4通信天线41
通信对抗原理第4章 通信侦察系统的信号处理_OK
第4章 通信侦察系统的信号处理
任意时刻不相关。接收信号的相关函数为
Rx(τ)=E{x(t)x(t+τ)}=Rs(τ)+Rn(τ)
(4.2-12)
其中,Rs(τ)和Rn(τ)分别是信号和噪声的相关函数,并且已经利用
了两者不相关的性质。
11
第4章 通信侦察系统的信号处理
由于n(t)为窄带平稳随机噪声,因此其相关函数具有以
下性质
Rn
进行M次方,获得频率为Mf0的单频信号。对上述单频信号进
行FFT,可以实现载波频率估计
15
第4章 通信侦察系统的信号处理
4.2.2信号的带宽测量分析
信号带宽是信号的重要参数之一,它的测量分析对于实现
匹配和准匹配接收、调制类型识别、解调都是十分重要的。信
号带宽可以利用频谱分析仪进行人工观察和测量,也可以通过
对信号的采样序列x(n)进行FFT,得到它的频谱序列为
X(k)=FFT{x(n)}
(4.2-9)
9
第4章 通信侦察系统的信号处理
然后估计其中心频率:
Ns / 2
k
X (k)
2
ˆf0
k 1
Ns/2 X (k) 2
k 1
(4.2-10)
频域估计方法适合于对称谱的情况,如AM/DSB、FM、F SK、ASK、PSK等大多数通信信号。
第4章通信侦察系统的信号处理41概述42通信信号参数的测量分析43通信信号调制类型识别44通信信号解调习题第4章通信侦察系统的信号处理41概述通信侦察系统信号处理的任务是在一个由多种信号构成的复杂和多变的信号环境中从其中分选和分离多个通信信号测量和分析各个通信信号的基本参数识别通信信号的调制类型和网台属性并进一步对信号进行解调处理监听或者获取它所传输的信息作为通信情报
通信专业综合能力与实务——互联网技术
目 录
上篇 综合能力
第1章 通信管理法规与行业规章 2
1.1 通信科学技术的地位和特点 2
1.1.1 通信科学技术的地位 2
5.4 计算机系统的组成 95
5.5 数据库与数据库管理系统 95
5.5.1 数据库的基本概念 95
5.5.2 数据库系统的模式与映像 96
5.5.3 数据库系统的外部体系结构 97
5.5.4 数据库管理系统的主要功能 97
5.5.5 数据库管理系统的组成 98
第5章练习题 98
10.2.1 Windows系列操作系统简介 146
10.2.2 Windows系列操作系统的网络功能和相关技术 148
10.3 UNIX操作系统 150
10.3.1 UNIX操作系统简介 150
10.3.2 UNIX操作系统的体系结构 151
10.3.3 UNIX网络文件系统 151
9.3.3 IP包格式 131
9.3.4 ICMP 132
9.3.5 TCP和UDP 133
9.3.6 IPv6 134
9.4 因特网的路由选择协议 136
9.4.1 路由信息协议 136
9.4.2 开放最短路径优先 136
9.4.3 边界网关协议 136
9.5 虚拟专用网技术 137
3.7.3 电子商务系统的功能 70
3.7.4 电子商务系统的组成要素 70
3.7.5 电子商务系统的结构 71
3G4G5G系统天线技术的差异要点
3G/4G/5G通信系统天线技术的差异姓名:学号:电话:学院:目录1 3G/4G/5G通信系统的关键技术 (1)1.1 3G通信系统的关键技术 (1)1.2 4G通信系统的关键技术 (1)1.3 5G通信系统的关键技术 (2)2 无线通信信道衰落特性 (3)2.1 信道噪声干扰 (4)2.1.1 高斯白噪声 (4)2.1.2 瑞丽分布信道模型 (4)2.1.3 如何对抗无线通信的衰落 (5)2.2 3G/4G/5G通信系统中天线技术差异 (6)2.2.1 3G通信系统中智能天线 (6)2.2.2 4G通信系统中MIMO技术 (6)2.2.3 5G通信系统的MassiveMIMO技术 (7)3 总结 (11)4 参考文献 (11)3G/4G/5G的天线技术差异本文讨论3G/4G/5G(第三代/第四代/第五代)通信系统中关键技术,然后讨论它们所采用天线技术的差异。
在参阅和研究了有关3G/4G/5G通信系统关键技术的大量论文之后,在此,我做出自己的一些分析和总结。
随着科学技术的迅猛发展,移动通信技术发生了深刻变革,从1G到2G,到3G,再到4G和5G,不断变革和延续。
2013年12月4日,第四代移动通信4G 技术正式在中国市场运营,意味着中国移动通信事业进入4G时代。
而此时,在各国研究所和全球知名从事通信技术研究的企业都已经进入新一代移动通信,即5G(第五代移动通信系统),的研发当中。
无论哪代通信系统,所研究的技术都是要从无线通信信道特性分析,克服噪声干扰。
现在大量研究人员在关注Massive(大规模)MIMO技术,它与3G/4G通信系统所采用的天线技术差异在哪里?它是否会成为新一代无线通信的核心技术?13G/4G/5G通信系统的关键技术1.13G通信系统的关键技术从20世纪90年代早期,移动通信业界开始积极研究第三代移动通信标准和技术。
2009年1月,中国工业和信息化部为中国移动、中国电信和中国联通发放3G牌照,意味着我国进入3G移动通信时代。
4g天线标准
