电源传导、辐射整改实例

合集下载

电源EMI传导辐射实际整改经验总结(绝对值得)

电源EMI传导辐射实际整改经验总结(绝对值得)

电源EMI传导辐射实际整改经验总结(绝对值得)第一篇:电源EMI传导辐射实际整改经验总结(绝对值得)1、在反激式电源中,Y电容接初级地与次级地之间在20MHZ时,会比Y电容接在高压与次级地之间高5dB左右。

当然也要视情况而定。

2、MOS管驱动电阻最好能大于或等于47R。

降低驱动速度有利于改善MOS管与变压器的辐射。

一般采用慢速驱动和快速判断的办法。

3、若辐射在40MHZ-80MHZ之间有些余量不够,可适当地增加MOS管DS之间的电容值,以达到降低辐射量的效果。

4、若在输入AC线上套上磁环并绕2圈,有降低40-60MHZ之间辐射值的趋势,那么在输入EMI滤波部分中串入磁珠则会达到同样的效果。

如在NTC电阻上分别套上两个磁珠。

5、在变压器与MOS管D极之间最好能串入一个磁珠,以降低MOS管电流的变化速度,又能降低输出噪音。

6、电源输入AC滤波部分,X电容放在共模电厂的那个位置并不重要,注意布线时要将铜皮都集中于X电容的引脚处,以达到更好的滤波效果,但X电容最好不要与Y电容连接在同一焊点。

7、在300W左右的中功率电源中,其又是由几个不同的电源部分组成,一般采用三极共模电感。

第一级使用100UH-3MH左右的双线并绕锰锌磁环电感,其后再接Y电容,第二级与第三级可使用相同的共模电感,需要使用的电感量并不要求很大,一般10MH左右就能达到要求。

若把Y电容放在第二级与第三级之间,效果就会差一些。

如果采用两级共模滤波,秕一级电感量适当取大些,1.5-2.5MH左右。

8、如果采用三级,第一级电感量适当取小些,在200UH-1MH 之间。

测试辐射时,最好能在初次级之间的Y电容套上磁珠。

如果用三芯AC输入线,在黄绿地线上也串磁环,并绕上两到三圈。

9、在二极管上套磁珠,一般要求把磁珠套在其电压变化最剧烈的地方,在正端整流二极管中,其A端电压变化最剧烈。

10、实例分析:一台19W的二合一电源,在18MH左右处有超过QP值7dB,前级采用两级共模滤波方法和一个X电容,无论怎样更改滤波部分,此处的QP值总是难以压下来。

mos管辐射整改案例

mos管辐射整改案例

mos管辐射整改案例
1.案例简介:
某公司生产的一款开关电源在EMC测试中发现辐射超标,主要问题集中在MOS管的开关谐波辐射。

2.整改措施:
●优化PCB布局:缩短MOS管的开关回路,减小寄生电感和电容。

●增加滤波电路:在MOS管两端增加RC吸收电路,抑制开关谐波。

●更换MOS管:选择具有更低开关损耗和更小寄生参数的MOS管。

3.整改效果:
●经过上述整改措施,开关电源的辐射超标问题得到解决,顺利通过EMC测
试。

4.具体整改步骤:
●分析辐射源:通过测量和分析,确定辐射源是MOS管的开关谐波。

优化PCB布局:缩短MOS管的开关回路,减小寄生电感和电容。

具体措施包括:
●将MOS管和驱动芯片尽量靠近放置。

●使用大铜箔面积减小回路阻抗。

●优化PCB走线,避免形成环路。

增加滤波电路:在MOS管两端增加RC吸收电路,抑制开关谐波。

具体措施包括:
●选择合适的电阻和电容值,根据开关频率和谐波频率进行设计。

●尽量靠近MOS管放置滤波电路。

●更换MOS管:选择具有更低开关损耗和更小寄生参数的MOS管。

具体措施包
括:
●选择RDS(on)较小的MOS管。

●选择Coss和Crss较小的MOS管。

5.注意事项:
●整改措施需要根据具体情况进行调整。

●整改后需要进行EMC测试,验证整改效果。

6.总结:
MOS管辐射整改的关键是优化PCB布局、增加滤波电路和更换MOS管。

通过综合采取以上措施,可以有效降低MOS管的开关谐波辐射,提高EMC性能。

传导与辐射超标整改方案

传导与辐射超标整改方案

可以解决问题
,
但垂直方向就很无奈了
开关电源的辐射一般只会影响到
100M
以下的频段
.
也可以在
MOS,
二极管上加相应吸收回路
,
但效率会有所降低。
1MHZ
以内
----
以差模干扰为主
1.
增大
X
电容量;
处产生的振荡是开关频率的
5
次谐波引起的干扰
;
0.35 MHz
处产生的振荡是开关频率的
7
次谐波引起的干扰
;
0.39 MHz
处产生的振荡是开关频率的
8
次谐波和
Mosfet
振荡
2

190.5KHz
)基波的迭加引起的干扰
;
8.
防止
EMI
滤波电感饱和。
9.
使拐弯节点和
次级电路的元件远离初级电路的屏蔽体或者开关管的散热片。
10.
保持初级电路的摆动的节点和元件本体远离屏蔽或者散热片。
11.
使高频输入的
EMI
滤波器靠近输入电缆或者连接器端。
RF
滤波器两端并联阻尼电阻。
17.

PCB
设计时允许放
1nF/ 500 V
陶瓷电容器或者还可以是一串电阻,跨接在变压器的初级的静端和辅助绕组之
间。
18.
保持
EMI
滤波器远离功率变压器
;
尤其是避免定位在绕包的端部。
19.

