〈word版〉人教版数学八年级上册期中考试综合训练(三)部分附答案共3份
(word版本)人教版八年级数学上册期中综合能力检测题部分附答案共3份
北京市陈经纶中学分校2020---2021 学年度第一学期期中检测八年级 数学试卷(无答案)(考试时间 90 分钟 满分 100 分)一、选择题(本题共有 8 小题,各题均附有四个备选答案,其中有且只有一个是正确的,每小题 2 分,共 16 分)1.如图,在△ABC 中,BC 边上的高为( )(A ) AB(B ) B D (C ) AE(D ) B E2.下列运算正确的是考生须知1、 在试卷和答题卡上认真填写班级、姓名、考号。
2、 试卷答案一律填涂或书写在答题卡上,在试卷上作答无效。
3、 在答题卡上,选择题用 2B 铅笔作答,其他试题用黑色字迹签字笔作答。
4、考试结束后,将试卷和答题卡一并交回。
(A ) 2a + 3b = 5ab(B )(ab )2= a 2b 2(C ) a 2 ⋅ a 3 = a 6(D ) (a 2 )3 = a 5 3.如图, AB 与CD 相交于点,则下列结论一定正确的是( )(A ) ∠1 > ∠3 (C ) ∠3 = ∠4(B ) ∠2 < ∠4 + ∠5 (D ) ∠3 = ∠54.甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是(A ) (B ) (C ) (D )5.已知: 2m = 1, 2n = 3,则 2m + n =( )(A ) 2 (B ) 3 (C ) 4 (D ) 66. 如图,△ABC ≌ΔADE ,若∠B =80°,∠C =30°,∠DAC =35°, 则∠EAC的度数为 ( )(A )40° (B )35° (C )30° (D )25° 7.如果等腰三角形的一个内角等于 110°,则它的底角是()(A )35° (B )55° (C ) 70° (D )35°或 70°8.如图,△ABC 中,∠ABC =∠ACB ,D 为BC 上一点,BF =CD ,CE =BD ,则∠EDF 等于( )1 (A )90° -∠A (B )90° - ∠A21 (C )180° -∠A (D )45° - ∠A2学校________________________班级_________________姓名____________________学号____________二、填空题(本题共有8 小题,每小题 2 分,共16 分)9.若4m ⋅23 = 27 ,则m=.10.比较大小:233 322 .11.如图,点B、F、C、E 在同一条直线上,欲证△ABC≌△DEF,已知A C=DF,AB=DE,还需要添加条件.第11 题第12 题12.如图所示,将正五边形A BCDE 的C点固定,并依顺时针方向旋转,若旋转n度,可使得新五边形A′B′C′D′E的顶点D′落在直线B C 上,则n的值是.13.如图1,已知三角形纸片ABC,AB=AC,∠A = 50°,将其折叠,如图2,使点A 与点B重合,折痕为E D,点E,D 分别在A B,AC 上,则∠DBC 的大小为.第13 题第14 题14.边长分别为a和2a 的两个正方形按如图的样式摆放,则图中的阴影部分的面积为.15.写出点A(2,3)关于直线l(直线l 上各点的横坐标都是-1 )的对称点B 的坐标.16.如图,两车从南北方向的路段AB 的A 端出发,分别向东、向西行进相同的距离,到达C,D 两地,此时可以判断C,D 到B 的距离相等,用到的数学道理是.16 题图⎩三、解答题(第 17-22 题共 6 题各 5 分,第 23-26 题共 4 题各 6分,第 27-28 题共 2 题各 7 分,共 68 分)17.解下列方程组⎧⎪3x < x + 8,18.解不等式组 ⎨⎪4 ( x +1) ≤ 7 x +10.并把它的解集在数轴上表示出来。
最新人教版八年级数学上册期中考试数学试题(3)有答案
最新人教版八年级数学上册期中考试数学试题(3)有答案八年级上学期期中数学试卷一、选择题(每题3分,共24分)1.下列图形是轴对称图形的有()A.2个B.3个C.4个D.5个2.等腰三角形的一个角是50°,则它的底角是()A.50°B.50°或65°C.80°D.65°3.下列各组图形中,是全等形的是()A.两个含60°角的直角三角形B.腰对应相等的两个等腰直角三角形C.边长为3和4的两个等腰三角形D.一个钝角相等的两个等腰三角形4.如图,△ABC中,AB=AC,∠A=36°,AB的垂直平分线DE交AC于D,交AB于E,则∠BDC的度数为()A.72°B.36°C.60°D.82°5.下列性质中,等腰三角形具有而直角三角形不一定具有的是()A.两边之和大于第三边B.有一个角的平分线垂直于这个角的对边C.有两个锐角的和等于90°D.内角和等于180°6.如图所示,在△ABC中,已知点D,E,F分别是BC,AD,CE 的中点,S△ABC=4平方厘米,则S△BEF的值为()A.2平方厘米B.1平方厘米C.平方厘米D.平方厘米7.如图,已知MB=ND,∠MBA=∠NDC,下列条件中不能判定△ABM≌△CDN的是()A.∠M=∠NB.AM=CNC.AB=CDD.AM∥CN8.如图,∠DAE=∠ADE=15°,DE∥AB,DF⊥AB,若AE=8,则DF等于()A.5B.4C.3D.2二、填空题(每题3分,共21分)9.若点P(m,m﹣1)在x轴上,则点P关于x轴对称的点为.10.一个多边形的每一个外角都等于36°,则该多边形的内角和等于度.11.已知△ABC≌△A′B′C′,A与A′,B与B′是对应点,△A′B′C′周长为9cm,AB=3cm,BC=4cm,则A′C′=cm.12.如图,小明上午在理发店理发时,从镜子内看到背后普通时钟的时针与分针的位置如图所示,此时时间是.13.已知,如图,O是△ABC的∠ABC、∠ACB的角平分线的交点,OD∥AB交BC于D,OE∥AC交BC于E,若BC=10cm,则△ODE的周长cm.14.已知△ABC中,AB=BC≠AC,作与△ABC只有一条公共边,且与△ABC全等的三角形,这样的三角形一共能作出个.15.如图,在△ABC中,AD是BC上的中线,BC=4,∠ADC=30°,把△ADC沿AD所在直线翻折后点C落在点C′的位置,那么点D到直线BC′的距离是.三、解答题(8道题,共75分)16.已知一个多边形的内角和为1260°,求这个多边形的对角线条数.17.如图,△ABC和△ECD都是等边三角形,求证:AD=BE.18.如图,在平面直角坐标系中,A(﹣3,2),B(﹣4,﹣3),C(﹣1,﹣1).(1)在图中作出△ABC关于y轴对称的△A1B1C1;写出点A1,B1,C1的坐标(直接写答案):A1;B1;C1;(3)△A1B1C1的面积为;(4)在y轴上画出点P,使PB+PC最小.19.如图,△ABC中,∠A=40°,∠B=72°,CE平分∠ACB,CD⊥AB于D,DF⊥CE交CE于F,求∠CDF的度数.20.如图△ADF和△BCE中,∠A=∠B,点D、E、F、C在同﹣直线上,有如下三个关系式:①AD=BC;②DE=CF;③BE∥AF.(1)请用其中两个关系式作为条件,另一个作为结论,写出所有你认为正确的命题.(用序号写出命题书写形式,如:如果①、②,那么③)选择(1)中你写出的一个命题,说明它正确的理由.21.如图,△ABC中,AB>AC,∠ABC的平分线和外角∠ACF的平分线交于点P,PD∥BC,D在AB上,PD交AC于E,求证:DE=BD﹣CE.22.已知:如图,AB=AC,点D是BC的中点,AB平分∠DAE,AE⊥BE,垂足为E.(1)求证:AD=AE.若BE∥AC,试判断△ABC的形状,并说明理由.23.如图1,若△ABC和△ADE为等边三角形,M,N分别为EB,CD的中点,易证:CD=BE,△AMN是等边三角形:(1)当把△ADE绕点A旋转到图2的位置时,CD=BE吗?若相等请证明,若不等于请说明理由;当把△ADE绕点A旋转到图3的位置时,△AMN还是等边三角形吗?若是请证明,若不是,请说明理由(可用第一问结论).河南省济源市大峪二中八年级上学期期中数学试卷参考答案与试题解析一、选择题(每题3分,共24分)1.下列图形是轴对称图形的有()A.2个B.3个C.4个D.5个故选C.2.等腰三角形的一个角是50°,则它的底角是()A.50°B.50°或65°C.80°D.65°故选B.3.下列各组图形中,是全等形的是()A.两个含60°角的直角三角形B.腰对应相等的两个等腰直角三角形C.边长为3和4的两个等腰三角形D.一个钝角相等的两个等腰三角形故选B.4.如图,△ABC中,AB=AC,∠A=36°,AB的垂直平分线DE交AC于D,交AB于E,则∠BDC的度数为()A.72°B.36°C.60°D.82°故选A.5.下列性质中,等腰三角形具有而直角三角形不一定具有的是()选:B.A.两边之和大于第三边B.有一个角的平分线垂直于这个角的对边C.有两个锐角的和等于90°D.内角和等于180°6.如图所示,在△ABC中,已知点D,E,F分别是BC,AD,CE 的中点,S△ABC=4平方厘米,则S△BEF的值为()选B.A.2平方厘米B.1平方厘米C.平方厘米D.平方厘米7.如图,已知MB=ND,∠MBA=∠NDC,下列条件中不能判定△ABM≌△CDN的是()A.∠M=∠NB.AM=CNC.AB=CDD.AM∥CN故选:B.8.如图,∠DAE=∠ADE=15°,DE∥AB,DF⊥AB,若AE=8,则DF等于()A.5B.4C.3D.2故选:B.二、填空题(每题3分,共21分)9.若点P(m,m﹣1)在x轴上,则点P关于x轴对称的点为(1,0).10.一个多边形的每一个外角都等于36°,则该多边形的内角和等于1440度.故答案为:1440.11.已知△ABC≌△A′B′C′,A与A′,B与B′是对应点,△A′B′C′周长为9cm,AB=3cm,BC=4cm,则A′C′=2cm.12.如图,小明上午在理发店理发时,从镜子内看到背后普通时钟的时针与分针的位置如图所示,此时时间是10:45.13.已知,如图,O是△ABC的∠ABC、∠ACB的角平分线的交点,OD∥AB交BC于D,OE∥AC交BC于E,若BC=10cm,则△ODE的周长10cm.14.已知△ABC中,AB=BC≠AC,作与△ABC只有一条公共边,且与△ABC全等的三角形,这样的三角形一共能作出7个.15.如图,在△ABC中,AD是BC上的中线,BC=4,∠ADC=30°,把△ADC沿AD所在直线翻折后点C落在点C′的位置,那么点D到直线BC′的距离是1.三、解答题(8道题,共75分)16.已知一个多边形的内角和为1260°,求这个多边形的对角线条数.解答:解:设此多边形的边数为x,由题意得:(x﹣2)×180=1260,解得:x=9,这个多边形的对角线条数:=27.点评:此题主要考查了多边形的内角和计算公式求多边形的边数,关键是掌握多边形的内角和公式180(n﹣2).17.如图,△ABC和△ECD都是等边三角形,求证:AD=BE.解答:证明:∵△ABC、△ECD都是等边三角形,∴AC=BC,EC=DC,∠ACB=∠ECD=60°,在△BCE和△ACD中,,∴△BCE≌△ACD(SAS),∴AD=BE(全等三角形的对应边相等).18.如图,在平面直角坐标系中,A(﹣3,2),B(﹣4,﹣3),C(﹣1,﹣1).(1)在图中作出△ABC关于y轴对称的△A1B1C1;写出点△A1,B1,C1的坐标(直接写答案):A1(3,2);B1(4,﹣3);C1(1,﹣1);(3)△A1B1C1的面积为6.5;(4)在y轴上画出点P,使PB+PC最小.解答:解:(1)如图所示:△A1B1C1,即为所求;A1(3,2);B1(4,﹣3);C1(1,﹣1);故答案为:(3,2);(4,﹣3);(1,﹣1);(3)△A1B1C1的面积为:3×5﹣×2×3﹣×1×5﹣×2×3=6.5;(4)如图所示:P点即为所求.19.如图,△ABC中,∠A=40°,∠B=72°,CE平分∠ACB,CD⊥AB于D,DF⊥CE交CE于F,求∠CDF的度数.解答:解:∵∠A=40°,∠B=72°,∴∠ACB=180°﹣40°﹣72°=68°,∵CE平分∠ACB,∴∠ACE=∠BCE=34°,∴∠CED=∠A+∠ACE=74°,∴∠CDE=90°,DF⊥CE,∴∠CDF+∠ECD=∠ECD+∠CED=90°,∴∠CDF=74°.点评:此题主要考查了三角形的内角和定理、三角形的外角的性质、以及角平分线定义和垂直定义.20.如图△ADF和△BCE中,∠A=∠B,点D、E、F、C在同﹣直线上,有如下三个关系式:①AD=BC;②DE=CF;③BE∥AF.(1)请用其中两个关系式作为条件,另一个作为结论,写出所有你认为正确的命题.(用序号写出命题书写形式,如:如果①、②,那么③)选择(1)中你写出的一个命题,说明它正确的理由.解答:解:(1)如果①,③,那么②;如果②,③,那么①.对于“如果①,③,那么②”证明如下:∵BE∥AF,∴∠AFD=∠BEC.∵AD=BC,∠A=∠B,∴△ADF≌△BCE.∴DF=CE.∴DF﹣EF=CE﹣EF.即DE=CF.对于“如果②,③,那么①”证明如下:∵BE∥AF,∴∠AFD=∠BEC.∵DE=CF,∴DE+EF=CF+EF.即DF=CE.∵∠A=∠B,∴△ADF≌△BCE.∴AD=BC.点评:此题主要考查学生对全等三角形的判定方法的理解及运用,常用的判定方法有SSS,SAS,ASA,AAS、HL等.编题然后选择,最后进行证明是现在比较多的一种考题,要注意掌握.21.如图,△ABC中,AB>AC,∠ABC的平分线和外角∠ACF的平分线交于点P,PD∥BC,D在AB上,PD交AC于E,求证:DE=BD﹣CE.解答:证明:∵∠ABC的平分线和外角∠ACF的平分线交于点P,∴∠DBP=∠CBP,∠ECP=∠FCP;∵PD∥BC,∴∠DPB=∠CBP,∠EPC=∠FCP,∴∠DBP=∠DPB,∠ECP=∠EPC,∴BD=PD,EC=EP;∴DE=BD﹣CE.点评:该题主要考查了等腰三角形的判定、平行线的性质等几何知识点的应用问题;牢固掌握等腰三角形的判定、平行线的性质等几何知识点是灵活运用、解题的基础和关键.22.已知:如图,AB=AC,点D是BC的中点,AB平分∠DAE,AE⊥BE,垂足为E.(1)求证:AD=AE.若BE∥AC,试判断△ABC的形状,并说明理由.解答:证明:(1)∵AB=AC,点D是BC的中点,∴AD⊥BC,∴∠ADB=90°,∵AE⊥AB,∴∠E=90°=∠ADB,∵AB平分∠DAE,∴∠1=∠2,在△ADB和△AEB中,,∴△ADB≌△AEB(AAS),∴AD=AE;△ABC是等边三角形.理由:∵BE∥AC,∴∠EAC=90°,∵AB=AC,点D是BC的中点,∴∠1=∠2=∠3=30°,∴∠BAC=∠1+∠3=60°,∴△ABC是等边三角形.点评:本题主要考查了全等三角形的判定及性质以及等边三角形的判定问题,能够熟练掌握.23.如图1,若△ABC和△ADE为等边三角形,M,N分别为EB,CD的中点,易证:CD=BE,△AMN是等边三角形:(1)当把△ADE绕点A旋转到图2的位置时,CD=BE吗?若相等请证明,若不等于请说明理由;当把△ADE绕点A旋转到图3的位置时,△AMN还是等边三角形吗?若是请证明,若不是,请说明理由(可用第一问结论).解答:解:(1)CD=BE.理由如下:∵△ABC和△ADE为等边三角形,∴AB=AC,AD=AE,∠BAC=∠EAD=60°,∵∠BAE=∠BAC﹣∠EAC=60°﹣∠EAC,∠DAC=∠DAE﹣∠EAC=60°﹣∠EAC,∴∠BAE=∠DAC,在△ABE和△ACD中,,∴△ABE≌△ACD(SAS)∴CD=BE;△AMN是等边三角形.理由如下:∵△ABE≌△ACD,∴∠ABE=∠ACD.∵M、N分别是BE、CD的中点,∴BM=CN∵AB=AC,∠ABE=∠ACD,在△ABM和△ACN中,,∴△ABM≌△ACN(SAS).∴AM=AN,∠MAB=∠NAC.∴∠NAM=∠NAC+∠CAM=∠MAB+∠CAM=∠BAC=60°∴△AMN是等边三角形.点评:本题考查了等边三角形的性质、全等三角形的判定与性质、旋转的性质.等边三角形的判定:有一个角是60°的等腰三角形是等边三角形.7。
(人教版)初中数学八年级上册期中测试03(含答案解析)
加油!有志者事竟成答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!期中测试一、选择题(36分)1.下面四个手机应用图标中是轴对称图形的是( )ABCD2.若点(1,1)A m n +-与点(3,2)B -关于y 轴对称,则m n +的值是( ) A .5-B .3-C .3D .13.如图,已知等腰三角形ABC ,AB AC =.若以点B 为圆心,BC 长为半径画弧,交腰AC 于点E ,则下列结论一定正确的是( )A .AE EC =B .AE BE =C .EBC BAC ∠=∠D .EBC ABE ∠=∠4.如图是跷跷板示意图,支柱OC 与地面垂直,点O 是AB 的中点,AB 绕着点O 上下转动.当A 端落地时,20OAC ∠=︒,跷跷板上下可转动的最大角度(即A OA ∠')是( )A .20︒B .40︒C .60︒D .80︒5.如图,ABC △的面积为6,3AC =,现将ABC △沿AB 所在直线翻折,使点C 落在直线AD 上的C 处,P 为直线AD 上的一点,则线段BP 的长不可能是( )A .3B .4C .5.5D .106.如图,CD ,CE ,CF 分别是ABC △的高、角平分线、中线,则下列各式中错误的是( )A .2AB BF =B .12ACE ACB ∠=∠ C .AE BE = D .CD BE ⊥7.如图所示,在ABC △中,P ,Q 分别是BC ,AC 上的点,作PR AB ⊥,垂足分别为R ,S ,若AQ PQ =,PR PS =,下面三个结论:①AS AR =;②QP AR ∥;③BRP CSP △≌△,其中正确的是( )A .20︒B .40︒C .60︒D .80︒8.如图,在ABC △中,AB AC =,BF CD =,BD CE =,FDE α∠=,则下列结论中正确的是( )A .2180A α+∠=︒B .90A α+∠=︒C .290A α+∠=︒D .180A α+∠=︒9.在ABC △和'''A B C △中,A B C ∠+∠=∠,'''B C A ∠+∠=∠,''b a b c -=-,''b a b c +=+,则这两个三角形的关系是( ) A .不一定全等B .不全等C .根据“ASA ”全等D .根据“SAS ”全等10.如图,已知30MON ∠=︒,点1A ,2A ,3A …在射线ON 上,点1B ,2B ,3B …在射线OM 上,112A B A △,223A B A △,334A B A △…均为等边三角形,若11OA =,则667A B A △,的边长为( )A .6B .12C .32D .6411.一个多边形切去一个角后,形成的另一个多边形的内角和为1 080︒,那么原多边形的边数为( ) A .7B .7或8C .8或9D .7或8或912.小军同学在网格纸上将某些图形进行平移操作,他发现平移前后的两个图形所组成的图形可以是轴对称图形,如图所示,现在他将正方形ABCD 从当前位置开始进行一次平移操作,平移后的正方形顶点也在格点上,则使平移前后的两个正方形组成轴对称图形的平移方向有( )A .3个B .4个C .5个D .无数个二、填空题(24分)13.如图,AB ,CD 相交于点O ,AD CB =,请你补充一个条件,使得AOD COB △≌△,你补充的条件是_____________________.14.已知等腰三角形的周长为20,腰长为x ,x 的取值范围是_________.15.如图为某公司的产品标志图案,图中A B C D E F G ∠+∠+∠+∠+∠+∠+∠=_________度.16.如图,在ABC △中,90C ∠=︒,50CAB ∠=︒,按以下步骤作图:①以点A 为圆心,小于AC 的长为半径画弧,分别交AB ,AC 于点E ,F ;②分别以点E ,F 为圆心,大于号EF 的长为半径画弧,两弧相交于点G :③作射线AG ,交BC 边于点D ,则ADC ∠的度数为_________.17.如图,将长方形ABCD 折叠,使点D 和点B 重合,点C 落在点'C 处,折痕为EF ,若20ABE ∠=︒,则'EFC ∠的度数为_________.18.如图,已知2BC 的平分线与BC 的垂直平分线相交于点P ,PE AB ⊥,PF AC ⊥,垂足分别为E ,F .若8AB =,4AC =,则AE =_________.19.如图,在第1个1ABA △中,20B ∠=︒,1AB A B =,往上取一点,延长1AA 到2A ,使得121A A A C =;在2A C 上取一点D ,延长12A A 到3A ,使得232A A A D =;…;按此作法进行下去,第n 个三角形中以n A 为顶点的内角的度数为_________.20.如图,等腰直角三角形BDC 的顶点D 在等边三角形ABC 的内部,90BDC ∠=︒,连接AD ,过点O 作一条直线将ABD △分割成两个等腰三角形,则分割出的这两个等腰三角形的顶角分别是_________.三、解答题(++++=101012141460分)21.如图,在Rt ABC △中,90ACB ∠=︒,40A ∠=︒,ABC △的外角CBD ∠的平分线BE 交AC 的延长线于点E .(1)求CBE ∠的度数.(2)过点D 作DF BE ∥,交AC 的延长线于点F ,求F ∠的度数.22.如图,点E ,C 在线段BF 上,BE CF =,AB DE =,AC DF =.求证:AB DE ∥.23.如图,ABC △中,AB AC =,点D 在BA 的延长线上,点E 在BC 上,DC DE =,点F 是DE 与AC 的交点,且DF FE =.(1)图中是否存在与BDE ∠相等的角?若存在,请找出,并加以证明;若不存在,说明理由. (2)若EG AC ∥,求证:DA EG =.24.阅读探索题:(1)如图①,OP 是MON ∠的平分线,以O 为圆心任意长为半径作弧,分别交射线ON ,OM 于C ,B 两点,在射线OP 上任取一点A (点O 除外),连接AB ,AC .求证:AOB AOC △≌△.(2)请你参考以上方法,解答下列问题:如图②,在Rt ABC △中,90ACB ∠=︒,60A ∠=︒,CD 平分ACB ∠,试判断BC 和AC ,AD 之间的数量关系并证明.25.(1)如图①,已知在ABC △中,90BAC ∠=︒,AB AC =,直线m 经过点A ,BD ⊥直线m ,CE ⊥直线m ,垂足分别为D ,E .求证:DE BD CE =+.(2)如图②,将(1)中的条件改为:在ABC △中,AB AC =,D ,A ,E 三点都在直线m 上,并且有BDA AEC BAC a ∠==∠=∠,其中a 为任意锐角或钝角.请问结论DE BD CE =+是否成立?若成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图③,D ,E 是D ,A ,E 三点所在直线m 上的两动点(D ,A ,E 三点互不重合),点F 为BAC ∠平分线上的一点,且ABF △和ACF △均为等边三角形,连接BD ,CE ,若BDA AEC BAC ∠=∠=∠,试判断DEF △的形状.期中测试 答案一、 1.【答案】D 2.【答案】D 3.【答案】C 4.【答案】B 5.【答案】A 6.【答案】C 7.【答案】A 8.【答案】A 9.【答案】D 10.【答案】C 11.【答案】D 12.【答案】C 二、13.【答案】示例:A C ∠=∠ 14.【答案】510x << 15.【答案】540 16.【答案】65︒ 17.【答案】125︒ 18.【答案】619.【答案】11802n -⎛⎫⋅︒ ⎪⎝⎭20.【答案】120︒和150︒ 三、21.【答案】解:(1)∵在Rt ABC △中,90ACB ∠=︒,40A ∠=︒,∴9050ABC A ∠=︒-∠=︒.∴130CBD ∠=︒,∵BE 是CBD ∠的平分线, ∴1652CBE CBD ∠=∠=︒.(2)∵90ACB ∠=︒,65CBE ∠=︒.∴906525CEB ∠=︒-︒=︒,∵DF BE ∥,∴25F CEB ∠=∠=︒.22.证明:∵BE CF =,∴BE EC CF EC +=+,∴BC EF =.在ABC △与DEF △中,AB DE BC EF AC DF =⎧⎪=⎨⎪=⎩,∴(SSS)ABC DEF △≌△,∴ABC DEF ∠=∠,∴ AB DE ∥.23.【答案】(1)解:DCA BDE ∠=∠.证明:∵AB AC =,DC DE =,∴ABC ACB ∠=∠,DEC DCE ∠=∠.∴BDE DEC DBC DCE ACB DCA ∠=∠-∠=∠-∠=∠.(2)证明:∵EG AC ∥,∴DAC DGE ∠=∠.在DCA △和EDG △中,DCA EDGDAC EGD DC ED ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AAS DCA EDG △≌△.∴DA ED =.24.(1)证明:在AOB △和AOC △中,∵OB OC BOA COA OA OA =⎧⎪∠=∠⎨⎪=⎩,∴(SAS)AOB AOC △≌△.(2)解:BC AC AD =+.证明:如图,在CB 上截取CE CA =.∵CD 平分ACB ∠,∴ACD BCD ∠=∠.在ACD △和ECD △中,∵AC CE ACD ECD CD CD =⎧⎪∠=∠⎨⎪=⎩,∴ACD ECDSAS △≌△(),∴60CAD CED ∠=∠=︒,AD ED =. ∵90ACB ∠=︒,∴30B ∠=︒,∴30EDB ∠=︒,即EDB B ∠=∠, ∴DE EB =.∵BC CE BE =+,∴BC AC DE =+,∴BC AC AD =+.25.(1)证明:∵BD ⊥直线m ,CE ⊥直线m .∴90BDA CEA ∠=∠=︒.∵90BAC ∠=︒,∴90BAD CAE ∠+∠=︒.∵90BAD ABD ∠+∠=︒,∴CAE ABD ∠=∠.又∵AB AC =,∴ADB CEA △≌△,∴AE BD =,AD CE = ∴DE AE AD BD CE =+=+.(2)解:DE BD CE =+成立.证明:∵BDA BAC α∠=∠=,∴180DBA BAD BAD CAE α︒∠+∠=∠+∠=-,∴DBA CAE ∠=∠.∵BDA AEC α∠=∠=,AB AC =, ∴ADB CEA △≌△,∴AE BD =,AD CE =,∴DE AE AD BD CE =+=+.(3)解:由(2)知,ADB CEA △≌△,∴BD AE =,DBA EAC ∠=∠.∵ABF △和ACF △均为等边三角形,.∴60ABF CAF ∠=∠=︒,BF AF =.∴DBA ABF CAE CAF ∠+∠=∠+∠,∴DBF FAE ∠=∠,∴DBF EAF △≌△,∴DF EF =,BFD AFE ∠=∠,∴60∠=∠+∠=∠+∠=︒,DFE DFA AFE DFA BFD∴DEF△为等边三角形.。
(最新)人教版八年级上册数学期中达标测试卷部分附答案共3份
