江苏2018版高考数学复习第六章数列6.3等比数列及其前n项和教师用书文苏教版
6.3等比数列及其前n项和
§6.3 等比数列及其前n 项和(时间:45分钟 满分:100分)一、选择题(每小题7分,共35分)1.设{a n }是公比为正数的等比数列,若a 1=1,a 5=16,则数列{a n }前7项的和为( )A .63B .64C .127D .1282.在等比数列{a n }中,若a 4=8,q =-2,则a 7的值为( )A .-64B .64C .-48D .483.在等比数列{a n }中,a 3=7,前3项之和S 3=21,则公比q 的值为( )A .1B .-12C .1或-12D .-1或124.若等比数列{a n }各项都是正数,a 1=3,a 1+a 2+a 3=21,则a 3+a 4+a 5的值为( )A .21B .42C .63D .845.设等比数列{a n }的公比q =3,前n 项和为S n ,则S 4a 2等于( )A .2B .4C.403D.172二、填空题(每小题6分,共24分)6.已知等差数列{a n }的公差d ≠0,它的第1、5、17项顺次成等比数列,则这个等比数列的公比是________.7.在等比数列{a n }中,a 1=1,公比q =2,若a n =64,则n 的值为________.8.已知{a n }是等比数列,a 2=2,a 5=14,则S n =a 1+a 2+…+a n 的取值范围是______.9.设{a n }是公比为q 的等比数列,|q |>1,令b n =a n +1(n =1,2,…),若数列{b n }有连续四项在集合{-53,-23,19,37,82}中,则6q =____________. 三、解答题(共41分)10.(13分)已知等差数列{a n }满足a 2=2,a 5=8.(1)求{a n }的通项公式;(2)各项均为正数的等比数列{b n }中,b 1=1,b 2+b 3=a 4,求{b n }的前n 项和T n . 11.(14分)数列{a n }中,a 1=2,a 2=3,且{a n a n +1}是以3为公比的等比数列,记b n =a 2n -1+a 2n (n ∈N *).(1)求a 3,a 4,a 5,a 6的值; (2)求证:{b n }是等比数列.12.(14分)已知在正项数列{a n }中,a 1=2,点A n (a n ,a n +1)在双曲线y 2-x 2=1上,数列{b n }中,点(b n ,T n )在直线y =-12x +1上,其中T n 是数列{b n }的前n 项和.(1)求数列{a n }的通项公式; (2)求证:数列{b n }是等比数列; (3)若c n =a n ·b n ,求证:c n +1<c n . 答案 1.C 2.A3.C4.D5.C6.37.78. [4,8)9.-910. 解 (1)设等差数列{a n }的公差为d ,则由已知得⎩⎪⎨⎪⎧a 1+d =2a 1+4d =8.∴a 1=0,d =2.∴a n =a 1+(n -1)d =2n -2.(2)设等比数列{b n }的公比为q ,则由已知得q +q 2=a 4, ∵a 4=6,∴q =2或q =-3.∵等比数列{b n }的各项均为正数,∴q =2.∴{b n }的前n 项和T n =b 1(1-q n )1-q =1×(1-2n )1-2=2n-1.11. (1)解 ∵{a n a n +1}是公比为3的等比数列,∴a n a n +1=a 1a 2·3n -1=2·3n,∴a 3=2·32a 2=6,a 4=2·33a 3=9,a 5=2·34a 4=18,a 6=2·35a 5=27.(2)证明 ∵{a n a n +1}是公比为3的等比数列, ∴a n a n +1=3a n -1a n ,即a n +1=3a n -1,∴a 1,a 3,a 5,…,a 2n -1,…与a 2,a 4,a 6,…,a 2n ,… 都是公比为3的等比数列. ∴a 2n -1=2·3n -1,a 2n =3·3n -1,∴b n =a 2n -1+a 2n =5·3n -1.∴b n +1b n =5·3n5·3n -1=3,故{b n }是以5为首项,3为公比的等比数列. 12. (1)解 由已知点A n 在y 2-x 2=1上知,a n +1-a n =1,∴数列{a n }是一个以2为首项,以1为公差的等差数列, ∴a n =a 1+(n -1)d =2+n -1=n +1. (2)证明 ∵点(b n ,T n )在直线y =-12x +1上,∴T n =-12b n +1,① ∴T n -1=-12b n -1+1 (n ≥2),②①②两式相减得b n =-12b n +12b n -1 (n ≥2),∴32b n =12b n -1,∴b n =13b n -1. 令n =1,得b 1=-12b 1+1,∴b 1=23,∴{b n }是一个以23为首项,以13为公比的等比数列,(3)证明 由(2)可知b n =23·⎝ ⎛⎭⎪⎫13n -1=23n .∴c n =a n ·b n =(n +1)·23n ,∴c n +1-c n =(n +2)·23-(n +1)·23=23n +1[(n +2)-3(n +1)]=23n +1(-2n -1)<0,∴c n +1<c n .。
等比数列及其前n项和(高三一轮复习)
数学 N 必备知识 自主学习 关键能力 互动探究
— 18 —
思维点睛►
(1)等比数列的通项公式及前n项和公式共涉及五个量a1,n,q,an,Sn,一般可 以“知三求二”,通过列方程(组)便可迎刃而解.
(2)等比数列的前n项和公式涉及对公比q的分类讨论,分为q=1时与q≠1时的情 况.
数学 N 必备知识 自主学习 关键能力 互动探究
— 15 —
解法二:设等比数列{an}的公比为q,易知q≠1.由题意可得aa12+ -aa25+ =a432=,168,
即a111--qq3=168, a1q1-q3=42,
a1=96, 解得q=12,
所以a6=a1q5=3,故选D.
数学 N 必备知识 自主学习 关键能力 互动探究
(2)设等比数列{an}的公比为q, 由题意得2(12a3)=3a1+2a2, 即a1q2=3a1+2a1q. 因为数列{an}的各项均为正数,所以a1>0,且q>0,故A、B正确; 由q2-2q-3=0,解得q=3或q=-1(舍), 所以aa32=q=3,aa46=q2=9,故C错误,D正确,故选ABD.
第六章 数列
第3讲 等比数列及其前n项和
数学 N 必备知识 自主学习 关键能力 互动探究 课标解读
— 2—
1.通过生活中的实例,理解等比数列的概念和通项公式的意义;2.探索并掌握等 比数列的前n项和公式,理解等比数列的通项公式与前n项和公式的关系;3.能在具 体的问题情境中,发现数列的等比关系,并解决相应的问题;4.体会等比数列与指 数函数的关系.
数学 N 必备知识 自主学习 关键能力 互动探究
(2)由(1)可知 an-3n=(-1)n, 所以 an=3n+(-1)n, 所以 Sn=311--33n+-11·-[1--1- 1n] =3n+1-2-1n+1-2.
浙江专用2018版高考数学复习第六章数列与数学归纳法6.3等比数列及其前n项和教师用书
(浙江专用)2018版高考数学大一轮复习 第六章 数列与数学归纳法6.3 等比数列及其前n 项和教师用书1.等比数列的定义一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,通常用字母q 表示(q ≠0). 2.等比数列的通项公式设等比数列{a n }的首项为a 1,公比为q ,则它的通项a n =a 1·q n -1.3.等比中项如果在a 与b 中间插入一个数G ,使a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项. 4.等比数列的常用性质 (1)通项公式的推广:a n =a m ·qn -m(n ,m ∈N *).(2)若{a n }为等比数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k ·a l =a m ·a n .(3)若{a n },{b n }(项数相同)是等比数列,则{λa n }(λ≠0),⎩⎨⎧⎭⎬⎫1a n ,{a 2n },{a n ·b n },⎩⎨⎧⎭⎬⎫a n b n 仍是等比数列.5.等比数列的前n 项和公式等比数列{a n }的公比为q (q ≠0),其前n 项和为S n , 当q =1时,S n =na 1; 当q ≠1时,S n =a 1-q n1-q=a 1-a n q1-q. 6.等比数列前n 项和的性质公比不为-1的等比数列{a n }的前n 项和为S n ,则S n ,S 2n -S n ,S 3n -S 2n 仍成等比数列,其公比为q n. 【知识拓展】 等比数列{a n }的单调性(1)满足⎩⎪⎨⎪⎧ a 1>0,q >1或⎩⎪⎨⎪⎧ a 1<0,0<q <1时,{a n }是递增数列.(2)满足⎩⎪⎨⎪⎧a 1>0,0<q <1或⎩⎪⎨⎪⎧a 1<0,q >1时,{a n }是递减数列.(3)当⎩⎪⎨⎪⎧a 1≠0,q =1时,{a n }为常数列.(4)当q <0时,{a n }为摆动数列. 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)满足a n +1=qa n (n ∈N *,q 为常数)的数列{a n }为等比数列.( × ) (2)G 为a ,b 的等比中项⇔G 2=ab .( × )(3)如果数列{a n }为等比数列,b n =a 2n -1+a 2n ,则数列{b n }也是等比数列.( × ) (4)如果数列{a n }为等比数列,则数列{ln a n }是等差数列.( × )1.(教材改编)已知{a n }是等比数列,a 2=2,a 5=14,则公比q 等于( )A .-12B .-2C .2 D.12答案 D解析 由题意知q 3=a 5a 2=18,∴q =12.2.设等比数列{a n }的前n 项和为S n ,若S 2=3,S 4=15,则S 6等于( ) A .31 B .32 C .63 D .64 答案 C解析 根据题意知,等比数列{a n }的公比不是-1.由等比数列的性质,得(S 4-S 2)2=S 2·(S 6-S 4),即122=3×(S 6-15),解得S 6=63.故选C.3.(教材改编)在9与243中间插入两个数,使它们同这两个数成等比数列,则插入的两个数分别为________. 答案 27,81解析 设该数列的公比为q ,由题意知, 243=9×q 3,q 3=27,∴q =3.∴插入的两个数分别为9×3=27,27×3=81.4.设S n 为等比数列{a n }的前n 项和,8a 2+a 5=0,则S 5S 2=________. 答案 -11解析 设等比数列{a n }的公比为q , ∵8a 2+a 5=0,∴8a 1q +a 1q 4=0. ∴q 3+8=0,∴q =-2,∴S 5S2=a 11-q 51-q ·1-q a 11-q 2=1-q 51-q 2=1--51-4=-11.题型一 等比数列基本量的运算例1 (1)(2015·课标全国Ⅱ)已知等比数列{a n }满足a 1=14,a 3a 5=4(a 4-1),则a 2等于( )A .2B .1 C.12 D.18(2)在各项均为正数的等比数列{a n }中,a 2,a 4+2,a 5成等差数列,a 1=2,S n 是数列{a n }的前n 项的和,则S 10-S 4等于( )A .1 008B .2 016C .2 032D .4 032答案 (1)C (2)B解析 (1)由{a n }为等比数列,得a 3a 5=a 24, 又a 3a 5=4(a 4-1),所以a 24=4(a 4-1), 解得a 4=2.设等比数列{a n }的公比为q , 则由a 4=a 1q 3,得2=14q 3,解得q =2,所以a 2=a 1q =12.故选C.(2)由题意知2(a 4+2)=a 2+a 5,即2(2q 3+2)=2q +2q 4=q (2q 3+2),得q =2,所以a n =2n,S 10=-2101-2=211-2=2 046,S 4=-241-2=25-2=30,所以S 10-S 4=2 016.故选B.思维升华 等比数列基本量的运算是等比数列中的一类基本问题,数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)可迎刃而解.(1)(2016·诸暨市质检)已知等比数列{a n }的首项a 1=1,且a 2,a 4,a 3成等差数列,则数列{a n }的公比q =________,数列{a n }的前4项和S 4=________.(2)(2015·湖南)设S n 为等比数列{a n }的前n 项和,若a 1=1,且3S 1,2S 2,S 3成等差数列,则a n =________.答案 (1)1或-12 4或58(2)3n -1解析 (1)由a 2,a 4,a 3成等差数列得2a 1q 3=a 1q +a 1q 2, 即2q 3=q +q 2,解得q =1或q =-12.当q =1时,S 4=4a 1=4, 当q =-12时,S 4=1--1241--12=58. (2)由3S 1,2S 2,S 3成等差数列知,4S 2=3S 1+S 3, 可得a 3=3a 2,所以公比q =3, 故等比数列的通项a n =a 1qn -1=3n -1.题型二 等比数列的判定与证明例2 设数列{a n }的前n 项和为S n ,已知a 1=1,S n +1=4a n +2. (1)设b n =a n +1-2a n ,证明:数列{b n }是等比数列; (2)求数列{a n }的通项公式. (1)证明 由a 1=1及S n +1=4a n +2, 得a 1+a 2=S 2=4a 1+2. ∴a 2=5,∴b 1=a 2-2a 1=3.又⎩⎪⎨⎪⎧S n +1=4a n +2, ①S n =4a n -1+n , ②由①-②,得a n +1=4a n -4a n -1(n ≥2), ∴a n +1-2a n =2(a n -2a n -1)(n ≥2).∵b n =a n +1-2a n ,∴b n =2b n -1(n ≥2), 故{b n }是首项b 1=3,公比为2的等比数列. (2)解 由(1)知b n =a n +1-2a n =3·2n -1,∴a n +12n +1-a n 2n =34, 故{a n 2n }是首项为12,公差为34的等差数列. ∴a n 2n =12+(n -1)·34=3n -14, 故a n =(3n -1)·2n -2.引申探究若将例2中“S n +1=4a n +2”改为“S n +1=2S n +(n +1)”,其他不变,求数列{a n }的通项公式. 解 由已知得n ≥2时,S n =2S n -1+n . ∴S n +1-S n =2S n -2S n -1+1, ∴a n +1=2a n +1,∴a n +1+1=2(a n +1),n ≥2, 又a 1=1,S 2=a 1+a 2=2a 1+2,a 2=3, 当n =1时上式也成立,故{a n +1}是以2为首项,以2为公比的等比数列, ∴a n +1=2·2n -1=2n ,∴a n =2n-1.思维升华 (1)证明一个数列为等比数列常用定义法与等比中项法,其他方法只用于选择题、填空题中的判定;若证明某数列不是等比数列,则只要证明存在连续三项不成等比数列即可.(2)利用递推关系时要注意对n =1时的情况进行验证.已知数列{a n }满足a 1=1,a n +1=3a n +1.(1)证明:{a n +12}是等比数列,并求{a n }的通项公式;(2)证明:1a 1+1a 2+…+1a n <32.证明 (1)由a n +1=3a n +1,得a n +1+12=3(a n +12).又a 1+12=32,所以{a n +12}是首项为32,公比为3的等比数列.所以a n +12=3n 2,因此{a n }的通项公式为a n =3n-12.(2)由(1)知1a n =23n -1.因为当n ≥1时,3n-1≥2×3n -1,所以13n -1≤12×3n -1.于是1a 1+1a 2+…+1a n ≤1+13+…+13n -1=32(1-13n )<32, 所以1a 1+1a 2+…+1a n <32.题型三 等比数列性质的应用例3 (1)若等比数列{a n }的各项均为正数,且a 10a 11+a 9a 12=2e 5,则ln a 1+ln a 2+…+lna 20=________.(2)设等比数列{a n }的前n 项和为S n ,若S 6S 3=12,则S 9S 3=________.答案 (1)50 (2)34解析 (1)因为a 10a 11+a 9a 12=2a 10a 11=2e 5, 所以a 10a 11=e 5.所以ln a 1+ln a 2+…+ln a 20=ln(a 1a 2…a 20) =ln[(a 1a 20)·(a 2a 19)·…·(a 10a 11)] =ln(a 10a 11)10=10ln(a 10a 11) =10ln e 5=50ln e =50.(2)方法一 ∵S 6∶S 3=1∶2,∴{a n }的公比q ≠1.由a 11-q 61-q ÷a 11-q 31-q =12,得q 3=-12,∴S 9S 3=1-q 91-q 3=34. 方法二 ∵{a n }是等比数列,且S 6S 3=12,∴公比q ≠-1,∴S 3,S 6-S 3,S 9-S 6也成等比数列,即(S 6-S 3)2=S 3·(S 9-S 6), 将S 6=12S 3代入得S 9S 3=34.思维升华 等比数列常见性质的应用等比数列性质的应用可以分为三类:(1)通项公式的变形;(2)等比中项的变形;(3)前n 项和公式的变形.根据题目条件,认真分析,发现具体的变化特征即可找出解决问题的突破口.(1)已知在等比数列{a n }中,a 1a 4=10,则数列{lg a n }的前4项和等于( )A .4B .3C .2D .1(2)设等比数列{a n }中,前n 项和为S n ,已知S 3=8,S 6=7,则a 7+a 8+a 9等于( ) A.18 B .-18 C.578 D.558 答案 (1)C (2)A解析 (1)前4项和S 4=lg a 1+lg a 2+lg a 3+lg a 4=lg(a 1a 2a 3a 4),又∵等比数列{a n }中,a 2a 3=a 1a 4=10, ∴S 4=lg 100=2.(2)因为a 7+a 8+a 9=S 9-S 6,且公比不等于-1,在等比数列中,S 3,S 6-S 3,S 9-S 6也成等比数列,即8,-1,S 9-S 6成等比数列,所以有8(S 9-S 6)=(-1)2,S 9-S 6=18,即a 7+a 8+a 9=18.14.分类讨论思想在等比数列中的应用典例 (15分)已知首项为32的等比数列{a n }的前n 项和为S n (n ∈N *),且-2S 2,S 3,4S 4成等差数列.(1)求数列{a n }的通项公式; (2)证明:S n +1S n ≤136(n ∈N *).思想方法指导 (1)利用等差数列的性质求出等比数列的公比,写出通项公式; (2)求出前n 项和,根据函数的单调性证明. 规范解答(1)解 设等比数列{a n }的公比为q , 因为-2S 2,S 3,4S 4成等差数列,所以S 3+2S 2=4S 4-S 3,即S 4-S 3=S 2-S 4,可得2a 4=-a 3,于是q =a 4a 3=-12.[3分]又a 1=32,所以等比数列{a n }的通项公式为a n =32×⎝ ⎛⎭⎪⎫-12n -1=(-1)n -1·32n .[5分](2)证明 由(1)知,S n =1-⎝ ⎛⎭⎪⎫-12n,S n +1S n =1-⎝ ⎛⎭⎪⎫-12n +11-⎝ ⎛⎭⎪⎫-12n=⎩⎪⎨⎪⎧2+12nn +,n 为奇数,2+12nn -,n 为偶数.[8分]当n 为奇数时,S n +1S n随n 的增大而减小,所以S n +1S n ≤S 1+1S 1=136.[11分]当n 为偶数时,S n +1S n随n 的增大而减小,所以S n +1S n ≤S 2+1S 2=2512.[13分] 故对于n ∈N *,有S n +1S n ≤136(n ∈N *).[15分]1.在各项均为正数的等比数列{a n }中,a 3=2-1,a 5=2+1,则a 23+2a 2a 6+a 3a 7等于( ) A .4 B .6 C .8 D .8-4 2答案 C解析 在等比数列中,a 3a 7=a 25,a 2a 6=a 3a 5,所以a 23+2a 2a 6+a 3a 7=a 23+2a 3a 5+a 25=(a 3+a 5)2=(2-1+2+1)2=(22)2=8.2.(2016·珠海模拟)在等比数列{a n }中,若a 1<0,a 2=18,a 4=8,则公比q 等于( ) A.32 B.23 C .-23D.23或-23答案 C解析 由⎩⎪⎨⎪⎧a 1q =18,a 1q 3=8解得⎩⎪⎨⎪⎧a 1=27,q =23或⎩⎪⎨⎪⎧a 1=-27,q =-23.又a 1<0,因此q =-23.3.在正项等比数列{a n }中,已知a 1a 2a 3=4,a 4a 5a 6=12,a n -1a n a n +1=324,则n 等于( ) A .12 B .13 C .14 D .15答案 C解析 设数列{a n }的公比为q , 由a 1a 2a 3=4=a 31q 3与a 4a 5a 6=12=a 31q 12, 可得q 9=3,a n -1a n a n +1=a 31q 3n -3=324,因此q3n -6=81=34=q 36,所以n =14,故选C.4.(2016·绍兴期末)在各项均为正数的等比数列{a n }中,a 1=2,且a 2,a 4+2,a 5成等差数列,记S n 是数列{a n }的前n 项和,则S 5等于( ) A .32 B .62 C .27 D .81 答案 B解析 设正项等比数列{a n }的公比为q ,则q >0, 由a 2,a 4+2,a 5成等差数列,得a 2+a 5=2(a 4+2), 即2q +2q 4=2(2q 3+2),(q -2)(1+q 3)=0, 解得q =2或q =-1(舍去), ∴S 5=-251-2=62,故选B.5.已知数列{a n }满足log 3a n +1=log 3a n +1(n ∈N *),且a 2+a 4+a 6=9,则15793log ()++a a a 的值是( ) A .-15B .-5C .5 D.15答案 B解析 由log 3a n +1=log 3a n +1(n ∈N *),得log 3a n +1-log 3a n =1,即log 3a n +1a n=1, 解得a n +1a n=3,所以数列{a n }是公比为3的等比数列. 因为a 5+a 7+a 9=(a 2+a 4+a 6)q 3, 所以a 5+a 7+a 9=9×33=35.所以15793log ()++a a a =513log 3=-5.6.(2016·铜仁质量检测)在由正数组成的等比数列{a n }中,若a 3a 4a 5=3π,则sin(log 3a 1+log 3a 2+…+log 3a 7)的值为( ) A.12 B.32 C .1 D .-32答案 B解析 因为a 3a 4a 5=3π=a 34,所以π343.=alog 3a 1+log 3a 2+…+log 3a 7=log 3(a 1a 2…a 7) =log 3a 74=π337log 3=7π3,所以sin(log 3a 1+log 3a 2+…+log 3a 7)=32. 7.设S n 为等比数列{a n }的前n 项和,已知3S 3=a 4-2,3S 2=a 3-2,则公比q =________. 答案 4解析 因为⎩⎪⎨⎪⎧3S 3=a 4-2, ①3S 2=a 3-2, ②由①-②,得3a 3=a 4-a 3,即4a 3=a 4, 则q =a 4a 3=4.8.设各项都是正数的等比数列{a n },S n 为前n 项和且S 10=10,S 30=70,那么S 40=________. 答案 150解析 依题意,知数列{a n }的公比q ≠-1,数列S 10,S 20-S 10,S 30-S 20,S 40-S 30成等比数列,因此有(S 20-S 10)2=S 10(S 30-S 20),即(S 20-10)2=10(70-S 20),故S 20=-20或S 20=30;又S 20>0,因此S 20=30,S 20-S 10=20,S 30-S 20=40,故S 40-S 30=80,S 40=150.9.已知数列{a n }的前n 项和为S n ,且满足a n +S n =1(n ∈N *),则通项a n =________.答案 12n 解析 ∵a n +S n =1,① ∴a 1=12,a n -1+S n -1=1(n ≥2), ② 由①-②,得a n -a n -1+a n =0,即a n a n -1=12(n ≥2), ∴数列{a n }是首项为12,公比为12的等比数列, 则a n =12×(12)n -1=12n . 10.已知数列{a n }的首项为1,数列{b n }为等比数列且b n =a n +1a n ,若b 10·b 11=2,则a 21=________. 答案 1 024解析 ∵b 1=a 2a 1=a 2,b 2=a 3a 2,∴a 3=b 2a 2=b 1b 2,∵b 3=a 4a 3,∴a 4=b 1b 2b 3,…,a n =b 1b 2b 3·…·b n -1,∴a 21=b 1b 2b 3·…·b 20=(b 10b 11)10=210=1 024.11.已知{a n }是等差数列,满足a 1=3,a 4=12,数列{b n }满足b 1=4,b 4=20,且{b n -a n }是等比数列.(1)求数列{a n }和{b n }的通项公式;(2)求数列{b n }的前n 项和.解 (1)设等差数列的公差为d ,由题意得d =a 4-a 13=12-33=3,所以a n =a 1+(n -1)d =3n (n ∈N *).设等比数列{b n -a n }的公比为q ,由题意得q 3=b 4-a 4b 1-a 1=20-124-3=8,解得q =2. 所以b n -a n =(b 1-a 1)qn -1=2n -1. 从而b n =3n +2n -1(n ∈N *).(2)由(1)知b n =3n +2n -1(n ∈N *), 数列{3n }的前n 项和为32n (n +1),数列{2n -1}的前n 项和为1×1-2n1-2=2n -1. 所以数列{b n }的前n 项和为32n (n +1)+2n -1. 12.(2016·全国丙卷)已知各项都为正数的数列{a n }满足a 1=1,a 2n -(2a n +1-1)a n -2a n +1=0.(1)求a 2,a 3;(2)求{a n }的通项公式.解 (1)由题意,得a 2=12,a 3=14. (2)由a 2n -(2a n +1-1)a n -2a n +1=0,得2a n +1(a n +1)=a n (a n +1).因为{a n }的各项都为正数,所以a n +1a n =12. 故{a n }是首项为1,公比为12的等比数列, 因此a n =12n -1. 13.已知数列{a n }中,a 1=1,a n ·a n +1=⎝ ⎛⎭⎪⎫12n ,记T 2n 为{a n }的前2n 项的和,b n =a 2n +a 2n -1,n ∈N *. (1)判断数列{b n }是否为等比数列,并求出b n ;(2)求T 2n .解 (1)∵a n ·a n +1=⎝ ⎛⎭⎪⎫12n , ∴a n +1·a n +2=⎝ ⎛⎭⎪⎫12n +1, ∴a n +2a n =12,即a n +2=12a n . ∵b n =a 2n +a 2n -1,∴b n +1b n =a 2n +2+a 2n +1a 2n +a 2n -1=12a 2n +12a 2n -1a 2n +a 2n -1=12, ∵a 1=1,a 1·a 2=12, ∴a 2=12⇒b 1=a 1+a 2=32. ∴{b n }是首项为32,公比为12的等比数列. ∴b n =32×⎝ ⎛⎭⎪⎫12n -1=32n .(2)由(1)可知,a n +2=12a n , ∴a 1,a 3,a 5,…是以a 1=1为首项,以12为公比的等比数列;a 2,a 4,a 6,…是以a 2=12为首项,以12为公比的等比数列, ∴T 2n =(a 1+a 3+…+a 2n -1)+(a 2+a 4+…+a 2n )=1-⎝ ⎛⎭⎪⎫12n 1-12+12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n 1-12=3-32n .。
2018年高考数学文江苏专用总复习教师用书:第六章 数
第4讲 数列的求和考试要求 1.等差、等比数列的前n 项和公式,C 级要求;2.非等差、等比数列求和的几种常见方法,C 级要求.知 识 梳 理1.常用的一般数列的求和方法 (1)公式法①等差数列的前n 项和公式S n =n a 1+a n 2=na 1+n n -1 2d .②等比数列的前n 项和公式 (ⅰ)当q =1时,S n =na 1;(ⅱ)当q ≠1时,S n =a 1 1-q n 1-q =a 1-a n q 1-q.(2)分组转化法把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解. (3)裂项相消法把数列的通项拆成两项之差求和,正负相消剩下首尾若干项. (4)倒序相加法把数列分别正着写和倒着写再相加,即等差数列求和公式的推导过程的推广. (5)错位相减法主要用于一个等差数列与一个等比数列对应项相乘所得的数列的求和,即等比数列求和公式的推导过程的推广. (6)并项求和法一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)nf (n )类型,可采用两项合并求解.例如,S n =1002-992+982-972+…+22-12=(100+99)+(98+97)+…+(2+1)=5 050. 2.几种常见类型的处理 (1)形如a n ±b n 的形式 方法:分组求和法. (2)形如1a n a n +d 或1n +d +n等形式方法:裂项相消法.(3)形如a n b n 的形式(其中{a n }为等差数列,{b n }为等比数列) 方法:错位相减法.(4)首尾对称的两项和为定值的形式 方法:倒序相加法. (5)正负交替出现的数列形式 方法:并项相加法.诊 断 自 测1.判断正误(在括号内打“√”或“×”)(1)如果数列{a n }为等比数列,且公比不等于1,则其前n 项和S n =a 1-a n +11-q.( ) (2)当n ≥2时,1n 2-1=12(1n -1-1n +1).( ) (3)求S n =a +2a 2+3a 3+…+na n时只要把上式等号两边同时乘以a 即可根据错位相减法求得.( )(4)若数列a 1,a 2-a 1,…,a n -a n -1是首项为1,公比为3的等比数列,则数列{a n }的通项公式是a n =3n-12.( )解析 (3)要分a =0或a =1或a ≠0且a ≠1讨论求解.答案 (1)√ (2)√ (3)× (4)√ 2.若数列{a n }的通项公式为a n =2n+2n -1,则数列{a n }的前n 项和为________. 解析 S n =2 1-2n1-2+n 1+2n -1 2=2n +1-2+n 2.答案 2n +1+n 2-23.数列{a n }的前n 项和为S n ,已知S n =1-2+3-4+…+(-1)n -1·n ,则S 17=________.解析 S 17=1-2+3-4+5-6+…+15-16+17=1+(-2+3)+(-4+5)+(-6+7)+…+(-14+15)+(-16+17)=1+1+1+…+1=9. 答案 94.(2015·江苏卷)设数列{a n }满足a 1=1,且a n +1-a n =n +1(n ∈N *),则数列⎩⎨⎧⎭⎬⎫1a n 前10项的和为________.解析 ∵a 1=1,a n +1-a n =n +1,∴a 2-a 1=2,a 3-a 2=3,…,a n -a n -1=n ,将以上n -1个式子相加得a n -a 1=2+3+…+n = 2+n n -1 2,即a n =n n +1 2,令b n =1a n,故b n =2n n +1 =2⎝ ⎛⎭⎪⎫1n -1n +1,故S 10=b 1+b 2+…+b 10=2⎝ ⎛⎭⎪⎫1-12+12-13+…+110-111=2011.答案20115.(必修5P68复习题13改编)数列{a n }的前n 项和为S n ,若a n =1n n +1,则S 5等于________. 解析 ∵a n =1n n +1 =1n -1n +1,∴S 5=a 1+a 2+…+a 5=1-12+12-13+…-16=56.答案56考点一 分组转化法求和【例1】 (2016·浙江卷)设数列{a n }的前n 项和为S n ,已知S 2=4,a n +1=2S n +1,n ∈N *. (1)求通项公式a n ;(2)求数列{|a n -n -2|}的前n 项和.解 (1)由题意得⎩⎪⎨⎪⎧a 1+a 2=4,a 2=2a 1+1,则⎩⎪⎨⎪⎧a 1=1,a 2=3.又当n ≥2时,由a n +1-a n =(2S n +1)-(2S n -1+1)=2a n ,得a n +1=3a n . 所以,数列{a n }的通项公式为a n =3n -1,n ∈N *.(2)设b n =|3n -1-n -2|,n ∈N *,b 1=2,b 2=1,当n ≥3时,由于3n -1>n +2,故b n =3n -1-n -2,n ≥3.设数列{b n }的前n 项和为T n ,则T 1=2,T 2=3,当n ≥3时,T n =3+9 1-3n -21-3- n +7 n -2 2=3n-n 2-5n +112,又n =2适合上式,所以T n =⎩⎪⎨⎪⎧2,n =1,3n -n 2-5n +112,n ≥2,n ∈N *.规律方法 (1)若数列{c n }的通项公式为c n =a n ±b n ,且{a n },{b n }为等差或等比数列,可采用分组求和法求数列{c n }的前n 项和.(2)若数列{c n }的通项公式为c n =⎩⎪⎨⎪⎧a n ,n 为奇数,b n ,n 为偶数,其中数列{a n },{b n }是等比数列或等差数列,可采用分组求和法求{a n }的前n 项和.【训练1】 (2016·天津卷)已知{a n }是等比数列,前n 项和为S n (n ∈N *),且1a 1-1a 2=2a 3,S 6=63.(1)求{a n }的通项公式;(2)若对任意的n ∈N *,b n 是log 2a n 和log 2a n +1的等差中项,求数列{(-1)n b 2n }的前2n 项和. 解 (1)设数列{a n }的公比为q . 由已知,有1a 1-1a 1q =2a 1q2,解得q =2或q =-1.又由S 6=a 1·1-q61-q =63,知q ≠-1,所以a 1·1-261-2=63,得a 1=1.所以a n =2n -1.(2)由题意,得b n =12(log 2a n +log 2a n +1)=12(log 22n -1+log 22n)=n -12,即{b n }是首项为12,公差为1的等差数列.设数列{(-1)n b 2n }的前n 项和为T n ,则T 2n =(-b 21+b 22)+(-b 23+b 24)+…+(-b 22n -1+b 22n )=b 1+b 2+b 3+b 4+…+b 2n -1+b 2n =2n b 1+b 2n 2=2n 2.考点二 裂项相消法求和【例2】 (2015·全国Ⅰ卷)S n 为数列{a n }的前n 项和.已知a n >0,a 2n +2a n =4S n +3. (1)求{a n }的通项公式; (2)设b n =1a n a n +1,求数列{b n }的前n 项和.解 (1)由a 2n +2a n =4S n +3, 可知a 2n +1+2a n +1=4S n +1+3. 可得a 2n +1-a 2n +2(a n +1-a n )=4a n +1,即2(a n +1+a n )=a 2n +1-a 2n =(a n +1+a n )(a n +1-a n ). 由于a n >0,可得a n +1-a n =2.又a 21+2a 1=4a 1+3,解得a 1=-1(舍去)或a 1=3.所以{a n }是首项为3,公差为2的等差数列,通项公式为a n =2n +1. (2)由a n =2n +1可知b n =1a n a n +1=12n +1 2n +3 =12⎝ ⎛⎭⎪⎫12n +1-12n +3.设数列{b n }的前n 项和为T n ,则T n =b 1+b 2+…+b n=12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫13-15+⎝ ⎛⎭⎪⎫15-17+…+⎝ ⎛⎭⎪⎫12n +1-12n +3=n3 2n +3.规律方法 (1)利用裂项相消法求和时,应注意抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项.(2)将通项公式裂项后,有时候需要调整前面的系数,使裂开的两项之差和系数之积与原通项公式相等.【训练2】 设S n 为等差数列{a n }的前n 项和,已知S 3=a 7,a 8-2a 3=3. (1)求a n ;(2)设b n =1S n,求数列{b n }的前n 项和为T n .解 (1)设数列{a n }的公差为d ,由题意得⎩⎪⎨⎪⎧3a 1+3d =a 1+6d ,a 1+7d -2 a 1+2d =3,解得a 1=3,d =2, ∴a n =a 1+(n -1)d =2n +1. (2)由(1)得S n =na 1+n n -12d =n (n +2),∴b n =1n n +2 =12⎝ ⎛⎭⎪⎫1n -1n +2.∴T n =b 1+b 2+…+b n -1+b n=12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫12-14+…+⎝ ⎛⎭⎪⎫1n -1-1n +1+⎝ ⎛⎭⎪⎫1n -1n +2 =12⎝⎛⎭⎪⎫1+12-1n +1-1n +2=34-12⎝ ⎛⎭⎪⎫1n +1+1n +2.考点三 错位相减法求和【例3】 (2016·山东卷)已知数列{a n }的前n 项和S n =3n 2+8n ,{b n }是等差数列,且a n =b n +b n +1.(1)求数列{b n }的通项公式;(2)令c n = a n +1n +1b n +2 n .求数列{c n }的前n 项和T n .解 (1)由题意知,当n ≥2时,a n =S n -S n -1=6n +5. 当n =1时,a 1=S 1=11,符合上式. 所以a n =6n +5. 设数列{b n }的公差为d ,由⎩⎪⎨⎪⎧a 1=b 1+b 2,a 2=b 2+b 3,即⎩⎪⎨⎪⎧11=2b 1+d ,17=2b 1+3d ,可解得b 1=4,d =3.所以b n =3n +1.(2)由(1)知,c n = 6n +6 n +13n +3 n =3(n +1)·2n +1.. 又T n =c 1+c 2+…+c n .得T n =3×[2×22+3×23+…+(n +1)×2n +1].2T n =3×[2×23+3×24+…+(n +1)×2n +2].两式作差,得-T n =3×[2×22+23+24+…+2n +1-(n +1)×2n +2]=3×⎣⎢⎡⎦⎥⎤4+4 1-2n 1-2- n +1 ×2n +2=-3n ·2n +2. 所以T n =3n ·2n +2.规律方法 (1)一般地,如果数列{a n }是等差数列,{b n }是等比数列,求数列{a n ·b n }的前n 项和时,可采用错位相减法求和,一般是和式两边同乘以等比数列{b n }的公比,然后作差求解;(2)在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“S n -qS n ”的表达式.【训练3】 已知{a n }是递增的等差数列,a 2,a 4是方程x 2-5x +6=0的根. (1)求{a n }的通项公式; (2)求数列⎩⎨⎧⎭⎬⎫a n 2n 的前n 项和.解 (1)方程x 2-5x +6=0的两根为2,3, 由题意得a 2=2,a 4=3.设数列{a n }的公差为d ,则a 4-a 2=2d ,故d =12,从而a 1=32.所以{a n }的通项公式为a n =12n +1.(2)设⎩⎨⎧⎭⎬⎫a n 2n 的前n 项和为S n ,由(1)知a n 2n =n +22n +1,则S n =32+42+…+n +12+n +22,12S n =323+424+…+n +12n +1+n +22n +2.两式相减得12S n =34+⎝ ⎛⎭⎪⎫123+…+12n +1-n +22n +2=34+14⎝ ⎛⎭⎪⎫1-12n -1-n +22n +2.所以S n =2-n +42n +1.[思想方法]非等差、等比数列的一般数列求和,主要有两种思想:1.转化的思想,即将一般数列设法转化为等差或等比数列,这一思想方法往往通过通项分解或错位相消来完成;2.不能转化为等差或等比的特殊数列,往往通过裂项相消法、错位相减法、倒序相加法等来求和. [易错防范]1.直接应用公式求和时,要注意公式的应用范围,如当等比数列公比为参数(字母)时,应对其公比是否为1进行讨论.2.在应用错位相减法时,要注意观察未合并项的正负号.3.在应用裂项相消法时,要注意消项的规律具有对称性,即前剩多少项则后剩多少项.基础巩固题组(建议用时:40分钟)一、填空题1.数列112,314,518,7116,…,(2n -1)+12n ,…的前n 项和S n =________.解析 该数列的通项公式为a n =(2n -1)+12n ,则S n =[1+3+5+…+(2n -1)]+⎝⎛⎭⎪⎫12+122+…+12n =n 2+1-12n. 答案 n 2+1-12n2.(2017·南通调研)若等差数列{a n }的前n 项和为S n ,a 4=4,S 4=10,则数列⎩⎨⎧⎭⎬⎫1a n a n +1的前2 017项和为________.解析 ∵⎩⎪⎨⎪⎧a 4=a 1+3d =4,S 4=4a 1+6d =10,∴⎩⎪⎨⎪⎧a 1=1,d =1,∴a n =n ,∴1a n a n +1=1n -1n +1,∴前2 017项和为⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫12 017-12 018=2 0172 018.答案2 0172 0183.数列{a n }的通项公式为a n =(-1)n -1·(4n -3),则它的前100项之和S 100=________.解析 S 100=(4×1-3)-(4×2-3)+(4×3-3)-…-(4×100-3)=4×[(1-2)+(3-4)+…+(99-100)]=4×(-50)=-200. 答案 -2004.(2017·江西高安中学等九校联考)已知数列5,6,1,-5,…,该数列的特点是从第二项起,每一项都等于它的前后两项之和,则这个数列的前16项之和S 16=________. 解析 根据题意这个数列的前7项分别为5,6,1,-5,-6,-1,5,6,发现从第7项起,数字重复出现,所以此数列为周期数列,且周期为6,前6项和为5+6+1+(-5)+(-6)+(-1)=0.又因为16=2×6+4,所以这个数列的前16项之和S 16=2×0+7=7. 答案 75.(2017·泰州模拟)数列{a n }满足a n +a n +1=12(n ∈N *),且a 1=1,S n 是数列{a n }的前n 项和,则S 21=________.解析 由a n +a n +1=12=a n +1+a n +2,∴a n +2=a n ,则a 1=a 3=a 5=…=a 21,a 2=a 4=a 6=…=a 20, ∴S 21=a 1+(a 2+a 3)+(a 4+a 5)+…+(a 20+a 21) =1+10×12=6.答案 66.(2017·南通、扬州、泰州三市调研)设数列{a n }满足a 1=1,(1-a n +1)(1+a n )=1(n ∈N *),则∑100k =1(a k a k +1)的值为________. 