4g天线标准4G天线标准是指在4G通信系统中使用的天线的规范和标准。
天线在无线通信系统中起着非常重要的作用,它负责将电磁波能量转化为无线信号并进行辐射。
4G天线标准的制定旨在保证通信系统的性能以及天线的互操作性。
首先,4G天线标准必须符合国家标准或国际标准。
国家或国际标准是为了对通信系统进行统一管理和规范,以确保在不同地区或不同运营商中使用的天线具备相同的性能和互操作性。
例如,在中国,批准发布的国家标准包括《GB/T 20240.10-2011 LTE设备无线接口天线规范》和《GB/T 20240.22-2011 LTE设备无线接口无线控制和用户平面上行传输的信令测量规范》。
其次,4G天线标准需要考虑天线的频率范围和增益。
4G通信系统使用的频率范围较广,包括LTE(Long Term Evolution)和WiMAX(Worldwide Interoperability for Microwave Access)等多种制式。
天线的频率范围需要满足不同制式的通信要求。
同时,天线的增益需要足够高,以提高信号的覆盖范围和传输距离。
第三,4G天线标准需要定义天线的形状和尺寸。
不同的应用场景和安装条件要求天线具备不同的形状和尺寸。
例如,室内天线一般比较小巧,可以放置在办公室或家庭中的角落,而户外天线需要具备较大的尺寸和良好的耐久性,以适应不同的气候条件。
另外,4G天线标准还需要定义天线的极化方式和辐射特性。
天线的极化方式可以是垂直极化、水平极化或圆极化等,不同的极化方式适用于不同的通信场景。
天线的辐射特性包括辐射方向图和辐射功率等参数,可以帮助确定天线的辐射范围和信号覆盖情况。
此外,4G天线标准还需要考虑天线的安装方式和连接方式。
天线可以通过螺纹接口、N型接口等不同的连接方式与通信设备相连,根据具体的应用场景和设备需求,选择合适的连接方式。
天线的安装方式可以是固定安装、可调节安装或移动安装等,根据具体的场景和需求选择合适的安装方式。
4g天线原理
4G天线原理解析1. 什么是4G天线?在深入了解4G天线的原理之前,首先需要了解什么是4G天线。
4G天线是一种用于无线通信系统的设备,它能够收集和发送无线电波信号,实现4G移动通信网络的正常运行。
在4G移动通信网络中,天线起着十分重要的作用,它们负责将用户的数据转换为无线信号,并向周围的基站发送信号,以便实现数据的传输。
同时,天线也负责接收来自基站的信号,并将其转换为可供移动设备使用的数据。
2.4G天线的工作原理4G天线的工作原理涉及到无线信号的传输和接收过程。
一个完整的无线通信系统中的天线通常有三个主要部分:辐射元件、馈电系统和整流器。
辐射元件辐射元件是4G天线中非常重要的组成部分。
它负责将电能转换为无线电波,并将其辐射到空间中。
辐射元件可以采用不同的结构和技术,如:•线性天线:线性天线是最简单的一种结构,通常由直线、弯曲线或螺旋线等组成。
它可以实现单极化(水平或垂直)或双极化。
•喇叭天线:喇叭天线采用喇叭形状的辐射元件,能够提供更高的增益和更广的辐射角度,以增强信号传输的距离和质量。
•盘状天线:盘状天线具有较宽的辐射角度和较高的增益效果,它通常用于广播和卫星通信系统中。
•柱状天线:柱状天线通常用于室内覆盖,能够提供较强的信号穿透能力和广播范围。
无论采用何种结构和技术,辐射元件都需要接收馈电系统提供的电能,将其转换为无线电波并辐射到空间中。
馈电系统馈电系统是4G天线的第二个重要组成部分。
它负责向辐射元件提供电能,以激励辐射元件发出无线电波。
馈电系统可以分为两个部分:发射链路和接收链路。
•发射链路:发射链路通常由无线电发射器、功率放大器和匹配网络组成。
无线电发射器负责将用户数据转换为中频信号,然后通过功率放大器将其放大到适合于辐射元件的电平。
匹配网络在馈电系统中的作用是调节信号的阻抗,以实现信号的最大传输。
•接收链路:接收链路通常由无线电接收器、低噪声放大器和馈线等组成。
无线电接收器负责接收从基站发送的无线信号,并将其转换为中频信号。
[工学]移动通信第四章抗衰落技术详细
技术: --如何获得独立多径信号 --如何合并获得独立多径信号
本质: --对同一信号在不同空间/频率/极化/时间的过 取样
6
4.1 分集接收
分集的两重含义 一是分散传输,是接收端能获得多个统计独立的、携 带同一信息的衰落信号;二是集中处理,接收机将收 到的多个统计独立的衰落信号进行合并以降低衰落的 影响。
(2,1,4)卷积编码。 卷积码在CDMA/IS-95系统也得到广泛应用。 例如 在前向和反向信道,系统都使用了约束长 度K=9的编码器。
利用天线阵的波束赋性产生多 个独立的波束并自适应的调整 波束方向来跟踪每一个用户
形成方向图在不同的方向上给 予不同的增益,可以提高接收 信号的信噪比,从而提高系统 的容量
可以将频率相近但空间可分离 的信号分离开
15
分集技术
4.1 分集接收
智能天线
提高SINR改善通信质量 增加系统容量提高用户数量 提高频谱利用率 扩大通信覆盖区域 降低基站发射功率 自动跟踪用户信号位置定位 减小用户发射功率提高电池寿命
最大信噪比准则等。
21
4.1 分集接收
从分集信号中以什么方式作为输出?