八年级上册期中综合能力测评(附答案)一.选择题1.在平面直角坐标系中,点P(4,﹣3)到x轴的距离()A.4B.3C.5D.﹣32.在以下回收、绿色食品、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.3.在下列考察中,是抽样调查的是()A.了解全校学生人数B.调查某厂生产的鱼罐头质量C.调查杭州市出租车数量D.了解全班同学的家庭经济状况4.下列各式计算正确的是()A.(x+y)2=x2+y2B.(x+3)(x﹣3)=x2﹣3C.(m﹣n)(n﹣m)=n2﹣m2D.(x﹣y)2=(y﹣x)25.将点P(﹣2,﹣3)向左平移3个长度单位,再向上平移2个长度单位得到点Q,则点Q的坐标是()A.(1,﹣3)B.(﹣2,1)C.(﹣5,﹣1)D.(﹣5,5)6.下列运算正确的是()A.2m3+3m2=5m5B.m3÷(﹣m)2=mC.m•(m2)3=m6D.(m+n)(n﹣m)=m2﹣n27.如图,在△ABC中,∠ACB=100°,AC=AE,BC=BD,则∠DCE的度数为()A.20°B.25°C.30°D.40°8.古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来米2020石,验得米内夹谷,抽样取米一把,数得270粒内夹谷30粒,则这批米内夹谷约为()A.222石B.224石C.230石D.232石9.若三角形的底边长为2a+1,该底边上的高为2a﹣1,则此三角形的面积为()A.4a2﹣1B.4a2﹣4a+1C.4a2+4a+1D.2a2﹣10.如图,在△ABC中,∠C=31°,∠ABC的平分线BD交AC于点D,如果DE垂直平分BC,那么∠A的度数为()A.31°B.62°C.87°D.93°11.已知a+b=﹣5,ab=﹣4,则a2﹣ab+b2=()A.29B.37C.21D.3312.如图,在△ABC中,AB=AC,AE是∠BAC的平分线,点D是线段AE上的一点,则下列结论错误的是()A.AE⊥BC B.BE=CE C.∠ABD=∠DBE D.△ABD≌△ACD二.填空题13.如果等腰三角形的两条边长分别等于3厘米和7厘米,那么这个等腰三角形的周长等于厘米.14.计算:xy2•(﹣6x)2=.15.在平面直角坐标系xOy中,点P在第四象限内,且点P到x轴的距离是2,到y轴的距离是3,则点P的坐标是.16.如图,在△ABC中,BD平分∠ABC,DE∥BC,交AB于点E,若AB=7cm,AE=4cm.则DE的长为cm.17.我们规定一种运算:=ad﹣bc,例如=3×6﹣4×5=﹣2,=4x+6.按照这种运算规定,当x=时,=0.18.如图,∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,从左起第1个等边三角形的边长记为a1,第2个等边三角形的边长记为a2,以此类推.若OA1=1,则a2020=.三.解答题19.【知识回顾】七年级学习代数式求值时,遇到这样一类题“代数式ax﹣y+6+3x﹣5y﹣1的值与x的取值无关,求a的值”,通常的解题方法是:把x、y看作字母,a看作系数合并同类项,因为代数式的值与x的取值无关,所以含x项的系数为0,即原式=(a+3)x﹣6y+5,所以a+3=0,则a=﹣3.【理解应用】(1)若关于x的多项式(2x﹣3)m+2m2﹣3x的值与x的取值无关,求m值;(2)已知A=(2x+1)(x﹣1)﹣x(1﹣3y),B=﹣x2+xy﹣1,且3A+6B的值与x无关,求y的值;【能力提升】(3)7张如图1的小长方形,长为a,宽为b,按照图2方式不重叠地放在大长方形ABCD内,大长方形中未被覆盖的两个部分(图中阴影部分),设右上角的面积为S1,左下角的面积为S2,当AB的长变化时,S1﹣S2的值始终保持不变,求a与b的等量关系.20.先化简,再求值:(2x+y)(2x﹣y)﹣(x﹣2y)2+y(﹣4x+5y+1),其中x=2,y=2008.21.某校为了解九年级学生体育测试情况,以九年级(1)班学生的体育测试成绩为样本,按A,B,C,D 四个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图中所给信息解答下列问题:(说明:A级:90分~100分;B级:75分~89分;C级:60分~74分;D级:60分以下)(1)请把条形统计图补充完整;(2)扇形统计图中D级所在的扇形的圆心角度数是多少?(3)若该校九年级有600名学生,请用样本估计体育测试中A级学生人数约为多少人?22.在平面直角坐标系xOy中,△ABC的位置如图所示.(1)顶点A关于x轴对称的点的坐标A'(,),顶点C先向右平移3个单位,再向下平移2个单位后的坐标C'(,);(2)将△ABC的纵坐标保持不变,横坐标分别乘﹣1得△DEF,请你直接画出图形;(3)在平面直角坐标系xOy中有一点P,使得△ABC与△PBC全等,这样的P点有个.(A 点除外)23.如图1,在△CAB和△CDE中,CA=CB,CD=CE,∠ACB=∠DCE=α,连接AD、BE.(1)求证:△ACD≌△BCE;(2)如图2,当α=90°时,取AD、BE的中点P、Q,连接CP、CQ、PQ,判断△CPQ的形状,并加以证明.24.如图,四边形ABCD是边长为1的正方形,分别延长BD,DB至点E,F,且BF=DE=.连接AE,AF,CE,CF.(1)求证:四边形AECF是菱形;(2)求四边形AECF的面积;(3)如果M为AF的中点,P为线段EF上的一动点,求PA+PM的最小值.25.如图①所示,已知正方形ABCD和正方形AEFG,连接DG,BE.(1)发现:当正方形AEFG绕点A旋转,如图②所示.①线段DG与BE之间的数量关系是;②直线DG与直线BE之间的位置关系是;(2)探究:如图③所示,若四边形ABCD与四边形AEFG都为矩形,且AD=2AB,AG=2AE时,上述结论是否成立,并说明理由.(3)应用:在(2)的情况下,连接BG、DE,若AE=1,AB=2,求BG2+DE2的值(直接写出结果).参考答案一.选择题1.解:在平面直角坐标系中,点P(4,﹣3)到x轴的距离为3.故选:B.2.解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:B.3.解:A.了解全校学生人数,适合普查,故本选项不合题意;B.调查某厂生产的鱼罐头质量,适合抽样调查,故本选项符合题意;C.调查杭州市出租车数量,适合普查,故本选项不合题意;D.了解全班同学的家庭经济状况,适合普查,故本选项不合题意;故选:B.4.解:A.(x+y)2=x2++2xy+y2,故本选项不合题意;B.(x+3)(x﹣3)=x2﹣9,故本选项不合题意;C.(m﹣n)(n﹣m)=﹣n2+2mn﹣m2,故本选项不合题意;D.(x﹣y)2=(y﹣x)2,正确.故选:D.5.解:根据题意,点Q的横坐标为:﹣2﹣3=﹣5;纵坐标为﹣3+2=﹣1;即点Q的坐标是(﹣5,﹣1).故选:C.6.解:A.2m3与3m2不是同类项,所以不能合并,故本选项不合题意;B.m3÷(﹣m)2=m,正确;C.m•(m2)3=m7,故本选项不合题意;D.(m+n)(n﹣m)=n2﹣m2,故本选项不合题意.故选:B.7.解:∵AC=AE,BC=BD∴设∠AEC=∠ACE=x°,∠BDC=∠BCD=y°,∴∠A=180°﹣2x°,∠B=180°﹣2y°,∵∠ACB+∠A+∠B=180°,∴100+(180﹣2x)+(180﹣2y)=180,得x+y=140,∴∠DCE=180﹣(∠AEC+∠BDC)=180﹣(x+y)=40°.故选D.8.解:这批米内夹谷约为2020×≈224(石);故选:B.9.解:三角形的面积为:(2a+1)(2a﹣1)=2a2﹣,故选:D.10.解:∵DE垂直平分BC,∴DB=DC,∴∠DBC=∠C=31°,∵BD平分∠ABC,∴∠ABD=∠CBD=31°,∴∠A=180°﹣31°×3=87°,故选:C.11.解:把a+b=5两边平方得:(a+b)2=a2+b2+2ab=25,将ab=﹣4代入得:a2+b2=33,则a2﹣ab+b2=33﹣(﹣4)=37.故选:B.12.解:∵在△ABC中,AB=AC,AE是∠BAC的平分线,∴AE⊥BC,故选项A正确;BE=CE,故选项B正确;在△ABD和△ACD中,,∴△ABD≌△ACD(SAS),故选项D正确;∵D为线段AE上一点,BD不一定是∠ABC的平分线,∴∠ABD与∠DBE不一定相等,故选项C错误;故选:C.二.填空题13.解:当3厘米是腰时,则3+3<7,不能组成三角形,应舍去;当7厘米是腰时,则三角形的周长是3+7×2=17(厘米).故答案为:17.14.解:xy2•(﹣6x)2==12x3y2,故答案为:12x3y2.15.解:若点P在第四象限,且点P到x轴的距离为2,到y轴的距离为3,则点的坐标为(3,﹣2),故答案为:(3,﹣2).16.解:∵AB=7cm,AE=4cm,∴BE=7﹣4=3cm,∵BD平分∠ABC,∴∠EBD=∠CBD,∵DE∥BC,∴∠EDB=∠CBD,∴∠EDB=∠EBD,∴DE=BE=3cm;故答案为:3.17.解:由题意得(x+2)(x﹣2)﹣(x+4)(x﹣3)=0,x2﹣4﹣(x2+x﹣12)=0,解得x=8.故答案为:8.18.解:如图,∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠2=∠3=60°,∵∠MON=30°,∴∠1=60°﹣30°=30°,又∵∠3=60°,∴∠OB1A2=60°+30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=1,∴A2B1=1,∵△A2B2A3是等边三角形,同理可得:OA2=B2A2=2,∴a2=2a1=2,同理;a3=4a1=4,a4=8a1=8,a5=16a1,…,以此类推:所以a2020=22019.故答案是:22019.三.解答题19.解:(1)(2x﹣3)m+2m2﹣3x=2mx﹣3m+2m2﹣3x=(2m﹣3)x+2m2﹣3m,∵其值与x的取值无关,∴2m﹣3=0,解得,m=,答:当m=时,多项式(2x﹣3)m+2m2﹣3x的值与x的取值无关;(2)∵A=(2x+1)(x﹣1)﹣x(1﹣3y),B=﹣x2+xy﹣1,∴3A+6B=3[(2x+1)(x﹣1)﹣x(1﹣3y)]+6(﹣x2+xy﹣1)=3(2x2﹣2x+x﹣1﹣x+3xy]﹣6x2+6xy﹣6=6x2﹣6x+3x﹣3﹣3x+9xy﹣6x2+6xy﹣6=15xy﹣6x﹣9=3x(5y﹣2)﹣9,∵3A+6B的值与x无关,∴5y﹣2=0,即y=;(3)设AB=x,由图可知S1=a(x﹣3b),S2=2b(x﹣2a),∴S1﹣S2=a(x﹣3b)﹣2b(x﹣2a)=(a﹣2b)x+ab,∵当AB的长变化时,S1﹣S2的值始终保持不变.∴S1﹣S2取值与x无关,∴a﹣2b=0∴a=2b.20.解:原式=4x2﹣y2﹣x2+4xy﹣4y2﹣4xy+5y2+y=3x2+y∵x=2,y=2008,∴原式=3×22+2008=202021.解:(1)总人数是:10÷20%=50,则D级的人数是:50﹣10﹣23﹣12=5.条形统计图补充如下:;(2)D级的学生人数占全班学生人数的百分比是:1﹣46%﹣20%﹣24%=10%;D级所在的扇形的圆心角度数是360×10%=36°;(3)∵A级所占的百分比为20%,∴A级的人数为:600×20%=120(人).22.解:(1)∵A(﹣4,3),C(﹣2,5),∴A′(﹣4,﹣3),C'(1,3);故答案为:﹣4,﹣3;1,3;(2)如图所示:即为所求;(3)△ABC与△PBC全等,这样的P点有3个.故答案为:3.23.解:(1)如图1,∵∠ACB=∠DCE=α,∴∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴BE=AD;(2)△CPQ为等腰直角三角形.证明:如图2,由(1)可得,BE=AD,∵AD,BE的中点分别为点P、Q,∴AP=BQ,∵△ACD≌△BCE,∴∠CAP=∠CBQ,在△ACP和△BCQ中,,∴△ACP≌△BCQ(SAS),∴CP=CQ,且∠ACP=∠BCQ,又∵∠ACP+∠PCB=90°,∴∠BCQ+∠PCB=90°,∴∠PCQ=90°,∴△CPQ为等腰直角三角形.24.(1)证明:连接AC交BD于O,∵四边形ABCD是正方形,∴BD⊥AC,BO=DO,AO=CO,∵BF=DE=,∴OE=OF,∴四边形AECF是菱形;(2)解:∵四边形ABCD是边长为1的正方形,∴AB=AD=1,∴BD=AC=,∴EF=3,∴四边形AECF的面积=AC•EF=×3=3;(3)解:∵四边形AFCE是菱形,∴点A与点C关于直线EF对称,连接CM交EF于P,则此时,PA+PM=CM最小,过C作CN⊥AF于N,则AC2﹣AN2=CN2=CF2﹣NF2,设AN=x,∴()2﹣x2=()2﹣(﹣x)2,解得:x=,∴MN=,∵CM2﹣MN2=AC2﹣AN2,∴CM2﹣()2=12﹣()2,解得:CM=,故PA+PM的最小值=.25.解:(1)①如图②中,∵四边形ABCD和四边形AEFG是正方形,∴AE=AG,AB=AD,∠BAD=∠EAG=90°,∴∠BAE=∠DAG,在△ABE和△DAG中,,∴△ABE≌△ADG(SAS),∴BE=DG;②如图2,延长BE交AD于T,交DG于H.由①知,△ABE≌△DAG,∴∠ABE=∠ADG,∵∠ATB+∠ABE=90°,∴∠ATB+∠ADG=90°,∵∠ATB=∠DTH,∴∠DTH+∠ADG=90°,∴∠DHB=90°,∴BE⊥DG,故答案为:BE=DG,BE⊥DG;(2)数量关系不成立,DG=2BE,位置关系成立.如图③中,延长BE交AD于T,交DG于H.∵四边形ABCD与四边形AEFG都为矩形,∴∠BAD=∠EAG,∴∠BAE=∠DAG,∵AD=2AB,AG=2AE,∴==,∴△ABE∽△ADG,∴∠ABE=∠ADG,=,∴DG=2BE,∵∠ATB+∠ABE=90°,∴∠ATB+∠ADG=90°,∵∠ATB=∠DTH,∴∠DTH+∠ADG=90°,∴∠DHB=90°,∴BE⊥DG;(3)如图④中,作ET⊥AD于T,GH⊥BA交BA的延长线于H.设ET=x,AT=y.∵△AHG∽△ATE,∴===2,∴GH=2x,AH=2y,∴4x2+4y2=4,∴x2+y2=1,∴BG2+DE2=(2x)2+(2y+2)2+x2+(4﹣y)2=5x2+5y2+20=25.八年级上册同步练习:期中考试冲刺(四)(附答案)一.选择题1.下列四个图案中,是轴对称图形的是()A.B.C.D.2.若一个多边形的内角和与外角和总共是900°,则此多边形是()A.四边形B.五边形C.六边形D.七边形3.如果点P(﹣2,b)和点Q(a,﹣3)关于x轴对称,则a+b的值是()A.﹣1 B.1 C.﹣5 D.54.已知等腰三角形两边的长分别为3和7,则此等腰三角形的周长为()A.13 B.17 C.13或17 D.13或105.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S=15,则CD的长为()△ABDA.3 B.4 C.5 D.66.如图,△ABC与△DEF关于直线l对称,则∠F等于()A.60°B.40°C.80°D.60°或80°7.如图,AB=DB,∠1=∠2,请问添加下面哪个条件不能判断△ABC≌△DBE的是()A .BC =BEB .AC =DE C .∠A =∠D D .∠ACB =∠DEB8.如图,△ABC 中,AB =AC ,D 是BC 中点,下列结论中不正确的是( )A .∠B =∠C B .AD ⊥BC C .AD 平分∠BAC D .AB =2BD9.将一副三角板如图放置,且两条直角边重叠,则∠1的度数是( )A .30°B .45°C .70°D .75°10.如图,在△ABC 中,∠C =90°,∠B =30°,以A 为圆心,任意长为半径画弧交AB 于M 、AC 于N ,再分别以M 、N 为圆心,大于MN 的长为半径画弧,两弧交于点P ,连接AP 并延长交BC 于D ,下列四个结论:①AD 是∠BAC 的平分线; ②∠ADC =60°; ③点D 在AB 的中垂线上; ④S △ACD :S △ACB =1:3. 其中正确的有( )A .只有①②③B .只有①②④C .只有①③④D .①②③④二.填空题11.木工师傅做完房门后,为防止变形钉上两条斜拉的木条这样做的根据是 .12.如图,在第1个△A 1BC 中,∠B =30°,A 1B =CB ;在边A 1B 上任取一点D ,延长CA 1到A 2,使A 1A 2=A 1D ,得到第2个△A 1A 2D ;在边A 2D 上任取一点E ,延长A 1A 2到A 3,使A 2A 3=A 2E ,得到第3个△A 2A 3E ,…按此做法继续下去,则第n 个三角形中以A n 为顶点的底角度数是 .13.一个三角形的两边长为5和7,则第三边a的取值范围是.14.一个多边形的每一个外角为30°,那么这个多边形的边数为.15.如图,在等边三角形ABC中,AE=CD,AD、BE相交于P点.∠BPD=°.16.如图∠1,∠2,∠3分别是△ABC的外角,则∠1+∠2+∠3=°.三.解答题17.将纸片△ABC沿DE折叠使点A落在点A'处【感知】如图①,点A落在四边形BCDE的边BE上,则∠A与∠1之间的数量关系是;【探究】如图②,若点A落在四边形BCDE的内部,则∠A与∠1+∠2之间存在怎样的数量关系?并说明理由.【拓展】如图③,点A落在四边形BCDE的外部,若∠1=80°,∠2=24°,则∠A的大小为.18.如图,在△ABC中,∠ABC=60°,AD、CE分别平分∠BAC、∠ACB,求证:AC=AE+CD.19.已知:如图,CA=CB(A、B、C三点不共线).(1)请分别作出线段CA、CB的垂直平分线(用尺规作图,保留作图痕迹,不必写作法);(2)设所作两垂直平分线交于点O,连接CO,请问CO平分∠ACB吗?请说明理由.四.解答题20.如图,某轮船上午8时在A处,测得灯塔S在北偏东60°的方向上,向东行驶至中午11时,该轮船在B处,测得灯塔S在北偏西30°的方向上(自己完成图形),已知轮船行驶速度为每小时60千米,求∠ASB的度数及AB的长.21.以点A为顶点作两个等腰直角三角形(△ABC,△ADE),如图1所示放置,使得一直角边重合,连接BD,CE.(1)说明BD=CE;(2)延长BD,交CE于点F,求∠BFC的度数;(3)若如图2放置,上面的结论还成立吗?请简单说明理由.22.两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,点B、C、E 在同一条直线上,连结DC.(1)请找出图2中的全等三角形,并说明理由(结论中不得含有未标识的字母);(2)试判断DC与BE是否垂直?并说明理由.五.解答题23.如图,AF是△ABC的高,AD是△ABC的角平分线,∠B=36°,∠C=76°,求∠DAF的度数.24.如图,BC⊥CD,∠1=∠2=∠3,∠4=60°,∠5=∠6.(1)CO是△BCD的高吗?为什么?(2)求∠5、∠7的度数.25.在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图1的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕点C旋转到图2的位置时,求证:DE=AD﹣BE;(3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并加以证明.参考答案一.选择题1.解:A、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;B、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;C、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;D、是轴对称图形,符合题意.故选:D.2.解:∵多边形的内角和与外角和的总和为900°,多边形的外角和是360°,∴多边形的内角和是900°﹣360°=540°,∴多边形的边数是:540°÷180°+2=3+2=5.故选:B.3.解:∵点P(﹣2,b)和点Q(a,﹣3)关于x轴对称,又∵关于x轴对称的点,横坐标相同,纵坐标互为相反数,∴a=﹣2,b=3.∴a+b=1,故选B.4.解:①当腰是3,底边是7时,不满足三角形的三边关系,因此舍去.②当底边是3,腰长是7时,能构成三角形,则其周长=3+7+7=17.故选:B.5.解:如图,过点D作DE⊥AB于E,∵∠C=90°,AD平分∠BAC,∴DE=CD,=AB•DE=×10•DE=15,∴S△ABD解得DE=3,∴CD=3.故选:A.6.解:∵△ABC与△DEF关于直线l对称∴∠A=∠D=40°,∠B=∠E=60°∴∠F=180°﹣100°=80°.故选:C.7.解:A、添加BC=BE,可根据SAS判定△ABC≌△DBE,故正确;B、添加AC=DE,SSA不能判定△ABC≌△DBE,故错误;C、添加∠A=∠D,可根据ASA判定△ABC≌△DBE,故正确;D、添加∠ACB=∠DEB,可根据AAS判定△ABC≌△DBE,故正确.故选:B.8.解:∵△ABC中,AB=AC,D是BC中点∴∠B=∠C,(故A正确)AD⊥BC,(故B正确)∠BAD=∠CAD(故C正确)无法得到AB=2BD,(故D不正确).故选:D.9.解:如图,∠2=90°﹣45°=45°,∠3=∠2=45°,所以,∠1=∠3+30°=45°+30°=75°.故选:D.10.解:根据作图方法可得AD是∠BAC的平分线,故①正确;∵∠C=90°,∠B=30°,∴∠CAB=60°,∵AD是∠BAC的平分线,∴∠DAC=∠DAB=30°,∴∠ADC=60°,故②正确;∵∠B=30°,∠DAB=30°,∴AD =DB ,∴点D 在AB 的中垂线上,故③正确; ∵∠CAD =30°, ∴CD =AD , ∵AD =DB , ∴CD =DB , ∴CD =CB ,S △ACD =CD •AC ,S △ACB =CB •AC ,∴S △ACD :S △ACB =1:3,故④正确, 故选:D .二.填空11.解:木工师傅做完房门后,为防止变形钉上两条斜拉的木条这样做的根据是:三角形的稳定性. 12.解:∵在△CBA 1中,∠B =30°,A 1B =CB , ∴∠BA 1C ==75°,∵A 1A 2=A 1D ,∠BA 1C 是△A 1A 2D 的外角, ∴∠DA 2A 1=∠BA 1C =×75°;同理可得∠EA 3A 2=()2×75°,∠FA 4A 3=()3×75°, ∴第n 个三角形中以A n 为顶点的内角度数是() n ﹣1×75°.故答案为:() n ﹣1×75°. 13.解:∵三角形的两边长分别为5、7, ∴第三边a 的取值范围是则2<a <12. 故答案为:2<a <12.14.解:多边形的边数:360°÷30°=12,则这个多边形的边数为12.故答案为:12.15.解:∵AE=CD,∴CE=BD,∵∠ABD=∠BCE,AB=BC,∴△ABD≌△CBE,故∠BAD=∠CBE,∵∠ABD+∠BAD+∠ADB=180°,∠CBE+∠ADB+∠BPD=180°,∴∠BPD=∠ABD,∵∠ABD=60°,∴∠BPD=60°,故答案为 60°.16.解:∵三角形的外角和为360°,∴∠1+∠2+∠3=360°,故答案为:360°.三.解答题17.解:(1)如图①,∠1=2∠A.理由如下:由折叠知识可得:∠EA′D=∠A;∵∠1=∠A+∠EA′D,∴∠1=2∠A.(2)如图②,2∠A=∠1+∠2.理由如下:∵∠1+∠A′DA+∠2+∠A′EA=360°,∠A+∠A′+∠A′DA+∠A′EA=360°,∴∠A′+∠A=∠1+∠2,由折叠知识可得:∠A=∠A′,∴2∠A=∠1+∠2.(3)如图③,∵∠1=∠DFA+∠A,∠DFA=∠A′+∠2,∴∠1=∠A+∠A′+∠2=2∠A+∠2,∴2∠A=∠1﹣∠2=56°,解得∠A=28°.故答案为:∠1=2∠A;28°.18.证明:在AC上取AF=AE,连接OF,∵AD平分∠BAC、∴∠EAO=∠FAO,在△AEO与△AFO中,∴△AEO≌△AFO(SAS),∴∠AOE=∠AOF;∵AD、CE分别平分∠BAC、∠ACB,∴∠ECA+∠DAC=∠ACB+∠BAC=(∠ACB+∠BAC)=(180°﹣∠B)=60°则∠AOC=180°﹣∠ECA﹣∠DAC=120°;∴∠AOC=∠DOE=120°,∠AOE=∠COD=∠AOF=60°,则∠COF=60°,∴∠COD=∠COF,∴在△FOC与△DOC中,,∴△FOC≌△DOC(ASA),∴DC=FC,∵AC=AF+FC,∴AC=AE+CD.19.解:(1)出线段CA的垂直平分线GH,线段CB的垂直平分线MN如图所示;(2)设GH交AC于F,MN交BC于E.∵AC=BC,BE=CE,CF=AF,∴CE=CF,∵CO=CO,∴Rt△OCE≌Rt△OCF(HL),∴∠OCE=∠OCF,∴OC平分ACB.四.解答题20.解:如图:由图可知∠SAB=90°﹣∠DAS=90°﹣60°=30°,∠ABS=90°﹣∠SBC=90°﹣30°=60°,因为在△ABS中,∠SAB=30°,∠ABS=60°,所以∠ASB=180°﹣∠ABS﹣∠SAB=180°﹣60°﹣30°=90°.60×(11﹣8)=180(千米).所以AB长为180千米.21.解:(1)∵△ABC、△ADE是等腰直角三角形,∴AB=AC,∠BAD=∠EAC=90°,AD=AE,∵在△ADB和△AEC中,,∴△ADB≌△AEC(SAS),∴BD=CE;(2)∵△ADB≌△AEC,∴∠ACE=∠ABD,而在△CDF中,∠BFC=180°﹣∠ACE﹣∠CDF又∵∠CDF=∠BDA∴∠BFC=180°﹣∠DBA﹣∠BDA=∠DAB=90°;(3)BD=CE成立,且两线段所在直线互相垂直,即∠BFC=90°.理由如下:∵△ABC、△ADE是等腰直角三角形∴AB=AC,AD=AE,∠BAC=∠EAD=90°,∵∠BAC+∠CAD=∠EAD+∠CAD∴∠BAD=∠CAE,∵在△ADB和△AEC中,,∴△ADB≌△AEC(SAS)∴BD=CE,∠ACE=∠DBA,∴∠BFC=∠CAB=90°.22.解:(1)∵△ABC和△ADE是等腰直角三角形,∴AB=AC,AE=AD,∠BAC=∠EAD=90°,∴∠BAC+∠EAC=∠DAE+∠EAC,∴∠BAE=∠CAD,在△ABE和△ACD中,,∴△ABE≌△ACD(SAS);(2)DC⊥BE,∵△ABE≌△ACD,∴∠AEB=∠ADC,∵∠ADC+∠AFD=90°,∴∠AEB+∠AFD=90°,∵∠AFD=∠CFE,∴∠AEB+∠CFE=90°,∴∠FCE=90°,∴DC⊥BE.五.解答题23.解:由三角形的外角性质知:∠ADF=∠B+∠BAC,故∠B+∠BAC+∠DAF=90°;①△ABC中,由三角形内角和定理得:∠C+∠B+∠BAC=180°,即:∠C+∠B+∠BAC=90°,②②﹣①,得:∠DAF=(∠C﹣∠B)=20°.24.解:(1)CO是△BCD的高.理由如下:∵BC⊥CD,∴∠DCB=90°,∴∠1=∠2=∠3=45°,∴△DCB是等腰直角三角形,∴CO是∠DCB的角平分线,∴CO⊥BD(等腰三角形三线合一);(2)∵在△ACD中,∠1=∠3=45°,∠4=60°,∴∠5=30°,又∵∠5=∠6,∴∠6=30°,∴在直角△AOB中,∠7=180°﹣90°﹣30°=60°.25.(1)证明:∵∠ACB=90°,∴∠ACD+∠BCE=90°,而AD⊥MN于D,BE⊥MN于E,∴∠ADC=∠CEB=90°,∠BCE+∠CBE=90°,∴∠ACD=∠CBE.在△ADC和△CEB中,,∴△ADC≌△CEB,∴AD=CE,DC=BE,∴DE=DC+CE=BE+AD;(2)证明:在△ADC和△CEB中,,∴△ADC≌△CEB,∴AD=CE,DC=BE,∴DE=CE﹣CD=AD﹣BE;(3)DE=BE﹣AD.易证得△ADC≌△CEB,∴AD=CE,DC=BE,∴DE=CD﹣CE=BE﹣AD.2020-2021学年湖南省长沙市天心区长郡教育集团八年级(上)期中数学试卷(附答案)一、选择题(共12小题).1.(3分)在平面直角坐标系中,点M(1,﹣2)在第()象限.A.一B.二C.三D.四2.(3分)下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是()A.B.C.D.3.(3分)下面的调查方式中,你认为合适的是()A.调查市场上酸奶的质量情况,采用抽样调查方式B.了解长沙市居民日平均用水量,采用全面调查方式C.乘坐飞机前的安检,采用抽样调查方式D.某LED灯厂要检测一批灯管的使用寿命,采用全面调查方式4.(3分)下列运算正确的是()A.(m﹣n)(﹣m﹣n)=﹣m2﹣n2B.(﹣1+mn)(1+mn)=﹣1﹣m2n2C.(﹣m+n)(m﹣n)=m2﹣n2D.(2m﹣3)(2m+3)=4m2﹣95.(3分)将点A(﹣2,3)通过以下哪种方式的平移,得到点A'(﹣5,7)()A.沿x轴向右平移3个单位长度,再沿y轴向上平移4个单位长度B.沿x轴向左平移3个单位长度,再沿y轴向下平移4个单位长度C.沿x轴向左平移4个单位长度,再沿y轴向上平移3个单位长度D.沿x轴向左平移3个单位长度,再沿y轴向上平移4个单位长度6.(3分)下列运算正确的是()A.a2•a3=a6B.(a2)3=a5C.(2a)2=4a2D.3a2÷a2=3a7.(3分)如图,△ABC中,AB=AC,D是BC中点,下列结论中不正确的是()A.∠B=∠C B.AD⊥BC C.AD平分∠BAC D.AB=2BD8.(3分)我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1500石,验得米内夹谷,抽样取米一把,数得300粒内夹谷30粒,则这批米内夹谷约为()A.30石B.150石C.300石D.50石9.(3分)若(x+3)(x﹣5)=x2﹣mx﹣15,则m的值为()A.2B.﹣2C.5D.﹣510.(3分)如图,△ABC中,DE是AC的垂直平分线,AE=5cm,△ABD的周长为16cm,则△ABC的周长为()A.26cm B.21cm C.28cm D.31cm11.(3分)已知x+y=﹣5,xy=3,则x2+y2=()A.19B.﹣19C.25D.﹣2512.(3分)如图,△ABC、△ADE、△DFG均为等边三角形,C、E、F三点共线,且E是CF的中点,下列结论:①△ADG≌△EDF;②△AEC为等腰三角形;③DF=AD+GE;④∠BAG=∠BCE;⑤∠GEB=60°,其中正确的个数为()A.②④⑤B.①③⑤C.①④⑤D.①③④二、填空题(共6小题).13.(3分)等腰三角形的一个角是110°,则它的底角是.14.(3分)计算:3a2b•(﹣2ab3)2=.15.(3分)如果点P(a﹣1,a+2)在x轴上,则a的值为.16.(3分)如图,△ABC中,AB=6,AC=7,BD、CD分别平分∠ABC、∠ACB,过点D作直线平行于BC,交AB、AC于E、F,则△AEF的周长为.17.(3分)定义一种新运算A※B=A2+AB.例如(﹣2)※5=(﹣2)2+(﹣2)×5=﹣6.