TLV2460中文文档

合集下载

2460M产品简介

2460M产品简介
远离气体(烟雾)聚集的低洼地;不可用直射水流灭火,以免火势蔓延。当无其他灭火剂时,可采用大量的雾状水喷洒。水与MDI的反应在温度较高及搅动的情况下会非常激烈。喷洒水时,应注意切勿将洒落的MDI的范围扩大。火势一旦扑灭,应立即将洒落的MDI清理干净(参见泄漏洒落处理)。切勿将污染、进水的容器再次密封,以防发生化学反应生成的二氧化碳造成压力升高、爆裂。
BAYER Desmodur 2460M用途介绍:(TDI替代品)
广泛用于制造聚氨酯合成革、人造革涂层、聚氨酯软泡、弹性纤维(即氨纶)、聚氨酯涂料、聚氨酯粘合剂,绝热、保温、保冷、轻工装潢、人造木材、建筑、防水堵墙等。作为异氰酸酯组份主要用于生产胶粘剂、密封剂、弹性铺装材料、鞋底及实心轮胎、涂料的预聚体,该产品也可用于制备聚氨酯塑胶跑道、喷涂聚脲弹性体、电器灌封胶、防水材料、弹性体、高回弹泡沫、半硬泡、汽车保险杠、挡泥板、减震器、阻流板等产品。
贮存温度:Desmodur 2460M随贮存时间的延长可生成二聚体不溶物,请在25℃~35
℃范围内贮存。
熔化条件:如果Desmodur 2460M的贮存温度低于17℃,将会出现结晶现象。必须立即在最短的时间内将结晶加热熔化。严禁局部过热,因为该产品在超过230℃会分解并产生气体。建议采用装有滚桶装置的热风烘箱于60℃烘化。烘化完成后,必须将桶内物料混合均匀。在滚桶烘化过程中,应严密注意料桶支撑点,以防出现磨损碰撞导致泄漏。
理化性能
项目
指标
执行标准号
纯度
≥99.6%
GB/T 13941
色数≤30(铂钴)号Fra bibliotekGB 3143
环己烷不溶物
≤0.3%
GB/T 13941
2,4异构体含量
45~55%

Model 2460 快速入门指南说明书

Model 2460 快速入门指南说明书

通过速度和简化重新设计测试和测量安全注意事项在使用本产品和任何相关仪器之前,请先阅读以下安全注意事项。

虽然一些仪器和附件通常在无害电压下使用,但是也可能出现对人体有害的情况。

本产品应由能辨别电击危险且熟悉避免潜在伤害的必要安全注意事项的合格人员使用。

使用此产品之前请仔细阅读并遵守所有的安装、操作和维护信息。

有关完整的产品规格,请参阅用户文档。

若以没有指定的方式使用产品,可能丧失产品保修所提供的保障。

产品的用户类型有:责任主体,是负责使用和维护机器,确保在设备规格和运行限制范围内使用设备,并确保操作人员经过充分培训的个人或小组。

操作人员,是负责使用产品特定功能的人员。

他们必须接受过电气安全流程和正确操作仪器方面的培训。

应当采取保护措施,防止他们遭到电击和触碰到危险的带电电路。

维护人员,负责产品日常维护以保持仪器运转正常,例如,设置线路电压或更换耗材。

用户文档中描述了维护步骤。

这些步骤都清楚描述了操作人员是否能够执行它们。

如果不能,那么只能由服务人员来执行这些操作。

服务人员,接受过培训,可操作带电电路,执行安全安装并修理产品。

只有受过正确训练的服务人员才能执行安装和服务流程。

美国吉时利仪器(Keithley Instruments) 公司的产品专门设计用于测量、控制和数据输入/输出连接等电气信号,而且不能直接连接到电网电压或具有瞬时高电压的电压源上。

Measurement Category II(引自IEC 60664 标准)连接要求针对本地交流电网连接经常发生的高瞬时电压采取保护措施。

某些吉时利测量仪器可以连接到电网上。

这些仪器将会标记为Category II 或更高级别。

除非在仪器规格、操作手册和仪器标签中明示允许,否则不要将任何仪器连接到电网上。

存在电击危险时,一定要小心谨慎。

电缆连接器插头或测试装置上可能存在致命电压。

美国国家标准学会(ANSI) 规定,超过30 V RMS、42.4V峰值或60 V DC 的电压水平存在电击的危险。

TLV320AC40资料

TLV320AC40资料

VBAP is a trademark of Texas Instruments Incorporated.PRODUCTION DATA information is current as of publication date.Products conform to specifications per the terms of Texas Instrumentsstandard warranty. Production processing does not necessarily includetesting of all parameters.元器件交易网IMPORTANT NOTICETexas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinueany product or service without notice, and advise customers to obtain the latest version of relevant informationto verify, before placing orders, that information being relied on is current and complete. All products are soldsubject to the terms and conditions of sale supplied at the time of order acknowledgement, including thosepertaining to warranty, patent infringement, and limitation of liability.TI warrants performance of its semiconductor products to the specifications applicable at the time of sale inaccordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extentTI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarilyperformed, except those mandated by government requirements.CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OFDEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICALAPPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, ORWARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHERCRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TOBE FULLY AT THE CUSTOMER’S RISK.In order to minimize risks associated with the customer’s applications, adequate design and operatingsafeguards must be provided by the customer to minimize inherent or procedural hazards.TI assumes no liability for applications assistance or customer product design. TI does not warrant or representthat any license, either express or implied, is granted under any patent right, copyright, mask work right, or otherintellectual property right of TI covering or relating to any combination, machine, or process in which suchsemiconductor products or services might be or are used. TI’s publication of information regarding any thirdparty’s products or services does not constitute TI’s approval, warranty or endorsement thereof.Copyright © 1998, Texas Instruments Incorporated。

TLV2262ID中文资料

TLV2262ID中文资料

1
元器件交易网
TLV226x, TLV226xA Advanced LinCMOS™ RAIL-TO-RAIL OPERATIONAL AMPLIFIERS
TLV2262 AVAILABLE OPTIONS PACKAGED DEVICES TA VIOmax AT 25°C 2.5 mV 950 µV µ 2.5 mV 950 µV µ 2.5 mV 950 µV 2.5 mV SMALL OUTLINE (D) TLV2262CD TLV2262AID TLV2262ID TLV2262AQD TLV2262QD — — CHIP CARRIER (FK) — — — — — TLV2262AMFK TLV2262MFK CERAMIC DIP (JG) — — — — — TLV2262AMJG TLV2262MJG PLASTIC DIP (P) TLV2262CP TLV2262AIP TLV2262IP — — — — TSSOP (PW) TLV2262CPWLE TLV2262AIPWLE — — — — — CERAMIC FLATPACK (U) — — — — — TLV2262AMU TLV2262MU
元器件交易网
TLV226x, TLV226xA Advanced LinCMOS™ RAIL-TO-RAIL OPERATIONAL AMPLIFIERS
SLOS186A – FEBRUARY 1997 – REVISED JULY 1999
D D D D D D
Output Swing Includes Both Supply Rails Low Noise . . . 12 nV/√Hz Typ at f = 1 kHz Low Input Bias Current . . . 1 pA Typ Fully Specified for Both Single-Supply and Split-Supply Operation Low Power . . . 500 µA Max Common-Mode Input Voltage Range Includes Negative Rail

TLV2460中文文档

TLV2460中文文档
TLV246x系列运放具有6.4 MHz的带宽和1.6 V /μs的压摆率及仅500μA的供电电流,提供良好的AC性能,低功耗。这个家族的三个子系列能都够提供三种不同的状态,而且能放置在一个超低电源电流模式(IDD = 0.3μA/通道)。在关断时,运算放大器输出置于高阻抗状态,输入噪声电压为11nV /√Hz,输入失调电压为100μV.
增益带宽积(MHz)
电源电压(V) 温度(℃)
大信号波动(V)
小信号波动(V)
反向大信号波动(V)
反向小信号波动(V)
参数的测量方法
TLV246X家族系列运算放大器的应用
1.驱动容性负载
输出失调电压是输入失调电压和输入偏置电流乘以相应的增益的和,下面的原理图和公式可以用来计算输出失调电压。
2.一般的连接电路
温馨提示:买家在使用该款芯片的时候最好要去当地的经销商去实地查看一下元器件的焊接掩膜封装,放置由于厂家生产的时候改动了一些实际的封装而导致该封装与实际样板上面的封装不匹配。
该图片是向消费者展示该贴片封装的芯片的实物图从不同角度观察的视图
左上角:该芯片从左下角到左上角逆时针旋转依次对应该芯片的1——8脚,芯片体的长度在工业生产中对应4.30mm到4.50mm之间,在样板上芯片整体的长度为6.20mm到6.60mm之间,芯片引脚所占的空间为0.19mm到0.30mm之间,引脚与引脚之间的间距为0.65mm,故顾客在购买该款芯片的时候有较大的考虑余地也给实际制版带来了一定的方便
TLV2460/3/5为节省电池寿命有一个关断功能的便携式应用,电源电流降低至0.3μA/通道被禁用,放大器和输出置于高阻抗模式。为了使放大器,关闭终端可以悬空或拉到高。当关闭终端悬空,护理应采取措施,确保在关闭终端,寄生漏电流不不经意的地方进入关断的运算放大器。关闭终端的门槛总是引用到VDD / 2。因此,经营分割电源电压的设备(如:± 2.5 V)时,关闭终端需要拉至VDD(不接地)禁用运算放大器。

TLV5604中文资料

TLV5604中文资料

元器件交易网IMPORTANT NOTICETexas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinueany product or service without notice, and advise customers to obtain the latest version of relevant informationto verify, before placing orders, that information being relied on is current and complete. All products are soldsubject to the terms and conditions of sale supplied at the time of order acknowledgement, including thosepertaining to warranty, patent infringement, and limitation of liability.TI warrants performance of its semiconductor products to the specifications applicable at the time of sale inaccordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extentTI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarilyperformed, except those mandated by government requirements.CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OFDEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICALAPPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, ORWARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHERCRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TOBE FULLY AT THE CUSTOMER’S RISK.In order to minimize risks associated with the customer’s applications, adequate design and operatingsafeguards must be provided by the customer to minimize inherent or procedural hazards.TI assumes no liability for applications assistance or customer product design. TI does not warrant or representthat any license, either express or implied, is granted under any patent right, copyright, mask work right, or otherintellectual property right of TI covering or relating to any combination, machine, or process in which suchsemiconductor products or services might be or are used. TI’s publication of information regarding any thirdparty’s products or services does not constitute TI’s approval, warranty or endorsement thereof.Copyright © 1999, Texas Instruments Incorporated。