5M---

传导整改

传导整改

精典的EMC整改案例!λ整改案例差模电感传导整改中显“奇效”产品名称:SIEMENS GPS Interface功能描述:该设备为GPS定位仪转接板,实现远程控制、远程打印功能。

问题描述:该设备为进入欧洲市场,作为单独的产品做CE认证,标准要求满足EN55022 CLASSB传导限制,在认证的过程中出现CE(传导骚扰)测试未能通过。

测试配置:该设备电源取电来自GPS设备,电压为DC12V,测试时采用12V蓄电池供电,用USB负载模拟打印机、串口与PC不间断的通讯,让设备正常工作。

过程记录:1、原始数据。

正极测试负极测试2、测试结果分析:正极、负极测试结果没什么太大的差异,主要是0.15MHz-2.5MHz之间的频点超标,根据以往的经验,1.5MHz以前超标,大部分是由差模干扰引起,主要的整改方向为加强差模滤波。

3、单板分析:分析单板原理图,发现电源入口没有任何滤波措施。

(如下图)4、整改方法:在电源正极与负极上增加差模电,由于空间有限直接使用贴片电感(390uH)。

5、增加390uH贴片差模电感测试结果。

正极测试负极测试6、结论:通过在电源正极与负极增加390uH差模电感,测试能够满足EN55022 CLASS B传导限制线的要求。

结论:通常在传导测试中,2MHz以前超标主要靠差模电感来解决。

7、测试现场照片λ技术文章编者前言:近期我公司在举行公开培训过程中,很多学员对频谱仪设置不是很明确。

特此转载二篇频谱仪相关的文章,供广大学员学习、交流。

频谱仪使用中的带宽设置问题在测量一些CATV系统指标中,常常要用到频谱仪,为了使测量结果准确,在频谱仪的使用上常涉及到一个分辨带宽设置的问题。

要弄清这个问题,得要知道一些频谱仪的基本原理。

图1是频谱仪的基本原理框图。

图中的中频频率(输入信号通过与本振信号的和频或差频产生),本振受斜波发生器的控制,在斜波发生器的控制下,本振频率将从低到高的线性变化。

这样在显示时,斜波发生器产生的斜波电压加到显示器的X轴上,检波器输出经低通滤波器后接到Y轴上,当斜波发生器对本振频率进行扫描时显示器上将自动绘出输入信号的频谱。

EMI传导与辐射超标整改方案

EMI传导与辐射超标整改方案

E M I传导与辐射超标整改方案集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#传导与辐射超标整改方案开关电源电磁干扰的产生机理及其传播途径功率开关器件的高额开关动作是导致开关电源产生电磁干扰(emi)的主要原因。

开关频率的提高一方面减小了电源的体积和重量,另一方面也导致了更为严重的emi问题。

开关电源工作时,其内部的电压和电流波形都是在非常短的时间内上升和下降的,因此,开关电源本身是一个噪声发生源。

开关电源产生的干扰,按噪声干扰源种类来分,可分为尖峰干扰和谐波干扰两种;若按耦合通路来分,可分为传导干扰和辐射干扰两种。

使电源产生的干扰不至于对电子系统和电网造成危害的根本办法是削弱噪声发生源,或者切断电源噪声和电子系统、电网之间的耦合途径。

现在按噪声干扰源来分别说明:1、二极管的反向恢复时间引起的干扰交流输入电压经功率二极管整流桥变为正弦脉动电压,经电容平滑后变为直流,但电容电流的波形不是正弦波而是脉冲波。

由电流波形可知,电流中含有高次谐波。

大量电流谐波分量流入电网,造成对电网的谐波污染。

另外,由于电流是脉冲波,使电源输入功率因数降低。

高频整流回路中的整流二极管正向导通时有较大的正向电流流过,在其受反偏电压而转向截止时,由于pn结中有较多的载流子积累,因而在载流子消失之前的一段时间里,电流会反向流动,致使载流子消失的反向恢复电流急剧减少而发生很大的电流变化(di/dt)。

2、开关管工作时产生的谐波干扰功率开关管在导通时流过较大的脉冲电流。

例如正激型、推挽型和桥式变换器的输入电流波形在阻性负载时近似为矩形波,其中含有丰富的高次谐波分量。

当采用零电流、零电压开关时,这种谐波干扰将会很小。

另外,功率开关管在截止期间,高频变压器绕组漏感引起的电流突变,也会产生尖峰干扰。

3、交流输入回路产生的干扰无工频变压器的开关电源输入端整流管在反向恢复期间会引起高频衰减振荡产生干扰。

开关电源产生的尖峰干扰和谐波干扰能量,通过开关电源的输入输出线传播出去而形成的干扰称之为传导干扰;而谐波和寄生振荡的能量,通过输入输出线传播时,都会在空间产生电场和磁场。

LED灯电源辐射和传导整改案例

LED灯电源辐射和传导整改案例

LED灯电源辐射和传导整改
日期/Date:2013-06-16
辐射测试数据
传导测试数据
Tel:+86-755-33663308Fax:+86-755-33663309 Page1of4
2:整流二极管的两端加小磁环,就像你们加在MOS管脚一样。

如果可以建议在这个二极管两端并联电容(电容参数要选好,不然可能会炸,所以我没加),但是可能会影响效率。

3:你们外壳六面接触不是很良好,想办法使他们接触良好,可能起到更好的屏蔽效果。

4:其次变压器,这个是最重要的。

换个好点的变压器,在变压器的初级绕组和次级绕组加
可以在输入端再加一个共模电感,X电容。

共模电感选择30-70mH,X电容0.22-1uF。

PCB设计资料、EMC设计整改资料,整改案例分享/category-
791306443.htm?spm=a1z10.3.w4010-
1216811066.13.RmVYv1&search=y&catName=EMC%C9%E8%BC%C6%D5%FB%B8%C4%D7%CA%C1%CF#bd。

EMI传导与辐射超标整改

EMI传导与辐射超标整改

传导与辐射超标整改方案开关电源电磁干扰的产生机理及其传播途径功率开关器件的高额开关动作是导致开关电源产生电磁干扰(EMI)的主要原因。

开关频率的提高一方面减小了电源的体积和重量,另一方面也导致了更为严重的EMI问题。

开关电源工作时,其内部的电压和电流波形都是在非常短的时间内上升和下降的,因此,开关电源本身是一个噪声发生源。

开关电源产生的干扰,按噪声干扰源种类来分,可分为尖峰干扰和谐波干扰两种;若按耦合通路来分,可分为传导干扰和辐射干扰两种。

使电源产生的干扰不至于对电子系统和电网造成危害的根本办法是削弱噪声发生源,或者切断电源噪声和电子系统、电网之间的耦合途径。

现在按噪声干扰源来分别说明:1、二极管的反向恢复时间引起的干扰交流输入电压经功率二极管整流桥变为正弦脉动电压,经电容平滑后变为直流,但电容电流的波形不是正弦波而是脉冲波。