按照这种运算规定,(x+2)※(2﹣x)=20,则x=.18.(3分)如图,∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=2,,则△A1B1A2的面积是,△A n B n A n+1的面积是.三、解答题(第19、20题各6分,第21、22题各8分,第23,24题各9分,第25、26题各10分)19.(6分)计算:(1)x(4x2﹣x)+x3÷x;(2)(x﹣y)(x+3y)﹣x(x+2y).20.(6分)先化简,再求值:(2+3x)(2﹣3x)+5x(x﹣1)+(2x﹣1)2,其中.21.(8分)某校开展“我最喜爱的一项体育活动”调查,要求每名学生必选且只能选一项,现随机抽查了m名学生,并将其结果绘制成如下不完整的条形图和扇形图.请结合以上信息解答下列问题:(1)m=;(2)请补全上面的条形统计图;(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为;(4)已知该校共有1200名学生,请你估计该校约有名学生最喜爱足球活动.22.(8分)如图,△ABC的三个顶点在边长为1的正方形网格中,已知A(3,3),B(﹣3,﹣3),C (1,﹣3).(1)画出△ABC关于y轴对称的△A1B1C1,且点A的对应点为A1,点B的对应点为B1,点C的对应点为C1;(2)在(1)的条件下,A1,B1,C1的坐标分别是,,;(3)请直接写出第四象限内以AB为边且与△ABC全等的三角形的第三个顶点(不与C重合)的坐标,这点的坐标为.23.(9分)已知:△A1B1C1三个顶点的坐标分别为A1(﹣3,4),B1(﹣1,3),C1(1,6),把△A1B1C1先向右平移3个单位长度,再向下平移3个单位长度后得到△ABC,且点A1的对应点为A,点B1的对应点为B,点C1的对应点为C.(1)在坐标系中画出△ABC;(2)求△ABC的面积;(3)设点P在y轴上,且△APB与△ABC的面积相等,求点P的坐标.24.(9分)如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC边上,且BE=CF,CE=DB.(1)求证:△DEF是等腰三角形;(2)当∠A=50°时,求∠DEB+∠FEC的度数;(3)当∠EDF=60°时,求∠A的度数.25.(10分)如图,在△ABC中.AB=AC,点E在线段BC上,连接AE并延长到G,使得EG=AE,过点G作GD∥BA分别交BC,AC于点F,D.(1)求证:△ABE≌△GFE;(2)若GD=3,CD=1,求AB的长度;(3)过点D作DH⊥BC于H,P是直线DH上的一个动点,连接AF,AP,FP,若∠C=45°,在(2)的条件下,求△AFP周长的最小值.26.(10分)如图,在平面直角坐标系中,点O为原点,△OAB为等边三角形,P、Q分别为AO、AB边上的动点,点P、点Q同时从点A出发,且当其中一点停止运动时,另一点也立即停止运动;若P以2个单位长度每秒的速度从点A向终点O运动,点Q以3个单位长度每秒的速度从点A向终点B运动,设运动时间为t,已知点A坐标为(a,b),且满足(a﹣6)2+|a﹣b|=0.(1)求A点坐标;(2)如图1,连接BP、OQ交于点C,请问当t为何值时,∠OCP=60°;(3)如图2,D为OB边上的中点,P,Q在运动过程中,D,P,Q三点是否能构成使∠PDQ=120°的等腰三角形,若能,求运动时间t并直接写出四边形APDQ的面积:若不能,请说明理由.参考答案一、选择题(共12小题).1.(3分)在平面直角坐标系中,点M(1,﹣2)在第()象限.A.一B.二C.三D.四解:∵1>0,﹣2<0,∴点M(1,﹣2)在第四象限.故选:D.2.(3分)下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是()A.B.C.D.解:A、不是轴对称图形,本选项不符合题意;B、是轴对称图形,本选项符合题意;C、不是轴对称图形,本选项不符合题意;D、不是轴对称图形,本选项不符合题意.故选:B.3.(3分)下面的调查方式中,你认为合适的是()A.调查市场上酸奶的质量情况,采用抽样调查方式B.了解长沙市居民日平均用水量,采用全面调查方式C.乘坐飞机前的安检,采用抽样调查方式D.某LED灯厂要检测一批灯管的使用寿命,采用全面调查方式解:A.调查市场上酸奶的质量情况,适合采用抽样调查方式,故本选项符合题意;B.了解长沙市居民日平均用水量,适合采用抽样调查方式,故本选项不符合题意;C.乘坐飞机前的安检,适合采用全面调查方式,故本选项不符合题意;D.某LED灯厂要检测一批灯管的使用寿命,适合采用抽样调查方式,故本选项不符合题意;故选:A.4.(3分)下列运算正确的是()A.(m﹣n)(﹣m﹣n)=﹣m2﹣n2B.(﹣1+mn)(1+mn)=﹣1﹣m2n2C.(﹣m+n)(m﹣n)=m2﹣n2D.(2m﹣3)(2m+3)=4m2﹣9解:A.(m﹣n)(﹣m﹣n)=﹣(m+n)(m﹣n)=﹣(m2﹣n2)=n2﹣m2,故本选项不合题意;B.(﹣1+mn)(1+mn)=(mn)2﹣12=m2n2﹣1,故本选项不合题意;C.(﹣m+n)(m﹣n)=﹣(m﹣n)(m﹣n)=﹣(m﹣n)2=﹣m2+2mn﹣n2,故本选项不合题意;D.(2m﹣3)(2m+3)=4m2﹣9,故本选项符合题意.故选:D.5.(3分)将点A(﹣2,3)通过以下哪种方式的平移,得到点A'(﹣5,7)()A.沿x轴向右平移3个单位长度,再沿y轴向上平移4个单位长度B.沿x轴向左平移3个单位长度,再沿y轴向下平移4个单位长度C.沿x轴向左平移4个单位长度,再沿y轴向上平移3个单位长度D.沿x轴向左平移3个单位长度,再沿y轴向上平移4个单位长度解:∵点A(﹣2,3),A'(﹣5,7),∴点A沿x轴向左平移3个单位长度,再沿y轴向上平移4个单位长度得到点A′,故选:D.6.(3分)下列运算正确的是()A.a2•a3=a6B.(a2)3=a5C.(2a)2=4a2D.3a2÷a2=3a解:A.a2•a3=a5,故本选项不合题意;B.(a2)3=a6,故本选项不合题意;C.(2a)2=4a2,故本选项符合题意;D.3a2÷a2=3,故本选项不合题意.故选:C.7.(3分)如图,△ABC中,AB=AC,D是BC中点,下列结论中不正确的是()A.∠B=∠C B.AD⊥BC C.AD平分∠BAC D.AB=2BD解:∵△ABC中,AB=AC,D是BC中点∴∠B=∠C,(故A正确)AD⊥BC,(故B正确)∠BAD=∠CAD(故C正确)无法得到AB=2BD,(故D不正确).故选:D.8.(3分)我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1500石,验得米内夹谷,抽样取米一把,数得300粒内夹谷30粒,则这批米内夹谷约为()A.30石B.150石C.300石D.50石解:根据题意得:1500×=150(石),答:这批米内夹谷约为150石;故选:B.9.(3分)若(x+3)(x﹣5)=x2﹣mx﹣15,则m的值为()A.2B.﹣2C.5D.﹣5解:∵(x+3)(x﹣5)=x2﹣2x﹣15,∴﹣m=﹣2,则m=2.故选:A.10.(3分)如图,△ABC中,DE是AC的垂直平分线,AE=5cm,△ABD的周长为16cm,则△ABC的周长为()A.26cm B.21cm C.28cm D.31cm解:∵DE是AC的垂直平分线,∴DA=DC,AC=2AE=10,∵△ABD的周长为16,∴AB+BD+AD=AB+BD+DC=AB+BC=16,∴△ABC的周长=AB+BC+AC=16+10=26(cm),故选:A.11.(3分)已知x+y=﹣5,xy=3,则x2+y2=()A.19B.﹣19C.25D.﹣25解:x2+y2=(x+y)2﹣2xy=(﹣5)2﹣2×3=25﹣6=19,故选:A.12.(3分)如图,△ABC、△ADE、△DFG均为等边三角形,C、E、F三点共线,且E是CF的中点,下列结论:①△ADG≌△EDF;②△AEC为等腰三角形;③DF=AD+GE;④∠BAG=∠BCE;⑤∠GEB=60°,其中正确的个数为()A.②④⑤B.①③⑤C.①④⑤D.①③④解:∵△ADE、△DFG,△ABC为等边三角形,∴DA=DE,DG=DG,∠ADE=∠FGD=∠AED=∠ACB=∠DAE=∠BAC=60°,∴∠ADG=∠EDF,∠DAB=∠CAE,∴△ADG≌△EDF(SAS),故①正确∴∠DEF=∠DAG,∵∠DEF+∠AED=∠EAC+∠ACE=∠EAC+∠ABC﹣∠BCF,∴∠EAC﹣∠DEF=∠BCF,∵∠BAG=∠DAB﹣∠DAG=∠CAE﹣∠DEF,∴∠BAG=∠BCF,故④正确,∵DF+EG=DG+GE≥DE,∴DF+GE≠AD,故③错误.设AG交CF于点O,DG交CF于K.∵△ADG≌△EDF,∴∠OGK=∠FKD,EF=AG,∵∠GKO=∠FKD,∴∠GOK=∠FDK=60°,∴∠AOC=∠GOK=∠ABC=60°,∴∠BAG=∠BCE,∵EF=CE,∴AG=CE,∵AB=CB,∴△BAG≌△BCE(SAS),∴BG=BE,∠ABG=∠CBE,∴∠EBC=∠ABC=60°,∴△EBG是等边三角形,∴∠EGB=60°,故⑤正确,无法判断AC=EC或AE=EC或AE=EC,故△ACE不一定是等腰三角形,故②错误,故选:C.二、填空题(本大题共6个小题,每小题3分,共18分)13.(3分)等腰三角形的一个角是110°,则它的底角是35°.解:①当这个角是顶角时,底角=(180°﹣110°)÷2=35°;②当这个角是底角时,另一个底角为110°,因为110°+110°=240°,不符合三角形内角和定理,所以舍去.故答案为:35°.14.(3分)计算:3a2b•(﹣2ab3)2=12a4b7.解:3a2b•(﹣2ab3)2=3a2b•4a2b6=12a4b7.故答案为:12a4b7.15.(3分)如果点P(a﹣1,a+2)在x轴上,则a的值为﹣2.解:∵点P(a﹣1,a+2)在x轴上,∴a+2=0,解得a=﹣2,故答案为:﹣2.16.(3分)如图,△ABC中,AB=6,AC=7,BD、CD分别平分∠ABC、∠ACB,过点D作直线平行于BC,交AB、AC于E、F,则△AEF的周长为13.解:∵EF∥BC,∴∠EDB=∠DBC,∠FDC=∠DCB,∵△ABC中,∠ABC和∠ACB的平分线相交于点D,∴∠EBD=∠DBC,∠FCD=∠DCB,∴∠EDB=∠EBD,∠FDC=∠FCD,∴ED=EB,FD=FC,∵AB=6,AC=7,∴△AEF的周长为:AE+EF+AF=AE+ED+FD+AF=AE+EB+FC+AF=AB+AC=6+7=13.故答案为:13..17.(3分)定义一种新运算A※B=A2+AB.例如(﹣2)※5=(﹣2)2+(﹣2)×5=﹣6.按照这种运算规定,(x+2)※(2﹣x)=20,则x=3.解:根据题意得(x+2)2+(x+2)(2﹣x)=20,∴x2+4x+4+4﹣x2=20,∴4x+8=20,4x=12,解得x=3,故答案为:3.18.(3分)如图,∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=2,,则△A1B1A2的面积是,△A n B n A n+1的面积是22n﹣2.解:如图,∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠2=∠3=60°,∵∠MON=30°,∴∠1=60°﹣30°=30°,∴OA1=A1B1=A1A2=2,∴等边三角形边上的高为,∴△A1B1A2的面积是:2×=;∵△A2B2A3、△A3B3A4是等边三角形,同理可得:OA2=A2B2=A2A3=4,∴高为2,∴△A2B2A3的面积是:4×2=4;∵OA3=A3B3=A3A4=23=8,∴高为4,∴△A3B3A4的面积是:8×4=16=24;…△A n B n A n+1的面积是:22n﹣2;故答案为:,22n﹣2.三、解答题(第19、20题各6分,第21、22题各8分,第23,24题各9分,第25、26题各10分)19.(6分)计算:(1)x(4x2﹣x)+x3÷x;(2)(x﹣y)(x+3y)﹣x(x+2y).解:(1)x(4x2﹣x)+x3÷x=4x3﹣x2+x2=4x3;(2)(x﹣y)(x+3y)﹣x(x+2y)=x2+3xy﹣xy﹣3y2﹣x2﹣2xy=﹣3y2.20.(6分)先化简,再求值:(2+3x)(2﹣3x)+5x(x﹣1)+(2x﹣1)2,其中.解:(2+3x)(2﹣3x)+5x(x﹣1)+(2x﹣1)2=4﹣9x2+5x2﹣5x+4x2﹣4x+1=﹣9x+5,当时,原式=﹣9×(﹣)+5=3+5=8.21.(8分)某校开展“我最喜爱的一项体育活动”调查,要求每名学生必选且只能选一项,现随机抽查了m名学生,并将其结果绘制成如下不完整的条形图和扇形图.请结合以上信息解答下列问题:(1)m=150;(2)请补全上面的条形统计图;(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为36°;(4)已知该校共有1200名学生,请你估计该校约有240名学生最喜爱足球活动.解:(1)m=21÷14%=150,(2)“足球“的人数=150×20%=30人,补全上面的条形统计图如图所示;(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为360°×=36°;(4)1200×20%=240人,答:估计该校约有240名学生最喜爱足球活动.故答案为:150,36°,240.22.(8分)如图,△ABC的三个顶点在边长为1的正方形网格中,已知A(3,3),B(﹣3,﹣3),C (1,﹣3).(1)画出△ABC关于y轴对称的△A1B1C1,且点A的对应点为A1,点B的对应点为B1,点C的对应点为C1;(2)在(1)的条件下,A1,B1,C1的坐标分别是(﹣3,3),(3,﹣3),(﹣1,﹣3);(3)请直接写出第四象限内以AB为边且与△ABC全等的三角形的第三个顶点(不与C重合)的坐标,。
八年级(上册)期中数学试卷3+参考答案与试题解析(人教版)
八年级(上)期中数学试卷一、选择题(本题共8小题,每小题3分,共24分)1.下列分式不是最简分式的是()A.B.C.D.2.有下列命题:①两点之间,线段最短;②相等的角是对顶角;③当a>0时,|a|=a;④内错角互补,两直线平行.其中真命题的有()A.1个 B.2个 C.3个 D.4个3.下列运算正确的是()A.x﹣2•x4=x8B.3x+2y=6xy C.(x﹣3)﹣2=x6D.y3÷y3=y4.为了判断命题“每个月都有31天”是假命题,可举的反例是()A.3月 B.5月 C.7月 D.9月5.化简的结果是()A.a2﹣b2B.a+b C.a﹣b D.16.已知三角形的两边长分别为4cm和9cm,则下列长度的四条线段中能作为第三边的是()A.13cm B.6cm C.5cm D.4cm7.如图所示,在△ABC中,∠B=∠C,FD⊥BC,DE⊥AB,∠AFD=158°,则∠EDF=()度.A.58°B.68°C.78°D.32°8.八年级两班的学生参加植树造林活动,已知甲班每天比乙班每天多植15棵树,甲班植90棵树所用天数与乙班植60棵树所用天数相等.若设甲班每天植树x 棵,则()A.=B.=C.=D.=二、填空题(本题共8小题,每小题3分,共24分)9.计算:(﹣2)0=,(﹣)﹣4=,(3﹣2)2=.10.当x时,分式的值为0.11.已知等腰三角形两边长分别为9cm、4cm.则它的周长是cm.12.化简:=.13.已知D、E分别是△ABC的边BC和AC的中点,若△ABC的面积=24cm2,则△DEC的面积为.14.如图,△ABC≌△BAD,点A和点B,点C和点D是对应点.如果∠D=70°,∠CAB=50°,那么∠DAB=.15.已知,∠ABC=∠DEF,AB=DE,要说明△ABC≌△DEF,若以“AAS”为依据,还要添加的条件为.16.小亮和小青从同一地点出发跑800m,小亮的速度是小青的1.25倍,小亮比小青提前40s到达终点.问:小亮和小青的速度各是多少?设小青的速度为xm/s,依题意列方程.三、解答题(本大题共8小题,共52分)17.计算:(1)()﹣1﹣2+(π﹣3.14)0(2)÷.18.解下列分式方程:(1)=(2)+1=.19.先化简,再求值:•(﹣1),其中x=2.20.如图:河岸线的同侧有两个村庄A,B,现要在河岸上修一个自来水厂,使厂到A,B两地的距离相等,请在图中作出厂的位置(用P点表示),并说明你这样做会使厂到时A,B两地距离相等的理由(尺规作图,不要求写出做法,只保留作图痕迹)21.如图,△ABC中,∠A=40°,∠B=72°,CE平分∠ACB,CD⊥AB于D,DF⊥CE交CE于F,求∠CDF的度数.22.去年入秋以来,云南省发生了百年一遇的旱灾,连续8个多月无有效降水,为抗旱救灾,某部队计划为驻地村民新修水渠3600米,为了水渠能尽快投入使用,实际工作效率是原计划工作效率的1.8倍,结果提前20天完成修水渠任务.问原计划每天修水渠多少米?23.如图:已知AD、BC相交于O,且AB=CD,AD=CB.求证:∠B=∠D.24.在数学课上,林老师在黑板上画出如图所示的图形(其中点B、F、C、E在同一直线上),并写出四个条件:①AB=DE,②BF=EC,③∠B=∠E,④∠1=∠2.请你从这四个条件中选出三个作为题设,另一个作为结论,组成一个真命题,并给予证明.题设:;结论:.(均填写序号)证明:八年级(上)期中数学试卷参考答案与试题解析一、选择题(本题共8小题,每小题3分,共24分)1.下列分式不是最简分式的是()A.B.C.D.【考点】分式的值.【分析】根据分式的分子分母不含公因式的分式是最简分式,可得答案.【解答】解:A、分式的分子分母不含公因式,故A是最简分式;B、分式的分子分母不含公因式,故B是最简分式;C、分式的分子分母不含公因式,故C是最简分式;D、分式的分子分母含公因式2,故D不是最简分式;故选:D.2.有下列命题:①两点之间,线段最短;②相等的角是对顶角;③当a>0时,|a|=a;④内错角互补,两直线平行.其中真命题的有()A.1个 B.2个 C.3个 D.4个【考点】命题与定理.【分析】根据线段公理对①进行判断;根据对顶角的定义对②进行判断;根据绝对值的意义对③进行判断;根据平行线的判定方法对④进行判断.【解答】解:两点之间,线段最短,所以①正确;相等的角不一定是对顶角,所以②错误;当a>0时,|a|=a,所以③正确;内错角相等,两直线平行,所以④错误.故选B.3.下列运算正确的是()A.x﹣2•x4=x8B.3x+2y=6xy C.(x﹣3)﹣2=x6D.y3÷y3=y【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方;负整数指数幂.【分析】根据同底数幂的乘除法法则、幂的乘方法则、合并同类项法则计算即可.【解答】解:x﹣2•x4=x﹣2+4=x2,A错误;3x与2y不是同类项,不能合并,B错误;(x﹣3)﹣2=x﹣3×(﹣2)=x6,C正确;y3÷y3=1,D错误,故选:C.4.为了判断命题“每个月都有31天”是假命题,可举的反例是()A.3月 B.5月 C.7月 D.9月【考点】命题与定理.【分析】根据题意只要举出是月份不是31天的例子即可.【解答】解:∵9月是30天,∴命题“每个月都有31天”是假命题,故选D.5.化简的结果是()A.a2﹣b2B.a+b C.a﹣b D.1【考点】分式的加减法.【分析】几个分式相加减,根据分式加减法则进行运算;【解答】解:原式==a+b.故选B.6.已知三角形的两边长分别为4cm和9cm,则下列长度的四条线段中能作为第三边的是()A.13cm B.6cm C.5cm D.4cm【考点】三角形三边关系.【分析】此题首先根据三角形的三边关系,求得第三边的取值范围,再进一步找到符合条件的数值.【解答】解:根据三角形的三边关系,得:第三边应大于两边之差,且小于两边之和,即9﹣4=5,9+4=13.∴第三边取值范围应该为:5<第三边长度<13,故只有B选项符合条件.故选:B.7.如图所示,在△ABC中,∠B=∠C,FD⊥BC,DE⊥AB,∠AFD=158°,则∠EDF=()度.A.58°B.68°C.78°D.32°【考点】三角形的外角性质;三角形内角和定理.【分析】利用三角形外角的性质及三角形的内角和定理计算.【解答】解:∵FD⊥BC,∠AFD=158°,∴∠CFD=180°﹣∠AFD=180°﹣158°=22°,则∠C=180°﹣∠FDC﹣∠CFD=180°﹣90°﹣22°=68°.∵∠B=∠C,DE⊥AB,∴∠EDB=180°﹣∠B﹣∠DEB=180°﹣68°﹣90°=22°,则∠EDC=∠B+∠DEB=∠B+90°.∵∠EDC=∠EDF+90°,∴∠EDF=∠B=68°.故选B.8.八年级两班的学生参加植树造林活动,已知甲班每天比乙班每天多植15棵树,甲班植90棵树所用天数与乙班植60棵树所用天数相等.若设甲班每天植树x 棵,则()A.=B.=C.=D.=【考点】由实际问题抽象出分式方程.【分析】本题等量关系为:甲班植90棵树所用的天数=乙班植60棵树所用的天数,根据等量关系列式.【解答】解:设甲班每天植树x棵,根据题意得:,故选D.二、填空题(本题共8小题,每小题3分,共24分)9.计算:(﹣2)0=1,(﹣)﹣4=16,(3﹣2)2=.【考点】幂的乘方与积的乘方;零指数幂;负整数指数幂.【分析】根据零指数幂、负整数指数幂、幂的乘方进行计算即可.【解答】解:(﹣2)0=1,(﹣)﹣4=16,(3﹣2)2=3﹣4=,故答案为1,16,.10.当x=1时,分式的值为0.【考点】分式的值为零的条件.【分析】根据分式的值为0的条件列出关于x的不等式组是解答此题的关键.【解答】解:∵分式的值为0,∴,解得x=1.故答案为:=1.11.已知等腰三角形两边长分别为9cm、4cm.则它的周长是22cm.【考点】等腰三角形的性质;三角形三边关系.【分析】先根据已知条件和三角形三边关系定理可知,等腰三角形的腰长不可能为4cm,只能为9cm,再根据周长公式即可求得等腰三角形的周长.【解答】解:∵等腰三角形的两条边长分别为9cm、4cm,∴由三角形三边关系可知:等腰三角形的腰长不可能为4cm,只能为9cm,∴等腰三角形的周长=9+9+4=22(cm).故答案为:22.12.化简:=.【考点】约分.【分析】先利用完全平方公式进行因式分解,再约分求解即可.【解答】解:==.故答案为:.13.已知D、E分别是△ABC的边BC和AC的中点,若△ABC的面积=24cm2,则△DEC的面积为6cm2.【考点】三角形的面积.【分析】根据三角形的面积公式以及中点的概念即可分析出各部分的面积关系.【解答】解:∵D、E分别是△ABC的边BC和AC的中点,=2S△ADC∴S△ABC=24cm2,又∵D是△ABC的边BC的中点,S△ABC=S△ABC=6cm2.∴S△DEC故答案为:6cm2.14.如图,△ABC≌△BAD,点A和点B,点C和点D是对应点.如果∠D=70°,∠CAB=50°,那么∠DAB=60°.【考点】全等三角形的性质.【分析】根据全等三角形的对应角相等,即可求得∠DBA的度数,然后根据三角形的内角和定理即可求出∠DAB的度数.【解答】解:∵△ABC≌△BAD,点A和点B、点C和点D是对应点,∴∠CAB的对应角是∠DBA,∴∠CAB=∠DBA=50°.∵∠D+∠DBA+∠DAB=180°,∠D=70°,∴∠DAB=180°﹣70°﹣50°=60°.故答案为:60°.15.已知,∠ABC=∠DEF,AB=DE,要说明△ABC≌△DEF,若以“AAS”为依据,还要添加的条件为∠ACB=∠F.【考点】全等三角形的判定.【分析】根据两角及其中一个角的对边对应相等的两个三角形全等可添加∠ACB=∠F.【解答】解:添加∠ACB=∠F,∵在△ABC和△DEF中,∴△ABC≌△DEF(AAS),故答案为:∠ACB=∠F.16.小亮和小青从同一地点出发跑800m,小亮的速度是小青的1.25倍,小亮比小青提前40s到达终点.问:小亮和小青的速度各是多少?设小青的速度为xm/s,依题意列方程﹣=40.【考点】由实际问题抽象出分式方程.【分析】首先设小青的速度是x米/秒,则小亮的速度是1.25x米/秒,根据关键语句“小亮比小青提前40s到达终点”可得等量关系:小亮跑800米的时间﹣小青跑800米的时间=40秒,根据等量关系列出方程.【解答】解:设小青的速度是x米/秒,则小亮的速度是1.25x米/秒,由题意得:﹣=40,故答案为:﹣=40.三、解答题(本大题共8小题,共52分)17.计算:(1)()﹣1﹣2+(π﹣3.14)0(2)÷.【考点】分式的乘除法;实数的运算;零指数幂;负整数指数幂.【分析】(1)根据实数的运算,可得答案;(2)根据分式的除法运算,可得答案.【解答】解:(1)原式=2﹣2+1=1;(2)原式=•=.18.解下列分式方程:(1)=(2)+1=.【考点】解分式方程.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:x+2=4,解得:x=2,经检验x=2是增根,分式方程无解;(2)去分母得:x﹣3+x﹣2=﹣3,解得:x=1,经检验x=1是分式方程的解.19.先化简,再求值:•(﹣1),其中x=2.【考点】分式的化简求值.【分析】先通分,再约分,把x的值代入计算即可.【解答】解:原式=•(﹣),=•=﹣,当x=2时,原式=﹣=﹣1.20.如图:河岸线的同侧有两个村庄A,B,现要在河岸上修一个自来水厂,使厂到A,B两地的距离相等,请在图中作出厂的位置(用P点表示),并说明你这样做会使厂到时A,B两地距离相等的理由到线段两个端点距离相等的点在线段的垂直平分线上(尺规作图,不要求写出做法,只保留作图痕迹)【考点】作图—应用与设计作图.【分析】连接AB,作AB的垂直平分线交河岸于P点,P点为所求,再根据垂直平分线的性质填空即可.【解答】解:如图所示:理由为:到线段两个端点距离相等的点在线段的垂直平分线上,故答案为:到线段两个端点距离相等的点在线段的垂直平分线上.21.如图,△ABC中,∠A=40°,∠B=72°,CE平分∠ACB,CD⊥AB于D,DF⊥CE交CE于F,求∠CDF的度数.【考点】三角形的外角性质;角平分线的定义;三角形内角和定理.【分析】首先根据三角形的内角和定理求得∠ACB的度数,再根据CE平分∠ACB 求得∠ACE的度数,则根据三角形的外角的性质就可求得∠CED=∠A+∠ACE,再结合CD⊥AB,DF⊥CE就可求解.【解答】解:∵∠A=40°,∠B=72°,∴∠ACB=180°﹣40°﹣72°=68°,∵CE平分∠ACB,∴∠ACE=∠BCE=34°,∴∠CED=∠A+∠ACE=74°,∴∠CDE=90°,DF⊥CE,∴∠CDF+∠ECD=∠ECD+∠CED=90°,∴∠CDF=74°.22.去年入秋以来,云南省发生了百年一遇的旱灾,连续8个多月无有效降水,为抗旱救灾,某部队计划为驻地村民新修水渠3600米,为了水渠能尽快投入使用,实际工作效率是原计划工作效率的1.8倍,结果提前20天完成修水渠任务.问原计划每天修水渠多少米?【考点】分式方程的应用.【分析】设原计划每天修水渠x米.根据原计划工作用的时间﹣实际工作用的时间=20等量关系列出方程.【解答】解:设原计划每天修水渠x米.根据题意得:,解得:x=80.经检验:x=80是原分式方程的解.答:原计划每天修水渠80米.23.如图:已知AD、BC相交于O,且AB=CD,AD=CB.求证:∠B=∠D.【考点】全等三角形的判定与性质.【分析】连接AC,利用“边边边”证明△ABD和△CDB全等,根据全等三角形对应角相等证明即可【解答】证明:连接AC,在△ABD和△CDB中,,∴△ABD≌△CDB(SSS),∴∠B=∠D.24.在数学课上,林老师在黑板上画出如图所示的图形(其中点B、F、C、E在同一直线上),并写出四个条件:①AB=DE,②BF=EC,③∠B=∠E,④∠1=∠2.请你从这四个条件中选出三个作为题设,另一个作为结论,组成一个真命题,并给予证明.题设:可以为①②③;结论:④.(均填写序号)证明:【考点】全等三角形的判定与性质;命题与定理.【分析】此题可以分成三种情况:情况一:题设:①②③;结论:④,可以利用SAS定理证明△ABC≌△DEF;情况二:题设:①③④;结论:②,可以利用AAS 证明△ABC≌△DEF;情况三:题设:②③④;结论:①,可以利用ASA证明△ABC≌△DEF,再根据全等三角形的性质可推出结论.【解答】情况一:题设:①②③;结论:④.证明:∵BF=EC,∴BF+CF=EC+CF,即BC=EF.在△ABC和△DEF中,,∴△ABC≌△DEF(SAS),∴∠1=∠2;情况二:题设:①③④;结论:②.证明:在△ABC和△DEF中,∵,∴△ABC≌△DEF(AAS),∴BC=EF,∴BC﹣FC=EF﹣FC,即BF=EC;情况三:题设:②③④;结论:①.证明:∵BF=EC,∴BF+CF=EC+CF,即BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(ASA),∴AB=DE.。
人教版八年级数学上册期中考试试题三(附答案)
18.如图,四边形 ABCD是平行四边形,点 E在 BC上,点 F 在 AD 上, BE=DF,求证:
AE=CF.