解析 由(1-a n +1)(1+a n )=1得a n -a n +1=a n a n +1,则1a n +1-1a n=1,又1a 1=1,则数列⎩⎨⎧⎭⎬⎫1a n 是以1为首项,1为公差的等差数列,则1a n =n ,a n =1n∑100k =1(a k a k +1)=(a 1-a 2)+(a 2-a 3)+…+(a 100-a 101)=a 1-a 101=1-1101=100101. 答案1001017.在等差数列{a n }中,a 1>0,a 10·a 11<0,若此数列的前10项和S 10=36,前18项和S 18=12,则数列{|a n |}的前18项和T 18的值是________. 解析 由a 1>0,a 10·a 11<0可知d <0,a 10>0,a 11<0, ∴T 18=a 1+…+a 10-a 11-…-a 18 =S 10-(S 18-S 10)=60. 答案 608.(2017·镇江期末)已知数列{a n }中,a n =-4n +5,等比数列{b n }的公比q 满足q =a n -a n-1(n ≥2)且b 1=a 2,则|b 1|+|b 2|+|b 3|+…+|b n |=________.解析 由已知得b 1=a 2=-3,q =-4,∴b n =(-3)×(-4)n -1,∴|b n |=3×4n -1,即{|b n |}是以3为首项,4为公比的等比数列,∴|b 1|+|b 2|+…+|b n |=3 1-4n1-4=4n-1.答案 4n-1 二、解答题9.(2016·北京卷)已知{a n }是等差数列,{b n }是等比数列,且b 2=3,b 3=9,a 1=b 1,a 14=b 4.(1)求{a n }的通项公式;(2)设c n =a n +b n ,求数列{c n }的前n 项和.解 (1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q ,由⎩⎪⎨⎪⎧b 2=b 1q =3,b 3=b 1q 2=9得⎩⎪⎨⎪⎧b 1=1,q =3.∴b n =b 1qn -1=3n -1,又a 1=b 1=1,a 14=b 4=34-1=27,∴1+(14-1)d =27,解得d =2.∴a n =a 1+(n -1)d =1+(n -1)×2=2n -1(n =1,2,3,…). (2)由(1)知a n =2n -1,b n =3n -1,因此c n =a n +b n =2n -1+3n -1.从而数列{c n }的前n 项和S n =1+3+…+(2n -1)+1+3+…+3n -1=n 1+2n -1 2+1-3n1-3=n 2+3n-12. 10.(2017·苏北四市调研)已知各项均为正数的数列{a n }的首项a 1=1,S n 是数列{a n }的前n 项和,且满足:a n S n +1-a n +1S n +a n -a n +1=λa n a n +1(λ≠0,n ∈N *). (1)若a 1,a 2,a 3成等比数列,求实数λ的值; (2)若λ=12,求S n .解 (1)令n =1,a 1S 2-a 2S 1+a 1-a 2=λa 1a 2,解得a 2=21+λ.令n =2,a 2S 3-a 3S 2+a 2-a 3=λa 2a 3,解得a 3=2λ+4λ+1 2λ+1 .由a 22=a 1a 3得⎝⎛⎭⎪⎫21+λ2=2λ+4 λ+1 2λ+1, 因为λ≠0,所以λ=1.(2)当λ=12时,a n S n +1-a n +1S n +a n -a n +1=12a n a n +1,所以S n +1a n +1-S n a n +1a n +1-1a n =12,即S n +1+1a n +1-S n +1a n =12, 所以数列⎩⎨⎧⎭⎬⎫S n +1a n 是以2为首项,12为公差的等差数列,所以S n +1a n =2+(n -1)·12, 即S n +1=n +32a n ,①当n ≥2时,S n -1+1=n +22a n -1,②由①-②得a n =n +32a n -n +22a n -1,即(n +1)a n =(n +2)a n -1,所以a n n +2=a n -1n +1(n ≥2),所以⎩⎨⎧⎭⎬⎫a n n +2是首项为13的常数列,所以a n =13(n +2).代入①得S n =n +32a n -1=n 2+5n6.能力提升题组 (建议用时:20分钟)11.(2017·长治联考)设等差数列{a n }的公差是d ,其前n 项和是S n ,若a 1=d =1,则S n +8a n的最小值是________. 解析 a n =1+(n -1)=n ,S n =n 1+n2,∴S n +8a n=n 1+n2+8n=12⎝ ⎛⎭⎪⎫n +16n +1≥12⎝⎛⎭⎪⎫2n ·16n +1=92,当且仅当n =4时,取等号.∴S n +8a n 的最小值是92. 答案 9212.(2017·盐城中学模拟)在数列{a n }中,a n +1+(-1)na n =2n -1,则数列{a n }的前12项和为________.解析 因为a n +1+(-1)n a n =2n -1,所以a 2-a 1=1, a 3+a 2=3,a 4-a 3=5,a 5+a 4=7,a 6-a 5=9,a 7+a 6=11,…,a 11+a 10=19,a 12-a 11=21,所以a 1+a 3=2,a 4+a 2=8,…,a 12+a 10=40,所以从第一项开始,依次取两个相邻奇数项的和都等于2,从第二项开始,依次取两个相邻偶数项的和构成以8为首项,以16为公差的等差数列,以上式相加可得,S 12=a 1+a 2+a 3+…+a 12=(a 1+a 3)+(a 5+a 7)+(a 9+a 11)+(a 2+a 4)+(a 6+a 8)+(a 10+a 12)=3×2+8+24+40=78.答案 7813.(2017·南京、盐城模拟)已知函数f (x )=⎩⎨⎧ 1- x -1 2,0≤x <2,f x -2 ,x ≥2,若对于正数k n (n ∈N *),直线y =k n x 与函数y =f (x )的图象恰有(2n +1)个不同交点,则数列{k 2n }的前n项和为________.解析 函数f (x )的图象是一系列半径为1的半圆,因为直线y =k n x 与f (x )的图象恰有(2n+1)个不同交点,所以直线y =k n x 与第(n +1)个半圆相切,则 2n +1 k n 1+k 2n=1,化简得k 2n =14n n +1 =14⎝ ⎛⎭⎪⎫1n -1n +1,则k 21+k 22+…+k 2n =14⎝ ⎛⎭⎪⎫1-12+12-13+…+1n -1n +1=14⎝ ⎛⎭⎪⎫1-1n +1=n 4n +4. 答案 n 4n +414.(2017·苏、锡、常、镇四市调研)正项数列a 1,a 2,…,a m (m ≥4,m ∈N *),满足a 1,a 2,a 3,…,a k -1,a k (k <m ,k ∈N *)是公差为d 的等差数列,a 1,a m ,a m -1,…,a k +1,a k 是公比为2的等比数列.(1)若a 1=d =2,k =8,求数列a 1,a 2,…,a m 的所有项的和S m ;(2)若a 1=d =2,m <2 016,求m 的最大值;(3)是否存在正整数k ,满足a 1+a 2+…+a k -1+a k =3(a k +1+a k +2+…+a m -1+a m )?若存在,求出k 的值;若不存在,请说明理由.解 (1)由已知得k <m ,k ∈N *,a n =2n ,a k =a 8=16,故a 1,a 2,a 3,…a k -1,a k (k <m ,k ∈N *)对应的数为2,4,6,8,10,12,14,16.因为a 1,a m ,a m -1,…,a k +1,a k 的公比为2,则对应的数为2,4,8,16.从而a 1,a 2,…,a m 即为2,4,6,8,10,12,14,16,8,4,此时m =10,S m =8 2+16 2+8+4=84. (2)因为a 1,a 2,a 3,…,a k -1,a k (k <m ,k ∈N *)是首项为2,公差为2的等差数列,所以k <m ,k ∈N *,a n =2n ,从而a k =2k .又a 1,a m ,a m -1,…,a k +1,a k 是首项为2,公比为2的等比数列,且a k =2m -k +2,故2k =2m -k +2,即k =2m -k +1,即k 必是2的整数幂. 又k ·2k =2m +1,要m 最大,k 必须最大,因为k <m <2 016,故k 的最大值为210,所以210·2210=210·21 024=21 034=2m +1,即m 的最大值为1 033.(3)存在.由数列a 1,a 2,a 3,…,a k -1,a k 是公差为d 的等差数列知a k =a 1+(k -1)d , 又a 1,a m ,a m -1,…,a k +1,a k 是公比为2的等比数列,则a k =a 1·2m +1-k ,故a 1+(k -1)d =a 1·2m +1-k ,即(k -1)d =a 1(2m +1-k -1).又a 1+a 2+…+a k -1+a k =3(a k +1+a k +2+…+a m -1+a m ),a m =2a 1,则ka 1+12k (k -1)d =3×2a 1×1-2m -k 1-2, 即ka 1+12ka 1(2m +1-k -1)=3×2a 1(2m -k -1), 则12k ·2m +1-k +12k =6(2m -k -1), 即k ·2m +1-k +k =6×2m +1-k -12, 显然k ≠6,则2m +1-k =k +126-k =-1+186-k, 所以k <6,将k =1,2,3,4,5一一代入验证,易知当且仅当k =4时,上式右端为8,等式成立,此时m =6,综上,当且仅当m =6时,存在k =4满足等式.。
高考数学一轮复习 第六章 数列 第四节 数列求和教案 理(含解析)苏教版-苏教版高三全册数学教案
第四节 数列求和1.公式法(1)等差数列{a n }的前n 项和S n =n a 1+a n2=na 1+n n -1d2.推导方法:倒序相加法.(2)等比数列{a n }的前n 项和S n =⎩⎪⎨⎪⎧na 1,q =1,a 11-q n1-q,q ≠1.推导方法:乘公比,错位相减法. (3)一些常见的数列的前n 项和: ①1+2+3+…+n =n n +12;②2+4+6+…+2n =n (n +1); ③1+3+5+…+2n -1=n 2. 2.几种数列求和的常用方法(1)分组求和法:一个数列的通项公式是由若干个等差或等比或可求和的数列组成的,则求和时可用分组求和法,分别求和而后相加减.(2)裂项相消法:把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得前n 项和.常用的裂项公式有:①1nn +1=1n -1n +1; ②12n -12n +1=12⎝ ⎛⎭⎪⎫12n -1-12n +1;③1n +n +1=n +1-n .(3)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么求这个数列的前n 项和即可用错位相减法求解.(4)倒序相加法:如果一个数列{a n }与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法求解.[小题体验]1.等比数列1,2,4,8,…中从第5项到第10项的和为________. 解析:由a 1=1,a 2=2,得q =2,∴S 10=1×1-2101-2=1 023,S 4=1×1-241-2=15,∴S 10-S 4=1 008. 答案:1 0082.数列112,314,518,7116,…,(2n -1)+12n ,…的前n 项和S n 的值等于________.答案:n 2+1-12n3.已知数列{}a n 的通项公式a n =1n +n +1,则该数列的前________项之和等于9.解析:由题意知,a n =1n +n +1=n +1-n ,所以S n =(2-1)+(3-2)+…+(n +1-n )=n +1-1=9,解得n =99.答案:991.直接应用公式求和时,要注意公式的应用范围,如当等比数列公比为参数(字母)时,应对其公比是否为1进行讨论.2.在应用错位相减法时,注意观察未合并项的正负号;结论中形如a n ,a n +1的式子应进行合并.3.在应用裂项相消法时,要注意消项的规律具有对称性,即前剩多少项则后剩多少项. [小题纠偏]1.设f (n )=2+24+27+210+…+23n +10(n ∈N *),则f (3)=________.答案:27(87-1)2.已知数列{a n }的前n 项和为S n 且a n =n ·2n,则S n =________. 答案:(n -1)2n +1+23.求和:11×2+12×3+…+1n -1n=________.解析:原式=⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1-1n =1-1n .答案:1-1n考点一 公式法求和 基础送分型考点——自主练透[题组练透]1.(2019·南师大附中月考)《张丘建算经》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有女不善织,日减功迟,初日织五尺,末日织一尺,今共织九十尺,问织几日?”已知“日减功迟”的具体含义是每天比前一天少织同样多的布,则此问题的答案是________日.解析:易知每日织布数量构成一个等差数列,设此数列为{}a n ,则a 1=5,a n =1,S n =90,所以n 5+12=90,解得n =30.答案:302.(2018·无锡期末)设公比不为1的等比数列{a n }满足a 1a 2a 3=-18,且a 2,a 4,a 3成等差数列,则数列{a n }的前4项和为________.解析:设数列{a n }的公比为q (q ≠1).由等比数列的性质可得a 1a 2a 3=a 32=-18,所以a 2=-12.因为a 2,a 4,a 3成等差数列,所以2a 4=a 2+a 3,即2a 2q 2=a 2+a 2q ,化简得2q 2-q -1=0,即(q -1)(2q +1)=0,解得q =-12或q =1(舍去).又因为a 1=a 2q=1,所以S 4=a 11-q 41-q=1×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫-1241-⎝ ⎛⎭⎪⎫-12=58.答案:583.已知等差数列{a n }满足a 3=2,前3项和S 3=92.(1)求{a n }的通项公式;(2)设等比数列{b n }满足b 1=a 1,b 4=a 15,求{b n }的前n 项和T n . 解:(1)设{a n }的公差为d ,则由已知条件得⎩⎪⎨⎪⎧ a 1+2d =2,3a 1+3×22d =92,化简得⎩⎪⎨⎪⎧a 1+2d =2,a 1+d =32,解得⎩⎪⎨⎪⎧a 1=1,d =12,故{a n }的通项公式a n =1+n -12,即a n =n +12.(2)由(1)得b 1=1,b 4=a 15=15+12=8. 设{b n }的公比为q ,则q 3=b 4b 1=8,从而q =2,故{b n }的前n 项和T n =b 11-q n 1-q =1×1-2n1-2=2n-1.[谨记通法]几类可以使用公式法求和的数列(1)等差数列、等比数列以及由等差数列、等比数列通过加、减构成的数列,它们可以使用等差数列、等比数列的求和公式求解.(2)奇数项和偶数项分别构成等差数列或等比数列的,可以分项数为奇数和偶数时,分别使用等差数列或等比数列的求和公式.考点二 分组转化法求和重点保分型考点——师生共研[典例引领](2018·天一中学检测)已知数列{a n }的首项a 1=3,通项a n =2n p +nq (n ∈N *,p ,q 为常数),且a 1,a 4,a 5成等差数列.求:(1)p ,q 的值;(2)数列{a n }前n 项和S n .解:(1)由a 1=3,得2p +q =3,①又由a 4=24p +4q ,a 5=25p +5q ,且a 1+a 5=2a 4, 得3+25p +5q =25p +8q ,② 由①②解得p =1,q =1. (2)由(1),知a n =2n+n .所以S n =(2+22+ (2))+(1+2+…+n )=21-2n1-2+n 1+n2=2n +1-2+n 2+n2.[由题悟法]分组转化法求和的常见类型[提醒] 某些数列的求和是将数列转化为若干个可求和的新数列的和或差,从而求得原数列的和,注意在含有字母的数列中对字母的讨论.[即时应用]1.求数列1+1,1a +4,1a 2+7,1a 3+10,…,1an -1+(3n -2)的前n 项和.解:设数列的通项为a n ,前n 项和为S n ,则a n =1a n -1+(3n -2),∴S n =⎝⎛⎭⎪⎫1+1a +1a2+…+1a n -1+[1+4+7+…+(3n -2)].当a =1时,S n =n +n 1+3n -22=3n 2+n 2;当a ≠1时,S n =1-1a n1-1a+n1+3n -22=a n-1a n -a n -1+n3n -12. 2.(2018·南京四校联考)在等差数列{a n }中,a 2+a 7=-23,a 3+a 8=-29. (1)求数列{a n }的通项公式;(2)设数列{a n +b n }是首项为1,公比为q 的等比数列,求{b n }的前n 项和S n . 解:(1)设等差数列{a n }的公差是d . 因为a 3+a 8-(a 2+a 7)=2d =-6, 所以d =-3,所以a 2+a 7=2a 1+7d =-23,解得a 1=-1, 所以数列{a n }的通项公式为a n =-3n +2.(2)因为数列{a n +b n }是首项为1,公比为q 的等比数列, 所以a n +b n =qn -1,即-3n +2+b n =qn -1,所以b n =3n -2+q n -1.所以S n =[1+4+7+…+(3n -2)]+(1+q +q 2+…+q n -1)=n 3n -12+(1+q +q2+…+qn -1),故当q =1时,S n =n 3n -12+n =3n 2+n 2;当q ≠1时,S n =n 3n -12+1-q n1-q. 考点三 错位相减法求和重点保分型考点——师生共研[典例引领](2018·徐州调研)已知数列{a n }的前n 项和为S n ,满足S n =2a n -1,n ∈N *.数列{b n }满足nb n +1-(n +1)b n =n (n +1),n ∈N *,且b 1=1.(1)求数列{a n }和{b n }的通项公式;(2)若c n =a n ·b n ,数列{c n }的前n 项和为T n ,对任意的n ∈N *,都有T n ≤nS n -a ,求实数a 的取值范围.解:(1)当n =1时,S 1=2a 1-1=a 1,所以a 1=1. 当n ≥2时,S n =2a n -1,S n -1=2a n -1-1, 两式相减得a n =2a n -1,所以数列{a n }是首项a 1=1,公比q =2的等比数列, 故数列{a n }的通项公式为a n =2n -1.由nb n +1-(n +1)b n =n (n +1)两边同除以n (n +1), 得b n +1n +1-b nn=1, 所以数列⎩⎨⎧⎭⎬⎫b n n 是首项b 1=1,公差d =1的等差数列,所以b n n=n , 故数列{b n }的通项公式为b n =n 2. (2)由(1)得c n =a n ·b n =n ·2n -1,于是T n =1×20+2×2+3×22+…+n ×2n -1, 所以2T n =1×2+2×22+3×23+…+n ×2n,两式相减得-T n =1+2+22+…+2n -1-n ×2n=1-2n1-2-n ×2n,所以T n =(n -1)·2n+1, 由(1)得S n =2a n -1=2n-1, 因为对∀n ∈N *,都有T n ≤nS n -a , 即(n -1)·2n+1≤n (2n-1)-a 恒成立, 所以a ≤2n-n -1恒成立, 记c n =2n -n -1, 所以a ≤(c n )min , 因为c n +1-c n =[2n +1-(n +1)-1]-(2n -n -1)=2n-1>0,从而数列{c n }为递增数列,所以当n =1时,c n 取最小值c 1=0,于是a ≤0, 所以实数a 的取值范围为(-∞,0].[由题悟法]用错位相减法求和的3个注意事项(1)要善于识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“S n -qS n ”的表达式;(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.[即时应用](2019·海门中学月考)已知数列{a n }的前n 项和为S n ,S n =n 2+n . (1)求{a n }的通项公式a n ;(2)若a k +1,a 2k ,a 2k +3(k ∈N *)恰好依次为等比数列{b n }的第一、第二、第三项,求数列⎩⎨⎧⎭⎬⎫n b n 的前n 项和T n .解:(1)当n =1时,a 1=S 1=12+1=2.当n ≥2时,a n =S n -S n -1=(n 2+n )-[(n -1)2+(n -1)]=2n . 当n =1时,符合上式, ∴a n =2n (n ∈N *).(2)由题意知a k +1,a 2k ,a 2k +3成等比数列,∴a 22k =a k +1·a 2k +3, 即(2·2k )2=2(k +1)·2(2k +3),解得k =3. ∴b 1=a 4=8,b 2=a 6=12,公比q =128=32,∴b n =8·⎝ ⎛⎭⎪⎫32n -1,∴n b n =18n ·⎝ ⎛⎭⎪⎫23n -1, ∴T n =18×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫230+2×⎝ ⎛⎭⎪⎫231+…+n ×⎝ ⎛⎭⎪⎫23n -1. ① ∴23T n =18×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫231+2×⎝ ⎛⎭⎪⎫232+…+n -1×⎝ ⎛⎭⎪⎫23n -1+n ×⎝ ⎛⎭⎪⎫23n . ② ①-②,得13T n =18×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫230+⎝ ⎛⎭⎪⎫231+…+⎝ ⎛⎭⎪⎫23n -1-18×n ×⎝ ⎛⎭⎪⎫23n =38-3+n 8⎝ ⎛⎭⎪⎫23n ,则T n =98-9+3n 8⎝ ⎛⎭⎪⎫23n.考点四 裂项相消法求和 题点多变型考点——多角探明[锁定考向]裂项相消法求和是历年高考的重点,命题角度凸显灵活多变,在解题中要善于利用裂项相消的基本思想,变换数列a n 的通项公式,达到求解目的.常见的命题角度有: (1)形如a n =1nn +k 型; (2)形如a n =1n +k +n型;(3)形如a n =n +1n 2n +22型.[题点全练]角度一:形如a n =1nn +k型 1.(2019·启东一中检测)在数列{}a n 中,a 1=1,当n ≥2时,其前n 项和S n 满足S 2n =a n ⎝⎛⎭⎪⎫S n -12.(1)求S n 的表达式; (2)设b n =S n2n +1,求{}b n 的前n 项和T n . 解:(1)∵S 2n =a n ⎝ ⎛⎭⎪⎫S n -12,a n =S n -S n -1(n ≥2),∴S 2n =(S n -S n -1)⎝ ⎛⎭⎪⎫S n -12,即2S n -1S n =S n -1-S n . 由题意得S n -1·S n ≠0, ∴1S n -1S n -1=2,∴数列⎩⎨⎧⎭⎬⎫1S n 是首项为1S 1=1a 1=1,公差为2的等差数列,∴1S n=1+2(n -1)=2n -1,∴S n =12n -1. (2)∵b n =S n 2n +1=12n -12n +1=12⎝ ⎛⎭⎪⎫12n -1-12n +1,∴T n =b 1+b 2+…+b n=12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫13-15+…+⎝ ⎛⎭⎪⎫12n -1-12n +1=12⎝⎛⎭⎪⎫1-12n +1=n 2n +1. 角度二:形如a n =1n +k +n型2.已知函数f (x )=x α的图象过点(4,2),令a n =1f n +1+f n,n ∈N *.记数列{a n }的前n 项和为S n ,则S 2 018=________.解析:由f (4)=2可得4α=2,解得α=12,则f (x )=x 12.所以a n =1fn +1+f n =1n +1+n=n +1-n ,S 2 018=a 1+a 2+a 3+…+a 2 018=(2-1)+(3-2)+(4-3)+…+( 2 018-2 017)+( 2 019- 2 018)= 2 019-1. 答案: 2 019-1 角度三:形如a n =n +1n 2n +22型3.正项数列{a n }的前n 项和S n 满足:S 2n -(n 2+n -1)S n -(n 2+n )=0. (1)求数列{a n }的通项公式a n ; (2)令b n =n +1n +22a 2n ,数列{b n }的前n 项和为T n .证明:对于任意的n ∈N *,都有T n <564. 解:(1)由S 2n -(n 2+n -1)S n -(n 2+n )=0, 得[S n -(n 2+n )](S n +1)=0.由于{a n }是正项数列,所以S n >0,S n =n 2+n . 于是a 1=S 1=2,当n ≥2时,a n =S n -S n -1=n 2+n -(n -1)2-(n -1)=2n .综上,数列{a n }的通项公式为a n =2n . (2)证明:由于a n =2n , 故b n =n +1n +22a 2n =n +14n 2n +22=116⎣⎢⎡⎦⎥⎤1n2-1n +22.T n =116⎣⎢⎡1-132+122-142+132-152+…+1n -12-1n +12+⎦⎥⎤1n2-1n +22=116⎣⎢⎡⎦⎥⎤1+122-1n +12-1n +22<116⎝ ⎛⎭⎪⎫1+122=564. [通法在握]利用裂项相消法求和的注意事项(1)抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项; (2)将通项裂项后,有时需要调整前面的系数,使裂开的两项之差和系数之积与原通项相等.如:若{a n }是等差数列,则1a n a n +1=1d ⎝ ⎛⎭⎪⎫1a n -1a n +1,1a n a n +2=12d ⎝ ⎛⎭⎪⎫1a n -1a n +2. [演练冲关](2018·镇江调研)已知等差数列{a n }中,2a 2+a 3+a 5=20,且前10项和S 10=100. (1)求数列{a n }的通项公式; (2)若b n =1a n a n +1,求数列{b n }的前n 项和.解:(1)由已知得⎩⎪⎨⎪⎧2a 2+a 3+a 5=4a 1+8d =20,10a 1+10×92d =10a 1+45d =100,解得⎩⎪⎨⎪⎧a 1=1,d =2.所以{a n }的通项公式为a n =1+2(n -1)=2n -1. (2)b n =12n -12n +1=12⎝ ⎛⎭⎪⎫12n -1-12n +1,所以数列{b n }的前n 项和T n =12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫13-15+…+⎝ ⎛⎭⎪⎫12n -1-12n +1= 12×⎝ ⎛⎭⎪⎫1-12n +1=n 2n +1. 一抓基础,多练小题做到眼疾手快1.(2019·镇江调研)已知{}a n 是等差数列,S n 为其前n 项和,若a 3+a 7=8,则S 9=_______.解析:在等差数列{}a n 中,由a 3+a 7=8,得a 1+a 9=8, 所以S 9=a 1+a 9×92=8×92=36.答案:36 2.数列{1+2n -1}的前n 项和为________.解析:由题意得a n =1+2n -1,所以S n =n +1-2n1-2=n +2n-1.答案:n +2n-13.数列{a n }的通项公式是a n =(-1)n(2n -1),则该数列的前100项之和为________. 解析:根据题意有S 100=-1+3-5+7-9+11-…-197+199=2×50=100. 答案:1004.(2018·泰州期末)已知数列{}a n 的通项公式为a n =n ·2n -1,前n 项和为S n ,则S n =________.解析:∵a n =n ·2n -1,∴S n =1×1+2×2+3×22+…+n ×2n -1, 2S n =1×2+2×22+3×23+…+n ×2n,两式相减可得-S n =1+2+22+…+2n -1-n ·2n=1-2n1-2-n ·2n,化简可得S n =(n -1)2n+1. 答案:(n -1)2n+15.已知等比数列{}a n 的公比q >1,且a 5-a 1=30,a 4-a 2=12,则数列⎩⎨⎧⎭⎬⎫a na n -1a n +1-1的前n 项和为________. 解析:因为a 5-a 1=30,a 4-a 2=12, 所以a 1(q 4-1)=30,a 1(q 3-q )=12, 两式相除,化简得2q 2-5q +2=0, 解得q =12或2,因为q >1, 所以q =2,a 1=2. 所以a n =2·2n -1=2n.所以a na n -1a n +1-1=2n2n-12n +1-1=12n -1-12n +1-1, 所以T n =1-13+13-17+…+12n -1-12n +1-1=1-12n +1-1.答案:1-12n +1-16.若数列{a n }满足a n -(-1)na n -1=n (n ≥2),S n 是{a n }的前n 项和,则S 40=________. 解析:当n =2k 时,即a 2k -a 2k -1=2k ,① 当n =2k -1时,即a 2k -1+a 2k -2=2k -1,② 当n =2k +1时,即a 2k +1+a 2k =2k +1,③ ①+②得a 2k +a 2k -2=4k -1, ③-①得a 2k +1+a 2k -1=1,S 40=(a 1+a 3+a 5+...+a 39)+(a 2+a 4+a 6+a 8+...+a 40)=1×10+(7+15+23+ (79)=10+107+792=440. 答案:440二保高考,全练题型做到高考达标1.在数列{a n }中,若a 1=2,且对任意正整数m ,k ,总有a m +k =a m +a k ,则{a n }的前n 项和S n =________.解析:依题意得a n +1=a n +a 1,即有a n +1-a n =a 1=2,所以数列{a n }是以2为首项、2为公差的等差数列,a n =2+2(n -1)=2n ,S n =n 2+2n2=n 2+n .答案:n 2+n2.已知数列{a n }中,a n =-4n +5,等比数列{b n }的公比q 满足q =a n -a n -1(n ≥2)且b 1=a 2,则|b 1|+|b 2|+|b 3|+…+|b n |=________.解析:由已知得b 1=a 2=-3,q =-4, 所以b n =(-3)×(-4)n -1,所以|b n |=3×4n -1,即{|b n |}是以3为首项,4为公比的等比数列. 所以|b 1|+|b 2|+…+|b n |=31-4n1-4=4n-1.答案:4n-13.已知数列5,6,1,-5,…,该数列的特点是从第二项起,每一项都等于它的前后两项之和,则这个数列的前16项之和S 16=________.解析:根据题意这个数列的前7项分别为5,6,1,-5,-6,-1,5,6,发现从第7项起,数列重复出现,所以此数列为周期数列,且周期为6,前6项和为5+6+1+(-5)+(-6)+(-1)=0.又因为16=2×6+4,所以这个数列的前16项之和S 16=2×0+7=7. 答案:74.对于数列{a n },定义数列{a n +1-a n }为数列{a n }的“差数列”,若a 1=2,数列{a n }的“差数列”的通项为2n,则数列{a n }的前n 项和S n =________.解析:因为a n +1-a n =2n,所以a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=2n -1+2n -2+…+22+2+2=2-2n 1-2+2=2n -2+2=2n ,所以S n =2-2n +11-2=2n +1-2.答案:2n +1-25.(2019·宿迁调研)已知数列{}a n 中,a 1=1,a 2=3,若a n +2+2a n +1+a n =0对任意n ∈N *都成立,则数列{}a n 的前n 项和S n =________.解析:∵a 1=1,a 2=3,a n +2+2a n +1+a n =0, ∴a n +2+a n +1=-(a n +1+a n ),a 2+a 1=4.则数列{}a n +1+a n 是首项为4,公比为-1的等比数列, ∴a n +1+a n =4×(-1)n -1.当n =2k -1时,a 2k +a 2k -1=4×(-1)2k -2=4.∴S n =(a 1+a 2)+(a 3+a 4)+…+(a 2k -1+a 2k )=4k =2n . 当n =2k 时,a 2k +1+a 2k =-4.S n =a 1+(a 2+a 3)+…+(a 2k -2+a 2k -1)=1-4×(k -1)=5-4k =5-4×n +12=3-2n .∴S n =⎩⎪⎨⎪⎧3-2n ,n 为奇数,2n ,n 为偶数.答案:⎩⎪⎨⎪⎧3-2n ,n 为奇数,2n ,n 为偶数6.在等差数列{a n }中,首项a 1=3,公差d =2,若某学生对其中连续10项进行求和,在漏掉一项的前提下,求得余下9项的和为185,则此连续10项的和为________.解析:由已知条件可得数列{a n }的通项公式a n =2n +1,设连续10项为a i +1,a i +2,a i +3,…,a i +10,i ∈N ,设漏掉的一项为a i +k,1≤k ≤10,由a i +1+a i +10×102-a i +k =185,得(2i +3+2i +21)×5-2i -2k -1=185,即18i -2k =66,即9i -k =33,所以34≤9i =k +33≤43,3<349≤i ≤439<5,所以i =4,此时,由36=33+k 得k =3,所以a i +k =a 7=15,故此连续10项的和为200.答案:2007.(2019·邵阳模拟)《九章算术》是我国古代的数学名著,书中《均属章》有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何.”其意思为“已知A ,B ,C ,D ,E 五人分5钱,A ,B 两人所得与C ,D ,E 三人所得相同,且A ,B ,C ,D ,E 每人所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).在这个问题中,E 分得________钱.解析:由题意,设A 所得为a -4d ,B 所得为a -3d ,C 所得为a -2d ,D 所得为a -d ,E 所得为a ,则⎩⎪⎨⎪⎧5a -10d =5,2a -7d =3a -3d ,解得a =23,故E 分得23钱.答案:238.已知数列{a n }中,a 1=2,a 2n =a n +1,a 2n +1=n -a n ,则{a n }的前100项和为________. 解析:由a 1=2,a 2n =a n +1,a 2n +1=n -a n ,得a 2n +a 2n +1=n +1,所以a 1+(a 2+a 3)+(a 4+a 5)+…+(a 98+a 99)=2+2+3+…+50=1 276,因为a 100=1+a 50=1+(1+a 25)=2+(12-a 12)=14-(1+a 6)=13-(1+a 3)=12-(1-a 1)=13,所以a 1+a 2+…+a 100=1 276+13=1 289.答案:1 2899.(2018·苏北四市期末)已知正项数列{a n }的前n 项和为S n ,且a 1=a ,(a n +1)(a n +1+1)=6(S n +n ),n ∈N *.(1)求数列{a n }的通项公式;(2)若对于∀n ∈N *,都有S n ≤n (3n +1)成立,求实数a 的取值范围. 解:(1)当n =1时,(a 1+1)(a 2+1)=6(S 1+1),故a 2=5. 当n ≥2时,(a n -1+1)(a n +1)=6(S n -1+n -1),所以(a n +1)(a n +1+1)-(a n -1+1)(a n +1)=6(S n +n )-6(S n -1+n -1), 即(a n +1)(a n +1-a n -1)=6(a n +1).又a n >0,所以a n +1-a n -1=6,所以a 2k -1=a +6(k -1)=6k +a -6,a 2k =5+6(k -1)=6k -1,故a n =⎩⎪⎨⎪⎧3n +a -3,n 为奇数,3n -1,n 为偶数.(2)当n 为奇数时,S n =12(3n +a -2)(n +1)-n ,由S n ≤n (3n +1),得a ≤3n 2+3n +2n +1恒成立,令f (n )=3n 2+3n +2n +1,则f (n +1)-f (n )=3n 2+9n +4n +2n +1>0,所以a ≤f (1)=4.当n 为偶数时,S n =12n (3n +a +1)-n ,由S n ≤n (3n +1)得,a ≤3(n +1)恒成立, 所以a ≤9.又a 1=a >0,所以实数a 的取值范围是(0,4].10.(2019·宿迁中学调研)已知各项均为正数的数列{a n }的首项a 1=1,S n 是数列{a n }的前n 项和,且满足a n S n +1-a n +1S n +a n -a n +1=λa n a n +1(λ≠0,n ∈N *).(1)若a 1,a 2,a 3成等比数列,求实数λ的值; (2)若λ=12,求S n .解:(1)令n =1,得a 2=21+λ. 令n =2,得a 2S 3-a 3S 2+a 2-a 3=λa 2a 3, 所以a 3=2λ+4λ+12λ+1.由a 22=a 1a 3,得⎝⎛⎭⎪⎫21+λ2=2λ+4λ+12λ+1, 因为λ≠0,所以λ=1.(2)当λ=12时,a n S n +1-a n +1S n +a n -a n +1=12a n a n +1,所以S n +1a n +1-S n a n +1a n +1-1a n =12,即S n +1+1a n +1-S n +1a n =12, 所以数列⎩⎨⎧⎭⎬⎫S n +1a n 是以2为首项,12为公差的等差数列,所以S n +1a n =2+(n -1)·12, 即S n +1=⎝ ⎛⎭⎪⎫n 2+32a n ,①当n ≥2时,S n -1+1=⎝ ⎛⎭⎪⎫n2+1a n -1,② ①-②得,a n =n +32a n -n +22a n -1,即(n +1)a n =(n +2)a n -1,所以a n n +2=a n -1n +1(n ≥2),所以⎩⎨⎧⎭⎬⎫a n n +2是常数列,且为13,所以a n =13(n +2).代入①得S n =⎝ ⎛⎭⎪⎫n 2+32a n -1=n 2+5n 6. 三上台阶,自主选做志在冲刺名校1.(2018·启东检测)《九章算术》中的“两鼠穿墙题”是我国数学的古典名题:“今有垣厚若干尺,两鼠对穿,大鼠日一尺,小鼠也日一尺,大鼠日自倍,小鼠日自半,问何日相逢,各穿几何?”题意是“有两只老鼠从墙的两边打洞穿墙,大老鼠第一天进一尺,以后每天加倍;小老鼠第一天也进一尺,以后每天减半.”如果墙足够厚,S n 为前n 天两只老鼠打洞长度之和,则S n =________尺.解析:依题意大老鼠每天打洞的距离构成以1为首项,2为公比的等比数列,所以前n 天大老鼠打洞的距离共为1×1-2n1-2=2n-1.同理可得前n 天小老鼠打洞的距离共为1×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n 1-12=2-12n -1,所以S n =2n -1+2-12n -1=2n-12n -1+1. 答案:2n-12n -1+12.(2018·苏州高三暑假测试)等差数列{a n }的前n 项和为S n ,且a n -S n =n 2-16n +15(n ∈N *),若对任意n ∈N *,总有S n ≤S k ,则k 的值为________.解析:设等差数列{a n }的公差为d ,则a n -S n =a 1+(n -1)d -⎣⎢⎡⎦⎥⎤na 1+n n -12d =-d 2n 2+⎝ ⎛⎭⎪⎫32d -a 1n +a 1-d =n 2-16n +15,所以⎩⎪⎨⎪⎧-d2=1,32d -a 1=-16,a 1-d =15,解得⎩⎪⎨⎪⎧a 1=13,d =-2,所以S n =13n +n n -12×(-2)=-n 2+14n =-(n -7)2+49,所以(S n )max =S 7,所以S n ≤S 7对任意n ∈N *恒成立,所以k 的值为7.答案:73.(2019·南京一模)平面内的“向量列”{a n },如果对于任意的正整数n ,均有a n +1-a n =d ,则称此“向量列”为“等差向量列”,d 称为“公差向量”;平面内的“向量列”{b n },如果对于任意的正整数n ,均有b n +1=q ·b n (q ≠0),则称此“向量列”为“等比向量列”,常数q 称为“公比”.(1)如果“向量列”{a n }是“等差向量列”,用a 1和“公差向量”d 表示a 1+a 2+…+a n ; (2)已知{a n }是“等差向量列”,“公差向量”d =(3,0),a 1=(1,1),a n =(x n ,y n ),{b n }是“等比向量列”,“公比”q =2,b 1=(1,3),b n =(m n ,k n ),求a 1·b 1+a 2·b 2+…+a n ·b n .解:(1)∵“向量列”{a n }是“等差向量列”, ∴a 1+a 2…+a n =n a 1+(1+2+…+n -1)d =n a 1+n n -12d.(2)∵a 1=(1,1),d =(3,0),∴a n =(3n -2,1). ∵b 1=(1,3),q =2,∴b n =(2n -1,3·2n -1).∴a n ·b n =(3n -2,1)·(2n -1,3·2n -1)=(3n -2)·2n -1+3·2n -1=(3n +1)·2n -1,设S n =a 1·b 1+a 2·b 2+…+a n ·b n , 则S n ==4·20+7·21+…+(3n +1)·2n -1,2S n =4·2+7·22+…+(3n +1)·2n, 两式相减可得,-S n =4+3(2+22+…+2n -1)-(3n +1)·2n=4+3·21-2n -11-2-(3n +1)·2n =(2-3n )·2n-2,∴a 1·b 1+a 2·b 2+…+a n ·b n =(3n -2)·2n+2.。
6.3 等比数列及其前n项和修改
思维启迪
根据等比数列的定义、通项公式及性
质建立首项,公比的方程组.
解
a2 = ∴
方法一
设等比数列{an}的公比为q,则q≠0,
a4=a3q=2q,
a3 2 , +2q= q q
20 . ,q2=3. 3 1 3
12分
在解决等差、等比数列的综合题时,重
点在于读懂题意,灵活利用等差、等比数列的定义、 通项公式及前n项和公式.本题第(1)问就是用基本量 公差、公比求解;第(2)问在作差an+1-an时要注意
n≥2.
思想方法
感悟提高
方法与技巧
1.等比数列的判定方法有以下几种:
an1 (1)定义: =q (q是不为零的常数,n∈N+) an
1 n 5-2n 1 n-1 ∴an·an+1=4·( ) ·4·( ) =2 , 2 2 故a1a2+a2a3+a3a4+…+anan+1
=23+21+2-1+2-3+…+25-2n 1 8(1 n ) 4 32 (1 4 n ) 1 3 1 4
题型分类 深度剖析
题型一 等比数列的基本运算
则公比q的值是
A.2 解析 B.-2 方法一 C.3 依题意,q≠1,
(
) A
D.-3
a1 (1 q 3 ) ∵ =7, 1 q a1 (1 q 6 ) =63. 1 q ②÷①得1+q3=9,∴q3=8,∴q=2.