由电流波形可知,电流中含有高次谐波。

大量电流谐波分量流入电网,造成对电网的谐波污染。

另外,由于电流是脉冲波,使电源输入功率因数降低。

高频整流回路中的整流二极管正向导通时有较大的正向电流流过,在其受反偏电压而转向截止时,由于PN结中有较多的载流子积累,因而在载流子消失之前的一段时间里,电流会反向流动,致使载流子消失的反向恢复电流急剧减少而发生很大的电流变化(di/dt)。

2、开关管工作时产生的谐波干扰功率开关管在导通时流过较大的脉冲电流。

例如正激型、推挽型和桥式变换器的输入电流波形在阻性负载时近似为矩形波,其中含有丰富的高次谐波分量。

当采用零电流、零电压开关时,这种谐波干扰将会很小。

另外,功率开关管在截止期间,高频变压器绕组漏感引起的电流突变,也会产生尖峰干扰。

3、交流输入回路产生的干扰无工频变压器的开关电源输入端整流管在反向恢复期间会引起高频衰减振荡产生干扰。

开关电源产生的尖峰干扰和谐波干扰能量,通过开关电源的输入输出线传播出去而形成的干扰称之为传导干扰;而谐波和寄生振荡的能量,通过输入输出线传播时,都会在空间产生电场和磁场。

开关电源传导与辐射超标整改方案(一)

开关电源传导与辐射超标整改方案(一)

开关电源传导与辐射超标整改方案(一)开关电源传导与辐射超标整改方案问题简述开关电源传导与辐射超标是当前电力系统存在的严重问题之一,它会对人体健康和电力设备造成一定的危害。

因此,制定一份全面有效的整改方案,以减少传导与辐射超标现象的发生,保障人民群众的身体健康和电力设备的安全运行,具有非常重要的意义。

方案目标1.减少开关电源传导超标现象的发生频率;2.降低开关电源辐射超标的程度;3.提高电力设备的工作效率;4.保障人民群众的身体健康。

方案措施为了实现上述目标,我们将采取以下措施:1. 开展系统安全评估•对现有电力系统进行全面安全评估,找出传导与辐射超标的主要原因;•设立专门小组进行数据收集和分析,通过大数据分析找出相关规律和潜在的问题。

2. 更新电力设备•选用符合国家标准的新一代电力设备,提高设备的性能和效率;•优化设备设计,减少传导与辐射的可能性;•定期对设备进行检测和维护,确保其正常运行和安全工作。

3. 加强人员培训•组织开展关于开关电源传导与辐射的培训,提高人员的安全意识和专业技能;•建立健全的安全操作规程,确保操作人员能正确使用电力设备;•定期组织演练和考核,检验人员的应急处理和解决问题的能力。

4. 完善监测与管理体系•建立开关电源传导与辐射的监测体系,及时发现超标现象;•加强现场管理,定期进行设备检测和评估,及时处理问题;•完善相关政策和法规,加强对开关电源传导与辐射的管理和监督。

5. 开展宣传与教育•制作宣传材料,普及开关电源传导与辐射知识,提高公众的环保意识;•通过媒体渠道、社区和学校开展宣传活动,增加公众参与度;•注重对关键人群的宣传和教育,如孕妇、儿童等易受辐射影响的人群。

预期效果通过以上方案的全面实施,我们预期达到以下效果:1.开关电源传导超标现象显著减少;2.开关电源辐射超标程度明显降低;3.电力设备工作效率得到提升;4.减少电力设备故障率,提高运行安全性;5.全面保障人民群众的身体健康和生活质量。

EMC 案例分享-1173(Bigtimer)传导整改案例分析

EMC 案例分享-1173(Bigtimer)传导整改案例分析

CN2 MO T_ A
1 2
Q2 S8050H
Q8 S8050H
R47 10K
R48 5 .1 R 1 W
C4 100nF
GND GND
FA N_ IAN I
HEA T2 _ C O
5V J4 J2 J5 J7 J9
5V
J6 J8 J1 J3
A
HEAT1_CO HEAT1_CO
FA N_ IA NI
C2 100nF
C1 100nF
g com1
d1
d com2
e
com3
CN7 S
CN8 OUT
1 1
1 1
R19 R32 51R1206
C5 10nF 1000V
R9
C1
10K
100nF
TR1 BT1 3 1
R24 2K 1206
Q1 BC8 4 6 B
R6 4 .7 K
R10 10K
MIX_ CO
S5 Top T Controller
RT1 PTC
t
M2 Top DC MOTOR
1 1
1 1
CN1 L
1 1
F1 3.15A 250V
ACL
1 1
230Vac 50/60Hz
VR2
CN6
10D471K
N
C6 470nF 275Vac C6 changed to 470nF
RW1 20R2W
R7 Deleted
PB2/PTPI/TX/PTP/AN2
PC0/KEY5
PB7/INT1/KEY4/AN7
PC1/KEY6
PB6/PTCK/KEY3/AN6
PC2/KEY7

传导不合格项整改报告12.2

传导不合格项整改报告12.2

整改报告
企业名称无锡蓝天电子有限公司
产品名称火灾报警控制器(联动型)
产品型号JB-QG-505
不符合试验项目射频场感应的传导骚扰抗扰度试验
不符合现象:
产品进行射频场感应的传导骚扰抗扰度试验,在试验时,试样发出故障信号。

不符合GB4717-2005 6.16、GB16806-2006 5.17条款的技术要求。

不符合原因分析:
控制器在发货配送过程中的震动造成电源板上的器件接触不良。

导致试验时,传导骚扰影响部分电路的正常工作,出现故障。

整改措施:
加强控制器电源板上器件的重新焊接,并在以后生产中严格按焊接工艺执行,重新对控制器的电源板进行三防处理。

以提高抗电磁干扰能力,增加控制器在射频电磁场辐射环境下工作的适应性。

整改措施可行性分析及验证结果(附验证记录):
公司按上述整改措施,加强焊接工艺后,委托申请国家消防电子产品质量监督检验中心做射频场感应的传导骚扰抗扰度试验。

试验后,试样基本性能与试验前的基本性能保持一致(附检验报告)。

签字:盖章:。

(完整word)EMC整改秘籍(有实例)

(完整word)EMC整改秘籍(有实例)