19.如图,在 △ ABC中, AD 是边 BC上的中线,∠ BAD=∠ CAD, CE∥ AD, CE交 BA 的延长线于点 E, BC=8, AD=3. ( 1)求 CE的长; ( 2)求证: △ ABC为等腰三角形. ( 3)求 △ ABC的外接圆圆心 P 与内切圆圆心 Q 之间的距离. 20.【问题提出】
则 x= ,∴ P 点的坐标(
, 0)
24.解:( 1)既不是轴对称图形 ,又不是中心对称图形:
=4.
( 2)解: ∴ A2A3 所 令 y=0,
第 7页 共 8页
( 2)是轴对称图形,不是中心对称图形 ( 3)是中心对称图形,不是轴对称图形 ( 4)既是轴对称图形,又是中心对称图形
第 8页 共 8页
是中心对称图形,不是轴对称图形
既是轴对称图形,又是中心对称图形
答案
一、选择题 1. B 2. C 3. C 4.B 5. D 6. D 7. C 8.B 9. A 10.D 二、填空题
11. π 12. CD=BC(或∠ DAC=∠ BAC或 AC 平分∠ DAB) 13.5 14.(5,-6)
第 4页 共 8页
15.∠ M= ∠N 或∠ A=∠ NCD 或 AM∥ CN 或 AB=CD 三、解答题
16.解:连接 OA,过点 O 作 OD⊥ AB 于点 D, ∵ AB=6cm, ∴ AD=BD= AB=3,
∴ PD=PA+AD=4+3=7. 中,
∴ OD=
=
=4.
中, OP=
=
=
.
17. 【问题情境】 证明:如图 1, ∵ CD⊥ AB, ∴∠ ADC=9°0 , 而∠ CAD=∠ BAC, ∴ Rt△ ACD∽ Rt△ABC, ∴ AC: AB=AD: AC, ∴ AC2=AD?AB; 【结论运用】 ( 1)证明:如图 2, ∵四边形 ABCD为正方形, ∴ OC⊥ BO,∠ BCD=9°0 , ∴ BC2=BO?BD, ∵ CF⊥ BE, ∴ BC2=BF?BE, ∴ BO?BD=BF?BE,∴Βιβλιοθήκη ,即∴ OF= .
【精选】人教版八年级上册数学期中达标测试卷部分附答案共3份
八年级上册:期中测试(附答案)一.选择题(每小题3分,满分30分)1.下列每组数分别是三根小木棒的长度,用它们能摆成三角形的是()A.3cm,4cm,8cm B.8cm,7cm,15cmC.13cm,12cm,20cm D.5cm,5cm,11cm2.若按给定的三个条件画一个三角形,图形唯一,则所给条件不可能是()A.两边一夹角B.两角一夹边C.三边D.三角3.从平面镜里看到背后墙上电子钟的示数如图所示,这时的正确时间是()A.21:05 B.21:15 C.20:15 D.20:124.如果三角形的三个内角的度数比是2:3:4,则它是()A.锐角三角形B.钝角三角形C.直角三角形D.钝角或直角三角形5.如图,在Rt△ABC中,∠C=90°,在AC和AB上分别截取AE、AD,使AE=AD.再分别以点D、E为圆心,大于DE长为半径作弧,两弧在∠BAC内交于点F,作射线AF交边BC于点G,若CG=4,AB=10,则△ABG的面积为()A.12 B.20 C.30 D.406.若点A(m,n)和点B(5,﹣7)关于x轴对称,则m+n的值是()A.2 B.﹣2 C.12 D.﹣127.如图,已知△ABC的周长是16,MB和MC分别平分∠ABC和∠ACB,过点M作BC的垂线交BC于点D,且MD=4,则△ABC的面积是()A.64 B.48 C.32 D.428.如图所示,已知△ABC中,∠A=80°,若沿图中虚线剪去∠A,则∠1+∠2等于()A.90°B.135°C.260°D.315°9.如图,在3×3的网格中,与△ABC成轴对称,顶点在格点上,且位置不同的三角形有()A.5个B.6个C.7个D.8个10.如图,在10×10的正方形网格纸中,线段AB,CD的长均等于5.则图中到AB和CD所在直线的距离相等的网格点的个数有()A.2个B.3个C.4个D.5个二.填空题(每小题3分,满分18分)11.等边三角形有条对称轴.12.若四边形ABCD的面积为25cm2,它关于y轴对称的图形为A′B′C′D′,则四边形A′B′C′D′的面积是cm2.13.一个多边形的每一个外角为30°,那么这个多边形的边数为.14.一个三角形的两边长为5和7,则第三边a的取值范围是.15.如图,在△ABC中,∠A=36°,AB=AC,BD平分∠ABC,则图中等腰三角形的个数是.16.如图在△ABC中,AB=AC=5,S=12,AD是△ABC的中线,F是AD上的动点,E是AC边上的动点,△ABC则CF+EF的最小值为.三.解答题(共9小题,满分72分)17.(7分)如图所示,在△ABC中,D是BC边上一点∠1=∠2,∠3=∠4,∠BAC=69°,求∠DAC的度数.18.(7分)将纸片△ABC沿DE折叠使点A落在点A'处【感知】如图①,点A落在四边形BCDE的边BE上,则∠A与∠1之间的数量关系是;【探究】如图②,若点A落在四边形BCDE的内部,则∠A与∠1+∠2之间存在怎样的数量关系?并说明理由.【拓展】如图③,点A落在四边形BCDE的外部,若∠1=80°,∠2=24°,则∠A的大小为.19.(7分)如图,在△ABC中,∠ABC=60°,AD、CE分别平分∠BAC、∠ACB,求证:AC=AE+CD.20.(7分)已知:如图,在△ABC中,AB=AC,BD、CE是高.求证:BD=CE.21.(8分)作图题:(1)如图,已知∠AOB及点C、D两点,请利用直尺和圆规作一点P,使得点P到射线OA、OB的距离相等,且P点到点C、D的距离也相等.(2)利用方格纸画出△ABC关于直线l的对称图形△A′B′C′.(3)如图,已知在△ABC中,AB=AC,AD是BC边上的高,P是AB边上的一点,试在高AD上找一点E,使得△PEB的周长最短.22.(8分)如图,已知△ABC是边长为3cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC方向匀速移动,它们的速度都是1cm/s,当点P到达点B时,P、Q两点停止运动,设点P的运动时间为t(s),则(1)BP=cm,BQ=cm.(用含t的代数式表示)(2)当t为何值时,△PBQ是直角三角形?23.(8分)如图,点A、C、D、B在同一条直线上,且AC=BD,∠A=∠B,∠E=∠F.(1)求证:△ADE≌△BCF;(2)若∠BCF=65°,求∠DMF的度数.24.(10分)在△ABC中,AB=5,AC=7,AD是BC边上的中线.求中线AD的取值范围.25.(10分)如图1,OA=2,OB=4,以点A为顶点,AB为腰在第三象限作等腰直角△ABC.(Ⅰ)求C点的坐标;(Ⅱ)如图2,OA=2,P为y轴负半轴上的一个动点,若以P为直角顶点,PA为腰等腰直角△APD,过D作DE⊥x轴于E点,求OP﹣DE的值;(Ⅲ)如图3,点F坐标为(﹣4,﹣4),点G(0,m)在y轴负半轴,点H(n,0)x轴的正半轴,且FH⊥FG,求m+n的值.参考答案一.选择题1.解:A、3+4<8,不能组成三角形;B、8+7=15,不能组成三角形;C、13+12>20,能够组成三角形;D、5+5<11,不能组成三角形.故选:C.2.解:两边一夹角,只能画出唯一三角形;两角一夹边,只能画出唯一三角形;三边,只能画出唯一三角形;只给定三个角不能确定一个图形,可作出无数个图形.故选:D.3.解:由图分析可得题中所给的“20:15”与“21:05”成轴对称,这时的时间应是21:05.故选:A.4.解:设三个内角分别为2k、3k、4k,则2k+3k+4k=180°,解得k=20°,所以,最大的角为4×20°=80°,所以,三角形是锐角三角形.故选:A.5.解:如图,作GM⊥AB于M,由基本尺规作图可知,AG是△ABC的角平分线,∵∠C=90°,GM⊥AB,∴GM=CG=4,∴△ABG的面积=×AB×GM=20,故选:B.6.解:∵点A(m,n)和点B(5,﹣7)关于x轴对称,∴m=5,n=7,则m +n 的值是:12. 故选:C .7.解:连接AM ,过M 作ME ⊥AB 于E ,MF ⊥AC 于F ,∵MB 和MC 分别平分∠ABC 和∠ACB ,MD ⊥BC ,MD =4, ∴ME =MD =4,MF =MD =4, ∵△ABC 的周长是16, ∴AB +BC +AC =16,∴△ABC 的面积S =S △AMC +S △BCM +S △ABM ==×AC ×4++=2(AC +BC +AB ) =2×16=32, 故选:C .8.解:∵∠A =80°, ∴∠B +∠C =100°, ∵∠1+∠2+∠B +∠C =360°, ∴∠1+∠2=260°. 故选:C . 9.解:如图所示:与△ABC成轴对称,顶点在格点上,且位置不同的三角形有8个,故选:D.10.解:延长DC,BA,使其相交于E,作∠DEB的角平分线,与网格点重合的点有4个,故到AB和CD所在直线的距离相等的网格点的个数有4个.故选:C.二.填空题11.解:等边三角形有3条对称轴.故答案为:3.12.解:∵四边形ABCD与四边形A′B′C′D′关于y轴对称,∴四边形ABCD≌四边形A′B′C′D′,∵四边形ABCD的面积为25cm2,∴四边形A′B′C′D′的面积是25cm2.故答案为:25.13.解:多边形的边数:360°÷30°=12,则这个多边形的边数为12.故答案为:12.14.解:∵三角形的两边长分别为5、7,∴第三边a的取值范围是则2<a<12.故答案为:2<a<12.15.解:∵AB=AC,∠A=36°∴△ABC是等腰三角形,∠ABC=∠ACB==72°,BD平分∠ABC,∴∠ABD=∠DBC=36°,∴在△ABD中,∠A=∠ABD=36°,AD=BD,△ABD是等腰三角形,在△ABC中,∠C=∠ABC=72°,AB=AC,△ABC是等腰三角形,在△BDC中,∠C=∠BDC=72°,BD=BC,△BDC是等腰三角形,所以共有3个等腰三角形.故答案为:316.解:方法一:作E关于AD的对称点M,连接CM交AD于F,连接EF,过C作CN⊥AB于N,=×AB×CN12,∵S△ABC∴CN=,∵E关于AD的对称点M,∴EF=FM,∴CF+EF=CF+FM=CM,根据垂线段最短得出:CM≥CN,即CF+EF≥,即CF+EF的最小值是,方法二:∵AB=AC,AD是△ABC的中线,∴AD⊥BC,∴点C与点B关于AD对称,过B作BE⊥AC于E,交AD于F,连接CF,则此时,CF+EF的值最小,且最小值=BE,=•AC•BE=12,∵S△ABC∴BE=,∴CF+EF的最小值,为故答案为:.三.解答题17.解:设∠1=∠2=x°,则∠3=∠4=2x°,∵∠2+∠4+∠BAC=180°,∴x+2x+69=180,解得x=37,即∠1=37°,∴∠DAC=∠BAC﹣∠1=69°﹣37°=32°.18.解:(1)如图①,∠1=2∠A.理由如下:由折叠知识可得:∠EA′D=∠A;∵∠1=∠A+∠EA′D,∴∠1=2∠A.(2)如图②,2∠A=∠1+∠2.理由如下:∵∠1+∠A′DA+∠2+∠A′EA=360°,∠A+∠A′+∠A′DA+∠A′EA=360°,∴∠A′+∠A=∠1+∠2,由折叠知识可得:∠A=∠A′,∴2∠A=∠1+∠2.(3)如图③,∵∠1=∠DFA+∠A,∠DFA=∠A′+∠2,∴∠1=∠A+∠A′+∠2=2∠A+∠2,∴2∠A=∠1﹣∠2=56°,解得∠A=28°.故答案为:∠1=2∠A;28°.19.证明:在AC上取AF=AE,连接OF,∵AD平分∠BAC、∴∠EAO=∠FAO,在△AEO与△AFO中,∴△AEO≌△AFO(SAS),∴∠AOE=∠AOF;∵AD、CE分别平分∠BAC、∠ACB,∴∠ECA+∠DAC=∠ACB+∠BAC=(∠ACB+∠BAC)=(180°﹣∠B)=60°则∠AOC=180°﹣∠ECA﹣∠DAC=120°;∴∠AOC=∠DOE=120°,∠AOE=∠COD=∠AOF=60°,则∠COF=60°,∴∠COD=∠COF,∴在△FOC与△DOC中,,∴△FOC≌△DOC(ASA),∴DC=FC,∵AC=AF+FC,∴AC=AE+CD.20.证明:∵AB=AC,BD、CE是高,∴∠ADB=∠AEC=90°,在△ABD和△ACE中,,∴△ABD≌△ACE(AAS),∴BD=CE.21.解:(1)如图1所示,点P即为所求;(2)如图2所示:△A′B′C′即为所求;(3)如图1所示,点E即为所求.22.解:(1)BP=3﹣t cm,BQ=t cm,故答案为:3﹣t;t;(2)在△PBQ中,∠B=60°,若△PBQ是直角三角形,则点P或点Q为直角顶点①若点P为直角顶点,∵∠B=60°,∴∠PQB=30°,∴BQ=2BP,即t=2(3﹣t),解得t=2②若点Q是直角顶点,∵∠B=60°,∴∠BPQ=30°,∴BP=2BQ,即3﹣t=2t,解得t=1答:当t=1s或t=2s时,△PBQ是直角三角形.23.证明:如图所示:(1)∵AD=AC+CD,BC=BD+CD,AC=BD,∴AD=BC,在△AED和△BFC中,,∴△AED≌△BFC(AAS),(2)∵△AED≌△BFC,∴∠ADE=∠BCF,又∵∠BCF=65°,∴∠ADE=65°,又∵∠ADE+∠BCF=∠DMF∴∠DMF=65°×2=130°.24.解:延长AD到E,使AD=DE,连接BE,∵AD是△ABC的中线,∴BD=CD,在△ADC与△EDB中,∴△ADC≌△EDB(SAS),∴EB=AC,根据三角形的三边关系得:AC﹣AB<AE<AC+AB,∴2<AE<12∵AE=2AD∴1<AD<6,故答案为:1<AD<6.25.解:(Ⅰ)如图1,过C作CM⊥x轴于M点,如图1所示:∵CM⊥OA,AC⊥AB,∴∠MAC+∠OAB=90°,∠OAB+∠OBA=90°,∴∠MAC=∠OBA,在△MAC和△OBA中,,∴△MAC≌△OBA(AAS),∴CM=OA=2,MA=OB=4,∴OM=6,∴点C的坐标为(﹣6,﹣2),故答案为(﹣6,﹣2);(Ⅱ)如图2,过D作DQ⊥OP于Q点,则四边形OEDQ是矩形,∴DE=OQ,∵∠APO+∠QPD=90°,∠APO+∠OAP=90°,∴∠QPD=∠OAP,在△AOP和△PDQ中,,∴△AOP≌△PDQ(AAS),∴AO=PQ=2,∴OP﹣DE=OP﹣OQ=PQ=OA=2;(Ⅲ)如图3,过点F分别作FS⊥x轴于S点,FT⊥y轴于T点,则∠HSF=∠GTF=90°=∠SOT,∴四边形OSFT是正方形,∴FS=FT=4,∠EFT=90°=∠HFG,∴∠HFS=∠GFT,在△FSH和△FTG中,,∴△FSH≌△FTG(AAS),∴GT=HS,又∵G(0,m),H(n,0),点F坐标为(﹣4,﹣4),∴OT═OS=4,∴GT=﹣4﹣m,HS=n﹣(﹣4)=n+4,∴﹣4﹣m=n+4,∴m+n=﹣8.八年级上册:期中测试(附答案)一.选择题(满分30分,每小题3分)1.在“回收”、“节水”、“绿色食品”、“低碳”四个标志图案中.轴对称图形是()A.B.C.D.2.下列图形中具有稳定性的是()A.正方形B.长方形C.等腰三角形D.平行四边形3.下列各线段中,能与长为4,6的两线段组成三角形的是()A.2 B.8 C.10 D.124.如图,在△ABC中,∠B=60°,∠C=50°,如果AD平分∠BAC,那么∠ADB的度数是()A.35°B.70°C.85°D.95°5.如图,已知∠ACB=∠DBC,添加以下条件,不能判定△ABC≌△DCB的是()A.∠ABC=∠DCB B.∠ABD=∠DCA C.AC=DB D.AB=DC6.如图,聪聪书上的三角形被墨迹污染了一部分,他根据所学知识很快就画了一个与书本上完全一样的三角形,那么聪聪画图的依据是()A.SSS B.SAS C.ASA D.AAS7.如果点P(﹣2,b)和点Q(a,﹣3)关于x轴对称,则a+b的值是()A.﹣1 B.1 C.﹣5 D.58.如图,△ABC中,AB=5,AC=8,BD,CD分别平分∠ABC,∠ACB,过点D作直线平行于BC,交AB,AC于E,F,则△AEF的周长为()A.12 B.13 C.14 D.189.小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB,另一把直尺压住射线OA并且与第一把直尺交于点P,小明说:“射线OP就是∠BOA的角平分线.”他这样做的依据是()A.角的内部到角的两边的距离相等的点在角的平分线上B.角平分线上的点到这个角两边的距离相等C.三角形三条角平分线的交点到三条边的距离相等D.以上均不正确10.某平原有一条很直的小河和两个村庄,要在此小河边的某处修建一个水泵站向这两个村庄供水.某同学用直线(虛线)l表示小河,P,Q两点表示村庄,线段(实线)表示铺设的管道,画出了如下四个示意图,则所需管道最短的是()A.B.C.D.二.填空题(满分18分,每小题3分)11.如图,已知∠B=30°,则∠A+∠D+∠C+∠G=°.12.已知点P(3,a)关于y轴的对称点为Q(b,2),则ab=.13.如图,在△ABC中,AB=AC,∠BAD=∠CAD,BD=5cm,则BC=cm.14.课间,顽皮的小刚拿着老师的等腰直角三角板放在黑板上画好了的平面直角坐标系内(如图),已知直角顶点H的坐标为(0,1),另一个顶点G的坐标为(4,4),则点K的坐标为.15.如图,在第1个△A1BC中,∠B=30°,A1B=CB;在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E,…按此做法继续下去,则第n个三角形中以A n为顶点的底角度数是.16.如图,等腰△ABC的底边BC的长为2cm,面积是6cm2,腰AB的垂直平分线EF交AB于点E,交AC于点F.若D为BC边上的中点,M为线段EF上一动点,则△BDM的周长最短为.三.解答题(共8小题,满分72分)17.(8分)在△ABC中,已知∠A=∠B=∠C,按角判断△ABC的形状.18.(8分)如图,点A,B,C,D在同一条直线上,CE∥DF,EC=BD,AC=FD,求证:AE=FB.19.(8分)用一条长为18cm的细绳围成一个等腰三角形.(1)如果腰长是底边长的2倍,求三角形各边的长.(2)能围成有一边的长是4cm的等腰三角形吗?若能,求出其他两边的长;若不能,请说明理由.20.(8分)△ABC在平面直角坐标系中的位置如图所示,其中每个小正方形的边长为1个单位长度.(1)△ABC关于y轴对称图形为△A1B1C1,画出△A1B1C1的图形.(2)求△ABC的面积.21.(8分)在等边三角形ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP=CQ.(1)求证:△ABP≌△CAQ;(2)请判断△APQ是什么形状的三角形?试说明你的结论.22.(10分)综合与实践:操作发现:如图,已知△ABC和△ADE均为等腰三角形,AB=AC,AD=AE,将这两个三角形放置在一起,使点B,D,E在同一直线上,连接CE.(1)如图1,若∠ABC=∠ACB=∠ADE=∠AED=55°,求证:△BAD≌△CAE;(2)在(1)的条件下,求∠BEC的度数;拓广探索:(3)如图2,若∠CAB=∠EAD=120°,BD=4,CF为△BCE中BE边上的高,请直接写出EF的长度.23.(10分)【阅读材料】小明同学发现这样一个规律:两个顶角相等的等腰三角形,如果具有公共的项角的顶点,并把它们的底角顶点连接起来则形成一组全等的三角形,小明把具有这个规律的图形称为“手拉手”图形.如图1,在“手拉手”图形中,小明发现若∠BAC=∠DAE,AB=AC,AD=AE,则△ABD≌△ACE.【材料理解】(1)在图1中证明小明的发现.【深入探究】(2)如图2,△ABC和△AED是等边三角形,连接BD,EC交于点O,连接AO,下列结论:①BD=EC;②∠BOC=60°;③∠AOE=60°;④EO=CO,其中正确的有.(将所有正确的序号填在横线上).【延伸应用】(3)如图3,AB=BC,∠ABC=∠BDC=60°,试探究∠A与∠C的数量关系.24.(12分)如图,在Rt△ABC中,∠BAC=90°,D为BC的中点,将线段AD绕点D顺时针旋转90°,得到线段DE,连接CE,过点D作CE的垂线,与CE交于点F,与线段AB交于点G.(1)依题意补全图形;(2)设∠ABC=α,求∠CDF的度数(用含α的代数式表示);(3)探究DG,DF和CE之间的等量关系,并给出证明.参考答案一.选择题1.解:A、不是轴对称图形,故此选项不合题意;B、不是轴对称图形,故此选项不合题意;C、是轴对称图形,故此选项符合题意;D、不是轴对称图形,故此选项不合题意.故选:C.2.解:正方形,长方形,等腰三角形,平行四边形中只有等腰三角形具有稳定性.故选:C.3.解:设组成三角形的第三边长为x,由题意得:6﹣4<x<6+4,即:2<x<10,故选:B.4.解:∵在△ABC中,∠B=60°,∠C=50°,∴∠BAC=180°﹣60°﹣50°=70°.∵AD平分∠BAC,∴∠BAD=∠BAC=35°.∵在△ABD中,∠BDA=180°﹣∠B﹣∠BAD.∴∠BDA=180°﹣60°﹣35°=85°故选:C.5.解:A、∵在△ABC和△DCB中∴△ABC≌△DCB(ASA),故本选项不符合题意;B、∵∠ABD=∠DCA,∠DBC=∠ACB,∴∠ABD+∠DBC=∠ACD+∠ACB,即∠ABC=∠DCB,∵在△ABC和△DCB中∴△ABC≌△DCB(ASA),故本选项不符合题意;C、∵在△ABC和△DCB中∴△ABC≌△DCB(SAS),故本选项不符合题意;D、根据∠ACB=∠DBC,BC=BC,AB=DC不能推出△ABC≌△DCB,故本选项符合题意;故选:D.6.解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形.故选:C.7.解:∵点P(﹣2,b)和点Q(a,﹣3)关于x轴对称,又∵关于x轴对称的点,横坐标相同,纵坐标互为相反数,∴a=﹣2,b=3.∴a+b=1,故选B.8.解:∵EF∥BC,∴∠EDB=∠DBC,∠FDC=∠DCB,∵△ABC中,∠ABC和∠ACB的平分线相交于点D,∴∠EBD=∠DBC,∠FCD=∠DCB,∴∠EDB=∠EBD,∠FDC=∠FCD,∴ED=EB,FD=FC,∵AB=5,AC=8,∴△AEF的周长为:AE+EF+AF=AE+ED+FD+AF=AE+EB+FC+AF=AB+AC=5+8=13.故选:B.9.解:(1)如图所示:过两把直尺的交点P作PE⊥AO,PF⊥BO,∵两把完全相同的长方形直尺,∴PE=PF,∴OP平分∠AOB(角的内部到角的两边的距离相等的点在这个角的平分线上),故选:A.10.解:作点P关于直线l的对称点C,连接QC交直线l于M.根据两点之间,线段最短,可知选项C铺设的管道最短.故选:C.二.填空题11.解:∵∠B=30°,∴∠BEF+∠BFE=180°﹣30°=150°,∴∠DEF+∠GFE=360°﹣150°=210°.∵∠DEF=∠A+∠D,∠GFE=∠C+∠G,∴∠A+∠D+∠C+∠G=∠DEF+∠GFE=210°,故答案为:210.12.解:∵点P(3,a)关于y轴的对称点为Q(b,2),∴a=2,b=﹣3,∴ab=﹣6,故答案为:﹣6.13.解:∵AB=AC,∠BAD=∠CAD,∴BC=2BD=2CD,∵BD=5cm,∴BC=2BD=10cm,故答案为10.14.解:作GP⊥y轴,KQ⊥y轴,如图,∴∠GPH=∠KQH=90°∵GH=KH,∠GHK=90°,∴∠GHP+∠KHQ=90°.又∠HKQ+∠KHQ=90°∴∠GHP=∠HKQ.在△GPH和△HQK中,Rt△GPH≌Rt△KHQ(AAS),KQ=PH=4﹣1=3;HQ=GP=4.∵QO=QH﹣HO=4﹣1=3,∴K(3,﹣3),故答案为:(3,﹣3).15.解:∵在△CBA1中,∠B=30°,A1B=CB,∴∠BA1C==75°,∵A1A2=A1D,∠BA1C是△A1A2D的外角,∴∠DA2A1=∠BA1C=×75°;同理可得∠EA3A2=()2×75°,∠FA4A3=()3×75°,∴第n个三角形中以A n为顶点的内角度数是()n﹣1×75°.故答案为:()n﹣1×75°.16.解:连接AD,∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S△ABC=BC•AD=×2×AD=6,解得AD=6cm,∵EF是线段AB的垂直平分线,∴点B关于直线EF的对称点为点A,∴AD的长为BM+MD的最小值,∴△BDM的周长最短=(BM+MD)+BD=AD+BC=6+×2=6+1=7cm.故答案为7cm.三.解答题17.解:∵∠A=∠B=∠C,∴∠B=3∠A,∠C=5∠A,∵∠A+∠B+∠C=180°,∴∠A+3∠A+5∠A=180°,∴∠A=20°,∠B=60°,∠C=100°,∴△ABC是钝角三角形.18.证明:∵CE∥DF∴∠ECA=∠FDB,在△ECA和△FDB中,∴△ECA≌△BDF,∴AE=FB.19.解:(1)设底边长为xcm,则腰长为2xcm.依题意,得2x+2x+x=18,解得x=.∴2x=.∴三角形三边的长为cm、cm、cm.(2)若腰长为4cm,则底边长为18﹣4﹣4=10cm.而4+4<10,所以不能围成腰长为4cm的等腰三角形.若底边长为4cm,则腰长为(18﹣4)=7cm.此时能围成等腰三角形,三边长分别为4cm、7cm、7cm.20.解:如图所示,(1)△A1B1C1即为所求;(2)△ABC的面积为:2×3﹣2×2﹣1×1﹣1×3=2;21.证明:(1)∵△ABC为等边三角形,∴AB=AC,∠BAC=60°,在△ABP和△ACQ中,,∴△ABP≌△ACQ(SAS),(2)∵△ABP≌△ACQ,∴∠BAP=∠CAQ,AP=AQ,∵∠BAP+∠CAP=60°,∴∠PAQ=∠CAQ+∠CAP=60°,∴△APQ是等边三角形.22.(1)证明:如图1中,∵∠ABC=∠ACB=∠ADE=∠AED,∴∠EAD=∠CAB,∴∠EAC=∠DAB,∵AE=AD,AC=AB,∴△BAD≌△CAE(SAS).(2)解:如图1中,设AC交BE于O.∵∠ABC=∠ACB=55°,∴∠BAC=180°﹣110°=70°,∵△BAD≌△CAE,∴∠ABO=∠ECO,∵∠EOC=∠AOB,∴∠CEO=∠BAO=70°,即∠BEC=70°.(3)解:如图2中,∵∠CAB=∠EAD=120°,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△BAD≌△CAE(SAS),∴∠BAD=∠ACE,BD=EC=4,同法可证∠BEC=∠BAC=120°,∴∠FEC=60°,∵CF⊥EF,∴∠F=90°,∴∠FCE=30°,∴EF=EC=2.23.(1)证明:∵∠BAC=∠DAE,∴∠BAC+∠CAD=∠DAE+∠CAD,∴∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE;(2)如图2,∵△ABC和△ADE是等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=60°,∴∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE,∴BD=CE,①正确,∠ADB=∠AEC,记AD与CE的交点为G,∵∠AGE=∠DGO,∴180°﹣∠ADB﹣∠DGO=180°﹣∠AEC﹣∠AGE,∴∠DOE=∠DAE=60°,∴∠BOC=60°,②正确,在OB上取一点F,使OF=OC,连接CF,∴△OCF是等边三角形,∴CF=OC,∠OFC=∠OCF=60°=∠ACB,∴∠BCF=∠ACO,∵AB=AC,∴△BCF≌△ACO(SAS),∴∠AOC=∠BFC=180°﹣∠OFC=120°,∴∠AOE=180°﹣∠AOC=60°,③正确,连接AF,要使OC=OE,则有OC=CE,∵BD=CE,∴CF=OF=BD,∴OF=BF+OD,∴BF<CF,∴∠OBC>∠BCF,∵∠OBC+∠BCF=∠OFC=60°,∴∠OBC>30°,而没办法判断∠OBC大于30度,所以,④不一定正确,即:正确的有①②③,故答案为①②③;(3)如图3,延长DC至P,使DP=DB,∵∠BDC=60°,∴△BDP是等边三角形,∴BD=BP,∠DBP=60°,∵∠BAC=60°=∠DBP,∴∠ABD=∠CBP,∵AB=CB,∴△ABD≌△CBP(SAS),∴∠BCP=∠A,∵∠BCD+∠BCP=180°,∴∠A+∠BCD=180°.24.