CAT24WC16WITE13F中文资料

CAT24WC16WITE13F中文资料

V A2A0A1CAT24WC01/02/04/08/16ABSOLUTE MAXIMUM RATINGS*Temperature Under Bias .................–55°C to +125°C Storage Temperature.......................–65°C to +150°C Voltage on Any Pin withRespect to Ground (1)...........–2.0V to +V CC + 2.0V V CC with Respect to Ground ...............–2.0V to +7.0V Package Power DissipationCapability (Ta = 25°C)...................................1.0W Lead Soldering Temperature (10 secs)............300°C Output Short Circuit Current (2)........................100mA *COMMENTStresses above those listed under “Absolute Maximum Ratings ” may cause permanent damage to the device.These are stress ratings only, and functional operation of the device at these or any other conditions outside of those listed in the operational sections of this specification is not implied. Exposure to any absolute maximum rating for extended periods may affect device performance and reliability.RELIABILITY CHARACTERISTICS Symbol ParameterMin.Max.Units N END (3)Endurance 1,000,000Cycles/Byte T DR (3)Data Retention 100Years V ZAP (3)ESD Susceptibility 2000Volts I LTH (3)(4)Latch-up100mAD.C. OPERATING CHARACTERISTICSV CC = +1.8V to +5.5V, unless otherwise specified.Limits Symbol ParameterMin.Typ.Max.Units Test Conditions I CC Power Supply Current 3mA f SCL = 100 KHz I SB (5)Standby Current (V CC = 5.0V)1µA V IN = GND or V CC I LI Input Leakage Current 10µA V IN = GND to V CC I LO Output Leakage Current 10µA V OUT = GND to V CCV IL Input Low Voltage –1V CC x 0.3V V IH Input High VoltageV CC x 0.7V CC + 0.5V V OL1Output Low Voltage (V CC = 3.0V)0.4V I OL = 3 mA V OL2Output Low Voltage (V CC = 1.8V)0.5VI OL = 1.5 mA Note:(1)The minimum DC input voltage is –0.5V. During transitions, inputs may undershoot to –2.0V for periods of less than 20 ns. Maximum DCvoltage on output pins is V CC +0.5V, which may overshoot to V CC + 2.0V for periods of less than 20ns.(2)Output shorted for no more than one second. No more than one output shorted at a time.(3)These parameters are tested initially and after a design or process change that affects the parameter according to appropriate AEC-Q100and JEDEC test methods.(4)Latch-up protection is provided for stresses up to 100 mA on address and data pins from –1V to V CC +1V.(5)Maximum standby current (I SB ) = 10µA for the Automotive and Extended Automotive temperature range.CAPACITANCE T A = 25°C, f = 1.0 MHz, V CC = 5V Symbol TestMax.Units Conditions C I/O (3)Input/Output Capacitance (SDA)8pF V I/O = 0V C IN (3)Input Capacitance (A0, A1, A2, SCL, WP)6pFV IN = 0VCAT24WC01/02/04/08/16Note:(1)This parameter is tested initially and after a design or process change that affects the parameter.(2)t PUR and t PUW are the delays required from the time V CC is stable until the specified operation can be initiated.The write cycle time is the time from a valid stop condition of a write sequence to the end of the internal program/erase cycle. During the write cycle, the bus interface circuits are disabled, SDA is allowed to remain high, and the device does not respond to its slave address.Write Cycle Limits Symbol Parameter Min.Typ.Max Units t WRWrite Cycle Time10msPower-Up Timing(1)(2)Symbol ParameterMax.Units t PUR Power-up to Read Operation 1ms t PUWPower-up to Write Operation1msA.C. CHARACTERISTICSV CC = +1.8V to +5.5V, unless otherwise specified.Read & Write Cycle Limitsl o b m y S r e t e m a r a P 8.1-X X C W 42T A C XX C W 42T A C s t i n U V5.5-V 8.1V 5.5-V 5.2V 5.5-V 5.4.n i M .x a M .n i M .x a M .n i M .x a M F L C S yc n e u q e r F k c o l C 001001004z H k T I)1(t a t n a t s n o C e m i T n o i s s e r p p u S e s i o N st u p n I A D S ,L C S 002002002s n t A A K C A d n a t u O a t a D A D S o t w o L L C S tu O 5.35.31µs t FU B )1(e r o f e B e e r F e b t s u M s u B e h t e m i T t r a t S n a C n o i s s i m s n a r T w e N a 7.47.42.1µs t A T S :D H e m i T d l o H n o i t i d n o C t r a t S 446.0µs t W O L d o i r e P w o L k c o l C 7.47.42.1µs t H G I H do i r e P h g i H k c o l C 446.0µs t A T S :U S em i T p u t e S n o i t i d n o C t r a t S )n o i t i d n o C t r a t S d e t a e p e R a r o f (7.47.46.0µs t T A D :D H e m i T d l o H n I a t a D 000s n t T A D :U S e m i T p u t e S n I a t a D 050505s n t R )1(e m i T e s i R L C S d n a A D S 113.0µs t F)1(e m i T l l a F L C S d n a A D S 003003003s n t O T S :U S e m i T p u t e S n o i t i d n o C p o t S 446.0µs t HD em i T d l o H t u O a t a D 001001001snCAT24WC01/02/04/08/16FUNCTIONAL DESCRIPTIONThe CAT24WC01/02/04/08/16 supports the I 2C Bus data transmission protocol. This Inter-Integrated Circuit Bus protocol defines any device that sends data to the bus to be a transmitter and any device receiving data to be a receiver. Data transfer is controlled by the Master device which generates the serial clock and all START and STOP conditions for bus access. The CAT24WC01/02/04/08/16 operates as a Slave device. Both the Mas-ter and Slave devices can operate as either transmitter or receiver, but the Master device controls which mode is activated. A maximum of 8 devices (CAT24WC01 and CAT24WC02), 4 devices (CAT24WC04), 2 devices (CAT24WC08) and 1 device (CAT24WC16) may be connected to the bus as determined by the device address inputs A0, A1, and A2.PIN DESCRIPTIONSSCL: Serial ClockThe CAT24WC01/02/04/08/16 serial clock input pin is used to clock all data transfers into or out of the device.This is an input pin.SDA: Serial Data/AddressThe CAT24WC01/02/04/08/16 bidirectional serial data/address pin is used to transfer data into and out of the device. The SDA pin is an open drain output and can be wire-ORed with other open drain or open collector outputs.A0, A1, A2: Device Address InputsThese inputs set device address when cascading mul-tiple devices. When these pins are left floating the default values are zeros.A maximum of eight devices can be cascaded whenFigure 3. Start/Stop Timing5020 FHD F055020 FHD F03SCLSDA INSDA OUTSTART BITSDASTOP BITSCLCAT24WC01/02/04/08/16using either CAT24WC01 or CAT24WC02 device. All three address pins are used for these densities. If only one CAT24WC01 or CAT24WC02 is addressed on the bus, all three address pins (A0, A1and A2) can be left floating or connected to V SS .A total of four devices can be addressed on a single bus when using CAT24WC04 device. Only A1 and A2address pins are used with this device. The A0 address pin is a no connect pin and can be tied to V SS or left floating. If only one CAT24WC04 is being addressed on the bus, the address pins (A1 and A2) can be left floating or connected to V SS .Only two devices can be cascaded when using CAT24WC08. The only address pin used with this device is A2. The A0 and A1 address pins are no connect pins and can be tied to V SS or left floating. If only one CAT24WC08 is being addressed on the bus, the address pin (A2) can be left floating or connected to V SS .The CAT24WC16 is a stand alone device. In this case,all address pins (A0, A1and A2) are no connect pins and can be tied to V SS or left floating.WP: Write ProtectIf the WP pin is tied to V CC the entire memory array becomes Write Protected (READ only). When the WP pin is tied to V SS or left floating normal read/write operations are allowed to the device.I 2C Bus ProtocolThe following defines the features of the I 2C bus protocol:(1)Data transfer may be initiated only when the bus isnot busy.(2)During a data transfer, the data line must remain stable whenever the clock line is high. Any changes in the data line while the clock line is high will be interpreted as a START or STOP condition.START ConditionThe START Condition precedes all commands to the device, and is defined as a HIGH to LOW transition of SDA when SCL is HIG H. The CAT24WC01/02/04/08/16monitor the SDA and SCL lines and will not respond until this condition is met.STOP ConditionA LOW to HIGH transition of SDA when SCL is HIGH determines the STOP condition. All operations must end with a STOP condition.DEVICE ADDRESSINGThe bus Master begins a transmission by sending a START condition. The Master then sends the address of the particular slave device it is requesting. The four most significant bits of the 8-bit slave address are fixed as 1010 for the CAT24WC01/02/04/08/16 (see Fig. 5).The next three significant bits (A2, A1, A0) are the device address bits and define which device or which part of the device the Master is accessing. Up to eight CAT24WC01/02, four CAT24WC04, two CAT24WC08, and one CAT24WC16 may be individually addressed by the system. The last bit of the slave address specifies whether a Read or Write operation is to be performed.When this bit is set to 1, a Read operation is selected,and when set to 0, a Write operation is selected.After the Master sends a START condition and the slave address byte, the CAT24WC01/02/04/08/16 monitors the bus and responds with an acknowledge (on the SDA line) when its address matches the transmitted slaveFigure 4. Acknowledge Timing5020 FHD F06ACKNOWLEDGESTARTSCL FROM MASTERDATA OUTPUTFROM TRANSMITTERDATA OUTPUT FROM RECEIVERCAT24WC01/02/04/08/16address. The CAT24WC01/02/04/08/16 then performs a Read or Write operation depending on the state of the R/W bit.AcknowledgeAfter a successful data transfer, each receiving device is required to generate an acknowledge. The Acknowledg-ing device pulls down the SDA line during the ninth clock cycle, signaling that it received the 8 bits of data.The CAT24WC01/02/04/08/16 responds with an ac-knowledge after receiving a START condition and its slave address. If the device has been selected along with a write operation, it responds with an acknowledge after receiving each 8-bit byte.When the CAT24WC01/02/04/08/16 is in a READ mode it transmits 8 bits of data, releases the SDA line, and monitors the line for an acknowledge. Once it receives this acknowledge, the CAT24WC01/02/04/08/16 will continue to transmit data. If no acknowledge is sent by the Master, the device terminates data transmission and waits for a STOP condition.WRITE OPERATIONSByte WriteIn the Byte Write mode, the Master device sends the START condition and the slave address information (with the R/W bit set to zero) to the Slave device. After the Slave generates an acknowledge, the Master sends the byte address that is to be written into the address pointer of the CAT24WC01/02/04/08/16. After receiving another acknowledge from the Slave, the Master device transmits the data byte to be written into the addressed memory location. The CAT24WC01/02/04/08/16 ac-knowledge once more and the Master generates the STOP condition, at which time the device begins its internal programming cycle to nonvolatile memory. While this internal cycle is in progress, the device will not respond to any request from the Master device.Page WriteThe CAT24WC01/02/04/08/16 writes up to 16 bytes of data in a single write cycle, using the Page Write operation. The Page Write operation is initiated in the same manner as the Byte Write operation, however instead of terminating after the initial word is transmitted,Figure 5. Slave Address Bits*A0, A1 and A2 correspond to pin 1, pin 2 and pin 3 of the device.**a8, a9 and a10 correspond to the address of the memory array address word.***A0, A1 and A2 must compare to its corresponding hard wired input pins (pins 1, 2 and 3).1010A2 A1 A0R/W1010A2A1a8R/W1010A2a9 a8R/W1010a10a9a8R/WCAT24WC01/02CAT24WC04CAT24WC08CAT24WC16CAT24WC01/02/04/08/1624WCXX F09Figure 7. Page Write Timing5020 FHD F08Figure 6. Byte Write Timing*P=7 for CAT24WC01 and P=15 for CAT24WC02/04/08/16* = Don't care for CAT24WC01BUS ACTIVITY:MASTERSDA LINEBYTE C KC KC KS T O C KC KS T A R SLAVE NOTE: IN THIS EXAMPLE n = XXXX 0000(B); X = 1 or 0WRITE PROTECTIONThe Write Protection feature allows the user to protect against inadvertent programming of the memory array.If the WP pin is tied to V CC , the entire memory array is protected and becomes read only. The CAT24WC01/02/04/08/16 will accept both slave and byte addresses,but the memory location accessed is protected from programming by the device ’s failure to send an acknowledge after the first byte of data is received.READ OPERATIONSThe READ operation for the CAT24WC01/02/04/08/16is initiated in the same manner as the write operation with the one exception that the R/W bit is set to a one.Three different READ operations are possible: Immediate Address READ, Selective READ and Sequential READ.Immediate Address ReadThe CAT24WC01/02/04/08/16’s address counter contains the address of the last byte accessed,incremented by one. In other words, if the last READ or WRITE access was to address N, the READ immediately following would access data from address N+1. If N=E (where E = 255 for 24WC02, 511 for 24WC04, 1023 for 24WC08, and 2047 for 24WC16), then the counter will 'wrap around' to address 0 and continue to clock out data. If N = E (where E = 127 for the CAT24WC01) the counter will not 'wrap around'.BYTE ADDRESSSLAVE ADDRESSSA C KA C KDATAA C K S T O P PBUS ACTIVITY:MASTERSDA LINES T A R T the Master is allowed to send up to fifteen additional bytes. After each byte has been transmitted the CAT24WC01/02/04/08/16 will respond with an acknowledge, and internally increment the low order address bits by one. The high order bits remain unchanged.If the Master transmits more than sixteen bytes prior to sending the STOP condition, the address counter ‘wraps around ’, and previously transmitted data will be overwritten.Once all sixteen bytes are received and the STOP condition has been sent by the Master, the internal programming cycle begins. At this point all received data is written to the CAT24WC01/02/04/08/16 in a single write cycle.Acknowledge PollingThe disabling of the inputs can be used to take advantage of the typical write cycle time. Once the stop condition is issued to indicate the end of the host ’s write operation,the CAT24WC01/02/04/08/16 initiates the internal write cycle. ACK polling can be initiated immediately. This involves issuing the start condition followed by the slave address for a write operation. If the CAT24WC01/02/04/08/16 is still busy with the write operation, no ACK will be returned. If the CAT24WC01/02/04/08/16 has completed the write operation, an ACK will be returned and the host can then proceed with the next read or write operation.CAT24WC01/02/04/08/165020 FHD F10Figure 8. Immediate Address Read TimingSCL SDA 8TH BIT STOPNO ACKDATA OUT89SLAVE ADDRESSSA C KDATAN O A C KS T O P PBUS ACTIVITY:MASTERSDA LINES T A R T Selective ReadSelective READ operations allow the Master device to select at random any memory location for a READ operation. The Master device first performs a ‘dummy ’write operation by sending the START condition, slave address and byte address of the location it wishes to read. After the CAT24WC01/02/04/08/16 acknowledge the word address, the Master device resends the START condition and the slave address, this time with the R/W bit set to one. The CAT24WC01/02/04/08/16 then responds with its acknowledge and sends the 8-bit byte requested. The master device does not send an acknowledge but will generate a STOP condition.Sequential ReadThe Sequential READ operation can be initiated by either the immediate Address READ or Selective READoperations. After the 24WC01/02/04/08/16 sends initial 8-bit byte requested, the Master will respond with an acknowledge which tells the device it requires more data. The CAT24WC01/02/04/08/16 will continue to output an 8-bit byte for each acknowledge sent by the Master. The operation is terminated when the Master fails to respond with an acknowledge, thus sending the STOP condition.The data being transmitted from the CAT24WC01/02/04/08/16 is outputted sequentially with data from address N followed by data from address N+1. The READ operation address counter increments all of the CAT24WC01/02/04/08/16 address bits so that the entire memory array can be read during one operation. If more than the E (where E = 255 for 24WC02, 511 for 24WC04,1023 for 24WC08, and 2047 for 24WC16) bytes are read out, the counter will “wrap around ” and continue to clock out data bytes. If N = E (where E = 127 for the CAT24WC01) the counter will not 'wrap around'.CAT24WC01/02/04/08/165020 FHD F12Figure 10. Sequential Read Timing24WCXX F11Figure 9. Selective Read TimingSLAVE ADDRESSSA C KN O A C K S T O P PBUS ACTIVITY:MASTERSDA LINES T A R T BYTE ADDRESS (n)S A C KDATA nSLAVE ADDRESSA C KS T AR T *BUS ACTIVITY:MASTERSDA LINEDATA n+xDATA nC KC KDATA n+1C KS T O O A C KDATA n+2C KSLAVE ADDRESSCAT24WC01/02/04/08/16Notes:plies with JEDEC Publication 95 MS001 dimensions; however, some of the dimensions may be more stringent.2.All linear dimensions are in inches and parenthetically in millimeters.0.100 (2.54)BSC8-LEAD 300 MIL WIDE PLASTIC DIP (P, L, GL)8-LEAD 150 MIL WIDE SOIC (J, W, GW)Notes:plies with JEDEC publication 95 MS-012 dimensions; however, some dimensions may be more stringent.2.All linear dimensions are in inches and parenthetically in millimeters.CAT24WC01/02/04/08/1611Doc. No. 1022, Rev. N© 2005 by Catalyst Semiconductor, Inc.Characteristics subject to change without noticeSECTION A - ANotes:(1)All dimensions are in mm Angles in degrees.2Does not include Mold Flash, Protrusion or Gate Burrs. Mold Flash, Protrusions or Gate Burrs shall not exceed 0.15 mm. per side. 3Does not include Interlead Flash orProtrusion. Interlead Flash or Protrusion shall not exceed 0.25 mm per side. 4Does not include Dambar Protrusion, allowable Dambar Protrusion shall be 0.08 mm.(5)This part is compliant with JEDEC Specification MO-187 Variations AA.(6) Lead span/stand off height/coplanarity are considered as special characteristics. (S)(7) Controlling dimensions in inches. [mm]CAT24WC01/02/04/08/1612Doc. No. 1022, Rev. N© 2005 by Catalyst Semiconductor, Inc.Characteristics subject to change without notice8-LEAD TSSOP (U, Y, GY)CAT24WC01/02/04/08/1613Doc. No. 1022, Rev. N© 2005 by Catalyst Semiconductor, Inc.Characteristics subject to change without noticeORDERING INFORMATIONNotes:(1) The device used in the above example is a CAT24WC02JI-1.8TE13REV-E (SOIC, Industrial Temperature, 1.8 Volt to 5.5 VoltOperating Voltage, Tape & Reel, Die Revision E)** Available for CAT24WC01, CAT24WC02 and CAT24WC04Catalyst Semiconductor, Inc.Corporate Headquarters 1250 Borregas Avenue Sunnyvale, CA 94089Phone: 408.542.1000Fax: 408.542.1200Publication #:1022Revison:NIssue date:08/12/05Copyrights, Trademarks and PatentsTrademarks and registered trademarks of Catalyst Semiconductor include each of the following:DPP ™AE 2 ™Catalyst Semiconductor has been issued U.S. and foreign patents and has patent applications pending that protect its products. For a complete list of patents issued to Catalyst Semiconductor contact the Company’s corporate office at 408.542.1000.CATALYST SEMICONDUCTOR MAKES NO WARRANTY, REPRESENTATION OR GUARANTEE, EXPRESS OR IMPLIED, REGARDING THE SUITABILITY OF ITS PRODUCTS FOR ANY PARTICULAR PURPOSE, NOR THAT THE USE OF ITS PRODUCTS WILL NOT INFRINGE ITS INTELLECTUAL PROPERTY RIGHTS OR THE RIGHTS OF THIRD PARTIES WITH RESPECT TO ANY PARTICULAR USE OR APPLICATION AND SPECIFICALLY DISCLAIMS ANY AND ALL LIABILITY ARISING OUT OF ANY SUCH USE OR APPLICATION, INCLUDING BUT NOT LIMITED TO, CONSEQUENTIAL OR INCIDENTAL DAMAGES.Catalyst Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Catalyst Semiconductor product could create a situation where personal injury or death may occur.Catalyst Semiconductor reserves the right to make changes to or discontinue any product or service described herein without notice. Products with data sheets labeled "Advance Information" or "Preliminary" and other products described herein may not be in production or offered for sale.Catalyst Semiconductor advises customers to obtain the current version of the relevant product information before placing orders. Circuit diagrams illustrate typical semiconductor applications and may not be complete.REVISION HISTORYDate Rev.Reason2/3/2004HAdded: CAT24WC01/02/16 not recommended for new designs. See CAT24FC01, CAT24FC02 and CAT24FC16 data sheets5/28/2004I Added Die Revision to ordering information 7/28/2004J Update DC operating characteristics and notes 1/27/2005K Added Die Revision E to ordering information 2/28/2005L Edit Ordering Information 3/18/2005M Edit Features08/12/05NEdit FeaturesEdit Pin FunctionsEdit Reliability CharacteristicsEdit D.C. Operating Characteristics Edit A.C. Characteristics Add Package Dimensions Edit Ordering Information。

TLV2462AQPWR资料

TLV2462AQPWR资料

TLV2460 DBV PACKAGE (TOP VIEW) OUT GND IN+ 1 2 3 6 5 4 VDD+ SHDN IN −
description
The TLV246x is a family of low-power rail-to-rail input/output operational amplifiers specifically designed for portable applications. The input common-mode voltage range extends beyond the supply rails for maximum dynamic range in low-voltage systems. The amplifier output has rail-to-rail performance with high-output-drive capability, solving one of the limitations of older rail-to-rail input/output operational amplifiers. This rail-to-rail dynamic range and high output drive make the TLV246x ideal for buffering analog-to-digital converters. The operational amplifier has 6.4 MHz of bandwidth and 1.6 V/µs of slew rate with only 500 µA of supply current, providing good ac performance with low power consumption. Three members of the family offer a shutdown terminal, which places the amplifier in an ultralow supply current mode (IDD = 0.3 µA/ch). While in shutdown, the operational-amplifier output is placed in a high-impedance state. DC applications are also well served with an input noise voltage of 11 nV/√Hz and input offset voltage of 100 µV. This family is available in the low-profile SOT23, MSOP, and TSSOP packages. The TLV2460 is the first rail-to-rail input/output operational amplifier with shutdown available in the 6-pin SOT23, making it perfect for high-density circuits. The family is specified over an expanded temperature range (TA = − 40°C to 125°C) for use in industrial control and automotive systems, and over the military temperature range (TA = −55°C to 125°C) for use in military systems.

TLC0820A中文资料

TLC0820A中文资料

2008年北京市大学生电子设计竞赛芯片资料TLC372 双路通用LinCMOSTM 差动比较器∙单电源或双电源供电∙宽电源范围供电2V~18V∙5V电源时低漏电流150μA∙TTL输入电平时快速响应时间200ns∙内置ESD保护∙高输入阻抗典型值1012Ω∙外部低输入偏置电流典型值5PA∙超稳定的低输入偏置电压∙输入失调电压在最恶劣的输入条件下变化0.23μV/月,包括第一个30天∙共模输入电压包括地∙输出兼容TTL MOS CMOS∙引脚兼容LM393引脚功能∙1IN - 1路比较器反相输入∙1IN+ 1路比较器通向输入∙1OUT 1路比较器输出∙2IN - 2路比较器反相输入∙2IN+ 2路比较器同相输入∙2OUT 2路比较器输出∙GND 电源地∙VCC 电源正∙NC 空脚,不连接这个器件由两个独立电压比较器,使用LinCMOSTM工艺制造的,支持单电源。

输出是N 沟道漏极开路,实现正逻辑连接。

完全最大的测定值运行环境范围(除非另行注释)支持电压VDD(注释1)...............................................................+18V差分输入电压VID(注释2)...........................................................±18V输入电压范围.....................................................................-0.3~18V输出电压VO (18V)输入电流II ......................................................................±5mA输出电流IO.......................................................................20mA输出短路到地持续电流.............................................................无限制注释:1、差分电压除外,全部电压相对于地。