EMC整改步骤之一前言电磁干扰的观念与防制﹐在国内已逐渐受到重视。

虽然目前国内并无严格管制电子产品的电磁干扰(EMI)﹐但由于欧美各国多已实施电磁干扰的要求﹐加上数字产品的普遍使用﹐对电磁干扰的要求已是刻不容缓的事情。

笔者由于工作的关系﹐经常遇到许多产品已完成成品设计﹐因无法通过EMI测试﹐而使设计工程师花费许多时间和精力投入EMI的修改﹐由于属于事后的补救﹐往往投入许多时间与金钱﹐甚而影响了产品上市的时机2.正确的诊断要解决产品上的EMI问题﹐若能在产品设计之初便加以考虑﹐则可以节省事后再投入许多时间与金钱。

由于目前EMI Design—in的观念并不是十分普遍﹐而且由于事先的规划并不能保证其成品可以完全符合电磁干扰的测试在﹐所以如何正确的诊断EMI问题﹐对于设计工程师及EMI工程师是非常重要的。

事实上﹐我们如果把EMI当做一种疾病﹐当然平时的预防保养是很重要的﹐而一旦有疾病则正确的诊断﹐才能得到快速的痊愈﹐没有正确的诊断﹐找不到病症的源头﹐往往事倍功半而拖延费时.故在EMI的问题上﹐常常看到一个EMI有问题的产品﹐由于未能找到造成EMI问题的关键﹐花了许多时间﹐下了许多对策﹐却始终无法解决﹐其中亦不乏专业的EMI工程师。

以往谈到EMI往往强调对策方法﹐甚而视许多对策秘决或绝招﹐然而没有正确的诊断﹐而在产品上加了一大堆EMI抑制组件﹐其结果往往只会使EMI情况更糟。

笔者起初接触产品EMI对策修改时﹐会听到资深EMI工程师说把所有EMI对策拿掉﹐就可以通过测试。

初听以为是句玩笑话﹐如今回想这是很宝贵的经验谈.而后亦听到许多EMI工程师谈到类似的经验。

本文中将举出实际的例子﹐让读者更加了解EMI的对策观念。

一般提到如何解决EMI问题﹐大多说是case by case,当然从对策上而言﹐每一个产品的特性及电路板布线(layout)情况不同﹐故无法用几套方法而解决所有EMI的问题﹐但是长久以来﹐我们一直想要把处理EMI 问题并做适当的对策﹐另外也提供专业的EMI工程师一种参考方法.在此我们把电磁干扰与对策的一些心得经验整理﹐希望能对读者有些帮助。

史上最全开关电源传导与辐射超标整改方案

史上最全开关电源传导与辐射超标整改方案

史上最全开关电源传导与辐射超标整改方案
开关电源是一种常见的电源供应装置,但其工作原理会导致传导和辐射的问题。

如果开关电源传导和辐射超过国家标准,需要采取整改措施以确保安全。

下面是一个史上最全的开关电源传导与辐射超标整改方案:
1. 传导超标整改方案:
a. 更换低传导材料:使用低传导材料来替换开关电源内部的传导元件,如PCB板和连接线。

这些材料应具有较低的传导性能,能有效减小传导的电磁辐射。

b. 优化电路设计:重新设计开关电源的电路,在电路的布局和连接上做出相应的调整,以减小电磁辐射的传导。

c. 添加屏蔽措施:在开关电源和周围环境之间添加屏蔽层,如金属层或导电涂层。

这些屏蔽层能够有效地阻挡电磁辐射的传导。

d. 加强地线连接:确保开关电源的地线连接良好,并采取适当的接地措施,以减小传导超标的风险。

2. 辐射超标整改方案:
a. 提高开关电源的抗干扰能力:采取抗干扰措施来提高开关电源本身的抗干扰能力,如增加滤波电路或添加可变电容器。

b. 优化散热设计:重新设计开关电源的散热系统,确保其能够有效降低温度,减少辐射超标的风险。

c. 添加屏蔽措施:在开关电源周围添加屏蔽层,以阻挡电磁辐射的传播。

d. 选择低辐射材料:使用低辐射材料来替换开关电源内部的元件,如选择低辐射的电解电容器和电感器。

以上整改方案旨在减小开关电源传导和辐射超标的风险,并确保其符合国家标准。

实施整改方案前,建议进行必要的测试和评估,以确定超标的具体情况,并与相关专业人士进行咨询和指导。

EMI传导与辐射超标整改方案

EMI传导与辐射超标整改方案

E M I传导与辐射超标整改方案标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]传导与辐射超标整改方案开关电源电磁干扰的产生机理及其传播途径功率开关器件的高额开关动作是导致开关电源产生电磁干扰(emi)的主要原因。

开关频率的提高一方面减小了电源的体积和重量,另一方面也导致了更为严重的emi问题。

开关电源工作时,其内部的电压和电流波形都是在非常短的时间内上升和下降的,因此,开关电源本身是一个噪声发生源。

开关电源产生的干扰,按噪声干扰源种类来分,可分为尖峰干扰和谐波干扰两种;若按耦合通路来分,可分为传导干扰和辐射干扰两种。

使电源产生的干扰不至于对电子系统和电网造成危害的根本办法是削弱噪声发生源,或者切断电源噪声和电子系统、电网之间的耦合途径。

现在按噪声干扰源来分别说明:1、二极管的反向恢复时间引起的干扰交流输入电压经功率二极管整流桥变为正弦脉动电压,经电容平滑后变为直流,但电容电流的波形不是正弦波而是脉冲波。

由电流波形可知,电流中含有高次谐波。

大量电流谐波分量流入电网,造成对电网的谐波污染。

另外,由于电流是脉冲波,使电源输入功率因数降低。

高频整流回路中的整流二极管正向导通时有较大的正向电流流过,在其受反偏电压而转向截止时,由于pn结中有较多的载流子积累,因而在载流子消失之前的一段时间里,电流会反向流动,致使载流子消失的反向恢复电流急剧减少而发生很大的电流变化(di/dt)。

2、开关管工作时产生的谐波干扰功率开关管在导通时流过较大的脉冲电流。

例如正激型、推挽型和桥式变换器的输入电流波形在阻性负载时近似为矩形波,其中含有丰富的高次谐波分量。

当采用零电流、零电压开关时,这种谐波干扰将会很小。

另外,功率开关管在截止期间,高频变压器绕组漏感引起的电流突变,也会产生尖峰干扰。

3、交流输入回路产生的干扰无工频变压器的开关电源输入端整流管在反向恢复期间会引起高频衰减振荡产生干扰。

开关电源产生的尖峰干扰和谐波干扰能量,通过开关电源的输入输出线传播出去而形成的干扰称之为传导干扰;而谐波和寄生振荡的能量,通过输入输出线传播时,都会在空间产生电场和磁场。