解:(1)图形如图所示.(2)∵∠BAC=90°,BD=CD,∴AD=DB=DC,∴DBA=∠DAB=α,∴∠ADC=∠DBA+∠DAB=2α,∵DA⊥DC,∴∠ADE=90°,∴∠CDE=90°﹣2α,∵DE=DA=DC,DF⊥EC,∴∠CDF=∠EDF=∠CDF=45°﹣α.(3)结论:2(DF﹣DG)=EC.理由:如图,作BH⊥FG交FG于H.∵∠H=90°,∴∠DBH+∠BDH=90°,∵∠BDH=45°﹣α,∴∠DBH=45°+α,∵∠ABC=α,∴∠HBG=45°,∴∠HBG=∠BGH=45°,∴BH=HG,∵∠H=∠DFC=90°,BD=DC,∠BDH=∠CDF,∴△BDH≌△CDF(ASA),∴CF=BH,DF=DH,∵DC=DE,DF⊥EC,∴CF=EF,EC=2CF,∴DF﹣DG=DH﹣DG=HG=BH=CF,∴2(DF﹣DG)=EC.期中测试卷(附答案)《满分:100分时间:90分钟》一.选择题(每题3分,满分36分)1.下列四个腾讯软件图标中,属于轴对称图形的是()A.B.C.D.2.已知三角形的两边分别为4和10,则此三角形的第三边可能是()A.4 B.5 C.9 D.143.如图所示,在下列条件中,不能判断△ABD≌△BAC的条件是()A.∠D=∠C,∠BAD=∠ABC B.∠BAD=∠ABC,∠ABD=∠BACC.BD=AC,∠BAD=∠ABC D.AD=BC,BD=AC4.如图,△ABC中,AB=AC,∠A=40°,则∠B的度数为()A.60°B.70°C.75°D.80°5.若点P(2a﹣1,3)关于y轴对称的点为Q(3,b),则点M(a,b)关于x轴对称的点的坐标为()A.(1,3)B.(﹣1,3)C.(﹣1,﹣3)D.(1,﹣3)6.如图,在Rt△ABC中,∠C=90°,∠B=30°,CD是斜边AB上的高,AD=3cm,则AB的长度是()A.3cm B.6cm C.9cm D.12cm7.下列各选项中的两个图形属于全等形的是()A.B.C.D.8.如图,AD是△ABC的中线,E,F分别是AD和AD延长线上的点,且DE=DF,连接BF,CE、下列说法:①CE=BF;②△ABD和△ACD面积相等;③BF∥CE;④△BDF≌△CDE.其中正确的有()A.1个B.2个C.3个D.4个9.小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB,另一把直尺压住射线OA并且与第一把直尺交于点P,小明说:“射线OP 就是∠BOA的角平分线.”他这样做的依据是()A.角的内部到角的两边的距离相等的点在角的平分线上B.角平分线上的点到这个角两边的距离相等C.三角形三条角平分线的交点到三条边的距离相等D.以上均不正确10.如图,△ABC中,AB=AC,D是BC中点,下列结论中不正确的是()A.∠B=∠C B.AD⊥BC C.AD平分∠BAC D.AB=2BD11.如图,以△ABD的顶点B为圆心,以BD为半径作弧交边AD于点E,分别以点D、点E为圆心,BD长为半径作弧,两弧相交于不同于点B的另一点F,再过点B和点F作直线BF.则作出的直线是()A.线段AD的垂线但不一定平分线段ADB.线段AD的垂直平分线C.∠ABD的平分线D.△ABD的中线12.平面上,若点P与A、B、C三点中的任意两点均构成等腰三角形,则称点P是A、B、C三点的巧妙点.若A、B、C三点构成三角形,也称点P是△ABC的巧妙点.则平面上等边△ABC的巧妙点有()个.A.7 B.8 C.9 D.10二.填空题(满分18分,每小题3分)13.如果将一副三角板按如图方式叠放,那么∠1=.14.一个多边形的每一个外角为30°,那么这个多边形的边数为.15.△ABC中,AB=AC,∠A=∠C,则∠B=度.16.如图,已知△ABC中,AB=AC=16cm,∠B=∠C,BC=10cm,点D为AB的中点,如果点P在线段BC 上以2厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.若当△BPD与△CQP全等时,则点Q运动速度可能为厘米/秒.17.一个三角形的三边为2、5、x,另一个三角形的三边为y、2、6,若这两个三角形全等,则x+y=.18.如图,在△ABC中,AB=6,AC=9,BO、CO分别是∠ABC、∠ACB的平分线,MN经过点O,且MN∥BC,MN分别交AB、AC于点M、N,则△AMN的周长是.三.解答题(共7小题,满分46分)19.(6分)如图,在平面直角坐标系中,△ABC 的三个顶点分别为A (﹣1,﹣1)、B (﹣3,3)、C (﹣4,1)(1)画出△ABC 关于y 轴对称的△A 1B 1C 1,并写出点B 的对应点B 1的坐标;(2)画出△ABC 绕点A 按顺时针旋转90°后的△AB 2C 2,并写出点C 的对应点C 2的坐标.20.(6分)如图,在四边形ABCD 中,∠B +∠ADC =180°,CE 平分∠BCD 交AB 于点E ,连结DE . (1)若∠A =50°,∠B =85°,求∠BEC 的度数; (2)若∠A =∠1,求证:∠CDE =∠DCE .21.(6分)问题1现有一张△ABC 纸片,点D 、E 分别是△ABC 边上两点,若沿直线DE 折叠.研究(1):如果折成图①的形状,使A 点落在CE 上,则∠1与∠A 的数量关系是 研究(2):如果折成图②的形状,猜想∠1+∠2和∠A 的数量关系是 研究(3):如果折成图③的形状,猜想∠1、∠2和∠A 的数量关系,并说明理由. 问题2研究(4):将问题1推广,如图④,将四边形ABCD 纸片沿EF 折叠,使点A 、B 落在四边形EFCD 的内部时,∠1+∠2与∠A、∠B之间的数量关系是.22.(6分)如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.23.(6分)如图,在△ABC中,AB=AC,AD是BC边上的中线,E是AC边上的一点,且∠CBE=∠CAD.求证:BE⊥AC.24.(8分)如图,在△ABC中,∠ABC=60°,AD、CE分别平分∠BAC、∠ACB,求证:AC=AE+CD.25.(8分)如图,在△ABC中,AB边的垂直平分线l1交BC于D,AC边的垂直平分线l2交BC于E,l1与l2相交于点O,△ADE的周长为6cm.∠BAC=110°(1)求BC的长及∠DAE的度数;(2)分别连结OA、OB、OC,若△OBC的周长为16cm,求OA的长.参考答案一.选择题1.解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选:D.2.解:设此三角形第三边的长为x,则10﹣4<x<10+4,即6<x<14,四个选项中只有9符合条件.故选:C.3.解:A、符合AAS,能判断△ABD≌△BAC;B、符合ASA,能判断△ABD≌△BAC;C、不能判断△ABD≌△BAC;D、符合SSS,能判断△ABD≌△BAC.故选:C.4.解:∵AB=AC,∴∠B=∠C,∵∠A=40°,∴∠B=(180°﹣40°)÷2=70°.故选:B.5.解:∵点P(2a﹣1,3)关于y轴对称的点为Q(3,b),∴2a﹣1=﹣3,b=3,解得:a=﹣1,故M(﹣1,3),关于x轴对称的点的坐标为:(﹣1,﹣3).故选:C.6.解:在Rt△ABC中,∵CD是斜边AB上的高,∴∠ADC=90°,∴∠ACD=∠B=30°(同角的余角相等),∵AD=3cm,在Rt△ACD中,AC=2AD=6cm,在Rt△ABC中,AB=2AC=12cm.∴AB的长度是12cm.故选:D.7.解:A、两个图形属于全等形,故此选项符合题意;B、两个图形不属于全等形,故此选项不符合题意;C、两个图形不属于全等形,故此选项不符合题意;D、两个图形不属于全等形,故此选项不符合题意;故选:A.8.解:∵AD是△ABC的中线,∴BD=CD,又∠CDE=∠BDF,DE=DF,∴△BDF≌△CDE,故④正确;由△BDF≌△CDE,可知CE=BF,故①正确;∵AD是△ABC的中线,∴△ABD和△ACD等底等高,∴△ABD和△ACD面积相等,故②正确;由△BDF≌△CDE,可知∠FBD=∠ECD∴BF∥CE,故③正确.故选:D.9.解:(1)如图所示:过两把直尺的交点P作PE⊥AO,PF⊥BO,∵两把完全相同的长方形直尺,∴PE=PF,∴OP平分∠AOB(角的内部到角的两边的距离相等的点在这个角的平分线上),故选:A.10.解:∵△ABC中,AB=AC,D是BC中点∴∠B=∠C,(故A正确)AD⊥BC,(故B正确)∠BAD=∠CAD(故C正确)无法得到AB=2BD,(故D不正确).故选:D.11.解:由题意可知,BF是线段ED的垂直平分线,垂直AD但不一定平分AD,故选:A.12.解:(1)点P在三角形内部时,点P是边AB、BC、CA的垂直平分线的交点,是三角形的外心,(2)点P在三角形外部时,一个对称轴上有三个点,如图:共有9个点符合要求,∴具有这种性质的点P共有10个.故选:D.二.填空题13.解:给图中角标上序号,如图所示.∵∠2+∠3+45°=180°,∠2=30°,∴∠3=180°﹣30°﹣45°=105°,∴∠1=∠3=105°.故答案为:105°.14.解:多边形的边数:360°÷30°=12,则这个多边形的边数为12.故答案为:12.15.解:∵△ABC中,AB=AC∴∠B=∠C∵∠A=∠C∴∠A=∠C=∠B=60°故填60.16.解:∵AB=16cm,BC=10cm,点D为AB的中点,∴BD=×16=8cm,设点P、Q的运动时间为t,则BP=2t,PC=(10﹣2t)cm①当BD=PC时,10﹣2t=8,解得:t=1,则BP=CQ=2,故点Q的运动速度为:2÷1=2(厘米/秒);②当BP=PC时,∵BC=10cm,∴BP=PC=5cm,∴t=5÷2=2.5(秒).故点Q的运动速度为8÷2.5=3.2(厘米/秒).故答案为:2或3.2.17.解:∵这两个三角形全等,两个三角形中都有2∴长度为2的是对应边,x应是另一个三角形中的边6.同理可得y=5∴x+y=11.故答案为:11.18.解:∵在△ABC中,∠BAC与∠ACB的平分线相交于点O,∴∠ABO=∠OBC,∠ACO=∠BCO,∵MN∥BC,∴∠MOB=∠OBC,∠NOC=∠OCB,∴∠ABO=∠MOB,∠ACO=∠NOC,∴BM=OM,CN=ON,∴△AMN的周长是:AM+NM+AN=AM+OM+ON+AN=AM+BM+CN+AN=AB+AC=9+6=15.故答案为:15.三.解答题19.解:(1)如图(1)所示,△A1B1C1即为所求,其中B1的坐标为(3,3).(2)如图(2)所示,△AB2C2即为所求,C2的坐标为(1,2).20.(1)解:∵∠B+∠ADC=180°,∠A+∠B+∠BCD+∠ADC=360°,∴∠A+∠BCD=180°,∵∠A=50°,∴∠BCD=130°,∵CE平分∠BCD,∴∠BCE=∠BCD=65°,∵∠B=85°,∴∠BEC=180°﹣∠BCE﹣∠B=180°﹣65°﹣85°=30°;(2)证明:∵由(1)知:∠A+∠BCD=180°,∴∠A+∠BCE+∠DCE=180°,∵∠CDE+∠DCE+∠1=180°,∠1=∠A,∴∠BCE=∠CDE,∵CE平分∠BCD,∴∠DCE=∠BCE,∴∠CDE=∠DCE.21.解:(1)如图1,∠1=2∠A,理由是:由折叠得:∠A=∠DA′A,∵∠1=∠A+∠DA′A,∴∠1=2∠A;故答案为:∠1=2∠A;(2)如图2,猜想:∠1+∠2=2∠A,理由是:由折叠得:∠ADE=∠A′DE,∠AED=∠A′ED,∵∠ADB+∠AEC=360°,∴∠1+∠2=360°﹣∠ADE﹣∠A′DE﹣∠AED﹣∠A′ED=360°﹣2∠ADE﹣2∠AED,∴∠1+∠2=2(180°﹣∠ADE﹣∠AED)=2∠A;故答案为:∠1+∠2=2∠A;(3)如图3,∠2﹣∠1=2∠A,理由是:∵∠2=∠AFE+∠A,∠AFE=∠A′+∠1,∴∠2=∠A′+∠A+∠1,∵∠A=∠A′,∴∠2=2∠A+∠1,∴∠2﹣∠1=2∠A;(4)如图4,由折叠得:∠BMN=∠B′MN,∠ANM=∠A′NM,∵∠DNA+∠BMC=360°,∴∠1+∠2=360°﹣2∠BMN﹣2∠ANM,∵∠BMN+∠ANM=360°﹣∠A﹣∠B,∴∠1+∠2=360°﹣2(360°﹣∠A﹣∠B)=2(∠A+∠B)﹣360°,故答案为:∠1+∠2=2(∠A+∠B)﹣360°.22.证明:(1)∵AD∥BC(已知),∴∠ADC=∠ECF(两直线平行,内错角相等),∵E是CD的中点(已知),∴DE=EC(中点的定义).∵在△ADE与△FCE中,,∴△ADE≌△FCE(ASA),∴FC=AD(全等三角形的性质).(2)∵△ADE≌△FCE,∴AE=EF,AD=CF(全等三角形的对应边相等),∴BE是线段AF的垂直平分线,∴AB=BF=BC+CF,∵AD=CF(已证),∴AB=BC+AD(等量代换).23.证明:∵AB=AC,AD是BC边上的中线,∴AD⊥BC,∴∠CAD+∠C=90°,又∵∠CBE=∠CAD,∴∠CBE+∠C=90°,∴BE⊥AC.24.证明:在AC上取AF=AE,连接OF,∵AD平分∠BAC、∴∠EAO=∠FAO,在△AEO与△AFO中,∴△AEO≌△AFO(SAS),∴∠AOE=∠AOF;∵AD、CE分别平分∠BAC、∠ACB,∴∠ECA+∠DAC=∠ACB+∠BAC=(∠ACB+∠BAC)=(180°﹣∠B)=60°则∠AOC=180°﹣∠ECA﹣∠DAC=120°;∴∠AOC=∠DOE=120°,∠AOE=∠COD=∠AOF=60°,则∠COF=60°,∴∠COD=∠COF,∴在△FOC与△DOC中,,∴△FOC≌△DOC(ASA),∴DC=FC,∵AC=AF+FC,∴AC=AE+CD.25.解:(1)∵在△ABC中,AB边的垂直平分线l1交BC于D,AC边的垂直平分线l2交BC于E,l1与l2相交于点O,△ADE的周长为6cm,∠BAC=110°,∴DA=DB,EA=EC,AD+DE+AE=6,∠B+∠C=70°,∴BD+DE+EC=6,∠B=∠BAD,∠C=∠EAC,∴BC=6cm,∠DAE=110°﹣70°=40°,即BC的长是6cm,∠DAE的度数是40°;(2)由题意可得,OA=OB,OA=OC,BC=6cm,∴OB=OC,∵△OBC的周长为16cm,∴OB=OC=5cm,∴OA=5cm,即OA的长是5cm.。
(完整版)新人教版八年级上册数学期中考试试卷及答案
(完整版)新人教版八年级上册数学期中考试试卷及答案(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整版)新人教版八年级上册数学期中考试试卷及答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整版)新人教版八年级上册数学期中考试试卷及答案(word版可编辑修改)的全部内容。
D21.(10分)已知:如图12全等;平行∵BE=FC∴BE+CE=CE+CF∴BC=EF在△ABC和△DEF中,AB=DFAC=DEBC=EF∴△ABC≌△DEF(SSS)∴∠B=∠F∴AB∥DF21.证明:∵DE⊥AC. BF⊥AC∴△CDE和△ABF都是Rt△在Rt△CDE和Rt△ABF中DE=BFAB=CD∴Rt△CDE≌Rt△ABF(HL)∴AF=CE∴∠C=∠A∴AB∥CD22.(1)图略(2)由题意知,面积为2×5×1/2=5(3) D (0,- 4)E (2,— 4)F (3, 1 )23.证明:∠CED是△BDE的外角∴∠CED=∠B+∠BDE又∠DEF=∠B∴∠CEF=∠BDE在△BDE和△CEF中∠B=∠CBD=CE∠CEF=∠BDE∴△BDE≌△CEF(ASA)∴DE=EF。
八年级(上学期)期中数学试卷3+参考答案与试题解析(人教版)
八年级(上)期中数学试卷一、选择题(本大题共8小题,每小题3分,共24分)1.在天气预报图上,有各种各样表示天气的符号,下列表示天气符号的图形中,是轴对称图形的有()A.1个B.2个C.3个D.4个2.如图,a、b、c分别表示△ABC的三边长,则下面与△ABC一定全等的三角形是()A.B. C.D.3.已知点P(﹣2,3)关于y轴的对称点为Q(a,b),则a+b的值是()A.1 B.﹣1 C.5 D.﹣54.若x,y的值均扩大为原来的2倍,则下列分式的值保持不变的是()A.B.C.D.5.若a:b=4:3,且b2=ac,则b:c等于()A.2:3 B.3:2 C.4:3 D.3:46.学完分式运算后,老师出了一道题“化简:”.小明的做法是:原式=;小亮的做法是:原式=(x+3)(x﹣2)+(2﹣x)=x2+x﹣6+2﹣x=x2﹣4;小芳的做法是:原式=.其中正确的是()A.小明B.小亮C.小芳D.没有正确的7.如图,Rt△ABC中,AD是∠BAC的平分线,DE⊥AB,垂足为E,若AB=10cm,AC=6cm,则BE的长度为()A.10cm B.6cm C.4cm D.2cm8.已知两个分式:,,其中x≠±2,则A与B的关系是()A.相等B.互为倒数C.互为相反数 D.A大于B二、填空题(本大题共8小题,每小题3分,共24分)9.如图,点C、D在BE上,BC=DE,∠1=∠2,要使得△ABD≌△AEC,还需要添加一个边或角的条件,你添加的条件是.10.如图,在△ABC中,AB=AC,BF=CD,BD=CE.若∠A=40°,则∠FDE=°.11.如图,已知直线l1∥l2,将等边三角形如图放置,若∠α=40°,则∠β等于.12.如图,若∠A=15°,AB=BC=CD=DE=EF,则∠DEF等于.13.如图,AB⊥AC,点D在BC的延长线上,且AB=AC=CD,则∠ADB=°.14.如图,在△ABC中,∠ABC与∠ACB的平分线交于点O,过点O作DE∥BC,分别交AB、AC于点D、E.若△ADE的周长为9,△ABC的周长是14,则BC=.15.如图所示,AB=AC=10m,作AB的垂直平分线ED交AC于D,交AB于E,量得△BDC的周长为17m,请你计算BC的长是.16.如图(1),四边形ABCD中,∠B=120°,∠D=50°,如图(2),将纸片右下角沿直线PR向内翻折得到一△PCR,若CP∥AB,RC∥AD,则∠C为.三、解答题(本大题共9小题,共72分)17.(6分)作图题:(简要写出作法,保留作图痕迹)如图,已知点M,N和∠AOB,求作一点P,使P到点M,N的距离相等,且到∠AOB的两边的距离相等.18.(8分)(1)计算:÷(﹣x﹣2)(2)先化简,再求值:(﹣)•,其中x=﹣3.19.(7分)如图所示,点D在AC上,点E在AB上,且AB=AC,BC=BD,AD=DE=EB,求∠A的度数.20.(8分)已知线段a,b,c满足==,且a+2b+c=26.①求a,b,c的值;②若线段x是线段6a,b的比例中项,求x.21.(8分)如图所示,在△ABC中,∠C=90°,AD平分∠CAB,BC=8cm,BD=5cm,求点D到直线AB的距离.22.(8分)如图所示,AB=AC,DB=DC,E是AD延长线上的一点,BE是否与CE相等?试说明理由.23.(8分)已知,如图,AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F,求证:DE=DF.24.(10分)已知△ABN和△ACM位置如图所示,AB=AC,AD=AE,∠1=∠2.(1)求证:BD=CE;(2)求证:∠M=∠N.25.(9分)如图,△ABC中,AB=AC=2,∠B=∠C=40°.点D在线段BC上运动(点D不与B、C重合),连接AD,作∠ADE=40°,DE交线段AC于E.(1)当∠BAD=20°时,∠EDC=°;(2)当DC等于多少时,△ABD≌△DCE?试说明理由;(3)△ADE能成为等腰三角形吗?若能,请直接写出此时∠BAD的度数;若不能,请说明理由.八年级(上)期中数学试卷参考答案一、选择题(本大题共8小题,每小题3分,共24分)1.C;2.B;3.C;4.A;5.C;6.C;7.C;8.C;二、填空题(本大题共8小题,每小题3分,共24分)9、(答案不唯一)如:∠B=∠E ; ∠BCA=∠EDA ; ∠BDA=∠ECA ;AB=AE.等10、70°11、20° 12、60° 13、 22.5° 14、5 15、7m 16、95°三、(注意事项:1.不写解题过程者不得分;2.不写解者每小题扣0.5分 3.证明题过程不唯一合理即可。
人教版八年级上册数学《期中》考试及答案【可打印】
人教版八年级上册数学《期中》考试及答案【可打印】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.-2的倒数是( )A .-2B .12-C .12D .22.到三角形三个顶点的距离相等的点是三角形( )的交点.A .三个内角平分线B .三边垂直平分线C .三条中线D .三条高 3.化简二次根式 22a a a +-的结果是( ) A .2a -- B .-2a --C .2a -D .-2a - 4.关于x 的一元一次不等式≤﹣2的解集为x ≥4,则m 的值为( ) A .14 B .7 C .﹣2 D .25.已知一个多边形的内角和为1080°,则这个多边形是( )A .九边形B .八边形C .七边形D .六边形6.如图,有一块直角三角形纸片,两直角边6cm AC =,8cm BC =.现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( )A .2cmB .3cmC .4cmD .5cm7.如图,∠B=∠C=90°,M 是BC 的中点,DM 平分∠ADC ,且∠ADC=110°,则∠MAB=()A.30°B.35°C.45°D.60°8.如图,已知点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A.48 B.60C.76 D.809.如图,在下列条件中,不能证明△ABD≌△ACD的是().A.BD=DC,AB=AC B.∠ADB=∠ADC,BD=DCC.∠B=∠C,∠BAD=∠CAD D.∠B=∠C,BD=DC10.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b.若ab=8,大正方形的面积为25,则小正方形的边长为()A.9 B.6 C.4 D.3二、填空题(本大题共6小题,每小题3分,共18分)1273________.2.若关于x 的方程2134416x m m x x ++=-+-无解,则m 的值为__________. 3.若分式1x x-的值为0,则x 的值为________. 4.观察下列各式:111233+=,112344+=,113455+=,……请你将发现的规律用含自然数n (n ≥1)的等式表示出来__________________.5.如图,∠1,∠2,∠3的大小关系是________.6.如图,在ABC 中,点D 是BC 上的点,40BAD ABC ︒∠=∠=,将ABD ∆沿着AD 翻折得到AED ,则CDE ∠=______°.三、解答题(本大题共6小题,共72分)1.解方程23111x x x -=--.2.先化简,后求值:(5a 5a (a ﹣2),其中a=12+2.3.已知关于x 的一元二次方程2(4)240x m x m -+++=.(1)求证:该一元二次方程总有两个实数根;(2)若12,x x 为方程的两个根,且22124n x x =+-,判断动点(,)P m n 所形成的数图象是否经过点(5,9)A -,并说明理由.4.如图,直线y=kx+b经过点A(-5,0),B(-1,4)(1)求直线AB的表达式;(2)求直线CE:y=-2x-4与直线AB及y轴围成图形的面积;(3)根据图象,直接写出关于x的不等式kx+b>-2x-4的解集.5.如图,四边形ABCD的四个顶点分别在反比例函数myx=与nyx=(x>0,0<m<n)的图象上,对角线BD//y轴,且BD⊥AC于点P.已知点B的横坐标为4.(1)当m=4,n=20时.①若点P的纵坐标为2,求直线AB的函数表达式.②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.6.我校组织一批学生开展社会实践活动,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满.已知45座客车租金为每辆220元,60座客车租金为每辆300元.(1)这批学生的人数是多少?原计划租用45座客车多少辆?(2)若租用同一种客车,要使每位学生都有座位,应该怎样租用合算?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、B4、D5、B6、B7、B8、C9、D10、D二、填空题(本大题共6小题,每小题3分,共18分)1、2、-1或5或1 3 -3、1.4(1)n n=+≥5、∠1<∠2<∠36、20三、解答题(本大题共6小题,共72分)1、2x=2、43、(1)见解析;(2)经过,理由见解析4、(1)y=x+5;(2)272;(3)x>-3.5、(1)①132y x=-+;②四边形ABCD是菱形,理由略;(2)四边形ABCD能是正方形,理由略,m+n=32.6、(1)240人,原计划租用45座客车5辆;(2)租4辆60座客车划算.。
人教版八年级上册数学《期中》考试卷及答案【完美版】
人教版八年级上册数学《期中》考试卷及答案【完美版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.下列说法中正确的是( )A .若0a <,则20a <B .x 是实数,且2x a =,则0a >C .x -有意义时,0x ≤D .0.1的平方根是0.01±2.将抛物线23y x =-平移,得到抛物线23(1)2y x =---,下列平移方式中,正确的是( )A .先向左平移1个单位,再向上平移2个单位B .先向左平移1个单位,再向下平移2个单位C .先向右平移1个单位,再向上平移2个单位D .先向右平移1个单位,再向下平移2个单位3.式子12a a +-有意义,则实数a 的取值范围是( ) A .a ≥-1 B .a ≠2 C .a ≥-1且a ≠2 D .a >24.如图,在四边形ABCD 中,∠A=140°,∠D=90°,OB 平分∠ABC ,OC 平分∠BCD ,则∠BOC=( )A .105°B .115°C .125°D .135°52(21)12a a -=-,则a 的取值范围是( )A .12a <B .12a ≤C .12a >D .12a ≥ 6.如图,有一块直角三角形纸片,两直角边6cm AC =,8cm BC =.现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( )A .2cmB .3cmC .4cmD .5cm7.关于x 的一元二次方程2(1)210k x x +-+=有两个实数根,则k 的取值范围是( )A .0k ≥B .0k ≤C .0k <且1k ≠-D .0k ≤且1k ≠-8.甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是( )A .B .C .D .9.如图,点A ,B ,C 在一次函数2y x m =-+的图象上,它们的横坐标依次为1-,1,2,分别过这些点作x 轴与y 轴的垂线,则图中阴影部分的面积之和是( )A .1B .3C .3(1)m -D .3(2)2m - 10.如图,∠ACD 是△ABC 的外角,CE 平分∠ACD ,若∠A=60°,∠B=40°,则∠ECD 等于( )A .40°B .45°C .50°D .55°二、填空题(本大题共6小题,每小题3分,共18分)1.已知1<x <52(1)x -+|x-5|=________.2.如果a的平方根是3±,则a=_________.3.若一个正数的两个平方根分别是a+3和2﹣2a,则这个正数的立方根是________.4.如图,将周长为8的△ABC沿BC方向向右平移1个单位得到△DEF,则四边形ABFD的周长为_____________.5.如图,在△ABC和△DBC中,∠A=40°,AB=AC=2,∠BDC=140°,BD=CD,以点D为顶点作∠MDN=70°,两边分别交AB,AC于点M,N,连接MN,则△AMN的周长为___________.6.如图,四边形ABCD中,AB=AD,AC=5,∠DAB=∠DCB=90°,则四边形ABCD的面积为_____.三、解答题(本大题共6小题,共72分)1.解不等式(1)7252x x-+≥(2)111 32x x-+-<2.先化简再求值:(a﹣22ab ba-)÷22a ba-,其中2b=123.已知关于x的分式方程311(1)(2)x kx x x-+=++-的解为非负数,求k的取值范围.4.我市某中学有一块四边形的空地ABCD,如图所示,为了绿化环境,学校计划在空地上种植草皮,经测量∠A=90°,AB=3m,DA=4m,BC=12m,CD=13m.(1)求出空地ABCD的面积.(2)若每种植1平方米草皮需要200元,问总共需投入多少元?5.如图,在四边形ABCD中,E是AB的中点,AD//EC,∠AED=∠B.(1)求证:△AED≌△EBC;(2)当AB=6时,求CD的长.6.为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.(1)求足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、D3、C4、B5、B6、B7、D8、D9、B10、C二、填空题(本大题共6小题,每小题3分,共18分)1、42、813、44、10.5、46、12.5三、解答题(本大题共6小题,共72分)1、(1)2x ≥;(2)11x >-2、原式=a b a b -=+3、8k ≥-且0k ≠.4、(1)36;(2)7200元.5、(1)略;(2)CD =36、(1)一个足球的单价103元、一个篮球的单价56元;(2)学校最多可以买9个足球.。