中国电信EVDO终端需求规范-Rev A数据终端AT命令接口分册-V1.0

中国电信EVDO终端需求规范-Rev A数据终端AT命令接口分册-V1.0

保密等级:公开发放EVDO终端需求规范数据终端AT命令接口分册Teminal Requirement Specification of China Telecom Rev A Data Equipment AT Command Interface Fascicule(V1.0)××-××发布中国电信集团公司发布目 录目录 (I)前言 (IX)1适用范围 (10)2参考资料 (10)3缩略语 (10)4定义 (11)4.1 要求等级 (11)4.2 名词 (11)5数据卡客户端软件接口概述 (12)5.1 接口的设计原则 (12)5.2 接口的改动准则 (13)6基本命令 (14)6.1 回显命令E (14)6.1.1语法结构 (14)6.1.2接口描述 (14)6.1.3取值说明 (14)6.2 命令行结束符S3 (14)6.2.1语法结构 (14)6.2.2接口描述 (15)6.2.3取值说明 (15)6.3 响应格式字符S4 (15)6.3.1语法结构 (15)6.3.2接口描述 (15)6.3.3取值说明 (15)6.4 退格字符S5 (15)6.4.1语法结构 (15)6.4.2接口描述 (15)6.4.3取值说明 (16)6.5 ME响应格式命令V (16)6.5.1语法结构 (16)6.5.2接口描述 (16)6.5.3取值说明 (16)6.6 查询MS的所有ID信息I (16)I6.6.2接口描述 (16)6.6.3取值说明 (16)6.6.4举例说明 (17)6.7 查询MS当前所支持的传输能力域+GCAP (17)6.7.1语法结构 (17)6.7.2接口描述 (17)6.7.3取值说明 (17)6.7.4举例说明 (17)6.8 厂商信息查询命令+CGMI (17)6.8.1语法结构 (17)6.8.2接口描述 (17)6.8.3取值说明 (17)6.8.4举例说明 (18)6.9 产品名称查询命令+CGMM (18)6.9.1语法结构 (18)6.9.2接口描述 (18)6.9.3取值说明 (18)6.9.4举例说明 (18)6.10 软件版本号查询命令+CGMR (18)6.10.1语法结构 (18)6.10.2接口描述 (18)6.10.3取值说明 (18)6.11 ESN查询命令+GSN (19)6.11.1语法结构 (19)6.11.2接口说明 (19)6.11.3取值说明 (19)6.12 IMSI查询命令+CIMI (19)6.12.1语法结构 (19)6.12.2接口说明 (19)6.12.3取值说明 (19)6.12.4举例说明 (19)7分组域业务命令 (20)7.1 拨号呼叫发起命令D (20)7.1.1语法结构 (20)7.1.2接口说明 (20)7.1.3取值说明 (20)7.2 拨号挂断命令H (20)7.2.1语法结构 (20)7.2.2接口描述 (20)7.2.3取值说明 (20)8呼叫控制命令与方法 (20)II8.1.1语法结构 (20)8.1.2接口说明 (20)8.1.3取值说明 (21)8.2 接听命令A (21)8.2.1语法结构 (21)8.2.2接口说明 (21)8.3 呼叫挂断命令+CHV (21)8.3.1语法结构 (21)8.3.2接口说明 (21)8.4 来电指示RING (21)8.4.1语法结构 (21)8.4.2接口说明 (21)9网络服务相关命令 (21)9.1 PIN使能与查询功能命令+CLCK (21)9.1.1语法结构 (21)9.1.2接口描述 (22)9.1.3取值说明 (22)9.2 PIN修改密码命令+CPWD (23)9.2.1语法结构 (23)9.2.2接口描述 (23)9.2.3取值说明 (23)9.3 来电号码显示指示+CLIP (23)9.3.1语法结构 (23)9.3.2接口说明 (23)9.3.3取值说明 (23)9.3.4使用举例 (24)9.4 呼叫状态查询命令+CLCC (24)9.4.1语法结构 (24)9.4.2接口说明 (24)9.4.3取值说明 (24)10移动终端控制与状态命令 (25)10.1 操作模式设置命令+CFUN (25)10.1.1语法结构 (25)10.1.2接口描述 (25)10.1.3取值说明 (25)10.2 PIN管理命令+CPIN (26)10.2.1语法结构 (26)10.2.2接口描述 (26)10.2.3取值说明 (26)10.3 RSSI查询功能命令+CSQ (26)10.3.1语法结构 (26)III10.3.3取值说明 (27)10.4 HDR模式下信号格数查询命令^HDRCSQ (27)10.4.1语法结构 (27)10.4.2接口描述 (27)10.4.3取值说明 (27)10.5 耳机音量设置命令+CLVL (28)10.5.1语法结构 (28)10.5.2接口描述 (28)10.5.3取值说明 (28)10.6 麦克静音设置命令+CMUT (28)10.6.1语法结构 (28)10.6.2接口描述 (28)10.6.3取值说明 (28)10.7 电话本内存选择命令+CPBS (29)10.7.1语法结构 (29)10.7.2接口描述 (29)10.7.3取值说明 (29)11移动终端报错命令 (29)11.1 终端报错命令+CMEE (29)11.1.1语法结构 (29)11.1.2接口描述 (29)11.1.3取值说明 (30)12短信文本模式命令 (30)12.1 短信存储选择命令+CPMS (30)12.1.1语法结构 (30)12.1.2接口描述 (30)12.1.3取值说明 (30)12.2 设置短信格式命令+CMGF (31)12.2.1语法结构 (31)12.2.2接口描述 (31)12.2.3取值说明 (31)12.3 新短信通知设置命令+CNMI (32)12.3.1语法结构 (32)12.3.2接口描述 (32)12.3.3取值说明 (32)12.3.4应用举例 (34)12.4 短信到达指示+CMTI (34)12.4.1语法结构 (34)12.4.2接口描述 (34)12.4.3取值说明 (34)12.5 新收到的短信状态报告+CDSI (35)IV12.5.2接口描述 (35)12.5.3取值说明 (35)12.6 删除短信命令+CMGD (35)12.6.1语法结构 (35)12.6.2接口描述 (35)12.6.3取值说明 (35)12.7 新短信确认命令+CNMA (36)12.7.1语法结构 (36)12.7.2接口描述 (36)13移动终端控制和状态扩展接口 (36)13.1 硬件版本号查询功能命令^HWVER (36)13.1.1语法结构 (36)13.1.2接口描述 (36)13.1.3取值说明 (36)13.2 PIN管理命令^CPIN (37)13.2.1语法结构 (37)13.2.2接口描述 (37)13.2.3取值说明 (37)14语音呼叫扩展接口 (38)14.1 呼叫发起指示^ORIG (38)14.1.1语法结构 (38)14.1.2接口说明 (38)14.1.3取值说明 (38)14.1.4举例 (38)14.2 呼叫接通指示^CONN (38)14.2.1语法结构 (38)14.2.2接口说明 (38)14.2.3取值说明 (38)14.3 通话结束指示^CEND (39)14.3.1语法结构 (39)14.3.2接口说明 (39)14.3.3取值说明 (39)14.4 二次拨号命令^DTMF (41)14.4.1语法结构 (41)14.4.2接口说明 (42)14.4.3取值说明 (43)14.5 语音模式切换命令^CVOICE (43)14.5.1语法结构 (43)14.5.2接口描述 (43)14.5.3取值说明 (43)14.6 设置语音输出端口命令^DDSETEX (44)V14.6.2接口描述 (44)14.6.3取值说明 (44)15短信业务扩展接口 (44)15.1 短信存储介质满上报^SMMEMFULL (44)15.1.1语法结构 (44)15.1.2接口描述 (44)15.1.3取值说明 (44)15.2 新短信直接上报指示^HCMT (45)15.2.1语法结构 (45)15.2.2接口描述 (45)15.2.3取值说明 (45)15.3 新短信状态报告直接上报指示^HCDS (45)15.3.1语法结构 (45)15.3.2接口描述 (45)15.3.3取值说明 (45)15.4 选择短信参数命令^HSMSSS (46)15.4.1语法结构 (46)15.4.2接口描述 (46)15.4.3取值说明 (46)15.5 短信发送命令^HCMGS (46)15.5.1语法结构 (46)15.5.2接口说明 (47)15.5.3取值说明 (47)15.6 短信存储命令^HCMGW (47)15.6.1语法结构 (47)15.6.2接口说明 (47)15.6.3取值说明 (48)15.7 短信列表命令^HCMGL (49)15.7.1语法结构 (49)15.7.2接口描述 (50)15.7.3取值说明 (50)15.8 读取一条短信命令^HCMGR (50)15.8.1语法结构 (50)15.8.2接口描述 (50)15.8.3取值说明 (51)15.9 短信发送成功上报指示^HCMGSS (51)15.9.1语法结构 (51)15.9.2接口描述 (51)15.9.3取值说明 (52)15.10 短信发送失败上报指示^HCMGSF (52)15.10.1语法结构 (52)15.10.2接口描述 (52)VI16电话本业务扩展接口 (53)16.1 电话本读取命令^CPBR (53)16.1.1语法结构 (53)16.1.2接口描述 (53)16.1.3取值说明 (53)16.2 电话本写命令^CPBW (54)16.2.1语法结构 (54)16.2.2接口描述 (54)16.2.3取值说明 (54)16.2.4举例说明 (55)17网络服务相关扩展接口 (55)17.1 HDR RSSI格数变化指示^HRSSILVL (55)17.1.1语法结构 (55)17.1.2接口描述 (55)17.1.3取值说明 (55)17.2 系统模式变化事件指示^MODE (56)17.2.1语法结构 (56)17.2.2接口说明 (56)17.2.3取值说明 (56)17.3 UIM状态变化指示^SIMST (56)17.3.1语法结构 (56)17.3.2接口说明 (56)17.3.3取值说明 (56)17.4 系统的信息查询命令^SYSINFO (56)17.4.1语法结构 (56)17.4.2接口说明 (57)17.4.3取值说明 (57)17.5 网络模式选择^PREFMODE (58)17.5.1语法结构 (58)17.5.2接口说明 (58)17.5.3取值说明 (58)17.6 重启命令^RESET (58)17.6.1语法结构 (58)17.6.2接口描述 (58)17.6.3取值说明 (58)17.7 电压查询^VOLT (58)17.7.1语法结构 (58)17.7.2接口描述 (59)17.7.3取值说明 (59)17.8 MEID查询命令^MEID (59)17.8.1语法结构 (59)VII17.8.3取值说明 (59)17.9 进入休眠态指示^DSDORMANT (59)17.9.1语法结构 (59)17.9.2接口说明 (59)17.9.3取值说明 (59)17.10 发送F LASH/F LASH WITH I NFORMATION命令^FLASH (60)17.10.1语法结构 (60)17.10.2接口说明 (60)17.10.3取值说明 (60)18附录 (60)18.1 AT命令描述 (60)18.1.1基本命令 (60)18.1.2S寄存器命令 (60)18.1.3扩展命令和厂商定义命令 (61)18.1.4Abort属性: (62)18.2 CME ERROR列表 (62)18.3 CMS ERROR列表 (65)18.4 F INAL R ESULT C ODE汇总 (66)18.5 MT重启后命令参数初始值列表 (67)18.6 客户端的AT命令超时机制: (67)18.7 客户端查找设备机制: (67)18.8 客户端设备使用机制 (68)18.8.1设备先插入: (68)18.8.2客户端先启动: (68)18.8.3客户端启动时发送的AT命令顺序: (68)19详细更新历史 (69)图目录图 5-1 AT命令接口示意图 (12)VIIIIX 前 言客户端软件采用的AT 命令提出规定,中国电信内部和厂商共同使用,用于在业务及设备开发上为集团公司和省公司提供技术依据;适用于以数据卡为代表的移动终端产品。

YAV P无线ZigBee通信采集卡技术手册YAV7222P

YAV P无线ZigBee通信采集卡技术手册YAV7222P

YAV P压力传感器专用采集卡技术手册V1801武汉亚为电子科技有限公司YAV7222P关于本手册为亚为推出的YAV P压力传感器专用采集卡的用户手册,主要内容包括功能概述、1路压力传感器信号采集功能、2路数字量输入功能、2路数字量输出功能、串口RS232通信、应用实例、性能测试、注意事项及故障排除等。

另外部分DI采集包含需要定制的特殊功能:PWM功能输入,编码器输入,AO输出匹配输入。

说明序号版本号编写人编写日期支持对象应用时间特别说明1 1.0齐非2014.01YAV P采集卡2016.012 2.0樊春晖2016.01YAV P采集卡2017.013 3.0郑先科2017.01YAV P采集卡2017.084 4.0郑冉2017.08YAV P采集卡2017.08目录0.快速上手 (1)产品包装内容 (1)应用软件 (1)接口定义 (1)⏹端子描述 (1)⏹通信 (2)1.产品概述 (2)技术指标 (2)⏹模拟信号输入 (3)⏹数字信号输入 (3)⏹数字信号输出 (3)⏹通信总线 (4)⏹温度参数 (4)硬件特点 (4)原理框图 (5)机械规格 (6)2.模拟量输入功能 (7)输入采样原理 (7)输入接线 (7)采样值计算 (8)⏹无符号整型 (9)⏹ADC数据类型 (9)⏹模拟量值 (9)3.数字量输入功能 (9)数字输入原理 (9)DI高低电平/无源触点输入 (10)4.数字量输出功能 (11)输出原理 (11)DO高低电平输出 (11)5.通信协议 (12)无线Zigbee通信,亚为WSN无线采集卡IOT通信协议 (12)6.应用实例 (13)采集卡连接 (13)发现硬件 (13)软件功能 (14)软件应用 (15)⏹LabVIEW (15)⏹其它 (15)7.性能测试 (15)安全规范 (15)耐电压范围测试 (16)环境适应性测试 (16)电气参数 (17)通信 (18)采集卡指示灯 (18)8.注意事项及故障排除 (19)注意事项 (19)⏹存储说明 (19)⏹出货清单 (19)⏹质保及售后 (19)⏹特别说明 (19)故障排除 (19)⏹无法正常连接至上位机 (19)⏹多卡数据相同 (20)⏹采集速度不够 (20)⏹软件弹出错误 (20)9.文档权利及免责声明 (20)10.联系方式.......................................................................................................................错误!未定义书签。