① ②
方法二
∵(a1+a2+a3)·q3=a4+a5+a6,
2018年高考数学理江苏专用总复习教师用书:第六章 数列、推理与证明 第1讲 数列的概念 含答案 精品
第1讲数列的概念考试要求 1.数列的概念及数列与函数的关系,A级要求;2.数列的几种简单表示方法(列表、图象、通项公式),A级要求.知识梳理1.数列的概念(1)数列的定义:按照一定顺序排列的一列数称为数列,数列中的每一个数叫做这个数列的项.(2)数列与函数的关系:从函数观点看,数列可以看成以正整数集N*(或它的有限子集)为定义域的函数a n=f(n),当自变量按照从小到大的顺序依次取值时所对应的一列函数值.(3)数列有三种表示法,它们分别是列表法、图象法和通项公式法.2.数列的分类3.数列的两种常用的表示方法(1)通项公式:如果数列{a n}的第n项a n与序号n之间的关系可以用一个式子a n=f(n)来表示,那么这个公式叫做这个数列的通项公式.(2)递推公式:如果已知数列{a n }的第1项(或前几项),且从第二项(或某一项)开始的任一项a n 与它的前一项a n -1(或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式.4.已知数列{a n }的前n 项和S n ,则a n =⎩⎪⎨⎪⎧S 1 n =,S n -S n -1 n诊 断 自 测1.判断正误(在括号内打“√”或“×”)(1)相同的一组数按不同顺序排列时都表示同一个数列.( ) (2)一个数列中的数是不可以重复的.( ) (3)所有数列的第n 项都能使用公式表达.( )(4)根据数列的前几项归纳出的数列的通项公式可能不止一个.( ) 解析 (1)数列:1,2,3和数列:3,2,1是不同的数列. (2)数列中的数是可以重复的. (3)不是所有的数列都有通项公式. 答案 (1)× (2)× (3)× (4)√2.设数列{a n }的前n 项和S n =n 2,则a 8的值为________. 解析 当n =8时,a 8=S 8-S 7=82-72=15. 答案 153.(2014·全国Ⅱ卷)数列{a n }满足a n +1=11-a n ,a 8=2,则a 1=________.解析 由a n +1=11-a n ,得a n =1-1a n +1,∵a 8=2,∴a 7=1-12=12,a 6=1-1a 7=-1,a 5=1-1a 6=2,…,∴{a n }是以3为周期的数列,∴a 1=a 7=12.答案 124.已知a n =n 2+λn ,且对于任意的n ∈N *,数列{a n }是递增数列,则实数λ的取值范围是________.解析 因为{a n }是递增数列,所以对任意的n ∈N *,都有a n +1>a n ,即(n +1)2+λ(n +1)>n 2+λn ,整理,得2n +1+λ>0,即λ>-(2n +1).(*)因为n ≥1,所以-(2n +1)≤-3,要使不等式(*)恒成立,只需λ>-3.答案 (-3,+∞)5.(必修5P34习题7改编)根据下面的图形及相应的点数,写出点数构成的数列的一个通项公式a n =________.答案 5n -4考点一 由数列的前几项求数列的通项 【例1】 根据下面各数列前几项的值,写出数列的一个通项公式: (1)-1,7,-13,19,…; (2)23,415,635,863,1099,…; (3)12,2,92,8,252,…; (4)5,55,555,5 555,….解 (1)偶数项为正,奇数项为负,故通项公式必含有因式(-1)n,观察各项的绝对值,后一项的绝对值总比它前一项的绝对值大6,故数列的一个通项公式为a n =(-1)n(6n -5). (2)这是一个分数数列,其分子构成偶数数列,而分母可分解为1×3,3×5,5×7,7×9,9×11,…,每一项都是两个相邻奇数的乘积.故所求数列的一个通项公式为a n =2nn -n +.(3)数列的各项,有的是分数,有的是整数,可将数列的各项都统一成分数再观察.即12,42,92,162,252,…,从而可得数列的一个通项公式为a n =n 22. (4)将原数列改写为59×9,59×99,59×999,…,易知数列9,99,999,…的通项为10n-1,故所求的数列的一个通项公式为a n =59(10n-1).规律方法 根据所给数列的前几项求其通项时,需仔细观察分析,抓住以下几方面的特征: (1)分式中分子、分母的各自特征; (2)相邻项的联系特征; (3)拆项后的各部分特征;(4)符号特征.应多进行对比、分析,从整体到局部多角度观察、归纳、联想.【训练1】 (1)数列0,23,45,67,…的一个通项公式为______(填序号).①a n =n -1n +2(n ∈N *);②a n =n -12n +1(n ∈N *); ③a n =n -2n -1(n ∈N *);④a n =2n 2n +1(n ∈N *).(2)数列-11×2,12×3,-13×4,14×5,…的一个通项公式a n =________.解析 (1)注意到分子0,2,4,6都是偶数,对照各项排除即可.(2)这个数列前4项的绝对值都等于序号与序号加1的积的倒数,且奇数项为负,偶数项为正,所以它的一个通项公式为a n =(-1)n1nn +.答案 (1)③ (2)(-1)n1nn +考点二 由S n 与a n 的关系求a n(易错警示)【例2】 (1)若数列{a n }的前n 项和S n =3n 2-2n +1,则数列{a n }的通项公式a n =________. (2)若数列{a n }的前n 项和S n =23a n +13,则{a n }的通项公式a n =________.解析 (1)当n =1时,a 1=S 1=3×12-2×1+1=2; 当n ≥2时,a n =S n -S n -1=3n 2-2n +1-[3(n -1)2-2(n -1)+1]=6n -5,显然当n =1时,不满足上式.故数列的通项公式为a n =⎩⎪⎨⎪⎧2,n =1,6n -5,n ≥2.(2)由S n =23a n +13,得当n ≥2时,S n -1=23a n -1+13,两式相减,得a n =23a n -23a n -1,∴当n ≥2时,a n =-2a n -1,即a na n -1=-2. 又n =1时,S 1=a 1=23a 1+13,a 1=1,∴a n =(-2)n -1.答案 (1)⎩⎪⎨⎪⎧2,n =16n -5,n ≥2 (2)(-2)n -1规律方法 数列的通项a n 与前n项和S n 的关系是a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2.①当n =1时,a 1若适合S n -S n -1,则n =1的情况可并入n ≥2时的通项a n ;②当n =1时,a 1若不适合S n -S n-1,则用分段函数的形式表示.易错警示 在利用数列的前n 项和求通项时,往往容易忽略先求出a 1,而是直接把数列的通项公式写成a n =S n -S n -1的形式,但它只适用于n ≥2的情形.【训练2】 (1)(2017·淮安月考)在数列{a n }中,S n 是其前n 项和,且S n =2a n +1,则数列的通项公式a n =________.(2)已知数列{a n }的前n 项和S n =3n+1,则数列的通项公式a n =________.解析 (1)依题意得S n +1=2a n +1+1,S n =2a n +1,两式相减得S n +1-S n =2a n +1-2a n ,即a n +1=2a n ,又S 1=2a 1+1=a 1,因此a 1=-1,所以数列{a n }是以a 1=-1为首项、2为公比的等比数列,a n =-2n -1.(2)当n =1时,a 1=S 1=3+1=4, 当n ≥2时,a n =S n -S n -1=3n+1-3n -1-1=2·3n -1.显然当n =1时,不满足上式.∴a n =⎩⎪⎨⎪⎧4,n =1,2·3n -1,n ≥2.答案 (1)-2n -1(2)⎩⎪⎨⎪⎧4,n =1,2·3n -1,n ≥2考点三 由数列的递推关系求通项公式 【例3】 在数列{a n }中,(1)若a 1=2,a n +1=a n +n +1,则通项公式a n =________. (2)若a 1=1,a n =n -1na n -1(n ≥2),则通项公式a n =________. (3)若a 1=1,a n +1=2a n +3,则通项公式a n =________.解析 (1)由题意得,当n ≥2时,a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=2+(2+3+…+n )=2+n -+n2=n n +2+1.又a 1=2=+2+1,符合上式,因此a n =n n +2+1.(2)法一 因为a n =n -1n a n -1(n ≥2),所以a n -1=n -2n -1·a n -2,…,a 2=12a 1,以上(n -1)个式子的等号两端分别相乘得a n =a 1·12·23·…·n -1n =a 1n =1n .法二 因为a n =a n a n -1·a n -1a n -2·a n -2a n -3·…·a 3a 2·a 2a 1·a 1=n -1n ·n -2n -1·n -1n -2·…·1=1n. (3)设递推公式a n +1=2a n +3可以转化为a n +1+t =2(a n +t ),即a n +1=2a n +t ,解得t =3. 故a n +1+3=2(a n +3).令b n =a n +3,则b 1=a 1+3=4,且b n +1b n =a n +1+3a n +3=2. 所以{b n }是以4为首项,2为公比的等比数列. ∴b n =4·2n -1=2n +1,∴a n =2n +1-3.答案 (1)n n +2+1 (2)1n(3)2n +1-3规律方法 (1)形如a n +1=a n +f (n )的递推关系式利用累加法求和,特别注意能消去多少项,保留多少项.(2)形如a n +1=a n ·f (n )的递推关系式可化为a n +1a n=f (n )的形式,可用累乘法,也可用a n =a n a n -1·a n -1a n -2·…·a 2a 1·a 1代入求出通项. (3)形如a n +1=pa n +q 的递推关系式可以化为(a n +1+x )=p (a n +x )的形式,构成新的等比数列,求出通项公式,求变量x 是关键.【训练3】 (1)已知数列{a n }满足a 1=1,a 2=4,a n +2+2a n =3a n +1(n ∈N *),则数列{a n }的通项公式a n =________.(2)在数列{a n }中,a 1=3,a n +1=a n +1nn +,则通项公式a n =________.解析 (1)由a n +2+2a n -3a n +1=0, 得a n +2-a n +1=2(a n +1-a n ),∴数列{a n +1-a n }是以a 2-a 1=3为首项,2为公比的等比数列,∴a n +1-a n =3×2n -1,∴n ≥2时,a n -a n -1=3×2n -2,…,a 3-a 2=3×2,a 2-a 1=3,将以上各式累加得a n -a 1=3×2n -2+…+3×2+3=3(2n -1-1),∴a n =3×2n -1-2(当n =1时,也满足).(2)原递推公式可化为a n +1=a n +1n -1n +1,则a 2=a 1+11-12,a 3=a 2+12-13,a 4=a 3+13-14,…,a n -1=a n -2+1n -2-1n -1, a n =a n -1+1n -1-1n, 逐项相加得,a n =a 1+1-1n ,故a n =4-1n.答案 (1)3×2n -1-2 (2)4-1n考点四 数列的性质 【例4】 (1)已知a n =n -1n +1,那么数列{a n }是________数列(从“递减”“递增”“常”“摆动”中选填一个). (2)数列{a n }的通项a n =nn 2+90,则数列{a n }中的最大项是________.(3)数列{a n }满足a n +1=11-a n ,a 8=2,则a 1=________.解析 (1)a n =1-2n +1,将a n 看作关于n 的函数,n ∈N *,易知{a n }是递增数列. (2)令f (x )=x +90x(x >0),运用基本不等式得,f (x )≥290当且仅当x =310时等号成立.因为a n =1n +90n ,所以1n +90n≤1290,由于n ∈N *,不难发现当n =9或10时,a n =119最大. (3)由a n +1=11-a n ,得a n =1-1a n +1, ∵a 8=2,∴a 7=1-12=12,a 6=1-1a 7=-1,a 5=1-1a 6=2,……,∴{a n }是以3为周期的数列, ∴a 1=a 7=12.答案 (1)递增 (2)119 (3)12规律方法 (1)解决数列的单调性问题可用以下三种方法①用作差比较法,根据a n +1-a n 的符号判断数列{a n }是递增数列、递减数列或是常数列. ②用作商比较法,根据a n +1a n(a n >0或a n <0)与1的大小关系进行判断. ③结合相应函数的图象直观判断. (2)解决数列周期性问题的方法先根据已知条件求出数列的前几项,确定数列的周期,再根据周期性求值. (3)数列的最值可以利用数列的单调性或求函数最值的思想求解.【训练4】 (2017·哈尔滨模拟)数列{a n }满足a n +1=⎩⎪⎨⎪⎧2a n,0≤a n≤12,2a n-1,12<a n<1,且a 1=35,则数列的第2 016项 为________.解析 由已知可得,a 2=2×35-1=15,a 3=2×15=25, a 4=2×25=45, a 5=2×45-1=35,∴{a n }为周期数列且T =4, ∴a 2 016=a 4=45.答案 45[思想方法]1.由数列的前几项求数列通项,通常用观察法(对于交错数列一般有(-1)n或 (-1)n +1来区分奇偶项的符号);已知数列中的递推关系,一般只要求写出数列的前几项,若求通项可用归纳、猜想和转化的方法.2.强调a n 与S n 的关系:a n =⎩⎪⎨⎪⎧S 1n =,S n -S n -1 n3.已知递推关系求通项:对这类问题的要求不高,但试题难度较难把握.一般有两种常见思路:(1)算出前几项,再归纳、猜想; (2)利用累加或累乘法求数列的通项公式. [易错防范]1.数列是一种特殊的函数,在利用函数观点研究数列时,一定要注意自变量的取值,如数列a n =f (n )和函数y =f (x )的单调性是不同的. 2.数列的通项公式不一定唯一.基础巩固题组(建议用时:40分钟)一、填空题1.数列-1,3,-5,7,-9,11,…的一个通项公式a n =________.解析 观察可知a n =(-1)n(2n -1). 答案 (-1)n(2n -1)2.数列23,-45,67,-89,…的第10项是________.解析 所给数列呈现分数形式,且正负相间,求通项公式时,我们可以把每一部分进行分解:符号、分母、分子.很容易归纳出数列{a n }的通项公式a n =(-1)n +1·2n 2n +1,故a 10=-2021. 答案 -20213.(2017·南京、盐城调研)在数列{a n }中,已知a 1=1,a n +1=2a n +1,则其通项公式a n =________.解析 由题意知a n +1+1=2(a n +1),∴数列{a n +1}是以2为首项,2为公比的等比数列,∴a n +1=2n ,∴a n =2n-1. 答案 2n-14.数列{a n }的前n 项积为n 2,那么当n ≥2时,a n =________. 解析 设数列{a n }的前n 项积为T n ,则T n =n 2,当n ≥2时,a n =T n T n -1=n 2n -2.答案n 2n -25.数列{a n }满足a n +1+a n =2n -3,若a 1=2,则a 8-a 4=________.解析 依题意得(a n +2+a n +1)-(a n +1+a n )=[2(n +1)-3]-(2n -3),即a n +2-a n =2,所以a 8-a 4=(a 8-a 6)+(a 6-a 4)=2+2=4.答案 46.若数列{a n }满足关系a n +1=1+1a n ,a 8=3421,则a 5=________.解析 借助递推关系,则a 8递推依次得到a 7=2113,a 6=138,a 5=85.答案 857.已知数列{a n }的前n 项和S n =n 2+2n +1(n ∈N *),则a n =________.解析 当n ≥2时,a n =S n -S n -1=2n +1,当n =1时,a 1=S 1=4≠2×1+1,因此a n =⎩⎪⎨⎪⎧4,n =1,2n +1,n ≥2.答案 ⎩⎪⎨⎪⎧4,n =1,2n +1,n ≥28.(2017·扬州期末)已知数列{a n }的前n 项和为S n ,且a n ≠0(n ∈N *),又a n a n +1=S n ,则a 3-a 1=________.解析 因为a n a n +1=S n ,所以令n =1得a 1a 2=S 1=a 1,即a 2=1,令n =2,得a 2a 3=S 2=a 1+a 2,即a 3=1+a 1,所以a 3-a 1=1.答案 1 二、解答题9.数列{a n }的通项公式是a n =n 2-7n +6. (1)这个数列的第4项是多少?(2)150是不是这个数列的项?若是这个数列的项,它是第几项? (3)该数列从第几项开始各项都是正数? 解 (1)当n =4时,a 4=42-4×7+6=-6.(2)令a n =150,即n 2-7n +6=150,解得n =16或n =-9(舍去),即150是这个数列的第16项.(3)令a n =n 2-7n +6>0,解得n >6或n <1(舍). ∴从第7项起各项都是正数.10.已知数列{a n }中,a 1=1,前n 项和S n =n +23a n .(1)求a 2,a 3; (2)求{a n }的通项公式.解 (1)由S 2=43a 2得3(a 1+a 2)=4a 2,解得a 2=3a 1=3.由S 3=53a 3得3(a 1+a 2+a 3)=5a 3,解得a 3=32(a 1+a 2)=6.(2)由题设知a 1=1. 当n ≥2时,有a n =S n -S n -1=n +23a n -n +13a n -1,整理得a n =n +1n -1a n -1. 于是a 1=1,a 2=31a 1,a 3=42a 2,……a n -1=n n -2a n -2,a n =n +1n -1a n -1.将以上n 个等式两端分别相乘,整理得a n =n n +2.显然,当n =1时也满足上式.综上可知,{a n }的通项公式a n =n n +2.能力提升题组(建议用时:20分钟)11.设a n =-3n 2+15n -18,则数列{a n }中的最大项的值是________. 解析 ∵a n =-3⎝ ⎛⎭⎪⎫n -522+34,由二次函数性质,得当n =2或3时,a n 最大,最大为0. 答案 012.(2017·苏北四市期末)已知数列{a n }满足a n +2=a n +1-a n ,且a 1=2,a 2=3,则a 2 016的值为________.解析 由题意得,a 3=a 2-a 1=1,a 4=a 3-a 2=-2,a 5=a 4-a 3=-3,a 6=a 5-a 4=-1,a 7=a 6-a 5=2,∴数列{a n }是周期为6的周期数列,而2 016=6×336,∴a 2 016=a 6=-1. 答案 -113.(2017·太原模拟)已知数列{a n }满足a 1=1,a n -a n +1=na n a n +1(n ∈N *),则a n =________. 解析 由a n -a n +1=na n a n +1得1a n +1-1a n =n ,则由累加法得1a n -1a 1=1+2+…+(n -1)=n 2-n 2,又因为a 1=1,所以1a n =n 2-n 2+1=n 2-n +22,所以a n =2n 2-n +2. 答案 2n 2-n +2 14.(2017·镇江期末)已知数列{a n }中,a n =1+1a +n -(n ∈N *,a ∈R 且a ≠0). (1)若a =-7,求数列{a n }中的最大项和最小项的值;(2)若对任意的n ∈N *,都有a n ≤a 6成立,求a 的取值范围.解 (1)∵a n =1+1a +n -(n ∈N *,a ∈R ,且a ≠0), 又a =-7,∴a n =1+12n -9(n ∈N *). 结合函数f (x )=1+12x -9的单调性,可知1>a 1>a 2>a 3>a 4,a 5>a 6>a 7>…>a n >1(n ∈N *). ∴数列{a n }中的最大项为a 5=2,最小项为a 4=0.(2)a n =1+1a +n -=1+12n -2-a 2, 已知对任意的n ∈N *,都有a n ≤a 6成立,结合函数f (x )=1+12x -2-a 2的单调性, 可知5<2-a 2<6,即-10<a <-8. 即a 的取值范围是(-10,-8).。
(江苏专用)高考数学大一轮复习 第六章 数列 6.3 等比数列及其前n项和教师用书 理 苏教版-苏教
第六章 数列 6.3 等比数列及其前n 项和教师用书 理 苏教版1.等比数列的定义一般地,如果一个数列从第二项起,每一项与它的前一项的比都等于同一个常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,通常用字母q 表示(q ≠0). 2.等比数列的通项公式设等比数列{a n }的首项为a 1,公比为q ,则它的通项a n =a 1·q n -1.3.等比中项如果在a 与b 中间插入一个数G ,使a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项. 4.等比数列的常用性质 (1)通项公式的推广:a n =a m ·qn -m(n ,m ∈N *).(2)若{a n }为等比数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k ·a l =a m ·a n .(3)若{a n },{b n }(项数相同)是等比数列,则{λa n }(λ≠0),⎩⎨⎧⎭⎬⎫1a n ,{a 2n },{a n ·b n },⎩⎨⎧⎭⎬⎫a n b n 仍是等比数列.5.等比数列的前n 项和公式等比数列{a n }的公比为q (q ≠0),其前n 项和为S n , 当q =1时,S n =na 1;当q ≠1时,S n =a 11-q n 1-q =a 1-a n q1-q.6.等比数列前n 项和的性质公比不为-1的等比数列{a n }的前n 项和为S n ,则S n ,S 2n -S n ,S 3n -S 2n 仍成等比数列,其公比为q n.【知识拓展】 等比数列{a n }的单调性(1)满足⎩⎪⎨⎪⎧a 1>0,q >1或⎩⎪⎨⎪⎧a 1<0,0<q <1时,{a n }是递增数列.(2)满足⎩⎪⎨⎪⎧a 1>0,0<q <1或⎩⎪⎨⎪⎧a 1<0,q >1时,{a n }是递减数列.(3)当⎩⎪⎨⎪⎧a 1≠0,q =1时,{a n }为常数列.(4)当q <0时,{a n }为摆动数列.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)满足a n +1=qa n (n ∈N *,q 为常数)的数列{a n }为等比数列.( × ) (2)G 为a ,b 的等比中项⇔G 2=ab .( × )(3)如果数列{a n }为等比数列,b n =a 2n -1+a 2n ,则数列{b n }也是等比数列.( × ) (4)如果数列{a n }为等比数列,则数列{ln a n }是等差数列.( × )1.(教材改编)等比数列{a n }中,a 2=2,a 5=14,则公比q =________.答案 12解析 a 2=a 1q =2,a 5=a 1q 4=14,∴q 3=18,∴q =12.2.(教材改编)下列关于“等比中项”的说法中,正确的是________(填序号). ①任何两个实数都有等比中项; ②两个正数的等比中项必是正数; ③两个负数的等比中项不存在;④同号两数必存在互为相反数的两个等比中项. 答案 ④解析 ①一正数、一负数没有等比中项; ②两个正数的等比中项有两个,它们一正、一负; ③两个负数a ,b 的等比中项为±ab ; 所以①、②、③错误,易知④正确.3.设等比数列{a n }的前n 项和为S n ,若S 2=3,S 4=15,则S 6=________.答案 63解析 根据题意知,等比数列{a n }的公比不是-1.由等比数列的性质,得(S 4-S 2)2=S 2·(S 6-S 4),即122=3×(S 6-15),解得S 6=63.4.(教材改编)设等比数列{a n }的前n 项和为S n ,若a 1=1,S 6=4S 3,则a 4=________. 答案 3解析 由S 6=4S 3,所以a 11-q 61-q =4a 11-q 31-q,所以q 3=3(q 3=1不合题意,舍去), 所以a 4=a 1·q 3=1×3=3.5.设S n 为等比数列{a n }的前n 项和,8a 2+a 5=0,则S 5S 2=________. 答案 -11解析 设等比数列{a n }的公比为q , ∵8a 2+a 5=0,∴8a 1q +a 1q 4=0. ∴q 3+8=0,∴q =-2,∴S 5S 2=a 11-q 51-q ·1-q a 11-q 2=1-q 51-q 2=1--251-4=-11.题型一 等比数列基本量的运算例1 (1)(2015·课标全国Ⅱ)已知等比数列{a n }满足a 1=14,a 3a 5=4(a 4-1),则a 2=________.(2)已知等比数列{a n }的前n 项和为S n ,且a 1+a 3=52,a 2+a 4=54,则S na n =________.答案 (1)12(2)2n-1解析 (1)由{a n }为等比数列,得a 3a 5=a 24, 又a 3a 5=4(a 4-1),所以a 24=4(a 4-1), 解得a 4=2.设等比数列{a n }的公比为q , 则由a 4=a 1q 3,得2=14q 3,解得q =2,所以a 2=a 1q =12.(2)∵⎩⎪⎨⎪⎧a 1+a 3=52,a 2+a 4=54,∴⎩⎪⎨⎪⎧a 1+a 1q 2=52, ①a 1q +a 1q 3=54, ②由①除以②可得1+q2q +q 3=2,解得q =12,代入①得a 1=2,∴a n =2×(12)n -1=42n ,∴S n =2×[1-12n]1-12=4(1-12n ),∴S n a n=41-12n42n =2n-1. 思维升华 等比数列基本量的运算是等比数列中的一类基本问题,数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)可迎刃而解.(1)设{a n }是由正数组成的等比数列,S n 为其前n 项和.已知a 2a 4=1,S 3=7,则S 5=________.(2)(2015·某某)设S n 为等比数列{a n }的前n 项和,若a 1=1,且3S 1,2S 2,S 3成等差数列,则a n =________.答案 (1)314(2)3n -1解析 (1)显然公比q ≠1,由题意得⎩⎪⎨⎪⎧a 1q ·a 1q 3=1,a 11-q 31-q =7,解得⎩⎪⎨⎪⎧a 1=4,q =12或⎩⎪⎨⎪⎧a 1=9q =-13(舍去),∴S 5=a 11-q 51-q=41-1251-12=314.(2)由3S 1,2S 2,S 3成等差数列知,4S 2=3S 1+S 3, 可得a 3=3a 2,所以公比q =3, 故等比数列通项a n =a 1qn -1=3n -1.题型二 等比数列的判定与证明例2 设数列{a n }的前n 项和为S n ,已知a 1=1,S n +1=4a n +2. (1)设b n =a n +1-2a n ,证明:数列{b n }是等比数列; (2)求数列{a n }的通项公式.(1)证明 由a 1=1及S n +1=4a n +2, 得a 1+a 2=S 2=4a 1+2. ∴a 2=5,∴b 1=a 2-2a 1=3.又⎩⎪⎨⎪⎧S n +1=4a n +2, ①S n =4a n -1+2n ≥2, ②由①-②,得a n +1=4a n -4a n -1(n ≥2), ∴a n +1-2a n =2(a n -2a n -1)(n ≥2). ∵b n =a n +1-2a n ,∴b n =2b n -1(n ≥2), 故{b n }是首项b 1=3,公比为2的等比数列. (2)解 由(1)知b n =a n +1-2a n =3·2n -1,∴a n +12n +1-a n 2n =34,故{a n 2n }是首项为12,公差为34的等差数列. ∴a n 2n =12+(n -1)·34=3n -14, 故a n =(3n -1)·2n -2.引申探究若将例2中“S n +1=4a n +2”改为“S n +1=2S n +(n +1)”,其他不变,求数列{a n }的通项公式. 解 由已知得n ≥2时,S n =2S n -1+n . ∴S n +1-S n =2S n -2S n -1+1, ∴a n +1=2a n +1,∴a n +1+1=2(a n +1),n ≥2,(*) 又a 1=1,S 2=a 1+a 2=2a 1+2, 即a 2+1=2(a 1+1),∴当n =1时(*)式也成立,故{a n +1}是以2为首项,以2为公比的等比数列, ∴a n +1=2·2n -1=2n ,∴a n =2n-1.思维升华 (1)证明一个数列为等比数列常用定义法与等比中项法,其他方法只用于填空题中的判定;若证明某数列不是等比数列,则只要证明存在连续三项不成等比数列即可. (2)利用递推关系时要注意对n =1时的情况进行验证.已知数列{a n }满足a 1=1,a n +1=3a n +1.(1)证明:{a n +12}是等比数列,并求{a n }的通项公式;(2)证明:1a 1+1a 2+…+1a n <32.证明 (1)由a n +1=3a n +1,得a n +1+12=3(a n +12).又a 1+12=32,所以{a n +12}是首项为32,公比为3的等比数列.所以a n +12=3n2,因此{a n }的通项公式为a n =3n-12.(2)由(1)知1a n =23n -1.因为当n ≥1时,3n-1≥2×3n -1,所以13n -1≤12×3n -1.于是1a 1+1a 2+…+1a n ≤1+13+…+13n -1=32(1-13n )<32, 所以1a 1+1a 2+…+1a n <32.题型三 等比数列性质的应用例3 (1)若等比数列{a n }的各项均为正数,且a 10a 11+a 9a 12=2e 5,则ln a 1+ln a 2+…+ln a 20=________.(2)设等比数列{a n }的前n 项和为S n ,若S 6S 3=12,则S 9S 3=________.答案 (1)50 (2)34解析 (1)因为a 10a 11+a 9a 12=2a 10a 11=2e 5, 所以a 10a 11=e 5.所以ln a 1+ln a 2+…+ln a 20 =ln(a 1a 2…a 20)=ln[(a 1a 20)·(a 2a 19)·…·(a 10a 11)] =ln(a 10a 11)10=10ln(a 10a 11) =10ln e 5=50ln e =50.(2)方法一 ∵S 6∶S 3=1∶2,∴{a n }的公比q ≠1.由a 11-q 61-q ÷a 11-q 31-q =12,得q 3=-12,∴S 9S 3=1-q 91-q 3=34. 方法二 ∵{a n }是等比数列,且S 6S 3=12,∴公比q ≠-1,∴S 3,S 6-S 3,S 9-S 6也成等比数列,即(S 6-S 3)2=S 3·(S 9-S 6), 将S 6=12S 3代入得S 9S 3=34.思维升华 等比数列常见性质的应用 等比数列性质的应用可以分为三类: (1)通项公式的变形. (2)等比中项的变形.(3)前n 项和公式的变形.根据题目条件,认真分析,发现具体的变化特征即可找出解决问题的突破口.(1)已知在等比数列{a n }中,a 1a 4=10,则数列{lg a n }的前4项和等于________.(2)(2016·某某一调) 设等比数列{a n }的前n 项和为S n ,若S 2=3,S 4=15,则S 6的值为________. 答案 (1)2 (2)63解析 (1)前4项和S 4=lg a 1+lg a 2+lg a 3+lg a 4=lg(a 1a 2a 3a 4),又∵等比数列{a n }中,a 2a 3=a 1a 4=10, ∴S 4=lg 100=2.(2)方法一 由等比数列的性质得,q 2=S 4-S 2S 2=4,所以q =±2. 由S 2=3,解得⎩⎪⎨⎪⎧q =2,a 1=1,或⎩⎪⎨⎪⎧q =-2,a 1=-3.所以S 6=a 11-q 61-q =1×1-261-2=63或S 6=a 11-q 61-q =-3×[1--26]1--2=63.方法二 由S 2,S 4-S 2,S 6-S 4成等比数列可得(S 4-S 2)2=S 2(S 6-S 4),所以S 6=63.13.分类讨论思想在等比数列中的应用典例 (14分)已知首项为32的等比数列{a n }的前n 项和为S n (n ∈N *),且-2S 2,S 3,4S 4成等差数列.(1)求数列{a n }的通项公式; (2)证明:S n +1S n ≤136(n ∈N *).思想方法指导 (1)利用等差数列的性质求出等比数列的公比,写出通项公式. (2)求出前n 项和,根据函数的单调性证明. 规X 解答(1)解 设等比数列{a n }的公比为q , 因为-2S 2,S 3,4S 4成等差数列,所以S 3+2S 2=4S 4-S 3,即S 4-S 3=S 2-S 4,可得2a 4=-a 3,于是q =a 4a 3=-12.[2分]又a 1=32,所以等比数列{a n }的通项公式为a n =32×⎝ ⎛⎭⎪⎫-12n -1=(-1)n -1·32n .[4分](2)证明 由(1)知,S n =1-⎝ ⎛⎭⎪⎫-12n,S n +1S n =1-⎝ ⎛⎭⎪⎫-12n +11-⎝ ⎛⎭⎪⎫-12n=⎩⎪⎨⎪⎧2+12n2n+1,n 为奇数,2+12n2n-1,n 为偶数.[8分]当n 为奇数时,S n +1S n随n 的增大而减小,所以S n +1S n ≤S 1+1S 1=136.[10分]当n 为偶数时,S n +1S n随n 的增大而减小,所以S n +1S n ≤S 2+1S 2=2512.[12分]故对于n ∈N *,有S n +1S n ≤136.[14分]1.(教材改编){a n },{b n }都是等比数列,那么下列正确的序号是________. ①{a n +b n },{a n ·b n }都一定是等比数列;②{a n +b n }一定是等比数列,但{a n ·b n }不一定是等比数列; ③{a n +b n }不一定是等比数列,但{a n ·b n }一定是等比数列; ④{a n +b n },{a n ·b n }都不一定是等比数列. 答案 ③解析 {a n +b n }不一定是等比数列,如a n =1,b n =-1,因为a n +b n =0,所以{a n +b n }不是等比数列.设{a n },{b n }的公比分别为p ,q ,因为a n +1b n +1a n b n =a n +1a n ·b n +1b n=pq ≠0,所以{a n ·b n }一定是等比数列.2.(2016·某某东海中学月考)在由正数组成的等比数列{a n }中,若a 4a 5a 6=3,log 3a 1+log 3a 2+log 3a 8+log 3a 9的值为________. 答案 43解析 ∵a 4a 6=a 25,∴a 4a 5a 6=a 35=3,解得1353.a =∵a 1a 9=a 2a 8=a 25,∴log 3a 1+log 3a 2+log 3a 8+log 3a 9=log 3a 1a 2a 8a 94433534log log 3.3a ===3.在正项等比数列{a n }中,已知a 1a 2a 3=4,a 4a 5a 6=12,a n -1a n a n +1=324,则n =________. 答案 14解析 设数列{a n }的公比为q , 由a 1a 2a 3=4=a 31q 3与a 4a 5a 6=12=a 31q 12,可得q 9=3,a n -1a n a n +1=a 31q 3n -3=324,因此q3n -6=81=34=q 36,所以n =14.*4.(2015·某某改编)若a ,b 是函数f (x )=x 2-px +q (p >0,q >0)的两个不同的零点,且a ,b ,-2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p +q 的值等于________. 答案 9解析 由题意知:a +b =p ,ab =q ,∵p >0,q >0,∴a >0,b >0.在a ,b ,-2这三个数的6种排序中,成等差数列的情况有a ,b ,-2;b ,a ,-2;-2,a ,b ;-2,b ,a ;成等比数列的情况有a ,-2,b ;b ,-2,a .∴⎩⎪⎨⎪⎧ab =4,2b =a -2或⎩⎪⎨⎪⎧ab =4,2a =b -2,解得⎩⎪⎨⎪⎧a =4,b =1或⎩⎪⎨⎪⎧a =1,b =4.∴p =5,q =4,∴p +q =9.5.已知数列{a n }满足log 3a n +1=log 3a n +1(n ∈N *),且a 2+a 4+a 6=9,则13log (a 5+a 7+a 9)的值是________. 答案 -5解析 由log 3a n +1=log 3a n +1(n ∈N *), 得log 3a n +1-log 3a n =1,即log 3a n +1a n=1, 解得a n +1a n=3,所以数列{a n }是公比为3的等比数列. 因为a 5+a 7+a 9=(a 2+a 4+a 6)q 3, 所以a 5+a 7+a 9=9×33=35.所以51579133log ()log 3= 5.a a a ++=-6.(2017·某某检测)在由正数组成的等比数列{a n }中,若a 3a 4a 5=3π,则sin(log 3a 1+log 3a 2+…+log 3a 7)的值为________. 答案32解析 因为a 3a 4a 5=3π=a 34,所以343.a π= log 3a 1+log 3a 2+…+log 3a 7=log 3(a 1a 2…a 7)733437log 7log 33a ππ===, 所以sin(log 3a 1+log 3a 2+…+log 3a 7)=32. 7.设S n 为等比数列{a n }的前n 项和,已知3S 3=a 4-2,3S 2=a 3-2,则公比q =________. 答案 4解析 因为⎩⎪⎨⎪⎧ 3S 3=a 4-2, ①3S 2=a 3-2, ②由①-②,得3a 3=a 4-a 3,即4a 3=a 4,则q =a 4a 3=4.8.(2016·某某调研)设公差不为0的等差数列{a n }的前n 项和为S n .若S 3=a 22,且S 1,S 2,S 4成等比数列,则a 10=________.答案 19解析 设等差数列{a n }的公差为d (d ≠0),因为S 1,S 2,S 4成等比数列,所以S 22=S 1S 4,从而(2a 1+d )2=a 1(4a 1+6d ),整理得2a 1d -d 2=0,因为d ≠0,所以d =2a 1,又因为S 3=a 22,所以3a 1+3d =(a 1+d )2,将d =2a 1代入上式得3a 1+6a 1=(a 1+2a 1)2,即9a 1=9a 21,解之得a 1=1(a 1=0舍),从而d =2,所以a 10=1+9×2=19.*9.已知正项等比数列{a n }满足a 2 015=2a 2 013+a 2 014,若存在两项a m ,a n ,使得a m a n =4a 1,则n +4m nm 的最小值为________.答案 32解析 设{a n }的公比为q (q >0),由正项等比数列{a n }满足a 2 015=2a 2 013+a 2 014, 可得a 2 013·q 2=2a 2 013+a 2 013·q ,∴q 2-q -2=0,∵q >0,∴q =2.∵a m a n =4a 1,∴qm +n -2=16,∴m +n =6. ∴n +4m nm =16(m +n )⎝ ⎛⎭⎪⎫1m +4n =16⎝ ⎛⎭⎪⎫5+n m +4m n ≥32, 当且仅当n m =4m n ,即m =2,n =4时取等号.故n +4m nm 的最小值为32. 10.(2016·苏锡常镇一调)设数列{a n }是首项为1,公差不为零的等差数列,S n 为其前n 项和,若S 1,S 2,S 4成等比数列,则数列{a n }的公差为________.答案 2解析 设公差为d ,其中d ≠0,则S 1,S 2,S 4分别为1,2+d,4+6d .由S 1,S 2,S 4成等比数列,得(2+d )2=4+6d ,即d 2=2d .因为d ≠0,所以d =2.*11.(2016·苏北四市期末)已知各项均为正数的数列{a n }的首项a 1=1,S n 是数列{a n }的前n 项和,且满足a n S n +1-a n +1S n +a n -a n +1=λa n a n +1(λ≠0,n ∈N *).(1)若a 1,a 2,a 3成等比数列,某某数λ的值;(2)若λ=12,求S n . 解 (1) 令n =1,得a 2=21+λ. 令n =2,得a 2S 3-a 3S 2+a 2-a 3=λa 2a 3,所以a 3=2λ+4λ+12λ+1. 由a 22=a 1a 3,得(21+λ)2=2λ+4λ+12λ+1, 因为λ≠0,所以λ=1.(2)当λ=12时, a n S n +1-a n +1S n +a n -a n +1=12a n a n +1,所以S n +1a n +1-S n a n +1a n +1-1a n =12, 即S n +1+1a n +1-S n +1a n =12, 所以数列{S n +1a n }是以2为首项,12为公差的等差数列, 所以S n +1a n =2+(n -1)·12, 即S n +1=(n 2+32)a n ,① 当n ≥2时,S n -1+1=(n 2+1)a n -1,② ①-②得,a n =n +32a n -n +22a n -1, 即(n +1)a n =(n +2)a n -1,所以a n n +2=a n -1n +1(n ≥2),所以{a n n +2}是常数列,且为13,所以a n =13(n +2). 代入①得S n =(n 2+32)a n -1=n 2+5n 6.12.已知{a n }是首项为1,公差为2的等差数列,S n 表示{a n }的前n 项和.(1)求a n 及S n ;(2)设{b n }是首项为2的等比数列,公比q 满足q 2-(a 4+1)q +S 4=0,求{b n }的通项公式及其前n 项和T n .解 (1)因为{a n }是首项a 1=1,公差d =2的等差数列,所以a n =a 1+(n -1)d =2n -1. 故S n =1+3+…+(2n -1)=n a 1+a n2=n 1+2n -12=n 2. (2)由(1)得a 4=7,S 4=16.因为q 2-(a 4+1)q +S 4=0,即q 2-8q +16=0,所以(q -4)2=0,从而q =4.又因为b 1=2,{b n }是公比q =4的等比数列,所以b n =b 1q n -1=2·4n -1=22n -1.从而{b n }的前n 项和T n =b 11-q n 1-q =23(4n -1). 13.(2016·全国丙卷)已知各项都为正数的数列{a n }满足a 1=1,a 2n -(2a n +1-1)a n -2a n +1=0.(1)求a 2,a 3;(2)求{a n }的通项公式.解 (1)由题意,得a 2=12,a 3=14. (2)由a 2n -(2a n +1-1)a n -2a n +1=0,得2a n +1(a n +1)=a n (a n +1).因为{a n }的各项都为正数,所以a n +1a n =12. 故{a n }是首项为1,公比为12的等比数列, 因此a n =12n -1. 14.已知数列{a n }中,a 1=1,a n ·a n +1=⎝ ⎛⎭⎪⎫12n ,记T 2n 为{a n }的前2n 项的和,b n =a 2n +a 2n -1,n ∈N *. (1)判断数列{b n }是否为等比数列,并求出b n ;(2)求T 2n .解 (1)∵a n ·a n +1=⎝ ⎛⎭⎪⎫12n , ∴a n +1·a n +2=⎝ ⎛⎭⎪⎫12n +1, ∴a n +2a n =12,即a n +2=12a n . ∵b n =a 2n +a 2n -1,∴b n +1b n =a 2n +2+a 2n +1a 2n +a 2n -1=12a 2n +12a 2n -1a 2n +a 2n -1=12, ∵a 1=1,a 1·a 2=12, ∴a 2=12⇒b 1=a 1+a 2=32. ∴{b n }是首项为32,公比为12的等比数列. ∴b n =32×⎝ ⎛⎭⎪⎫12n -1=32n . (2)由(1)可知,a n +2=12a n , ∴a 1,a 3,a 5,…是以a 1=1为首项,以12为公比的等比数列;a 2,a 4,a 6,…是以a 2=12为首项,以12为公比的等比数列, ∴T 2n =(a 1+a 3+…+a 2n -1)+(a 2+a 4+…+a 2n )=1-⎝ ⎛⎭⎪⎫12n 1-12+12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n 1-12=3-32n .。
江苏2018版高考数学复习第六章数列6.4数列求和教师用书理苏教版
