1 9.1.2 9.1.3 9.1.4
动圈指示调节仪 自动平衡显示仪表 电动单元组合仪表 电磁式和电动式仪表简介
9.1.1 动圈指示调节仪
动圈式仪表的测量机构
线圈的转动角度 与线圈中的电流 成正比
1.动圈式指示仪表
(1)测量电路:
动圈指示仪表的测量线路由 串联量程调整电阻RM、串联 温度补偿电阻RT和与RT并联 的线性补偿电阻RB等组成
为了给仪表定度,规定外部 电阻为15Ω
1.动圈式指示仪表
(2)动圈式温度指示仪表
配热电偶的动圈温度指示仪表
配热电阻的动圈测温指示仪表
2.动圈式调节仪表
(1)动圈式双位调节仪表
●只有“全开”和“全关”两个状态,
相关文档
最新文档