M
S(t) msm (t) m1
选择式合并:选择最好的支路作为输出, 其它支路丢弃。
等增益合并:调整各个支路的相位,使之 同相,然后进行等增益相加。
最大比合并:调整各个支路的相位,使之 同相,然后按照各个支路的信噪比数值进 行加权相加。
如果S=0,则R是一个码字;若S 0,则传输一定有错。
由于 S RHT (C e)HT CHT eHT eHT
可见伴随式仅与错误图样有关,与发送的具体码字 无关;(n , k)线性码对接收码字的译码步骤如下: ① 计算伴随式 ST=HRT ; ② 根据伴随式捡出错误图样e; ③ 计算发送码字的估值 Cˆ R e
赫兹偶极子和四分之一波长单极子天线
赫兹偶极子和四分之一波长单极子天线1. 引言1.1 概述赫兹偶极子和四分之一波长单极子天线作为无线通信领域中常见的天线类型,具有广泛的应用和重要的研究价值。
赫兹偶极子是一种基本的辐射器件,由两个相等并且反向振荡电流构成,产生球面辐射场。
而四分之一波长单极子天线则是一种以悬浮地平面为结构特点的天线,主要通过单根导体来实现信号的发射和接收。
本文将从定义和原理、构造和特性以及应用领域等方面对这两种天线进行深入探讨。
1.2 文章结构本文将分为五个部分进行介绍与分析。
首先,引言部分将给出赫兹偶极子和四分之一波长单极子天线的概述,并阐明文章所采用的结构与目标。
其次,在第二部分中,我们将详细探讨赫兹偶极子的定义、原理、构造和特性以及应用领域。
紧接着,在第三部分中,我们将详细介绍四分之一波长单极子天线在定义、原理、构造和特性以及应用领域方面的相关信息。
接下来,在第四部分中,我们将对这两种天线进行比较和联系,主要包括相似点、不同点以及相关性分析。
最后,在第五部分中,我们将总结前文所讨论的要点,并对这两种天线提出评价与展望。
1.3 目的本文旨在全面介绍赫兹偶极子和四分之一波长单极子天线的原理、特性和应用领域,并通过比较与联系阐明它们之间的关联性。
通过对这两种天线进行深入研究,有助于读者更加清晰地理解和掌握它们在无线通信系统中的应用价值和工作原理。
此外,文章还将对这两种天线进行评价,并给出未来在技术发展方向上的展望。
通过本文的阅读,读者可以获得关于赫兹偶极子和四分之一波长单极子天线方面的基础知识,并且能够更好地了解它们在无线通信领域中所扮演的重要角色。
2. 赫兹偶极子2.1 定义和原理赫兹偶极子是由德国物理学家海因里希·赫兹于19世纪末发明的一种天线。
它是由一个导体构成的,导体两端呈V形或者倒V形排列。
赫兹偶极子的工作原理基于电磁辐射产生的原理,通过在电流中引入突变或变化频率,就能够产生辐射,并将电能转化为无线电波能量。
关于4G-5G智能手机天线调谐的4点须知
关于4G/5G智能手机天线调谐的4点须知天线效率在智能手机的整体RF 性能中发挥着至关重要的作用- 尤其是向5G 过渡期间。
了解4G 和5G 移动设备中天线调谐的四个关键要素。
天线效率在智能手机的整体RF 性能中发挥着至关重要的作用。
然而,当前的智能手机工业设计趋势和RF 需求(尤其是即将过渡至5G),意味着智能手机必须要将更多的天线安装到更小的空间内,并且/或者提高现有天线的带宽。
简言之,天线调谐比以往更加重要。
在本博客中,我们将介绍4G 和5G 移动设备中天线调谐的四个关键要素。
背景:为何需要天线调谐由于手机运行所需的频段、功能和模式的数量不断增加,现代手机的RF 前端(RFFE) 设计也日益复杂。
需要采用更多天线,使用载波聚合(CA)、4x4 MIMO、Wi-Fi MIMO 和新的宽带5G 频段来提供更高的数据速率,因此智能手机中的天线数量从4-6 个增加到8 个或更多。
与此同时,可用于移动系统天线的空间缩小,导致天线效率降低。
通过天线调谐可以恢复一些损失性能。
若不实施调谐,天线在有限的频率范围内可以实现出色性能,但是增加天线调谐则可以在更广泛的频率范围内实现更优化的性能。
天线调谐系统,例如阻抗调谐器和孔径调谐器,可以支持LTE 智能手机要求的更高带宽和载波聚合。
它们使天线在整个LTE 和5G 频段(从600 Mhz 到 5 Ghz)范围内都能高效工作,同时还能节省电池电量,实现纤薄的手机设计。
但是,实现天线调谐需要深入了解如何针对每个应用运用该技术。
我们来看看这四个基本要素:阻抗与孔径调谐为您的调谐应用选择合适的组件导通状态电阻(RON)、断开状态电容(COFF),以及消除不必要的谐振孔径调谐和CA。
4通信工程定额套用说明
通信工程定额套用说明(2008年版)一、定额定额是标准,是规定的数量标准。
如工程定额就是在合理的劳动组织和合理地使用人工、材料、机械和仪器仪表的条件下,预先规定完成单位合格产品的消耗的资源数量之标准,它反映一定时期的社会生产力或企业水平的高低。
对于每一个产品,都要测算出用工量(包括基本工和其它用工)、材料用量(包括基本用料和其它材料)、机械和仪器仪表用量。
对于用工的单价,是根据行业或当地当时不同工种的劳动力价值规定的;材料的价值是根据前期的市场价格制定出来的预算价格或当期市场的实际价格;机械和仪器仪表价值是根据行业或当地前期的市场价格制定出来的预算价格。
根据每一个项目的工、料、台班用量及价值,按照不同类别,汇总成册,就是定额。
定额根据其性质、内容、形式和用途的不同,可分为5大类:1、按管理层次分为:全国统一定额、行业通用定额、地方定额和企业定额。
2、按用途分为:概算定额(投资估算指标)、预算定额、施工定额、工期定额等。
3、按物质内容分为:劳动定额、材料消耗量定额、机械台班定额和仪器仪表使用定额。