第六章 数列 6.4 数列求和教师用书 理 苏教版1.等差数列的前n 项和公式S n =n a 1+a n 2=na 1+n n -2d .2.等比数列的前n 项和公式S n =⎩⎪⎨⎪⎧na 1,q =1,a 1-a n q 1-q=a 1-q n1-q ,q ≠1.3.一些常见数列的前n 项和公式 (1)1+2+3+4+…+n =n n +2.(2)1+3+5+7+…+2n -1=n 2. (3)2+4+6+8+…+2n =n (n +1). (4)12+22+…+n 2=n n +n +6.【知识拓展】 数列求和的常用方法 (1)公式法等差、等比数列或可化为等差、等比数列的可直接使用公式求和. (2)分组转化法把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解. (3)裂项相消法把数列的通项拆成两项之差求和,正负相消剩下首尾若干项. 常见的裂项公式 ①1n n +=1n -1n +1; ②1n -n +=12⎝ ⎛⎭⎪⎫12n -1-12n +1;③1n +n +1=n +1-n .(4)倒序相加法把数列分别正着写和倒着写再相加,即等差数列求和公式的推导过程的推广. (5)错位相减法主要用于一个等差数列与一个等比数列对应项相乘所得的数列的求和,即等比数列求和公式的推导过程的推广. (6)并项求和法一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)nf (n )类型,可采用两项合并求解.例如,S n =1002-992+982-972+…+22-12=(100+99)+(98+97)+…+(2+1)=5 050.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)如果数列{a n }为等比数列,且公比不等于1,则其前n 项和S n =a 1-a n +11-q.( √ ) (2)当n ≥2时,1n 2-1=12(1n -1-1n +1).( √ ) (3)求S n =a +2a 2+3a 3+…+na n之和时,只要把上式等号两边同时乘以a 即可根据错位相减法求得.( × )(4)数列{12n +2n -1}的前n 项和为n 2+12n .( × )(5)推导等差数列求和公式的方法叫做倒序求和法,利用此法可求得sin 21°+sin 22°+sin 23°+…+sin 288°+sin 289°=44.5.( √ )1.(2016·南京模拟)设{a n }是公差不为0的等差数列,a 1=2,且a 1,a 3,a 6成等比数列,则{a n }的前n 项和S n =__________. 答案n 2+7n4解析 设等差数列的公差为d ,则a 1=2,a 3=2+2d ,a 6=2+5d .又∵a 1,a 3,a 6成等比数列,∴a 23=a 1·a 6. 即(2+2d )2=2(2+5d ),整理得2d 2-d =0.∵d ≠0,∴d =12.∴S n =na 1+n n -2d =n 24+74n .2.(教材改编)数列{a n }中,a n =1nn +,若{a n }的前n 项和S n =2 0172 018,则n =________.答案 2 017 解析 a n =1nn +=1n -1n +1, S n =a 1+a 2+…+a n=(1-12+12-13+…+1n -1n +1)=1-1n +1=n n +1. 令nn +1=2 0172 018,得n =2 017. 3.数列{a n }的通项公式为a n =(-1)n -1·(4n -3),则它的前100项之和S 100=________.答案 -200解析 S 100=(4×1-3)-(4×2-3)+(4×3-3)-…-(4×100-3)=4×[(1-2)+(3-4)+…+(99-100)]=4×(-50)=-200.4.若数列{a n }的通项公式为a n =2n+2n -1,则数列{a n }的前n 项和S n =________. 答案 2n +1-2+n 2解析 S n =-2n1-2+n+2n -2=2n +1-2+n 2.5.数列{a n }的通项公式为a n =n cos n π2,其前n 项和为S n ,则S 2 017=________.答案 1 008解析 因为数列a n =n cosn π2呈周期性变化,观察此数列规律如下:a 1=0,a 2=-2,a 3=0,a 4=4.故S 4=a 1+a 2+a 3+a 4=2.a 5=0,a 6=-6,a 7=0,a 8=8,故a 5+a 6+a 7+a 8=2,∴周期T =4. ∴S 2 017=S 2 016+a 2 017 =2 0164×2+2 017·cos 2 0172π =1 008.题型一 分组转化法求和例1 已知数列{a n }的前n 项和S n =n 2+n2,n ∈N *.(1)求数列{a n }的通项公式;(2)设b n =2n a+(-1)na n ,求数列{b n }的前2n 项和. 解 (1)当n =1时,a 1=S 1=1; 当n ≥2时,a n =S n -S n -1=n 2+n2-n -2+n -2=n .a 1也满足a n =n ,故数列{a n }的通项公式为a n =n . (2)由(1)知a n =n ,故b n =2n +(-1)nn .记数列{b n }的前2n 项和为T 2n ,则T 2n =(21+22+ (22))+(-1+2-3+4-…+2n ). 记A =21+22+ (22),B =-1+2-3+4-…+2n , 则A =-22n1-2=22n +1-2,B =(-1+2)+(-3+4)+…+[-(2n -1)+2n ]=n .故数列{b n }的前2n 项和T 2n =A +B =22n +1+n -2.引申探究例1(2)中,求数列{b n }的前n 项和T n . 解 由(1)知b n =2n+(-1)n·n . 当n 为偶数时,T n =(21+22+…+2n )+[-1+2-3+4-…-(n -1)+n ]=2-2n +11-2+n 2=2n +1+n2-2;当n 为奇数时,T n =(21+22+ (2))+[-1+2-3+4-…-(n -2)+(n -1)-n ] =2n +1-2+n -12-n=2n +1-n 2-52.∴T n=⎩⎪⎨⎪⎧2n +1+n2-2, n 为偶数,2n +1-n 2-52, n 为奇数.思维升华 分组转化法求和的常见类型(1)若a n =b n ±c n ,且{b n },{c n }为等差或等比数列,可采用分组求和法求{a n }的前n 项和.(2)通项公式为a n =⎩⎪⎨⎪⎧b n ,n 为奇数,c n ,n 为偶数的数列,其中数列{b n },{c n }是等比数列或等差数列,可采用分组求和法求和.提醒:某些数列的求和是将数列转化为若干个可求和的新数列的和或差,从而求得原数列的和,注意在含有字母的数列中对字母的讨论.已知数列{a n }的通项公式是a n =2·3n -1+(-1)n ·(ln 2-ln 3)+(-1)nn ln 3,求其前n 项和S n . 解 S n =2(1+3+…+3n -1)+[-1+1-1+…+(-1)n]·(ln 2-ln 3)+[-1+2-3+…+(-1)nn ]ln 3, 所以当n 为偶数时,S n =2×1-3n1-3+n 2ln 3=3n+n 2ln 3-1;当n 为奇数时,S n =2×1-3n 1-3-(ln 2-ln 3)+(n -12-n )ln 3=3n-n -12ln 3-ln 2-1.综上所述,S n=⎩⎪⎨⎪⎧3n+n2ln 3-1,n 为偶数,3n-n -12ln 3-ln 2-1,n 为奇数.题型二 错位相减法求和例2 已知a >0,a ≠1,数列{a n }是首项为a ,公比也为a 的等比数列,令b n =a n ·lg a n (n ∈N ),求数列{b n }的前n 项和S n . 解 ∵a n =a n ,b n =n ·a nlg a , ∴S n =(a +2a 2+3a 3+…+na n)lg a ,① aS n =(a 2+2a 3+3a 4+…+na n +1)lg a ,②①-②得:(1-a )S n =(a +a 2+…+a n -na n +1)lg a ,∴S n =a lg a -a2[1-(1+n -na )a n]. 思维升华 错位相减法求和时的注意点(1)要善于识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“S n -qS n ”的表达式;(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.设等差数列{a n }的公差为d ,前n 项和为S n ,等比数列{b n }的公比为q ,已知b 1=a 1,b 2=2,q =d ,S 10=100. (1) 求数列{a n },{b n }的通项公式;(2) 当d >1时,记c n =a nb n,求数列{c n }的前n 项和T n .解 (1)由题意有⎩⎪⎨⎪⎧10a 1+45d =100,a 1d =2,即⎩⎪⎨⎪⎧2a 1+9d =20,a 1d =2,解得⎩⎪⎨⎪⎧a 1=1,d =2或⎩⎪⎨⎪⎧a 1=9,d =29.故⎩⎪⎨⎪⎧a n =2n -1,b n =2n -1或⎩⎪⎨⎪⎧a n=19n +,b n=9·⎝ ⎛⎭⎪⎫29n -1.(2)由d >1,知a n =2n -1,b n =2n -1,故c n =2n -12n -1,于是T n =1+32+522+723+924+…+2n -12n -1, ① 12T n =12+322+523+724+925+…+2n -12n . ②①-②可得12T n =2+12+122+…+12n -2-2n -12n =3-2n +32n , 故T n =6-2n +32n -1.题型三 裂项相消法求和命题点1 形如a n =1nn +k型 例3 设数列{a n }的前n 项和为S n ,点(n ,S n n)(n ∈N *)均在函数y =3x -2的图象上. (1)求数列{a n }的通项公式; (2)设b n =3a n a n +1,T n 是数列{b n }的前n 项和,求T n .解 (1)把点(n ,S n n)代入函数y =3x -2, ∴S n n=3n -2,∴S n =3n 2-2n , 当n =1时,a 1=S 1=1,当n ≥2时,a n =S n -S n -1=3n 2-2n -[3(n -1)2-2(n -1)]=6n -5. 又a 1=1符合该式, ∴a n =6n -5(n ∈N *). (2)∵b n =3a n a n +1=3n -n +=12(16n -5-16n +1), ∴T n =b 1+b 2+b 3+…+b n=12[(1-17)+(17-113)+(113-119)+…+(16n -5-16n +1)] =12(1-16n +1)=3n 6n +1. 命题点2 形如a n =1n +n +k型例4 已知函数f (x )=x a的图象过点(4,2),令a n =1f n ++f n,n ∈N *.记数列{a n }的前n 项和为S n ,则S 2 017=________. 答案2 018-1解析 由f (4)=2,可得4a=2,解得a =12,则f (x )=12.x ∴a n =1f n ++f n=1n +1+n=n +1-n ,S 2 017=a 1+a 2+a 3+…+a 2 017=(2-1)+(3-2)+(4-3)+…+( 2 017- 2 016)+( 2 018- 2 017)= 2 018-1.思维升华 (1)用裂项相消法求和时,要对通项进行变换,如:1n +n +k =1k(n +k -n ),1n n +k =1k (1n -1n +k),裂项后可以产生连续相互抵消的项.(2)抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项.在数列{a n }中,a 1=1,当n ≥2时,其前n 项和S n 满足S 2n =a n ⎝⎛⎭⎪⎫S n -12.(1)求S n 的表达式;(2)设b n =S n2n +1,求{b n }的前n 项和T n .解 (1)∵S 2n =a n ⎝⎛⎭⎪⎫S n -12,a n =S n -S n -1 (n ≥2),∴S 2n =(S n -S n -1)⎝ ⎛⎭⎪⎫S n -12,即2S n -1S n =S n -1-S n , ①由题意得S n -1·S n ≠0,①式两边同除以S n -1·S n ,得1S n -1S n -1=2,∴数列⎩⎨⎧⎭⎬⎫1S n 是首项为1S 1=1a 1=1,公差为2的等差数列.∴1S n =1+2(n -1)=2n -1,∴S n =12n -1. (2)∵b n =S n 2n +1=1n -n +=12⎝ ⎛⎭⎪⎫12n -1-12n +1,∴T n =b 1+b 2+…+b n =12[(1-13)+(13-15)+…+(12n -1-12n +1)]=12⎝ ⎛⎭⎪⎫1-12n +1=n2n +1.四审结构定方案典例 (14分)已知数列{a n }的前n 项和S n =-12n 2+kn (其中k ∈N *),且S n 的最大值为8.(1)确定常数k ,并求a n ;(2)设数列⎩⎨⎧⎭⎬⎫9-2a n 2n 的前n 项和为T n ,求证:T n <4.(1)S n =-12n 2+kn ―――――→S n 是关于n的二次函数n =k 时,S n 最大――――――――→根据S n 的结构特征确定k 的值k =4;S n =-12n 2+4n ―――→根据S n 求a n a n =92-n (2)9-2a n 2n=n 2n -1――――――――→根据数列结构特征确定求和方法 T n =1+22+322+…+n -12n -2+n 2n -1――――→错位相减法求和计算可得T n ―→证明:T n <4规范解答(1)解 当n =k ∈N *时,S n =-12n 2+kn 取得最大值,即8=S k =-12k 2+k 2=12k 2,故k 2=16,k =4.当n =1时,a 1=S 1=-12+4=72,[3分]当n ≥2时,a n =S n -S n -1=92-n .当n =1时,上式也成立. 综上,a n =92-n .[6分] (2)证明 ∵9-2a n 2n =n2n -1,∴T n =1+22+322+…+n -12n -2+n2n -1,① 2T n =2+2+32+…+n -12n -3+n2n -2.②[10分] ②-①,得2T n -T n =2+1+12+…+12n -2-n2n -1=4-12n -2-n 2n -1=4-n +22n -1.[12分]∴T n =4-n +22n -1.∴T n <4.[14分]1.(2016·江苏无锡一中质检)设S n 为等差数列{a n }的前n 项和,S 4=14,S 10-S 7=30,则S 9=________. 答案 54解析 设等差数列{a n }的首项为a 1,公差为d , 则S 4=4a 1+6d =14,①S 10=10a 1+45d ,S 7=7a 1+21d ,则S 10-S 7=3a 1+24d =30, ②解①②可得d =1,a 1=2, 故S 9=9a 1+36d =18+36=54.2.(2016·无锡模拟)设等比数列{a n }的前n 项和为S n ,已知a 1=2 016,且a n +2a n +1+a n +2=0(n ∈N *),则S 2 016=________. 答案 0解析 ∵a n +2a n +1+a n +2=0(n ∈N *),∴a n +2a n q +a n q 2=0,q 为等比数列{a n }的公比, 即q 2+2q +1=0,∴q =-1.∴a n =(-1)n -1·2 016,∴S 2 016=(a 1+a 2)+(a 3+a 4)+…+(a 2 015+a 2 016)=0.3.已知数列{a n }:12,13+23,14+24+34,…,110+210+310+…+910,…,若b n =1a n a n +1,那么数列{b n }的前n 项和S n =____________. 答案4n n +1解析 ∵a n =1+2+3+…+n n +1=n2,∴b n =1a n a n +1=4nn +=4⎝ ⎛⎭⎪⎫1n -1n +1,∴S n =4⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1=4⎣⎢⎡⎦⎥⎤1-1n +1=4nn +1. 4.(教材改编)数列{n ×12n }的前n 项和S n =________.答案 2-12n -1-n2n解析 S n =1×12+2×14+3×18+…+n ×12n ,①12S n =1×14+2×18+3×116+…+(n -1)×12n +n ×12n +1, ② ①-②得,12S n =12+14+18+…+12n -n ×12n +1=12-12n1-12-n2n +1. ∴S n =2(1-12n -n 2n +1)=2-12n -1-n2n .5.已知函数f (n )=⎩⎪⎨⎪⎧n 2当n 为奇数时,-n 2当n 为偶数时,且a n =f (n )+f (n +1),则a 1+a 2+a 3+…+a 100=________.答案 100解析 由题意,得a 1+a 2+a 3+…+a 100=12-22-22+32+32-42-42+52+…+992-1002-1002+1012=-(1+2)+(3+2)-(4+3)+…-(99+100)+(101+100) =-(1+2+…+99+100)+(2+3+…+100+101) =-50×101+50×103=100.6.(2016·江苏连云港四校期中)一个只有有限项的等差数列,它的前5项和为34,最后5项和为146,所有项的和为234,则它的第7项为________. 答案 18解析 据题意知a 1+a 2+a 3+a 4+a 5=34,a n -4+a n -3+a n -2+a n -1+a n =146,又∵a 1+a n =a 2+a n -1=a 3+a n -2=a 4+a n -3=a 5+a n -4, ∴a 1+a n =36.又S n =12n (a 1+a n )=234,∴n =13,∴a 1+a 13=2a 7=36, ∴a 7=18.7.(2016·苏州模拟)已知数列{a n }的通项公式为a n =1n +n +1,若前n 项和为10,则项数n 为________.答案 120 解析 ∵a n =1n +n +1=n +1-n ,∴S n =a 1+a 2+…+a n=(2-1)+(3-2)+…+(n +1-n ) =n +1-1.令n +1-1=10,得n =120.8.(2016·泰州模拟)设数列{a n }满足a 1=1,(1-a n +1)(1+a n )=1(n ∈N *),则∑100k =1a k a k +1的值为________. 答案100101解析 因为(1-a n +1)(1+a n )=1,所以a n -a n +1-a n a n +1=0,从而1a n +1-1a n=1,即数列⎩⎨⎧⎭⎬⎫1a n 是以1为首项,1为公差的等差数列,所以1a n=1+n -1=n ,所以a n =1n,故a n +1a n =1n +n =1n -1n +1, 因此∑100k =1a k a k +1=(1-12)+(12-13)+…+(1100-1101)=1-1101=100101. 9.(2016·苏北四市期末)若公比不为1的等比数列{a n }满足log 2(a 1·a 2·…·a 13)=13,等差数列{b n }满足b 7=a 7,则b 1+b 2+…+b 13的值为________. 答案 26解析 因为等比数列{a n }满足log 2(a 1·a 2·…·a 13)=13,所以a 1·a 2·…·a 13=213,(a 7)13=213,a 7=2,所以等差数列{b n }中,b 7=a 7=2,b 1+b 2+…+b 13=13b 7=13×2=26. *10.已知正项数列{a n }的前n 项和为S n ,∀n ∈N *,2S n =a 2n +a n .令b n =1a n a n +1+a n +1a n,设{b n }的前n 项和为T n ,则在T 1,T 2,T 3,…,T 100中有理数的个数为________.答案 9解析 ∵2S n =a 2n +a n , ① ∴2S n +1=a 2n +1+a n +1,②②-①,得2a n +1=a 2n +1+a n +1-a 2n -a n ,a 2n +1-a 2n -a n +1-a n =0,(a n +1+a n )(a n +1-a n -1)=0.又∵{a n }为正项数列,∴a n +1-a n -1=0, 即a n +1-a n =1.在2S n =a 2n +a n 中,令n =1,可得a 1=1. ∴数列{a n }是以1为首项,1为公差的等差数列. ∴a n =n , ∴b n =1n n +1+n +n=n +n -n n +1[n n +1+n +n n +n -n n +1]=n +n -n n +1n n +=1n -1n +1,∴T n =1-1n +1,∴T 1,T 2,T 3,…,T 100中有理数的个数为9.11.(2016·南京、盐城一模) 设S n 是等比数列{a n }的前n 项和,a n >0,若S 6-2S 3=5,则S 9-S 6的最小值为______. 答案 20解析 方法一 当q =1时,S 6-2S 3=0,不合题意,所以q ≠1,从而由S 6-2S 3=5得a 1-q 61-q-2a 1-q31-q=5,从而得a 11-q =5-q 6+2q 3-1=5-q 3-2<0,故1-q <0,即q >1,故S 9-S 6=a 1-q 91-q-a 1-q 61-q =5-q 6+2q 3-1×(q 6-q 9)=5q 6q 3-1,令q 3-1=t >0,则S 9-S 6=t +2t=5(t +1t+2)≥20,当且仅当t =1,即q 3=2时等号成立.方法二 因为S 6=S 3(1+q 3),所以由S 6-2S 3=5得S 3=5q 3-1>0,从而q >1,故S 9-S 6=S 3(q 6+q 3+1)-S 3(q 3+1)=S 3q 6=5q6q 3-1,以下同方法一.12.数列{a n }满足a n =2a n -1+2n+1(n ∈N ,n ≥2),a 3=27. (1)求a 1,a 2的值;(2)是否存在一个实数t ,使得b n =12n (a n +t )(n ∈N *),且数列{b n }为等差数列?若存在,求出实数t ;若不存在,请说明理由; (3)求数列{a n }的前n 项和S n .解 (1)由a 3=27,得27=2a 2+23+1,∴a 2=9. ∵9=2a 1+22+1,∴a 1=2.(2)假设存在实数t ,使得{b n }为等差数列,则2b n =b n -1+b n +1. ∴2×12n (a n +t )=12n -1(a n -1+t )+12n +1(a n +1+t ),∴4a n =4a n -1+a n +1+t , ∴4a n =4×a n -2n -12+2a n +2n +1+1+t ,∴t =1,即存在实数t =1,使得{b n }为等差数列. (3)由(1),(2)得b 1=32,b 2=52,∴b n =n +12,∴a n =(n +12)·2n -1=(2n +1)2n -1-1.S n =(3×20-1)+(5×21-1)+(7×22-1)+…+[(2n +1)×2n -1-1]=3+5×2+7×22+…+(2n +1)×2n -1-n ,① ∴2S n =3×2+5×22+7×23+…+(2n +1)×2n-2n,②由①-②得-S n =3+2×2+2×22+2×23+…+2×2n -1-(2n +1)×2n+n=1+2×1-2n1-2-(2n +1)×2n +n =(1-2n )×2n+n -1.∴S n =(2n -1)×2n-n +1.13.(2016·天津)已知{a n }是等比数列,前n 项和为S n (n ∈N *),且1a 1-1a 2=2a 3,S 6=63.(1)求{a n }的通项公式;(2)若对任意的n ∈N *,b n 是log 2a n 和log 2a n +1的等差中项,求数列{(-1)n b 2n }的前2n 项和. 解 (1)设数列{a n }的公比为q .由已知,有1a 1-1a 1q =2a 1q2,解得q =2或q =-1.又由S 6=a 1·1-q61-q =63,知q ≠-1,所以a 1·1-261-2=63,得a 1=1.所以a n =2n -1.(2)由题意,得b n =12(log 2a n +log 2a n +1)=12(log 22n -1+log 22n)=n -12, 即{b n }是首项为12,公差为1的等差数列.设数列{(-1)n b 2n }的前n 项和为T n ,则T 2n =(-b 21+b 22)+(-b 23+b 24)+…+(-b 22n -1+b 22n )=b 1+b 2+b 3+b 4+…+b 2n -1+b 2n =2nb 1+b 2n2=2n 2.*14.若数列{a n }的前n 项和为S n ,点(a n ,S n )在y =16-13x 的图象上(n ∈N *).(1)求数列{a n }的通项公式;(2)若c 1=0,且对任意正整数n 都有c n +1-c n =12log .n a 求证:对任意正整数n ≥2,总有13≤1c 2+1c 3+1c 4+…+1c n <34. (1)解 ∵S n =16-13a n ,∴当n ≥2时,a n =S n -S n -1=13a n -1-13a n ,∴a n =14a n -1.又∵S 1=a 1=16-13a 1,∴a 1=18,∴a n =18⎝ ⎛⎭⎪⎫14n -1=⎝ ⎛⎭⎪⎫122n +1.(2)证明 由c n +1-c n =12log 21,n a n =+得当n ≥2时,c n =c 1+(c 2-c 1)+(c 3-c 2)+…+(c n -c n -1)=0+3+5+…+(2n -1)=n 2-1=(n +1)(n -1),1c n=1n +n -=12(1n -1-1n +1), ∴1c 2+1c 3+1c 4+…+1c n=12×⎣⎢⎡ ⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫12-14+⎝ ⎛⎭⎪⎫13-15+…+⎦⎥⎤⎝ ⎛⎭⎪⎫1n -1-1n +1=12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1+12-⎝ ⎛⎭⎪⎫1n +1n +1 =34-12⎝ ⎛⎭⎪⎫1n +1n +1<34. 又∵1c 2+1c 3+1c 4+…+1c n ≥1c 2=13,∴原式得证.15.(2016·江苏镇江丹徒中学调研)已知首项为32的等比数列{a n }不是递减数列,其前n 项和为S n (n ∈N *),且S 3+a 3,S 5+a 5,S 4+a 4成等差数列. (1)求数列{a n }的通项公式;(2)设T n =S n -1S n(n ∈N *),求数列{T n }的最大项的值与最小项的值.解 (1)设等比数列{a n }的公比为q , 因为S 3+a 3,S 5+a 5,S 4+a 4成等差数列, 所以S 5+a 5-S 3-a 3=S 4+a 4-S 5-a 5,即4a 5=a 3,于是q 2=a 5a 3=14.又{a n }不是递减数列且a 1=32,所以q =-12.故等比数列{a n }的通项公式为a n =32×(-12)n -1=(-1)n -1·32n .(2)由(1)得S n=1-(-12)n=⎩⎪⎨⎪⎧1+12n,n 为奇数,1-12n,n 为偶数.当n 为奇数时,S n 随n 的增大而减小, 所以1<S n ≤S 1=32,故0<S n -1S n ≤S 1-1S 1=32-23=56.当n 为偶数时,S n 随n 的增大而增大, 所以34=S 2≤S n <1,故0>S n -1S n ≥S 2-1S 2=34-43=-712.综上,对于n ∈N *,总有-712≤S n -1S n ≤56.所以数列{T n }的最大项的值为56,最小项的值为-712.。
高考数学一轮复习 第六章 数列 第三节 等比数列教案 文(含解析)苏教版-苏教版高三全册数学教案
第三节 等比数列1.等比数列的有关概念 (1)定义:如果一个数列从第二项起,每一项与它的前一项的比等于同一个常数(不为零),那么这个数列就叫做等比数列.这个常数叫做等比数列的公比,通常用字母q 表示,定义的表达式为a n +1a n=q . (2)等比中项:如果a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项.即:G 是a 与b 的等比中项⇔a ,G ,b 成等比数列⇒G 2=ab .2.等比数列的有关公式 (1)通项公式:a n =a 1qn -1.(2)前n 项和公式:S n =⎩⎪⎨⎪⎧na 1,q =1,a 11-q n 1-q=a 1-a n q1-q ,q ≠1.3.等比数列的常用性质 (1)通项公式的推广:a n =a m ·qn -m(n ,m ∈N *);(2)若m +n =p +q =2k (m ,n ,p ,q ,k ∈N *), 则a m ·a n =a p ·a q =a 2k ;(3)若数列{a n },{b n }(项数相同)是等比数列,则{λa n },⎩⎨⎧⎭⎬⎫1a n ,{a 2n },{a n ·b n },⎩⎨⎧⎭⎬⎫a n b n (λ≠0)仍然是等比数列;(4)在等比数列{a n }中,等距离取出若干项也构成一个等比数列,即a n ,a n +k ,a n +2k ,a n+3k,…为等比数列,公比为q k. [小题体验]1.设S n 是等比数列{}a n 的前n 项和,若a 1=1,a 6=32,则S 3=________. 答案:72.在等比数列{a n }中,若a 1=1,a 3a 5=4(a 4-1),则a 7=________.解析:法一:设等比数列{a n }的公比为q ,因为a 1=1,a 3a 5=4(a 4-1),所以q 2·q 4=4(q 3-1),即q 6-4q 3+4=0,q 3=2,所以a 7=q 6=4.法二:设等比数列{a n }的公比为q, 由a 3a 5=4(a 4-1)得a 24=4(a 4-1),即a 24-4a 4+4=0,所以a 4=2,因为a 1=1,所以q 3=2,a 7=q 6=4.答案:43.(2018·南京学情调研)已知各项均为正数的等比数列{a n },其前n 项和为S n .若a 2-a 5=-78,S 3=13,则数列{a n }的通项公式a n =________.解析:设等比数列{a n }的公比为q (q >0),则由题意得⎩⎪⎨⎪⎧a 1q -a 1q 4=-78,a 11+q +q 2=13,两式相除得q 2-q -6=0,即q =3或q =-2(舍去),从而得a 1=1,所以数列{a n }的通项公式为a n = 3n -1.答案:3n -11.特别注意q =1时,S n =na 1这一特殊情况.2.由a n +1=qa n ,q ≠0,并不能立即断言{a n }为等比数列,还要验证a 1≠0.3.在运用等比数列的前n 项和公式时,必须注意对q =1与q ≠1分类讨论,防止因忽略q =1这一特殊情形而导致解题失误.4.S n ,S 2n -S n ,S 3n -S 2n 未必成等比数列(例如:当公比q =-1且n 为偶数时,S n ,S 2n-S n ,S 3n -S 2n 不成等比数列;当q ≠-1或q =-1且n 为奇数时,S n ,S 2n -S n ,S 3n -S 2n 成等比数列),但等式(S 2n -S n )2=S n ·(S 3n -S 2n )总成立.[小题纠偏]1.(2019·扬州质检)在等比数列{}a n 中,若a 3=7,前3项和S 3=21,则公比q =________.解析:由已知得⎩⎪⎨⎪⎧a 1q 2=7,a 1+a 1q +a 1q 2=21,则1+q +q 2q2=3,整理得2q 2-q -1=0, 解得q =1或q =-12.答案:1或-122.各项均为正数的等比数列{}a n 的前n 项和为S n ,若S 10=2,S 30=14,则S 40=_______. 解析:依题意有S 10,S 20-S 10,S 30-S 20,S 40-S 30仍成等比数列,则2(14-S 20)=(S 20-2)2,解得S 20=6.所以S 10,S 20-S 10,S 30-S 20,S 40-S 30,即为2,4,8,16,所以S 40=S 30+16=30.答案:30考点一 等比数列的基本运算 重点保分型考点——师生共研 [典例引领]1.(2019·苏北四市调研)在各项均为正数的等比数列{}a n 中,若a 2=1,a 8=a 6+2a 4,则a 6的值是________.解析:设等比数列{}a n 的公比为q ,由a 2=1,a 8=a 6+2a 4得q 6=q 4+2q 2,q 4-q 2-2=0,解得q 2=2,则a 6=a 2q 4=4.答案:42.(2018·南通一调)设等比数列{a n }的前n 项和为S n ,若S 2=3,S 4=15,则S 6=________. 解析:法一:设等比数列{a n }的首项为a 1,公比为q .显然q ≠1,由题意得⎩⎪⎨⎪⎧a 11-q 21-q=3,a11-q 41-q=15.解得⎩⎪⎨⎪⎧q =2,a 1=1或⎩⎪⎨⎪⎧q =-2,a 1=-3.所以S 6=a 11-q 61-q =1×1-261-2=63或S 6=a 11-q 61-q =-3×[1--26]1--2=63.法二:由S 2,S 4-S 2,S 6-S 4成等比数列可得(S 4-S 2)2=S 2(S 6-S 4),所以S 6=63. 答案:63[由题悟法]解决等比数列有关问题的2种常用思想方程的思想等比数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)求关键量a 1和q ,问题可迎刃而解分类讨论的思想等比数列的前n 项和公式涉及对公比q 的分类讨论,当q =1时,{a n }的前n 项和S n =na 1;当q ≠1时,{a n }的前n 项和S n =a 11-q n 1-q =a 1-a n q1-q1.(2019·如东调研)设等比数列{}a n 的前n 项和为S n .若27a 3-a 6=0,则S 6S 3=________. 解析:设等比数列的公比为q ,则a 6a 3=q 3=27,所以S 6S 3=a 1+a 2+…+a 6a 1+a 2+a 3=1+a 4+a 5+a 6a 1+a 2+a 3=1+q 3+q 4+q 51+q +q2=1+q 3=28.答案:282.(2018·苏北四市期末)已知等比数列{a n }的前n 项和为S n ,若S 2=2a 2+3,S 3=2a 3+3,则公比q =________.解析:显然q ≠1,由题意得⎩⎪⎨⎪⎧a 11-q 21-q=2a 1q +3,a 11-q 31-q=2a 1q 2+3,整理得⎩⎪⎨⎪⎧a 11-q =3,a 11+q -q2=3,解得q =2.答案:2考点二 等比数列的判定与证明重点保分型考点——师生共研 [典例引领](2019·南京高三年级学情调研)已知数列{a n }的各项均为正数,记数列{a n }的前n 项和为S n ,数列{a 2n }的前n 项和为T n ,且3T n =S 2n +2S n ,n ∈N *.(1)求a 1的值;(2)求证数列{a n }为等比数列,并求其通项公式;(3)若k ,t ∈N *,且S 1,S k -S 1,S t -S k 成等比数列,求k 和t 的值. 解:(1)由3T 1=S 21+2S 1,得3a 21=a 21+2a 1,即a 21-a 1=0. 因为a 1>0,所以a 1=1.(2)证明:因为3T n =S 2n +2S n , ① 所以3T n +1=S 2n +1+2S n +1, ② ②-①,得3a 2n +1=S 2n +1-S 2n +2a n +1. 因为a n +1>0,所以3a n +1=S n +1+S n +2, ③ 所以3a n +2=S n +2+S n +1+2, ④④-③,得3a n +2-3a n +1=a n +2+a n +1,即a n +2=2a n +1, 所以当n ≥2时,a n +1a n=2.又由3T 2=S 22+2S 2,得3(1+a 22)=(1+a 2)2+2(1+a 2), 即a 22-2a 2=0.因为a 2>0,所以a 2=2,所以a 2a 1=2, 所以对∀n ∈N *,都有a n +1a n=2成立,故数列{a n }是首项为1,公比为2的等比数列, 所以数列{a n }的通项公式为a n =2n -1,n ∈N *.(3)由(2)可知S n =2n-1.因为S 1,S k -S 1,S t -S k 成等比数列,所以(S k -S 1)2=S 1(S t -S k ),即(2k -2)2=2t -2k, 所以2t=(2k )2-3·2k+4,即2t -2=(2k -1)2-3·2k -2+1(*).由于S k -S 1≠0,所以k ≠1,即k ≥2. 当k =2时,2t=8,得t =3. 当k ≥3时,由(*),得(2k -1)2-3·2k -2+1为奇数, 所以t -2=0,即t =2,代入(*)得22k -2-3·2k -2=0,即2k=3,此时k 无正整数解.综上,k =2,t =3.[由题悟法]等比数列的4种常用判定方法填空题中的判定.(2)若要判定一个数列不是等比数列,则只需判定存在连续三项不成等比数列即可.[即时应用](2018·苏州高三期中调研)已知数列{a n }的前n 项和是S n ,且满足a 1=1,S n +1=3S n +1 (n ∈N *).(1)求证:数列{a n }为等比数列,并求其通项公式; (2)在数列{b n }中,b 1=3,b n +1-b n =a n +1a n(n ∈N *),若不等式λa n +b n ≤n 2对n ∈N *有解,求实数λ的取值范围.解:(1)证明:因为S n +1=3S n +1,所以S n =3S n -1+1(n ≥2), 两式相减得a n +1=3a n (n ≥2),又当n =1时,由S 2=3S 1+1,得a 2=3,符合a 2=3a 1, 所以a n +1=3a n ,所以数列{a n }是以1为首项,3为公比的等比数列,通项公式为a n =3n -1. (2)因为b n +1-b n =a n +1a n=3, 所以{b n }是以3为首项,3为公差的等差数列, 所以b n =3+3(n -1)=3n ,所以λa n +b n ≤n 2,即3n -1·λ+3n ≤n 2,即λ≤n 2-3n3n -1对n ∈N *有解,设f (n )=n 2-3n3n -1(n ∈N *),因为f (n +1)-f (n )=n +12-3n +13n-n 2-3n 3n -1=-2n 2-4n +13n,所以当n ≥4时,f (n +1)<f (n ),当n <4时,f (n +1)>f (n ), 所以f (1)<f (2)<f (3)<f (4)>f (5)>f (6)>…, 所以f (n )max =f (4)=427,所以λ≤427,即实数λ的取值范围为⎝ ⎛⎦⎥⎤-∞,427. 考点三 等比数列的性质重点保分型考点——师生共研[典例引领]1.(2018·南京调研)已知各项不为0的等差数列{a n }满足a 6-a 27+a 8=0,数列{b n }是等比数列,且b 7=a 7,则b 2b 8b 11=________.解析:由等差数列的性质,得a 6+a 8=2a 7.由a 6-a 27+a 8=0,可得a 7=2,所以b 7=a 7=2.由等比数列的性质得b 2b 8b 11=b 2b 7b 12=b 37=23=8.答案:82.设等比数列{}a m 的前n 项积为T n (n ∈N *),若a m -1a m +1-2a m =0,且T 2m -1=128,则m=________.解析:因为{}a m 为等比数列,所以a m -1·a m +1=a 2m .又a m -1·a m +1-2a m =0,所以得a m =2.因为T 2m -1=a 2m -1m,所以22m -1=128,解得m =4.答案:43.在等比数列{a n }中,若a 7+a 8+a 9+a 10=158,a 8a 9=-98,则1a 7+1a 8+1a 9+1a 10=________.解析:因为1a 7+1a 10=a 7+a 10a 7a 10,1a 8+1a 9=a 8+a 9a 8a 9,由等比数列的性质知a 7a 10=a 8a 9,所以1a 7+1a 8+1a 9+1a 10=a 7+a 8+a 9+a 10a 8a 9=158×⎝ ⎛⎭⎪⎫-89=-53.答案:-53[由题悟法]掌握运用等比数列性质解题的2个技巧(1)在等比数列的基本运算问题中,一般是列出a 1,q 满足的方程组求解,但有时运算量较大,如果可利用等比数列的性质,便可减少运算量,提高解题的速度,要注意挖掘已知和隐含的条件.(2)利用性质可以得到一些新数列仍为等比数列或为等差数列,例如:①若{a n }是等比数列,且a n >0,则{log a a n }(a >0且a ≠1)是以log a a 1为首项,log a q 为公差的等差数列.②若公比不为1的等比数列{a n }的前n 项和为S n ,则S n ,S 2n -S n ,S 3n -S 2n 仍成等比数列,其公比为q n.[即时应用]1.(2019·张家港调研)已知等比数列{}a n 的各项均为正数,且满足a 1a 9=4,则数列{log 2a n }的前9项之和为________.解析:∵a 1a 9=a 25=4,∴a 5=2,∴log 2a 1+log 2a 2+…+log 2a 9=log 2(a 1a 2…a 9)=log 2a 95=9log 2a 5=9. 答案:92.(2018·镇江调研)在正项等比数列{a n }中,已知a 1a 2a 3=4,a 4a 5a 6=12,a n -1a n a n +1=324,则n =________.解析:设数列{a n }的公比为q ,由a 1a 2a 3=4=a 31q 3与a 4a 5a 6=12=a 31q 12,可得q 9=3,a n -1a n a n +1=a 31q3n -3=324,因此q 3n -6=81=34=q 36,所以3n -6=36,即n =14. 答案:14一抓基础,多练小题做到眼疾手快1.(2019·如东中学检测)已知等比数列{a n }的公比q =-12,则a 1+a 3+a 5a 2+a 4+a 6=________.解析:a 1+a 3+a 5a 2+a 4+a 6=a 1+a 3+a 5q a 1+a 3+a 5=a 1+a 3+a 5-12a 1+a 3+a 5=-2.答案:-22.(2018·盐城期中)在等比数列{a n }中,已知a 1+a 2=1,a 3+a 4=2,则a 9+a 10=________.解析:设等比数列{a n }的公比为q ,则a 3+a 4=q 2(a 1+a 2),所以q 2=2,所以a 9+a 10=q 8(a 1+a 2)=16.答案:163.(2018·苏州期末)设各项均为正数的等比数列{}a n 的前n 项和为S n ,已知a 2=6,a 3-3a 1=12,则S 5=________.解析:∵a 2=6,a 3-3a 1=12,∴⎩⎪⎨⎪⎧a 1q =6,a 1q 2-3a 1=12且q >0,解得a 1=2,q =3, ∴S 5=21-351-3=242.答案:2424.在等比数列{a n }中,若a 1·a 5=16,a 4=8,则a 6=________. 解析:由题意得,a 2·a 4=a 1·a 5=16, 所以a 2=2,所以q 2=a 4a 2=4,所以a 6=a 4q 2=32. 答案:325.(2019·南京一模)若等比数列{}a n 的前n 项和为S n ,且a 1=1,S 6=3S 3,则a 7的值为________.解析:设等比数列{}a n 的公比为q , 因为a 1=1,S 6=3S 3,当q =1时,不满足S 6=3S 3;当q ≠1时,可得q 6-1q -1=3q 3-1q -1,化简得q 3+1=3,即q 3=2, 所以a 7=a 1q 6=4. 答案:46.(2018·常州期末)已知等比数列{a n }的各项均为正数,且a 1+a 2=49,a 3+a 4+a 5+a 6=40,则a 7+a 8+a 99的值为________.解析:⎩⎪⎨⎪⎧a 1+a 2=a 11+q =49,a 3+a 4+a 5+a 6=a 1q 2+q 3+q 4+q 5=40,两式相除可得q 2+q 4=90,即q 2=-10(舍)或q 2=9.又a n >0,所以q =3,故a 1=19,所以a 7+a 8+a 9=34+35+36=1 053,即a 7+a 8+a 99=117.答案:117二保高考,全练题型做到高考达标1.(2018·徐州期末)设等比数列{}a n 的公比为q ,前n 项和为S n ,若S 2是S 3与S 4的等差中项,则实数q 的值为________.解析:∵S 2是S 3与S 4的等差中项, ∴2S 2=S 3+S 4,∴2a 3+a 4=0, 解得q =-2. 答案:-22.(2019·如皋模拟)已知数列{}a n 是正项等比数列,满足log 2a n +1=1+log 2a n (n ∈N *),且a 1+a 2+a 3+a 4+a 5=2,则log 2(a 51+a 52+a 53+a 54+a 55)=________.解析:∵log 2a n +1=1+log 2a n , ∴log 2a n +1a n=1,可得q =2. ∵a 1+a 2+a 3+a 4+a 5=2, ∴log 2(a 51+a 52+a 53+a 54+a 55)=log 2[(a 1+a 2+a 3+a 4+a 5)q 50]=log 2251=51.答案:513.设等比数列{}a n 的公比为q (0<q <1),前n 项和为S n .若存在m ∈N *,使得a m +a m +2=52a m +1,且S m =1 022a m +1,则m 的值为________. 解析:∵a m +a m +2=52a m +1,S m =1 022a m +1,∴⎩⎪⎨⎪⎧a 1q m -1+a 1q m +1=52a 1q m,a 11-q m1-q =1 022a 1q m,解得m =9,q =12.答案:94.(2018·启东检测)数列{a n }满足a n +1=λa n -1(n ∈N *,λ∈R 且λ≠0),若数列{a n-1}是等比数列,则λ=________.解析:由a n +1=λa n -1,得a n +1-1=λa n -2=λ⎝ ⎛⎭⎪⎫a n -2λ.因为数列{a n -1}是等比数列,所以2λ=1,得λ=2.答案:25.(2019·姜堰模拟)已知等比数列{a n }的前n 项和为S n ,且S 3S 6=2728,则a 5a 3=________.解析:设等比数列{a n }的公比为q ,由S 3S 6=2728,得q ≠1,a 11-q 31-q a 11-q 61-q =2728,化简得11+q 3=2728,解得q =13. 所以a 5a 3=q 2=19.答案:196.(2018·海安中学测试)在各项均为正数的等比数列{a n }中,若a m +1·a m -1=2a m (m ≥2),数列{a n }的前n 项积为T n ,若T 2m -1=512,则m =________.解析:由等比数列的性质可知a m +1·a m -1=a 2m =2a m (m ≥2),所以a m =2,即数列{a n }为常数列,a n =2,所以T 2m -1=22m -1=512=29,即2m -1=9,所以m =5.答案:57.已知数列{a n }中,a 1=2,且a 2n +1a n=4(a n +1-a n )(n ∈N *),则其前9项和S 9=________.解析:由已知,得a 2n +1=4a n a n +1-4a 2n , 即a 2n +1-4a n a n +1+4a 2n =(a n +1-2a n )2=0, 所以a n +1=2a n ,所以数列{a n }是首项为2,公比为2的等比数列, 故S 9=2×1-291-2=210-2=1 022.答案:1 0228.(2019·徐州调研)已知正项等比数列{}a n 的前n 项和为S n 且S 8-2S 4=6,则a 9+a 10+a 11+a 12的最小值为________.解析:因为S 8-2S 4=6,所以S 8-S 4=S 4+6.由等比数列的性质可得,S 4,S 8-S 4,S 12-S 8成等比数列, 所以S 4(S 12-S 8)=(S 8-S 4)2,所以a 9+a 10+a 11+a 12=S 12-S 8=S 4+62S 4=S 4+36S 4+12≥24,当且仅当S 4=6时等号成立.故a 9+a 10+a 11+a 12的最小值为24. 答案:249.在公差不为零的等差数列{a n }中,a 1=1,a 2,a 4,a 8成等比数列. (1)求数列{a n }的通项公式;(2)设b n =2a n ,T n =b 1+b 2+…+b n ,求T n . 解:(1)设等差数列{a n }的公差为d , 则依题意有⎩⎪⎨⎪⎧a 1=1,a 1+3d2=a 1+d a 1+7d ,解得d =1或d =0(舍去), 所以a n =1+(n -1)=n . (2)由(1)得a n =n , 所以b n =2n,所以b n +1b n=2, 所以{b n }是首项为2,公比为2的等比数列, 所以T n =21-2n1-2=2n +1-2.10.(2018·苏州高三期中调研)已知数列{a n }各项均为正数,a 1=1,a 2=2,且a n a n +3=a n +1a n +2对任意n ∈N *恒成立,记{a n }的前n 项和为S n .(1)若a 3=3,求a 5的值;(2)证明:对任意正实数p ,{a 2n +pa 2n -1}成等比数列;(3)是否存在正实数t ,使得数列{S n +t }为等比数列.若存在,求出此时a n 和S n 的表达式;若不存在,说明理由.解:(1)因为a 1a 4=a 2a 3,所以a 4=6, 又因为a 2a 5=a 3a 4,所以a 5=32a 4=9.(2)证明:由⎩⎪⎨⎪⎧a n a n +3=a n +1a n +2,a n +1a n +4=a n +2a n +3,两式相乘得a n a n +1a n +3a n +4=a n +1a 2n +2a n +3, 因为a n >0,所以a n a n +4=a 2n +2(n ∈N *), 从而{a n }的奇数项和偶数项均构成等比数列,设公比分别为q 1,q 2,则a 2n =a 2q n -12=2q n -12,a 2n -1=a 1q n -11=q n -11, 又因为a n +3a n +2=a n +1a n ,所以a 4a 3=a 2a 1=2=2q 2q 1,即q 1=q 2, 设q 1=q 2=q ,则a 2n +pa 2n -1=q (a 2n -2+pa 2n -3),且a 2n +pa 2n -1>0恒成立, 所以数列{a 2n +pa 2n -1}是首项为2+p ,公比为q 的等比数列.(3)法一:在(2)中令p =1,则数列{a 2n +a 2n -1}是首项为3,公比为q 的等比数列, 所以S 2k =(a 2k +a 2k -1)+(a 2k -2+a 2k -3)+…+(a 2+a 1)=⎩⎪⎨⎪⎧3k ,q =1,31-q k1-q ,q ≠1,S 2k -1=S 2k -a 2k =⎩⎪⎨⎪⎧3k -2q k -1,q =1,31-q k 1-q -2q k -1,q ≠1,且S 1=1,S 2=3,S 3=3+q ,S 4=3+3q , 因为数列{S n +t }为等比数列,所以⎩⎪⎨⎪⎧S 2+t 2=S 1+t S 3+t ,S 3+t2=S 2+tS 4+t ,即⎩⎪⎨⎪⎧3+t2=1+t 3+q +t ,3+q +t2=3+t3+3q +t ,即⎩⎪⎨⎪⎧2t +6=q 1+t,t =q -3,解得⎩⎪⎨⎪⎧t =1,q =4或⎩⎪⎨⎪⎧t =-3,q =0(舍去).所以S 2k =4k-1=22k-1,S 2k -1=22k -1-1,从而对任意n ∈N *有S n =2n-1, 此时S n +t =2n,S n +tS n -1+t=2为常数,满足{S n +t }成等比数列,当n ≥2时,a n =S n -S n -1=2n-2n -1=2n -1,又a 1=1,所以a n =2n -1(n ∈N *),综上,存在t =1使数列{S n +t }为等比数列,此时a n =2n -1,S n =2n-1(n ∈N *).法二:由(2)知a 2n =2qn -1,a 2n -1=qn -1,且S 1=1,S 2=3,S 3=3+q ,S 4=3+3q ,因为数列{S n +t }为等比数列,所以⎩⎪⎨⎪⎧S 2+t 2=S 1+t S 3+t ,S 3+t2=S 2+tS 4+t ,即⎩⎪⎨⎪⎧3+t2=1+t 3+q +t ,3+q +t 2=3+t3+3q +t ,即⎩⎪⎨⎪⎧2t +6=q 1+t,t =q -3,解得⎩⎪⎨⎪⎧t =1,q =4或⎩⎪⎨⎪⎧t =3,q =0(舍去).所以a 2n =2qn -1=22n -1,a 2n -1=22n -2,从而对任意n ∈N *有a n =2n -1,所以S n =20+21+22+…+2n -1=1-2n1-2=2n-1, 此时S n +t =2n,S n +tS n -1+t=2为常数,满足{S n +t }成等比数列,综上,存在t =1使数列{S n +t }为等比数列,此时a n =2n -1,S n =2n -1(n ∈N *).三上台阶,自主选做志在冲刺名校1.各项均为正数的等比数列{a n }中,若a 1≥1,a 2≤2,a 3≥3,则a 4的取值范围是________. 解析:设{a n }的公比为q ,则根据题意得q =a 2a 1=a 3a 2, ∴32≤q ≤2,a 4=a 3q ≥92,a 4=a 2q 2≤8,∴a 4∈⎣⎢⎡⎦⎥⎤92,8.答案:⎣⎢⎡⎦⎥⎤92,8 2.(2018·泰州中学高三学情调研)设正项等比数列{a n }满足2a 5=a 3-a 4,若存在两项a n ,a m ,使得a 1=4a n ·a m ,则m +n =________.解析:设等比数列{a n }的公比为q .正项等比数列{a n }满足2a 5=a 3-a 4,则2a 3q 2=a 3(1-q ),可得2q 2+q -1=0,q >0,解得q =12,若存在两项a n ,a m ,使得a 1=4a n ·a m ,可得a 1=4a 21⎝ ⎛⎭⎪⎫12m +n -2,所以m +n =6. 答案:63.(2019·苏锡常镇调研)已知数列{a n }的前n 项和为S n ,a 1=3,且对任意的正整数n ,都有S n +1=λS n +3n +1,其中常数λ>0.设b n =a n3n (n ∈N *).(1)若λ=3,求数列{}b n 的通项公式; (2)若λ≠1且λ≠3,设c n =a n +2λ-3·3n (n ∈N *),证明数列{}c n 是等比数列; (3)若对任意的正整数n ,都有b n ≤3,求实数λ的取值范围. 解:因为S n +1=λS n +3n +1,n ∈N *,所以当n ≥2时,S n =λS n -1+3n, 从而a n +1=λa n +2·3n,n ≥2,n ∈N *﹒ 在S n +1=λS n +3n +1中,令n =1,可得a 2=λa 1+2×31,满足上式,所以a n +1=λa n +2·3n,n ∈N *.(1)当λ=3时, a n +1=3a n +2·3n,n ∈N *,从而a n +13n +1=a n 3n +23,即b n +1-b n =23,又b 1=a 13=1,所以数列{}b n 是首项为1,公差为23的等差数列,所以b n =1+(n -1)×23=2n +13.(2)证明:当λ>0且λ≠3且λ≠1时,c n =a n +2λ-3·3n =λa n -1+2·3n -1+2λ-3·3n=λa n -1+2λ-3·3n -1(λ-3+3)=λ⎝⎛⎭⎪⎫a n -1+2λ-3·3n -1=λ·c n -1, 又c 1=3+6λ-3=3λ-1λ-3≠0, 所以{}c n 是首项为3λ-1λ-3,公比为λ的等比数列,故c n =3λ-1λ-3·λn -1.(3)在(2)中,若λ=1,则c n =0也可使a n 有意义,所以当λ≠3时,c n =3λ-1λ-3·λn-1.从而由(1)和(2)可知a n =⎩⎪⎨⎪⎧2n +1·3n -1, λ=3,3λ-1λ-3·λn -1-2λ-3·3n,λ≠3.当λ=3时,b n =2n +13,显然不满足条件,故λ≠3.当λ≠3时,b n =λ-1λ-3×⎝ ⎛⎭⎪⎫λ3n -1-2λ-3. 若λ>3,λ-1λ-3>0,b n <b n +1,n ∈N *,b n ∈[1,+∞),不符合,舍去. 若0<λ<1,λ-1λ-3>0,-2λ-3>0,b n >b n +1,n ∈N *,且b n >0. 所以只需b 1=a 13=1≤3即可,显然成立. 故0<λ<1符合条件;若λ=1,b n =1,满足条件.故λ=1符合条件; 若1<λ<3,λ-1λ-3<0,-2λ-3>0, 从而b n <b n +1,n ∈N *, 因为b 1=1>0.故b n ∈⎣⎢⎡⎭⎪⎫1,-2λ-3, 要使b n ≤3恒成立,只需-2λ-3≤3即可. 所以1<λ≤73.综上所述,实数λ的取值范围是⎝ ⎛⎦⎥⎤0,73.。
(江苏专版)高考数学一轮复习第六章数列第三节等比数列及其前n项和实用课件文
a2=6,所以 q=32,则 an=4×32n-1. 答案:4×32n-1 2.[考点一]已知数列{an}是公比为 q 的等比数列,且 a1·a3=4,
a4=8,则 a1+q 的值为________. 解析:由 a1·a3=4,a4=8,得 a21q2=4,a1q3=8,解得 q=±2.