部编人教版八年级数学上册期中考试及答案【完整】
部编人教版八年级数学上册期中考试及答案【完整】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.2的相反数是( )A .12-B .12C .2D .2-2.若正多边形的内角和是540︒,则该正多边形的一个外角为( ) A .45︒B .60︒C .72︒D .90︒ 3.解分式方程11222x x x-=---时,去分母变形正确的是( ) A .()1122x x -+=---B .()1122x x -=--C .()1122x x -+=+-D .()1122x x -=---4.点C 在x 轴上方,y 轴左侧,距离x 轴2个单位长度,距离y 轴3个单位长度,则点C 的坐标为( )A .(2,3)B .(-2,-3)C .(-3,2)D .(3,-2) 5.代数式131x x -+-中x 的取值范围在数轴上表示为( ) A .B .C .D .6.如图,△ABC 的面积为3,BD :DC =2:1,E 是AC 的中点,AD 与BE 相交于点P ,那么四边形PDCE 的面积为( )A .13B .710C .35D .13207.在平面直角坐标中,点M(-2,3)在( )A .第一象限B .第二象限C .第三象限D .第四象限8.如图,在▱ABCD 中,已知AD=5cm ,AB=3cm ,AE 平分∠BAD 交BC 边于点E ,则EC 等于 ( )A .1cmB .2cmC .3cmD .4cm9.如图,菱形ABCD 的周长为28,对角线AC ,BD 交于点O ,E 为AD 的中点,则OE 的长等于( )A .2B .3.5C .7D .1410.如图,AD ,CE 分别是△ABC 的中线和角平分线.若AB=AC ,∠CAD=20°,则∠ACE 的度数是( )A .20°B .35°C .40°D .70°二、填空题(本大题共6小题,每小题3分,共18分)1.9的平方根是_________.2.当m =____________时,解分式方程533x m x x-=--会出现增根. 3.如果22(1)4x m x +-+是一个完全平方式,则m =__________.4.如图,▱ABCD 中,AB =3cm ,BC =5cm ,BE 平分∠ABC 交AD 于E 点,CF 平分∠BCD 交AD 于F 点,则EF 的长为________m .5.如图:在△ABC 中,AB=13,BC=12,点D ,E 分别是AB ,BC 的中点,连接DE ,CD ,如果DE=2.5,那么△ACD 的周长是________.6.如图,已知点E 在正方形ABCD 的边AB 上,以BE 为边向正方形ABCD 外部作正方形BEFG ,连接DF ,M 、N 分别是DC 、DF 的中点,连接MN.若AB=7,BE=5,则MN=________.三、解答题(本大题共6小题,共72分)1.解下列分式方程:(1)32111x x =+-- (2)2531242x x x-=---2.先化简,再求值:22121244x x x x x x +-⎛⎫-÷ ⎪--+⎝⎭,其中3x =3.已知关于x 的一元二次方程22(21)10x m x m +++-=有两不相等的实数根. ①求m 的取值范围.②设x 1,x 2是方程的两根且221212170x x x x ++-=,求m 的值.4.如图,在ABC 中,ACB 90∠=,AC BC =,D 是AB 边上一点(点D 与A ,B 不重合),连结CD ,将线段CD 绕点C 按逆时针方向旋转90得到线段CE ,连结DE 交BC 于点F ,连接BE .1()求证:ACD≌BCE;()当AD BF2∠的度数.=时,求BEF5.如图,在长方形OABC中,O为平面直角坐标系的原点,点A坐标为(a,0),点C的坐标为(0,b),且a、b满足4a-+|b﹣6|=0,点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O﹣C﹣B﹣A﹣O的线路移动.(1)a= ,b= ,点B的坐标为;(2)当点P移动4秒时,请指出点P的位置,并求出点P的坐标;(3)在移动过程中,当点P到x轴的距离为5个单位长度时,求点P移动的时间.6.去冬今春,我市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜各有多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.则运输部门安排甲、乙两种货车时有几种方案?请你帮助设计出来;(3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、C3、D4、C5、A6、B7、B8、B9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、±32、23、-1或34、15、186、132三、解答题(本大题共6小题,共72分)1、(1)x=2;(2)32x =-2、3x3、①54m >-,②m 的值为53.4、()1略;()2BEF 67.5∠=.5、(1)4,6,(4,6);(2)点P 在线段CB 上,点P 的坐标是(2,6);(3)点P 移动的时间是2.5秒或5.5秒.6、(1)饮用水和蔬菜分别为200件和120件(2)设计方案分别为:①甲车2辆,乙车6辆;②甲车3辆,乙车5辆;③甲车4辆,乙车4辆(3)运输部门应选择甲车2辆,乙车6辆,可使运费最少,最少运费是2960元。
人教版八年级上册数学 期中精选试卷综合测试卷(word含答案)
人教版八年级上册数学 期中精选试卷综合测试卷(word 含答案)一、八年级数学全等三角形解答题压轴题(难)1.如图,在ABC 中,45ABC ∠=,AD ,BE 分别为BC ,AC 边上的高,连接DE ,过点D 作DF DE ⊥与点F ,G 为BE 中点,连接AF ,DG .(1)如图1,若点F 与点G 重合,求证:AF DF ⊥;(2)如图2,请写出AF 与DG 之间的关系并证明.【答案】(1)详见解析;(2)AF=2DG,且AF ⊥DG,证明详见解析.【解析】【分析】(1) 利用条件先△DAE ≌△DBF,从而得出△FDE 是等腰直角三角形,再证明△AEF 是等腰直角三角形,即可.(2) 延长DG 至点M,使GM=DG,交AF 于点H,连接BM, 先证明△BGM ≌△EGD,再证明△BDM ≌△DAF 即可推出.【详解】解:(1)证明:设BE 与AD 交于点H..如图,∵AD,BE 分别为BC,AC 边上的高,∴∠BEA=∠ADB=90°.∵∠ABC=45°,∴△ABD 是等腰直角三角形.∴AD=BD.∵∠AHE=∠BHD,∴∠DAC=∠DBH.∵∠ADB=∠FDE=90°,∴∠ADE=∠BDF.∴△DAE ≌△DBF.∴BF=AE,DF=DE.∴△FDE是等腰直角三角形.∴∠DFE=45°.∵G为BE中点,∴BF=EF.∴AE=EF.∴△AEF是等腰直角三角形.∴∠AFE=45°.∴∠AFD=90°,即AF⊥DF.(2)AF=2DG,且AF⊥DG.理由:延长DG至点M,使GM=DG,交AF于点H,连接BM,∵点G为BE的中点,BG=GE.∵∠BGM∠EGD,∴△BGM≌△EGD.∴∠MBE=∠FED=45°,BM=DE.∴∠MBE=∠EFD,BM=DF.∵∠DAC=∠DBE,∴∠MBD=∠MBE+∠DBE=45°+∠DBE.∵∠EFD=45°=∠DBE+∠BDF,∴∠BDF=45°-∠DBE.∵∠ADE=∠BDF,∴∠ADF=90°-∠BDF=45°+∠DBE=∠MBD.∵BD=AD,∴△BDM≌△DAF.∴DM=AF=2DG,∠FAD=∠BDM.∵∠BDM+∠MDA=90°,∴∠MDA+∠FAD=90°.∴∠AHD=90°.∴AF⊥DG.∴AF=2DG,且AF⊥DG【点睛】本题考查三角形全等的判定和性质,关键在于灵活运用性质.2.在四边形ABCD 中,E 为BC 边中点.(Ⅰ)已知:如图,若AE 平分∠BAD,∠AED=90°,点F 为AD 上一点,AF=AB.求证:(1)△ABE≌AFE;(2)AD=AB+CD(Ⅱ)已知:如图,若AE 平分∠BAD,DE 平分∠ADC,∠AED=120°,点F,G 均为AD上的点,AF=AB,GD=CD.求证:(1)△GEF 为等边三角形;(2)AD=AB+12BC+CD.【答案】(Ⅰ)(1)证明见解析;(2)证明见解析;(Ⅱ)(1)证明见解析;(2)证明见解析.【解析】【分析】(Ⅰ)(1)运用SAS证明△ABE≌AFE即可;(2)由(1)得出∠AEB=∠AEF,BE=EF,再证明△DEF≌△DEC(SAS),得出DF=DC,即可得出结论;(Ⅱ)(1)同(Ⅰ)(1)得△ABE≌△AFE(SAS),△DGE≌△DCE(SAS),由全等三角形的性质得出BE=FE,∠AEB=∠AEF,CE=GE,∠CED=∠GED,进而证明△EFG是等边三角形;(2)由△EFG是等边三角形得出GF=EE=BE=12BC,即可得出结论.【详解】(Ⅰ)(1)∵AE平分∠BAD,∴∠BAE=∠FAE,在△ABE 和△AFE 中,AB AF BAE FAE AE AE ⎪∠⎪⎩∠⎧⎨===,∴△ABE ≌△AFE (SAS ),(2)∵△ABE ≌△AFE ,∴∠AEB=∠AEF ,BE=EF ,∵E 为BC 的中点,∴BE=CE ,∴FE=CE ,∵∠AED=∠AEF+∠DEF=90°,∴∠AEB+∠DEC=90°,∴∠DEF=∠DEC ,在△DEF 和△DEC 中,FE CE DEF DEC DE DE ⎪∠⎪⎩∠⎧⎨===,∴△DEF ≌△DEC (SAS ),∴DF=DC ,∵AD=AF+DF ,∴AD=AB+CD ;(Ⅱ)(1)∵E 为BC 的中点,∴BE=CE=12BC , 同(Ⅰ)(1)得:△ABE ≌△AFE (SAS ),△DEG ≌△DEC (SAS ),∴BE=FE ,∠AEB=∠AEF ,CE=GE ,∠CED=∠GED ,∵BE=CE ,∴FE=GE ,∵∠AED=120°,∠AEB+∠CED=180°-120°=60°,∴∠AEF+∠GED=60°,∴∠GEF=60°,∴△EFG 是等边三角形,(2)∵△EFG 是等边三角形,∴GF=EF=BE=12BC , ∵AD=AF+FG+GD ,∴AD=AB+CD+12 BC.【点睛】本题考查了全等三角形的判定与性质、等边三角形的判定与性质等知识;熟练掌握等边三角形的判定与性质,证明三角形全等是解题的关键.3.已知△ABC中,AB=AC,点P是AB上一动点,点Q是AC的延长线上一动点,且点P从B运动向A、点Q从C运动向Q移动的时间和速度相同,PQ与BC相交于点D,若AB=82,BC=16.(1)如图1,当点P为AB的中点时,求CD的长;(2)如图②,过点P作直线BC的垂线,垂足为E,当点P、Q在移动的过程中,设BE+CD=λ,λ是否为常数?若是请求出λ的值,若不是请说明理由.【答案】(1)4;(2)8【解析】【分析】(1)过P点作PF∥AC交BC于F,由点P和点Q同时出发,且速度相同,得出BP=CQ,根据PF∥AQ,可知∠PFB=∠ACB,∠DPF=∠CQD,则可得出∠B=∠PFB,证出BP=PF,得出PF=CQ,由AAS证明△PFD≌△QCD,得出,再证出F是BC的中点,即可得出结果;(2)过点P作PF∥AC交BC于F,易知△PBF为等腰三角形,可得BE=12BF,由(1)证明方法可得△PFD≌△QCD 则有CD=12CF,即可得出BE+CD=8.【详解】解:(1)如图①,过P点作PF∥AC交BC于F,∵点P 和点Q 同时出发,且速度相同,∴BP=CQ ,∵PF ∥AQ ,∴∠PFB=∠ACB ,∠DPF=∠CQD ,又∵AB=AC ,∴∠B=∠ACB ,∴∠B=∠PFB ,∴BP=PF ,∴PF=CQ ,又∠PDF=∠QDC ,∴△PFD ≌△QCD ,∴DF=CD=12CF , 又因P 是AB 的中点,PF ∥AQ , ∴F 是BC 的中点,即FC=12BC=8, ∴CD=12CF=4; (2)8BE CD λ+==为定值.如图②,点P 在线段AB 上,过点P 作PF ∥AC 交BC 于F ,易知△PBF 为等腰三角形,∵PE ⊥BF∴BE=12BF ∵易得△PFD ≌△QCD∴CD=12CF ∴()111182222BE CD BF CF BF CF BC λ+==+=+== 【点睛】 此题考查了等腰三角形的性质,全等三角形的判断与性质,熟悉相关性质定理是解题的关键.4.已知:在ABC ∆中,,90AB AC BAC =∠=︒,PQ 为过点A 的一条直线,分别过B C 、两点作,BM PQ CN PQ ⊥⊥,垂足分别为M N 、.(1)如图①所示,当PQ 与BC 边有交点时,求证:MN CN BM =-;(2)如图②所示,当PQ 与BC 边不相交时,请写出线段BM CN 、和MN 之间的数量关系,并说明理由.【答案】(1)见解析;(2)MN BM CN =+(或BM MN CN =-或CN MN BM =-),理由见解析【解析】【分析】(1)根据已知条件先证AMB CNA ≌∆∆,得到,AM CN BM AN ==,即可证得MN CN BM =-;(2)由(1)知AMB CNA ≌∆∆,得到,AM CN BM AN ==,即可确定MN BM CN =+.【详解】证明:∵,BM PQ CN PQ ⊥⊥,∴∠AMB=∠CAN=90︒,∵∠BAC=90︒,∴∠CAN+∠ACN=90︒,∠CAN+∠BAM=90︒(或CAN ACN CAN BAM ∠+∠=∠+∠)∴BAM ACN ∠=∠,在AMB ∆和CNA ∆中,∵AMB CNA BAM ACN AB CA ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AMB CNA AAS ≌∆∆,∴,AM CN BM AN ==,∵MN AM AN =-,∴MN CN BM =-.(2)MN BM CN =+(或BM MN CN =-或CN MN BM =-).理由:∵,BM PQ CN PQ ⊥⊥,∴∠AMB=∠CAN=90︒,∵∠BAC=90︒,∴∠CAN+∠ACN=90︒,∠CAN+∠BAM=90︒(或CAN ACN CAN BAM ∠+∠=∠+∠),∴BAM ACN ∠=∠,在AMB ∆和CNA ∆中,∵AMB CNA BAM ACN AB CA ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AMB CNA AAS ≌∆∆,∴,AM CN BM AN ==,∴MN AN AM BM CN =+=+.【点睛】此题考察三角形全等的应用,正确确定全等三角形是解题关键,由此得到对应相等的线段,确定它们之间的和差关系得到BM CN 、和MN 之间的关系式.5.综合与实践:我们知道“两边及其中一边的对角分别对应相等的两个三角形不一定全等”.但是,乐乐发现:当这两个三角形都是锐角三角形时,它们会全等.(1)请你用所学知识判断乐乐说法的正确性.如图,已知ABC ∆、111A B C ∆均为锐角三角形,且11AB A B =,11BC B C =,1C C ∠=∠. 求证:111ABC A B C ∆∆≌.(2)除乐乐的发现之外,当这两个三角形都是______时,它们也会全等.【答案】(1)见解析;(2)钝角三角形或直角三角形.【解析】【分析】(1)过B 作BD ⊥AC 于D ,过B 1作B 1D 1⊥B 1C 1于D 1,得出∠BDA=∠B 1D 1A 1=∠BDC=∠B 1D 1C 1=90°,根据SAS 证△BDC ≌△B 1D 1C 1,推出BD=B 1D 1,根据HL 证Rt △BDA ≌Rt △B 1D 1A 1,推出∠A=∠A 1,根据AAS 推出△ABC ≌△A 1B 1C 1即可.(2)当这两个三角形都是直角三角形时,直接利用HL 即可证明;当这两个三角形都是钝角三角形时,与(1)同理可证.【详解】(1)证明:过点B 作BD AC ⊥于D ,过1B 作1111B D A C ⊥于1D ,则11111190BDA B D A BDC B D C ∠=∠=∠=∠=︒.在BDC ∆和111B D C ∆中,1C C ∠=∠,111BDC B D C ∠=∠,11BC B C =,∴111BDC B D C ∆∆≌,∴11BD B D =.在Rt BDA ∆和111Rt B D A ∆中,11AB A B =,11BD B D =,∴111Rt Rt (HL)BDA B D A ∆∆≌,∴1A A ∠=∠.在ABC ∆和111A B C ∆中,1C C ∠=∠,1A A ∠=∠,11AB A B =,∴111(AAS)ABC A B C ∆∆≌.(2)如图,当这两个三角形都是直角三角形时,∵11AB A B =,11BC B C =,190C C ∠==∠︒.∴Rt ABC ∆≌111Rt A B C ∆(HL );∴当这两个三角形都是直角三角形时,它们也会全等;如图,当这两个三角形都是钝角三角形时,作BD ⊥AC ,1111B D A C ⊥,与(1)同理,利用AAS 先证明111BDC B D C ∆∆≌,得到11BD B D =,再利用HL 证明111Rt Rt BDA B D A ∆∆≌,得到1A A ∠=∠,再利用AAS 证明111ABC A B C ∆∆≌;∴当这两个三角形都是钝角三角形时,它们也会全等;故答案为:钝角三角形或直角三角形.【点睛】本题考查了全等三角形的性质和判定的应用,主要考查学生的推理能力.解题的关键是熟练掌握证明三角形全等的方法.二、八年级数学 轴对称解答题压轴题(难)6.如图,在平面直角坐标系中,已知点A (2,3),点B (﹣2,1).(1)请运用所学数学知识构造图形求出AB 的长;(2)若Rt △ABC 中,点C 在坐标轴上,请在备用图1中画出图形,找出所有的点C 后不用计算写出你能写出的点C 的坐标;(3)在x 轴上是否存在点P ,使PA =PB 且PA +PB 最小?若存在,就求出点P 的坐标;若不存在,请简要说明理由(在备用图2中画出示意图).【答案】(1)AB =52)C 2(0,7),C 4(0,-4),C 5(-1,0)、 C 6(1,0);(3)不存在这样的点P.【解析】【分析】(1)如图,连结AB,作B关于y轴的对称点D,利用勾股定理即可得出AB;(2)分别以A,B,C为直角顶点作图,然后直接得出符合条件的点的坐标即可;(3)作AB的垂直平分线l3,则l3上的点满足PA=PB,作B关于x轴的对称点B′,连结AB′,即x轴上使得PA+PB最小的点,观察作图即可得出答案.【详解】解:(1)如图,连结AB,作B关于y轴的对称点D,由已知可得,BD=4,AD=2.∴在Rt△ABD中,AB=25(2)如图,①以A为直角顶点,过A作l1⊥AB交x轴于C1,交y轴于C2.②以B为直角顶点,过B作l2⊥AB交x轴于C3,交y轴于C4.③以C为直角顶点,以AB为直径作圆交坐标轴于C5、C6、C7.(用三角板画找出也可)由图可知,C2(0,7),C4(0,-4),C5(-1,0)、C6(1,0).(3)不存在这样的点P.作AB的垂直平分线l3,则l3上的点满足PA=PB,作B关于x轴的对称点B′,连结AB′,由图可以看出两线交于第一象限.∴不存在这样的点P.【点睛】本题考查了勾股定理,构造直角三角形,中垂线和轴对称--路径最短问题的综合作图分析,解题的关键是学会分类讨论,学会画好图形解决问题.7.(1)已知△ABC中,∠A=90°,∠B=67.5°,请画一条直线,把这个三角形分割成两个等腰三角形.(请你选用下面给出的备用图,把所有不同的分割方法都画出来.只需画图,不必说明理由,但要在图中标出相等两角的度数)(2)已知△ABC中,∠C是其最小的内角,过顶点B的一条直线把这个三角形分割成了两个等腰三角形,请探求∠ABC与∠C之间的关系.【答案】(1)图形见解析(2) ∠ABC与∠C之间的关系是∠ABC=135°-34∠C或∠ABC=3∠C或∠ABC=180°-3∠C或∠ABC=90°,∠C是小于45°的任意锐角.【解析】试题分析:(1)已知角度,要分割成两个等腰三角形,可以运用直角三角形、等腰三角形性质结合三角形内角和定理,先计算出可能的角度,或者先从草图中确认可能的情况,及角度,然后画上.(2)在(1)的基础上,由“特殊”到“一般”,需要把直角三角形分成两个等腰三角形的各种情形列方程,可得出角与角之间的关系.试题解析:(1)如图①②(共有2种不同的分割法).(2)设∠ABC=y,∠C=x,过点B的直线交边AC于点D.在△DBC中,①若∠C是顶角,如图,则∠CBD=∠CDB=90°-12x,∠A=180°-x-y.故∠ADB=180°-∠CDB=90°+12x>90°,此时只能有∠A=∠ABD,即180°-x-y=y-1902x⎛⎫-⎪⎝⎭,∴3x+4y=540°,∴∠ABC=135°-34∠C.②若∠C是底角,第一种情况:如图,当DB=DC时,∠DB C=x.在△ABD中,∠ADB=2x,∠ABD=y-x.若AB=AD,则2x=y-x,此时有y=3x,∴∠ABC=3∠C.若AB=BD,则180°-x-y=2x,此时有3x+y=180°,∴∠ABC=180°-3∠C.若AD=BD,则180°-x-y=y-x,此时有y=90°,即∠ABC=90°,∠C为小于45°的任意锐角.第二种情况:如图,当BD=BC时,∠BDC=x,∠ADB=180°-x>90°,此时只能有AD=BD,∴∠A=∠ABD=12∠BDC=12∠C<∠C,这与题设∠C是最小角矛盾.∴当∠C 是底角时,BD =BC 不成立.综上所述,∠ABC 与∠C 之间的关系是∠ABC=135°-34∠C 或∠ABC=3∠C 或∠ABC=180°-3∠C 或∠ABC=90°,∠C 是小于45°的任意锐角. 点睛:本题考查了等腰三角形的性质;第(1)问是计算与作图相结合的探索.本问对学生运用作图工具的能力,以及运用直角三角形、等腰三角形性质等基础知识解决问题的能力都有较高的要求.第(2)问在第(1)问的基础上,由“特殊”到“一般”,“分类讨论”把直角三角形分成两个等腰三角形的各种情形并结合“方程思想”探究角与角之间的关系.本题不仅趣味性强,创造性强,而且渗透了由“特殊”到“一般”、“分类讨论”、“方程思想”、“转化思想”等数学思想,是一道不可多得的好题.8.(1)问题发现.如图1,ACB ∆和DCE ∆均为等边三角形,点A 、D 、E 均在同一直线上,连接BE .①求证:ADC BEC ∆∆≌.②求AEB ∠的度数.③线段AD 、BE 之间的数量关系为__________.(2)拓展探究.如图2,ACB ∆和DCE ∆均为等腰直角三角形,90ACB DCE ∠=∠=︒,点A 、D 、E 在同一直线上,CM 为DCE ∆中DE 边上的高,连接BE .①请判断AEB ∠的度数为____________.②线段CM 、AE 、BE 之间的数量关系为________.(直接写出结论,不需证明)【答案】(1)①详见解析;②60°;③AD BE =;(2)①90°;②2AE BE CM =+【解析】【分析】(1)易证∠ACD =∠BCE ,即可求证△ACD ≌△BCE ,根据全等三角形对应边相等可求得AD =BE ,根据全等三角形对应角相等即可求得∠AEB 的大小;(2)易证△ACD ≌△BCE ,可得∠ADC =∠BEC ,进而可以求得∠AEB =90°,即可求得DM =ME =CM ,即可解题.【详解】解:(1)①证明:∵ACB ∆和DCE ∆均为等边三角形,∴AC CB =,CD CE =,又∵60ACD DCB ECB DCB ∠+∠=∠+∠=︒,∴ACD ECB ∠=∠,∴()ADC BEC SAS ∆∆≌.②∵CDE ∆为等边三角形,∴60CDE ∠=︒.∵点A 、D 、E 在同一直线上,∴180120ADC CDE ∠=︒-∠=︒,又∵ADC BEC ∆∆≌,∴120ADC BEC ∠=∠=︒,∴1206060AEB ∠=︒-︒=︒.③AD BE =ADC BEC ∆∆≌,∴AD BE =.故填:AD BE =;(2)①∵ACB ∆和DCE ∆均为等腰直角三角形,∴AC CB =,CD CE =,又∵90ACB DCE ∠=∠=︒,∴ACD DCB ECB DCB ∠+∠=∠+∠,∴ACD ECB ∠=∠,在ACD ∆和BCE ∆中,AC CB ACD ECB CD CE =⎧⎪∠=∠⎨⎪=⎩,∴E ACD BC ∆∆≌,∴ADC BEC ∠∠=.∵点A 、D 、E 在同一直线上, ∴180********ADC BEC CDE ∠=∠=︒-∠=︒-︒=︒,∴1351354590AEB CED ∠=︒-∠=︒-︒=︒.②∵CDA CEB ∆∆≌,∴BE AD =.∵CD CE =,CM DE ⊥, ∴DM ME =.又∵90DCE ∠=︒,∴2DE CM =,∴2AE AD DE BE CM =+=+.故填:①90°;②2AE BE CM =+.【点睛】 本题考查了全等三角形的判定,考查了全等三角形对应边相等、对应角相等的性质,本题中求证△ACD ≌△BCE 是解题的关键.9.知识背景:我们在第十一章《三角形》中学习了三角形的边与角的性质,在第十二章《全等三角形》中学习了全等三角形的性质和判定,在第十三章《轴对称》中学习了等腰三角形的性质和判定.在一些探究题中经常用以上知识转化角和边,进而解决问题.问题:如图1,ABC 是等腰三角形,90BAC ∠=︒,D 是BC 的中点,以AD 为腰作等腰ADE ,且满足90DAE ∠=︒,连接CE 并延长交BA 的延长线于点F ,试探究BC 与CF 之间的数量关系.图1发现:(1)BC 与CF 之间的数量关系为 .探究:(2)如图2,当点D 是线段BC 上任意一点(除B 、C 外)时,其他条件不变,试猜想BC 与CF 之间的数量关系,并证明你的结论.图2拓展:(3)当点D 在线段BC 的延长线上时,在备用图中补全图形,并直接写出BCF 的形状.备用图【答案】(1)BC CF =;(2)BC CF =,证明见解析;(3)画图见解析,等腰直角三角形.【解析】【分析】(1)根据等腰三角形的性质即可得BC CF =;(2)由等腰直角三角形的性质可得()ABD ACE SAS ∴≌,再根据全等三角形的性质及等角对等边即可证明;(3)作出图形,根据等腰三角形性质易证()ABD ACE SAS ∴≌,进而根据角度的代换,得出结论.【详解】解:(1)BC CF =.