电子设备辐射EMC整改案例

电子设备辐射EMC整改案例

电子设备辐射EMC整改案例前言:现代电子产品的发展越来越快,产品所面对的使用环境也越来越复杂,当前各汽车厂家都在围绕电子化、自动化、智能化发展等,电子控制系统在汽车上有越来越多的使用,汽车系统内电子产品的电磁兼容问题越来越凸显其重要性,为了规范电子产品的电磁兼容性,大部分的国家都制定了电磁兼容标准,特别是军用产品尤其严格。

电磁兼容标准是使产品在实际电磁环境中能够正常工作的基本要求。

所以为了满足各种电磁兼容标准的要求,在产品研发的过程中,就必须在每一个环节都要做好电磁控制和检测,那么频谱分析仪就成为了实验室中必不可少的一种设备。

汽车安全是当今社会所面临的关键问题之一。

接下来,本文就以一款产品中出现的问题,通过频谱分析仪测试之后查找到问题的根源,并在去EMC认证实验室做认证之前解决问题,使产品能顺利通过认证。

1. 故障描述该系统为军用汽车通信端产品,要求通过GJB151A陆军地面设备电磁兼容试验要求。

产品在EMC实验室测试时,CE102、CS101、CS114、RS103均顺利通过试验,但RE102测试结果如图1所示:图1 30MHz~200MHz原始辐射发射从图1可以看出,辐射发射只能满足固定产品要求,不能满足陆军地面电磁辐射要求,其中在50MHz-120MHz之间,辐射发射最大超标20dB,需要进行EMC整改。

2. 原因分析查看产品,整个系统为金属屏蔽机箱,另系统有1根屏蔽航插电源线,通常情况下,金属机箱和屏蔽线缆都有很好的屏蔽效能,如果设计得当,都能顺利通过RE102辐射发射试验,因此,怀疑金属机箱和屏蔽线缆存在电磁泄露导致测试失败。

所以利用实验室的频谱仪诊断系统并查找辐射源,测试系统示意图如图2所示:图2 电磁干扰诊断系统示意图整个系统测试包含有屏蔽机箱和线缆系成如下:(1)是德(安捷伦)科技频谱分析仪型号:MXA N9020A ;带宽范围 20Hz~13.6GHz;图3 频谱分析仪(2)Langer放大器:放大电磁干扰信号;(3)Langer近场磁场探头:测量接受电磁干扰信号,探头类型较多,如下图4所示,一般在选择探头时根据测量的要求进行选择,需要在大范围内寻找时,使用较大的环形探头或者是比较大的扁型的探头;需要精确测量时,选择针式的探头,这种探头可以对每一个器件或者引脚进行测量。

功放辐射整改案例

功放辐射整改案例

功放辐射整改案例
功放辐射整改案例如下:
某电源厂家接到了一个整改项目,涉及一个10m实验室内的多个尺寸的功
放样机。

经过测试,发现65寸样机合格,而75寸和85寸样机不合格。

进一步试验中,将65寸合格的样机更换到75寸和85寸的机器上后,同样不合格。

然而,将75寸和85寸的主板放置在65寸样机上时,机器又合格了。

从这些试验中,可以排除主板的问题。

于是,电源厂家开始对电源进行整改。

经过回厂分析和多次测试,发现24V的插拔问题导致了辐射超标。

拔掉
24V后,样机合格;接上24V后,样机不合格。

进一步排查确认,此路
24V仅仅供电给功放芯片AD82088,导致150MHz左右的频点出现一个
宽带的包络干扰。

为了解决这个问题,电源厂家采取了以下措施:
1. 在小板的正面和背面都贴上了吸波材料,并在吸波材料之间用铜箔连接,以减少电磁干扰。

2. 重新设计了功放电路,优化了接地和屏蔽措施。

3. 调整了电源的滤波电路,增强了抗干扰能力。

整改后,测试数据表明样机的辐射水平得到了显著改善,满足了标准要求。

以上案例仅供参考,具体整改方案应根据实际情况制定。

如需更多信息,建议咨询专业工程师或查阅相关文献资料。

云桌面终端电源端传导骚扰和辐射骚扰整改案例

云桌面终端电源端传导骚扰和辐射骚扰整改案例

云桌面终端电源端传导骚扰和辐射骚扰整改案例邵鄂【摘要】某云桌面终端在进行中国强制性认证(CCC)时,电磁兼容试验项目电源端传导骚扰、辐射骚扰测试均出现超标现象。

将重点从PCB板级电路EMC设计方面剖析其测试不合格原因,并给出相应的整改措施,最后对此案例进行总结,给出类似电子产品在PCB设计时的注意事项,以期能给PCB设计工程师提供一些参考意见。

%A cloud desktop terminal in the China Compulsory Certification process, both conducted disturbance at the mains ports and radiated disturbance failed to pass electromagnetic compatibility test. This paper will mainly focus on the test failure causes analysis from the aspect of EMC design of PCB board-level circuit, and the corrective measures will be given. Finally, this paper summarizes this case, and gives the precautions for the PCB design of similar electronic products for the PCB design engineers.【期刊名称】《环境技术》【年(卷),期】2016(000)001【总页数】4页(P32-35)【关键词】CCC认证;电磁兼容;PCB板级电路;PCB设计【作者】邵鄂【作者单位】赛宝质量安全检测中心,广州 510610【正文语种】中文【中图分类】TN609随着信息技术的发展,基于“远程桌面”和“虚拟桌面”两项技术的云桌面终端在国内一些大公司越来越流行。

电源EMI传导辐射实际整改经验总结(绝对值得)

电源EMI传导辐射实际整改经验总结(绝对值得)

1、在反激式电源中,Y电容接初级地与次级地之间在20MHZ时,会比Y电容接在高压与次级地之间高5dB左右。

当然也要视情况而定。

2、MOS管驱动电阻最好能大于或等于47R。

降低驱动速度有利于改善MOS管与变压器的辐射。

一般采用慢速驱动和快速判断的办法。

3、若辐射在40MHZ-80MHZ之间有些余量不够,可适当地增加MOS管DS之间的电容值,以达到降低辐射量的效果。

4、若在输入AC线上套上磁环并绕2圈,有降低40-60MHZ之间辐射值的趋势,那么在输入EMI滤波部分中串入磁珠则会达到同样的效果。

如在NTC电阻上分别套上两个磁珠。

5、在变压器与MOS管D极之间最好能串入一个磁珠,以降低MOS管电流的变化速度,又能降低输出噪音。

6、电源输入AC滤波部分,X电容放在共模电厂的那个位置并不重要,注意布线时要将铜皮都集中于X电容的引脚处,以达到更好的滤波效果,但X电容最好不要与Y电容连接在同一焊点。