当 q=2 时,a1=1,此时 a1+q=3;当 q=-2 时,a1=-1,
解
得
a1=1, an=81
或
a1=81, an=1,
显然公比
q≠1 , 所 以
Sn=1- 1-8q1q=121, 81=qn-1
或Sn=811--qq=121, 1=81qn-1,
185÷-98=-53. [答案] (1)6
(2)-53
第二十三页,共43页。
[易错提醒] 在应用等比数列的性质解题时,要注意性质成立的前提 条件,有时需要进行适当变形.此外,解题时注意设而不求 思想的运用.
第二十四页,共43页。
等比数列前 n 项和的性质 [例 2] (1)设等比数列{an}中,前 n 项和为 Sn,已知 S3 =8,S6=7,则 a7+a8+a9 等于________. (2)等比数列{an}的首项 a1=-1,前 n 项和为 Sn,若SS150= 3312,则公比 q=________.
第十一页,共43页。
[方法技巧] (2)对称设元法 与有穷等差数列设项方法类似,有穷等比数列设项也要注 意对称设元.一般地,连续奇数个项成等比数列,可设为…,xq, x,xq,…;连续偶数个项成等比数列,可设为…,qx3,xq,xq, xq3,…(注意:此时公比 q2>0,并不适合所有情况).这样既可 以减少未知量的个数,也使得解方程较为方便.
2018年高考数学(文)(江苏专用)总复习教师用书第六章数列、推理与证明第4讲数列的求和Word版含答案
第4讲 数列的求和考试要求 1.等差、等比数列的前n 项和公式,C 级要求;2.非等差、等比数列求和的几种常见方法,C 级要求.知 识 梳 理1.常用的一般数列的求和方法 (1)公式法①等差数列的前n 项和公式S n =n a 1+a n 2=na 1+n n -2d .②等比数列的前n 项和公式 (ⅰ)当q =1时,S n =na 1; (ⅱ)当q ≠1时,S n =a 1-qn1-q=a 1-a n q1-q.(2)分组转化法把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解. (3)裂项相消法把数列的通项拆成两项之差求和,正负相消剩下首尾若干项. (4)倒序相加法把数列分别正着写和倒着写再相加,即等差数列求和公式的推导过程的推广. (5)错位相减法主要用于一个等差数列与一个等比数列对应项相乘所得的数列的求和,即等比数列求和公式的推导过程的推广. (6)并项求和法一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)nf (n )类型,可采用两项合并求解.例如,S n =1002-992+982-972+…+22-12=(100+99)+(98+97)+…+(2+1)=5 050. 2.几种常见类型的处理 (1)形如a n ±b n 的形式 方法:分组求和法. (2)形如1a na n +d 或1n +d +n等形式方法:裂项相消法.(3)形如a n b n 的形式(其中{a n }为等差数列,{b n }为等比数列) 方法:错位相减法.(4)首尾对称的两项和为定值的形式 方法:倒序相加法. (5)正负交替出现的数列形式 方法:并项相加法.诊 断 自 测1.判断正误(在括号内打“√”或“×”)(1)如果数列{a n }为等比数列,且公比不等于1,则其前n 项和S n =a 1-a n +11-q.( ) (2)当n ≥2时,1n 2-1=12(1n -1-1n +1).( ) (3)求S n =a +2a 2+3a 3+…+na n时只要把上式等号两边同时乘以a 即可根据错位相减法求得.( )(4)若数列a 1,a 2-a 1,…,a n -a n -1是首项为1,公比为3的等比数列,则数列{a n }的通项公式是a n =3n-12.( )解析 (3)要分a =0或a =1或a ≠0且a ≠1讨论求解.答案 (1)√ (2)√ (3)× (4)√ 2.若数列{a n }的通项公式为a n =2n+2n -1,则数列{a n }的前n 项和为________. 解析 S n =-2n1-2+n+2n -2=2n +1-2+n 2.答案 2n +1+n 2-23.数列{a n }的前n 项和为S n ,已知S n =1-2+3-4+…+(-1)n -1·n ,则S 17=________.解析 S 17=1-2+3-4+5-6+…+15-16+17=1+(-2+3)+(-4+5)+(-6+7)+…+(-14+15)+(-16+17)=1+1+1+…+1=9. 答案 94.(2015·江苏卷)设数列{a n }满足a 1=1,且a n +1-a n =n +1(n ∈N *),则数列⎩⎨⎧⎭⎬⎫1a n 前10项的和为________.解析 ∵a 1=1,a n +1-a n =n +1,∴a 2-a 1=2,a 3-a 2=3,…,a n -a n -1=n ,将以上n -1个式子相加得a n -a 1=2+3+…+n =+nn -2,即a n =n n +2,令b n =1a n,故b n =2n n +=2⎝ ⎛⎭⎪⎫1n -1n +1,故S 10=b 1+b 2+…+b 10 =2⎝ ⎛⎭⎪⎫1-12+12-13+…+110-111=2011.答案20115.(必修5P68复习题13改编)数列{a n }的前n 项和为S n ,若a n =1nn +,则S 5等于________. 解析 ∵a n =1nn +=1n -1n +1, ∴S 5=a 1+a 2+…+a 5=1-12+12-13+…-16=56.答案56考点一 分组转化法求和【例1】 (2016·浙江卷)设数列{a n }的前n 项和为S n ,已知S 2=4,a n +1=2S n +1,n ∈N *. (1)求通项公式a n ;(2)求数列{|a n -n -2|}的前n 项和.解 (1)由题意得⎩⎪⎨⎪⎧a 1+a 2=4,a 2=2a 1+1,则⎩⎪⎨⎪⎧a 1=1,a 2=3.又当n ≥2时,由a n +1-a n =(2S n +1)-(2S n -1+1)=2a n ,得a n +1=3a n . 所以,数列{a n }的通项公式为a n =3n -1,n ∈N *.(2)设b n =|3n -1-n -2|,n ∈N *,b 1=2,b 2=1,当n ≥3时,由于3n -1>n +2,故b n =3n -1-n -2,n ≥3.设数列{b n }的前n 项和为T n ,则T 1=2,T 2=3, 当n ≥3时,T n =3+-3n -21-3-n +n -2=3n -n 2-5n +112,又n =2适合上式,所以T n =⎩⎪⎨⎪⎧2,n =1,3n -n 2-5n +112,n ≥2,n ∈N *.规律方法 (1)若数列{c n }的通项公式为c n =a n ±b n ,且{a n },{b n }为等差或等比数列,可采用分组求和法求数列{c n }的前n 项和.(2)若数列{c n }的通项公式为c n =⎩⎪⎨⎪⎧a n ,n 为奇数,b n ,n 为偶数,其中数列{a n },{b n }是等比数列或等差数列,可采用分组求和法求{a n }的前n 项和.【训练1】 (2016·天津卷)已知{a n }是等比数列,前n 项和为S n (n ∈N *),且1a 1-1a 2=2a 3,S 6=63.(1)求{a n }的通项公式;(2)若对任意的n ∈N *,b n 是log 2a n 和log 2a n +1的等差中项,求数列{(-1)n b 2n }的前2n 项和. 解 (1)设数列{a n }的公比为q . 由已知,有1a 1-1a 1q =2a 1q2,解得q =2或q =-1.又由S 6=a 1·1-q61-q =63,知q ≠-1,所以a 1·1-261-2=63,得a 1=1.所以a n =2n -1.(2)由题意,得b n =12(log 2a n +log 2a n +1)=12(log 22n -1+log 22n)=n -12,即{b n }是首项为12,公差为1的等差数列.设数列{(-1)n b 2n }的前n 项和为T n ,则T 2n =(-b 21+b 22)+(-b 23+b 24)+…+(-b 22n -1+b 22n )=b 1+b 2+b 3+b 4+…+b 2n -1+b 2n =2n b 1+b 2n2=2n 2.考点二 裂项相消法求和【例2】 (2015·全国Ⅰ卷)S n 为数列{a n }的前n 项和.已知a n >0,a 2n +2a n =4S n +3. (1)求{a n }的通项公式; (2)设b n =1a n a n +1,求数列{b n }的前n 项和.解 (1)由a 2n +2a n =4S n +3, 可知a 2n +1+2a n +1=4S n +1+3. 可得a 2n +1-a 2n +2(a n +1-a n )=4a n +1,即2(a n +1+a n )=a 2n +1-a 2n =(a n +1+a n )(a n +1-a n ). 由于a n >0,可得a n +1-a n =2.又a 21+2a 1=4a 1+3,解得a 1=-1(舍去)或a 1=3.所以{a n }是首项为3,公差为2的等差数列,通项公式为a n =2n +1. (2)由a n =2n +1可知b n =1a n a n +1=1n +n +=12⎝ ⎛⎭⎪⎫12n +1-12n +3.设数列{b n }的前n 项和为T n ,则T n =b 1+b 2+…+b n=12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫13-15+⎝ ⎛⎭⎪⎫15-17+…+⎝ ⎛⎭⎪⎫12n +1-12n +3=n n +.规律方法 (1)利用裂项相消法求和时,应注意抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项.(2)将通项公式裂项后,有时候需要调整前面的系数,使裂开的两项之差和系数之积与原通项公式相等.【训练2】 设S n 为等差数列{a n }的前n 项和,已知S 3=a 7,a 8-2a 3=3. (1)求a n ;(2)设b n =1S n,求数列{b n }的前n 项和为T n .解 (1)设数列{a n }的公差为d ,由题意得⎩⎪⎨⎪⎧3a 1+3d =a 1+6d ,a 1+7d -a 1+2d =3,解得a 1=3,d =2, ∴a n =a 1+(n -1)d =2n +1. (2)由(1)得S n =na 1+n n -2d =n (n +2),∴b n =1nn +=12⎝ ⎛⎭⎪⎫1n -1n +2. ∴T n =b 1+b 2+…+b n -1+b n=12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫12-14+…+⎝ ⎛⎭⎪⎫1n -1-1n +1+⎝ ⎛⎭⎪⎫1n -1n +2 =12⎝⎛⎭⎪⎫1+12-1n +1-1n +2=34-12⎝ ⎛⎭⎪⎫1n +1+1n +2.考点三 错位相减法求和【例3】 (2016·山东卷)已知数列{a n }的前n 项和S n =3n 2+8n ,{b n }是等差数列,且a n =b n +b n +1.(1)求数列{b n }的通项公式;(2)令c n =a n +n +1b n +n.求数列{c n }的前n 项和T n .解 (1)由题意知,当n ≥2时,a n =S n -S n -1=6n +5. 当n =1时,a 1=S 1=11,符合上式. 所以a n =6n +5. 设数列{b n }的公差为d ,由⎩⎪⎨⎪⎧a 1=b 1+b 2,a 2=b 2+b 3,即⎩⎪⎨⎪⎧11=2b 1+d ,17=2b 1+3d ,可解得b 1=4,d =3.所以b n =3n +1. (2)由(1)知,c n =n +n +1n +n=3(n +1)·2n +1..又T n =c 1+c 2+…+c n .得T n =3×[2×22+3×23+…+(n +1)×2n +1].2T n =3×[2×23+3×24+…+(n +1)×2n +2].两式作差,得-T n =3×[2×22+23+24+…+2n +1-(n +1)×2n +2]=3×⎣⎢⎡⎦⎥⎤4+41-2n1-2-n +1×2n +2=-3n ·2n +2. 所以T n =3n ·2n +2.规律方法 (1)一般地,如果数列{a n }是等差数列,{b n }是等比数列,求数列{a n ·b n }的前n 项和时,可采用错位相减法求和,一般是和式两边同乘以等比数列{b n }的公比,然后作差求解;(2)在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“S n -qS n ”的表达式.【训练3】 已知{a n }是递增的等差数列,a 2,a 4是方程x 2-5x +6=0的根. (1)求{a n }的通项公式; (2)求数列⎩⎨⎧⎭⎬⎫a n 2n 的前n 项和.解 (1)方程x 2-5x +6=0的两根为2,3, 由题意得a 2=2,a 4=3.设数列{a n }的公差为d ,则a 4-a 2=2d ,故d =12,从而a 1=32.所以{a n }的通项公式为a n =12n +1.(2)设⎩⎨⎧⎭⎬⎫a n 2n 的前n 项和为S n ,由(1)知a n 2n =n +22n +1,则S n =322+423+…+n +12n +n +22n +1,12S n =323+424+…+n +12n +1+n +22n +2.两式相减得12S n =34+⎝ ⎛⎭⎪⎫123+…+12n +1-n +22n +2=34+14⎝ ⎛⎭⎪⎫1-12n -1-n +22n +2.所以S n =2-n +42n +1.[思想方法]非等差、等比数列的一般数列求和,主要有两种思想:1.转化的思想,即将一般数列设法转化为等差或等比数列,这一思想方法往往通过通项分解或错位相消来完成;2.不能转化为等差或等比的特殊数列,往往通过裂项相消法、错位相减法、倒序相加法等来求和. [易错防范]1.直接应用公式求和时,要注意公式的应用范围,如当等比数列公比为参数(字母)时,应对其公比是否为1进行讨论.2.在应用错位相减法时,要注意观察未合并项的正负号.3.在应用裂项相消法时,要注意消项的规律具有对称性,即前剩多少项则后剩多少项.基础巩固题组(建议用时:40分钟)一、填空题1.数列112,314,518,7116,…,(2n -1)+12n ,…的前n 项和S n =________.解析 该数列的通项公式为a n =(2n -1)+12n ,则S n =[1+3+5+…+(2n -1)]+⎝⎛⎭⎪⎫12+122+…+12n =n 2+1-12n. 答案 n 2+1-12n2.(2017·南通调研)若等差数列{a n }的前n 项和为S n ,a 4=4,S 4=10,则数列⎩⎨⎧⎭⎬⎫1a n a n +1的前2 017项和为________.解析 ∵⎩⎪⎨⎪⎧a 4=a 1+3d =4,S 4=4a 1+6d =10,∴⎩⎪⎨⎪⎧a 1=1,d =1,∴a n =n ,∴1a n a n +1=1n -1n +1,∴前2 017项和为⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫12 017-12 018=2 0172 018.答案2 0172 0183.数列{a n }的通项公式为a n =(-1)n -1·(4n -3),则它的前100项之和S 100=________.解析 S 100=(4×1-3)-(4×2-3)+(4×3-3)-…-(4×100-3)=4×[(1-2)+(3-4)+…+(99-100)]=4×(-50)=-200. 答案 -2004.(2017·江西高安中学等九校联考)已知数列5,6,1,-5,…,该数列的特点是从第二项起,每一项都等于它的前后两项之和,则这个数列的前16项之和S 16=________. 解析 根据题意这个数列的前7项分别为5,6,1,-5,-6,-1,5,6,发现从第7项起,数字重复出现,所以此数列为周期数列,且周期为6,前6项和为5+6+1+(-5)+(-6)+(-1)=0.又因为16=2×6+4,所以这个数列的前16项之和S 16=2×0+7=7. 答案 75.(2017·泰州模拟)数列{a n }满足a n +a n +1=12(n ∈N *),且a 1=1,S n 是数列{a n }的前n 项和,则S 21=________.解析 由a n +a n +1=12=a n +1+a n +2,∴a n +2=a n ,则a 1=a 3=a 5=…=a 21,a 2=a 4=a 6=…=a 20, ∴S 21=a 1+(a 2+a 3)+(a 4+a 5)+…+(a 20+a 21) =1+10×12=6.答案 66.(2017·南通、扬州、泰州三市调研)设数列{a n }满足a 1=1,(1-a n +1)(1+a n )=1(n ∈N *),则∑100k =1(a k a k +1)的值为________. 解析 由(1-a n +1)(1+a n )=1得a n -a n +1=a n a n +1,则1a n +1-1a n=1,又1a 1=1,则数列⎩⎨⎧⎭⎬⎫1a n 是以1为首项,1为公差的等差数列,则1a n =n ,a n =1n∑100k =1(a k a k +1)=(a 1-a 2)+(a 2-a 3)+…+(a 100-a 101)=a 1-a 101=1-1101=100101. 答案1001017.在等差数列{a n }中,a 1>0,a 10·a 11<0,若此数列的前10项和S 10=36,前18项和S 18=12,则数列{|a n |}的前18项和T 18的值是________. 解析 由a 1>0,a 10·a 11<0可知d <0,a 10>0,a 11<0, ∴T 18=a 1+…+a 10-a 11-…-a 18 =S 10-(S 18-S 10)=60. 答案 608.(2017·镇江期末)已知数列{a n }中,a n =-4n +5,等比数列{b n }的公比q 满足q =a n -a n-1(n ≥2)且b 1=a 2,则|b 1|+|b 2|+|b 3|+…+|b n |=________.解析 由已知得b 1=a 2=-3,q =-4,∴b n =(-3)×(-4)n -1,∴|b n |=3×4n -1,即{|b n |}是以3为首项,4为公比的等比数列,∴|b 1|+|b 2|+…+|b n |=-4n1-4=4n-1.答案 4n-1 二、解答题9.(2016·北京卷)已知{a n }是等差数列,{b n }是等比数列,且b 2=3,b 3=9,a 1=b 1,a 14=b 4.(1)求{a n }的通项公式;(2)设c n =a n +b n ,求数列{c n }的前n 项和.解 (1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q ,由⎩⎪⎨⎪⎧b 2=b 1q =3,b 3=b 1q 2=9得⎩⎪⎨⎪⎧b 1=1,q =3.∴b n =b 1qn -1=3n -1,又a 1=b 1=1,a 14=b 4=34-1=27,∴1+(14-1)d =27,解得d =2.∴a n =a 1+(n -1)d =1+(n -1)×2=2n -1(n =1,2,3,…). (2)由(1)知a n =2n -1,b n =3n -1,因此c n =a n +b n =2n -1+3n -1.从而数列{c n }的前n 项和S n =1+3+…+(2n -1)+1+3+…+3n -1=n+2n -2+1-3n 1-3=n 2+3n-12. 10.(2017·苏北四市调研)已知各项均为正数的数列{a n }的首项a 1=1,S n 是数列{a n }的前n 项和,且满足:a n S n +1-a n +1S n +a n -a n +1=λa n a n +1(λ≠0,n ∈N *). (1)若a 1,a 2,a 3成等比数列,求实数λ的值; (2)若λ=12,求S n .解 (1)令n =1,a 1S 2-a 2S 1+a 1-a 2=λa 1a 2,解得a 2=21+λ.令n =2,a 2S 3-a 3S 2+a 2-a 3=λa 2a 3,解得a 3=2λ+4λ+12λ+1.由a 22=a 1a 3得⎝⎛⎭⎪⎫21+λ2=2λ+4λ+λ+,因为λ≠0,所以λ=1.(2)当λ=12时,a n S n +1-a n +1S n +a n -a n +1=12a n a n +1,所以S n +1a n +1-S n a n +1a n +1-1a n =12,即S n +1+1a n +1-S n +1a n =12, 所以数列⎩⎨⎧⎭⎬⎫S n +1a n 是以2为首项,12为公差的等差数列,所以S n +1a n =2+(n -1)·12, 即S n +1=n +32a n ,①当n ≥2时,S n -1+1=n +22a n -1,②由①-②得a n =n +32a n -n +22a n -1,即(n +1)a n =(n +2)a n -1,所以a n n +2=a n -1n +1(n ≥2),所以⎩⎨⎧⎭⎬⎫a n n +2是首项为13的常数列,所以a n =13(n +2).代入①得S n =n +32a n -1=n 2+5n6.能力提升题组 (建议用时:20分钟)11.(2017·长治联考)设等差数列{a n }的公差是d ,其前n 项和是S n ,若a 1=d =1,则S n +8a n的最小值是________. 解析 a n =1+(n -1)=n ,S n =n+n2, ∴S n +8a n=n+n2+8n=12⎝ ⎛⎭⎪⎫n +16n +1≥12⎝⎛⎭⎪⎫2n ·16n +1=92,当且仅当n =4时,取等号.∴S n +8a n 的最小值是92. 答案 9212.(2017·盐城中学模拟)在数列{a n }中,a n +1+(-1)na n =2n -1,则数列{a n }的前12项和为________.解析 因为a n +1+(-1)n a n =2n -1,所以a 2-a 1=1, a 3+a 2=3,a 4-a 3=5,a 5+a 4=7,a 6-a 5=9,a 7+a 6=11,…,a 11+a 10=19,a 12-a 11=21,所以a 1+a 3=2,a 4+a 2=8,…,a 12+a 10=40,所以从第一项开始,依次取两个相邻奇数项的和都等于2,从第二项开始,依次取两个相邻偶数项的和构成以8为首项,以16为公差的等差数列,以上式相加可得,S 12=a 1+a 2+a 3+…+a 12=(a 1+a 3)+(a 5+a 7)+(a 9+a 11)+(a 2+a 4)+(a 6+a 8)+(a 10+a 12)=3×2+8+24+40=78.答案 7813.(2017·南京、盐城模拟)已知函数f (x )=⎩⎨⎧ 1-x -2,0≤x <2,f x -,x ≥2,若对于正数k n (n ∈N *),直线y =k n x 与函数y =f (x )的图象恰有(2n +1)个不同交点,则数列{k 2n }的前n项和为________.解析 函数f (x )的图象是一系列半径为1的半圆,因为直线y =k n x 与f (x )的图象恰有(2n +1)个不同交点,所以直线y =k n x 与第(n +1)个半圆相切,则n +k n 1+k 2n =1,化简得k 2n =14n n +=14⎝ ⎛⎭⎪⎫1n -1n +1,则k 21+k 22+…+k 2n =14⎝ ⎛⎭⎪⎫1-12+12-13+…+1n -1n +1=14⎝ ⎛⎭⎪⎫1-1n +1=n 4n +4. 答案 n 4n +414.(2017·苏、锡、常、镇四市调研)正项数列a 1,a 2,…,a m (m ≥4,m ∈N *),满足a 1,a 2,a 3,…,a k -1,a k (k <m ,k ∈N *)是公差为d 的等差数列,a 1,a m ,a m -1,…,a k +1,a k 是公比为2的等比数列.(1)若a 1=d =2,k =8,求数列a 1,a 2,…,a m 的所有项的和S m ;(2)若a 1=d =2,m <2 016,求m 的最大值;(3)是否存在正整数k ,满足a 1+a 2+…+a k -1+a k =3(a k +1+a k +2+…+a m -1+a m )?若存在,求出k 的值;若不存在,请说明理由.解 (1)由已知得k <m ,k ∈N *,a n =2n ,a k =a 8=16,故a 1,a 2,a 3,…a k -1,a k (k <m ,k ∈N *)对应的数为2,4,6,8,10,12,14,16.因为a 1,a m ,a m -1,…,a k +1,a k 的公比为2,则对应的数为2,4,8,16.从而a 1,a 2,…,a m 即为2,4,6,8,10,12,14,16,8,4,此时m =10,S m =+2+8+4=84.(2)因为a 1,a 2,a 3,…,a k -1,a k (k <m ,k ∈N *)是首项为2,公差为2的等差数列,所以k <m ,k ∈N *,a n =2n ,从而a k =2k .又a 1,a m ,a m -1,…,a k +1,a k 是首项为2,公比为2的等比数列,且a k =2m -k +2,故2k =2m -k +2,即k =2m -k +1,即k 必是2的整数幂. 又k ·2k =2m +1,要m 最大,k 必须最大,因为k <m <2 016,故k 的最大值为210,所以210·2210=210·21 024=21 034=2m +1,即m 的最大值为1 033.(3)存在.由数列a 1,a 2,a 3,…,a k -1,a k 是公差为d 的等差数列知a k =a 1+(k -1)d , 又a 1,a m ,a m -1,…,a k +1,a k 是公比为2的等比数列,则a k =a 1·2m +1-k ,故a 1+(k -1)d =a 1·2m +1-k ,即(k -1)d =a 1(2m +1-k -1).又a 1+a 2+…+a k -1+a k =3(a k +1+a k +2+…+a m -1+a m ),a m =2a 1,则ka 1+12k (k -1)d =3×2a 1×1-2m -k 1-2, 即ka 1+12ka 1(2m +1-k -1)=3×2a 1(2m -k -1), 则12k ·2m +1-k +12k =6(2m -k -1), 即k ·2m +1-k +k =6×2m +1-k -12, 显然k ≠6,则2m +1-k =k +126-k =-1+186-k, 所以k <6,将k =1,2,3,4,5一一代入验证,易知当且仅当k =4时,上式右端为8,等式成立,此时m =6,综上,当且仅当m =6时,存在k =4满足等式.。
2018年高考数学理江苏专用总复习教师用书:第六章 数列、推理与证明 第3讲 等比数列 含答案 精品
第3讲 等比数列考试要求 1.等比数列的概念,B 级要求;2.等比数列的通项公式及前n 项和公式,C 级要求;3.根据具体的问题情境中的等比关系解决相应的问题,B 级要求;4.等比数列与指数函数的关系,A 级要求.知 识 梳 理1.等比数列的概念(1)如果一个数列从第二项起,每一项与它的前一项的比都等于同一个非零常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q (q ≠0)表示. 数学语言表达式:a n a n -1=q (n ≥2,q 为非零常数),或a n +1a n=q (n ∈N *,q 为非零常数). (2)如果三个数a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项,其中G =±ab . 2. 等比数列的通项公式及前n 项和公式(1)若等比数列{a n }的首项为a 1,公比是q ,则其通项公式为a n =a 1q n -1;通项公式的推广:a n =a m qn -m.(2)等比数列的前n 项和公式:当q =1时,S n =na 1;当q ≠1时,S n =a 1 1-q n 1-q =a 1-a n q1-q.3.等比数列的性质已知{a n }是等比数列,S n 是数列{a n }的前n 项和. (1)若k +l =m +n (k ,l ,m ,n ∈N *),则有a k ·a l =a m ·a n . (2)等比数列{a n }的单调性:当q >1,a 1>0或0<q <1,a 1<0时,数列{a n }是递增数列; 当q >1,a 1<0或0<q <1,a 1>0时,数列{a n }是递减数列; 当q =1时,数列{a n }是常数列.(3)相隔等距离的项组成的数列仍是等比数列,即a k ,a k +m ,a k +2m ,…仍是等比数列,公比为q m .(4)当q ≠-1,或q =-1且n 为奇数时,S n ,S 2n -S n ,S 3n -S 2n 仍成等比数列,其公比为q n.诊 断 自 测1.判断正误(在括号内打“√”或“×”)(1)与等差数列类似,等比数列的各项可以是任意一个实数.( ) (2)公比q 是任意一个常数,它可以是任意实数.( ) (3)三个数a ,b ,c 成等比数列的充要条件是b 2=ac .( )(4)数列{a n }的通项公式是a n =a n,则其前n 项和为S n =a 1-a n1-a.( )(5)数列{a n }为等比数列,则S 4,S 8-S 4,S 12-S 8成等比数列.( )解析 (1)在等比数列中,a n ≠0. (2)在等比数列中,q ≠0.(3)若a =0,b =0,c =0满足b 2=ac ,但a ,b ,c 不成等比数列. (4)当a =1时,S n =na .(5)若a 1=1,q =-1,则S 4=0,S 8-S 4=0,S 12-S 8=0,不成等比数列. 答案 (1)× (2)× (3)× (4)× (5)×2.(2017·泰州模拟)在单调递减的等比数列{a n }中,若a 3=1,a 2+a 4=52,则a 1=________.解析 在等比数列{a n }中,a 2a 4=a 23=1,又a 2+a 4=52,数列{a n }为递减数列,所以a 2=2,a 4=12,所以q 2=a 4a 2=14,所以q =12,a 1=a 2q =4.答案 43.(2017·南京月考)公比不为1的等比数列{a n }满足a 5a 6+a 4a 7=18,若a 1a m =9,则m 的值为________.解析 由题意得,2a 5a 6=18,a 5a 6=9,∴a 1a m =a 5a 6=9, ∴m =10. 答案 104.(2015·全国Ⅰ卷)在数列{a n }中,a 1=2,a n +1=2a n ,S n 为{a n }的前n 项和.若S n =126,则n =________.解析 由a n +1=2a n ,知数列{a n }是以a 1=2为首项,公比q =2的等比数列,由S n =2 1-2n1-2=126,解得n =6. 答案 65.(必修5P49习题1改编)若a ,b ,c 三个正数成等比数列,其中a =5+26,c =5-26,则b 的值为________.解析 ∵a ,b ,c 成等比数列,∴b 2=ac . 即b 2=(5+26)(5-26)=1,又b >0, ∴b =1. 答案 1考点一 等比数列基本量的运算【例1】 (1)设{a n }是由正数组成的等比数列,S n 为其前n 项和.已知a 2a 4=1,S 3=7,则S 5=________.(2)(2016·全国Ⅰ卷)设等比数列满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为________.解析 (1)显然公比q ≠1,由题意得⎩⎪⎨⎪⎧a 1q ·a 1q 3=1,a 1 1-q 31-q =7,解得⎩⎪⎨⎪⎧a 1=4,q =12或⎩⎪⎨⎪⎧a 1=9,q =-13(舍去),∴S 5=a 1 1-q 51-q =4⎝ ⎛⎭⎪⎫1-1251-12=314.(2)设等比数列{a n }的公比为q ,∴⎩⎪⎨⎪⎧a 1+a 3=10,a 2+a 4=5⇒⎩⎪⎨⎪⎧a 1+a 1q 2=10,a 1q +a 1q 3=5,解得⎩⎪⎨⎪⎧a 1=8,q =12,∴a 1a 2…a n =a n 1q 1+2+…+(n -1)=2-n 22+7n2.记t =-n 22+7n2=-12(n 2-7n ),结合n ∈N *,可知n =3或4时,t 有最大值6. 又y =2t为增函数. 所以a 1a 2…a n 的最大值为64. 答案 (1)314(2)64规律方法 等比数列基本量的运算是等比数列中的一类基本问题,等比数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)便可迎刃而解.【训练1】 (1)(2017·盐城调研)已知等比数列{a n }满足a 2+2a 1=4,a 23=a 5,则该数列的前5项的和为________.(2)(2017·合肥模拟)设{a n }是公比大于1的等比数列,S n 为数列{a n }的前n 项和.已知S 3=7,且a 1+3,3a 2,a 3+4构成等差数列,则a n =________.解析 (1)设等比数列{a n }的公比为q ,则a 23=a 21q 4=a 5=a 1q 4,解得a 1=1,则a 2+2a 1=a 1q +2a 1=4,解得q =2,则该数列的前5项的和为a 1 1-251-2=31.(2)由已知得:⎩⎪⎨⎪⎧a 1+a 2+a 3=7, a 1+3 + a 3+42=3a 2.解得a 2=2.设数列{a n }的公比为q ,由a 2=2,可得a 1=2q ,a 3=2q .又S 3=7,可知2q+2+2q=7,即2q 2-5q +2=0,解得q 1=2,q 2=12.由题意得q >1,所以q =2,所以a 1=1.故数列{a n }的通项为a n =2n -1.答案 (1)31 (2)2n -1考点二 等比数列的性质及应用【例2】 (1)(2017·南京师大附中月考)在等比数列{a n }中,a n +1<a n ,a 2·a 8=6,a 4+a 6=5,则a 4a 6=________.(2)(2016·全国Ⅱ卷改编)已知等比数列{a n }满足a 1=14,a 3a 5=4(a 4-1),则a 2=________.(3)设等比数列{a n }的前n 项和为S n ,若S 6S 3=3,则S 9S 6=________.解析 (1)因为a 2a 8=a 4a 6=6 ①,又a 4+a 6=5 ②,联立①②,解得⎩⎪⎨⎪⎧a 4=3,a 6=2或⎩⎪⎨⎪⎧a 4=2,a 6=3(舍),所以a 4a 6=32.(2)由{a n }为等比数列,得a 3a 5=a 24,所以a 24=4(a 4-1),解得a 4=2,设等比数列{a n }的公比为q ,则a 4=a 1q 3,得2=14q 3,解得q =2,所以a 2=a 1q =12.(3)法一 由等比数列的性质及题意,得S 3,S 6-S 3,S 9-S 6仍成等比数列,由已知得S 6=3S 3,∴S 6-S 3S 3=S 9-S 6S 6-S 3,即S 9-S 6=4S 3,S 9=7S 3,∴S 9S 6=73. 法二 因为{a n }为等比数列,由S 6S 3=3,设S 6=3a ,S 3=a ,所以S 3,S 6-S 3,S 9-S 6为等比数列,即a,2a ,S 9-S 6成等比数列,所以S 9-S 6=4a ,解得S 9=7a ,所以S 9S 6=7a 3a =73.答案 (1)32 (2)12 (3)73规律方法 (1)在等比数列的基本运算问题中,一般利用通项公式与前n 项和公式,建立方程组求解,但如果能灵活运用等比数列的性质“若m +n =p +q ,则有a m a n =a p a q ”,可以减少运算量.(2)在等比数列中,若m +n 是偶数,则a m ·a n =a2m +n2.(3)等比数列的项经过适当的组合后构成的新数列也具有某种性质,例如数列S k ,S 2k -S k ,S 3k -S 2k ,…成等比数列,公比为q k (q ≠-1).【训练2】 (1)在各项均为正数的等比数列{a n }中,a 3=2-1,a 5=2+1,则a 23+2a 2a 6+a 3a 7=________.(2)已知x ,y ,z ∈R ,若-1,x ,y ,z ,-3成等比数列,则xyz 的值为________. 解析 (1)由等比数列性质,得a 3a 7=a 25,a 2a 6=a 3a 5,所以a 23+2a 2a 6+a 3a 7=a 23+2a 3a 5+a 25=(a 3+a 5)2=(2-1+2+1)2=(22)2=8. (2)∵-1,x ,y ,z ,-3成等比数列,∴y 2=xz =(-1)×(-3)=3,且x 2=-y >0,即y <0, ∴y =-3,xz =3, ∴xyz =-3 3. 答案 (1)8 (2)-3 3 考点三 等比数列的判定与证明【例3】 已知数列{a n }的前n 项和为S n ,在数列{b n }中,b 1=a 1,b n =a n -a n -1(n ≥2),且a n +S n =n .(1)设c n =a n -1,求证:{c n }是等比数列; (2)求数列{b n }的通项公式. (1)证明 ∵a n +S n =n ,① ∴a n +1+S n +1=n +1.② ②-①得a n +1-a n +a n +1=1,∴2a n +1=a n +1,∴2(a n +1-1)=a n -1, ∴a n +1-1a n -1=12,∴{a n -1}是等比数列. 又a 1+a 1=1,∴a 1=12,又c n =a n -1,首项c 1=a 1-1,∴c 1=-12,公比q =12.∴{c n }是以-12为首项,以12为公比的等比数列.(2)解 由(1)可知c n =⎝ ⎛⎭⎪⎫-12·⎝ ⎛⎭⎪⎫12n -1=-⎝ ⎛⎭⎪⎫12n,∴a n =c n +1=1-⎝ ⎛⎭⎪⎫12n.∴当n ≥2时,b n =a n -a n -1=1-⎝ ⎛⎭⎪⎫12n -⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n -1 =⎝ ⎛⎭⎪⎫12n -1-⎝ ⎛⎭⎪⎫12n =⎝ ⎛⎭⎪⎫12n .又b 1=a 1=12代入上式也符合,∴b n =⎝ ⎛⎭⎪⎫12n.规律方法 证明一个数列为等比数列常用定义法与等比中项法,其他方法只用于填空题中的判定;若证明某数列不是等比数列,则只要证明存在连续三项不成等比数列即可. 【训练3】 (2016·全国Ⅲ卷)已知数列{a n }的前n 项和S n =1+λa n ,其中λ≠0. (1)证明{a n }是等比数列,并求其通项公式; (2)若S 5=3132,求λ.(1)证明 由题意得a 1=S 1=1+λa 1, 故λ≠1,a 1=11-λ,a 1≠0.由S n =1+λa n ,S n +1=1+λa n +1,得a n +1=λa n +1-λa n ,即a n +1(λ-1)=λa n , 由a 1≠0,λ≠0得a n ≠0,所以a n +1a n =λλ-1. 因此{a n }是首项为11-λ,公比为λλ-1的等比数列,于是a n =11-λ⎝ ⎛⎭⎪⎫λλ-1n -1.(2)解 由(1)得S n =1-⎝⎛⎭⎪⎫λλ-1n .由S 5=3132得1-⎝ ⎛⎭⎪⎫λλ-15=3132,即⎝ ⎛⎭⎪⎫λλ-15=132. 解得λ=-1.[思想方法]1.等比数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)求关键量a 1和q .2.已知等比数列{a n }(1)数列{c ·a n }(c ≠0),{|a n |},{a 2n },⎩⎨⎧⎭⎬⎫1a n 也是等比数列.(2)a 1a n =a 2a n -1=…=a m a n -m +1. [易错防范]1.由a n +1=qa n ,q ≠0,并不能立即断言{a n }为等比数列,还要验证a 1≠0.2.在运用等比数列的前n 项和公式时,必须注意对q =1与q ≠1分类讨论,防止因忽略q =1这一特殊情形而导致解题失误.基础巩固题组(建议用时:40分钟)一、填空题1.已知{a n },{b n }都是等比数列,给出下列结论: ①{a n +b n },{a n ·b n }都一定是等比数列;②{a n +b n }一定是等比数列,但{a n ·b n }不一定是等比数列; ③{a n +b n }不一定是等比数列,但{a n ·b n }一定是等比数列; ④{a n +b n },{a n ·b n }都不一定是等比数列. 其中正确的是________(填序号).解析 两个等比数列的积仍是一个等比数列. 答案 ③2.(2017·苏北四市调研)在等比数列{a n }中,已知a 2·a 5=-32,a 3+a 4=4,且公比为整数,则a 10=________.解析 设等比数列{a n }的公比为q (q ∈Z ),且a 2·a 5=a 3·a 4=-32,a 3+a 4=4,解得a 3=-4,a 4=8,q =a 4a 3=-2,则a 10=a 4q 6=8×(-2)6=512. 答案 5123.(2015·全国Ⅱ卷改编)已知等比数列{a n }满足a 1=3,a 1+a 3+a 5=21,则a 3+a 5+a 7=________.解析 设等比数列{a n }的公比为q ,则由a 1=3,a 1+a 3+a 5=21得3(1+q 2+q 4)=21,解得q 2=-3(舍去)或q 2=2,于是a 3+a 5+a 7=q 2(a 1+a 3+a 5)=2×21=42.答案 424.已知{a n }为等比数列,a 4+a 7=2,a 5a 6=-8,则a 1+a 10=________.解析 由⎩⎪⎨⎪⎧a 4+a 7=2,a 5a 6=a 4a 7=-8,解得⎩⎪⎨⎪⎧a 4=-2,a 7=4或⎩⎪⎨⎪⎧a 4=4,a 7=-2.