rfc2460

rfc2460

Network Working Group S. Deering Request for Comments: 2460 Cisco Obsoletes: 1883 R. Hinden Category: Standards Track Nokia December 1998 Internet Protocol, Version 6 (IPv6)SpecificationStatus of this MemoThis document specifies an Internet standards track protocol for the Internet community, and requests discussion and suggestions forimprovements. Please refer to the current edition of the "InternetOfficial Protocol Standards" (STD 1) for the standardization stateand status of this protocol. Distribution of this memo is unlimited. Copyright NoticeCopyright (C) The Internet Society (1998). All Rights Reserved. AbstractThis document specifies version 6 of the Internet Protocol (IPv6),also sometimes referred to as IP Next Generation or IPng.Table of Contents1. Introduction (2)2. Terminology (3)3. IPv6 Header Format (4)4. IPv6 Extension Headers (6)4.1 Extension Header Order (7)4.2 Options (9)4.3 Hop-by-Hop Options Header (11)4.4 Routing Header (12)4.5 Fragment Header (18)4.6 Destination Options Header (23)4.7 No Next Header (24)5. Packet Size Issues (24)6. Flow Labels (25)7. Traffic Classes (25)8. Upper-Layer Protocol Issues (27)8.1 Upper-Layer Checksums (27)8.2 Maximum Packet Lifetime (28)8.3 Maximum Upper-Layer Payload Size (28)8.4 Responding to Packets Carrying Routing Headers (29)Deering & Hinden Standards Track [Page 1]RFC 2460 IPv6 Specification December 1998 Appendix A. Semantics and Usage of the Flow Label Field (30)Appendix B. Formatting Guidelines for Options (32)Security Considerations (35)Acknowledgments (35)Authors’ Addresses (35)References (35)Changes Since RFC-1883 (36)Full Copyright Statement (39)1. IntroductionIP version 6 (IPv6) is a new version of the Internet Protocol,designed as the successor to IP version 4 (IPv4) [RFC-791]. Thechanges from IPv4 to IPv6 fall primarily into the followingcategories:o Expanded Addressing CapabilitiesIPv6 increases the IP address size from 32 bits to 128 bits, to support more levels of addressing hierarchy, a much greaternumber of addressable nodes, and simpler auto-configuration of addresses. The scalability of multicast routing is improved by adding a "scope" field to multicast addresses. And a new type of address called an "anycast address" is defined, used to send a packet to any one of a group of nodes.o Header Format SimplificationSome IPv4 header fields have been dropped or made optional, to reduce the common-case processing cost of packet handling andto limit the bandwidth cost of the IPv6 header.o Improved Support for Extensions and OptionsChanges in the way IP header options are encoded allows formore efficient forwarding, less stringent limits on the length of options, and greater flexibility for introducing new options in the future.o Flow Labeling CapabilityA new capability is added to enable the labeling of packetsbelonging to particular traffic "flows" for which the senderrequests special handling, such as non-default quality ofservice or "real-time" service.Deering & Hinden Standards Track [Page 2]RFC 2460 IPv6 Specification December 1998 o Authentication and Privacy CapabilitiesExtensions to support authentication, data integrity, and(optional) data confidentiality are specified for IPv6.This document specifies the basic IPv6 header and the initially-defined IPv6 extension headers and options. It also discusses packet size issues, the semantics of flow labels and traffic classes, andthe effects of IPv6 on upper-layer protocols. The format andsemantics of IPv6 addresses are specified separately in [ADDRARCH].The IPv6 version of ICMP, which all IPv6 implementations are required to include, is specified in [ICMPv6].2. Terminologynode - a device that implements IPv6.router - a node that forwards IPv6 packets not explicitlyaddressed to itself. [See Note below].host - any node that is not a router. [See Note below].upper layer - a protocol layer immediately above IPv6. Examples are transport protocols such as TCP and UDP, controlprotocols such as ICMP, routing protocols such as OSPF, and internet or lower-layer protocols being "tunneled" over (i.e., encapsulated in) IPv6 such as IPX,AppleTalk, or IPv6 itself.link - a communication facility or medium over which nodes can communicate at the link layer, i.e., the layerimmediately below IPv6. Examples are Ethernets (simple or bridged); PPP links; X.25, Frame Relay, or ATMnetworks; and internet (or higher) layer "tunnels",such as tunnels over IPv4 or IPv6 itself.neighbors - nodes attached to the same link.interface - a node’s attachment to a link.address - an IPv6-layer identifier for an interface or a set ofinterfaces.packet - an IPv6 header plus payload.link MTU - the maximum transmission unit, i.e., maximum packetsize in octets, that can be conveyed over a link. Deering & Hinden Standards Track [Page 3]RFC 2460 IPv6 Specification December 1998 path MTU - the minimum link MTU of all the links in a path between a source node and a destination node.Note: it is possible, though unusual, for a device with multipleinterfaces to be configured to forward non-self-destined packetsarriving from some set (fewer than all) of its interfaces, and todiscard non-self-destined packets arriving from its other interfaces. Such a device must obey the protocol requirements for routers whenreceiving packets from, and interacting with neighbors over, theformer (forwarding) interfaces. It must obey the protocolrequirements for hosts when receiving packets from, and interactingwith neighbors over, the latter (non-forwarding) interfaces.3. IPv6 Header Format+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+|Version| Traffic Class | Flow Label |+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+| Payload Length | Next Header | Hop Limit |+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+| |+ +| |+ Source Address +| |+ +| |+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+| |+ +| |+ Destination Address +| |+ +| |+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+Version 4-bit Internet Protocol version number = 6.Traffic Class 8-bit traffic class field. See section 7.Flow Label 20-bit flow label. See section 6.Payload Length 16-bit unsigned integer. Length of the IPv6payload, i.e., the rest of the packet following this IPv6 header, in octets. (Note that any Deering & Hinden Standards Track [Page 4]RFC 2460 IPv6 Specification December 1998 extension headers [section 4] present areconsidered part of the payload, i.e., includedin the length count.)Next Header 8-bit selector. Identifies the type of headerimmediately following the IPv6 header. Uses the same values as the IPv4 Protocol field [RFC-1700 et seq.].Hop Limit 8-bit unsigned integer. Decremented by 1 byeach node that forwards the packet. The packetis discarded if Hop Limit is decremented tozero.Source Address 128-bit address of the originator of the packet. See [ADDRARCH].Destination Address 128-bit address of the intended recipient of the packet (possibly not the ultimate recipient, if a Routing header is present). See [ADDRARCH]and section 4.4.Deering & Hinden Standards Track [Page 5]RFC 2460 IPv6 Specification December 1998 4. IPv6 Extension HeadersIn IPv6, optional internet-layer information is encoded in separateheaders that may be placed between the IPv6 header and the upper-layer header in a packet. There are a small number of such extension headers, each identified by a distinct Next Header value. Asillustrated in these examples, an IPv6 packet may carry zero, one, or more extension headers, each identified by the Next Header field ofthe preceding header:+---------------+------------------------| IPv6 header | TCP header + data| || Next Header = || TCP |+---------------+------------------------+---------------+----------------+------------------------| IPv6 header | Routing header | TCP header + data| | || Next Header = | Next Header = || Routing | TCP |+---------------+----------------+------------------------+---------------+----------------+-----------------+----------------- | IPv6 header | Routing header | Fragment header | fragment of TCP | | | | header + data| Next Header = | Next Header = | Next Header = || Routing | Fragment | TCP |+---------------+----------------+-----------------+----------------- With one exception, extension headers are not examined or processedby any node along a packet’s delivery path, until the packet reaches the node (or each of the set of nodes, in the case of multicast)identified in the Destination Address field of the IPv6 header.There, normal demultiplexing on the Next Header field of the IPv6header invokes the module to process the first extension header, orthe upper-layer header if no extension header is present. Thecontents and semantics of each extension header determine whether or not to proceed to the next header. Therefore, extension headers must be processed strictly in the order they appear in the packet; areceiver must not, for example, scan through a packet looking for aparticular kind of extension header and process that header prior to processing all preceding ones.Deering & Hinden Standards Track [Page 6]RFC 2460 IPv6 Specification December 1998 The exception referred to in the preceding paragraph is the Hop-by-Hop Options header, which carries information that must be examinedand processed by every node along a packet’s delivery path, including the source and destination nodes. The Hop-by-Hop Options header,when present, must immediately follow the IPv6 header. Its presence is indicated by the value zero in the Next Header field of the IPv6header.If, as a result of processing a header, a node is required to proceed to the next header but the Next Header value in the current header is unrecognized by the node, it should discard the packet and send anICMP Parameter Problem message to the source of the packet, with anICMP Code value of 1 ("unrecognized Next Header type encountered")and the ICMP Pointer field containing the offset of the unrecognized value within the original packet. The same action should be taken if a node encounters a Next Header value of zero in any header otherthan an IPv6 header.Each extension header is an integer multiple of 8 octets long, inorder to retain 8-octet alignment for subsequent headers. Multi-octet fields within each extension header are aligned on theirnatural boundaries, i.e., fields of width n octets are placed at aninteger multiple of n octets from the start of the header, for n = 1, 2, 4, or 8.A full implementation of IPv6 includes implementation of thefollowing extension headers:Hop-by-Hop OptionsRouting (Type 0)FragmentDestination OptionsAuthenticationEncapsulating Security PayloadThe first four are specified in this document; the last two arespecified in [RFC-2402] and [RFC-2406], respectively.4.1 Extension Header OrderWhen more than one extension header is used in the same packet, it is recommended that those headers appear in the following order:IPv6 headerHop-by-Hop Options headerDestination Options header (note 1)Routing headerFragment headerDeering & Hinden Standards Track [Page 7]RFC 2460 IPv6 Specification December 1998 Authentication header (note 2)Encapsulating Security Payload header (note 2)Destination Options header (note 3)upper-layer headernote 1: for options to be processed by the first destination that appears in the IPv6 Destination Address fieldplus subsequent destinations listed in the Routingheader.note 2: additional recommendations regarding the relativeorder of the Authentication and EncapsulatingSecurity Payload headers are given in [RFC-2406].note 3: for options to be processed only by the finaldestination of the packet.Each extension header should occur at most once, except for theDestination Options header which should occur at most twice (oncebefore a Routing header and once before the upper-layer header).If the upper-layer header is another IPv6 header (in the case of IPv6 being tunneled over or encapsulated in IPv6), it may be followed byits own extension headers, which are separately subject to the sameordering recommendations.If and when other extension headers are defined, their orderingconstraints relative to the above listed headers must be specified.IPv6 nodes must accept and attempt to process extension headers inany order and occurring any number of times in the same packet,except for the Hop-by-Hop Options header which is restricted toappear immediately after an IPv6 header only. Nonetheless, it isstrongly advised that sources of IPv6 packets adhere to the aboverecommended order until and unless subsequent specifications revisethat recommendation.Deering & Hinden Standards Track [Page 8]RFC 2460 IPv6 Specification December 1998 4.2 OptionsTwo of the currently-defined extension headers -- the Hop-by-HopOptions header and the Destination Options header -- carry a variable number of type-length-value (TLV) encoded "options", of the following format:+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- - - - - - - - -| Option Type | Opt Data Len | Option Data+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- - - - - - - - -Option Type 8-bit identifier of the type of option.Opt Data Len 8-bit unsigned integer. Length of the Option Data field of this option, in octets.Option Data Variable-length field. Option-Type-specific data.The sequence of options within a header must be processed strictly in the order they appear in the header; a receiver must not, forexample, scan through the header looking for a particular kind ofoption and process that option prior to processing all precedingones.The Option Type identifiers are internally encoded such that theirhighest-order two bits specify the action that must be taken if theprocessing IPv6 node does not recognize the Option Type:00 - skip over this option and continue processing the header.01 - discard the packet.10 - discard the packet and, regardless of whether or not thepacket’s Destination Address was a multicast address, send an ICMP Parameter Problem, Code 2, message to the packet’sSource Address, pointing to the unrecognized Option Type.11 - discard the packet and, only if the packet’s DestinationAddress was not a multicast address, send an ICMP ParameterProblem, Code 2, message to the packet’s Source Address,pointing to the unrecognized Option Type.The third-highest-order bit of the Option Type specifies whether ornot the Option Data of that option can change en-route to thepacket’s final destination. When an Authentication header is present Deering & Hinden Standards Track [Page 9]RFC 2460 IPv6 Specification December 1998 in the packet, for any option whose data may change en-route, itsentire Option Data field must be treated as zero-valued octets whencomputing or verifying the packet’s authenticating value.0 - Option Data does not change en-route1 - Option Data may change en-routeThe three high-order bits described above are to be treated as partof the Option Type, not independent of the Option Type. That is, aparticular option is identified by a full 8-bit Option Type, not just the low-order 5 bits of an Option Type.The same Option Type numbering space is used for both the Hop-by-Hop Options header and the Destination Options header. However, thespecification of a particular option may restrict its use to only one of those two headers.Individual options may have specific alignment requirements, toensure that multi-octet values within Option Data fields fall onnatural boundaries. The alignment requirement of an option isspecified using the notation xn+y, meaning the Option Type mustappear at an integer multiple of x octets from the start of theheader, plus y octets. For example:2n means any 2-octet offset from the start of the header.8n+2 means any 8-octet offset from the start of the header,plus 2 octets.There are two padding options which are used when necessary to align subsequent options and to pad out the containing header to a multiple of 8 octets in length. These padding options must be recognized byall IPv6 implementations:Pad1 option (alignment requirement: none)+-+-+-+-+-+-+-+-+| 0 |+-+-+-+-+-+-+-+-+NOTE! the format of the Pad1 option is a special case -- it doesnot have length and value fields.The Pad1 option is used to insert one octet of padding into theOptions area of a header. If more than one octet of padding isrequired, the PadN option, described next, should be used, rather than multiple Pad1 options.Deering & Hinden Standards Track [Page 10]RFC 2460 IPv6 Specification December 1998 PadN option (alignment requirement: none)+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- - - - - - - - -| 1 | Opt Data Len | Option Data+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- - - - - - - - -The PadN option is used to insert two or more octets of paddinginto the Options area of a header. For N octets of padding, theOpt Data Len field contains the value N-2, and the Option Dataconsists of N-2 zero-valued octets.Appendix B contains formatting guidelines for designing new options.4.3 Hop-by-Hop Options HeaderThe Hop-by-Hop Options header is used to carry optional informationthat must be examined by every node along a packet’s delivery path.The Hop-by-Hop Options header is identified by a Next Header value of 0 in the IPv6 header, and has the following format:+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+| Next Header | Hdr Ext Len | |+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +| |. .. Options .. .| |+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+Next Header 8-bit selector. Identifies the type of headerimmediately following the Hop-by-Hop Optionsheader. Uses the same values as the IPv4Protocol field [RFC-1700 et seq.].Hdr Ext Len 8-bit unsigned integer. Length of the Hop-by-Hop Options header in 8-octet units, notincluding the first 8 octets.Options Variable-length field, of length such that thecomplete Hop-by-Hop Options header is an integer multiple of 8 octets long. Contains one or more TLV-encoded options, as described in section4.2.The only hop-by-hop options defined in this document are the Pad1 and PadN options specified in section 4.2.Deering & Hinden Standards Track [Page 11]RFC 2460 IPv6 Specification December 1998 4.4 Routing HeaderThe Routing header is used by an IPv6 source to list one or moreintermediate nodes to be "visited" on the way to a packet’sdestination. This function is very similar to IPv4’s Loose Sourceand Record Route option. The Routing header is identified by a Next Header value of 43 in the immediately preceding header, and has thefollowing format:+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+| Next Header | Hdr Ext Len | Routing Type | Segments Left |+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+| |. .. type-specific data .. .| |+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+Next Header 8-bit selector. Identifies the type of headerimmediately following the Routing header. Uses the same values as the IPv4 Protocol field[RFC-1700 et seq.].Hdr Ext Len 8-bit unsigned integer. Length of the Routingheader in 8-octet units, not including the first 8 octets.Routing Type 8-bit identifier of a particular Routing header variant.Segments Left 8-bit unsigned integer. Number of routesegments remaining, i.e., number of explicitlylisted intermediate nodes still to be visitedbefore reaching the final destination.type-specific data Variable-length field, of format determined bythe Routing Type, and of length such that thecomplete Routing header is an integer multipleof 8 octets long.If, while processing a received packet, a node encounters a Routingheader with an unrecognized Routing Type value, the required behavior of the node depends on the value of the Segments Left field, asfollows:Deering & Hinden Standards Track [Page 12]RFC 2460 IPv6 Specification December 1998 If Segments Left is zero, the node must ignore the Routing header and proceed to process the next header in the packet, whose typeis identified by the Next Header field in the Routing header.If Segments Left is non-zero, the node must discard the packet and send an ICMP Parameter Problem, Code 0, message to the packet’sSource Address, pointing to the unrecognized Routing Type.If, after processing a Routing header of a received packet, anintermediate node determines that the packet is to be forwarded onto a link whose link MTU is less than the size of the packet, the nodemust discard the packet and send an ICMP Packet Too Big message tothe packet’s Source Address.Deering & Hinden Standards Track [Page 13]RFC 2460 IPv6 Specification December 1998 The Type 0 Routing header has the following format:+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+| Next Header | Hdr Ext Len | Routing Type=0| Segments Left |+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+| Reserved |+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+| |+ +| |+ Address[1] +| |+ +| |+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+| |+ +| |+ Address[2] +| |+ +| |+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+. . .. . .. . .+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+| |+ +| |+ Address[n] +| |+ +| |+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+Next Header 8-bit selector. Identifies the type of headerimmediately following the Routing header. Uses the same values as the IPv4 Protocol field[RFC-1700 et seq.].Hdr Ext Len 8-bit unsigned integer. Length of the Routingheader in 8-octet units, not including the first 8 octets. For the Type 0 Routing header, HdrExt Len is equal to two times the number ofaddresses in the header.Routing Type 0.Deering & Hinden Standards Track [Page 14]RFC 2460 IPv6 Specification December 1998 Segments Left 8-bit unsigned integer. Number of routesegments remaining, i.e., number of explicitlylisted intermediate nodes still to be visitedbefore reaching the final destination.Reserved 32-bit reserved field. Initialized to zero for transmission; ignored on reception.Address[1..n] Vector of 128-bit addresses, numbered 1 to n.Multicast addresses must not appear in a Routing header of Type 0, or in the IPv6 Destination Address field of a packet carrying a Routing header of Type 0.A Routing header is not examined or processed until it reaches thenode identified in the Destination Address field of the IPv6 header. In that node, dispatching on the Next Header field of the immediately preceding header causes the Routing header module to be invoked,which, in the case of Routing Type 0, performs the followingalgorithm:Deering & Hinden Standards Track [Page 15]RFC 2460 IPv6 Specification December 1998 if Segments Left = 0 {proceed to process the next header in the packet, whose type isidentified by the Next Header field in the Routing header}else if Hdr Ext Len is odd {send an ICMP Parameter Problem, Code 0, message to the SourceAddress, pointing to the Hdr Ext Len field, and discard thepacket}else {compute n, the number of addresses in the Routing header, bydividing Hdr Ext Len by 2if Segments Left is greater than n {send an ICMP Parameter Problem, Code 0, message to the SourceAddress, pointing to the Segments Left field, and discard thepacket}else {decrement Segments Left by 1;compute i, the index of the next address to be visited inthe address vector, by subtracting Segments Left from nif Address [i] or the IPv6 Destination Address is multicast {discard the packet}else {swap the IPv6 Destination Address and Address[i]if the IPv6 Hop Limit is less than or equal to 1 {send an ICMP Time Exceeded -- Hop Limit Exceeded inTransit message to the Source Address and discard thepacket}else {decrement the Hop Limit by 1resubmit the packet to the IPv6 module for transmissionto the new destination}}}}Deering & Hinden Standards Track [Page 16]RFC 2460 IPv6 Specification December 1998 As an example of the effects of the above algorithm, consider thecase of a source node S sending a packet to destination node D, using a Routing header to cause the packet to be routed via intermediatenodes I1, I2, and I3. The values of the relevant IPv6 header andRouting header fields on each segment of the delivery path would beas follows:As the packet travels from S to I1:Source Address = S Hdr Ext Len = 6Destination Address = I1 Segments Left = 3Address[1] = I2Address[2] = I3Address[3] = DAs the packet travels from I1 to I2:Source Address = S Hdr Ext Len = 6Destination Address = I2 Segments Left = 2Address[1] = I1Address[2] = I3Address[3] = DAs the packet travels from I2 to I3:Source Address = S Hdr Ext Len = 6Destination Address = I3 Segments Left = 1Address[1] = I1Address[2] = I2Address[3] = DAs the packet travels from I3 to D:Source Address = S Hdr Ext Len = 6Destination Address = D Segments Left = 0Address[1] = I1Address[2] = I2Address[3] = I3Deering & Hinden Standards Track [Page 17]RFC 2460 IPv6 Specification December 1998 4.5 Fragment HeaderThe Fragment header is used by an IPv6 source to send a packet larger than would fit in the path MTU to its destination. (Note: unlikeIPv4, fragmentation in IPv6 is performed only by source nodes, not by routers along a packet’s delivery path -- see section 5.) TheFragment header is identified by a Next Header value of 44 in theimmediately preceding header, and has the following format:+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+| Next Header | Reserved | Fragment Offset |Res|M|+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+| Identification |+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+Next Header 8-bit selector. Identifies the initial headertype of the Fragmentable Part of the originalpacket (defined below). Uses the same values as the IPv4 Protocol field [RFC-1700 et seq.].Reserved 8-bit reserved field. Initialized to zero fortransmission; ignored on reception.Fragment Offset 13-bit unsigned integer. The offset, in 8-octet units, of the data following this header,relative to the start of the Fragmentable Partof the original packet.Res 2-bit reserved field. Initialized to zero fortransmission; ignored on reception.M flag 1 = more fragments; 0 = last fragment.Identification 32 bits. See description below.In order to send a packet that is too large to fit in the MTU of the path to its destination, a source node may divide the packet intofragments and send each fragment as a separate packet, to bereassembled at the receiver.For every packet that is to be fragmented, the source node generates an Identification value. The Identification must be different thanthat of any other fragmented packet sent recently* with the sameSource Address and Destination Address. If a Routing header ispresent, the Destination Address of concern is that of the finaldestination.Deering & Hinden Standards Track [Page 18]。

TLV1504ID;TLV1504IPW;TLV1508IPW;TLV1508IDW;TLV1504IPWR;中文规格书,Datasheet资料

TLV1504ID;TLV1504IPW;TLV1508IPW;TLV1508IDW;TLV1504IPWR;中文规格书,Datasheet资料
SLAS251A − DECEMBER 1999 − REVISED JANUARY 2003
Terminal Functions
TERMINAL NAME A0 A1 A2 A3 A0 A1 A2 A3 A4 A5 A6 A7 NO. TLV1504 6 7 8 9 TLV1508 6 7 8 9 10 11 12 13 20 I Analog signal inputs. The analog inputs are applied to these terminals and are internally multiplexed. The driving source impedance should be less than or equal to 1 kΩ. For a source impedance greater than 1 kΩ, use the asynchronous conversion start signal CSTART (CSTART low time controls the sampling period) or program long sampling period to increase the sampling time. I/O DESCRIPTION
2
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
/
TLV1504, TLV1508 2.7ĆV TO 5.5ĆV, 10ĆBIT, 200ĆKSPS, 4Ć/8ĆCHANNEL, LOWĆPOWER SERIAL ANALOGĆTOĆDIGITAL CONVERTERS WITH AUTOPOWERĆDOWN
TLV1508 DW OR PW PACKAGE (TOP VIEW)

