河北省2020-2021学年八年级下学期期末数学试题(人教版)
2020-2021学年初中数学八年级下学期期末常考题(选择题30题)
2020-2021学年初中数学八年级下学期期末常考题(选择题30题)一.选择题(共30小题)1.8的立方根是()A.3B.±3C.2D.±22.在﹣3.5,,0,,﹣,﹣3,0.5151151115…(相邻两个5之间依次多一个1)中,无理数有()A.1个B.2个C.3个D.4个3.已知(x+a)(x+b)=x2﹣13x+36,则a+b=()A.﹣5B.5C.﹣13D.﹣13或54.一块正方形的瓷砖边长为cm,它的边长大约在()A.4cm﹣5cm之间B.5cm﹣6cm之间C.6cm﹣7cm之间D.7cm﹣8cm之间5.下面是某同学在一次测验中的计算摘录,其中正确的个数有()①3x3•(﹣2x2)=﹣6x5;②4a3b÷(﹣2a2b)=﹣2a;③(a3)2=a5;④(﹣a)3÷(﹣a)=﹣a2.A.1个B.2个C.3个D.4个6.若2x=3,8y=6,则2x﹣3y的值为()A.B.﹣2C.D.7.16的平方根是()A.4B.±4C.﹣4D.±88.若m=﹣4,则估计m的值所在的范围是()A.1<m<2B.2<m<3C.3<m<4D.4<m<59.下列说法不正确的是()A.的平方根是B.﹣9是81的一个平方根C.0.2的算术平方根是0.04D.﹣27的立方根是﹣310.已知实数a、b在数轴上对应的点如图所示,则下列式子正确的是()A.ab>0B.a+b<0C.|a|<|b|D.a﹣b>011.﹣3的绝对值是()A.3B.﹣3C.D.12.下列运算正确的是()A.x6÷x2=x3B.(3x)2=3x2C.(x2)3=x5D.x2•x3=x513.估计65的立方根大小在()A.8与9之间B.3与4之间C.4与5之间D.5与6之间14.在3.14,,﹣,,π这几个数中,无理数有()A.1个B.2个C.3个D.4个15.有一个数轴转换器,原理如图所示,则当输入的x为64时,输出的y是()A.8B.C.D.1816.不等式1﹣x<3的解集为()A.x>﹣2B.x<﹣2C.x<2D.x>217.已知a<b,下列不等式中错误的是()A.a+z<b+z B.﹣4a>﹣4b C.2a<2b D.a﹣c>b﹣c 18.在一次“疫情防护”知识竞赛中,竞赛题共25道,选对得4分,不选或选错扣2分,得分不低于60分得奖,那么得奖至少应选对的题数是()A.18B.19C.20D.2119.已知关于x的不等式组整数解有4个,则b的取值范围是()A.7≤b<8B.7≤b≤8C.8≤b<9D.8≤b≤920.如果x>y,则下列变形中正确的是()A.﹣x y B.y C.3x>5y D.x﹣3>y﹣3 21.小明将含30°的三角板和一把直尺如图放置,测得∠1=25°,则∠2的度数是()A.25°B.30°C.35°D.40°22.下列图形中线段PQ的长度表示点P到直线a的距离的是()A.B.C.D.23.如图,∠1和∠2是直线____和直线____被直线____所截得到的____.应选()A.a,b,c,同旁内角B.a,c,b,同位角C.a,b,c,同位角D.c,b,a,同位角24.如图,给出了过直线外一点作已知直线的平行线的方法,其依据是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.同旁内角互补,两直线平行D.两直线平行,同位角相等25.下列语句是命题的是()(1)两点之间,线段最短(2)如果两个角的和是90度,那么这两个角互余(3)如果x2>0,那么x>0吗?(4)过直线外一点作已知直线的垂线A.(1)(2)B.(3)(4)C.(1)(3)D.(2)(4)26.直线AB、CD、EF相交于O,则∠1+∠2+∠3=()A.90°B.120°C.180°D.140°27.如图,直线a∥b,将一块含30°角(∠BAC=30°)的直角三角尺按图中方式放置,其中A和C两点分别落在直线a和b上.若∠1=20°,则∠2的度数为()A.20°B.30°C.40°D.50°28.在下列四项调查中,方式正确的是()A.了解本市中学生每天学习所用的时间,采用全面调查的方式B.为保证运载火箭的成功发射,对其所有的零部件采用抽样调查的方式C.了解某市每天的流动人口数,采用全面调查的方式D.了解全市中学生的视力情况,采用抽样调查的方式29.为了了解2019年我校560名七年级学生期末考试的数学成绩,从中随机抽取了200名学生的数学成绩进行分析,下列说法正确的是()A.2019年我校七年级学生是总体B.样本容量是560C.60名七年级学生是总体的一个样本D.每一名七年级学生的数学成绩是个体30.点M(3,﹣1)经过平移到达点N,N的坐标为(2,1),那么平移方式是()A.先向左平移1个单位,再向下平移2个单位B.先向右平移1个单位,再向下平移2个单位C.先向左平移1个单位,再向上平移2个单位D.先向右平移1个单位,再向上平移2个单位2020-2021学年初中数学八年级下学期期末常考题(选择题30题)参考答案与试题解析一.选择题(共30小题)1.8的立方根是()A.3B.±3C.2D.