∴⎩⎪⎨⎪⎧q 3=-2,a 1=1或⎩⎪⎨⎪⎧q 3=-12,a 1=-8,∴a 1+a 10=a 1(1+q 9)=-7.答案 -75.(2017·南京、盐城模拟)设各项都是正数的等比数列{a n },S n 为前n 项和,且S 10=10,S 30=70,那么S 40=________.解析 依题意,数列S 10,S 20-S 10,S 30-S 20,S 40-S 30成等比数列,因此有(S 20-S 10)2=S 10(S 30-S 20).即(S 20-10)2=10(70-S 20), 故S 20=-20或S 20=30, 又S 20>0,因此S 20=30,S 20-S 10=20,S 30-S 20=40, 故S 40-S 30=80.S 40=150.答案 1506.(2017·扬州中学模拟)在等比数列{a n }中,S n 表示前n 项和,若a 3=2S 2+1,a 4=2S 3+1,则公比q 等于________.解析 两式相减得a 4-a 3=2a 3,从而求得a 4a 3=3.即q =3. 答案 37.在各项均为正数的等比数列{a n }中,若a 2=1,a 8=a 6+2a 4,则a 6的值是________. 解析 因为a 8=a 2q 6,a 6=a 2q 4,a 4=a 2q 2,所以由a 8=a 6+2a 4得a 2q 6=a 2q 4+2a 2q 2,消去a 2q 2,得到关于q 2的一元二次方程(q 2)2-q 2-2=0,解得q 2=2,q 2=-1舍去,a 6=a 2q 4=1×22=4. 答案 48.已知各项均为正数的等比数列{a n }的前n 项和为S n ,若S 4=3S 2,a 3=2,则a 7=________. 解析 设等比数列{a n }的首项为a 1,公比为q ,显然q ≠1且q >0,因为S 4=3S 2,所以a 1 1-q 4 1-q =3a 1 1-q 2 1-q,解得q 2=2,因为a 3=2,所以a 7=a 3q 4=2×22=8.答案 8 二、解答题9.在等比数列{a n }中,a 2=3,a 5=81. (1)求a n ;(2)设b n =log 3a n ,求数列{b n }的前n 项和S n . 解 (1)设{a n }的公比为q ,依题意得⎩⎪⎨⎪⎧a 1q =3,a 1q 4=81,解得⎩⎪⎨⎪⎧a 1=1,q =3.因此,a n =3n -1.(2)因为b n =log 3a n =n -1, 所以数列{b n }的前n 项和S n =n b 1+b n 2=n 2-n2.10.(2017·合肥模拟)设{a n }是公比为q 的等比数列. (1)推导{a n }的前n 项和公式;(2)设q ≠1,证明数列{a n +1}不是等比数列. 解 (1)设{a n }的前n 项和为S n , 当q =1时,S n =a 1+a 1+…+a 1=na 1; 当q ≠1时,S n =a 1+a 1q +a 1q 2+…+a 1qn -1,①qS n =a 1q +a 1q 2+…+a 1q n ,②①-②得,(1-q )S n =a 1-a 1q n,∴S n =a 1 1-q n1-q ,∴S n =⎩⎪⎨⎪⎧na 1,q =1,a 1 1-q n1-q,q ≠1.(2)假设{a n +1}是等比数列,则对任意的k ∈N *, (a k +1+1)2=(a k +1)(a k +2+1),a 2k +1+2a k +1+1=a k a k +2+a k +a k +2+1,a 21q 2k +2a 1q k =a 1qk -1·a 1q k +1+a 1q k -1+a 1q k +1, ∵a 1≠0,∴2q k =qk -1+qk +1.∵q ≠0,∴q 2-2q +1=0,∴q =1,这与已知矛盾. 故数列{a n +1}不是等比数列.能力提升题组 (建议用时:20分钟)11.在正项等比数列{a n }中,已知a 1a 2a 3=4,a 4a 5a 6=12,a n -1a n a n +1=324,则n =________. 解析 设数列{a n }的公比为q ,由a 1a 2a 3=4=a 31q 3与a 4a 5a 6=12=a 31q 12,可得q 9=3,a n -1a n a n +1=a 31q3n -3=324,因此q3n -6=81=34=q 36,所以n =14.答案 1412.(2017·盐城中学模拟)数列{a n }中,已知对任意n ∈N *,a 1+a 2+a 3+…+a n =3n-1,则a 21+a 22+a 23+…+a 2n =________.解析 ∵a 1+a 2+…+a n =3n -1,n ∈N *,n ≥2时,a 1+a 2+…+a n -1=3n -1-1,∴当n ≥2时,a n =3n-3n -1=2·3n -1,又n =1时,a 1=2适合上式,∴a n =2·3n -1,故数列{a 2n }是首项为4,公比为9的等比数列. 因此a 21+a 22+…+a 2n =4 1-9n1-9=12(9n -1).答案 12(9n-1)13.(2017·南京、盐城模拟)设S n 是等比数列{a n }的前n 项和,a n >0,若S 6-2S 3=5,则S 9-S 6的最小值为________.解析 设等比数列{a n }的公比为q ,则由a n >0得q >0,S n >0.又S 6-2S 3=(a 4+a 5+a 6)-(a 1+a 2+a 3)=S 3q 3-S 3=5,则S 3=5q 3-1,由S 3>0,得q 3>1,则S 9-S 6=a 7+a 8+a 9=S 3q 6=5q6q 3-1=51q 3-1q 6,令1q 3=t ,t ∈(0,1),则1q 3-1q 6=t -t 2=-⎝ ⎛⎭⎪⎫t -122+14∈⎝ ⎛⎦⎥⎤0,14,所以当t =12,即q 3=2时,1q 3-1q 6取得最大值14,此时S 9-S 6取得最小值20.答案 2014.(2015·江苏卷节选)设a 1,a 2,a 3,a 4是各项为正数且公差为d (d ≠0)的等差数列. (1)证明:2a 1,2a 2,2a 3,2a 4依次构成等比数列;(2)是否存在a 1,d ,使得a 1,a 22,a 33,a 44依次构成等比数列?并说明理由.(1)证明 因为2a n +12a n =2a n +1-a n =2d(n =1,2,3)是同一个常数,所以2a 1,2a 2,2a 3,2a 4依次构成等比数列,(2)解 不存在,理由如下:令a 1+d =a ,则a 1,a 2,a 3,a 4分别为a -d ,a ,a +d ,a +2d (a >d ,a >-2d ,d ≠0). 假设存在a 1,d ,使得a 1,a 22,a 33,a 44依次构成等比数列, 则a 4=(a -d )(a +d )3,且(a +d )6=a 2(a +2d )4.令t =d a ,则1=(1-t )(1+t )3,且(1+t )6=(1+2t )4⎝ ⎛⎭⎪⎫-12<t <1,t ≠0,化简得t 3+2t 2-2=0(*),且t 2=t +1. 将t 2=t +1代入(*)式,t (t +1)+2(t +1)-2=t 2+3t =t +1+3t =4t +1=0,则t =-14.显然t =-14不是上面方程的解,矛盾,所以假设不成立.因此不存在a 1,d ,使得a 1,a 22,a 33,a 44依次构成等比数列.。
江苏专用2018版高考数学大一轮复习第六章数列6.2等差数列及其前n项和教师用书理
第六章 数列 6.2 等差数列及其前n 项和教师用书 理 苏教版1.等差数列的定义一般地,如果一个数列从第二项起,每一项减去它的前一项所得的差都等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d 表示. 2.等差数列的通项公式如果等差数列{a n }的首项为a 1,公差为d ,那么它的通项公式是a n =a 1+(n -1)d . 3.等差中项由三个数a ,A ,b 组成的等差数列可以看成最简单的等差数列.这时,A 叫做a 与b 的等差中项.4.等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n . (3)若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为2d . (4)若{a n },{b n }是等差数列,则{pa n +qb n }也是等差数列.(5)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列. (6)数列S m ,S 2m -S m ,S 3m -S 2m ,…构成等差数列. 5.等差数列的前n 项和公式设等差数列{a n }的公差为d ,其前n 项和S n =n a 1+a n2或S n =na 1+n n -12d .6.等差数列的前n 项和公式与函数的关系S n =d 2n 2+⎝ ⎛⎭⎪⎫a 1-d 2n .数列{a n }是等差数列⇔S n =An 2+Bn (A ,B 为常数). 7.等差数列的前n 项和的最值在等差数列{a n }中,a 1>0,d <0,则S n 存在最大值;若a 1<0,d >0,则S n 存在最小值.【知识拓展】等差数列的四种判断方法(1)定义法:a n +1-a n =d (d 是常数)⇔{a n }是等差数列. (2)等差中项法:2a n +1=a n +a n +2 (n ∈N *)⇔{a n }是等差数列. (3)通项公式:a n =pn +q (p ,q 为常数)⇔{a n }是等差数列. (4)前n 项和公式:S n =An 2+Bn (A ,B 为常数)⇔{a n }是等差数列.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)若一个数列从第二项起每一项与它的前一项的差都是常数,则这个数列是等差数列.( × )(2)等差数列{a n }的单调性是由公差d 决定的.( √ )(3)等差数列的前n 项和公式是常数项为0的二次函数.( × ) (4)已知等差数列{a n }的通项公式a n =3-2n ,则它的公差为-2.( √ )1.(教材改编)设S n 为等差数列{a n }的前n 项和,若a 3=3,S 9-S 6=27,则该数列的首项a 1=________. 答案 35解析 由⎩⎪⎨⎪⎧a 1+2d =3,9a 1+36d - 6a 1+15d =27,得⎩⎪⎨⎪⎧a 1+2d =3,a 1+7d =9, 解得a 1=35.2.(教材改编)已知五个数成等差数列,它们的和为5,平方和为859,则这五个数的积为________. 答案 -3581解析 设第三个数为a ,公差为d ,则这五个数分别为a -2d ,a -d ,a ,a +d ,a +2d , 由已知条件得⎩⎪⎨⎪⎧a -2d + a -d +a + a +d + a +2d =5, a -2d 2+ a -d 2+a 2+ a +d 2+ a +2d 2=859,解得⎩⎪⎨⎪⎧a =1,d =±23.所求5个数分别为-13,13,1,53,73或73,53,1,13,-13.故它们的积为-3581.3.(2016·全国乙卷)已知等差数列{a n }前9项的和为27,a 10=8,则a 100=________. 答案 98解析 由等差数列性质,知S 9=9 a 1+a 9 2=9×2a 52=9a 5=27,得a 5=3,而a 10=8,因此公差d =a 10-a 510-5=1,∴a 100=a 10+90d =98.4.设数列{a n }是等差数列,若a 3+a 4+a 5=12,则a 1+a 2+…+a 7=________. 答案 28解析 ∵a 3+a 4+a 5=3a 4=12,∴a 4=4, ∴a 1+a 2+…+a 7=7a 4=28.5.若等差数列{a n }满足a 7+a 8+a 9>0,a 7+a 10<0,则当n =________时,{a n }的前n 项和最大. 答案 8解析 因为数列{a n }是等差数列,且a 7+a 8+a 9=3a 8>0,所以a 8>0.又a 7+a 10=a 8+a 9<0,所以a 9<0.故当n =8时,其前n 项和最大.题型一 等差数列基本量的运算例1 (1)(2016·北京)已知{a n }为等差数列,S n 为其前n 项和.若a 1=6,a 3+a 5=0,则S 6=________.(2)(2016·徐州、宿迁模拟)已知公差为d 的等差数列{a n }的前n 项和为S n ,若S 5S 3=3,则a 5a 3的值为________. 答案 (1)6 (2)179解析 (1)∵a 3+a 5=2a 4=0,∴a 4=0.又a 1=6,∴a 4=a 1+3d =0,∴d =-2. ∴S 6=6×6+6× 6-12×(-2)=6.(2)设等差数列{a n }的首项为a 1,则由S 5S 3=3得5a 1+10d 3a 1+3d =3,所以d =4a 1,所以a 5a 3=a 1+4d a 1+2d =17a 19a 1=179. 思维升华 等差数列运算问题的通性通法(1)等差数列运算问题的一般求法是设出首项a 1和公差d ,然后由通项公式或前n 项和公式转化为方程(组)求解.(2)等差数列的通项公式及前n 项和公式,共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了用方程的思想解决问题.(2016·江苏)已知{a n }是等差数列,S n 是其前n 项和.若a 1+a 22=-3,S 5=10,则a 9的值是______. 答案 20解析 设等差数列{a n }的公差为d ,则由题设可得⎩⎪⎨⎪⎧a 1+ a 1+d 2=-3,5a 1+5×42d =10,解得⎩⎪⎨⎪⎧d =3,a 1=-4,从而a 9=a 1+8d =20.题型二 等差数列的判定与证明例2 已知数列{a n }中,a 1=35,a n =2-1a n -1(n ≥2,n ∈N *),数列{b n }满足b n =1a n -1(n ∈N *).(1)求证:数列{b n }是等差数列;(2)求数列{a n }中的最大项和最小项,并说明理由. (1)证明 因为a n =2-1a n -1(n ≥2,n ∈N *),b n =1a n -1(n ∈N *),所以b n +1-b n =1a n +1-1-1a n -1=1 2-1a n-1-1a n -1=a n a n -1-1a n -1=1.又b 1=1a 1-1=-52. 所以数列{b n }是以-52为首项,1为公差的等差数列.(2)解 由(1)知b n =n -72,则a n =1+1b n =1+22n -7.设f (x )=1+22x -7,则f (x )在区间(-∞,72)和(72,+∞)上为减函数.所以当n =3时,a n 取得最小值-1,当n =4时,a n 取得最大值3. 引申探究例2中,若条件变为a 1=35,na n +1=(n +1)a n +n (n +1),试求数列{a n }的通项公式.解 由已知可得a n +1n +1=a nn+1, 即a n +1n +1-a n n =1,又a 1=35, ∴⎩⎨⎧⎭⎬⎫a n n 是以a 11=35为首项,1为公差的等差数列,∴a n n =35+(n -1)·1=n -25, ∴a n =n 2-25n .思维升华 等差数列的四个判定方法(1)定义法:证明对任意正整数n 都有a n +1-a n 等于同一个常数.(2)等差中项法:证明对任意正整数n 都有2a n +1=a n +a n +2后,可递推得出a n +2-a n +1=a n +1-a n =a n -a n -1=a n -1-a n -2=…=a 2-a 1,根据定义得出数列{a n }为等差数列.(3)通项公式法:得出a n =pn +q 后,得a n +1-a n =p 对任意正整数n 恒成立,根据定义判定数列{a n }为等差数列.(4)前n 项和公式法:得出S n =An 2+Bn 后,根据S n ,a n 的关系,得出a n ,再使用定义法证明数列{a n }为等差数列.(1)在数列{a n }中,若a 1=1,a 2=12,2a n +1=1a n +1a n +2(n ∈N *),则该数列的通项为________.(2)已知等差数列{a n }中,a 4+a 6=10,若前5项的和S 5=5,则其公差为________.答案 (1)a n =1n(2)2解析 (1)由已知式2a n +1=1a n +1a n +2可得1a n +1-1a n =1a n +2-1a n +1,知{1a n}是首项为1a 1=1,公差为1a 2-1a 1=2-1=1的等差数列,所以1a n=n ,即a n =1n.(2)因为a 4+a 6=10,所以2a 5=10, 则a 5=5,又S 5=5 a 1+a 5 2=5a 3=5,故a 3=1,从而2d =a 5-a 3=4,故d =2.(3)数列{a n }满足a 1=1,a 2=2,a n +2=2a n +1-a n +2. ①设b n =a n +1-a n ,证明{b n }是等差数列; ②求{a n }的通项公式.①证明 由a n +2=2a n +1-a n +2, 得a n +2-a n +1=a n +1-a n +2, 即b n +1=b n +2. 又b 1=a 2-a 1=1,所以{b n }是首项为1,公差为2的等差数列. ②解 由①得b n =1+2(n -1)=2n -1, 即a n +1-a n =2n -1.于是∑nk =1(a k +1-a k )=∑nk =1(2k -1), 所以a n +1-a 1=n 2,即a n +1=n 2+a 1.又a 1=1,所以{a n }的通项公式为a n =n 2-2n +2. 题型三 等差数列性质的应用 命题点1 等差数列项的性质例3 (1)(2015·广东)在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=25,则a 2+a 8=________. (2)已知{a n },{b n }都是等差数列,若a 1+b 10=9,a 3+b 8=15,则a 5+b 6=________. 答案 (1)10 (2)21解析 (1)因为{a n }是等差数列,所以a 3+a 7=a 4+a 6=a 2+a 8=2a 5,a 3+a 4+a 5+a 6+a 7=5a 5=25,所以a 5=5,故a 2+a 8=2a 5=10.(2)因为{a n },{b n }都是等差数列,所以2a 3=a 1+a 5,2b 8=b 10+b 6,所以2(a 3+b 8)=(a 1+b 10)+(a 5+b 6),即2×15=9+(a 5+b 6),解得a 5+b 6=21. 命题点2 等差数列前n 项和的性质例4 (1)设等差数列{a n }的前n 项和为S n ,且S 3=-12,S 9=45,则S 12=________. (2)在等差数列{a n }中,a 1=-2 018,其前n 项和为S n ,若S 1212-S 1010=2,则S 2 018的值为_____.答案 (1)114 (2)-2 018解析 (1)因为{a n }是等差数列,所以S 3,S 6-S 3,S 9-S 6,S 12-S 9成等差数列,所以2(S 6-S 3)=S 3+(S 9-S 6),即2(S 6+12)=-12+(45-S 6),解得S 6=3. 又2(S 9-S 6)=(S 6-S 3)+(S 12-S 9),即2×(45-3)=(3+12)+(S 12-45),解得S 12=114. (2)由题意知,数列{S n n}为等差数列,其公差为1, ∴S 2 0182 018=S 11+(2 018-1)×1 =-2 018+2 017=-1. ∴S 2 018=-2 018.思维升华 等差数列的性质(1)项的性质:在等差数列{a n }中,a m -a n =(m -n )d ⇔a m -a nm -n=d (m ≠n ),其几何意义是点(n ,a n ),(m ,a m )所在直线的斜率等于等差数列的公差.(2)和的性质:在等差数列{a n }中,S n 为其前n 项和,则 ①S 2n =n (a 1+a 2n )=…=n (a n +a n +1); ②S 2n -1=(2n -1)a n.(1)在等差数列{a n }中,已知a 4+a 8=16,则该数列前11项和S 11=________.(2)等差数列{a n }与{b n }的前n 项和分别为S n 和T n ,若S n T n =3n -22n +1,则a 7b 7=________.答案 (1)88 (2)3727解析 (1)S 11=11 a 1+a 11 2=11 a 4+a 82=11×162=88. (2)a 7b 7=2a 72b 7=a 1+a 13b 1+b 13=a 1+a 132×13b 1+b 132×13=S 13T 13=3×13-22×13+1=3727.6.等差数列的前n 项和及其最值考点分析 公差不为0的等差数列,求其前n 项和与最值在高考中时常出现,题型有小题,也有大题,难度不大.典例1 (1)在等差数列{a n }中,2(a 1+a 3+a 5)+3(a 7+a 9)=54,则此数列前10项的和S 10=________。
高考数学一轮复习 第六章 数列 第3讲 等比数列及其前n项和教学案 理
第3讲 等比数列及其前n 项和一、知识梳理1.等比数列的有关概念 (1)定义如果一个数列从第2项起,每一项与它的前一项的比等于同一常数(不为零),那么这个数列就叫作等比数列.这个常数叫作等比数列的公比,通常用字母q 表示.(2)等比中项如果a 、G 、b 成等比数列,那么G 叫做a 与b 的等比中项.即:G 是a 与b 的等比中项⇔G 2=ab .“a ,G ,b 成等比数列”是“G 是a 与b 的等比中项”的充分不必要条件.2.等比数列的有关公式 (1)通项公式:a n =a 1qn -1.(2)前n 项和公式:S n =⎩⎪⎨⎪⎧na 1,q =1,a 1(1-q n )1-q=a 1-a n q 1-q ,q ≠1.3.等比数列的性质已知数列{a n }是等比数列,S n 是其前n 项和(m ,n ,p ,q ,r ,k ∈N +(1)若m +n =p +q =2r ,则a m ·a n =a p ·a q =a 2r . (2)数列a m ,a m +k ,a m +2k ,a m +3k ,…仍是等比数列.(3)数列S m ,S 2m -S m ,S 3m -S 2m ,…仍是等比数列(此时{a n }的公比q ≠-1).常用结论1.正确理解等比数列的单调性当q >1,a 1>0或0<q <1,a 1<0时 ,{a n }是递增数列; 当q >1,a 1<0或0<q <1,a 1>0时 ,{a n }是递减数列; 当q =1时,{a n }是常数列; 当q =-1时,{a n }是摆动数列. 2.记住等比数列的几个常用结论(1)若{a n },{b n }(项数相同)是等比数列,则{λa n }(λ≠0),⎩⎨⎧⎭⎬⎫1a n ,{a 2n },{a n ·b n },⎩⎨⎧⎭⎬⎫a n b n 仍是等比数列. (2)在等比数列{a n }中,等距离取出若干项也构成一个等比数列,即a n ,a n +k ,a n +2k ,a n +3k ,…为等比数列,公比为q k.(3)一个等比数列各项的k 次幂,仍组成一个等比数列,新公比是原公比的k 次幂.(4){a n }为等比数列,若a 1·a 2·…·a n =T n ,则T n ,T 2n T n ,T 3nT 2n,…成等比数列.(5)当q ≠0,q ≠1时,S n =k -k ·q n(k ≠0)是{a n }成等比数列的充要条件,此时k =a 11-q.(6)有穷等比数列中,与首末两项等距离的两项的积相等.特别地,若项数为奇数时,还等于中间项的平方.二、教材衍化1.在3与192中间插入两个数,使它们同这两个数成等比数列,则这两个数为________.解析:设该数列的公比为q ,由题意知, 192=3×q 3,q 3=64,所以q =4.所以插入的两个数分别为3×4=12,12×4=48. 答案:12,482.已知{a n }是等比数列,a 2=2,a 5=14,则公比q =________.解析:由题意知q 3=a 5a 2=18,所以q =12.答案:123.等比数列{a n }的首项a 1=-1,前n 项和为S n ,若S 10S 5=3132,则{a n }的通项公式a n =________.解析:因为S 10S 5=3132,所以S 10-S 5S 5=-132,因为S 5,S 10-S 5,S 15-S 10成等比数列,且公比为q 5,所以q 5=-132,q =-12,则a n =-1×⎝ ⎛⎭⎪⎫-12n -1=-⎝ ⎛⎭⎪⎫-12n -1.答案:-⎝ ⎛⎭⎪⎫-12n -1一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)与等差数列类似,等比数列的各项可以是任意一个实数.( )(2)公比q 是任意一个常数,它可以是任意实数.( ) (3)三个数a ,b ,c 成等比数列的充要条件是b 2=ac .( ) 答案:(1)× (2)× (3)× 二、易错纠偏常见误区|K(1)忽视项的符号判断; (2)忽视公比q =1的特殊情况; (3)忽视等比数列的项不为0.1.在等比数列{a n }中,a 3=4,a 7=16,则a 3与a 7的等比中项为________.解析:设a 3与a 7的等比中项为G ,因为a 3=4,a 7=16,所以G 2=4×16=64,所以G =±8.答案:±82.数列{a n }的通项公式是a n =a n(a ≠0),则其前n 项和S n =________.解析:因为a ≠0,a n =a n,所以{a n }是以a 为首项,a 为公比的等比数列.当a =1时,S n =n ;当a ≠1时S n =a (1-a n )1-a.答案:⎩⎪⎨⎪⎧n ,a =1,a (1-a n )1-a,a ≠0,a ≠13.已知x,2x+2,3x+3是一个等比数列的前三项,则x的值为________.解析:因为x,2x+2,3x+3是一个等比数列的前三项,所以(2x+2)2=x(3x+3),即x2+5x+4=0,解得x=-1或x=-4.当x=-1时,数列的前三项为-1,0,0,不是等比数列,舍去.答案:-4等比数列基本量的运算(师生共研)(1)(2019·高考全国卷Ⅲ)已知各项均为正数的等比数列{a n}的前4项和为15,且a5=3a3+4a1,则a3=( ) A.16 B.8C.4 D.2(2)等比数列{a n}中,a1=1,a5=4a3.①求{a n}的通项公式;②记S n为{a n}的前n项和.若S m=63,求m.【解】(1)选C.设等比数列{a n}的公比为q,由a5=3a3+4a1得q4=3q2+4,得q2=4,因为数列{a n}的各项均为正数,所以q=2,又a1+a2+a3+a4=a1(1+q+q2+q3)=a1(1+2+4+8)=15,所以a1=1,所以a3=a1q2=4.(2)①设{a n}的公比为q,由题设得a n=q n-1.由已知得q 4=4q 2,解得q =0(舍去)或q =-2或q =2. 故a n =(-2)n -1或a n =2n -1.②若a n =(-2)n -1,则S n=1-(-2)n3.由S m =63得(-2)m=-188,此方程没有正整数解.若a n =2n -1,则S n =2n-1.由S m =63得2m=64,解得m =6.综上,m =6.解决等比数列有关问题的2种常用思想方程的思想等比数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)求关键量a 1和q ,问题可迎刃而解 分类讨论的思想等比数列的前n 项和公式涉及对公比q 的分类讨论,当q =1时,{a n }的前n 项和S n =na 1;当q ≠1时,{a n }的前n 项和S n=a 1(1-q n )1-q =a 1-a n q 1-qn n 前n 项和,若a 1=13,a 24=a 6,则S 5=________.解析:通解:设等比数列{a n }的公比为q ,因为a 24=a 6,所以(a 1q 3)2=a 1q 5,所以a 1q =1,又a 1=13,所以q =3,所以S 5=a 1(1-q 5)1-q =13×(1-35)1-3=1213.优解:设等比数列{a n }的公比为q ,因为a 24=a 6,所以a 2a 6=a 6,所以a 2=1,又a 1=13,所以q =3,所以S 5=a 1(1-q 5)1-q=13×(1-35)1-3=1213.答案:12132.已知等差数列{a n }的前n 项和为S n ,等比数列{b n }的前n 项和为T n ,a 1=-1,b 1=1,a 2+b 2=2.(1)若a 3+b 3=5,求{b n }的通项公式; (2)若T 3=21,求S 3.解:设{a n }的公差为d ,{b n }的公比为q ,则a n =-1+(n -1)d ,b n =q n -1.由a 2+b 2=2得d +q =3.① (1)由a 3+b 3=5得2d +q 2=6.②联立①和②解得⎩⎪⎨⎪⎧d =3,q =0(舍去),⎩⎪⎨⎪⎧d =1,q =2.因此{b n }的通项公式为b n =2n -1.(2)由b 1=1,T 3=21得q 2+q -20=0, 解得q =-5或q =4.当q =-5时,由①得d =8,则S 3=21. 当q =4时,由①得d =-1,则S 3=-6.等比数列的判定与证明(师生共研)(2018·高考全国卷Ⅰ)已知数列{a n }满足a 1=1,na n +1=2(n +1)a n .设b n =a nn.(1)求b 1,b 2,b 3;(2)判断数列{b n }是否为等比数列,并说明理由; (3)求{a n }的通项公式.【解】 (1)由条件可得a n +1=2(n+1)na n .将n =1代入得,a 2=4a 1, 而a 1=1,所以,a 2=4. 将n =2代入得,a 3=3a 2, 所以,a 3=12.从而b 1=1,b 2=2,b 3=4.(2){b n }是首项为1,公比为2的等比数列.由条件可得a n +1n +1=2a n n,即b n +1=2b n ,又b 1=1,所以{b n }是首项为1,公比为2的等比数列.(3)由(2)可得a n n=2n -1,所以a n =n ·2n -1.等比数列的4种常用判定方法定义法若a n +1a n =q (q 为非零常数,n ∈N +)或a na n -1=q (q 为非零常数且n ≥2,n ∈N +),则{a n }是等比数列中项 公式法 若数列{a n }中,a n ≠0且a 2n +1=a n ·a n +2(n ∈N +),则数列{a n }是等比数列通项若数列通项公式可写成a n =c ·qn -1(c ,q 均是不为0的常数,证明;后两种方法常用于选择题、填空题中的判定.(2)若要判定一个数列不是等比数列,则只需判定存在连续三项不成等比数列即可.1.已知数列{a n}的前n项和为S n,a1=1,S n+1=4a n+2(n∈N*),若b n=a n+1-2a n,求证:{b n}是等比数列.证明:因为a n+2=S n+2-S n+1=4a n+1+2-4a n-2=4a n+1-4a n,所以b n+1b n=a n+2-2a n+1a n+1-2a n=4a n+1-4a n-2a n+1a n+1-2a n=2a n+1-4a na n+1-2a n=2.因为S2=a1+a2=4a1+2,所以a2=5.所以b1=a2-2a1=3.所以数列{b n}是首项为3,公比为2的等比数列.2.已知数列{a n}的前n项和为S n,且S n=2a n-3n(n∈N+).(1)求a1,a2,a3的值;(2)是否存在常数λ,使得{a n+λ}为等比数列?若存在,求出λ的值和通项公式a n,若不存在,请说明理由.解:(1)当n=1时,S1=a1=2a1-3,解得a1=3,当n=2时,S2=a1+a2=2a2-6,解得a2=9,当n=3时,S3=a1+a2+a3=2a3-9,解得a3=21.(2)假设{a n+λ}是等比数列,则(a2+λ)2=(a1+λ)(a3+λ),即(9+λ)2=(3+λ)(21+λ),解得λ=3.下面证明{a n +3}为等比数列:因为S n =2a n -3n ,所以S n +1=2a n +1-3n -3,所以a n +1=S n +1-S n =2a n +1-2a n -3,即2a n +3=a n +1,所以2(a n +3)=a n +1+3,所以a n +1+3a n +3=2,所以存在λ=3,使得数列{a n +3}是首项为a 1+3=6,公比为2的等比数列.所以a n +3=6×2n -1,即a n =3(2n-1)(n ∈N +).等比数列的性质(多维探究) 角度一 等比数列项的性质(1)若等比数列{a n }的各项均为正数,且a 10a 11+a 9a 12=2e 5,则ln a 1+ln a 2+…+ln a 20=________.(2)等比数列{a n }的前n 项和为S n ,若a n >0,q >1,a 3+a 5=20,a 2a 6=64,则S 5=________.【解析】 (1)因为a 10a 11+a 9a 12=2a 10a 11=2e 5, 所以a 10a 11=e 5.所以ln a 1+ln a 2+…+ln a 20 =ln(a 1a 2…a 20)=ln[(a 1a 20)·(a 2a 19)·…·(a 10a 11)] =ln(a 10a 11)10=10ln(a 10a 11) =10ln e 5=50ln e =50.(2)由等比数列的性质,得a 3a 5=a 2a 6=64,于是由⎩⎪⎨⎪⎧a 3+a 5=20,a 3a 5=64,且a n >0,q >1,得a 3=4,a 5=16,所以⎩⎪⎨⎪⎧a 1q 2=4,a 1q 4=16,解得⎩⎪⎨⎪⎧a 1=1,q =2.所以S 5=1×(1-25)1-2=31.【答案】 (1)50 (2)31角度二 等比数列前n 项和的性质(1)(一题多解)等比数列{a n }中,前n 项和为48,前2n项和为60,则其前3n 项和为________.(2)数列{a n }是一个项数为偶数的等比数列,所有项之和是偶数项之和的4倍,前三项之积为64,则此数列的通项公式为a n =________.【解析】 (1)法一:设数列{a n }的前n 项和为S n . 因为S 2n ≠2S n ,所以q ≠1,由前n 项和公式得⎩⎪⎨⎪⎧a 1(1-q n )1-q =48,①a 1(1-q 2n)1-q=60,②②÷①,得1+q n=54,所以q n=14.③将③将入①,得a 11-q=64. 所以S 3n =a 1(1-q 3n )1-q =64×⎝⎛⎭⎪⎫1-143=63.法二:设数列{a n }的前n 项和为S n , 因为{a n }为等比数列,所以S n ,S 2n -S n ,S 3n -S 2n 也成等比数列, 所以(S 2n -S n )2=S n (S 3n -S 2n ),即S 3n =(S 2n -S n )2S n +S 2n =(60-48)248+60=63.法三:设数列{a n }的前n 项和为S n , 因为S 2n =S n +q nS n ,所以q n=S 2n -S n S n =14,所以S 3n =S 2n +q2nS n =60+⎝ ⎛⎭⎪⎫142×48=63.(2)设此数列{a n }的公比为q , 由题意,知S 奇+S 偶=4S 偶, 所以S 奇=3S 偶,所以q =S 偶S 奇=13.又a 1a 2a 3=64,即a 1(a 1q )(a 1q 2)=a 31q 3=64, 所以a 1q =4.又q =13,所以a 1=12,所以a n =a 1qn -1=12×⎝ ⎛⎭⎪⎫13n -1.【答案】 (1)63(2)12×⎝ ⎛⎭⎪⎫13n -1等比数列常见性质的应用等比数列性质的应用可以分为三类 (1)通项公式的变形. (2)等比中项的变形. (3)前n 项和公式的变形.根据题目条件,认真分析,发现具体的变化特征即可找出解决问题的突破口.[提醒] 在应用相应性质解题时,要注意性质成立的前提条件,有时需要进行适当变形.此外,解题时注意设而不求思想的运用.(一题多解)已知等比数列{a n }满足a 1=14,a 3a 5=4(a 4-1),则a 2=( )A .2B .1 C.12D .18解析:选C.法一:因为a 3a 5=a 24,a 3a 5=4(a 4-1), 所以a 24=4(a 4-1), 所以a 24-4a 4+4=0,所以a 4=2.又因为q 3=a 4a 1=214=8,所以q =2,所以a 2=a 1q =14×2=12,故选C.法二:因为a 3a 5=4(a 4-1), 所以a 1q 2·a 1q 4=4(a 1q 3-1),将a 1=14代入上式并整理,得q 6-16q 3+64=0,解得q =2,所以a 2=a 1q =12,故选C.数列与数学文化及实际应用1.等差数列与数学文化(2020·陕西汉中二模)我国古代名著《九章算术》中有这样一段话:“今有金箠,长五尺,斩本一尺,重四斤,斩末一尺,重二斤.”意思是:现有一根金箠,长5尺,头部1尺,重4斤,尾部1尺,重2斤.若该金箠从头到尾,每一尺的质量构成等差数列,则该金箠共重( )A .6斤B .7斤C .9斤D .15斤【解析】 设从头到尾每一尺的质量构成等差数列{a n },则有a 1=4,a 5=2,所以a 1+a 5=6,数列{a n }的前5项和为S 5=5×a 1+a 52=5×3=15,即该金箠共重15斤.故选D.【答案】 D以数学文化为背景的等差数列模型题的求解关键:一是会脱去数学文化的背景,读懂题意;二是构建模型,即由题意构建等差数列的模型;三是解模,即把文字语言转化为求等差数列的相关问题,如求指定项、公差或项数、通项公式或前n 项和等.2.等比数列与数学文化(2020·湖南衡阳三模)中国古代数学名著《九章算术》中有如下问题.今有牛、马、羊食人苗,苗主责之粟五斗,羊主曰:“我羊食半马.”马主曰:“我马食半牛.”今欲衰偿之,问各出几何?此问题的译文如下:今有牛、马、羊吃了别人的禾苗,禾苗主人要求赔偿5斗粟.羊主人说:“我的羊所吃的禾苗只有马的一半.”马主人说:“我的马所吃的禾苗只有牛的一半.”打算按此比例偿还,他们各应偿还多少?该问题中,1斗为10升,则马主人应偿还的粟(单位:升)为( )A.253 B .503C.507D .1007【解析】 5斗=50升.设羊、马、牛的主人应偿还粟的量分别为a 1,a 2,a 3,由题意可知a 1,a 2,a 3构成公比为2的等比数列,且S 3=50,则a 1(1-23)1-2=50,解得a 1=507,所以马主人应偿还粟的量为a 2=2a 1=1007,故选D.【答案】 D以数学文化为背景的等比数列模型题的求解关键:一是会透过数学文化的“表象”看“本质”;二是构建模型,即盯准题眼,构建等比数列的模型;三是解模,即把文字语言转化为求等比数列的相关问题,如求指定项、公比或项数、通项公式或前n 项和等.3.递推数列与数学文化(2020·北京市石景山区3月模拟)九连环是我国从古至今广为流传的一种益智游戏,它用九个圆环相连成串,以解开为胜.据明代杨慎《丹铅总录》记载:“两环互相贯为一,得其关捩,解之为二,又合而为一.”在某种玩法中,用a n 表示解下n (n ≤9,n ∈N +)个圆环所需的最少移动次数,数列{a n }满足a 1=1,且a n =⎩⎪⎨⎪⎧2a n -1-1,n 为偶数,2a n -1+2,n 为奇数,则解下4个环所需的最少移动次数a 4为( )A .7B .10C .12D .22【解析】 因为数列{a n }满足a 1=1,且a n =⎩⎪⎨⎪⎧2a n -1-1,n 为偶数,2a n -1+2,n 为奇数,所以a 2=2a 1-1=2-1=1,所以a 3=2a 2+2=2×1+2=4,所以a 4=2a 3-1=2×4-1=7.故选A.以数学文化为背景的已知递推公式的数列模型的求解关键是耐心读题、仔细理解题,只有弄清题意,才能将实际问题转化为数学模型进行解答,“盯紧”题目条件中的递推公式,利用此递推公式往要求的量转化,如本题,剥去数学文化背景,实质就是已知a 1=1,且a n =⎩⎪⎨⎪⎧2a n -1-1,n 为偶数,2a n -1+2,n 为奇数,求a 4的问题.4.周期数列与数学文化(2020·山东临沂三模)意大利数学家斐波那契以兔子繁殖为例,引入“兔子数列”:1,1,2,3,5,8,13,21,34,55,…即F (1)=F (2)=1,F (n )=F (n -1)+F (n -2)(n ≥3,n ∈N +).此数列在现代物理、化学等方面都有着广泛的应用.若此数列被2除后的余数构成一个新数列{a n },则数列{a n }的前2 019项的和为( )A .672B .673C .1 346D .2 019【解析】 由于{a n }是数列1,1,2,3,5,8,13,21,34,55,…各项除以2的余数,故{a n }为1,1,0,1,1,0,1,1,0,1,…,所以{a n }是周期为3的周期数列,且一个周期中的三项之和为1+1+0=2. 因为2 019=673×3,所以数列{a n }的前2 019项的和为673×2=1 346.故选C.以数学文化为背景的周期数列模型题的求解关键是细审题,建立数学模型,并会适时脱去背景,如本题,脱去背景,实质是利用斐波那契数列的各项除以2的余数的特征,得出新数列的周期性,进而求出结果.5.数列在实际问题中的应用私家车具有申请报废制度.一车主购买车辆时花费15万,每年的保险费、路桥费、汽油费等约1.5万元,每年的维修费是一个公差为3 000元的等差数列,第一年维修费为3 000元,则该车主申请车辆报废的最佳年限(使用多少年的年平均费用最少)是________年.【解析】 设这辆汽车报废的最佳年限为n 年,第n 年的费用为a n ,则a n =1.5+0.3n .