7、在300W左右的中功率电源中,其又是由几个不同的电源部分组成,一般采用三极共模电感。

第一级使用100UH-3MH左右的双线并绕锰锌磁环电感,其后再接Y电容,第二级与第三级可使用相同的共模电感,需要使用的电感量并不要求很大,一般10MH左右就能达到要求。

若把Y电容放在第二级与第三级之间,效果就会差一些。

如果采用两级共模滤波,秕一级电感量适当取大些,1.5-2.5MH左右。

8、如果采用三级,第一级电感量适当取小些,在200UH-1MH之间。

测试辐射时,最好能在初次级之间的Y电容套上磁珠。

如果用三芯AC输入线,在黄绿地线上也串磁环,并绕上两到三圈。

9、在二极管上套磁珠,一般要求把磁珠套在其电压变化最剧烈的地方,在正端整流二极管中,其A端电压变化最剧烈。

10、实例分析:一台19W的二合一电源,在18MH左右处有超过QP值7dB,前级采用两级共模滤波方法和一个X电容,无论怎样更改滤波部分,此处的QP值总是难以压下来。

先是怀疑是由EC2834主变压器引起,后改变变压器使用磁芯屏蔽或最内层磁芯屏蔽加初次级之间屏蔽都没有效果,至MOS/8N60的驱动电阻已达47R,在DS之间加电容也没有什么改善。