∵△ABC 是等腰三角形,且90BAC ∠=︒,AB AC ∴=,45B ACB ∠=∠=︒.90DAE ∠=︒,DAE BAC ∴=∠∠,DAE DAC BAC DAC ∴∠-∠=∠-∠,BAD CAE ∴∠=∠. ADE 是以AD 为腰的等腰三角形,AD AE ∴=.在ABD △与ACE △中,AB AC =,BAD CAE ∠=∠,AD AE =,()ABD ACE SAS ∴≌,45ACE B ∴∠=∠=︒.45ACB =︒∠,90BCF ACB ACE ∴∠=∠+∠=︒,90B F ∴∠+∠=︒,45F ∴∠=︒,B F ∴∠=∠,BC CF ∴=.(2)BC CF =.证明:ABC 是等腰三角形,且90BAC ∠=︒,AB AC ∴=,45B ACB ∠=∠=︒.90DAE ∠=︒,DAE BAC ∴=∠∠,DAE DAC BAC DAC ∴∠-∠=∠-∠,BAD CAE ∴∠=∠. ADE 是以AD 为腰的等腰三角形,AD AE ∴=.在ABD △与ACE △中,AB AC =,BAD CAE ∠=∠,AD AE =,()ABD ACE SAS ∴≌,45ACE B ∴∠=∠=︒.45ACB =︒∠,90BCF ACB ACE ∴∠=∠+∠=︒,90B F ∴∠+∠=︒,45F ∴∠=︒,B F ∴∠=∠,BC CF ∴=.(3)BCF 是等腰直角三角形.提示:如图,ABC 是等腰三角形,90BAC ∠=︒,AB AC ∴=,45B ACB ∠=∠=︒.90DAE ∠=︒,DAE BAC ∴=∠∠,DAE DAC BAC DAC ∴∠+∠=∠+∠,BAD CAE ∴∠=∠.ADE 是以AD 为腰的等腰三角形,AD AE ∴=.在ABD △与ACE △中,AB AC =,BAD CAE ∠=∠,AD AE =, ()ABD ACE SAS ∴≌,45ACE B ∴∠=∠=︒.45ACB =︒∠,90BCF ACB ACE ∴∠=∠+∠=︒,90B BFC ∴∠+∠=︒,45BFC ∴∠=︒,B BFC ∴∠=∠,BCF ∴是等腰三角形,90BCF ∠=︒,BCF ∴是等腰直角三角形.【点睛】本题考查等腰三角形及全等三角形的性质,熟练运用角度等量代换及等腰三角形的性质是解题的关键.10.如图1,△ABD ,△ACE 都是等边三角形,(1)求证:△ABE ≌△ADC ;(2)若∠ACD=15°,求∠AEB 的度数;(3)如图2,当△ABD 与△ACE 的位置发生变化,使C 、E 、D 三点在一条直线上,求证:AC ∥BE .【答案】(1)见解析(2) ∠AEB=15°(3) 见解析【解析】试题分析:(1)由等边三角形的性质可得AB=AD,AE=AC,∠DAB=∠EAC=60°,即可得∠DAC=∠BAE,利用SAS即可判定△ABE≌△ADC;(2)根据全等三角形的性质即可求解;(3)由(1)的方法可证得△ABE≌△ADC,根据全等三角形的性质和等边三角形的性质可得∠AEB=∠ACD =60°,即可得∠AEB=∠EAC,从而得AC∥BE.试题解析:(1)证明:∵△ABD,△ACE都是等边三角形∴AB=AD,AE=AC,∠DAB=∠EAC=60°,∴∠DAC=∠BAE,在△ABE和△ADC中,∴,∴△ABE≌△ADC;(2)由(1)知△ABE≌△ADC,∴∠AEB=∠ACD,∵∠ACD=15°,∴∠AEB=15°;(3)同上可证:△ABE≌△ADC,∴∠AEB=∠ACD,又∵∠ACD=60°,∴∠AEB=60°,∵∠EAC=60°,∴∠AEB=∠EAC,∴AC∥BE.点睛:本题主要考查了等边三角形的性质、全等三角形的判定及性质,证得△ABE≌△ADC 是解决本题的关键.三、八年级数学整式的乘法与因式分解解答题压轴题(难)11.我们知道对于一个图形,通过不同的方法计算图形的面积时,可以得到一个数学等式.例如由图1可以得到()()22322a ab b a b a b ++=++.请回答下列问题:(1)写出图2中所表示的数学等式是 ;(2)如图3,用四块完全相同的长方形拼成正方形,用不同的方法,计算图中阴影部分的面积,你能发现什么?(用含有x , y 的式子表示) ;(3)通过上述的等量关系,我们可知: 当两个正数的和一定时,它们的差的绝对值越小,则积越 (填“ 大”“或“小”);当两个正数的积一定时,它们的差的绝对值越小,则和越 (填“ 大”或“小”).【答案】(1)22(2)(2)225a b a b a b ab ++=++;(2)22()()4x y x y xy +=-+; (3)大 小【解析】【分析】(1)图2面积有两种求法,可以由长为2a+b ,宽为a+2b 的矩形面积求出,也可以由两个边长为a 与边长为b 的两正方形,及4个长为a ,宽为b 的矩形面积之和求出,表示即可; (2)阴影部分的面积可以由边长为x+y 的大正方形的面积减去边长为x-y 的小正方形面积求出,也可以由4个长为x ,宽为y 的矩形面积之和求出,表示出即可;(3)两正数和一定,则和的平方一定,根据等式224()()xy x y x y =+--,得到被减数一定,差的绝对值越小,即为减数越小,得到差越大,即积越大;当两正数积一定时,即差一定,差的绝对值越小,得到减数越小,可得出被减数越小;【详解】(1)看图可知,22(2)(2)225a b a b a b ab ++=++(2)22()()4x y x y xy +=-+(3)当两个正数的和一定时,它们的差的绝对值越小则积越大;当两个正数的积一定时,它们的差的绝对值越小则和越小.【点睛】本题考点:整式的混合运算,此题考查了整式的混合运算的应用,弄清题意是解本题的关键.12.一个四位正整数m 各个数位上的数字互不相同且都不为0,四位数m 的前两位数字之和为5,后两位数字之和为11,称这样的四位数m 为“半期数”;把四位数m 的各位上的数字依次轮换后得到新的四位数m′,设m′=abcd,在m′的所有可能的情况中,当|b+2c﹣a ﹣d|最小时,称此时的m′是m的“伴随数”,并规定F(m′)=a2+c2﹣2bd;例如:m=2365,则m′为:3652,6523,5236,因为|6+10﹣3﹣2|=11,|5+4﹣6﹣3|=0,|2+6﹣5﹣6|=3,0最小,所以6523叫做2365的“伴随数”,F(5236)=52+32﹣2×2×6=10.(1)最大的四位“半期数”为;“半期数”3247的“伴随数”是.(2)已知四位数P=abcd是“半期数”,三位数Q=2ab,且441Q﹣4P=88991,求F(P')的最大值.【答案】(1)4192,7324;(2)42.【解析】【分析】(1)根据“半期数”的定义分析最大的四位“半期数”应该是千位最大,最大只能为4,所以百位是1,十位最大是9,个位是2,所以最大半期数为:4192,分析3247的所有可能为,2473,4732,7324.根据题意|b+2c﹣a﹣d|最小的数是7324,所以3247的“伴随数”是:7324.(2)根据定义可知a+b=5,c+d=11.再根据441Q﹣4P=88991,可以算出P的值,从而求出F(P')的最大值.【详解】解;(1)根据题意可得最大的四位“半期数”应该是千位最大,最大只能为4,所以百位是1,十位最大是9,个位是2,所以最大半期数为:4192.∵3247的所有可能为,2473,4732,7324.∵|4+14﹣2﹣3|=13,|7+6﹣4﹣2|=7,|3+4﹣7﹣4|=4, 4最小,所以7324为3247的“伴随数”.故答案为4192;7324.(2)∵P为“半期数”∴a+b=5,c+d=11,∴b=5﹣a,d=11﹣c,∴P=1000a+100(5﹣a)+10c+11﹣c=900a+9c+511.∵Q=200+10a+c,∴441Q﹣4P=88991,∴441(200+10a+c)﹣4(900a+9c+511)=88991化简得:2a+c=7①当a=1时,c=5,此时这个四位数为1456符合题意;②当a=2时,c=3,此时这个四位数为2338不符合题意,舍去;③当a=3时,c=1,不符合题意,舍去;综上所述:这个四位数只能是1456,则P'可能为4561,5614,6145.∵|5+12﹣4﹣1|=12,|6+2﹣5﹣4|=1,|1+8﹣6﹣5|=2,1最小,所以5614为P的“伴随数”,∴F(5614)=a2+c2﹣2bd=25+1﹣2×6×4=﹣22;F(4561)=a2+c2﹣2bd=16+36﹣2×5×1=42;F(6145)=a2+c2﹣2bd=36+16﹣2×1×5=42;∴F(P')的最大值为42.【点睛】解决本道题的关键是理解好半期数的定义:一个四位正整数m各个数位上的数字互不相同且都不为0,四位数m 的前两位数字之和为5,后两位数字之和为11,称这样的四位数m 为“半期数”,然后根据当|b +2c ﹣a ﹣d |最小时,称此时的m '是m 的“伴随数”来确定伴随数.13.阅读下列材料:1637年笛卡尔在其《几何学》中,首次应用“待定系数法”将四次方程分解为两个二次方程求解,并最早给出因式分解定理.他认为:对于一个高于二次的关于x 的多项式,“x a =是该多项式值为0时的一个解”与“这个多项式一定可以分解为(x a -)与另一个整式的乘积”可互相推导成立. 例如:分解因式3223x x +-.∵1x =是32230x x +-=的一个解,∴3223x x +-可以分解为()1x -与另一个整式的乘积.设()()322231x x x ax bx c +-=-++而()()()()2321x ax bx c ax b a x c b x c -++=+-+--,则有1203a b a c b c =⎧⎪-=⎪⎨-=⎪⎪-=-⎩,得133a b c =⎧⎪=⎨⎪=⎩,从而()()32223133x x x x x +-=-++运用材料提供的方法,解答以下问题:(1)①运用上述方法分解因式323x x ++时,猜想出3230x x ++=的一个解为_______(只填写一个即可),则323x x ++可以分解为_______与另一个整式的乘积; ②分解因式323x x ++;(2)若1x -与2x +都是多项式32x mx nx p +++的因式,求m n -的值. 【答案】(1)①:x=-1;(x+1);②3223=(1)(3)x x x x x +++-+;(2)3【解析】 【分析】(1)①计算当x=-1时,方程成立,则323x x ++必有一个因式为(x+1),即可作答; ②根据待定系数法原理先设另一个多项式,然后根据多项式乘多项式的计算即可求得结论;(2))设32=(1)(2)x mx mx p x x M +++-+(其中M 为二次整式),由材料可知,x=1,x=-2是方程320x mx nx p +++=的解,然后列方程组求解即可. 【详解】解:(1)①323x x ++,观察知,显然x=-1时,原式=0,则3230x x ++=的一个解为x=-1;原式可分解为(x+1)与另一个整式的积. 故答案为:x=-1;(x+1) ②设另一个因式为(x 2+ax+b ),(x+1)(x 2+ax+b )=x 3+ax 2+bx+x 2+ax+b =x 3+(a+1)x 2+(a+b )x+b ∴a+1=0 ,a=-1, b=3∴多项式的另一因式为x 2-x+3. ∴3223=(1)(3)x x x x x +++-+.(2)设32=(1)(2)x mx nx p x x M +++-+(其中M 为二次整式),由材料可知,x=1,x=-2是方程320x mx nx p +++=的解,∴可得108420m n p m n p +++=⎧⎨-+-+=⎩①②,∴②-①,得m-n=3 ∴m n -的值为3. 【点睛】本题考查了分解因式,正确理解题意,利用待定系数法和多项式乘多项式的计算法则求解是解题的关键.14.材料阅读:若一个整数能表示成a 2+b 2(a 、b 是正整数)的形式,则称这个数为“完美数”.例如:因为13=32+22,所以13是“完美数”;再如:因为a 2+2ab +2b 2=(a +b)2+b 2(a 、b 是正整数),所以a 2+2ab +2b 2也是“完美数”.(1)请你写出一个大于20小于30的“完美数”,并判断53是否为“完美数”; (2)试判断(x 2+9y 2)·(4y 2+x 2)(x 、y 是正整数)是否为“完美数”,并说明理由. 【答案】(1)25,53是完美数; (2)是,理由见解析. 【解析】 【分析】(1)根据“完美数”的定义判断即可;(2)根据多项式的乘法法则计算出结果后,根据“完美数”的定义判断即可. 【详解】 (1)25=4²+3², ∵53=49+4=7²+2², ∴53是“完美数”;(2)(x²+9y²)⋅(4y²+x²)是“完美数”,(x²+9y²)⋅(4y²+x²)=4x 2y²+364y +4x +9x²y²=13x²y²+364y +4x =(6y²+x²) ²+x²y², ∴(x²+9y²)⋅(4y²+x²)是“完美数”. 【点睛】本题考查了因式分解的应用,正确的理解新概念“完美数”是解题的关键.15.观察下列等式: 12×231=132×21, 13×341=143×31,23×352=253×32,34×473=374×43,62×286=682×26,…以上每个等式中两边数字是分别对称的,且每个等式中组成两位数与三位数的数字之间具有相同规律,我们称这类等式为“数字对称等式”.(1)根据上述各式反映的规律填空,使式子称为“数字对称等式”:①52×=×25;②×396=693×.(2)设这类等式左边两位数的十位数字为a,个位数字为b,且2≤a+b≤9,写出表示“数字对称等式”一般规律的式子(含a、b),并证明.【答案】解:(1)①275;572.②63;36.(2)“数字对称等式”一般规律的式子为:(10a+b)×[100b+10(a+b)+a]=[100a+10(a+b)+b]×(10b+a),证明见解析.【解析】【分析】根据题意可得三位数中间的数等于两数的和,根据这一规律然后进行填空,从而得出答案;根据题意得出一般性的规律,然后根据多项式的计算法则进行说明理由.【详解】(1)①275,572; ②63,36;(2)“数字对称等式”一般规律的式子为:(10a+b)×[100b+10(a+b)+a]=[100a+10(a+b)+b]×(10b+a).证明如下:∵左边两位数的十位数字为a,个位数字为b,∴左边的两位数是10a+b,三位数是100b+10(a+b)+a,右边的两位数是10b+a,三位数是100a+10(a+b)+b,∴左边=(10a+b)×[100b+10(a+b)+a]=(10a+b)(100b+10a+10b+a)=(10a+b)(110b+11a)=11(10a+b)(10b+a),右边=[100a+10(a+b)+b]×(10b+a)=(100a+10a+10b+b)(10b+a)=(110a+11b)(10b+a)=11(10a+b)(10b+a),∴左边=右边.∴“数字对称等式”一般规律的式子为:(10a+b)×[100b+10(a+b)+a]=[100a+10(a+b)+b]×(10b+a).考点:规律题四、八年级数学分式解答题压轴题(难)16.某小麦改良品种后平均每公顷增加产量a 吨,原来产m 吨小麦的一块土地,现在小麦的总产量增加了20吨.(1)当a =0.8,m =100时,原来和现在小麦的平均每公顷产量各是多少?(2)请直接接写出原来小麦的平均每公顷产量是 吨,现在小麦的平均每公顷产量是 吨;(用含a 、m 的式于表示)(3)在这块土地上,小麦的改良品种成熟后,甲组收割完需n 小时,乙组比甲组少用0.5小时就能收割完,求两组一起收割完这块麦田需要多少小时?【答案】(1)原来和现在小麦的平均每公顷产量各是4吨,4.8吨;(2)20ma ,+2020ma a ;(3)两组一起收割完这块麦田需要2241n nn --小时. 【解析】 【分析】(1)设原来小麦平均每公顷产量是x 吨,根据题意列出分式方程求解并验根即可;(2)设原来小麦平均每公顷产量是y 吨,根据题意列出分式方程求解并验根即可;(3)由题意得知,工作总量为m+20,甲的工作效率为:20m n +,乙的工作效率为:200.5m n +-,再由工作总量除以甲乙的工作效率和即可得出工作时间. 【详解】解:(1)设原来平均每公顷产量是x 吨,则现在平均每公顷产量是(x +0.8)吨, 根据题意可得:100100200.8x x +=+ 解得:x =4,检验:当x =4时,x (x +0.8)≠0, ∴原分式方程的解为x =4, ∴现在平均每公顷产量是4.8吨,答:原来和现在小麦的平均每公顷产量各是4吨,4.8吨.(2)设原来小麦平均每公顷产量是y 吨,则现在玉米平均每公顷产量是(y +a )吨, 根据题意得:20m m y y a+=+ 解得;y =20ma , 经检验:y =20ma是原方程的解, 则现在小麦的平均每公顷产量是:202020ma ma a a ++= 故答案为:20ma ,2020ma a+;(3)根据题意得:()20.5202202020.5410.5n n m n n m m n n n n -+-==++--+- 答:两组一起收割完这块麦田需要2241n nn --小时.【点睛】本题考查的知识点主要是根据题意列分式方程并求解,找出题目中的等量关系式是解题的关键.17.小明家准备装修一套新住房,若甲、乙两个装饰公司,合做需6周完成,需工钱5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周才能完成,需工钱4.8万元,若只选一个公司单独完成,从节约开支角度考虑,小明家是选甲公司、还是乙公司请你说明理由.【答案】从节约开支角度考虑,应选乙公司单独完成 【解析】试题分析:需先算出甲乙两公司独做完成的周数.等量关系为:甲6周的工作量+乙6周的工作量=1;甲4周的工作量+乙9周的工作量=1;还需算出甲乙两公司独做需付的费用.等量关系为:甲做6周所需钱数+乙做6周所需钱数=5.2;甲做4周所需钱数+乙做9周所需钱数=4.8.试题解析:解:设甲公司单独完成需x 周,需要工钱a 万元,乙公司单独完成需y 周,需要工钱b 万元.依题意得:661491x y x y⎧+=⎪⎪⎨⎪+=⎪⎩,解得:1015x y =⎧⎨=⎩. 经检验:1015x y =⎧⎨=⎩是方程组的根,且符合题意. 又6() 5.2101549 4.81015a ba b ⎧+=⎪⎪⎨⎪⨯+⨯=⎪⎩,解得:64a b =⎧⎨=⎩. 即甲公司单独完成需工钱6万元,乙公司单独完成需工钱4万元. 答:从节约开支角度考虑,应选乙公司单独完成.点睛:本题主要考查分式的方程的应用,根据题干所给的等量关系求出两公司单独完成所需时间和工钱,然后比较应选择哪个公司.18.我们知道:分式和分数有着很多的相似点.如类比分数的基本性质,我们得到了分式的基本性质;类比分数的运算法则,我们得到了分式的运算法则等等.小学里,把分子比分母小的分数叫做真分数.类似地,我们把分子整式的次数小于分母整式的次数的分式称为真分式;反之,称为假分式.对于任何一个假分式都可以化成整式与真分式的和的形式, 如:112122111111x x x x x x x x +-+-==+=+-----; 2322522552()11111x x x x x x x x -+-+-==+=+-+++++. (1)下列分式中,属于真分式的是:____________________(填序号)①21a a -+; ②21x x +; ③223b b +; ④2231a a +-. (2)将假分式4321a a +-化成整式与真分式的和的形式为: 4321a a +-=______________+________________. (3)将假分式231a a +-化成整式与真分式的和的形式:231a a +-=_____________+______________. 【答案】(1)③;(2)2,521a -;(3)a +1+41a - . 【解析】试题分析:(1)认真阅读题意,体会真分式的特点,然后判断即可; (2)根据题意的化简方法进行化简即可; (3)根据题意的化简方法进行化简即可.试题解析:(1)①中的分子分母均为1次,②中分子次数大于分母次数,③分子次数小于分母次数,④分子分母次数一样,故选③. (2)4321a a +-=42552212121a a a a -+=+---,故答案为2,5221a +-; (3)231a a +-=214(1)(1)4111a a a a a a -++-=+---=411a a ++-,故答案为a+1+41a -.19.阅读后解决问题:在“15.3分式方程”一课的学习中,老师提出这样的一个问题:如果关于x 的分式方程3111a x x+=--的解为正数,那么a 的取值范围是什么? 经过交流后,形成下面两种不同的答案:小明说:解这个关于x 的分式方程,得到方程的解为x=a ﹣2. 因为解是正数,可得a ﹣2>0,所以a >2.小强说:本题还要必须a≠3,所以a 取值范围是a >2且a≠3. (1)小明与小强谁说的对,为什么?。
人教版八年级上册数学《期中》考试及答案【完美版】
人教版八年级上册数学《期中》考试及答案【完美版】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.若分式211x x -+的值为0,则x 的值为( ) A .0 B .1 C .﹣1 D .±12.248162(31)(31)(31)(31)(31)⨯+++++的计算结果的个位数字是( )A .8B .6C .2D .03.若229x kxy y -+是一个完全平方式,则常数k 的值为( )A .6B .6-C .6±D .无法确定4.下列结论中,矩形具有而菱形不一定具有的性质是( )A .内角和为360°B .对角线互相平分C .对角线相等D .对角线互相垂直5.一组数据:1、2、2、3,若添加一个数据2,则发生变化的统计量是( )A .平均数B .中位数C .众数D .方差6.比较2,5,37的大小,正确的是( )A .3257<<B .3275<<C .3725<<D .3752<< 7.如图,在OAB 和OCD 中,,,,40OA OB OC OD OA OC AOB COD ==>∠=∠=︒,连接,AC BD 交于点M ,连接OM .下列结论:①AC BD =;②40AMB ∠=︒;③OM 平分BOC ∠;④MO 平分BMC ∠.其中正确的个数为( ).A .4B .3C .2D .18.如图是一张直角三角形的纸片,两直角边AC =6 cm 、BC =8 cm ,现将△ABC 折叠,使点B 与点A 重合,折痕为DE ,则BE 的长为( )A .4 cmB .5 cmC .6 cmD .10 cm9.如图将直尺与含30°角的三角尺摆放在一起,若120∠=︒,则2∠的度数是( )A .30B .40︒C .50︒D .60︒10.如图,已知BD 是ABC 的角平分线,ED 是BC 的垂直平分线,90BAC ∠=︒,3AD =,则CE 的长为( )A .6B .5C .4D .33二、填空题(本大题共6小题,每小题3分,共18分)1.如图,数轴上点A 表示的数为a ,化简:a 244a a +-+=________.2.已知菱形ABCD 的面积是12cm 2,对角线AC =4cm ,则菱形的边长是______cm .3.如果22(1)4x m x +-+是一个完全平方式,则m =__________.4.如图,在ABC 中,点A 的坐标为()0,1,点B 的坐标为()0,4,点C 的坐标为()4,3,点D 在第二象限,且ABD 与ABC 全等,点D 的坐标是______.5.如图,直线y =x +2与直线y =ax +c 相交于点P (m ,3),则关于x 的不等式x +2≤ax +c 的解为__________.6.如图△ABC 中,分别延长边AB 、BC 、CA ,使得BD=AB ,CE=2BC ,AF=3CA ,若△ABC 的面积为1,则△DEF 的面积为________.三、解答题(本大题共6小题,共72分)1.解方程:2420x x +-=2.先化简,再求值:21211222m m m m ++⎛⎫-÷ ⎪++⎝⎭,其中22m =3.已知:关于x 的一元二次方程221(1)204x m x m +++-=.(1)若此方程有两个实数根,求m 的最小整数值;(2)若此方程的两个实数根为1x ,2x ,且满足22211221184x x x m x +=--,求m 的值.4.如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C,AF与DE交于点G,求证:GE=GF.5.如图,将两个全等的直角三角形△ABD、△ACE拼在一起(图1).△ABD不动,(1)若将△ACE绕点A逆时针旋转,连接DE,M是DE的中点,连接MB、MC (图2),证明:MB=MC.(2)若将图1中的CE向上平移,∠CAE不变,连接DE,M是DE的中点,连接MB、MC(图3),判断并直接写出MB、MC的数量关系.(3)在(2)中,若∠CAE的大小改变(图4),其他条件不变,则(2)中的MB、MC的数量关系还成立吗?说明理由.6.学校需要添置教师办公桌椅A、B两型共200套,已知2套A型桌椅和1套B型桌椅共需2000元,1套A型桌椅和3套B型桌椅共需3000元.(1)求A,B两型桌椅的单价;(2)若需要A型桌椅不少于120套,B型桌椅不少于70套,平均每套桌椅需要运费10元.设购买A型桌椅x套时,总费用为y元,求y与x的函数关系式,并直接写出x的取值范围;(3)求出总费用最少的购置方案.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、D3、C4、C5、D6、C7、B8、B9、C10、D二、填空题(本大题共6小题,每小题3分,共18分)1、2.23、-1或34、(-4,2)或(-4,3)5、x ≤1.6、18三、解答题(本大题共6小题,共72分)1、12x =-22x =-.23、(1)-4;(2)m=34、略.5、(1)略;(2)MB =MC .理由略;(3)MB =MC 还成立,略.6、(1)A ,B 两型桌椅的单价分别为600元,800元;(2)y=﹣200x+162000(120≤x ≤130);(3)购买A 型桌椅130套,购买B 型桌椅70套,总费用最少,最少费用为136000元.。
人教版八年级上册数学《期中》考试卷及答案【精选】