TLV2462

TLV2462

Pin 1Pin 1PACKAGING INFORMATIONOrderable Device Status(1)PackageType PackageDrawingPins PackageQtyEco Plan(2)Lead/Ball Finish MSL Peak Temp(3)5962-0051201Q2A ACTIVE LCCC FK201TBD POST-PLATE N/A for Pkg Type 5962-0051201QHA ACTIVE CFP U101TBD A42N/A for Pkg Type 5962-0051201QPA ACTIVE CDIP JG81TBD A42N/A for Pkg Type 5962-0051202Q2A ACTIVE LCCC FK201TBD POST-PLATE N/A for Pkg Type 5962-0051202QHA ACTIVE CFP U101TBD A42N/A for Pkg Type 5962-0051202QPA ACTIVE CDIP JG81TBD A42N/A for Pkg Type 5962-0051203Q2A ACTIVE LCCC FK201TBD POST-PLATE N/A for Pkg Type 5962-0051203QHA ACTIVE CFP U101TBD A42N/A for Pkg Type 5962-0051203QPA ACTIVE CDIP JG81TBD A42N/A for Pkg Type 5962-0051204Q2A ACTIVE LCCC FK201TBD POST-PLATE N/A for Pkg Type 5962-0051204QHA ACTIVE CFP U101TBD A42N/A for Pkg Type 5962-0051204QPA ACTIVE CDIP JG81TBD A42N/A for Pkg Type 5962-0051205Q2A ACTIVE LCCC FK201TBD POST-PLATE N/A for Pkg Type 5962-0051205QHA ACTIVE CFP U101TBD A42N/A for Pkg Type 5962-0051205QPA ACTIVE CDIP JG81TBD A42N/A for Pkg Type 5962-0051206Q2A ACTIVE LCCC FK201TBD POST-PLATE N/A for Pkg Type 5962-0051206QHA ACTIVE CFP U101TBD A42N/A for Pkg Type 5962-0051206QPA ACTIVE CDIP JG81TBD A42N/A for Pkg Type 5962-0051207Q2A ACTIVE LCCC FK201TBD POST-PLATE N/A for Pkg Type 5962-0051207QCA ACTIVE CDIP J141TBD A42N/A for Pkg Type 5962-0051208Q2A ACTIVE LCCC FK201TBD POST-PLATE N/A for Pkg Type 5962-0051208QCA ACTIVE CDIP J141TBD A42N/A for Pkg Type TLV2460AIDR ACTIVE SOIC D82500Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2460AIDRG4ACTIVE SOIC D82500Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2460AIP ACTIVE PDIP P850Pb-Free(RoHS)CU NIPDAU N/A for Pkg TypeTLV2460AIPE4ACTIVE PDIP P850Pb-Free(RoHS)CU NIPDAU N/A for Pkg Type TLV2460AMFKB ACTIVE LCCC FK201TBD POST-PLATE N/A for Pkg Type TLV2460AMJGB ACTIVE CDIP JG81TBD A42N/A for Pkg Type TLV2460AMUB ACTIVE CFP U101TBD A42N/A for Pkg Type TLV2460AQD OBSOLETE SOIC D8TBD Call TI Call TITLV2460AQDR ACTIVE SOIC D82500TBD Call TI Call TITLV2460AQDRG4ACTIVE SOIC D82500Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIM TLV2460AQPW ACTIVE TSSOP PW8150TBD CU NIPDAU Level-1-220C-UNLIM TLV2460AQPWG4ACTIVE TSSOP PW8150Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIM TLV2460AQPWR ACTIVE TSSOP PW82000TBD CU NIPDAU Level-1-220C-UNLIM TLV2460AQPWRG4ACTIVE TSSOP PW82000Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIM TLV2460CD ACTIVE SOIC D875Green(RoHS&CU NIPDAU Level-1-260C-UNLIMOrderable Device Status(1)PackageType PackageDrawingPins PackageQtyEco Plan(2)Lead/Ball Finish MSL Peak Temp(3)no Sb/Br)TLV2460CDBVR ACTIVE SOT-23DBV63000Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2460CDBVRG4ACTIVE SOT-23DBV63000Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2460CDBVT ACTIVE SOT-23DBV6250Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2460CDBVTG4ACTIVE SOT-23DBV6250Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2460CDG4ACTIVE SOIC D875Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2460CDR ACTIVE SOIC D82500Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2460CDRG4ACTIVE SOIC D82500Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2460CP ACTIVE PDIP P850Pb-Free(RoHS)CU NIPDAU N/A for Pkg TypeTLV2460CPE4ACTIVE PDIP P850Pb-Free(RoHS)CU NIPDAU N/A for Pkg TypeTLV2460ID ACTIVE SOIC D875Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2460IDBVR ACTIVE SOT-23DBV63000Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2460IDBVRG4ACTIVE SOT-23DBV63000Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2460IDBVT ACTIVE SOT-23DBV6250Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2460IDBVTG4ACTIVE SOT-23DBV6250Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2460IDG4ACTIVE SOIC D875Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2460IDR ACTIVE SOIC D82500Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2460IDRG4ACTIVE SOIC D82500Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2460IP ACTIVE PDIP P850Pb-Free(RoHS)CU NIPDAU N/A for Pkg TypeTLV2460IPE4ACTIVE PDIP P850Pb-Free(RoHS)CU NIPDAU N/A for Pkg TypeTLV2460MFKB ACTIVE LCCC FK201TBD POST-PLATE N/A for Pkg Type TLV2460MJG ACTIVE CDIP JG81TBD A42N/A for Pkg Type TLV2460MJGB ACTIVE CDIP JG81TBD A42N/A for Pkg Type TLV2460MUB ACTIVE CFP U101TBD A42N/A for Pkg Type TLV2460QD ACTIVE SOIC D875TBD Call TI Call TITLV2460QDR ACTIVE SOIC D82500TBD Call TI Call TITLV2460QPW ACTIVE TSSOP PW8150TBD CU NIPDAU Level-1-220C-UNLIM TLV2460QPWG4ACTIVE TSSOP PW8150Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2460QPWR ACTIVE TSSOP PW82000TBD CU NIPDAU Level-1-220C-UNLIM TLV2460QPWRG4ACTIVE TSSOP PW82000Green(RoHS&CU NIPDAU Level-1-260C-UNLIMOrderable Device Status(1)PackageType PackageDrawingPins PackageQtyEco Plan(2)Lead/Ball Finish MSL Peak Temp(3)no Sb/Br)TLV2461AID ACTIVE SOIC D875Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2461AIDG4ACTIVE SOIC D875Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2461AIDR ACTIVE SOIC D82500Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2461AIDRG4ACTIVE SOIC D82500Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2461AIP ACTIVE PDIP P850Pb-Free(RoHS)CU NIPDAU N/A for Pkg TypeTLV2461AIPE4ACTIVE PDIP P850Pb-Free(RoHS)CU NIPDAU N/A for Pkg Type TLV2461AMFKB ACTIVE LCCC FK201TBD POST-PLATE N/A for Pkg Type TLV2461AMJGB ACTIVE CDIP JG81TBD A42N/A for Pkg Type TLV2461AMUB ACTIVE CFP U101TBD A42N/A for Pkg Type TLV2461AQD ACTIVE SOIC D875Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2461AQDG4ACTIVE SOIC D875Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2461AQDR ACTIVE SOIC D82500Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2461AQDRG4ACTIVE SOIC D82500Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIM TLV2461AQPWR ACTIVE TSSOP PW82000TBD CU NIPDAU Level-1-220C-UNLIM TLV2461AQPWRG4ACTIVE TSSOP PW82000Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2461CD ACTIVE SOIC D875Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2461CDBVR ACTIVE SOT-23DBV51Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2461CDBVRG4ACTIVE SOT-23DBV51Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2461CDBVT ACTIVE SOT-23DBV5250Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2461CDBVTG4ACTIVE SOT-23DBV5250Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2461CDG4ACTIVE SOIC D875Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2461CDR ACTIVE SOIC D82500Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2461CDRG4ACTIVE SOIC D82500Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2461CP ACTIVE PDIP P850Pb-Free(RoHS)CU NIPDAU N/A for Pkg TypeTLV2461CPE4ACTIVE PDIP P850Pb-Free(RoHS)CU NIPDAU N/A for Pkg TypeTLV2461ID ACTIVE SOIC D875Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2461IDBVR ACTIVE SOT-23DBV53000Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMOrderable Device Status(1)PackageType PackageDrawingPins PackageQtyEco Plan(2)Lead/Ball Finish MSL Peak Temp(3)TLV2461IDBVRG4ACTIVE SOT-23DBV53000Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2461IDBVT ACTIVE SOT-23DBV5250Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2461IDBVTG4ACTIVE SOT-23DBV5250Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2461IDG4ACTIVE SOIC D875Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2461IDR ACTIVE SOIC D82500Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2461IDRG4ACTIVE SOIC D82500Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2461IP ACTIVE PDIP P850Pb-Free(RoHS)CU NIPDAU N/A for Pkg TypeTLV2461IPE4ACTIVE PDIP P850Pb-Free(RoHS)CU NIPDAU N/A for Pkg Type TLV2461MFKB ACTIVE LCCC FK201TBD POST-PLATE N/A for Pkg Type TLV2461MJGB ACTIVE CDIP JG81TBD A42N/A for Pkg Type TLV2461MUB ACTIVE CFP U101TBD A42N/A for Pkg Type TLV2461QD ACTIVE SOIC D875Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2461QDG4ACTIVE SOIC D875Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2461QDR ACTIVE SOIC D82500Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2461QDRG4ACTIVE SOIC D82500Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIM TLV2461QPWR ACTIVE TSSOP PW82000TBD CU NIPDAU Level-1-220C-UNLIM TLV2461QPWRG4ACTIVE TSSOP PW82000Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2462AID ACTIVE SOIC D875Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2462AIDG4ACTIVE SOIC D875Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2462AIDR ACTIVE SOIC D82500Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2462AIDRG4ACTIVE SOIC D82500Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2462AIP ACTIVE PDIP P850Pb-Free(RoHS)CU NIPDAU N/A for Pkg TypeTLV2462AIPE4ACTIVE PDIP P850Pb-Free(RoHS)CU NIPDAU N/A for Pkg Type TLV2462AMFKB ACTIVE LCCC FK201TBD POST-PLATE N/A for Pkg Type TLV2462AMJG ACTIVE CDIP JG81TBD A42N/A for Pkg Type TLV2462AMJGB ACTIVE CDIP JG81TBD A42N/A for Pkg Type TLV2462AMUB ACTIVE CFP U101TBD A42N/A for Pkg Type TLV2462AQD ACTIVE SOIC D875Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2462AQDG4ACTIVE SOIC D875Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMOrderable Device Status(1)PackageType PackageDrawingPins PackageQtyEco Plan(2)Lead/Ball Finish MSL Peak Temp(3)TLV2462AQDR ACTIVE SOIC D82500Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2462AQDRG4ACTIVE SOIC D82500Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIM TLV2462AQPWR ACTIVE TSSOP PW82000TBD CU NIPDAU Level-1-220C-UNLIM TLV2462AQPWRG4ACTIVE TSSOP PW82000Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2462CD ACTIVE SOIC D875Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2462CDG4ACTIVE SOIC D875Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2462CDGK ACTIVE MSOP DGK880Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2462CDGKG4ACTIVE MSOP DGK880Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2462CDGKR ACTIVE MSOP DGK82500Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2462CDGKRG4ACTIVE MSOP DGK82500Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2462CDR ACTIVE SOIC D82500Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2462CDRG4ACTIVE SOIC D82500Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2462CP ACTIVE PDIP P850Pb-Free(RoHS)CU NIPDAU N/A for Pkg TypeTLV2462CPE4ACTIVE PDIP P850Pb-Free(RoHS)CU NIPDAU N/A for Pkg TypeTLV2462ID ACTIVE SOIC D875Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2462IDG4ACTIVE SOIC D875Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2462IDGK ACTIVE MSOP DGK880Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2462IDGKG4ACTIVE MSOP DGK880Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2462IDGKR ACTIVE MSOP DGK82500Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2462IDGKRG4ACTIVE MSOP DGK82500Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2462IDR ACTIVE SOIC D82500Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2462IDRG4ACTIVE SOIC D82500Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2462IP ACTIVE PDIP P850Pb-Free(RoHS)CU NIPDAU N/A for Pkg TypeTLV2462IPE4ACTIVE PDIP P850Pb-Free(RoHS)CU NIPDAU N/A for Pkg TypeTLV2462MFKB ACTIVE LCCC FK201TBD POST-PLATE N/A for Pkg Type TLV2462MJGB ACTIVE CDIP JG81TBD A42N/A for Pkg Type TLV2462MUB ACTIVE CFP U101TBD A42N/A for Pkg Type TLV2462QD ACTIVE SOIC D875Green(RoHS&CU NIPDAU Level-1-260C-UNLIMOrderable Device Status(1)PackageType PackageDrawingPins PackageQtyEco Plan(2)Lead/Ball Finish MSL Peak Temp(3)no Sb/Br)TLV2462QDG4ACTIVE SOIC D875Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2462QDR ACTIVE SOIC D82500Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2462QDRG4ACTIVE SOIC D82500Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIM TLV2462QPW ACTIVE TSSOP PW8150TBD CU NIPDAU Level-1-220C-UNLIM TLV2462QPWG4ACTIVE TSSOP PW8150Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIM TLV2462QPWR ACTIVE TSSOP PW82000TBD CU NIPDAU Level-1-220C-UNLIM TLV2462QPWRG4ACTIVE TSSOP PW82000Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2463AIDR ACTIVE SOIC D142500Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2463AIDRG4ACTIVE SOIC D142500Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2463AIN ACTIVE PDIP N1425Pb-Free(RoHS)CU NIPDAU N/A for Pkg TypeTLV2463AINE4ACTIVE PDIP N1425Pb-Free(RoHS)CU NIPDAU N/A for Pkg Type TLV2463AMFKB ACTIVE LCCC FK201TBD POST-PLATE N/A for Pkg Type TLV2463AMJ ACTIVE CDIP J141TBD A42N/A for Pkg Type TLV2463AMJB ACTIVE CDIP J141TBD A42N/A for Pkg Type TLV2463AQD ACTIVE SOIC D1450Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2463AQDG4ACTIVE SOIC D1450Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2463AQDR ACTIVE SOIC D1475Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2463AQDRG4ACTIVE SOIC D142500Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIM TLV2463AQPWR ACTIVE TSSOP PW142000TBD CU NIPDAU Level-1-250C-UNLIM TLV2463AQPWRG4ACTIVE TSSOP PW142000Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2463CD ACTIVE SOIC D1450Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2463CDG4ACTIVE SOIC D1450Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2463CDGS ACTIVE MSOP DGS1080Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2463CDGSG4ACTIVE MSOP DGS1080Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2463CDGSR ACTIVE MSOP DGS102500Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2463CDGSRG4ACTIVE MSOP DGS102500Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2463CDR ACTIVE SOIC D142500Green(RoHS&no Sb/Br)Call TI Level-1-260C-UNLIM TLV2463CDRG4ACTIVE SOIC D142500Green(RoHS&Call TI Level-1-260C-UNLIMOrderable Device Status(1)PackageType PackageDrawingPins PackageQtyEco Plan(2)Lead/Ball Finish MSL Peak Temp(3)no Sb/Br)TLV2463CN ACTIVE PDIP N1425Pb-Free(RoHS)CU NIPDAU N/A for Pkg TypeTLV2463CNE4ACTIVE PDIP N1425Pb-Free(RoHS)CU NIPDAU N/A for Pkg TypeTLV2463ID ACTIVE SOIC D1450Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2463IDG4ACTIVE SOIC D1450Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2463IDGS ACTIVE MSOP DGS1080Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2463IDGSG4ACTIVE MSOP DGS1080Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2463IDGSR ACTIVE MSOP DGS102500Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2463IDGSRG4ACTIVE MSOP DGS102500Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2463IN ACTIVE PDIP N1425Pb-Free(RoHS)CU NIPDAU N/A for Pkg TypeTLV2463INE4ACTIVE PDIP N1425Pb-Free(RoHS)CU NIPDAU N/A for Pkg Type TLV2463MFKB ACTIVE LCCC FK201TBD POST-PLATE N/A for Pkg Type TLV2463MJB ACTIVE CDIP J141TBD A42N/A for Pkg Type TLV2463QD ACTIVE SOIC D1475Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2463QDG4ACTIVE SOIC D1450Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2463QDR ACTIVE SOIC D142500Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2463QDRG4ACTIVE SOIC D142500Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIM TLV2463QPWR ACTIVE TSSOP PW142000TBD CU NIPDAU Level-1-250C-UNLIM TLV2463QPWRG4ACTIVE TSSOP PW142000Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2464AID ACTIVE SOIC D1450Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2464AIDG4ACTIVE SOIC D1450Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2464AIDR ACTIVE SOIC D142500Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2464AIDRG4ACTIVE SOIC D142500Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2464AIN ACTIVE PDIP N1425Pb-Free(RoHS)CU NIPDAU N/A for Pkg TypeTLV2464AINE4ACTIVE PDIP N1425Pb-Free(RoHS)CU NIPDAU N/A for Pkg TypeTLV2464AIPW ACTIVE TSSOP PW1490Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2464AIPWG4ACTIVE TSSOP PW1490Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2464AIPWR ACTIVE TSSOP PW142000Green(RoHS&CU NIPDAU Level-1-260C-UNLIMOrderable Device Status(1)PackageType PackageDrawingPins PackageQtyEco Plan(2)Lead/Ball Finish MSL Peak Temp(3)no Sb/Br)TLV2464AIPWRG4ACTIVE TSSOP PW142000Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2464CD ACTIVE SOIC D1450Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2464CDG4ACTIVE SOIC D1450Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2464CDR ACTIVE SOIC D142500Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2464CDRG4ACTIVE SOIC D142500Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2464CN ACTIVE PDIP N1425Pb-Free(RoHS)CU NIPDAU N/A for Pkg TypeTLV2464CNE4ACTIVE PDIP N1425Pb-Free(RoHS)CU NIPDAU N/A for Pkg TypeTLV2464CPW ACTIVE TSSOP PW1490Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2464CPWG4ACTIVE TSSOP PW1490Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2464CPWR ACTIVE TSSOP PW142000Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2464CPWRG4ACTIVE TSSOP PW142000Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2464ID ACTIVE SOIC D1450Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2464IDG4ACTIVE SOIC D1450Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2464IDR ACTIVE SOIC D142500Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2464IDRG4ACTIVE SOIC D142500Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2464IN ACTIVE PDIP N1425Pb-Free(RoHS)CU NIPDAU N/A for Pkg TypeTLV2464INE4ACTIVE PDIP N1425Pb-Free(RoHS)CU NIPDAU N/A for Pkg TypeTLV2464IPW ACTIVE TSSOP PW1490Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2464IPWG4ACTIVE TSSOP PW1490Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2464IPWR ACTIVE TSSOP PW142000Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2464IPWRG4ACTIVE TSSOP PW142000Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2465AID ACTIVE SOIC D1640Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2465AIDG4ACTIVE SOIC D1640Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2465AIPWR ACTIVE TSSOP PW162000Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2465AIPWRG4ACTIVE TSSOP PW162000Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMOrderable Device Status(1)PackageType PackageDrawingPins PackageQtyEco Plan(2)Lead/Ball Finish MSL Peak Temp(3)TLV2465CD ACTIVE SOIC D1640Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2465CDG4ACTIVE SOIC D1640Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2465CDR ACTIVE SOIC D162500Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2465CDRG4ACTIVE SOIC D162500Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2465CN ACTIVE PDIP N1625Pb-Free(RoHS)CU NIPDAU N/A for Pkg TypeTLV2465CNE4ACTIVE PDIP N1625Pb-Free(RoHS)CU NIPDAU N/A for Pkg TypeTLV2465CPWR ACTIVE TSSOP PW162000Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2465CPWRG4ACTIVE TSSOP PW162000Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2465ID ACTIVE SOIC D1640Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2465IDG4ACTIVE SOIC D1640Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2465IDR ACTIVE SOIC D162500Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2465IDRG4ACTIVE SOIC D162500Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2465IN ACTIVE PDIP N1625Pb-Free(RoHS)CU NIPDAU N/A for Pkg TypeTLV2465INE4ACTIVE PDIP N1625Pb-Free(RoHS)CU NIPDAU N/A for Pkg TypeTLV2465IPW ACTIVE TSSOP PW1690Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2465IPWG4ACTIVE TSSOP PW1690Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2465IPWR ACTIVE TSSOP PW162000Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLV2465IPWRG4ACTIVE TSSOP PW162000Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIM(1)The marketing status values are defined as follows:ACTIVE:Product device recommended for new designs.LIFEBUY:TI has announced that the device will be discontinued,and a lifetime-buy period is in effect.NRND:Not recommended for new designs.Device is in production to support existing customers,but TI does not recommend using this part in a new design.PREVIEW:Device has been announced but is not in production.Samples may or may not be available.OBSOLETE:TI has discontinued the production of the device.(2)Eco Plan-The planned eco-friendly classification:Pb-Free(RoHS),Pb-Free(RoHS Exempt),or Green(RoHS&no Sb/Br)-please check /productcontent for the latest availability information and additional product content details.TBD:The Pb-Free/Green conversion plan has not been defined.Pb-Free(RoHS):TI's terms"Lead-Free"or"Pb-Free"mean semiconductor products that are compatible with the current RoHS requirements for all6substances,including the requirement that lead not exceed0.1%by weight in homogeneous materials.Where designed to be soldered at high temperatures,TI Pb-Free products are suitable for use in specified lead-free processes.Pb-Free(RoHS Exempt):This component has a RoHS exemption for either1)lead-based flip-chip solder bumps used between the die and package,or2)lead-based die adhesive used between the die and leadframe.The component is otherwise considered Pb-Free(RoHS compatible)as defined above.Green(RoHS&no Sb/Br):TI defines"Green"to mean Pb-Free(RoHS compatible),and free of Bromine(Br)and Antimony(Sb)based flameretardants(Br or Sb do not exceed0.1%by weight in homogeneous material)(3)MSL,Peak Temp.--The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications,and peak solder temperature.Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided.TI bases its knowledge and belief on information provided by third parties,and makes no representation or warranty as to the accuracy of such information.Efforts are underway to better integrate information from third parties.TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.TI and TI suppliers consider certain information to be proprietary,and thus CAS numbers and other limited information may not be available for release.In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s)at issue in this document sold by TIto Customer on an annual basis.OTHER QUALIFIED VERSIONS OF TLV2460,TLV2460A,TLV2460AM,TLV2460M,TLV2461,TLV2461A,TLV2461AM,TLV2461M,TLV2462, TLV2462A,TLV2462AM,TLV2462M,TLV2463,TLV2463A,TLV2463AM,TLV2463M,TLV2464A:•Automotive:TLV2460-Q1,TLV2460A-Q1,TLV2461-Q1,TLV2461A-Q1,TLV2462-Q1,TLV2462A-Q1,TLV2463-Q1,TLV2463A-Q1, TLV2464A-Q1•Enhanced Product:TLV2462A-EP,TLV2464A-EPNOTE:Qualified Version Definitions:•Automotive-Q100devices qualified for high-reliability automotive applications targeting zero defects•Enhanced Product-Supports Defense,Aerospace and Medical ApplicationsTAPE AND REEL INFORMATION*All dimensions are nominal Device Package Type Package DrawingPinsSPQ Reel Diameter (mm)Reel Width W1(mm)A0(mm)B0(mm)K0(mm)P1(mm)W (mm)Pin1Quadrant TLV2460AIDR SOICD 82500330.012.4 6.4 5.2 2.18.012.0Q1TLV2460CDBVR SOT-23DBV 63000180.09.0 3.15 3.2 1.4 4.08.0Q3TLV2460CDBVT SOT-23DBV 6250180.09.0 3.15 3.2 1.4 4.08.0Q3TLV2460CDR SOICD 82500330.012.4 6.4 5.2 2.18.012.0Q1TLV2460IDBVR SOT-23DBV 63000180.09.0 3.15 3.2 1.4 4.08.0Q3TLV2460IDBVT SOT-23DBV 6250180.09.0 3.15 3.2 1.4 4.08.0Q3TLV2460IDR SOICD 82500330.012.4 6.4 5.2 2.18.012.0Q1TLV2461AIDR SOICD 82500330.012.4 6.4 5.2 2.18.012.0Q1TLV2461CDBVR SOT-23DBV 51180.09.0 3.15 3.2 1.4 4.08.0Q3TLV2461CDBVT SOT-23DBV 5250180.09.0 3.15 3.2 1.4 4.08.0Q3TLV2461CDR SOICD 82500330.012.4 6.4 5.2 2.18.012.0Q1TLV2461IDBVR SOT-23DBV 53000180.09.0 3.15 3.2 1.4 4.08.0Q3TLV2461IDBVT SOT-23DBV 5250180.09.0 3.15 3.2 1.4 4.08.0Q3TLV2461IDR SOICD 82500330.012.4 6.4 5.2 2.18.012.0Q1TLV2462AIDR SOICD 82500330.012.4 6.4 5.2 2.18.012.0Q1TLV2462CDGKR MSOPDGK 82500330.012.4 5.3 3.4 1.48.012.0Q1TLV2462CDR SOICD 82500330.012.4 6.4 5.2 2.18.012.0Q1TLV2462IDGKR MSOP DGK 82500330.012.4 5.3 3.4 1.48.012.0Q1Device PackageType PackageDrawingPins SPQ ReelDiameter(mm)ReelWidthW1(mm)A0(mm)B0(mm)K0(mm)P1(mm)W(mm)Pin1QuadrantTLV2462IDR SOIC D8*******.012.4 6.4 5.2 2.18.012.0Q1 TLV2463AIDR SOIC D142500330.016.4 6.59.0 2.18.016.0Q1 TLV2463CDGSR MSOP DGS102500330.012.4 5.3 3.4 1.48.012.0Q1 TLV2463CDR SOIC D142500330.016.4 6.59.0 2.18.016.0Q1 TLV2463IDGSR MSOP DGS102500330.012.4 5.3 3.4 1.48.012.0Q1 TLV2464AIDR SOIC D142500330.016.4 6.59.0 2.18.016.0Q1 TLV2464AIPWR TSSOP PW142000330.012.47.0 5.6 1.68.012.0Q1 TLV2464CDR SOIC D142500330.016.4 6.59.0 2.18.016.0Q1 TLV2464CPWR TSSOP PW142000330.012.47.0 5.6 1.68.012.0Q1 TLV2464IDR SOIC D142500330.016.4 6.59.0 2.18.016.0Q1 TLV2464IPWR TSSOP PW142000330.012.47.0 5.6 1.68.012.0Q1 TLV2465AIPWR TSSOP PW162000330.012.47.0 5.6 1.68.012.0Q1 TLV2465CDR SOIC D162500330.016.4 6.510.3 2.18.016.0Q1 TLV2465CPWR TSSOP PW162000330.012.47.0 5.6 1.68.012.0Q1 TLV2465IDR SOIC D162500330.016.4 6.510.3 2.18.016.0Q1 TLV2465IPWR TSSOP PW162000330.012.47.0 5.6 1.68.012.0Q1*All dimensions are nominalDevice Package Type Package Drawing Pins SPQ Length(mm)Width(mm)Height(mm) TLV2460AIDR SOIC D8*******.0346.029.0Device Package Type Package Drawing Pins SPQ Length(mm)Width(mm)Height(mm) TLV2460CDBVR SOT-23DBV63000182.0182.020.0 TLV2460CDBVT SOT-23DBV6250182.0182.020.0 TLV2460CDR SOIC D8*******.0346.029.0 TLV2460IDBVR SOT-23DBV63000182.0182.020.0 TLV2460IDBVT SOT-23DBV6250182.0182.020.0 TLV2460IDR SOIC D8*******.0346.029.0 TLV2461AIDR SOIC D8*******.0346.029.0 TLV2461CDBVR SOT-23DBV51182.0182.020.0 TLV2461CDBVT SOT-23DBV5250182.0182.020.0 TLV2461CDR SOIC D8*******.0346.029.0 TLV2461IDBVR SOT-23DBV53000182.0182.020.0 TLV2461IDBVT SOT-23DBV5250182.0182.020.0 TLV2461IDR SOIC D8*******.0346.029.0 TLV2462AIDR SOIC D8*******.0346.029.0 TLV2462CDGKR MSOP DGK82500358.0335.035.0 TLV2462CDR SOIC D8*******.5338.120.6 TLV2462IDGKR MSOP DGK82500358.0335.035.0 TLV2462IDR SOIC D8*******.0346.029.0 TLV2463AIDR SOIC D142500346.0346.033.0 TLV2463CDGSR MSOP DGS102500358.0335.035.0 TLV2463CDR SOIC D142500346.0346.033.0 TLV2463IDGSR MSOP DGS102500358.0335.035.0 TLV2464AIDR SOIC D142500333.2345.928.6 TLV2464AIPWR TSSOP PW142000346.0346.029.0 TLV2464CDR SOIC D142500333.2345.928.6 TLV2464CPWR TSSOP PW142000346.0346.029.0 TLV2464IDR SOIC D142500333.2345.928.6 TLV2464IPWR TSSOP PW142000346.0346.029.0 TLV2465AIPWR TSSOP PW162000346.0346.029.0 TLV2465CDR SOIC D162500346.0346.033.0 TLV2465CPWR TSSOP PW162000346.0346.029.0 TLV2465IDR SOIC D162500346.0346.033.0 TLV2465IPWR TSSOP PW162000346.0346.029.0。