4、按费用性质分为:建筑工程定额、安装工程定额、工程费用定额(直接费用定额、间接费用定额)等。
5、按使用性质分为:安装工程定额、运行维护定额。
现在通信行业用的安装工程定额是 2008版的通信工程预算定额。
运行维护定额是 2009版的通信工程量清单计价定额(YD 5192-2009)。
都属行业定额。
二、预算定额总说明1.本定额系通信行业标准。
2.本定额适用于新建和扩建工程。
改建工程可参照使用。
本定额用于扩建工程时,其人工工时按1.1系数计取,拆除工程的人工工日和台班计取办法见分册的各章说明。
3. 本定额采用“控制量”、“技普分开”和“量价分离”的原则。
4.本定额工日中的工作内容范围除说明外,还包括工种间交叉配合,临时移动水电,设备调测和超高搬运,施工现场范围内的器材运输及配合质量检验等。
5. 有关项目的调整系数,按各册、各章规定执行。
4glte通信基站使用的天线
4glte通信基站使用的天线
4G LTE通信基站使用的天线通常是MIMO(Multiple-Input Multiple-Output,多输入多输出)天线。
这种天线具有多个天
线元件,可以同时传输和接收多个数据流,从而提高数据传输速率和系统容量。
MIMO天线通常分为两种类型:单极化和多极化。
单极化天
线只能传输或接收一个数据流,而多极化天线可以同时传输或接收多个数据流。
4G LTE通信基站使用的天线通常是多极化MIMO天线。
这些
天线通常由多个单极化天线构成,每个天线用于传输或接收一个数据流。
多极化MIMO天线能够同时传输和接收多个数据流,从而提高系统容量和数据传输速率。
此外,4G LTE通信基站的天线还具有指向性。
这意味着天线
可以将无线信号集中在一个或多个特定方向上,从而增强信号覆盖范围和质量。
总结起来,4G LTE通信基站使用的天线是多极化MIMO天线,具有指向性。
这种天线能够提供更高的数据传输速率和系统容量,并增强信号覆盖范围和质量。
常用卫星通信天线介绍
常用卫星通信天线介绍天线是卫星通信系统的重要组成部分,是地球站射频信号的输入和输出通道,天线系统性能的优劣影响整个通信系统的性能。
地球站与卫星之间的距离遥远,为保证信号的有效传输,大多数地球站采用反射面型天线。
反射面型天线的特点是方向性好,增益高,便于电波的远距离传输。
反射面的分类方法很多,按反射面的数量可分为双反射面天线和单反射面天线;按馈电方式分为正馈天线和偏馈天线;按频段可分为单频段天线和多频段天线;按反射面的形状分为平板天线和抛物面天线等。
下文对一些常用的天线作简单介绍。
1.抛物面天线抛物面天线是一种单反射面型天线,利用轴对称的旋转抛物面作为主反射面,将馈源置于抛物面的焦点F上,馈源通常采用喇叭天线或喇叭天线阵列,如图1所示。
发射时信号从馈源向抛物面辐射,经抛物面反射后向空中辐射。
由于馈源位于抛物面的焦点上,电波经抛物面反射后,沿抛物面法向平行辐射。
接收时,经反射面反射后,电波汇聚到馈源,馈源可接收到最大信号能量。
图1 抛物面天线抛物面天线的优点是结构简单,较双反射面天线便于装配。
缺点是天线噪声温度较高;由于采用前馈,会对信号造成一定的遮挡;使用大功率功放时,功放重量带来的结构不稳定性必须被考虑。
2.卡塞格伦天线卡塞格伦天线是一种双反射面天线,它由两个发射面和一个馈源组成,如图2所示。
主反射面是一个旋转抛物面,副反射面为旋转双曲面,馈源置于旋转双曲面的实焦点F1上,抛物面的焦点与旋转双曲面的焦点重合,即都位于F2点。
从从馈源辐射出来的电磁波被副反射面反射向主反射面,在主反射面上再次被反射。
由于主反射面的焦点与副反射面的焦点重合,经主副反射面的两次反射后,电波平行于抛物面法向方向定向辐射。
对经典的卡塞格伦天线来说,副反射面的存在遮挡了一部分能量,使得天线的效率降低,能量分布不均匀,必须进行修正。
修正型卡塞格伦天线通过天线面修正后,天线效率可提高到0.7—0.75,而且能量分布均匀。
目前,大多数地球站采用的都是修正型卡塞格伦天线。
4g天线标准
4G天线标准介绍4G天线是为了支持4G网络的通信需求而设计的一种专用天线。
它能够接收和发送4G网络的信号,用于提供稳定、高速的无线网络连接。
在4G网络的发展中,天线标准起着重要的作用,它涉及到天线的性能、设计和安装要求等方面。
本文将介绍4G天线标准,包括天线的基本原理,常见的天线类型,天线标准的制定过程以及一些常见的标准组织。
4G天线的基本原理4G天线的基本原理是通过接收和发送无线信号来实现数据的传输。
它将电磁波转换为电信号或将电信号转换为电磁波,以传输数据。
4G天线采用了多天线技术,一般具有多个发送和接收天线。
通过利用多天线的并行性,可以提高信号质量和传输速度。
常见的4G天线类型根据应用场景和设计要求,4G天线可以分为以下几种类型:1.指向天线:指向天线主要用于提供定向的无线信号覆盖,适用于远距离传输和信号聚焦的场景。
2.全向天线:全向天线能够提供360度的无线信号覆盖,适用于广泛的通信需求,如城市街区、室内场所等。
3.扇形天线:扇形天线提供一定角度范围内的无线信号覆盖,适用于有限范围的通信需求,如会议室、展览馆等。
4.饼状天线:饼状天线能够提供水平方向上的无线信号覆盖,适用于平面通信需求,如办公室、酒店等。
4G天线标准的制定过程制定4G天线标准是为了保证天线的性能和质量,并为不同厂家的天线提供统一的规范。
通常,4G天线标准的制定过程包括以下几个步骤:1.需求分析:对4G天线的功能、性能和设计要求进行详细的分析和定义。