人教版八年级上册数学《期中》考试卷及答案【精选】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.-2019的相反数是( )A .2019B .-2019C .12019D .12019- 2.到三角形三个顶点的距离相等的点是三角形( )的交点.A .三个内角平分线B .三边垂直平分线C .三条中线D .三条高 3.化简二次根式 22a a a +-的结果是( ) A .2a -- B .-2a --C .2a -D .-2a - 4.在△ABC 中,AB=10,AC=210,BC 边上的高AD=6,则另一边BC 等于( )A .10B .8C .6或10D .8或105.若关于x 的一元二次方程(k -1)x 2+4x +1=0有两个不相等的实数根,则k 的取值范围是( )A .k<5B .k<5,且k ≠1C .k ≤5,且k ≠1D .k>56.如图,正方形ABCD 和正方形CEFG 边长分别为a 和b ,正方形CEFG 绕点C 旋转,给出下列结论:①BE=DG ;②BE ⊥DG ;③DE 2+BG 2=2a 2+2b 2,其中正确结论有( )A .0个B .1个C .2个D .3个7.在平面直角坐标中,点M(-2,3)在( )A .第一象限B .第二象限C .第三象限D .第四象限8.如图,在△ABC 中,CD 平分∠ACB 交AB 于点D ,过点D 作DE ∥BC 交AC 于点E,若∠A=54°,∠B=48°,则∠CDE 的大小为( )A .44°B .40°C .39°D .38°9.如图1,点F 从菱形ABCD 的顶点A 出发,沿A →D →B 以1cm/s 的速度匀速运动到点B ,图2是点F 运动时,△FBC 的面积y (cm 2)随时间x (s )变化的关系图象,则a 的值为( )A .5B .2C .52D .2510.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O 出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m .其行走路线如图所示,第1次移动到A 1,第2次移动到A 2,…,第n 次移动到A n .则△OA 2A 2018的面积是( )A .504m 2B .10092m 2C .10112m 2D .1009m 2二、填空题(本大题共6小题,每小题3分,共18分)1.若22(3)16x m x +-+是关于x 的完全平方式,则m =__________.2.因式分解:2218x -=__________.3.若m+1m =3,则m 2+21m=________. 4.如图,在ABC 中,点A 的坐标为()0,1,点B 的坐标为()0,4,点C 的坐标为()4,3,点D在第二象限,且ABD与ABC全等,点D的坐标是______.5.如图,四边形ABCD的对角线相交于点O,AO=CO,请添加一个条件________(只添一个即可),使四边形ABCD 是平行四边形.6.如图,在平面直角坐标系中,矩形ABCO的边CO、OA分别在x轴、y轴上,点E在边BC上,将该矩形沿AE折叠,点B恰好落在边OC上的F处.若OA=8,CF=4,则点E的坐标是________.三、解答题(本大题共6小题,共72分)1.解方程:(1)4342312x yx y⎧+=⎪⎨⎪-=⎩(2)1263()46x y yx y y+⎧-=⎪⎨⎪+-=⎩2.先化简代数式1﹣1xx-÷2212xx x-+,并从﹣1,0,1,3中选取一个合适的代入求值.3.已知a=123+,求22294432a a aa a a--+---的值.4.如图,已知AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,且BC=CD.(1)求证:△BCE≌△DCF;(2)求证:AB+AD=2AE.5.如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF,(1)求证:AF=DC;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.6.为支援灾区,某校爱心活动小组准备用筹集的资金购买A、B两种型号的学习用品共1000件.已知B型学习用品的单价比A型学习用品的单价多10元,用180元购买B型学习用品的件数与用120元购买A型学习用品的件数相同.(1)求A、B两种学习用品的单价各是多少元?(2)若购买这批学习用品的费用不超过28000元,则最多购买B型学习用品多少件?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、B4、C5、B6、D7、B8、C9、C10、A二、填空题(本大题共6小题,每小题3分,共18分)1、7或-12、2(x+3)(x﹣3).3、74、(-4,2)或(-4,3)5、BO=DO.6、(-10,3)三、解答题(本大题共6小题,共72分)1、(1)1083xy=⎧⎪⎨=⎪⎩;(2)2xy=⎧⎨=⎩.2、-11x+,-143、7.4、略5、(1)略(2)略6、(1)A型学习用品20元,B型学习用品30元;(2)800.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级上册:期中培优练习(附答案)一.选择题1.下面图形表示绿色食品、节水、节能和低碳四个标志,其中是轴对称图形的是()A.B.C.D.2.已知n是正整数,若一个三角形的三边长分别是n+2、n+4、n+8,则n的取值范围是()A.n>﹣1 B.n>0 C.n>2 D.n>33.三角形的外角和等于()A.90°B.180°C.360°D.540°4.如图,△ABC中,AB=AC,∠A=40°,则∠B的度数为()A.60°B.70°C.75°D.80°5.如图,EB交AC于点M,交FC于点D,AB交FC于点N,∠E=∠F=90°,∠B=∠C,AE=AF,给出下列结论:其中正确的结论有()①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN;⑤△AFN≌△AEM.A.2个B.3个C.4个D.5个6.如图,△ABC中,AB=AC,D是BC中点,下列结论中不正确的是()A.AB=2BD B.AD⊥BC C.AD平分∠BAC D.∠B=∠C7.如图,Rt△ABC中,AB=6,BC=4,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为()A.B.C.D.58.下面哪一条线段能把三角形分成面积相等的两个三角形()A.角平分线B.垂线C.中线D.高9.如图所示,△ABC中AC边上的高线是()A.线段DA B.线段BA C.线段BC D.线段BD10.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M,N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC 于点D,则下列结论中正确的个数是()①AD是∠BAC的平分线②∠ADC=60°;③AD=BD;④点D在AB的垂直平分线上⑤S△ABD=S△ACDA.2个B.3个C.4个D.5个二.填空题11.已知点P(3,a)关于y轴的对称点为Q(b,2),则ab=.12.如果等腰三角形的一个角比另一个角大30°,那么它的顶角是.13.设三角形三边之长分别为2,9,5+a,则a的取值范围为.14.如图,△ABC中,∠C=90°,∠A=30°,∠ABC的角平分线BD交AC于D点,AD=4,则CD=.15.如图,在平面直角坐标系中,点A,B分别在y轴和x轴上,∠ABO=60°,在坐标轴上找一点P,使得△PAB是等腰三角形,则符合条件的点P共有个.16.如图,矩形ABCD中,AB=4,BC=6,点P是矩形ABCD内一动点,且S△PAB=S△PCD,则PC+PD 的最小值为.三.解答题17.在凸四边形ABCD中,∠A﹣∠B=∠B﹣∠C=∠C﹣∠D>0,且四个内角中有一个角为84°,求其余各角的度数.18.如图,在等边三角形ABC中,点E是边AC上一定点,点D是直线BC上一动点,以DE为一边作等边三角形DEF,连接CF.【问题解决】如图1,若点D在边BC上,求证:CE+CF=CD;【类比探究】如图2,若点D在边BC的延长线上,请探究线段CE,CF与CD之间存在怎样的数量关系?并说明理由.19.如图,在△ABC中,∠ABC和∠ACB的平分线交于点O,过点O作EF∥BC,交AB于E,交AC于F,若BE=3,EF=5,试求CF的值.20.按要求作图,保留作图痕迹,不写作法(1)如图1,点D在直线l上,作出四边形ABD关于直线l的对称的四边形;(2)如图2,在直线l上求作一点P,使得点P到A、B两点的距离相等.21.问题1:如图①,在四边形ABCD中,∠B=∠C=90°,P是BC上一点,PA=PD,∠APD=90°.求证:AB+CD=BC.问题2:如图②,在四边形ABCD中,∠B=∠C=45°,P是BC上一点,PA=PD,∠APD=90°.求的值.22.已知△ABC是等边三角形,点D、E分别在AC、BC上,且CD=BE,(1)求证:△ABE≌△BCD;(2)求出∠AFB的度数.23.如图,在△ABC中,AB=AC,∠A=36°,DE是AC的垂直平分线.(1)求证:△BCD是等腰三角形;(2)△BCD的周长是a,BC=b,求△ACD的周长(用含a,b的代数式表示).24.已知:△ABC为等边三角形,点E为射线AC上一点,点D为射线CB上一点,AD=DE.(1)如图1,当E在AC的延长线上且CE=CD时,AD是△ABC的中线吗?请说明理由;(2)如图2,当E在AC的延长线上时,AB+BD等于AE吗?请说明理由;(3)如图3,当D在线段CB的延长线上,E在线段AC上时,请直接写出AB、BD、AE的数量关系.25.如图①所示,在△ABC中,AD是三角形的高,且AD=6cm,E是一个动点,由B向C移动,其速度与时间的变化关系如图②所示,已知BC=8cm(1)由图②,E点运动的时间为s,速度为cm/s(2)求当E点在运动过程中△ABE的面积y与运动时间x之间的关系式;(3)当E点停止后,求△ABE的面积.参考答案一.选择题1.解:B、C、D中的图案不是轴对称图形,A中的图案是轴对称图形,故选:A.2.解:∵三角形的三边长分别是n+2、n+4、n+8,∴n+2+n+4>n+8,解得n>2.故选:C.3.解:三角形的外角和为360°,故选:C.4.解:∵AB=AC,∴∠B=∠C,∵∠A=40°,∴∠B=(180°﹣40°)÷2=70°.故选:B.5.解:∵∠E=∠F=90°,∠B=∠C,AE=AF,∴△ABE≌△ACF(AAS),∴BE=CF,AF=AE,故②正确,∠BAE=∠CAF,∠BAE﹣∠BAC=∠CAF﹣∠BAC,∴∠1=∠2,故①正确,∵△ABE≌△ACF,∴AB=AC,又∠BAC=∠CAB,∠B=∠C△ACN≌△ABM(ASA),故③正确,CD=DN不能证明成立,故④错误∵∠1=∠2,∠F=∠E,AF=AE,∴△AFN≌△AEM(ASA),故⑤正确,故选:C.6.解:∵△ABC中,AB=AC,D是BC中点,∴AD⊥BC(故B正确)AD平分∠BAC(故C正确)∠B=∠C(故D正确)无法得到AB=2BD,(故A不正确).故选:A.7.解:设NB=x,则AN=6﹣x.由翻折的性质可知:ND=AN=6﹣x.∵点D是BC的中点,∴BD==.在Rt△NBD中,由勾股定理可知:ND2=NB2+DB2,即(6﹣x)2=x2+22,解得:x=.∴BN=.故选:C.8.解:∵三角形的中线把三角形分成的两个三角形,底边相等,高是同一条高,∴分成的两三角形的面积相等.故选:C.9.解:由图可得,△ABC中AC边上的高线是BD,故选:D.10.解:利用基本作图得AD平分∠BAC,所以①正确;∵∠C=90°,∠B=30°,∴∠BAC=60°,而AD平分∠BAC,∴∠CAD=∠DAB=30°,∴∠ADC=90°﹣∠CAD=60°,所以②正确;∵∠DAB=∠B=30°,∴DA=DB,所以③正确;∴点D在AB的垂直平分线上,所以④正确;∵AD=2CD,∴BD=2CD,∴S△ABD=2S△ACD,所以⑤错误.故选:C.二.填空11.解:∵点P(3,a)关于y轴的对称点为Q(b,2),∴a=2,b=﹣3,∴ab=﹣6,故答案为:﹣6.12.解:①较大的角为顶角,设这个角为x,则:x+2(x﹣30)=180x=80;②较大的角为底角,设顶角为y°,则:y+2(y+30)=180y=40,答:等腰三角形的顶角为80°或40°.故答案为:80°或40°.13.解:由题意得9﹣2<5+a<9+2,解得2<a<6.故答案为:2<a<6.14.解:∵∠C=90°,∠A=30°∴∠CBA=60°∵BD平分∠CBA∴∠DBA=30°=∠CBD∴∠DBA=∠A∴BD=AD=4∵∠C=90°,∠CBD=30°∴BD=2CD∴CD=2故答案为2.15.解:①当AB=AP时,在y轴上有2点满足条件的点P,在x轴上有1点满足条件的点P.②当AB=BP时,在y轴上有1点满足条件的点P,在x轴上有2点满足条件的点P,有1点与AB=AP时的x轴正半轴的点P重合.③当AP=BP时,在x轴、y轴上各有一点满足条件的点P,有1点与AB=AP时的x轴正半轴的点P重合.综上所述:符合条件的点P共有6个.故答案为:6.16.解:∵点P是矩形ABCD内一动点,且S△PAB=S△PCD,AB=CD,∴点P到AB的距离等于点P到CD的距离,∴点P在BC的垂直平分线上,∴PB=PC,∴PC+PD=BP+PD,当点B,P,D在同一直线上时,BP+PD的最小值等于对角线BD的长,又∵AB=CD=4,BC=6,∴对角线BD===2,∴PC+PD的最小值为2,故答案为:2.三.解答17.解:设∠A﹣∠B=∠B﹣∠C=∠C﹣∠D=x>0,则∠A>∠B>∠C>∠D,∠C=∠D+x,∠B=∠D+2x,∠A=∠D+3x,∵∠A+∠B+∠C+∠D=6x+4∠D=360°,∴∠D+x=90°.1、∠D=84°时,x=4°,∠A=96°,∠B=92°,∠C=88°;2、∠C=84°时,2x+4∠C=360°,x=12°,∠A=108°,∠B=96°,∠D=72°;3、∠B=84°时,﹣2x+4∠B=360°,x=﹣12°,∠A=72°,∠C=96°,∠D=108°(舍去);4、∠A=84°,﹣6x+4∠A=360°,x=﹣4,∠D=96°,∠C=92°,∠B=88°(舍去).18.【问题解决】证明:在CD上截取CH=CE,如图1所示:∵△ABC是等边三角形,∴∠ECH=60°,∴△CEH是等边三角形,∴EH=EC=CH,∠CEH=60°,∵△DEF是等边三角形,∴DE=FE,∠DEF=60°,∴∠DEH+∠HEF=∠FEC+∠HEF=60°,∴∠DEH=∠FEC,在△DEH和△FEC中,,∴△DEH≌△FEC(SAS),∴DH=CF,∴CD=CH+DH=CE+CF,∴CE+CF=CD;【类比探究】解:线段CE,CF与CD之间的等量关系是FC=CD+CE;理由如下:∵△ABC是等边三角形,∴∠A=∠B=60°,过D作DG∥AB,交AC的延长线于点G,如图2所示:∵GD∥AB,∴∠GDC=∠B=60°,∠DGC=∠A=60°,∴∠GDC=∠DGC=60°,∴△GCD为等边三角形,∴DG=CD=CG,∠GDC=60°,∵△EDF为等边三角形,∴ED=DF,∠EDF=∠GDC=60°,∴∠EDG=∠FDC,在△EGD和△FCD中,,∴△EGD≌△FCD(SAS),∴EG=FC,∴FC=EG=CG+CE=CD+CE.19.解:∵BO平分∠ABC,∴∠ABO=∠OBC,CD平分∠ACB,∴∠ACO=∠BCO,又EF∥BC,∴∠EOB=∠OBC,∠FOC=∠ACB,∴∠ABO=∠EOB,∠FOC=∠ACO,∴OE=BE=3,OF=FC,∵EF=5,∴OF=2,∴FC=2.20.解:(1)如图1所示,四边形A'B'C'D即为所求;(2)如图所示,点P即为所求.21.证明:(1)∵∠B=∠APD=90°,∴∠BAP+∠APB=90°,∠APB+∠DPC=90°,∴∠BAP=∠DPC,又PA=PD,∠B=∠C=90°,∴△BAP≌△CPD(AAS),∴BP=CD,AB=PC,∴BC=BP+PC=AB+CD;(2)如图2,过点A作AE⊥BC于E,过点D作DF⊥BC于F,由(1)可知,EF=AE+DF,∵∠B=∠C=45°,AE⊥BC,DF⊥BC,∴∠B=∠BAE=45°,∠C=∠CDF=45°,∴BE=AE,CF=DF,AB=AE,CD=DF,∴BC=BE+EF+CF=2(AE+DF),∴==.22.解:(1)∵△ABC是等边三角形,∴AB=BC(等边三角形三边都相等),∠C=∠ABE=60°,(等边三角形每个内角是60°).在△ABE和△BCD中,,∴△ABE≌△BCD(SAS).(2)∵△ABE≌△BCD(已证),∴∠BAE=∠CBD(全等三角形的对应角相等),∵∠AFD=∠ABF+∠BAE(三角形的一个外角等于与它不相邻的两个内角之和)∴∠AFD=∠ABF+∠CBD=∠ABC=60°,∴∠AFB=180°﹣60°=120°.23.(1)证明:∵AB=AC,∠A=36°,∴∠B=∠ACB==72°,∵DE是AC的垂直平分线,∴AD=DC,∴∠ACD=∠A=36°,∵∠CDB是△ADC的外角,∴∠CDB=∠ACD+∠A=72°,∴∠B=∠CDB,∴CB=CD,∴△BCD是等腰三角形;(2)解:∵AD=CD=CB=b,△BCD的周长是a,∴AB=a﹣b,∵AB=AC,∴AC=a﹣b,∴△ACD的周长=AC+AD+CD=a﹣b+b+b=a+b.24.(1)解:如图1,结论:AD是△ABC的中线.理由如下:∵△ABC是等边三角形,∴AB=AC,∠BAC=∠B=∠ACB=60°,∵CD=CE,∴∠CDE=∠E,∵∠ACD=∠CDE+∠E=60°,∴∠E=30°,∵DA=DE,∴∠DAC=∠E=30°,∵∠BAC=60°,∴∠DAB=∠CAD,∵AB=AC,∴BD=DC,∴AD是△ABC的中线.(2)结论:AB+BD=AE,理由如下:如图2,在AB上取BH=BD,连接DH,∵BH=BD,∠B=60°,∴△BDH为等边三角形,AB﹣BH=BC﹣BD即AH=DC,∴∠BHD=60°,BD=DH,∵AD=DE,∴∠E=∠CAD,∴∠BAC﹣∠CAD=∠ACB﹣∠E即∠BAD=∠CDE,∵∠BHD=60°,∠ACB=60°,∴180°﹣∠BHD=180°﹣∠ACB即∠AHD=∠DCE,∵∠BAD=∠CDE,AD=DE,∠AHD=∠DCE,在△AHD和△DCE,,∴△AHD≌△DCE(AAS),∴DH=CE,∴BD=CE,∴AE=AC+CE=AB+BD.(3)AB=BD+AE,如图3,在AB上取AF=AE,连接DF,∵△ABC为等边三角形,∴∠BAC=∠ABC=60°,∴△AFE是等边三角形,∴∠FAE=∠FEA=∠AFE=60°,∴EF∥BC,∴∠EDB=∠DEF,∵AD=DE,∴∠DEA=∠DAE,∴∠DEF=∠DAF,∵DF=DF,AF=EF,在△AFD和△EFD中,,∴△AFD≌△EFD(SSS)∴∠ADF=∠EDF,∠DAF=∠DEF,∴∠FDB=∠EDF+∠EDB,∠DFB=∠DAF+∠ADF,∵∠EDB=∠DEF,∴∠FDB=∠DFB,∴DB=BF,∵AB=AF+FB,∴AB=BD+AE.25.解:(1)根据题意和图象,可得E点运动的时间为2s,速度为3cm/s.故答案为:2;3;(2)根据题意得y=×BE×AD==9x,即y=9x(0<x≤2);(3)当x=2时,y=9×2=18.故△ABE的面积为18cm2.2019—2020学年赤峰第十二中八年级数学上学期期中试卷(无答案)一、选择题(本大题共12小题,每小题3分,共36分) 1.以下五家银行行标中,是轴对称图形的有( )A .1个B .2个C .3个D .4个 2.有下列长度的三条线段,能组成三角形的是( )A .1cm ,2cm ,3cmB .1cm ,2cm ,4cmC .2cm ,3cm ,4cmD .2cm ,3cm ,6cm 3.下列计算正确的是( )A .532a a a =+B .44a a a =÷C .842a a a =⨯D .632)(a a -=- 4.在下列多项式的乘法中,可以用平方差公式进行计算的是( )A .)1)(1(x x ++B .)21)(21(a b b a -+C .))((b a b a -+-D .))((22y x y x +-5.如图,已知△ABC 中,AD 是BC 边上的高,AE 是∠BAC 的平分线,若∠B=65°,∠C=45°,则∠DAE 的度数为( )A .35°B .25°C .20°D .10° 6.如下图所示,∠C=48°,∠E=25°,∠BDF=140°,∠A=( ) A .67° B .85° C .72° D .63° 7.等腰三角形的一个内角是50°,则另外两个角的度数分别是( ) A .65°,65° B .50°,80°C .65°,65°或50°,80°D .50°,50°或80°,80°8.一个多边形每个内角都比相邻外角的3倍还多20°,则这个多边形的边数是( ) A .9 B .8 C .7 D .6 9.如图所示,AB ∥CD ,点P 为∠BAD ,∠ADC 的平分线的交点,PE ⊥AD 于点E ,且PE=3,则AB 与CD 之间的距离等于( ) A .9 B .8 C .7 D .610.如图,在△ABC 中,∠C=90°,∠B=15°,AB 的垂直平分线交BC 于点D ,交AB 于点M ,BD=8cm ,则AC 的长是( ) A .8 B .6 C .4 D .311.如图,边长为m+4的正方形纸片剪出一个边长为m 的正方形之后,剩余部分可剪拼成一个矩形,若拼成的矩形一边长为4,则另一边长为( )A .4B .m -4C .mD .2m +412.如图,等边△ABC 的边长为4,AD 是BC 边上的中线,F 是AD 边上的动点,E 是AC 边上一点,若AE=2,当EF+CF 取得最小值时,则∠ECF 的度数为( )A .15°B .22.5°C .30°D .45° 二、填空题(本大题共6小题,每小题3分,共18分)13.在平面直角坐标系中,点P (−2,−3)关于x 轴的对称点的坐标是_______________. 14.因式分解:=-224y x15.如图,已知AB=AC ,要使△ABE ≌△ACD ,只需增加的一个条件是___ .16.计算:20162017)31()3(-⨯-= .17.如图,在△ABC 中,BO 平分∠ABC ,CO 平分∠ACB ,MN ∥BC ,MN 经过点O ,若AB =15,AC =20,则△AMN 的周长是 .18.杨辉三角,又称贾宪三角,是二项式系数在三角形中的一种几何排列,如图,根据你观察的杨辉三角的排列规律,则=+6)(b a . 11 1 =1a+1b 12 1 =1 +2ab+1 13 3 1 =1+3b+3a +1 14 6 4 1 =1+4+64a +11 5 10 10 5 1 ……三.解答题(共96分) 19.计算:(9分)(1)2233)()2(x x •- ; (2))23)(32(b a b a +- ; (3)3332432)246(xy xy z y x z y x ÷+- ;20.利用乘法公式计算:(9分)(1))32)(32(n m n m -+ ; (2)2)3(b a +- ; (3)99101982⨯- ;21.(6分)先化简再求值:)5)(5()1(2-+-+m m m ,其中3-=m .22.(10分)ΔABC 在平面直角坐标系中的位置如图所示. (1)写出ΔABC 的各顶点坐标;(2)画出与ΔABC 关于y 轴对称的ΔA 1B 1C 1; (3)将ΔABC 向下平移3个单位长度,画出平移后的ΔA 2B 2C 223.(8分)如图,某地有两所大学和两条交叉的公路.图中点M ,N 表示大学,a ,b 表示公路,现计划修建一座物资仓库,希望仓库到两所大学的距离相同,到两条公路的距离也相同,你能确定出仓库P 应该建在什么位置吗?请在图中画出你的设计.(尺规作图,不写作法,保留作图痕迹)24.(10分)如图:AC//EF ,∠C=∠F ,AE=BD.求证:ΔABC ≌ΔEDF25.(10分)如图,AB=AE ,BC=ED ,∠B=∠E ,AF┴CD 于F.(1)求证:F 是CD 的中点(2)连接BE 后,你能得到什么新的结论?请写出两个不同类型的结论26.(10分)每个周末,冬冬都要到城郊爷爷家的花圃里去玩.有一次,爷爷给冬冬出了道数学题,爷爷家的花圃呈长方形,长比宽多2m ,如果花圃的长和宽分别增加3m ,那么这个花圃的面积将增加39m 2,你能算出花圃原来的长和宽各是多少米吗?27.(12分)阅读理解:(1)同底数幂除法公式 n m n m a a a -=÷ ( a ≠ 0 , m , n 都是正整数,并且 m > n )中,如果 m < n 可以得到负整指数幂;p p a a 1=-( a ≠ 0 , p 是正整数),即任何不等于 0 的数的- p 次幂等于这个数的 p 次幂的倒数.请你根据负整指数幂的定义求解下题:)1()32(3)21(01-+-+-+-(2)因为22))((b a b a b a -=-+,所以22))((b b a b a a +-+=.利用此式可以进行速算:如:9882=(988+12)(988-12)+122=1000×976+144=976144.运用上式的规律,计算:88228.(12分)(1)如图1,等腰△ABC 与等腰△DEC 有公共点C ,且∠BCA=∠ECD ,连接BE 、AD ,若BC=AC ,EC=DC ,求证:BE=AD.(2)若将△DEC 绕点C 旋转至图2、图3、图4情形时,其余条件不变,BE 与AD 还相等吗?直接写出结论;(3)将△ABC 与△DEC 变为等边三角形,并且当BCD 在同一条直线上时,根据图5,判断:①MN//BC ;②∠APB=60°;③CMN 是等边三角形;④BM=AN 中,正确的结论有几个?选择其中一个正确的结论证明2020-2021学年广东省广州市海珠区南武中学八年级上学期期中考试数学试卷(无答案)一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1. 在以下的标志中,是轴对称的是()A. B. C. D.2. 下列长度的三根小木棒能构成三角形的是()A. 2cm, 3cm, 5cmB. 7cm, 4cm, 2cmC. 3cm, 4cm, 8cmD. 3cm, 3cm, 4cm3. 在△ABC中,画出边AC上的高,下面4幅图中画法正确的是()A. B. C. D.4. 下列运算正确的是()A. B. C. D.5. 如图1为正方形网格,则()A. 105B.120C. 115D.1356. 如图2,已知等腰三角形ABC,AB=AC,若以点B为圆心,BC长为半径画弧,交腰AC于点E,则下列结论一定正确的是()A. AB=ECB. AE=BEC.D.7. 如图3,在△ABC中,AB=2020,AC=2018,AD为中线,则△ABD与△ACD的周长之差为()A. 1B. 2C. 3D. 4第5题图第6题图第7题图8. 如图4,△ABC≌△AEF,AB=AE,,则对于下列结论:○1AC=AF,○2,○3EF=BC,○4,其中正确结论的个数是()A. 1个B. 2个C. 3个D. 4个9. 如图5,△ABC中,BD平分,BC的中垂线交BC于点E,交BD于点F,连接CF. 若,,则的度数为()A. 48B. 36C. 30D.2410. 如图6,过边长为1的等边△ABC的边AB上一点P,作PE AC于E,Q为BC延长线一点,当PA=CQ 时,连结PQ交AC于D,则DE的长为()A. B. C. D.第8题图第9题图第10题图二、填空题(本大题共6小题,每小题3分,共18分)11. 若一个正多边形的一个外角是40,则这个正多边形的边数是_____.12. 若点A(,-3),B(-2,)关于轴对称,则2的值为_____.13. 计算:=________.14. 若等腰三角形的周长为10cm,其中一边长为4cm,则该等腰三角形的底边是________cm.15. 如图7,已知,点P在边OA上,OP=12,点M,N在边OB上,PM=PN,若MN=2,则OM=________.16. 如图8,△ABC中,,AB>AC,两内角的平分线CD、BE交于点O,Of平分交BC于F,(1);(2)连AO,则AO平分;(3)A、O、F三点在同一直线上;(4)OD=OE;(5)BD+CE=BC. 其中正确的结论是__________.(填序号)第15题图第16题图三、解答题(本大题共9题,共72分,解答应写出文字说明、证明过程或演算步骤.)17,(6分)如图,(1)画出△ABC关于轴对称的△,并写出的坐标;(2)若△ABC中有一点P坐标为(),请直接写出经过以上变换后△中的点P的对应点的坐标.18.(6分)已知:如图,A、C、F、D在同一直线上,AF=DC,AB=DE,BC=EF.求证:△ABC≌△DEF.19.(8分)如图,将长方形ABCD沿对角线AC翻折,点B落在点F处,FC交AD于E. 求证:AE=CE.20.(10分)如图,△ABC中,,.(1)用尺规作图作AB边上的垂直平分线DE,交AC于点D,交AB于点E.(保留作图痕迹,不要求写作法和证明)(2)连接BD,求证:DE=CD.21.(10分)如图,PB AB,PC AC,PB=PC,D是AP上一点.求证:.22.(10分)如图,在△ABC中,,BE平分,AM BC于点M,AD平分,交BC于点D,AM交BE于点G.(1)求证:;(2)判断直线BE是否垂直平分线段AD,并说明理由.23.(10分)如图,在△COP中,OC=OP,过点P作PE OC于点E,点M在△OPE内部,连接OM,PM,CM,其中OM、PM分别平分、.(1)求的度数;(2)试判断△CMP的形状,并说明理由.24.(12分)如图,在平面直角坐标系中,已知两点A(,0),B(0,)(),点C在第一象限,AB BC,BC=BA,点P在线段OB上,OP=OA,AP的延长线与CB的延长线交于点M,AB与CP交于点N.(1)点C的坐标为:______(用含的式子表示);(2)求证:BM=BN;(3)设点C关于直线AB的对称点为D,点C关于直线AP的对称点为G,求证:D,G关于轴对称.。