M62460FP中文资料

M62460FP中文资料

Open collector output pin(NPN Tr)
18 19 20
20
LO3
21
XIN
Osillator input
connect a 4 - MHz ceramic resonator
22
XOUT
Osillator output
21
22
1/2 Vcc output.
Connect a filter
RLC6 65 LLI 66
LBPF 67
FULL WAVE RECTIFIER
BPF
RLI 68
BPF
RBPF 69
L+R L-R
LOG
DIFFERENCE AMPLIFIERS
DUAL-TIME CONSTANT AND THRESHOLD SWITCHES
VCA COMBINNING NETWORKS
MITSUBISHI ELECTRIC
( 2 / 20 )
C-62460-72E
RLC8 RLC3 RLC7 RLC4 RLC1 RLC2 RLC5 PSC4 PSC1 PSC5 PSC2 PSC6 PSC3 DBC3 DBC2 DBC1 LPIN DBIN S' OUT FBIN SU FBIN EC DELAY SIG OUT DELAY SIG IN VOL OUT
C-62460-72E
MITSUBISHI SOUND PROCESSORS
M62460FP
“Super Single Chip” Surround Processor with Dolby Pro Logic Decoder
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41

24LC025T-IOT;24AA024T-IMS;24AA025T-IOT;24AA025-IMS;24AA025T-IMNY;中文规格书,Datasheet资料

24LC025T-IOT;24AA024T-IMS;24AA025T-IOT;24AA025-IMS;24AA025T-IMNY;中文规格书,Datasheet资料