EMI传导与辐射超标整改方案

EMI传导与辐射超标整改方案

传导与辐射超标整改方案开关电源电磁干扰的产生机理及其传播途径功率开关器件的高额开关动作是导致开关电源产生电磁干扰emi的主要原因;开关频率的提高一方面减小了电源的体积和重量,另一方面也导致了更为严重的emi问题;开关电源工作时,其内部的电压和电流波形都是在非常短的时间内上升和下降的,因此,开关电源本身是一个噪声发生源;开关电源产生的干扰,按噪声干扰源种类来分,可分为尖峰干扰和谐波干扰两种;若按耦合通路来分,可分为传导干扰和辐射干扰两种;使电源产生的干扰不至于对电子系统和电网造成危害的根本办法是削弱噪声发生源,或者切断电源噪声和电子系统、电网之间的耦合途径;现在按噪声干扰源来分别说明:1、二极管的反向恢复时间引起的干扰交流输入电压经功率二极管整流桥变为正弦脉动电压,经电容平滑后变为直流,但电容电流的波形不是正弦波而是脉冲波;由电流波形可知,电流中含有高次谐波;大量电流谐波分量流入电网,造成对电网的谐波污染;另外,由于电流是脉冲波,使电源输入功率因数降低;高频整流回路中的整流二极管正向导通时有较大的正向电流流过,在其受反偏电压而转向截止时,由于pn结中有较多的载流子积累,因而在载流子消失之前的一段时间里,电流会反向流动,致使载流子消失的反向恢复电流急剧减少而发生很大的电流变化di/dt;2、开关管工作时产生的谐波干扰功率开关管在导通时流过较大的脉冲电流;例如正激型、推挽型和桥式变换器的输入电流波形在阻性负载时近似为矩形波,其中含有丰富的高次谐波分量;当采用零电流、零电压开关时,这种谐波干扰将会很小;另外,功率开关管在截止期间,高频变压器绕组漏感引起的电流突变,也会产生尖峰干扰;3、交流输入回路产生的干扰无工频变压器的开关电源输入端整流管在反向恢复期间会引起高频衰减振荡产生干扰;开关电源产生的尖峰干扰和谐波干扰能量,通过开关电源的输入输出线传播出去而形成的干扰称之为传导干扰;而谐波和寄生振荡的能量,通过输入输出线传播时,都会在空间产生电场和磁场;这种通过电磁辐射产生的干扰称为辐射干扰;4、其他原因元器件的寄生参数,开关电源的原理图设计不够完美,印刷线路板pcb走线通常采用手工布置,具有很大的随意性,pcb的近场干扰大,并且印刷板上器件的安装、放置,以及方位的不合理都会造成emi干扰;这增加了pcb分布参数的提取和近场干扰估计的难度;flyback 架构noise 在频谱上的反应0.15 mhz处产生的振荡是开关频率的3次谐波引起的干扰;0.2 mhz处产生的振荡是开关频率的4次谐波和mosfet 振荡2190.5khz基波的迭加,引起的干扰;所以这部分较强;0.25 mhz处产生的振荡是开关频率的5次谐波引起的干扰;0.35 mhz处产生的振荡是开关频率的7次谐波引起的干扰;0.39 mhz处产生的振荡是开关频率的8次谐波和mosfet 振荡2190.5khz基波的迭加引起的干扰;1.31mhz处产生的振荡是diode 振荡11.31mhz的基波引起的干扰;3.3 mhz处产生的振荡是mosfet 振荡13.3mhz的基波引起的干扰;开关管、整流二极管的振荡会产生较强的干扰设计开关电源时防止emi的措施:1.把噪音电路节点的pcb铜箔面积最大限度地减小;如开关管的漏极、集电极,初次级绕组的节点,等;2.使输入和输出端远离噪音元件,如变压器线包,变压器磁芯,开关管的散热片,等等;3.使噪音元件如未遮蔽的变压器线包,未遮蔽的变压器磁芯,和开关管,等等远离外壳边缘,因为在正常操作下外壳边缘很可能靠近外面的接地线;4. 如果变压器没有使用电场屏蔽,要保持屏蔽体和散热片远离变压器;5. 尽量减小以下电流环的面积:次级输出整流器,初级开关功率器件,栅极基极驱动线路,辅助整流器;6.不要将门极基极的驱动返馈环路和初级开关电路或辅助整流电路混在一起;7.调整优化阻尼电阻值,使它在开关的死区时间里不产生振铃响声;8. 防止emi滤波电感饱和;9.使拐弯节点和次级电路的元件远离初级电路的屏蔽体或者开关管的散热片;10.保持初级电路的摆动的节点和元件本体远离屏蔽或者散热片;11.使高频输入的emi滤波器靠近输入电缆或者连接器端;12.保持高频输出的emi滤波器靠近输出电线端子;13. 使emi滤波器对面的pcb板的铜箔和元件本体之间保持一定距离;14.在辅助线圈的整流器的线路上放一些电阻;15.在磁棒线圈上并联阻尼电阻;16.在输出rf滤波器两端并联阻尼电阻;17.在pcb设计时允许放1nf/ 500 v陶瓷电容器或者还可以是一串电阻,跨接在变压器的初级的静端和辅助绕组之间;18.保持emi滤波器远离功率变压器;尤其是避免定位在绕包的端部;19.在pcb面积足够的情况下, 可在pcb上留下放屏蔽绕组用的脚位和放rc阻尼器的位置,rc阻尼器可跨接在屏蔽绕组两端;20.空间允许的话在开关功率场效应管的漏极和门极之间放一个小径向引线电容器米勒电容, 10皮法/ 1千伏电容;21.空间允许的话放一个小的rc阻尼器在直流输出端;22. 不要把ac插座与初级开关管的散热片靠在一起;开关电源emi的特点作为工作于开关状态的能量转换装置,开关电源的电压、电流变化率很高,产生的干扰强度较大;干扰源主要集中在功率开关期间以及与之相连的散热器和高平变压器,相对于数字电路干扰源的位置较为清楚;开关频率不高从几十千赫和数兆赫兹,主要的干扰形式是传导干扰和近场干扰;而印刷线路板 pcb走线通常采用手工布线,具有更大的随意性,这增加了pcb分布参数的提取和近场干扰估计的难度;1mhz以内----以差模干扰为主,增大x电容就可解决1mhz---5mhz---差模共模混合,采用输入端并一系列x电容来滤除差摸干扰并分析出是哪种干扰超标并解决;5m---以上以共摸干扰为主,采用抑制共摸的方法.对于外壳接地的,在地线上用一个磁环绕2圈会对10mhz以上干扰有较大的衰减diudiu2006;对于25--30mhz不过可以采用加大对地y电容、在变压器外面包铜皮、改变pcb layout、输出线前面接一个双线并绕的小磁环,最少绕10圈、在输出整流管两端并rc滤波器.30---50mhz 普遍是mos管高速开通关断引起,可以用增大mos驱动电阻,rcd缓冲电路采用1n4007慢管,vcc供电电压用1n4007慢管来解决.100---200mhz 普遍是输出整流管反向恢复电流引起,可以在整流管上串磁珠100mhz-200mhz之间大部分出于pfc mosfet及pfc 二极管,现在mosfet及pfc 二极管串磁珠有效果,水平方向基本可以解决问题,但垂直方向就很无奈了开关电源的辐射一般只会影响到100m 以下的频段.也可以在mos,二极管上加相应吸收回路,但效率会有所降低; 1mhz 以内----以差模干扰为主1.增大x 电容量;2.添加差模电感;3.小功率电源可采用pi 型滤波器处理建议靠近变压器的电解电容可选用较大些;1mhz---5mhz---差模共模混合,采用输入端并联一系列x 电容来滤除差摸干扰并分析出是哪种干扰超标并以解决,1.对于差模干扰超标可调整x 电容量,添加差模电感器,调差模电感量;2.对于共模干扰超标可添加共模电感,选用合理的电感量来抑制;3.也可改变整流二极管特性来处理一对快速二极管如fr107 一对普通整流二极管1n4007;5m---以上以共摸干扰为主,采用抑制共摸的方法;对于外壳接地的,在地线上用一个磁环串绕2-3 圈会对10mhz 以上干扰有较大的衰减作用;可选择紧贴变压器的铁芯粘铜箔, 铜箔闭环.处理后端输出整流管的吸收电路和初级大电路并联电容的大小;对于20--30mhz,1.对于一类产品可以采用调整对地y2 电容量或改变y2 电容位置;2.调整一二次侧间的y1 电容位置及参数值;3.在变压器外面包铜箔;变压器最里层加屏蔽层;调整变压器的各绕组的排布;4.改变pcb layout;5.输出线前面接一个双线并绕的小共模电感;6.在输出整流管两端并联rc 滤波器且调整合理的参数;7.在变压器与mosfet 之间加bead core;8.在变压器的输入电压脚加一个小电容;9.可以用增大mos 驱动电阻.30---50mhz 普遍是mos 管高速开通关断引起,1.可以用增大mos 驱动电阻;2.rcd 缓冲电路采用1n4007 慢管;3.vcc 供电电压用1n4007 慢管来解决;4.或者输出线前端串接一个双线并绕的小共模电感;5.在mosfet 的d-s 脚并联一个小吸收电路;6.在变压器与mosfet 之间加bead core;7.在变压器的输入电压脚加一个小电容;8.pcb 心layout 时大电解电容,变压器,mos 构成的电路环尽可能的小;9.变压器,输出二极管,输出平波电解电容构成的电路环尽可能的小;50---100mhz 普遍是输出整流管反向恢复电流引起,1.可以在整流管上串磁珠;2.调整输出整流管的吸收电路参数;3.可改变一二次侧跨接y电容支路的阻抗,如pin脚处加bead core或串接适当的电阻;4.也可改变mosfet,输出整流二极管的本体向空间的辐射如铁夹卡mosfet; 铁夹卡diode,改变散热器的接地点;5.增加屏蔽铜箔抑制向空间辐射.200mhz 以上开关电源已基本辐射量很小,一般可过emi 标准;传导方面 emi 对策传导冷机时在0.15-1mhz超标,热机时就有7db余量;主要原因是初级bulk电容df值过大造成的,冷机时esr比较大,热机时esr比较小,开关电流在esr上形成开关电压,它会压在一个电流ln线间流动,这就是差模干扰;解决办法是用esr低的电解电容或者在两个电解电容之间加一个差模电感;.........辐射方面 emi 对策辐射在30~300mhz频段内出现宽带噪声超标通过在电源线上增加去耦磁环可开合进行验证,如果有改善则说明和电源线有关系,采用以下整改方法:如果设备有一体化滤波器,检查滤波器的接地是否良好,接地线是否尽可能短;金属外壳的滤波器的接地最好直接通过其外壳和地之间的大面积搭接;检查滤波器的输入、输出线是否互相靠近;适当调整x/y电容的容值、差模电感及共模扼流圈的感量;调整y 电容时要注意安全问题;改变参数可能会改善某一段的辐射,但是却会导致另外频度变差,所以需要不断的试,才能找到最好的组合;适当增大触发极上的电阻值不失为一个好办法;也可在开关管晶体管的集电极或者是mos管的漏极或者是次级输出整流管对地接一个小电容也可以有效减小共模开关噪声;开关电源板在pcb布线时一定要控制好各回路的回流面积,可以大大减小差模辐射;在pcb电源走线中增加104/103电容为电源去耦;在多层板布线时要求电源平面和地平面紧邻;在电源线上套磁环进行比对验证,以后可以通过在单板上增加共模电感来实现,或者在电缆上注塑磁环;输入ac线的l线的长度尽量短;屏蔽设备内部,孔缝附近是否有干扰源;结构件搭接处是否喷有绝缘漆,采用砂布将绝缘漆擦掉,作比较试验;检查接地螺钉是否喷有绝缘漆,是否接地良好;。