2.技术研究:通过对现有技术和标准的研究,确定4G天线应采用的技术方案。
3.标准制定:将技术研究的结果转化为具体的标准文档,并进行审查和讨论,形成最终的4G天线标准。
4.标准发布:将制定好的4G天线标准发布给相关的厂家和组织,供其参考和遵循。
常见的4G天线标准组织在制定4G天线标准的过程中,有一些组织起着重要的作用。
下面是一些常见的4G天线标准组织:•3GPP:第三代合作伙伴计划,是一个国际电信标准化组织,负责制定移动通信标准,包括4G天线相关的标准。
2024年移动基站防雷与接地技术规范 移动通信基站的防雷与接地要求(大全4篇)
2024年挪动基站防雷与接地技术标准挪动通信基站的防雷与接地要求(大全4篇)挪动基站防雷与接地技术标准挪动通信基站的防雷与接地要求篇一1.1.1 室外走线架材料宜采用40mm×40mm×4mm 的热浸锌角铁和扁铁。
室外走线架宽度宜为 400mm,横挡间距宜为400mm,支架间距宜2000mm 左右均匀排列,支架在楼顶设置时应垫黑胶板。
1.1.2 从增高架或桅杆到馈线孔应有连续地走线架。
1.1.3 室外走线架安装应结实、顺直程度偏向应不大于2%;垂直偏向不大于1.5%。
连接件应为镀锌件。
如需焊接必须作防腐防蚀处理。
1.1.4 室外爬墙走线架支撑应结实。
宜采用角铁制作直角担为支撑架,用膨胀螺栓固定。
1.1.5 所有支撑加固用的膨胀螺栓余留长度应一致。
〔紧固后,螺帽余留5mm左右〕1.1.6 严禁在楼顶防水层上打眼加固走线架。
1.1.7 室外走线架在楼顶平面水泥墩和墙面上固定应稳固,与楼顶平面或墙面平行。
砖垫的部分应用水泥墩固定。
1.1.8 基站外接交流电引入,检查缆线的规格,敷设方式及路由,和电配电箱空开负荷,安装接入操作必须由专职电工进展。
1.1.9 多雷暴地区应采用铠装电缆,地埋进机房,低压电缆入机房时,埋地长度应大于15米,且电缆两端铠装层接地。
1.1.10 缆线严禁系挂在避雷网或避雷带上。
1.1.11 穿墙入室时要使用专用开孔工具开孔,并注意留回水弯和做好防水处理。
入室动力电缆制止走馈线窗。
1.1.12 线径规格应符合设计要求,线径应符合要求,至少应大于16平方毫米。
挪动基站防雷与接地技术标准挪动通信基站的防雷与接地要求篇二观看基站心得体会今天通过实地观看基站,懂得了新建一个基站的根本流程和建立的标准,根本流程为先土建、安装高危杆、引入市电安装变压器、做地网防雷、埋光缆到位、安装设备、跳纤、开通设备做基站端的数据。
做到这样一个基站就差不多可以投入使用了。
土建的时候应该注意一些隐蔽工程的旁站,比方地网、水泥平台钢筋的使用。
4g天线原理
4g天线原理一、引言4G技术的发展使得人们对高速移动通信的需求越来越大,而4G天线作为4G通信系统中的重要组成部分,直接影响着通信质量和稳定性。
本文将介绍4G天线的原理。
二、4G天线分类根据使用场景和应用需求,4G天线可以分为室内天线和室外天线两种类型。
室内天线主要用于办公楼、酒店、商场等场所,而室外天线则主要用于城乡结合部、山区等环境。
三、4G天线原理1. 天线基本原理在无线通信系统中,发射端通过调制将数字信息转换成高频信号,并通过天线发射出去;接收端通过接收到的高频信号解调还原出数字信息。
因此,天线可以看作是无线通信系统中的“嘴巴”和“耳朵”,负责发送和接收无线电波。
2. 天馈系统原理在无线通信系统中,除了需要发送和接收无限电波以外,还需要将这些电波传输到各个用户设备上。
这就需要使用到一种叫做“馈线”的物理介质来实现。
馈线可以看作是一根导线,它能够将无限电波从天线传输到用户设备上。
3. 天线增益原理天线的增益可以看作是天线辐射能力的一种量化指标。
在同样的输入功率下,增益越高的天线可以将信号辐射得更远、更强。
因此,天线的增益对于通信质量和稳定性有着至关重要的影响。
4. 天线多元化原理在实际应用中,由于环境复杂多变,不同场景下需要使用不同类型的天线来满足不同需求。
例如,在城市中心区域使用小型基站和小型室内覆盖系统时,需要使用具有高增益、小体积、宽频带等特点的室内小型天线;而在山区和乡村地区,则需要使用具有抗风雨、防腐蚀等特点的室外大型天线。
四、4G天线设计要素1. 频率范围:4G通信系统工作频段为700MHz至2600MHz,因此4G天线需要覆盖这个频率范围。
2. 增益:为了保证通信质量和稳定性,4G天线需要具备较高的增益。
3. 方向性:4G天线需要具备一定的方向性,以便将信号辐射到需要覆盖的区域。
4. 天馈系统:4G天线需要配备合适的天馈系统,以保证信号传输质量和稳定性。
5. 多元化:不同场景下需要使用不同类型的4G天线来满足不同需求。
天线与电波传播I-4-1
信号具有类噪声性。UWB信号具有极低的功率谱密度和伪随
机特性,这使其具有类似噪声的性质难以被截获,同时对其它 现有的无线系统干扰较小。
时域特性好。时域窄脉冲具备良好的材料穿透能力,因此在
探测方面具有很好的应用;极窄的时域脉冲同时还意味着 UWB 技术具有提供比GPS和其他无线系统更高精度的定时潜力。
2
超宽带技术-Ultra-wideband, UWB
与传统窄带技术的区别:
1. 极大的系统带宽。带宽常常达数GHz,比任何现有的 无线通信技术的带宽都大得多; 2. 典型的UWB信号是无载波窄脉冲。与当今通信系统中 广泛采用的载波调制技术不同,IR-UWB技术使用上升 沿和下降沿都很陡的基带脉冲直接通信,所以又称为 基带传输技术或无载波技术.