© 2009 Microchip Technology Inc.DS21210N-page 124AA024/24LC024/24AA025/24LC025Device Selection TableFeatures:•Single Supply with Operation from 1.7V to 5.5V for 24AA024/24AA025 Devices, 2.5V for 24LC024/24LC025 Devices •Low-Power CMOS Technology:-Read current 1 mA, typical -Standby current 1 μA, typical•2-Wire Serial Interface, I 2C™ Compatible •Cascadable up to Eight Devices•Schmitt Trigger Inputs for Noise Suppression•Output Slope Control to Eliminate Ground Bounce •100kHz and 400kHz Clock Compatibility •Page Write Time 5 ms Maximum •Self-timed Erase/Write Cycle •16-Byte Page Write Buffer•Hardware Write-Protect on 24XX024 Devices •ESD Protection >4,000V•More than 1 Million Erase/Write Cycles •Data Retention >200 years•Factory Programming Available•Packages include 8-lead PDIP , SOIC, TSSOP , DFN, TDFN and MSOP•6-Lead SOT-23 Package, 24XX025 only •Pb-Free and RoHS Compliant •Temperature Ranges:-Industrial (I): -40°C to +85°C -Automotive (E): -40°C to +125°CDescription:The Microchip Technology Inc. 24AA024/24LC024/24AA025/24LC025 is a 2Kbit Serial ElectricallyErasable PROM with a voltage range of 1.7V to 5.5V. The device is organized as a single block of 256 x 8-bit memory with a 2-wire serial interface. Low current design permits operation with typical standby and active currents of only 1 μA and 1 mA, respectively. The device has a page write capability for up to 16 bytes of data. Functional address lines allow the connection of up to eight 24AA024/24LC024/24AA025/24LC025 devices on the same bus for up to 16K bits of contiguous EEPROM memory. The device is available in the standard 8-pin PDIP , 8-pin SOIC (3.90 mm), TSSOP , 2x3 DFN and TDFN and MSOP packages. The 24AA025/24LC025 is also available in the 6-lead SOT-23 package.Package TypesBlock DiagramPart Number V CC Range Max Clock Temp. Range Write Protect 24AA024 1.7V-5.5V 400kHz (1)I Yes 24AA025 1.7V-5.5V 400kHz (1)I No 24LC024 2.5V-5.5V 400kHz I, E Yes 24LC025 2.5V-5.5V400kHzI, ENoNote 1:100 kHz for V CC < 2.5VNote:WP pin is not internally connected on the 24XX025.A0A1A2V SSV CC WP SCL SDA 12348765PDIP/SOIC/TSSOP/MSOP A0A1A2V SS WP SCL SDAV CC 87651234SOT-23V CC SCL SDAV SS A0A1DFN/TDFN123456 I/OControl LogicMemory Control LogicXDECHV GeneratorEEPROMArrayWrite-ProtectCircuitryYDECV CC V SSSense Amp.R/W ControlSDA SCL A0 A1 A2WP*2K I 2C ™ Serial EEPROM24AA024/24LC024/24AA025/24LC025DS21210N-page 2© 2009 Microchip Technology Inc.1.0ELECTRICAL CHARACTERISTICSAbsolute Maximum Ratings (†)V CC .............................................................................................................................................................................6.5V All inputs and outputs w.r.t. V SS .........................................................................................................-0.3V to V CC +1.0V Storage temperature ...............................................................................................................................-65°C to +150°C Ambient temperature with power applied................................................................................................-40°C to +125°C ESD protection on all pins ......................................................................................................................................................≥4kV † NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operation sections of the specifications is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.TABLE 1-1:DC SPECIFICATIONSDC CHARACTERISTICS Industrial (I): T A = -40°C to +85°C, V CC = +1.7V to +5.5V Automotive (E):T A = -40°C to +125°C, V CC = +2.5V to +5.5V Param.No.SymbolCharacteristic Min.Typ.Max.Units Conditions—A0, A1, A2, SCL, SDA and WP pins—————D1V IH High-level input voltage 0.7 V CC——V —D2V IL Low-level input voltage ——0.3 V CCV 0.2 V CC for V CC < 2.5V D3V HYS Hysteresis of Schmitt Trigger inputs0.05 V CC——V (Note)D4V OL Low-level output voltage ——0.40V I OL = 3.0mA, V CC = 2.5V D5I LI Input leakage current ——±1μA V IN = V SS or V CC D6I LO Output leakage current ——±1μA V OUT = V SS or V CC D7C IN , C OUT Pin capacitance (all inputs/outputs)——10pF V CC = 5.5V (Note)T A = 25°C, F CLK = 1MHz D8I CC write Operating current—0.13mA V CC = 5.5V, SCL = 400 kHz D9I CC read —0.051mA —D10I CCSStandby current——0.01—15μA μAIndustrial AutomotiveSDA = SCL = V CCA0, A1, A2, WP = V SSNote:This parameter is periodically sampled and not 100% tested.24AA024/24LC024/24AA025/24LC025 TABLE 1-2:AC CHARACTERISTICSAC CHARACTERISTICS Industrial (I): T A = -40°C to +85°C, V CC = +1.7V to +5.5V Automotive (E):T A = -40°C to +125°C, V CC = +2.5V to +5.5VParam.No.Symbol Characteristic Min.Max.Units Conditions1F CLK Clock frequency——100400kHz 1.7V ≤ V CC < 1.8V1.8V ≤ V CC≤ 5.5V2T HIGH Clock high time4000600——ns 1.7V ≤ V CC < 1.8V1.8V ≤ V CC≤ 5.5V3T LOW Clock low time47001300——ns 1.7V ≤ V CC < 1.8V1.8V ≤ V CC≤ 5.5V4T R SDA and SCL rise time (Note1)——1000300ns 1.7V ≤ V CC < 1.8V1.8V ≤ V CC≤ 5.5V5T F SDA and SCL fall time (Note1)——1000300ns 1.7V ≤ V CC < 1.8V1.8V ≤ V CC≤ 5.5V6T HD:STA Start condition hold time4000600——ns 1.7V ≤ V CC < 1.8V1.8V ≤ V CC≤ 5.5V7T SU:STA Start condition setup time4700600——ns 1.7V ≤ V CC < 1.8V1.8V ≤ V CC≤ 5.5V8T HD:DAT Data input hold time0—ns(Note2)9T SU:DAT Data input setup time250100——ns 1.7V ≤ V CC < 1.8V1.8V ≤ V CC≤ 5.5V10T SU:STO Stop condition setup time4000600——ns 1.7V ≤ V CC < 1.8V1.8V ≤ V CC≤ 5.5V11T SU:WP WP setup time4000600——ns 1.7V ≤ V CC < 1.8V1.8V ≤ V CC≤ 5.5V12T HD:WP WP hold time4700600——ns 1.7V ≤ V CC < 1.8V1.8V ≤ V CC≤ 5.5V13T AA Output valid from clock (Note2)——3500900ns 1.7V ≤ V CC < 1.8V1.8V ≤ V CC≤ 5.5V14T BUF Bus free time: Time the bus mustbe free before a new transmissioncan start 13004700——ns 1.7V ≤ V CC < 1.8V1.8V ≤ V CC≤ 5.5V16T SP Input filter spike suppression(SDA and SCL pins)—50ns(Note1 and Note3)17T WC Write cycle time (byte or page)—5ms—18—Endurance1M—cycles25°C, V CC = 5.5V, Block mode(Note4)Note1:Not 100% tested. C B = total capacitance of one bus line in pF.2:As a transmitter, the device must provide an internal minimum delay time to bridge the undefined region (minimum 300ns) of the falling edge of SCL to avoid unintended generation of Start or Stop conditions.3:The combined T SP and V HYS specifications are due to new Schmitt Trigger inputs, which provide improved noise spike suppression. This eliminates the need for a T I specification for standard operation.4:This parameter is not tested but ensured by characterization. For endurance estimates in a specific application, please consult the Total Endurance™ Model which can be obtained from Microchip’s web site at .© 2009 Microchip Technology Inc.DS21210N-page 324AA024/24LC024/24AA025/24LC025DS21210N-page 4© 2009 Microchip Technology Inc.FIGURE 1-1:BUS TIMING DATA(unprotected)(protected)SCL SDA InSDA OutWP 57616328913D441011121424AA024/24LC024/24AA025/24LC025 2.0PIN DESCRIPTIONSPin Function Table2.1SDA Serial DataSDA is a bidirectional pin used to transfer addresses and data into and out of the device. It is an open-drain terminal; therefore, the SDA bus requires a pull-up resistor to V CC (typical 10 kΩ for 100 kHz, 2 kΩ for 400kHz).For normal data transfer, SDA is allowed to change only during SCL low. Changes during SCL high are reserved for indicating the Start and Stop conditions.2.2SCL Serial ClockThe SCL input is used to synchronize the data transfer from and to the device.2.3A0, A1, A2The levels on the A0, A1 and A2 inputs are compared with the corresponding bits in the slave address. The chip is selected if the compare is true. For the SOT-23 package only, pin A2 is not connected.Up to eight 24AA024/24LC024/24AA025/24LC025 devices (four for the SOT-23 package) may be con-nected to the same bus by using different Chip Select bit combinations. These inputs must be connected to either V CC or V SS.2.4WP (24XX024 Only)WP is the hardware write-protect pin. It must be tied to V CC or V SS. If tied to Vcc, hardware write protection is enabled. If WP is tied to Vss, the hardware write protection is disabled. Note that the WP pin is available only on the 24XX024. This pin is not internally connected on the 24LC025.2.5Noise ProtectionThe 24AA024/24LC024/24AA025/24LC025 employs a V CC threshold detector circuit which disables the internal erase/write logic if the V CC is below 1.5V at nominal conditions.The SCL and SDA inputs have Schmitt Trigger and filter circuits which suppress noise spikes to assure proper device operation, even on a noisy bus.3.0FUNCTIONAL DESCRIPTION The 24AA024/24LC024/24AA025/24LC025 supports a bidirectional, 2-wire bus and data transmission protocol. A device that sends data onto the bus is defined as transmitter, while a device receiving data is defined as receiver. The bus has to be controlled by a master device that generates the Serial Clock (SCL), controls the bus access and generates the Start and Stop conditions, while the 24AA024/ 24LC024/24AA025/24LC025 works as slave. Both master and slave can operate as transmitter or receiver, but the master device determines which mode is activated.Name PDIP SOIC TSSOP DFN/TDFN MSOP SOT-23DescriptionA0111115Address Pin AOA1222224Address Pin A1A233333—Address Pin A2V SS444442GroundSDA555553Serial Address/Data I/O SCL666661Serial ClockWP77777—Write-Protect InputV CC888886+1.7 to 5.5V Power Supply© 2009 Microchip Technology Inc.DS21210N-page 524AA024/24LC024/24AA025/24LC025DS21210N-page 6© 2009 Microchip Technology Inc.4.0BUS CHARACTERISTICSThe following bus protocol has been defined:•Data transfer may be initiated only when the bus is not busy.•During data transfer, the data line must remain stable whenever the clock line is high. Changes in the data line while the clock line is high will be interpreted as a Start or Stop condition.Accordingly, the following bus conditions have been defined (Figure 4-1).4.1Bus Not Busy (A)Both data and clock lines remain high.4.2Start Data Transfer (B)A high-to-low transition of the SDA line while the clock (SCL) is high determines a Start condition. All commands must be preceded by a Start condition.4.3Stop Data Transfer (C)A low-to-high transition of the SDA line while the clock (SCL) is high determines a Stop condition. All operations must be ended with a Stop condition.4.4Data Valid (D)The state of the data line represents valid data when,after a Start condition, the data line is stable for the duration of the high period of the clock signal.The data on the line must be changed during the low period of the clock signal. There is one bit of data per clock pulse.Each data transfer is initiated with a Start condition and terminated with a Stop condition. The number of the data bytes transferred between the Start and Stop conditions is determined by the master device and is,theoretically, unlimited (though only the last sixteen will be stored when performing a write operation). When an overwrite does occur, it will replace data in a first-in first-out fashion.4.5AcknowledgeEach receiving device, when addressed, is required to generate an acknowledge after the reception of each byte. The master device must generate an extra clock pulse, which is associated with this Acknowledge bit.The device that acknowledges has to pull down the SDA line during the acknowledge clock pulse in such a way that the SDA line is stable low during the high period of the acknowledge-related clock pulse. Of course, setup and hold times must be taken into account. A master must signal an end of data to the slave by not generating an Acknowledge bit on the last byte that has been clocked out of the slave. In this case, the slave must leave the data line high to enable the master to generate the Stop condition (Figure 4-2).Note:The 24AA024/24LC024/24AA025/24LC025does not generate any Acknowledge bits if an internal programming cycle is in prog-ress.24AA024/24LC024/24AA025/24LC0255.0DEVICE ADDRESSINGA control byte is the first byte received following the Start condition from the master device (Figure5-1). The control byte consists of a four-bit control code. For the 24AA024/24LC024/24AA025/24LC025, this is set as ‘1010’ binary for read and write operations. The next three bits of the control byte are the Chip Select bits (A2, A1, A0). The Chip Select bits allow the use of up to eight 24AA024/24LC024/24AA025/24LC025 devices on the same bus and are used to select which device is accessed. The Chip Select bits in the control byte must correspond to the logic levels on the corre-sponding A2, A1 and A0 pins for the device to respond. These bits are in effect the three Most Significant bits of the word address.For the SOT-23 package, the A2 address pin is not available. During device addressing, the A2 Chip Select bit should be set to ‘0’.The last bit of the control byte defines the operation to be performed. When set to a one, a read operation is selected. When set to a zero, a write operation is selected. Following the Start condition, the 24AA024/ 24LC024/24AA025/24LC025 monitors the SDA bus checking the control byte being transmitted. Upon receiving a ‘1010’ code and appropriate Chip Select bits, the slave device outputs an Acknowledge signal the 24AA024/24LC024/24AA025/24LC025 will select a read or write operation.FIGURE 5-1:CONTROL BYTE FORMAT 5.1Contiguous Addressing AcrossMultiple DevicesThe Chip Select bits A2, A1 and A0 can be used to expand the contiguous address space for up to 16K bits by adding up to eight 24AA024/24LC024/24AA025/ 24LC025 devices on the same bus. In this case, soft-ware can use A0 of the control byte as address bit A8, A1 as address bit A9 and A2 as address bit A10. It is not possible to sequentially read across device boundaries.For the SOT-23 package, up to four 24AA025/24LC025 devices can be added for up to 8K bits of address space. In this case, software can use A0 of the control byte as address bit A8, and A1 as address bit A9. It is not possible to sequentially read across device bound-aries.1010A2A1A0S ACKR/WControl CodeChip SelectBitsSlave AddressAcknowledge BitStart BitRead/Write Bit© 2009 Microchip Technology Inc.DS21210N-page 724AA024/24LC024/24AA025/24LC025DS21210N-page 8© 2009 Microchip Technology Inc.6.0WRITE OPERATIONS6.1Byte WriteFollowing the Start signal from the master, the device code(4 bits), the Chip Select bits (3 bits) and the R/W bit (which is a logic-low) is placed onto the bus by the master transmitter. The device will acknowledge this control byte during the ninth clock pulse. The next byte transmitted by the master is the word address and will be written into the Address Pointer of the 24AA024/24LC024/24AA025/24LC025. After receiving another Acknowledge signal from the 24AA024/24LC024/24AA025/24LC025, the master device will transmit the data word to be written into the addressed memory location. The 24AA024/24LC024/24AA025/24LC025acknowledges again and the master generates a Stop condition. This initiates the internal write cycle and, dur-ing this time, the 24AA024/24LC024/24AA025/24LC025 will not generate Acknowledge signals (Figure 6-1). If an attempt is made to write to the protected portion of the array when the hardware write protection (24XX024 only) has been enabled, the device will acknowledge the command, but no data will be written. The write cycle time must be observed even if write protection is enabled.6.2Page WriteThe write control byte, word address and the first data byte are transmitted to the 24AA024/24LC024/24AA025/24LC025 in the same way as in a byte write.However, instead of generating a Stop condition, the master transmits up to 15 additional data bytes to the 24AA024/24LC024/24AA025/24LC025, which are temporarily stored in the on-chip page buffer and will be written into the memory once the master has transmit-ted a Stop condition. Upon receipt of each word, the four lower-order Address Pointer bits are internally incremented by one.The higher-order four bits of the word address remain constant. If the master should transmit more than 16bytes prior to generating the Stop condition, the address counter will roll over and the previously received data will be overwritten. As with the byte-write operation, once the Stop condition is received, an internal write cycle will begin (Figure 6-2). If an attempt is made to write to the protected portion of the array when the hardware write protection has been enabled,the device will acknowledge the command, but no data will be written. The write cycle time must be observed even if write protection is enabled.6.3Write ProtectionThe WP pin (available on 24XX024 only) must be tied to V CC or V SS . If tied to V CC , the entire array will be write-protected. If the WP pin is tied to V SS , write operations to all address locations are allowed. The WP pin is not available on the SOT-23 package.FIGURE 6-1:BYTE WRITEFIGURE 6-2:PAGE WRITENote:Page write operations are limited to writing bytes within a single physical page,regardless of the number of bytes actually being written. Physical page boundaries start at addresses that are integer multiples of the page buffer size (or ‘page size’) and end at addresses that are integer multiples of [page size – 1]. If a Page Write command attempts to write across a physical page boundary, the result is that the data wraps around to the beginning of the current page (overwriting data previously stored there), instead of being written to the next page, as might be expected. It is therefore necessary for the application software to prevent page write operations that would attempt to cross a page boundary.SPBUS ACTIVITY MASTER SDA LINE BUS ACTIVITYS T A R T S T O P Control ByteWord AddressDataA C KA C KA C KSPBUS ACTIVITY MASTER SDA LINE BUS ACTIVITYS T A R T Control ByteWord Address (n)Data (n)Data (n + 15)S T O P A C KA C KA C KA C KA C KData (n +1)24AA024/24LC024/24AA025/24LC0257.0ACKNOWLEDGE POLLING Since the device will not acknowledge during a write cycle, this can be used to determine when the cycle is complete (this feature can be used to maximize bus throughput). Once the Stop condition for a Write command has been issued from the master, the device initiates the internally-timed write cycle, with ACK polling being initiated immediately. This involves the master sending a Start condition followed by the control byte for a Write command (R/W = 0). If the device is still busy with the write cycle, no ACK will be returned. If no ACK is returned, the Start bit and control byte must be re-sent. If the cycle is complete, the device will return the ACK and the master can then proceed with the next Read or Write command. See Figure7-1 for a flow diagram of this operation.FIGURE 7-1:ACKNOWLEDGE POLLINGFLOWSendWrite CommandSend StopCondition toInitiate Write CycleSend StartSend Control Bytewith R/W = 0Did DeviceAcknowledge(ACK = 0)?NextOperationNoYes© 2009 Microchip Technology Inc.DS21210N-page 924AA024/24LC024/24AA025/24LC025DS21210N-page 10© 2009 Microchip Technology Inc.8.0READ OPERATIONSRead operations are initiated in the same way as write slave address is set to ‘1’. There are three basic types of read operations: current address read, random read and sequential read.8.1Current Address ReadThe 24AA024/24LC024/24AA025/24LC025 contains an address counter that maintains the address of the last word accessed, internally incremented by one.Therefore, if the previous read access was to address n, the next current address read operation would access data from address n + 1. Upon receipt of the slave address with the R/W bit set to ‘1’, the 24AA024/24LC024/24AA025/24LC025 issues an acknowledge and transmits the 8-bit data word. The master will not acknowledge the transfer, but does generate a Stop condition and the 24AA024/24LC024/24AA025/24LC025 discontinues transmission (Figure 8-1).8.2Random ReadRandom read operations allow the master to access any memory location in a random manner. To perform this type of read operation, the word address must first be set. This is accomplished by sending the word address to the 24AA024/24LC024/24AA025/24LC025as part of a write operation. Once the word address is sent, the master generates a Start condition following the acknowledge. This terminates the write operation,but not before the internal Address Pointer is set. The master then issues the control byte again, but with the 1’. The 24AA024/24LC024/24AA025/24LC025 will then issue an acknowledge and transmits the eight bit data word. The master will not acknowl-edge the transfer but does generate a Stop condition and the 24AA024/24LC024/24AA025/24LC025discontinues transmission (Figure 8-2). After this command, the internal address counter will point to the address location following the one that was just read.8.3Sequential ReadSequential reads are initiated in the same way as a random read except that after the 24AA024/24LC024/24AA025/24LC025 transmits the first data byte, the master issues an acknowledge (as opposed to a Stop condition in a random read). This directs the 24AA024/24LC024/24AA025/24LC025 to transmit the next sequentially-addressed 8-bit word (Figure 8-3).To provide sequential reads, the 24AA024/24LC024/24AA025/24LC025 contains an internal Address Pointer that is incremented by one upon completion of each operation. This Address Pointer allows the entire memory contents to be serially read during one operation. The internal Address Pointer will automatically roll over from address 0FFh to address 000h.FIGURE 8-1:CURRENT ADDRESS READBUS ACTIVITY MASTER SDA LINEBUS ACTIVITYPS S T O P Control ByteS TA RTDataA C KN O A C K分销商库存信息:MICROCHIP24LC025T-I/OT24AA024T-I/MS24AA025T-I/OT 24AA025-I/MS24AA025T-I/MNY24LC025T-I/MNY 24LC025-I/MS24LC024-I/SN24LC024T-I/SN 24LC024T/SN24LC024/SN24LC025-I/SN24LC025T/SN24LC025/SN24LC025T-I/SN 24AA025-I/SN24AA024-I/SN24AA025T-I/SN 24AA024T-I/SN24LC024-I/ST24LC024T-I/ST 24LC024T/ST24LC024/ST24LC025/ST24LC025T-I/ST24LC025T/ST24LC025-I/ST24AA024-I/ST24AA025-I/ST24AA024T-I/ST 24AA025T-I/ST24LC024T-I/MS24LC024-I/MS24AA024-I/MS24AA025T-I/MS24LC025T-I/MS 24LC025T-E/OT24AA024T-I/MNY24LC024T-I/MNY 24LC024-I/P24LC024/P24LC025/P24LC025-I/P24AA024-I/P24AA025-I/P24LC025-E/SN24LC024T-E/SN24LC024-E/SN 24LC025T-E/SN24LC024T-I/MC24LC025T-I/MC 24AA024T-I/MC24AA025T-I/MC24LC024-E/MS 24LC024-E/ST24LC024T-E/ST24LC025-E/MS 24LC024T-E/MNY24LC024T-E/MS24LC025-E/ST24LC025T-E/ST24LC025T-E/MNY24LC025T-E/MS 24LC025-E/P24LC025-E/MC24LC024-E/MC 24LC024T-E/MC24LC025T-E/MC。

[院校资料]TLV246xA系列低功耗轨到轨输入输出关断运算放大器中文资料

[院校资料]TLV246xA系列低功耗轨到轨输入输出关断运算放大器中文资料

TLV2460,TLV2461,TLV2462,TLV2463,TLV2464,TLV2465,TLV246xA系列低功耗轨到轨输入/输出关断运算放大器SLOS220F - 1998年7月- 修订版1999年10月•输入共模范围超过两个TLV246 0 DBV PACKAG é供电轨... - 0.2V至V DD + + 0.2V(顶视图)•增益带宽积。

6.4MHz输出VDD +∙供电电流... 500 μ/通道∙输入失调电压。

100 μ至五接地2 5 将SHDN∙输入噪声电压... 11nV / √Ĥž4 中-∙轨到轨输出Swin Ğ+ IN 3∙压摆率。

1.6伏/ μ小号∙±90毫安输出驱动能力∙微关机国防部é(TLV2460/3/5)。

0.3 μ/ channe 升∙可在5 -或6引脚SOT23的ð 8 -或10引脚的MSO P级∙其特点从T 一 = -40 °C至125 °Ç∙通用运算放大器EVM描述TLV246x是低功耗专为便携式应用而设计的轨到轨输入/输出运算放大器系列。