如何利用周边设备进行开关电源辐射整改

如何利用周边设备进行开关电源辐射整改

如何利用周边设备进行开关电源辐射整改
1. 本期简介
 辐射发射项目在EMC领域是比较容易出问题的项目,大多数产品在辐射发射项目测试时,总会遇到这样或者那样的超标情况。

有些时候我们整改总会感到无从下手,不管怎幺调试,测试数据一直没有明显变化,令人十分头疼。

 本次期刊,我们将会针对辐射发射项目的整改思路进行一个梳理,介绍如何利用周边设备协助我们进行整改。

2. 案例1:现象描述
 一款普通开关电源,在标准EN55015 CLASSB测试时,辐射发射项目超标,超标数据如下:
 其垂直原始数据如下:。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
于是我在D 极上串了一个通用的插件磁珠。(¢3.5*8)再看MOS 管的频谱曲线如下:大家可以看到此时 MOS 管的辐射明显减小而且更平稳了一些.于是第二次做了测试.结果如下:从上图可以看到此时的传导已经非常的好,余量最小的为8.6dB.上图为 V 方向空间辐射曲线最小余量为8.3dB.上图为H 方向的曲线余量更大。
小结一下:其供电,此处没有处理好一定会影响到其它的地方。不论是什么产品它的辐射或传导主要有这个产品内部的敏感元器件造成的。对于电源产品主要有的敏感元器件就是变压器、MOS 管、二极管。所以只要解决好这三个方面的协调问题EMC 就不难搞定。而解决EMC 的方法概括来说就是:消除干扰源、切除干优传导的途径、疏导干扰源。
曲线见下面:此图为客户原板上所用变压器,我只在外面增加一个屏蔽层。测试可以通过不过余量很小只有 1dB。显然来能保障批量生产可能造成的不确定性。
下图为空间辐射的曲线 V 方向虽然也能通过但余量也是很小。
下图为 H 方向的曲线,可以看到100-120MHz 段还有超标的情况。根据以上的情况我做了第二次修改,将变压器更新成我前面提到过的改变了绕线方式的变压器。用我的频谱分析仪重新查看了一产品的变压器的位置和MOS 管的位置。发现MOS 管的位置曲线不是有点高,并且成有规律的波形于是用频谱分别对 MOS 管的G、D、S 三个脚接触看一下是哪个脚是辐射源,发现D 极的辐射源最大。
电源传导、辐射整改实例
说到EMC 的整改问题,很多工程师都会有很刻记忆:有的工程师认为不是自己设计的电路或自己布的PCB,那别人就对这个电源过EMC 没有更好的方法,还有的一些工程师对电源的IC 的功能情有独钟,他们可以分析出很多的情况,认为是这个IC 的功能影响到了产品的EMC 的指标。从本人做EMC 的整改经验来看不能认同这些朋友的意见。本人从事整改好几年,经手整改过的产品有电源、陆军标的逆变电源、工业电源,也有大功率的LED 电源、音视频产品,对这些产品的工作原理只大略知道,无论如何也比不上专职工程师,但一样可以把这些产品整改符合EMC的要求同时也让各企业满意。
经过两次的修改该产品顺利的符合了客户要求的标准测试。最终的整改方案为:
1. 将 MOS 管,双向二极管的散热片面接入电源的热地。2. 将 X 电容改为0.22uF。3. 将共模电感改为 50mH.4. 在 MOS 管的D 线电路的正面串入一个插件的磁珠。去消在D、S 间并接的101 电容。5. 将变压器的绕线方式改变了一下,取消内部的屏蔽,而在外部加了一个屏蔽层。并接入热地。
最近帮一个企业整改了一个二十几瓦的电源,本文结合测试的曲线描述整改的经过。先上一个测试不通过的曲线:上图是传导测试的曲线。上图是空间辐射的 V 方向曲线上图是空间辐射的 H 方向的曲线
以上这个电源是一个 25W 左右的开关电源,电源的电路图因为客户原因不方便上传,但可以跟大家先说明一下,此电路用了一个0。1uF 的X 电容和一个30mH 的共模电感。次级输出加了一个50uH 的工字电感。客户整改要求整改方案要能量产。
拿到产品后首先看了一下这个产品发现 MOS 管和双向二极管所带的散热片都是没有接入热地的。(也就是电源初级边的电解电容的负极。变压器内有一层线圈绕制的屏蔽并接入热地。
我的整改方案,如下:
从传导的曲线上 1MHz 前超标的情况可以看出差模电容X 太小了,所以修改了X 电容变成0。22uF。而1-5MHz 之间也超标,所以增加共模电感到50mH ,这项频率超标一般主要是有变压器的漏感造成的。在变压器的外面增加了一个屏蔽铜箔,并接入热地。(同时做了别外一个变压器,去除原变压器内部的屏蔽层,改变了变压器的绕线方式,在变压器的外面做了屏蔽并接入热地用备用)同时将 MOS 管和双向二极管的散热片也接入热地。同时将MOS 管的D、S 两脚间增加了一个101/1KV的电容,做完以上的整改方案后做了一次测试。
a.消除就是用将干扰源通过热能的方式损耗掉,这种是制本的方式。b.切除干扰传导的途径就是将干扰向外传递的路径切断,使其无法向外干扰,也就是我们常做的滤波,屏蔽等方法。c.疏导干扰源这种就是将干扰源引到不是敏感的元器件上如旁路,去藉,接地等方式.
相关文档
最新文档