19
16
超宽带天线
印刷单极子天线
二维的单极子天线利用印 刷电路板蚀刻而成,不需 要从接地面打一个导通孔, 在工程应用中方便许多, 大多数采用的是微带线或 是共面波导馈电。 辐射体为圆形的单极子天线设计较为简单,调整圆形半径大小, 就能决定天线的最低工作频率。通过将辐射体形状改为漏斗形、 领结形、十字形、U形、心形、扇形、椭圆形等结构,则会进一 步增加天线的阻抗带宽平面单极子天线结构简单、体积小、制作 容易,最重要的是具有全向辐射特性。
典型的IR-UWB信号的时域波形
3
UWB优势
极高的通信数据率。UWB信号的脉冲宽度通常在亚纳秒量级,
由此可实现达100Mbps~lGbps的通信速率。
低复杂度、低成本。IR-UWB系统直接利用极窄脉冲来进行信
息传输,信号不需要上变频以及功放,因此可省去射频混频以 及功率放大模块;在接收端也可以省去相对应的混频模块、复 杂的时延和相位跟踪环等;
常用卫星通信天线介绍
常用卫星通信天线介绍天线是卫星通信系统的重要组成部分,是地球站射频信号的输入和输出通道,天线系统性能的优劣影响整个通信系统的性能。
地球站与卫星之间的距离遥远,为保证信号的有效传输,大多数地球站采用反射面型天线。
反射面型天线的特点是方向性好,增益高,便于电波的远距离传输。
反射面的分类方法很多,按反射面的数量可分为双反射面天线和单反射面天线;按馈电方式分为正馈天线和偏馈天线;按频段可分为单频段天线和多频段天线;按反射面的形状分为平板天线和抛物面天线等。
下文对一些常用的天线作简单介绍。
1.抛物面天线抛物面天线是一种单反射面型天线,利用轴对称的旋转抛物面作为主反射面,将馈源置于抛物面的焦点F上,馈源通常采用喇叭天线或喇叭天线阵列,如图1所示。
发射时信号从馈源向抛物面辐射,经抛物面反射后向空中辐射。
由于馈源位于抛物面的焦点上,电波经抛物面反射后,沿抛物面法向平行辐射。
接收时,经反射面反射后,电波汇聚到馈源,馈源可接收到最大信号能量。
图1 抛物面天线抛物面天线的优点是结构简单,较双反射面天线便于装配。
缺点是天线噪声温度较高;由于采用前馈,会对信号造成一定的遮挡;使用大功率功放时,功放重量带来的结构不稳定性必须被考虑。
2.卡塞格伦天线卡塞格伦天线是一种双反射面天线,它由两个发射面和一个馈源组成,如图2所示。
主反射面是一个旋转抛物面,副反射面为旋转双曲面,馈源置于旋转双曲面的实焦点F1上,抛物面的焦点与旋转双曲面的焦点重合,即都位于F2点。
从从馈源辐射出来的电磁波被副反射面反射向主反射面,在主反射面上再次被反射。
由于主反射面的焦点与副反射面的焦点重合,经主副反射面的两次反射后,电波平行于抛物面法向方向定向辐射。
对经典的卡塞格伦天线来说,副反射面的存在遮挡了一部分能量,使得天线的效率降低,能量分布不均匀,必须进行修正。
修正型卡塞格伦天线通过天线面修正后,天线效率可提高到0.7—0.75,而且能量分布均匀。
目前,大多数地球站采用的都是修正型卡塞格伦天线。
4g天线标准
4G天线标准简介4G天线是用于无线通信系统的关键部件之一,它能够将无线信号转换为电信号或将电信号转换为无线信号。
4G天线标准是为了保证4G网络的高质量通信而规定的一系列技术要求和测试方法。
本文将介绍4G天线标准的相关内容。
4G天线标准的重要性4G天线是用户设备与基站之间进行通信的桥梁,其性能直接影响到4G网络的通信质量和速度。
因此,制定4G天线标准是为了确保4G网络的稳定性和可靠性,提高用户体验,并推动无线通信技术的发展。
4G天线标准的主要内容4G天线标准主要包括以下几个方面:天线类型4G天线可以分为多种类型,根据不同的应用场景和需求,选择合适的天线类型对于维护4G网络的稳定性至关重要。
•室内天线:用于室内覆盖,在室内环境下提供高质量的信号覆盖。
•室外天线:用于室外覆盖,能够在室外环境中提供广阔的信号覆盖区域。
•手持天线:用于用户终端设备,能够满足用户需求的同时保持稳定的信号传输。
天线性能4G天线的性能直接关系到网络的覆盖范围和信号质量。
4G天线标准规定了天线的增益、频率响应、辐射方向图等性能指标,以确保天线在工作过程中具有良好的性能表现。
•天线增益:衡量天线的接收或发送信号能力,增益越高,信号传输效果越好。
•频率响应:指天线在接收或发送信号时对不同频率下的响应情况,应满足特定范围内的频率要求。
•辐射方向图:描述天线在不同方向上的辐射特性,需要符合特定的辐射模式和覆盖范围要求。
天线测试方法为了保证4G天线的质量和性能,4G天线标准还规定了一系列的测试方法,用于评估天线的性能和符合性。
•环境测试:测试天线在不同环境条件下的性能表现,如温度、湿度、震动等。
•电性能测试:测试天线的电气参数,如增益、频率响应、幅度均衡等。
•协同测试:测试天线与其他设备的协同性能,如与用户终端设备、基站之间的配合情况。
结论4G天线标准的制定是为了确保4G网络的高质量通信,并推动无线通信技术的发展。
通过规定天线的类型、性能指标和测试方法,可以保证天线的稳定性和可靠性,提高用户体验。
移动通信天线基本知识
移动通信天线基本知识移动通信天线是移动通信系统中的重要组成部分,它负责将信号从移动设备传输到基站或者将信号从基站传输到移动设备。
在移动通信技术的发展过程中,天线的设计成为了一个关键性的问题。
1. 天线的分类根据用途和特点,移动通信天线可以分为以下几种类型:1.1 手持终端天线手持终端天线是移动设备中的内置天线,用于接收和发送信号。
这种天线一般采用小型化设计,以适应手持设备的外形和尺寸。
常见的手持终端天线有贴片天线、PIFA天线等。
1.2 基站天线基站天线是用于在基站和移动设备之间进行信号传输的天线。
由于基站天线的高度和安装位置通常比较高,所以其设计要考虑到信号覆盖范围和天线方向性等因素。
常见的基站天线有定向天线、扇形天线等。
1.3 室内分布系统天线室内分布系统天线是用于在室内环境中传输无线信号的天线。