输入共模电压范围超出电源轨的低电压系统中最大的动态范围。

放大器的输出轨至轨性能,具有高输出驱动能力解决旧的轨到轨输入/输出运算放大器的限制之一。

这轨到轨的动态范围和高输出驱动使TLV246x缓冲模拟- 数字转换器的理想选择。

运算放大器具有6.4 MHz的带宽和1.6的V / μ用仅500 摆率,低功耗提供了良好的交流性能。

三个家庭成员提供一个关闭终端,放置在放大器的超低电源电流模式(我的DD = 0.3 μA / CH)。

关断时,运算放大器的输出置于高阻抗状态。

DC应用中也担任输入噪声电压11 NV / √Hz的输入失调电压为100 μV。

这个家庭是低调的SOT23封装,采用MSOP ,TSSOP 封装。

TLV2460是第一轨到轨输入/输出运算放大器可在6引脚SOT23与关机,使它成为完美的高密度电路。

丙醛-危险化学品安全技术说明书中文MSDS文档16个部分(完整版)

丙醛-危险化学品安全技术说明书中文MSDS文档16个部分(完整版)

化学品安全技术说明书丙醛第一部分化学品及企业标识化学品中文名:丙醛化学品英文名:propanal;propionaldehyde供应商名称:天津****化工有限公司供应商地址:天津市**区**路**号**室供应商电话:4571-5858****邮编:248***供应商传真:4571-5858****电子邮件地址:4527**************产品推荐及限制用途:用于制合成树脂、橡胶促进剂和防老剂。

第二部分危险性概述紧急情况概述:高度易燃液体和蒸气。

GHS危险性类别:易燃液体-类别2;皮肤腐蚀/刺激-类别2;严重眼损伤/眼刺激-类别2;特异性靶器官毒性-一次接触-类别3(呼吸道刺激)标签要素:象形图:警示词:危险危险信息:H225:高度易燃液体和蒸气H315:造成皮肤刺激H319:造成严重眼刺激H335:可能引起呼吸道刺激防范说明:预防措施:P210:远离热源/火花/明火/热表面。

禁止吸烟。

P233:保持容器密闭。

P240:容器和接收设备接地/等势联接。

P241:使用防爆的电气/通风/照明/设备。

P242:只能使用不产生火花的工具。

P243:采取防止静电放电的措施。

P280:戴防护手套/穿防护服/戴防护眼罩/戴防护面具。

P264:作业后彻底清洗。

P260:不要吸入粉尘/烟/气体/烟雾/蒸气/喷雾。

P271:只能在室外或通风良好之处使用。

应急响应:P303+P361+P353:如皮肤(或头发)沾染:立即脱掉所有沾染的衣服。

用水清洗皮肤/淋浴。

P370+P378:火灾时,使用灭火。

P302+P352:如皮肤沾染:用大量肥皂和水清洗。

P321:具体治疗(见本标签上的)。

P332+P313:如发生皮肤刺激:求医/就诊。

P362+P364:脱掉所有沾染的衣服,清洗后方可重新使用。

P305+P351+P338:如进入眼睛:用水小心冲洗几分钟。

如戴隐形眼镜并可方便地取出,取出隐形眼镜。

继续冲洗。

P337+P313:如仍觉眼刺激:求医/就诊。

ITAV产品参数归档

ITAV产品参数归档

目录(产品实际情况以ITAV官网为准) 一、中央控制系统 (3)➢可编程控制主机 (3)✧ITPB系列控制主机 (3)✧ICPE开放式模块化可编程中控主机 (5)➢人机交互界面 (7)✧ITCW57 - 5.7英寸彩色无线触摸屏 (7)✧ITCW68SA - 6.4英寸无线真彩触摸屏 ......................................错误!未定义书签。

✧ITVF85 - 7英寸无线真彩触摸屏 (8)✧ITVF10X - 10.4英寸无线WIFI真彩触摸屏 (9)✧ITVF15X - 15英寸有线以太网真彩触摸屏 (10)✧ITAF7 TFT液晶触摸屏 (11)✧ITAF85 TFT液晶触摸屏 (12)✧ITAF10H TFT液晶触摸屏 (13)✧ITCLBW35 - 3.5英寸有线触摸屏 (14)✧ITCLBWxx系列可编程控制面板 (14)✧ITRFA -无线RF接收器 (15)✧ITWIRA -无线WIFI接收器 (16)✧ITWIFI -无线WIFI中继器 (17)➢中央控制系统周边产品 (17)✧ITLT8 系列电源管理器 (17)✧ITLC4 -四路调光器 (19)✧ITNET-E-网络控制器 (19)✧ITNET 8L-总线扩展器 (20)✧ITCOM8 - 8路串口分配器 (20)✧ITRS232/485 - RS-232/485转换器 (21)✧ITVOL3 音量控制器 (21)✧ITIRM 红外信号放大器 (22)✧ITP12H 电源适配器 (22)➢环境探测控制设备 (23)✧ITPWR 电流感应器 (23)✧ITCG-L 光照感应器 (23)✧ITCG-T 温度感应器 (24)✧ITCG-W 气流感应器 (24)✧ITCG-V 声音感应器 (25)➢灯光子系统 (25)✧IMC - DIN导轨式控制主机 (25)✧IMPW24 – DIN导轨式系统电源 (26)✧IMRY05B – DIN导轨式继电器开关模块 (27)✧IMRY10A – DIN导轨式继电器开关模块 (28)✧IMRY20A – DIN导轨式继电器开关模块 (29)✧IMRY05L – DIN导轨式窗帘控制模块 (30)✧IMLC01A – DIN白炽灯调光模块 (31)✧IMDIN – DIN导轨式总线汇流排 (33)✧IMIF 电箱级联模块 (33)✧IM4L 总线1一分四模块 (34)✧IMIRCOM II 红外/串口扩展器 (34)二、信号切换系统 (36)➢矩阵切换器 (36)✧DVI矩阵切换器 (36)✧AV矩阵切换器 (39)✧VIDEO矩阵切换器 (51)✧VGA矩阵切换器 (52)✧RGB矩阵切换器 (56)✧切换器 (65)✧分配/转换/放大器 (66)三、数字会议系统 (74)➢会议控制主机 (74)✧TL6200/NT8000系列数字标准型会议控制主机 (74)✧TL6200P/NT8000P系列数字标准型会议扩展主机 (76)➢会议单元 (77)✧NT8811/12电子身份显示会议单元 (77)✧NT8601/02组合嵌入式会议单元 (79)✧TL6101/02系列嵌入式会议单元 (81)✧TL6201/02桌面式发言单元 (83)✧TL6211/12桌面式发言单元 (84)✧NT8001/02桌面式发言单元 (86)✧NT8011/12桌面式会议单元 (87)➢会议系统附件 (88)✧TLV1000B/X高深球型摄像机 (88)✧TLCS2电缆分路器 (90)✧ISO A2音频隔离器 (90)✧TLDCN系列专用会议延长电缆 (91)一、中央控制系统➢可编程控制主机✧ITPB系列控制主机产品描述:作为控制系统的核心运算主机,ITAV ITPB系列可编程中央控制主机配备了高性能的32位内嵌式处理器,采用大容量的存储FLASH(8M可扩充到64M),多达150多种逻辑指令使得系统能够更快更稳定的处理各种控制指令。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

该图片是向消费者展示该贴片封装的芯片的实物图从不同角度观 察的视图 左上角:该芯片从左下角到左上角逆时针旋转依次对应该芯片的 1 ——8 脚,芯片体的长度在工业生产中对应 4.30mm 到 4.50mm 之间, 在样板上芯片整体的长度为 6.20mm 到 6.60mm 之间,芯片引脚所占 的空间为 0.19mm 到 0.30mm 之间,引脚与引脚之间的间距为 0.65mm, 故顾客在购买该款芯片的时候有较大的考虑余地也给实际制版带 来了一定的方便 右上角:该图片是该芯片引脚的一个特写,贴片封装的芯片的引脚 的贴地脚的倾角可以从 0 到 8 度之间变化,方便在实际应用中合理 安排芯片在样板上的布局,可以贴在样板上也可以和样板之间有一 个 0.25mm 的间距,实际引脚会有 0.15mm 的厚度 左下角:改图反映了在实际制作电路板中芯片实物的侧视图,该芯 片厚度最多为 1.20mm,中间由于为了增强散热会有一部分的凸起部 分,会有一个 0.05 到 0.15 的厚度波动,实际应用中要予以考虑。
频率(Hz) 频率(Hz)
关断电压(V) 关断电流(A)
工作电压(V) 输出电压(V)
等效输入噪声电压(V)
电源电流(A)
等效输入噪声电压(V)
总的谐波失真度(%)
共模输入电压(V)
增益带宽积(MHz)
电源电压(V) 大信号波动(V)
温度(℃)
小信号波动(V)
反向大信号波动(V) 反向小信号波动(V)
塑料外形封装
外形俯视图展示
同列引脚之间相距 1.27mm 对列引脚之间相距 4.80mm D 图表示它在印刷电路板上的铺设情况 引脚钻孔为方形孔,孔长 1.95mm,孔宽 0.55mm,同列两钻孔之间相距 1.27mm,双列钻孔之间 相距 4.80mm, 最下面的图是厂家生产它时在画 PCB 软件封装里 面的一个引脚的特写 在软件里面设置引脚为方形,且长为 2.00mm 宽为 0.60mm,而且软件绘制封装图形的时候线粗 0.07mm. 温馨提示:买家在使用该款芯片的时候最好要去当地的经销商去实 地查看一下元器件的焊接掩膜封装,放置由于厂家生产的时候改动 了一些实际的封装而导致该封装与实际样板上面的封装不匹配。
除非 TI 产品是专门为军方设计的一些特种产品并且有明显说 明用于军事用途的标志,TI 产品不用与军事用途,买家在明知 TI 产品用于军事用途的前提下还将其应用于其他领域所造成的一些 严重后果由买家自己负全部责任。
除非 TI 产品上有“ISO/TS 16949”标志,TI 产品不用与汽车 电子和一些极端的环境下,用户在明知其不适用于汽车电子领域而 将其用于汽车电子领域而造成的一切严重后果用户自己负责,TI 不负任何责任。
这个家族系列的运放使用 SOT23 封装以及 MSOP 和 TSSOP 封 装。TLV2460 是第一轨到轨输入/输出运算放大器提供 6 引脚 SOT23 封装且具有关断功能,使得它非常适合高密度电路。这个家族的运 放扩大了温度使用范围(TA = -40 °C 至 125 °C),可以应用于 工业控制、汽车系统以及军事系统。
关断脉冲放大器的输出显示在图 22,23,24 和 25。放大器 通电与 5 V 单电源配置为一个同相增益 5 配置。放大器和关断时间 测量从 50%点关机脉冲输出的 50%点波形。数据表中列出的单, 双和四倍。 4.电路布局的思想
为了实现高性能的 TLV246x 水平,按照适当的印刷电路板的设 计技术。一般的方法见相关文献。 5.一般功耗的考虑
(I 和 Q 后缀):-40 °C 至 125 °C
(M 后缀):-55 ℃至 125℃ 最高结温:150℃ 存储温度范围:-65 °C 至 150 °C 最高工作温度:260 °C
后缀为 C 和 I 的功耗额定值表
后缀为 Q 和 M 的功耗额定值表
在指定的自由空气的温度,VDD = 3.3V(除非另有说明)电气特性
公开的发行 TI 公司的一些产品信息,服务信息只有在遵照不 改变产品的原始信息,并且严格遵从 TI 公司的相关制度规定的前 提下发行。任何蓄意更改该发行信息的商业行为都是违背商业公平 性的违法行为。TI 公司对诸于此类的虚假信息所造成的后果不负任 何法律责任。TI 公司的第三方合作伙伴的宣传信息要遵从额外的限 制。
参数的测量方法
TLV246X 家族系列运算放大器的应用 1.驱动容性负载
输出失调电压是输入失调电压和输入偏置电流乘以相应的 增益的和,下面的原理图和公式可以用来计算输出失调电压。
2.一般的连接电路 当接收低电平信号方法是放置在放大器的同相端的 RC 滤波器。
高电平输出电压(V)
自由的空气温度(℃)
高电平输出电流(mV) 低电平输出电压(V)
峰 - 峰值输出电压(V)
低电平输出电流(mV)
、 开环增益和相位
开环增益和相位
频率(Hz)
频率(Hz)
差分放大电压(V)/电容性负载(pF)
输出阻抗 共模抑制比
负载电阻(Ω) 频率(Hz)
电源电压抑制比 工作电流(mA)
如果需要更衰减,一个多极滤波器是必需的,Sallen - Key 滤波器可用于此任务。为了达到最佳效果,放大器应该是 8 至 10 倍的滤波器的频率带宽的带宽。不这样做可能会导致放大器的相 移。
3.关断功能 TLV2460/3/5为节省电池寿命有一个关断功能
的便携式应用,电源电流降低至 0.3μA/通道被禁用,放大器和输 出置于高阻抗模式。为了使放大器,关闭终端可以悬空或拉到高。 当关闭终端悬空,护理应采取措施,确保在关闭终端,寄生漏电流 不不经意的地方进入关断的运算放大器。关闭终端的门槛总是引用 到 VDD / 2。因此,经营分割电源电压的设备(如:± 2.5 V)时, 关闭终端需要拉至 VDD(不接地)禁用运算放大器。
对于一个给定的θJA,最大功耗是在图 53 所示,按下列公式 计算:
PD :最 大功耗
TMAX :绝对的最高结温 TA:自由的空气温度
θJA = θJC + θCA θJC :从结点到外壳的导热系数
θCA:周围空气的导热系数
最大功耗
6.封装信息 5.封装信息
自由的空气温
国家专利资料
16 引脚封装封装型号为 PDSO
TLV2460,TLV2461,TLV2462,TLV2463, TLV2464,TLV2465,TLV246XA 家族系列具有关断 状态的低功耗轨至轨输入/输出运算放大器.
翻译作者:陈飞虎
特性: 1.轨到轨输出摆幅 2.增益带宽积:6.4MHz 3.± 80 mA 输出驱动能力 4.电源电流:500μA/通道 5.输入失调电压:100μV 6.输入噪声电压:11 nV / Hz 7.压摆率(转换速率)1.6 V /μs 8.微功耗待机模式(TLV2460/3/5)0.3μA/通道 9.通用运算放大器的 EVM 10.可用在汽车的 Q - TEMP、HighRel 汽车应用、配置控制/打印支 持、汽车行业标准资格
描述: TLV246x 是一个专为便携式应用设计的低功耗轨至轨输入/输
出运算放大器.其输入共模电压范围超出最大的电源轨在低压系统 的动态范围。放大器的输出轨至轨性能具有高输出驱动能力,解决 了老式的轨到轨输入/输出运算放大器的局限性。这条轨到轨动态 范围和高输出驱动使 TLV246x 实现模拟量到数字量的转换。
型号手册 TLV2460C/I/AI 和 TLV2461C/I/AI 使用手册 TLV2460M/AM/Q/AQ and TLV2461M/AM/Q/AQ 使用手册 TLV2462C/I/AI and TLV2463C/I/AI 使用手册
TLV2462M/AM/Q/AQ and TLV2463M/AM/Q/AQ 使用手册
TLV2464C/I/AI and TLV2465C/I/AI 使用手册
TLV2464M/AM/Q/AQ and TLV2465M/AM/Q/AQ 使用手册 LV2464M/AM/Q/AQ and TLV2465M/AM/Q/AQ 使用手册
TLV246x 包装引脚图
//*绝对最大额定值*// 电源电压 VDD :6V 差分输入电压:VID - 0.2 V 至 VDD +0.2 V 输入电流:± 200 mA 输出电流: ± 175mA 总输入电流:175mA 总输出电流:175 mA 连续总功耗见额定功耗表 工作自由空气的温度范围:(C 后缀):0 °C 至 70 °C
TLV246x 系列运放具有 6.4 MHz 的带宽和 1.6 V /μs 的压摆 率及仅 500μA 的供电电流,提供良好的 AC 性能,低功耗。这个家 族的三个子系列能都够提供三种不同的状态,而且能放置在一个超 低电源电流模式(IDD = 0.3μA/ 通道)。在关断时,运算放大器 输出置于高阻抗状态,输入噪声电压为 11 nV /√Hz,输入失调电 压为 100μV.
运行在指定的自由空气的温度,VDD = 3.3V(除非另有说明)
在指定的自由空气的温度,VDD = 5 V 的电气特性(除非另有说明)
在指定的自由空气的温度,VDD = 5 V 的电气特性(续表) 典型特性的图表
典型特性
输入失调电压(mV)
输入失调电压(mV)
共模输入电压(V)
共模输入电压(V) 输入偏置电流和输入失调电流(nA)
右下角:改图展示了该芯片在实际应用中“贴地”引脚的一个特写, 贴地引脚会有一个接近 0.10mm 的厚度。 温馨提示:买家在使用该款芯片的时候最好要去当地的经销商去实 地查看一下元器件的焊接掩膜封装,放置由于厂家生产的时候改动 了一些实际的封装而导致该封装与实际样板上面的封装不匹配。
重要提示 TI 公司以及他的下属子公司保留随时改进,更新它的产品的性 能,改善我们服务的权利。顾客朋友们需要随时关注我们所发布的 一些关于我们产品的实时信息,保证获取了全方位的信息之后再向 我们下订单。我们所有的产品将在得到订单并且依据实时的市场情 况,库存情况予以发放。 我们对我们模拟器件产品在实际开发中的质量是依据我们公 司的质量检验标准来严格执行的。一些严格的质量检测和产品测试 实验被用来确保我们的产品满足质量标准,出了一些国家有一些特 殊要求,可能产品的所有性能指标不一定全部满足。 我们公司对于顾客朋友们的一些项目开发援助没有法律责任, 消费者自己承担应用 TI 产品中的一切责任,为了减轻在产品开发 中的一些使用风险,开发人员有必要做好充分的保护措施,对于开 发过程种可能出现的问题要做好充分的考虑,尽量完善设计方案。 TI 产品从不公开的申明我们对我们产品的专利权,但是我们的 产品是受我们自己的知识产权保护的。用户使用我们公司的产品的 一些非公开信息都需要得到我们或者我们已经授权的运营伙伴的 使用授权才可已使用。
相关文档
最新文档