前n 年的总费用为S n =15+1.5n +n2(0.3+0.3n )=0.15n 2+1.65n +15,年平均费用:S n n =0.15n +15n+1.65≥20.15n ×15n +1.65=4.65,当且仅当0.15n =15n,即n=10时,年平均费用S nn取得最小值.所以这辆汽车报废的最佳年限是10年.【答案】 10数学建模是指对现实问题进行抽象,用数学语言表达和解决实际问题的过程.有关数列的应用问题,是让学生能够在实际情境中,用数学的思想分析数列问题,用数学的语言表达数列问题,用数学的知识得到数列模型,用数列的方法得到结论,验证数学结论与实际问题的相符程度,最终得到符合实际规律的结果.[基础题组练]1.(2020·江西宜春一模)在等比数列{a n }中,a 1a 3=a 4=4,则a 6的所有可能值构成的集合是( )A .{6}B .{-8,8}C .{-8}D .{8}解析:选D.因为a 1a 3=a 22=4,a 4=4,所以a 2=2,所以q 2=a 4a 2=2,所以a 6=a 2q 4=2×4=8,故a 6的所有可能值构成的集合是{8},故选D.2.在等比数列{a n }中,如果a 1+a 2=40,a 3+a 4=60,那么a 7+a 8=( )A .135B .100C .95D .80解析:选A.由等比数列前n 项和的性质知,a 1+a 2,a 3+a 4,a 5+a 6,a 7+a 8成等比数列,其首项为40,公比为6040=32,所以a 7+a 8=40×⎝ ⎛⎭⎪⎫323=135.3.(2020·山西3月高考考前适应性测试)正项等比数列{a n }中,a 1a 5+2a 3a 7+a 5a 9=16,且a 5与a 9的等差中项为4,则{a n }的公比是( )A .1B .2 C.22D .2解析:选D.设公比为q ,由正项等比数列{a n }中,a 1a 5+2a 3a 7+a 5a 9=16,可得a 23+2a 3a 7+a 27=(a 3+a 7)2=16,即a 3+a 7=4,由a 5与a 9的等差中项为4,得a 5+a 9=8,则q 2(a 3+a 7)=4q 2=8,则q=2(舍负),故选D.4.(2020·湘赣十四校第二次联考)中国古代著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其意思为:有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地,请问最后一天走了( )A .6里B .12里C .24里D .96里解析:选A.由题意可得,每天行走的路程构成等比数列,记作数列{a n },设等比数列{a n }的首项为a 1,公比为q ,则q =12,依题意有a 1(1-q 6)1-q =378,解得a 1=192,则a 6=192×(12)5=6,最后一天走了6里,故选A.5.一个等比数列的前三项的积为3,最后三项的积为9,且所有项的积为729,则该数列的项数是( )A .13B .12C .11D .10解析:选B.设该等比数列为{a n },其前n 项积为T n ,则由已知得a 1·a 2·a 3=3,a n -2·a n -1·a n =9,(a 1·a n )3=3×9=33,所以a 1·a n =3,又T n =a 1·a 2·…·a n -1·a n =a n ·a n -1·…·a 2·a 1,所以T 2n =(a 1·a n )n,即7292=3n,所以n =12.6.(2020·黄冈模拟)已知正项等比数列{a n }的前n 项和为S n ,且a 1a 6=2a 3,a 4与2a 6的等差中项为32,则S 5=________.解析:设{a n }的公比为q (q >0),因为a 1a 6=2a 3,而a 1a 6=a 3a 4,所以a 3a 4=2a 3,所以a 4=2.又a 4+2a 6=3,所以a 6=12,所以q =12,a 1=16,所以S 5=16[1-(12)5]1-12=31.答案:317.(一题多解)已知{a n }为等比数列,a 4+a 7=2,a 5a 6=-8,则a 1+a 10=________.解析:法一:设数列{a n }的公比为q ,则由题意得⎩⎪⎨⎪⎧a 4+a 7=a 1q 3+a 1q 6=2,a 5a 6=a 1q 4×a 1q 5=a 21q 9=-8,所以⎩⎪⎨⎪⎧q 3=-2,a 1=1或⎩⎪⎨⎪⎧q 3=-12,a 1=-8,所以a 1+a 10=a 1(1+q 9)=-7.法二:由⎩⎪⎨⎪⎧a 4+a 7=2,a 5a 6=a 4a 7=-8,解得⎩⎪⎨⎪⎧a 4=-2,a 7=4或⎩⎪⎨⎪⎧a 4=4,a 7=-2.所以⎩⎪⎨⎪⎧q 3=-2,a 1=1或⎩⎪⎨⎪⎧q 3=-12,a 1=-8,所以a 1+a 10=a 1(1+q 9)=-7.答案:-78.(2020·安徽安庆模拟)数列{a n }满足:a n +1=λa n -1(n ∈N +,λ∈R 且λ≠0),若数列{a n -1}是等比数列,则λ的值为________.解析:由a n +1=λa n -1,得a n +1-1=λa n -2=λ⎝⎛⎭⎪⎫a n -2λ.由于数列{a n -1}是等比数列,所以2λ=1,得λ=2.答案:29.已知数列{a n }的前n 项和S n =1+λa n ,其中λ≠0. (1)证明{a n }是等比数列,并求其通项公式; (2)若S 5=3132,求λ.解:(1)证明:由题意得a 1=S 1=1+λa 1, 故λ≠1,a 1=11-λ,故a 1≠0.由S n =1+λa n ,S n +1=1+λa n +1得a n +1=λa n +1-λa n , 即a n +1(λ-1)=λa n .由a 1≠0,λ≠0得a n ≠0,所以a n +1a n =λλ-1.因此{a n }是首项为11-λ,公比为λλ-1的等比数列,于是a n =11-λ⎝ ⎛⎭⎪⎫λλ-1n -1.(2)由(1)得S n =1-⎝⎛⎭⎪⎫λλ-1n.由S 5=3132得1-⎝ ⎛⎭⎪⎫λλ-15=3132,即⎝ ⎛⎭⎪⎫λλ-15=132.解得λ=-1.10.(2019·高考全国卷Ⅱ)已知数列{a n }和{b n }满足a 1=1,b 1=0,4a n +1=3a n -b n +4,4b n +1=3b n -a n -4.(1)证明:{a n +b n }是等比数列,{a n -b n }是等差数列; (2)求{a n }和{b n }的通项公式.解:(1)证明:由题设得4(a n +1+b n +1)=2(a n +b n ),即a n +1+b n+1=12(a n +b n ).又因为a 1+b 1=1,所以{a n +b n }是首项为1,公比为12的等比数列.由题设得4(a n +1-b n +1)=4(a n -b n )+8,即a n +1-b n +1=a n -b n+2.又因为a 1-b 1=1,所以{a n -b n }是首项为1,公差为2的等差数列.(2)由(1)知,a n +b n =12n -1,a n -b n =2n -1.所以a n =12[(a n +b n )+(a n -b n )]=12n +n -12,b n =12[(a n +b n )-(a n -b n )]=12n -n +12.[综合题组练]1.已知等比数列{a n }中a 2=1,则其前3项的和S 3的取值范围是( )A .(-∞,-1]B .(-∞,0)∪[1,+∞)C .[3,+∞)D .(-∞,-1]∪[3,+∞)解析:选D.设等比数列{a n }的公比为q , 则S 3=a 1+a 2+a 3=a 2(1q +1+q )=1+q +1q.当公比q >0时,S 3=1+q +1q≥1+2q ·1q=3,当且仅当q =1时,等号成立;当公比q <0时,S 3=1-(-q -1q)≤1-2(-q )·(-1q)=-1,当且仅当q =-1时,等号成立.所以S 3∈(-∞,-1]∪[3,+∞).2.设{a n }是公比为q 的等比数列,|q |>1,令b n =a n +1(n =1,2,…),若数列{b n }有连续四项在集合{-53,-23,19,37,82}中,则q 等于( )A .-12B .12C .-32D .32解析:选C.{b n }有连续四项在{-53,-23,19,37,82}中且b n =a n +1.a n =b n -1,则{a n }有连续四项在{-54,-24,18,36,81}中.因为{a n }是等比数列,等比数列中有负数项,则q <0,且负数项为相隔两项,所以等比数列各项的绝对值递增或递减.按绝对值的顺序排列上述数值18,-24,36,-54,81, 相邻两项相除-2418=-43,36-24=-32,-5436=-32,81-54=-32,则可得-24,36,-54,81是{a n }中连续的四项.q =-32或q =-23(因为|q |>1,所以此种情况应舍),所以q =-32.故选C.3.在递增的等比数列{a n }中,已知a 1+a n =34,a 3·a n -2=64,且前n 项和S n =42,则n =________.解析:因为{a n }为等比数列, 所以a 3·a n -2=a 1·a n =64. 又a 1+a n =34,所以a 1,a n 是方程x 2-34x +64=0的两根,解得⎩⎪⎨⎪⎧a 1=2,a n =32或⎩⎪⎨⎪⎧a 1=32,a n =2.又因为{a n }是递增数列,所以⎩⎪⎨⎪⎧a 1=2,a n =32.由S n =a 1-a n q 1-q =2-32q 1-q=42,解得q =4.由a n =a 1qn -1=2×4n -1=32,解得n =3. 答案:34.已知数列{a n }满足a 1=2且对任意的m ,n ∈N +,都有a m +na m=a n ,则数列{a n }的前n 项和S n =________.解析:因为a n +ma m=a n ,令m =1,则a n +1a 1=a n ,即a n +1a n=a 1=2,所以{a n }是首项a 1=2,公比q =2的等比数列,S n =2(1-2n)1-2=2n +1-2.答案:2n +1-25.(2020·湖北武汉4月毕业班调研)已知正项等比数列{a n }的前n 项和S n 满足S 2+4S 4=S 6,a 1=1.(1)求数列{a n }的公比q ;(2)令b n =a n -15,求T =|b 1|+|b 2|+…+|b 10|的值. 解:(1)由题意可得q ≠1, 由S 2+4S 4=S 6,可知a 1(1-q 2)1-q +4·a 1(1-q 4)1-q =a 1(1-q 6)1-q,所以(1-q 2)+4(1-q 4)=1-q 6,而q ≠1,q >0, 所以1+4(1+q 2)=1+q 2+q 4,即q 4-3q 2-4=0, 所以(q 2-4)(q 2+1)=0,所以q =2.(2)由(1)知a n =2n -1,则{a n }的前n 项和S n =1-2n1-2=2n-1,当n ≥5时,b n =2n -1-15>0,n ≤4时,b n =2n -1-15<0,所以T =-(b 1+b 2+b 3+b 4)+(b 5+b 6+…+b 10)=-(a 1+a 2+a 3+a 4-15×4)+(a 5+a 6+…+a 10-15×6) =-S 4+S 10-S 4+60-90=S 10-2S 4-30=(210-1)-2(24-1)-30 =210-25-29=1 024-32-29=963.6.已知数列{a n }中,a 1=1,a n ·a n +1=⎝ ⎛⎭⎪⎫12n,记T 2n 为{a n }的前2n 项的和,b n =a 2n +a 2n -1,n ∈N +.(1)判断数列{b n }是否为等比数列,并求出b n ; (2)求T 2n .解:(1)因为a n ·a n +1=⎝ ⎛⎭⎪⎫12n,所以a n +1·a n +2=⎝ ⎛⎭⎪⎫12n +1,所以a n +2a n =12,即a n +2=12a n .因为b n =a 2n +a 2n -1,所以b n +1b n =a 2n +2+a 2n +1a 2n +a 2n -1=12a 2n +12a 2n -1a 2n +a 2n -1=12,因为a 1=1,a 1·a 2=12,所以a 2=12,所以b 1=a 1+a 2=32.所以{b n }是首项为32,公比为12的等比数列.所以b n =32×⎝ ⎛⎭⎪⎫12n -1=32n .(2)由(1)可知,a n +2=12a n ,所以a 1,a 3,a 5,…是以a 1=1为首项,以12为公比的等比数列;a 2,a 4,a 6,…是以a 2=12为首项,以12为公比的等比数列,所以T 2n =(a 1+a 3+…+a 2n -1)+(a 2+a 4+…+a 2n )=1-⎝ ⎛⎭⎪⎫12n 1-12+12⎣⎢⎢⎡⎦⎥⎥⎤1-⎝ ⎛⎭⎪⎫12n 1-12=3-32n .。
2018年高考数学(文)(江苏专用)总复习教师用书第六章数列、推理与证明第2讲等差数列Word版含答案
第2讲 等差数列考试要求 1.等差数列的概念,B 级要求;2.等差数列的通项公式与前n 项和公式,C 级要求;3.等差数列与一次函数、二次函数的关系,A 级要求.知 识 梳 理1.等差数列的概念(1)如果一个数列从第二项起,每一项减去它的前一项所得的差都等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示. 数学语言表达式:a n +1-a n =d (n ∈N *,d 为常数),或a n -a n -1=d (n ≥2,d 为常数). (2)若a ,A ,b 成等差数列,则A 叫做a ,b 的等差中项,且A =a +b2.2.等差数列的通项公式与前n 项和公式(1)若等差数列{a n }的首项是a 1,公差是d ,则其通项公式为a n =a 1+(n -1)d . 通项公式的推广:a n =a m +(n -m )d (m ,n ∈N *). (2)等差数列的前n 项和公式S n =n a 1+a n 2=na 1+n n -2d (其中n ∈N *,a 1为首项,d 为公差,a n 为第n 项).3.等差数列的有关性质已知数列{a n }是等差数列,S n 是{a n }的前n 项和. (1)若m +n =p +q (m ,n ,p ,q ∈N *),则有a m +a n =a p +a q .(2)等差数列{a n }的单调性:当d >0时,{a n }是递增数列;当d <0时,{a n }是递减数列;当d =0时,{a n }是常数列.(3)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列. (4)数列S m ,S 2m -S m ,S 3m -S 2m ,…也是等差数列. 4.等差数列的前n 项和公式与函数的关系S n =d 2n 2+⎝ ⎛⎭⎪⎫a 1-d 2n .数列{a n }是等差数列⇔S n =An 2+Bn (A ,B 为常数). 5.等差数列的前n 项和的最值在等差数列{a n }中,a 1>0,d <0,则S n 存在最大值;若a 1<0,d >0,则S n 存在最小值.诊 断 自 测1.判断正误(在括号内打“√”或“×”)(1)数列{a n }为等差数列的充要条件是对任意n ∈N *,都有2a n +1=a n +a n +2.( ) (2)等差数列{a n }的单调性是由公差d 决定的.( )(3)已知数列{a n }的通项公式是a n =pn +q (其中p ,q 为常数),则数列{a n }一定是等差数列.( )(4)数列{a n }为等差数列的充要条件是其通项公式为n 的一次函数.( ) (5)等差数列的前n 项和公式是常数项为0的二次函数.( ) 解析 (4)若公差d =0,则通项公式不是n 的一次函数. (5)若公差d =0,则前n 项和不是二次函数.答案 (1)√ (2)√ (3)√ (4)× (5)× 2.(2016·江苏卷)已知{a n }是等差数列,S n 是其前n 项和.若a 1+a 22=-3,S 5=10,则a 9的值是________.解析 设等差数列{a n }公差为d ,由题意可得:⎩⎪⎨⎪⎧a 1+a 1+d 2=-3,5a 1+5×42d =10,解得⎩⎪⎨⎪⎧a 1=-4,d =3,则a 9=a 1+8d =-4+8×3=20. 答案 203.(2017·盐城模拟)设等差数列{a n }的前n 项和为S n ,若S 3=2a 3,S 5=15,则a 2 016=________. 解析 在等差数列{a n }中,由S 3=2a 3知,3a 2=2a 3,而S 5=15,则a 3=3,于是a 2=2,从而其公差为1,首项为1,因此a n =n ,故a 2 016=2 016. 答案 2 0164.在等差数列{a n }中,a 1=7,公差为d ,前n 项和为S n ,当且仅当n =8时S n 取得最大值,则d 的取值范围为______.解析 由题意知d <0且⎩⎪⎨⎪⎧a 8>0,a 9<0,即⎩⎪⎨⎪⎧7+7d >0,7+8d <0,解得-1<d <-78.答案 ⎝⎛⎭⎪⎫-1,-78 5.(必修5P40习题7改编)在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=450,则a 2+a 8=________.解析 由等差数列的性质,得a 3+a 4+a 5+a 6+a 7=5a 5=450,∴a 5=90,∴a 2+a 8=2a 5=180. 答案 180考点一 等差数列基本量的运算【例1】 (1)(2016·北京卷)已知{a n }为等差数列,S n 为其前n 项和.若a 1=6,a 3+a 5=0,则S 6=________.(2)(2017·盐城模拟)设等差数列{a n }的前n 项和为S n ,S 3=6,S 4=12,则S 6=________. 解析 (1)∵a 3+a 5=2a 4=0,∴a 4=0. 又a 1=6,∴a 4=a 1+3d =0,∴d =-2. ∴S 6=6×6+-2×(-2)=6.(2)法一 设数列{a n }的首项为a 1,公差为d ,由S 3=6,S 4=12,可得⎩⎪⎨⎪⎧S 3=3a 1+3d =6,S 4=4a 1+6d =12,解得⎩⎪⎨⎪⎧a 1=0,d =2,即S 6=6a 1+15d =30.法二 由{a n }为等差数列,故可设前n 项和S n =An 2+Bn ,由S 3=6,S 4=12可得⎩⎪⎨⎪⎧S 3=9A +3B =6,S 4=16A +4B =12,解得⎩⎪⎨⎪⎧A =1,B =-1,即S n =n 2-n ,则S 6=36-6=30.答案 (1)6 (2)30规律方法 (1)等差数列的通项公式及前n 项和公式共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了用方程的思想来解决问题.(2)数列的通项公式和前n 项和公式在解题中起到变量代换作用,而a 1和d 是等差数列的两个基本量,用它们表示已知和未知是常用方法.【训练1】 (2017·南京师大附中模拟)在数列{a n }中,若a 1=-2,且对任意的n ∈N *有2a n+1=1+2a n ,则数列{a n }前10项的和为________.解析 由2a n +1=1+2a n 得a n +1-a n =12,所以数列{a n }是首项为-2,公差为12的等差数列,所以S 10=10×(-2)+-2×12=52. 答案 52考点二 等差数列的判定与证明(典例迁移)【例2】 (经典母题)若数列{a n }的前n 项和为S n ,且满足a n +2S n S n -1=0(n ≥2),a 1=12.(1)求证:⎩⎨⎧⎭⎬⎫1S n 成等差数列;(2)求数列{a n }的通项公式.(1)证明 当n ≥2时,由a n +2S n S n -1=0, 得S n -S n -1=-2S n S n -1,所以1S n -1S n -1=2,又1S 1=1a 1=2,故⎩⎨⎧⎭⎬⎫1S n 是首项为2,公差为2的等差数列.(2)解 由(1)可得1S n =2n ,∴S n =12n .当n ≥2时,a n =S n -S n -1=12n-1n -=n -1-n 2n n -=-12n n -.当n =1时,a 1=12不适合上式.故a n=⎩⎪⎨⎪⎧12,n =1,-12n n -,n ≥2.【迁移探究1】 将本例条件“a n +2S n S n -1=0(n ≥2),a 1=12”改为“S n (S n -a n )+2a n =0(n ≥2),a 1=2”,问题不变,试求解.(1)证明 当n ≥2时,a n =S n -S n -1且S n (S n -a n )+2a n =0. ∴S n [S n -(S n -S n -1)]+2(S n -S n -1)=0, 即S n S n -1+2(S n -S n -1)=0. 即1S n -1S n -1=12.又1S 1=1a 1=12. 故数列⎩⎨⎧⎭⎬⎫1S n 是以首项为12,公差为12的等差数列.(2)解 由(1)知1S n =n 2,∴S n =2n,当n ≥2时,a n =S n -S n -1=-2n n -当n =1时,a 1=2不适合上式, 故a n =⎩⎪⎨⎪⎧2,n =1,-2n n -,n ≥2.【迁移探究2】 已知数列{a n }满足2a n -1-a n a n -1=1(n ≥2),a 1=2,证明数列⎩⎨⎧⎭⎬⎫1a n -1是等差数列,并求数列{a n }的通项公式.解 当n ≥2时,a n =2-1a n -1, ∴1a n -1-1a n -1-1=12-1a n -1-1-1a n -1-1=11-1a n -1-1a n -1-1=a n -1a n -1-1-1a n -1-1=a n -1-1a n -1-1=1(常数). 又1a 1-1=1. ∴数列⎩⎨⎧⎭⎬⎫1a n -1是以首项为1,公差为1的等差数列. ∴1a n -1=1+(n -1)×1, ∴a n =n +1n. 规律方法 等差数列的四种判断方法:(1)定义法:对于n ≥2的任意自然数,验证a n -a n -1为同一常数. (2)等差中项法:验证2a n -1=a n +a n -2(n ≥3,n ∈N *)都成立. (3)通项公式法:验证a n =pn +q .(4)前n 项和公式法:验证S n =An 2+Bn .后两种方法只能用来判断是否为等差数列,而不能用来证明等差数列.考点三 等差数列的性质及应用【例3】 (1)(2015·全国Ⅱ卷改编)设S n 是等差数列{a n }的前n 项和,若a 1+a 3+a 5=3,则S 5=________.(2)(2017·洛阳统考)设等差数列{a n }的前n 项和为S n ,若S 3=9,S 6=36,则a 7+a 8+a 9=________.(3)已知S n 是等差数列{a n }的前n 项和,若a 1=-2 014,S 2 0142 014-S 2 0082 008=6,则S 2 017=________.解析 (1)∵{a n }为等差数列,∴a 1+a 5=2a 3,由a 1+a 3+a 5=3得3a 3=3,则a 3=1,∴S 5=a 1+a 52=5a 3=5.(2)由{a n }是等差数列,得S 3,S 6-S 3,S 9-S 6为等差数列. 即2(S 6-S 3)=S 3+(S 9-S 6), 得到S 9-S 6=2S 6-3S 3=45.(3)由等差数列的性质可得⎩⎨⎧⎭⎬⎫S n n 也为等差数列.设其公差为d .则S 2 0142 014-S 2 0082 008=6d =6,∴d =1.故S 2 0172 017=S 11+2 016d =-2 014+2 016=2, ∴S 2 017=2×2 017=4 034. 答案 (1)5 (2)45 (3)4 034规律方法 等差数列的性质是解题的重要工具.(1)在等差数列{a n }中,数列 S m ,S 2m -S m ,S 3m -S 2m 也成等差数列. (2)在等差数列{a n }中,数列⎩⎨⎧⎭⎬⎫S n n 也成等差数列.【训练3】 (1)(2017·扬州中学质检)若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列的项数为________.(2)(2015·广东卷)在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=25,则a 2+a 8=________. 解析 (1)因为a 1+a 2+a 3=34,a n -2+a n -1+a n =146,a 1+a 2+a 3+a n -2+a n -1+a n =34+146=180,又因为a 1+a n =a 2+a n -1=a 3+a n -2, 所以3(a 1+a n )=180,从而a 1+a n =60, 所以S n =n a 1+a n2=n ×602=390,即n =13.(2)因为{a n }是等差数列,所以a 3+a 7=a 4+a 6=a 2+a 8=2a 5,a 3+a 4+a 5+a 6+a 7=5a 5=25,即a 5=5,a 2+a 8=2a 5=10. 答案 (1)13 (2)10考点四 等差数列前n 项和及其最值【例4】 (1)设数列{a n }的通项公式为a n =2n -10(n ∈N *),则|a 1|+|a 2|+…+|a 15|=________.(2)(2017·衡水月考)等差数列{a n }的前n 项和为S n ,已知a 1=13,S 3=S 11,当S n 最大时,n 的值是________.解析 (1)由a n =2n -10(n ∈N *)知{a n }是以-8为首项,2为公差的等差数列,又由a n =2n -10≥0得n ≥5,∴n ≤5时,a n ≤0,当n >5时,a n >0,∴|a 1|+|a 2|+…+|a 15|=-(a 1+a 2+a 3+a 4)+(a 5+a 6+…+a 15)=20+100=130.(2)法一 由S 3=S 11,得a 4+a 5+…+a 11=0,根据等差数列的性质,可得a 7+a 8=0.根据首项等于13可推知这个数列递减,从而得到a 7>0,a 8<0,故n =7时S n 最大.法二 由S 3=S 11,可得3a 1+3d =11a 1+55d ,把a 1=13代入,得d =-2,故S n =13n -n (n -1)=-n 2+14n .根据二次函数的性质,知当n =7时S n 最大.法三 根据a 1=13,S 3=S 11,知这个数列的公差不等于零,且这个数列的和是先递增后递减.根据公差不为零的等差数列的前n 项和是关于n 的二次函数,以及二次函数图象的对称性,可得只有当n =3+112=7时,S n 取得最大值.答案 (1)130 (2)7规律方法 求等差数列前n 项和的最值,常用的方法:(1)利用等差数列的单调性,求出其正负转折项;(2)利用性质求出其正负转折项,便可求得和的最值;(3)将等差数列的前n 项和S n =An 2+Bn (A ,B 为常数)看作二次函数,根据二次函数的性质求最值.【训练4】 (2017·长春质检)设等差数列{a n }的前n 项和为S n ,a 1>0且a 6a 5=911,则当S n 取最大值时,n 的值为________. 解析 由a 6a 5=911,得S 11=S 9,即a 10+a 11=0,根据首项a 1>0可推知这个数列递减,从而a 10>0,a 11<0,故n =10时,S n 最大. 答案 10[思想方法]1.在解有关等差数列的基本量问题时,可通过列关于a 1,d 的方程组进行求解. 2.证明等差数列要用定义;另外还可以用等差中项法,通项公式法,前n 项和公式法判定一个数列是否为等差数列.3.等差数列性质灵活使用,可以大大减少运算量. [易错防范]1.用定义法证明等差数列应注意“从第2项起”,如证明了a n +1-a n =d (n ≥2)时,应注意验证a 2-a 1是否等于d ,若a 2-a 1≠d ,则数列{a n }不为等差数列.2.利用二次函数性质求等差数列前n 项和最值时,一定要注意自变量n 是正整数.基础巩固题组(建议用时:40分钟)一、填空题1.(2017·南京模拟)在等差数列{a n }中,已知a 1+a 7=10,则a 3+a 5=________. 解析 ∵{a n }是等差数列, ∴a 3+a 5=a 1+a 7=10. 答案 102.(2017·南通调研)已知数列{a n }是等差数列,a 1+a 7=-8,a 2=2,则数列{a n }的公差d =________.解析 法一 由题意可得⎩⎪⎨⎪⎧a 1+a 1+6d=-8,a 1+d =2,解得a 1=5,d =-3.法二 a 1+a 7=2a 4=-8,∴a 4=-4, ∴a 4-a 2=-4-2=2d ,∴d =-3. 答案 -33.(2015·陕西卷)中位数为1 010的一组数构成等差数列,其末项为2 015,则该数列的首项为________.解析 设该数列的首项为a 1,根据等差数列的性质可得a 1+2 015=2×1 010,从而a 1=5. 答案 54.已知等差数列{a n }的前n 项和为S n ,且S 10=10,S 20=30,则S 30=________. 解析 ∵S 10,S 20-S 10,S 30-S 20成等差数列, ∴2(S 20-S 10)=S 10+S 30-S 20, ∴40=10+S 30-30,∴S 30=60. 答案 605.(2017·徐州、宿迁、连云港模拟)在等差数列{a n }中,a 1+3a 8+a 15=120,则3a 9-a 11的值为________.解析 由a 1+3a 8+a 15=5a 8=120,得a 8=24,故3a 9-a 11=3(a 1+8d )-(a 1+10d )=2a 1+14d =2(a 1+7d )=2a 8=48. 答案 486.设数列{a n },{b n }都是等差数列,且a 1=25,b 1=75,a 2+b 2=100,则a 37+b 37=________. 解析 设{a n },{b n }的公差分别为d 1,d 2,则(a n +1+b n +1)-(a n +b n )=(a n +1-a n )+(b n +1-b n )=d 1+d 2,∴{a n +b n }为等差数列,又a 1+b 1=a 2+b 2=100, ∴{a n +b n }为常数列,∴a 37+b 37=100. 答案 1007.(2017·泰安模拟)设等差数列{a n }的前n 项和为S n ,若a 2=-11,a 5+a 9=-2,则当S n 取最小值时,n =________.解析 设等差数列{a n }的首项为a 1,公差为d ,由⎩⎪⎨⎪⎧a 2=-11,a 5+a 9=-2,得⎩⎪⎨⎪⎧a 1+d =-11,2a 1+12d =-2,解得⎩⎪⎨⎪⎧a 1=-13,d =2.∴a n =-15+2n .由a n =-15+2n ≤0,解得n ≤152.又n 为正整数,∴当S n 取最小值时,n =7. 答案 78.正项数列{a n }满足a 1=1,a 2=2,2a 2n =a 2n +1+a 2n -1(n ∈N *,n ≥2),则a 7=________. 解析 由2a 2n =a 2n +1+a 2n -1(n ∈N *,n ≥2),可得数列{a 2n }是等差数列,公差d =a 22-a 21=3,首项a 21=1,所以a 2n =1+3(n -1)=3n -2,∴a n =3n -2,∴a 7=19. 答案19二、解答题9.(2016·全国Ⅱ卷)等差数列{a n }中,a 3+a 4=4,a 5+a 7=6. (1)求{a n }的通项公式;(2)设b n =[a n ],求数列{b n }的前10项和,其中[x ]表示不超过x 的最大整数,如[0.9]=0,[2.6]=2.解 (1)设数列{a n }首项为a 1,公差为d ,由题意有⎩⎪⎨⎪⎧2a 1+5d =4,a 1+5d =3.解得⎩⎪⎨⎪⎧a 1=1,d =25.所以{a n }的通项公式为a n =2n +35. (2)由(1)知,b n =⎣⎢⎡⎦⎥⎤2n +35.当n =1,2,3时,1≤2n +35<2,b n =1;当n =4,5时,2≤2n +35<3,b n =2;当n =6,7,8时,3≤2n +35<4,b n =3;当n =9,10时,4≤2n +35<5,b n =4.所以数列{b n }的前10项和为1×3+2×2+3×3+4×2=24.10.已知数列{a n }的前n 项和为S n ,a 1=1,a n ≠0,a n a n +1=λS n -1,其中λ为常数. (1)证明:a n +2-a n =λ;(2)是否存在λ,使得{a n }为等差数列?并说明理由. (1)证明 由题设知,a n a n +1=λS n -1,a n +1a n +2=λS n +1-1. 两式相减得a n +1(a n +2-a n )=λa n +1. 由于a n +1≠0,所以a n +2-a n =λ.(2)解 由题设知,a 1=1,a 1a 2=λS 1-1,可得a 2=λ-1. 由(1)知,a 3=λ+1. 令2a 2=a 1+a 3,解得λ=4. 故a n +2-a n =4,由此可得{a 2n -1}是首项为1,公差为4的等差数列,a 2n -1=4n -3; {a 2n }是首项为3,公差为4的等差数列,a 2n =4n -1. 所以a n =2n -1,a n +1-a n =2.因此存在λ=4,使得数列{a n }为等差数列.能力提升题组 (建议用时:20分钟)11.(2017·东北三省四市联考)《莱因德纸草书》是世界上最古老的数学著作之一.书中有一道这样的题目:把100个面包分给5个人,使每人所得成等差数列,且使较大的三份之和的17是较小的两份之和,则最小的一份为________. 解析 依题意,设这100份面包所分成的五份由小到大依次为a -2m ,a -m ,a ,a +m ,a +2m ,则有⎩⎪⎨⎪⎧5a =100,a +a +m+a +2m =a -2m +a -m ,解得a =20,m =11a 24,a -2m =a 12=53,即其中最小一份为53.答案 5312.(2017·泰州模拟)已知正项等差数列{a n }的前n 项和为S n ,若S 12=24,则a 6·a 7的最大值为________.解析 在等差数列{a n }中,∵S 12=6(a 6+a 7)=24,∴a 6+a 7=4,令x >0,y >0,由基本不等式可得x ·y ≤⎝⎛⎭⎪⎫x +y 22,当且仅当x =y 时“=”成立.又a 6>0,a 7>0,∴a 6·a 7≤⎝ ⎛⎭⎪⎫a 6+a 722=4,当且仅当a 6=a 7=2时,“=”成立.即a 6·a 7的最大值为4. 答案 413.设等差数列{a n },{b n }的前n 项和分别为S n ,T n ,若对任意自然数n 都有S n T n =2n -34n -3,则a 9b 5+b 7+a 3b 8+b 4的值为________.解析 ∵{a n },{b n }为等差数列, ∴a 9b 5+b 7+a 3b 8+b 4=a 92b 6+a 32b 6=a 9+a 32b 6=a 6b 6.∵S 11T 11=a 1+a 11b 1+b 11=2a 62b 6=2×11-34×11-3=1941, ∴a 6b 6=1941. 答案 194114.(2014·江苏卷)设数列{a n }的前n 项和为S n .若对任意的正整数n ,总存在正整数m ,使得S n =a m ,则称{a n }是“H 数列”.(1)若数列{a n }的前n 项和S n =2n (n ∈N *),证明:{a n }是“H 数列”;(2)设{a n }是等差数列,其首项a 1=1,公差d <0,若{a n }是“H 数列”,求d 的值;(3)证明:对任意的等差数列{a n },总存在两个“H 数列”{b n }和{c n },使得a n =b n +c n (n ∈N *)成立.(1)证明 首先a 1=S 1=2,当n ≥2时,a n =S n -S n -1=2n -2n -1=2n -1,所以a n =⎩⎪⎨⎪⎧ 2,n =1,2n -1,n ≥2,所以对任意的n ∈N *,S n =2n是数列{a n }中的n +1项,因此数列{a n }是“H 数列”.(2)解 由题意a n =1+(n -1)d ,S n =n +n n -2d ,数列{a n }是“H 数列”,则存在k ∈N *,使n +n n -2d =1+(k -1)d ,k =n -1d +n n -2+1,由于n n -2∈N *,又k ∈N *,则n -1d∈Z 对一切正整数n 都成立,所以d =-1. (3)证明 首先,若d n =bn (b 是常数),则数列{d n }前n 项和为S n =n n +2b 是数列{d n }中的第n n +2项,因此{d n }是“H 数列”,对任意的等差数列{a n },a n =a 1+(n -1)d (d是公差),设b n =na 1,c n =(d -a 1)(n -1),则a n =b n +c n ,而数列{b n },{c n }都是“H 数列”,证毕.。
2018年高考数学(理)(江苏专用)总复习教师用书第六章数列、推理与证明第1讲数列的概念Word版含答案