由于室内环境中存在多种干扰因素,这种天线一般具有较强的抗干扰能力和覆盖范围。
常见的室内分布系统天线有墙壁天线、天花板天线等。
2. 天线的性能指标移动通信天线的性能指标对于天线性能的评估和选型非常重要。
常见的天线性能指标包括以下几个方面:2.1 增益天线的增益是指在天线辐射方向上的能量密度相对于随机辐射方向上的能量密度的比值。
增益越高,天线在辐射方向上的信号能量也就越强。
2.2 方向性天线的方向性是指天线在不同方向上的信号辐射强度的差异。
方向性越窄,天线辐射的信号范围也就越窄。
方向性适中的天线可以在提高通信质量的,保证较大的覆盖范围。
2.3 阻抗匹配天线的阻抗匹配是指天线的输入端和输出端的特性阻抗与连接设备之间的匹配情况。
当天线的阻抗与设备之间的阻抗匹配不好时,会导致信号反射和损耗,降低通信质量。
3. 天线的设计原则在进行移动通信天线的设计时,需要考虑以下几个原则:3.1 天线尺寸天线的尺寸应当与移动设备或基站的外形尺寸相匹配,以便于天线的安装和布局。
尺寸的小型化设计也有助于提高设备的便携性和美观性。
01-44 27013721室外2 4G 5G单极化全向天线
44 27013721室外2.4G&5G单极化全向天线(H360 V30 G4&H360 V15 G7)关于本章44.1 27013721技术参数44.2 27013721安装注意事项44.3 27013721安装天线44.1 27013721技术参数27013721型号的全向天线名称为ANTDG0407A1NS,主要适用于室外场景。
天线外观图27013721型号的天线如图44-1所示。
图44-1 27013721型号天线外观天线技术指标27013721型号天线的技术指标如表 27013721型号天线技术指标所示。
表44-1 27013721型号天线技术指标说明●增益和波瓣宽度均为典型值,实际值会在一个范围内,具体规格请见datasheet。
●覆盖距离为特定条件下的参考值。
请根据华为网规经验,结合当地标准和现场环境综合规划。
●由于各国标准可能存在差异,天线与AP的配套关系应以当地实际情况为准,具体可以参考整机入网认证信息。
●覆盖距离的约束条件:●AP的发射功率默认为15dBm。
●终端类型默认为手机且无障碍物遮挡。
● 2.4G:上下行RSSI大于等于-70dBm。
●5G:上下行RSSI大于等于-75dBm。
如对以上技术参数有疑问,请联系技术支持人员。
天线方向图27013721型号天线2.4G、5G水平方向和垂直方向的天线远场方向图如图2和图3所示。
图44-2 27013721型号天线2.4G方向图图44-3 27013721型号天线5G方向图44.2 27013721安装注意事项为保证天线工作在最佳状态,请注意以下安装细则:●垂直安装天线,并使其射频线缆接口一侧朝向地面。
●安装单极化天线时,两根天线之间的距离保持在30cm~50cm。
●安装时让天线朝向远离金属障碍物,比如暖气管、空调等,请避免安装在铁丝网上。
●墙体的材料和厚度决定了射频信号所能穿越(可以确保通信)的墙体的数量,选择天线之前需要考虑以上情况。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
通信天线
4.7 双极天线 4.7.1 双极天线的特性
l
l
4.7.2 双极天线的尺寸选择及架设
1.振子长度设计 双极天线振子长度l应根据其工作波段中λ 和 max λ ,按照下面的不等式进行设计: min
0.625λ ≥l≥0.25λ min max
2.架设高度设计
λa Ha = 4 sin ?
最大发射仰角Δ (度) 天线高度h/λ 60~90 约45 约30 约25 <15 0.25 0.4 0.5 0.6 0.8
3.天线的架设 双极天线悬挂于两根支撑杆(天线杆)之间或可利用 的两建筑物之间。具体要求如下: ①.天线振子应保持水平,振子轴方向与通信方向垂 直。 ②.为了避免在振子两端的拉线上感应较大的电流, 在距离振子线末端3米远处,应再加上一个绝缘子。 ③.支撑杆的拉线应用绝缘子一段一段地分开,每段 的长度不能超过四分之一波长。 ④.天线导线一般采用多股铜绞线或铜包钢线,导线 直径约3~6毫米。在允许条件下导线直径越大,无 线效率越高。 ⑤.双极天线通常采用600Ω 二线式传输线馈电。为 了减小损耗,提高效率,馈线应尽量短。
2.MG-760型对数周期宽带天线辐射方向图
图4.34 MG-760型对数周期天线垂直方向图(5MHz)
图4.35 MG-760型对数周期型对数周期天线垂直方向图(12MHz)
2. 倒V方式架设 该天线可根据阵地条件和通信距离采用水平 架设或倒“V”架设,具有免天线调谐功能和中 近距离通信无盲区的特点。 倒V架设方式是三线天线独有的特点。这种 中央悬挂架设方式提供360°全方位辐射,在较 低频率下还能够产生高仰角辐射,适用于对各方 向分站的通信,并兼顾了水平极化波和垂直极化 泼水平天线的固定台、使用垂直鞭天线的车载台 和背负台。
L-1
1.5
L-2
2.5
L-3
3.4
4.8.3 分支笼形天线
其与普通笼形天线在结构上的不同之处在于 最上面的两根导线中间不用绝缘振子隔开, 也不和其他导线连接在一起,而是直接连 通。
由于结构上的变化,分支笼形天线的输入阻 抗比普通笼形天线高,并且随频率变化更小,更 容易与馈线相匹配,适当地选择振子尺寸,能在 较宽的频带内与馈线的特性阻抗保持良好的匹 配。 在保证馈线上的行波系数不小于0.3的条件 下,分支笼形天线可在宽达5:1的波段内工作。 因此,分支笼形天线比笼形天线更能适合短波通 信昼夜频率变化的要求。
λa = ( f max 2λmax λmin c = (m ) + f min ) / 2 λmax + λmin
其中Δ 为通信仰角, λ为中心波长, a fmax和fmin为天线垂直方向图主瓣对准通信 仰角时,最大工作频率和最小工作频率.
表4.11 双极天线架设高度参考 通信距离 (Km) <400 400~600 600~800 800~1000 >1500
4.10 对数周期天线 4.10.1 对数周期天线的特点 对数周期天线具有输入阻抗和辐射图形与 频率无关的突出特点,使其能在宽达10:l~ 20:1的频带范围内正常工作。 由于对数周期天线的电特性在一个周期内变 化不大,且又呈周期性重复,因而使天线具有输 入阻抗和辐射图形几乎与频率无关的特点,能在 很宽的波段范围内工作。但由于作用区仅仅是整 个天线结构的一部分,故天线增益不高,一般只 有10dB以下。
分支笼形天线的基本工作波段范围为: l/λ =0.16~0.625
4.9 三线宽带天线 4.9.1 三线宽带天线的特性
三线宽带天线,具有结构简单,架设方便,不用天 调,不接地线,频率范围宽等优点。三线宽带天线的 两极由三条平行振子组成,工作频段2~30MHz。
与普通双极宽带天线相比,三线天线具有以下 显著优势: ①.三线天线有3~5dbi的相对增益,而且在全 频段基本上保持2:1以下的优异驻波比,而普通 宽带天线在很多频率上的驻波比超过2.5:1,因此 三线天线的辐射效率明显高于普通宽带双极天 线。 ②.普通双极天线重心偏斜,随风摆动,状态不 稳定,影响通信效果且容易损坏。而三线天线的 形态和结构非常合理,架设后三条振子始终保持 水平,性能稳定,且抗风能力强,不易损坏。
③.普通宽带天线只能水平架设,而三线天线 具有水平和倒‘V’两种架设方式,具有多种用 途。 ④.三线天线在近距离(覆盖盲区)的通信效 果远比普通双极天线和笼型天线为佳,中远距离 通信效果也相当好。 三线天线的水平方向图和垂直方向图与射 线仰角和工作频率密切相关。4MHz、8MHz、 12MHz、16MHz不同仰角的水平方向图、垂直方 向图如图所示。
常用笼形天线的特性阻抗为250~400欧 姆,天线输入阻抗在工作波段内比较平稳,易于 与馈线在波段内匹配。笼形天线的使用波段范围 为: 发信:l/λ =0.25~0.625 收信,基本波段:l/λ =0.25~0.625 允许波段:l/λ =0.19~0.66
4.8.2 笼形天线设计及架设
笼形天线的水平方向图和垂直方向图同双极 天线,其臂长及架高的设计方法也与双极天线一 致。因笼形天线末端效应大于双极天线,故在计 算臂长时,其校正系数取为0.85。
4.8 笼形天线 4.8.1 笼形天线的特性
为了克服双极天线工作波段窄、效率低等缺 点,采用加粗振子直径的办法展宽工作波段,提高 馈线上的行波系数。 笼形双极天线(以下简称笼形天线)将几根导 线排成园柱形(固定在笼圈上),组成振子两臂,既可 达到增加振子有效直径的目的,又减轻天线的重 量。例: 排成园柱形的导线数目n通常是6根或8根, 每根导线的直径为3~4mm,因为拉力比双极天线 大的多,所以通常采用铜包钢线。
4.10.2 对数周期天线的技术指标和辐射方向图
1.MG-760型对数周期宽带天线主要技术指标 频率范围 6.2~30(MHz) 标称阻抗 50Ω 功率容量 2 / 5 / 10(KW) 电压驻波比 ≤2.0,个别点≤2.5 天线增益 8~10(dB) 极化方式 水平极化 天线高度 12m(标准) 天线重量 700kg 架设场地 半径9m用地 抗风能力 10级风正常工作
4.9.2 三线宽带天线的架设 1.水平方式架设 水平架设方式在天线的宽边方向辐射强于窄边 方向,适合点对点、点对面的通信。 三线天线水平架设方法与普通宽带天线相 同,都是在天线的两端架设高秆,将天线在两杆之 间拉直。但是三线天线水平架设的方向图与普通宽 带天线不同。在较低频率下,普通宽带天线的方向 图是双球形,方向性强,在天线的窄边方向没有辐 射;而三线天线的方向图是椭圆形,不仅在宽边方 向辐射很强,在窄边方向也有一定辐射。因此三线 天线在平拉状态下能够兼顾窄边方向的通信,适应 性比普通宽带天线要强得多。
表4.12 笼形天线分类表
工作波段 笼形振子 天线 重量 分类 频率(MHz) 波长(m) l(m) (Kg) 9.36~23 5~12.5 2.5~6.25 32~13 60~24 120~48 8 15 30 6.6 12 23
振子圆环 直径D(m) 1.0 1.5 2.0 个数 4 6 6
挂高 跨度 垂度 H(m L(m) F(m ) 22 36 66 12 16 20