第1讲数列的概念考试要求 1.数列的概念及数列与函数的关系,A级要求;2.数列的几种简单表示方法(列表、图象、通项公式),A级要求.知识梳理1.数列的概念(1)数列的定义:按照一定顺序排列的一列数称为数列,数列中的每一个数叫做这个数列的项.(2)数列与函数的关系:从函数观点看,数列可以看成以正整数集N*(或它的有限子集)为定义域的函数a n=f(n),当自变量按照从小到大的顺序依次取值时所对应的一列函数值.(3)数列有三种表示法,它们分别是列表法、图象法和通项公式法.2.数列的分类3.数列的两种常用的表示方法(1)通项公式:如果数列{a n}的第n项a n与序号n之间的关系可以用一个式子a n=f(n)来表示,那么这个公式叫做这个数列的通项公式.(2)递推公式:如果已知数列{a n }的第1项(或前几项),且从第二项(或某一项)开始的任一项a n 与它的前一项a n -1(或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式.4.已知数列{a n }的前n 项和S n ,则a n =⎩⎪⎨⎪⎧S 1 n =,S n -S n -1 n诊 断 自 测1.判断正误(在括号内打“√”或“×”)(1)相同的一组数按不同顺序排列时都表示同一个数列.( ) (2)一个数列中的数是不可以重复的.( ) (3)所有数列的第n 项都能使用公式表达.( )(4)根据数列的前几项归纳出的数列的通项公式可能不止一个.( ) 解析 (1)数列:1,2,3和数列:3,2,1是不同的数列. (2)数列中的数是可以重复的. (3)不是所有的数列都有通项公式. 答案 (1)× (2)× (3)× (4)√2.设数列{a n }的前n 项和S n =n 2,则a 8的值为________. 解析 当n =8时,a 8=S 8-S 7=82-72=15. 答案 153.(2014·全国Ⅱ卷)数列{a n }满足a n +1=11-a n ,a 8=2,则a 1=________.解析 由a n +1=11-a n ,得a n =1-1a n +1,∵a 8=2,∴a 7=1-12=12,a 6=1-1a 7=-1,a 5=1-1a 6=2,…,∴{a n }是以3为周期的数列,∴a 1=a 7=12.答案 124.已知a n =n 2+λn ,且对于任意的n ∈N *,数列{a n }是递增数列,则实数λ的取值范围是________.解析 因为{a n }是递增数列,所以对任意的n ∈N *,都有a n +1>a n ,即(n +1)2+λ(n +1)>n 2+λn ,整理,得2n +1+λ>0,即λ>-(2n +1).(*)因为n ≥1,所以-(2n +1)≤-3,要使不等式(*)恒成立,只需λ>-3.答案 (-3,+∞)5.(必修5P34习题7改编)根据下面的图形及相应的点数,写出点数构成的数列的一个通项公式a n =________.答案 5n -4考点一 由数列的前几项求数列的通项 【例1】 根据下面各数列前几项的值,写出数列的一个通项公式: (1)-1,7,-13,19,…; (2)23,415,635,863,1099,…; (3)12,2,92,8,252,…; (4)5,55,555,5 555,….解 (1)偶数项为正,奇数项为负,故通项公式必含有因式(-1)n,观察各项的绝对值,后一项的绝对值总比它前一项的绝对值大6,故数列的一个通项公式为a n =(-1)n(6n -5). (2)这是一个分数数列,其分子构成偶数数列,而分母可分解为1×3,3×5,5×7,7×9,9×11,…,每一项都是两个相邻奇数的乘积.故所求数列的一个通项公式为a n =2nn -n +.(3)数列的各项,有的是分数,有的是整数,可将数列的各项都统一成分数再观察.即12,42,92,162,252,…,从而可得数列的一个通项公式为a n =n 22. (4)将原数列改写为59×9,59×99,59×999,…,易知数列9,99,999,…的通项为10n-1,故所求的数列的一个通项公式为a n =59(10n-1).规律方法 根据所给数列的前几项求其通项时,需仔细观察分析,抓住以下几方面的特征: (1)分式中分子、分母的各自特征; (2)相邻项的联系特征; (3)拆项后的各部分特征;(4)符号特征.应多进行对比、分析,从整体到局部多角度观察、归纳、联想. 【训练1】 (1)数列0,23,45,67,…的一个通项公式为______(填序号).①a n =n -1n +2(n ∈N *);②a n =n -12n +1(n ∈N *); ③a n =n -2n -1(n ∈N *);④a n =2n 2n +1(n ∈N *).(2)数列-11×2,12×3,-13×4,14×5,…的一个通项公式a n =________.解析 (1)注意到分子0,2,4,6都是偶数,对照各项排除即可.(2)这个数列前4项的绝对值都等于序号与序号加1的积的倒数,且奇数项为负,偶数项为正,所以它的一个通项公式为a n =(-1)n1nn +.答案 (1)③ (2)(-1)n1nn +考点二 由S n 与a n 的关系求a n(易错警示)【例2】 (1)若数列{a n }的前n 项和S n =3n 2-2n +1,则数列{a n }的通项公式a n =________. (2)若数列{a n }的前n 项和S n =23a n +13,则{a n }的通项公式a n =________.解析 (1)当n =1时,a 1=S 1=3×12-2×1+1=2; 当n ≥2时,a n =S n -S n -1=3n 2-2n +1-[3(n -1)2-2(n -1)+1]=6n -5,显然当n =1时,不满足上式.故数列的通项公式为a n =⎩⎪⎨⎪⎧2,n =1,6n -5,n ≥2.(2)由S n =23a n +13,得当n ≥2时,S n -1=23a n -1+13,两式相减,得a n =23a n -23a n -1,∴当n ≥2时,a n =-2a n -1,即a na n -1=-2. 又n =1时,S 1=a 1=23a 1+13,a 1=1,∴a n =(-2)n -1.答案 (1)⎩⎪⎨⎪⎧2,n =16n -5,n ≥2 (2)(-2)n -1规律方法 数列的通项a n 与前n项和S n 的关系是a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2.①当n =1时,a 1若适合S n -S n -1,则n =1的情况可并入n ≥2时的通项a n ;②当n =1时,a 1若不适合S n -S n-1,则用分段函数的形式表示.易错警示 在利用数列的前n 项和求通项时,往往容易忽略先求出a 1,而是直接把数列的通项公式写成a n =S n -S n -1的形式,但它只适用于n ≥2的情形.【训练2】 (1)(2017·淮安月考)在数列{a n }中,S n 是其前n 项和,且S n =2a n +1,则数列的通项公式a n =________.(2)已知数列{a n }的前n 项和S n =3n+1,则数列的通项公式a n =________.解析 (1)依题意得S n +1=2a n +1+1,S n =2a n +1,两式相减得S n +1-S n =2a n +1-2a n ,即a n +1=2a n ,又S 1=2a 1+1=a 1,因此a 1=-1,所以数列{a n }是以a 1=-1为首项、2为公比的等比数列,a n =-2n -1.(2)当n =1时,a 1=S 1=3+1=4, 当n ≥2时,a n =S n -S n -1=3n+1-3n -1-1=2·3n -1.显然当n =1时,不满足上式.∴a n =⎩⎪⎨⎪⎧4,n =1,2·3n -1,n ≥2.答案 (1)-2n -1(2)⎩⎪⎨⎪⎧4,n =1,2·3n -1,n ≥2考点三 由数列的递推关系求通项公式 【例3】 在数列{a n }中,(1)若a 1=2,a n +1=a n +n +1,则通项公式a n =________. (2)若a 1=1,a n =n -1na n -1(n ≥2),则通项公式a n =________. (3)若a 1=1,a n +1=2a n +3,则通项公式a n =________.解析 (1)由题意得,当n ≥2时,a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=2+(2+3+…+n )=2+n -+n2=n n +2+1.又a 1=2=+2+1,符合上式,因此a n =n n +2+1.(2)法一 因为a n =n -1n a n -1(n ≥2),所以a n -1=n -2n -1·a n -2,…,a 2=12a 1,以上(n -1)个式子的等号两端分别相乘得a n =a 1·12·23·…·n -1n =a 1n =1n .法二 因为a n =a n a n -1·a n -1a n -2·a n -2a n -3·…·a 3a 2·a 2a 1·a 1=n -1n ·n -2n -1·n -1n -2·…·1=1n. (3)设递推公式a n +1=2a n +3可以转化为a n +1+t =2(a n +t ),即a n +1=2a n +t ,解得t =3. 故a n +1+3=2(a n +3).令b n =a n +3,则b 1=a 1+3=4,且b n +1b n =a n +1+3a n +3=2.所以{b n }是以4为首项,2为公比的等比数列. ∴b n =4·2n -1=2n +1,∴a n =2n +1-3.答案 (1)n n +2+1 (2)1n(3)2n +1-3规律方法 (1)形如a n +1=a n +f (n )的递推关系式利用累加法求和,特别注意能消去多少项,保留多少项.(2)形如a n +1=a n ·f (n )的递推关系式可化为a n +1a n=f (n )的形式,可用累乘法,也可用a n =a n a n -1·a n -1a n -2·…·a 2a 1·a 1代入求出通项. (3)形如a n +1=pa n +q 的递推关系式可以化为(a n +1+x )=p (a n +x )的形式,构成新的等比数列,求出通项公式,求变量x 是关键.【训练3】 (1)已知数列{a n }满足a 1=1,a 2=4,a n +2+2a n =3a n +1(n ∈N *),则数列{a n }的通项公式a n =________.(2)在数列{a n }中,a 1=3,a n +1=a n +1nn +,则通项公式a n =________.解析 (1)由a n +2+2a n -3a n +1=0, 得a n +2-a n +1=2(a n +1-a n ),∴数列{a n +1-a n }是以a 2-a 1=3为首项,2为公比的等比数列,∴a n +1-a n =3×2n -1,∴n ≥2时,a n -a n -1=3×2n -2,…,a 3-a 2=3×2,a 2-a 1=3,将以上各式累加得a n -a 1=3×2n -2+…+3×2+3=3(2n -1-1),∴a n =3×2n -1-2(当n =1时,也满足).(2)原递推公式可化为a n +1=a n +1n -1n +1,则a 2=a 1+11-12,a 3=a 2+12-13,a 4=a 3+13-14,…,a n -1=a n -2+1n -2-1n -1, a n =a n -1+1n -1-1n, 逐项相加得,a n =a 1+1-1n ,故a n =4-1n.答案 (1)3×2n -1-2 (2)4-1n考点四 数列的性质【例4】 (1)已知a n =n -1n +1,那么数列{a n }是________数列(从“递减”“递增”“常”“摆动”中选填一个).(2)数列{a n }的通项a n =nn 2+90,则数列{a n }中的最大项是________.(3)数列{a n }满足a n +1=11-a n ,a 8=2,则a 1=________.解析 (1)a n =1-2n +1,将a n 看作关于n 的函数,n ∈N *,易知{a n }是递增数列. (2)令f (x )=x +90x(x >0),运用基本不等式得,f (x )≥290当且仅当x =310时等号成立.因为a n =1n +90n ,所以1n +90n≤1290,由于n ∈N *,不难发现当n =9或10时,a n =119最大. (3)由a n +1=11-a n ,得a n =1-1a n +1, ∵a 8=2,∴a 7=1-12=12,a 6=1-1a 7=-1,a 5=1-1a 6=2,……,∴{a n }是以3为周期的数列, ∴a 1=a 7=12.答案 (1)递增 (2)119 (3)12规律方法 (1)解决数列的单调性问题可用以下三种方法①用作差比较法,根据a n +1-a n 的符号判断数列{a n }是递增数列、递减数列或是常数列. ②用作商比较法,根据a n +1a n(a n >0或a n <0)与1的大小关系进行判断. ③结合相应函数的图象直观判断. (2)解决数列周期性问题的方法先根据已知条件求出数列的前几项,确定数列的周期,再根据周期性求值. (3)数列的最值可以利用数列的单调性或求函数最值的思想求解.【训练4】 (2017·哈尔滨模拟)数列{a n }满足a n +1=⎩⎪⎨⎪⎧2a n,0≤a n≤12,2a n-1,12<a n<1,且a 1=35,则数列的第2 016项为________.解析 由已知可得,a 2=2×35-1=15,a 3=2×15=25, a 4=2×25=45, a 5=2×45-1=35,∴{a n }为周期数列且T =4, ∴a 2 016=a 4=45.答案 45[思想方法]1.由数列的前几项求数列通项,通常用观察法(对于交错数列一般有(-1)n或 (-1)n +1来区分奇偶项的符号);已知数列中的递推关系,一般只要求写出数列的前几项,若求通项可用归纳、猜想和转化的方法. 2.强调a n 与S n 的关系:a n =⎩⎪⎨⎪⎧S 1 n =,S n -S n -1n3.已知递推关系求通项:对这类问题的要求不高,但试题难度较难把握.一般有两种常见思路:(1)算出前几项,再归纳、猜想; (2)利用累加或累乘法求数列的通项公式. [易错防范]1.数列是一种特殊的函数,在利用函数观点研究数列时,一定要注意自变量的取值,如数列a n =f (n )和函数y =f (x )的单调性是不同的. 2.数列的通项公式不一定唯一.基础巩固题组(建议用时:40分钟)一、填空题1.数列-1,3,-5,7,-9,11,…的一个通项公式a n =________. 解析 观察可知a n =(-1)n(2n -1).答案 (-1)n(2n -1)2.数列23,-45,67,-89,…的第10项是________.解析 所给数列呈现分数形式,且正负相间,求通项公式时,我们可以把每一部分进行分解:符号、分母、分子.很容易归纳出数列{a n }的通项公式a n =(-1)n +1·2n 2n +1,故a 10=-2021. 答案 -20213.(2017·南京、盐城调研)在数列{a n }中,已知a 1=1,a n +1=2a n +1,则其通项公式a n =________.解析 由题意知a n +1+1=2(a n +1),∴数列{a n +1}是以2为首项,2为公比的等比数列,∴a n +1=2n ,∴a n =2n-1. 答案 2n-14.数列{a n }的前n 项积为n 2,那么当n ≥2时,a n =________. 解析 设数列{a n }的前n 项积为T n ,则T n =n 2,当n ≥2时,a n =T n T n -1=n 2n -2.答案n 2n -25.数列{a n }满足a n +1+a n =2n -3,若a 1=2,则a 8-a 4=________.解析 依题意得(a n +2+a n +1)-(a n +1+a n )=[2(n +1)-3]-(2n -3),即a n +2-a n =2,所以a 8-a 4=(a 8-a 6)+(a 6-a 4)=2+2=4.答案 46.若数列{a n }满足关系a n +1=1+1a n ,a 8=3421,则a 5=________.解析 借助递推关系,则a 8递推依次得到a 7=2113,a 6=138,a 5=85.答案 857.已知数列{a n }的前n 项和S n =n 2+2n +1(n ∈N *),则a n =________.解析 当n ≥2时,a n =S n -S n -1=2n +1,当n =1时,a 1=S 1=4≠2×1+1,因此a n =⎩⎪⎨⎪⎧4,n =1,2n +1,n ≥2.答案 ⎩⎪⎨⎪⎧4,n =1,2n +1,n ≥28.(2017·扬州期末)已知数列{a n }的前n 项和为S n ,且a n ≠0(n ∈N *),又a n a n +1=S n ,则a 3-a 1=________.解析 因为a n a n +1=S n ,所以令n =1得a 1a 2=S 1=a 1,即a 2=1,令n =2,得a 2a 3=S 2=a 1+a 2,即a 3=1+a 1,所以a 3-a 1=1.答案 1 二、解答题9.数列{a n }的通项公式是a n =n 2-7n +6. (1)这个数列的第4项是多少?(2)150是不是这个数列的项?若是这个数列的项,它是第几项? (3)该数列从第几项开始各项都是正数? 解 (1)当n =4时,a 4=42-4×7+6=-6.(2)令a n =150,即n 2-7n +6=150,解得n =16或n =-9(舍去),即150是这个数列的第16项.(3)令a n =n 2-7n +6>0,解得n >6或n <1(舍). ∴从第7项起各项都是正数.10.已知数列{a n }中,a 1=1,前n 项和S n =n +23a n .(1)求a 2,a 3; (2)求{a n }的通项公式.解 (1)由S 2=43a 2得3(a 1+a 2)=4a 2,解得a 2=3a 1=3.由S 3=53a 3得3(a 1+a 2+a 3)=5a 3,解得a 3=32(a 1+a 2)=6.(2)由题设知a 1=1. 当n ≥2时,有a n =S n -S n -1=n +23a n -n +13a n -1,整理得a n =n +1n -1a n -1. 于是a 1=1,a 2=31a 1,a 3=42a 2,……a n -1=n n -2a n -2,a n =n +1n -1a n -1.将以上n 个等式两端分别相乘,整理得a n =n n +2.显然,当n =1时也满足上式.综上可知,{a n }的通项公式a n =n n +2.能力提升题组(建议用时:20分钟)11.设a n =-3n 2+15n -18,则数列{a n }中的最大项的值是________. 解析 ∵a n =-3⎝ ⎛⎭⎪⎫n -522+34,由二次函数性质,得当n =2或3时,a n 最大,最大为0. 答案 012.(2017·苏北四市期末)已知数列{a n }满足a n +2=a n +1-a n ,且a 1=2,a 2=3,则a 2 016的值为________.解析 由题意得,a 3=a 2-a 1=1,a 4=a 3-a 2=-2,a 5=a 4-a 3=-3,a 6=a 5-a 4=-1,a 7=a 6-a 5=2,∴数列{a n }是周期为6的周期数列,而2 016=6×336,∴a 2 016=a 6=-1. 答案 -113.(2017·太原模拟)已知数列{a n }满足a 1=1,a n -a n +1=na n a n +1(n ∈N *),则a n =________. 解析 由a n -a n +1=na n a n +1得1a n +1-1a n =n ,则由累加法得1a n -1a 1=1+2+…+(n -1)=n 2-n 2,又因为a 1=1,所以1a n =n 2-n 2+1=n 2-n +22,所以a n =2n 2-n +2. 答案 2n 2-n +2 14.(2017·镇江期末)已知数列{a n }中,a n =1+1a +n -(n ∈N *,a ∈R 且a ≠0). (1)若a =-7,求数列{a n }中的最大项和最小项的值;(2)若对任意的n ∈N *,都有a n ≤a 6成立,求a 的取值范围.解 (1)∵a n =1+1a +n -(n ∈N *,a ∈R ,且a ≠0), 又a =-7,∴a n =1+12n -9(n ∈N *). 结合函数f (x )=1+12x -9的单调性,可知1>a 1>a 2>a 3>a 4,a 5>a 6>a 7>…>a n >1(n ∈N *). ∴数列{a n }中的最大项为a 5=2,最小项为a 4=0.(2)a n =1+1a +n -=1+12n -2-a 2,已知对任意的n ∈N *,都有a n ≤a 6成立,结合函数f (x )=1+12x -2-a 2的单调性, 可知5<2-a 2<6,即-10<a <-8. 即a 的取值范围是(-10,-8).。
34第六章 数 列 等比数列及其前n项和
(2)记Sn为{an}的前n项和,若Sm=63,求m. 1--2n
解析 若 an=(-2)n-1,则 Sn= 3 . 由Sm=63得(-2)m=-188,此方程没有正整数解. 若an=2n-1,则Sn=2n-1. 由Sm=63得2m=64,解得m=6. 综上,m=6.
思维升华
(1)等比数列的通项公式与前n项和公式共涉及五个量a1,an,q,n,Sn,已 知其中三个就能求另外两个(简称“知三求二”). (2)运用等比数列的前n项和公式时,注意对q=1和q≠1的分类讨论.
√3n2+n C. 2
3n2-n D. 2
3 课时作业
PART THREE
基础保分练
1.(2018·重庆巴蜀中学月考)已知等比数列{an}满足a1=1,a3a7=16,则该数
列的公比为
√A.± 2
B. 2
C.±2
D.2
解析 根据等比数列的性质可得 a3·a7=a25=a21·q8=q8=16=24,
(λ≠0)仍然是等比数列.
(4)在等比数列{an}中,等距离取出若干项也构成一个等比数列,即an,an+k, an+2k,an+3k,…为等比数列,公比为qk.
【概念方法微思考】 1.将一个等比数列的各项取倒数,所得的数列还是一个等比数列吗?若是, 这两个等比数列的公比有何关系? 提示 仍然是一个等比数列,这两个数列的公比互为倒数. 2.任意两个实数都有等比中项吗? 提示 不是.只有同号的两个非零实数才有等比中项. 3.“b2=ac”是“a,b,c”成等比数列的什么条件? 提示 必要不充分条件.因为b2=ac时不一定有a,b,c成等比数列,比如a=0, b=0,c=1.但a,b,c成等比数列一定有b2=ac.
a1-an (4)数列{an}的通项公式是 an=an,则其前 n 项和为 Sn= 1-a .( × )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章 数列 6.3 等比数列及其前n 项和1.等比数列的定义一般地,如果一个数列从第二项起,每一项与它的前一项的比都等于同一个常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,通常用字母q 表示(q ≠0). 2.等比数列的通项公式设等比数列{a n }的首项为a 1,公比为q ,则它的通项a n =a 1·q n -1.3.等比中项如果在a 与b 中间插入一个数G ,使a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项. 4.等比数列的常用性质 (1)通项公式的推广:a n =a m ·qn -m(n ,m ∈N *).(2)若{a n }为等比数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k ·a l =a m ·a n .(3)若{a n },{b n }(项数相同)是等比数列,则{λa n }(λ≠0),⎩⎨⎧⎭⎬⎫1a n ,{a 2n },{a n ·b n },⎩⎨⎧⎭⎬⎫a n b n 仍是等比数列.5.等比数列的前n 项和公式等比数列{a n }的公比为q (q ≠0),其前n 项和为S n , 当q =1时,S n =na 1; 当q ≠1时,S n =a 1-qn1-q=a 1-a n q1-q. 6.等比数列前n 项和的性质公比不为-1的等比数列{a n }的前n 项和为S n ,则S n ,S 2n -S n ,S 3n -S 2n 仍成等比数列,其公比为q n.【知识拓展】 等比数列{a n }的单调性(1)满足⎩⎪⎨⎪⎧a 1>0,q >1或⎩⎪⎨⎪⎧a 1<0,0<q <1时,{a n }是递增数列.(2)满足⎩⎪⎨⎪⎧a 1>0,0<q <1或⎩⎪⎨⎪⎧a 1<0,q >1时,{a n }是递减数列.(3)当⎩⎪⎨⎪⎧a 1≠0,q =1时,{a n }为常数列.(4)当q <0时,{a n }为摆动数列.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)满足a n +1=qa n (n ∈N *,q 为常数)的数列{a n }为等比数列.( × ) (2)G 为a ,b 的等比中项⇔G 2=ab .( × )(3)如果数列{a n }为等比数列,b n =a 2n -1+a 2n ,则数列{b n }也是等比数列.( × ) (4)如果数列{a n }为等比数列,则数列{ln a n }是等差数列.( × )1.(教材改编)等比数列{a n }中,a 2=2,a 5=14,则公比q =______.答案 12解析 a 2=a 1q =2,a 5=a 1q 4=14,∴q 3=18,∴q =12.2.(教材改编)下列关于“等比中项”的说法中,正确的是_____(填序号). ①任何两个实数都有等比中项; ②两个正数的等比中项必是正数; ③两个负数的等比中项不存在;④同号两数必存在互为相反数的两个等比中项. 答案 ④解析 ①一正数、一负数没有等比中项; ②两个正数的等比中项有两个,它们一正、一负; ③两个负数a ,b 的等比中项为±ab ; 所以①、②、③错误,易知④正确.3.设等比数列{a n }的前n 项和为S n ,若S 2=3,S 4=15,则S 6=____. 答案 63解析 根据题意知,等比数列{a n }的公比不是-1.由等比数列的性质,得(S 4-S 2)2=S 2·(S 6-S 4),即122=3×(S 6-15),解得S 6=63.4.(教材改编)设等比数列{a n }的前n 项和为S n ,若a 1=1,S 6=4S 3,则a 4=____. 答案 3解析 由S 6=4S 3,所以a 1-q 61-q=4a 1-q 31-q,所以q 3=3(q 3=1不合题意,舍去), 所以a 4=a 1·q 3=1×3=3.5.设S n 为等比数列{a n }的前n 项和,8a 2+a 5=0,则S 5S 2=________. 答案 -11解析 设等比数列{a n }的公比为q , ∵8a 2+a 5=0,∴8a 1q +a 1q 4=0. ∴q 3+8=0,∴q =-2,∴S 5S2=a 11-q 51-q ·1-q a 11-q 2=1-q 51-q 2=1--51-4=-11.题型一 等比数列基本量的运算例1 (1)(2015·课标全国Ⅱ)已知等比数列{a n }满足a 1=14,a 3a 5=4(a 4-1),则a 2=________.(2)已知等比数列{a n }的前n 项和为S n ,且a 1+a 3=52,a 2+a 4=54,则S na n =________.答案 (1)12(2)2n-1解析 (1)由{a n }为等比数列,得a 3a 5=a 24, 又a 3a 5=4(a 4-1),所以a 24=4(a 4-1), 解得a 4=2.设等比数列{a n }的公比为q ,则由a 4=a 1q 3,得2=14q 3,解得q =2,所以a 2=a 1q =12.(2)∵⎩⎪⎨⎪⎧a 1+a 3=52,a 2+a 4=54,∴⎩⎪⎨⎪⎧a 1+a 1q 2=52, ①a 1q +a 1q 3=54, ②由①除以②可得1+q2q +q 3=2,解得q =12,代入①得a 1=2,∴a n =2×(12)n -1=42n ,∴S n =2×[1-12n]1-12=4(1-12n ),∴S n a n=-12n42n =2n-1. 思维升华 等比数列基本量的运算是等比数列中的一类基本问题,数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)可迎刃而解.(1)设{a n }是由正数组成的等比数列,S n 为其前n 项和.已知a 2a 4=1,S 3=7,则S 5=________.(2)(2015·湖南)设S n 为等比数列{a n }的前n 项和,若a 1=1,且3S 1,2S 2,S 3成等差数列,则a n =________.答案 (1)314(2)3n -1解析 (1)显然公比q ≠1,由题意得⎩⎪⎨⎪⎧a 1q ·a 1q 3=1,a 1-q 31-q =7,解得⎩⎪⎨⎪⎧a 1=4,q =12或⎩⎪⎨⎪⎧a 1=9q =-13(舍去),∴S 5=a 1-q 51-q=4-1251-12=314. (2)由3S 1,2S 2,S 3成等差数列知,4S 2=3S 1+S 3, 可得a 3=3a 2,所以公比q =3, 故等比数列通项a n =a 1qn -1=3n -1.题型二 等比数列的判定与证明例2 设数列{a n }的前n 项和为S n ,已知a 1+2a 2+3a 3+…+na n =(n -1)S n +2n (n ∈N *). (1)求a 2,a 3的值;(2)求证:数列{S n +2}是等比数列.(1)解 ∵a 1+2a 2+3a 3+…+na n =(n -1)S n +2n (n ∈N *), ∴当n =1时,a 1=2×1=2; 当n =2时,a 1+2a 2=(a 1+a 2)+4, ∴a 2=4;当n =3时,a 1+2a 2+3a 3=2(a 1+a 2+a 3)+6, ∴a 3=8.综上,a 2=4,a 3=8.(2)证明 ∵a 1+2a 2+3a 3+…+na n =(n -1)S n +2n (n ∈N *), ①∴当n ≥2时,a 1+2a 2+3a 3+…+(n -1)a n -1 =(n -2)S n -1+2(n -1).②①-②,得na n =(n -1)S n -(n -2)S n -1+2=n (S n -S n -1)-S n +2S n -1+2=na n -S n +2S n -1+2. ∴-S n +2S n -1+2=0,即S n =2S n -1+2, ∴S n +2=2(S n -1+2).∵S 1+2=4≠0,∴S n -1+2≠0, ∴S n +2S n -1+2=2,故{S n +2}是以4为首项,2为公比的等比数列.思维升华 (1)证明一个数列为等比数列常用定义法与等比中项法,其他方法只用于填空题中的判定;若证明某数列不是等比数列,则只要证明存在连续三项不成等比数列即可. (2)利用递推关系时要注意对n =1时的情况进行验证.已知数列{a n }满足a 1=1,a n +1=3a n +1.(1)证明:{a n +12}是等比数列,并求{a n }的通项公式;(2)证明:1a 1+1a 2+…+1a n <32.证明 (1)由a n +1=3a n +1,得a n +1+12=3(a n +12).又a 1+12=32,所以{a n +12}是首项为32,公比为3的等比数列.所以a n +12=3n2,因此{a n }的通项公式为a n =3n-12.(2)由(1)知1a n =23n -1.因为当n ≥1时,3n-1≥2×3n -1,所以13n -1≤12×3n -1.于是1a 1+1a 2+…+1a n ≤1+13+…+13n -1=32(1-13n )<32, 所以1a 1+1a 2+…+1a n <32.题型三 等比数列性质的应用例3 (1)若等比数列{a n }的各项均为正数,且a 10a 11+a 9a 12=2e 5,则ln a 1+ln a 2+…+ln a 20=_____.(2)设等比数列{a n }的前n 项和为S n ,若S 6S 3=12,则S 9S 3=_____.答案 (1)50 (2)34解析 (1)因为a 10a 11+a 9a 12=2a 10a 11=2e 5, 所以a 10a 11=e 5.所以ln a 1+ln a 2+…+ln a 20 =ln(a 1a 2…a 20)=ln[(a 1a 20)·(a 2a 19)·…·(a 10a 11)] =ln(a 10a 11)10=10ln(a 10a 11) =10ln e 5=50ln e =50.(2)方法一 ∵S 6∶S 3=1∶2,∴{a n }的公比q ≠1.由a 11-q 61-q ÷a 11-q 31-q =12,得q 3=-12,∴S 9S 3=1-q 91-q 3=34. 方法二 ∵{a n }是等比数列,且S 6S 3=12,∴公比q ≠-1,∴S 3,S 6-S 3,S 9-S 6也成等比数列,即(S 6-S 3)2=S 3·(S 9-S 6), 将S 6=12S 3代入得S 9S 3=34.思维升华 等比数列常见性质的应用 等比数列性质的应用可以分为三类: (1)通项公式的变形. (2)等比中项的变形.(3)前n 项和公式的变形.根据题目条件,认真分析,发现具体的变化特征即可找出解决问题的突破口.(1)已知在等比数列{a n }中,a 1a 4=10,则数列{lg a n }的前4项和等于________.(2)(2016·南通一调) 设等比数列{a n }的前n 项和为S n ,若S 2=3,S 4=15,则S 6的值为________. 答案 (1)2 (2)63解析 (1)前4项和S 4=lg a 1+lg a 2+lg a 3+lg a 4=lg(a 1a 2a 3a 4),又∵等比数列{a n }中,a 2a 3=a 1a 4=10, ∴S 4=lg 100=2.(2)方法一 由等比数列的性质得,q 2=S 4-S 2S 2=4,所以q =±2. 由S 2=3,解得⎩⎪⎨⎪⎧q =2,a 1=1,或⎩⎪⎨⎪⎧q =-2,a 1=-3.所以S 6=a 1-q61-q=-261-2=63或S 6=a 1-q 61-q=---6]1--=63.方法二 由S 2,S 4-S 2,S 6-S 4成等比数列可得(S 4-S 2)2=S 2(S 6-S 4),所以S 6=63.13.分类讨论思想在等比数列中的应用典例 (14分)已知首项为32的等比数列{a n }的前n 项和为S n (n ∈N *),且-2S 2,S 3,4S 4成等差数列.(1)求数列{a n }的通项公式; (2)证明:S n +1S n ≤136(n ∈N *).思想方法指导 (1)利用等差数列的性质求出等比数列的公比,写出通项公式. (2)求出前n 项和,根据函数的单调性证明. 规范解答(1)解 设等比数列{a n }的公比为q , 因为-2S 2,S 3,4S 4成等差数列,所以S 3+2S 2=4S 4-S 3,即S 4-S 3=S 2-S 4,可得2a 4=-a 3,于是q =a 4a 3=-12.[2分]又a 1=32,所以等比数列{a n }的通项公式为a n =32×⎝ ⎛⎭⎪⎫-12n -1=(-1)n -1·32n .[4分](2)证明 由(1)知,S n =1-⎝ ⎛⎭⎪⎫-12n,S n +1S n =1-⎝ ⎛⎭⎪⎫-12n +11-⎝ ⎛⎭⎪⎫-12n=⎩⎪⎨⎪⎧2+12nn +,n 为奇数,2+12nn -,n 为偶数.[8分]当n 为奇数时,S n +1S n随n 的增大而减小,所以S n +1S n ≤S 1+1S 1=136.[10分]当n 为偶数时,S n +1S n随n 的增大而减小,所以S n +1S n ≤S 2+1S 2=2512.[12分]故对于n ∈N *,有S n +1S n ≤136.[14分]1.(教材改编){a n },{b n }都是等比数列,那么下列正确的序号是________. ①{a n +b n },{a n ·b n }都一定是等比数列;②{a n +b n }一定是等比数列,但{a n ·b n }不一定是等比数列; ③{a n +b n }不一定是等比数列,但{a n ·b n }一定是等比数列; ④{a n +b n },{a n ·b n }都不一定是等比数列. 答案 ③解析 {a n +b n }不一定是等比数列,如a n =1,b n =-1,因为a n +b n =0,所以{a n +b n }不是等比数列.设{a n },{b n }的公比分别为p ,q ,因为a n +1b n +1a n b n =a n +1a n ·b n +1b n=pq ≠0,所以{a n ·b n }一定是等比数列.2.(2016·江苏东海中学月考)在由正数组成的等比数列{a n }中,若a 4a 5a 6=3,log 3a 1+log 3a 2+log 3a 8+log 3a 9的值为________. 答案 43解析 ∵a 4a 6=a 25,∴a 4a 5a 6=a 35=3, 解得1353.a = ∵a 1a 9=a 2a 8=a 25,∴log 3a 1+log 3a 2+log 3a 8+log 3a 9=log 3a 1a 2a 8a 94433534log log 3.3a ===3.在正项等比数列{a n }中,已知a 1a 2a 3=4,a 4a 5a 6=12,a n -1a n a n +1=324,则n =____. 答案 14解析 设数列{a n }的公比为q , 由a 1a 2a 3=4=a 31q 3与a 4a 5a 6=12=a 31q 12, 可得q 9=3,a n -1a n a n +1=a 31q 3n -3=324,因此q3n -6=81=34=q 36,所以n =14.4.(2016·扬州模拟)在等比数列{a n }中,若a 3,a 7是方程x 2+4x +2=0的两根,则a 5的值是_____. 答案 - 2解析 根据根与系数之间的关系得a 3+a 7=-4,a 3a 7=2,由a 3+a 7=-4<0,a 3a 7>0,所以a 3<0,a 7<0,即a 5<0, 由a 3a 7=a 25,得a 5=-a 3a 7=- 2.5.已知数列{a n }满足log 3a n +1=log 3a n +1(n ∈N *),且a 2+a 4+a 6=9,则13log (a 5+a 7+a 9)的值是________. 答案 -5解析 由log 3a n +1=log 3a n +1(n ∈N *), 得log 3a n +1-log 3a n =1,即log 3a n +1a n=1, 解得a n +1a n=3,所以数列{a n }是公比为3的等比数列. 因为a 5+a 7+a 9=(a 2+a 4+a 6)q 3, 所以a 5+a 7+a 9=9×33=35.所以51579133log ()log 3 5.a a a ++==-6.(2017·盐城检测)在由正数组成的等比数列{a n }中,若a 3a 4a 5=3π,则sin(log 3a 1+log 3a 2+…+log 3a 7)的值为________. 答案32解析 因为a 3a 4a 5=3π=a 34,所以a 4=3π3.log 3a 1+log 3a 2+…+log 3a 7=log 3(a 1a 2…a 7) =log 3a 74=7log 33π3=7π3,所以sin(log 3a 1+log 3a 2+…+log 3a 7)=32. 7.设S n 为等比数列{a n }的前n 项和,已知3S 3=a 4-2,3S 2=a 3-2,则公比q =____. 答案 4解析 因为⎩⎪⎨⎪⎧3S 3=a 4-2, ①3S 2=a 3-2, ②由①-②,得3a 3=a 4-a 3,即4a 3=a 4,则q =a 4a 3=4.8.(2016·南京调研)设公差不为0的等差数列{a n }的前n 项和为S n .若S 3=a 22,且S 1,S 2,S 4成等比数列,则a 10=________.答案 19解析 设等差数列{a n }的公差为d (d ≠0),因为S 1,S 2,S 4成等比数列,所以S 22=S 1S 4,从而(2a 1+d )2=a 1(4a 1+6d ),整理得2a 1d -d 2=0,因为d ≠0,所以d =2a 1,又因为S 3=a 22,所以3a 1+3d =(a 1+d )2,将d =2a 1代入上式得3a 1+6a 1=(a 1+2a 1)2,即9a 1=9a 21,解之得a 1=1(a 1=0舍),从而d =2,所以a 10=1+9×2=19.9.已知正项等比数列{a n }满足a2 015=2a 2 013+a 2 014,若存在两项a m ,a n ,使得a m a n =4a 1,则n +4m nm 的最小值为________.答案 32解析 设{a n }的公比为q (q >0),由正项等比数列{a n }满足a 2 015=2a 2 013+a 2 014,可得a 2 013·q 2=2a 2 013+a 2 013·q ,∴q 2-q -2=0,∵q >0,∴q =2. ∵a m a n =4a 1,∴qm +n -2=16,∴m +n =6. ∴n +4m nm =16(m +n )⎝ ⎛⎭⎪⎫1m +4n =16⎝ ⎛⎭⎪⎫5+n m +4m n ≥32, 当且仅当n m =4m n ,即m =2,n =4时取等号.故n +4m nm 的最小值为32. 10.(2016·苏锡常镇一调)设数列{a n }是首项为1,公差不为零的等差数列,S n 为其前n 项和,若S 1,S 2,S 4成等比数列,则数列{a n }的公差为____.答案 2解析 设公差为d ,其中d ≠0,则S 1,S 2,S 4分别为1,2+d,4+6d .由S 1,S 2,S 4成等比数列,得(2+d )2=4+6d ,即d 2=2d .因为d ≠0,所以d =2.11.(2016·苏北四市期末)已知各项均为正数的数列{an }的首项a 1=1,S n 是数列{a n }的前n 项和,且满足a n S n +1-a n +1S n +a n -a n +1=λa n a n +1(λ≠0,n ∈N *).(1)若a 1,a 2,a 3成等比数列,求实数λ的值;(2)若λ=12,求S n . 解 (1) 令n =1,得a 2=21+λ. 令n =2,得a 2S 3-a 3S 2+a 2-a 3=λa 2a 3, 所以a 3=2λ+4λ+12λ+1. 由a 22=a 1a 3,得(21+λ)2=2λ+4λ+12λ+1, 因为λ≠0,所以λ=1.(2)当λ=12时, a n S n +1-a n +1S n +a n -a n +1=12a n a n +1,所以S n +1a n +1-S n a n +1a n +1-1a n =12, 即S n +1+1a n +1-S n +1a n =12, 所以数列{S n +1a n }是以2为首项,12为公差的等差数列, 所以S n +1a n =2+(n -1)·12, 即S n +1=(n 2+32)a n , ① 当n ≥2时,S n -1+1=(n 2+1)a n -1, ② ①-②得,a n =n +32a n -n +22a n -1, 即(n +1)a n =(n +2)a n -1,所以a n n +2=a n -1n +1(n ≥2), 所以{a nn +2}是常数列,且为13,所以a n =13(n +2). 代入①得S n =(n 2+32)a n -1=n 2+5n 6.12.已知{a n }是等差数列,满足a 1=3,a 4=12,数列{b n }满足b 1=4,b 4=20,且{b n -a n }是等比数列.(1)求数列{a n }和{b n }的通项公式;(2)求数列{b n }的前n 项和.解 (1)设等差数列的公差为d ,由题意得d =a 4-a 13=12-33=3,所以a n =a 1+(n -1)d =3n (n ∈N *).设等比数列{b n -a n }的公比为q ,由题意得q 3=b 4-a 4b 1-a 1=20-124-3=8,解得q =2. 所以b n -a n =(b 1-a 1)qn -1=2n -1. 从而b n =3n +2n -1(n ∈N *).(2)由(1)知b n =3n +2n -1(n ∈N *), 数列{3n }的前n 项和为32n (n +1), 数列{2n -1}的前n 项和为1×1-2n1-2=2n -1. 所以数列{b n }的前n 项和为32n (n +1)+2n -1. 13.(2016·全国丙卷)已知各项都为正数的数列{a n }满足a 1=1,a 2n -(2a n +1-1)a n -2a n +1=0.(1)求a 2,a 3;(2)求{a n }的通项公式.解 (1)由题意,得a 2=12,a 3=14. (2)由a 2n -(2a n +1-1)a n -2a n +1=0,得 2a n +1(a n +1)=a n (a n +1).因为{a n }的各项都为正数,所以a n +1a n =12. 故{a n }是首项为1,公比为12的等比数列, 因此a n =12n -1. 14.(2016·淮安模拟)已知等比数列{a n }的前n 项和是S n ,S 18∶S 9=7∶8.(1)求证:S 3,S 9,S 6依次成等差数列;(2)a 7与a 10的等差中项是不是数列{a n }中的项?如果是,是{a n }中的第几项?如果不是,请说明理由.(1)证明 设等比数列{a n }的公比为q ,若q =1, 则S 18=18a 1,S 9=9a 1,S 18∶S 9=2∶1≠7∶8,∴q ≠1.∴S 18=a 1-q 181-q ,S 9=a 1-q 91-q ,S 18∶S 9=1+q 9.∴1+q 9=78,解得q =-231-. ∴S 3=a 1-q 31-q=32×a 11-q, S 6=a 1-q 61-q =34×a 11-q , S 9=a 1-q 91-q =98×a 11-q . ∵S 9-S 3=-38×a 11-q, S 6-S 9=-38×a 11-q, ∴S 9-S 3=S 6-S 9.∴S 3,S 9,S 6依次成等差数列.(2)解 a 7与a 10的等差中项为 a 7+a 102=a 1-2-2-32=a 116, 设a 7与a 10的等差中项是数列{a n }中的第n 项, 则11131(2),16n a a ---= 化简得143(2)(2),n ----=- 即-n -13=-4,解得n =13. ∴a 7与a 10的等差中项是数列{a n }中的第13项.。