±2【分析】直接根据立方根的定义求解.【解答】解:8的立方根为2.故选:C.【点评】本题考查了立方根:若一个数的立方等于a,那么这个数叫a的立方根,记作.2.在﹣3.5,,0,,﹣,﹣3,0.5151151115…(相邻两个5之间依次多一个1)中,无理数有()A.1个B.2个C.3个D.4个【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:﹣3.5是有限小数,属于有理数;是分数,属于有理数;0是整数,属于有理数;,是有限小数,属于有理数;无理数有,,0.5151151115…(相邻两个5之间依次多一个1)共3个.故选:C.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.3.已知(x+a)(x+b)=x2﹣13x+36,则a+b=()A.﹣5B.5C.﹣13D.﹣13或5【分析】直接利用多项式乘法去括号,进而合并同类项求出答案.【解答】解:∵(x+a)(x+b)=x2﹣13x+36,∴x2+(a+b)x+ab=x2﹣13x+36,∴a+b=﹣13.故选:C.【点评】此题主要考查了多项式乘以多项式,正确掌握运算法则是解题关键.4.一块正方形的瓷砖边长为cm,它的边长大约在()A.4cm﹣5cm之间B.5cm﹣6cm之间C.6cm﹣7cm之间D.7cm﹣8cm之间【分析】利用算术平方根的性质进行估算即可.【解答】解:∵49<55<64,∴7<8,故选:D.【点评】本题主要考查了估算无理数的大小,利用算术平方根的性质估算是解答此题的关键.5.下面是某同学在一次测验中的计算摘录,其中正确的个数有()①3x3•(﹣2x2)=﹣6x5;②4a3b÷(﹣2a2b)=﹣2a;③(a3)2=a5;④(﹣a)3÷(﹣a)=﹣a2.A.1个B.2个C.3个D.4个【分析】计算出各个小题中式子的正确结果,然后对照即可得到哪个选项是正确的.【解答】解:∵3x3•(﹣2x2)=﹣6x5,故①正确;∵4a3b÷(﹣2a2b)=﹣2a,故②正确;∵(a3)2=a6,故③错误;∵(﹣a)3÷(﹣a)=a2,故④错误;故选:B.【点评】本题考查整式的混合运算,解题的关键是明确整式的混合运算的计算方法.6.若2x=3,8y=6,则2x﹣3y的值为()A.B.﹣2C.D.【分析】利用同底数幂的除法法则进行计算即可.【解答】解:∵8y=6,∴23y=6,∵2x=3,∴2x﹣3y=2x÷23y=3÷6=,故选:A.【点评】此题主要考查了同底数幂的除法,关键是掌握a m÷a n=a m﹣n(a≠0,m,n是正整数,m>n).7.16的平方根是()A.4B.±4C.﹣4D.±8【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的一个平方根.【解答】解:∵(±4)2=16,∴16的平方根是±4.故选:B.【点评】本题主要考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数,0的平方根是0,负数没有平方根.8.若m=﹣4,则估计m的值所在的范围是()A.1<m<2B.2<m<3C.3<m<4D.4<m<5【分析】应先找到所求的无理数在哪两个和它接近的整数之间,然后判断出所求的无理数的范围即可求解.【解答】解:∵36<40<49,∴6<<7,∴2<﹣4<3.故选:B.【点评】此题主要考查了无理数的估算能力,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.9.下列说法不正确的是()A.的平方根是B.﹣9是81的一个平方根C.0.2的算术平方根是0.04D.﹣27的立方根是﹣3【分析】根据平方根的意义,可判断A、B,根据算术平方根的意义.可判断C,根据立方根的意义,可判断D.【解答】解:A、,故A选项正确;B、=﹣9,故B选项正确;C、=0.2,故C选项错误;D、=﹣3,故D选项正确;故选:C.【点评】本题考查了立方根,平方运算是求平方根的关键,立方运算是解立方根的关键.10.已知实数a、b在数轴上对应的点如图所示,则下列式子正确的是()A.ab>0B.a+b<0C.|a|<|b|D.a﹣b>0【分析】根据数轴上点的位置关系,可得a,b的大小,根据有理数的运算,可得答案.【解答】解:b<0<a,|b|<|a|.A、ab<0,故A不符合题意;B、a+b>0,故B不符合题意;C、|b|<|a|,故C不符合题意;D、a﹣b>0,故D符合题意;故选:D.【点评】本题考查了实数与数轴,利用有理数的运算是解题关键.11.﹣3的绝对值是()A.3B.﹣3C.D.【分析】根据一个负数的绝对值等于它的相反数得出.【解答】解:|﹣3|=﹣(﹣3)=3.故选:A.【点评】考查绝对值的概念和求法.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.12.下列运算正确的是()A.x6÷x2=x3B.(3x)2=3x2C.(x2)3=x5D.x2•x3=x5【分析】根据同底数幂的除法法则:底数不变,指数相减,及同底数幂的乘法以及幂的乘方与积的乘方法则进行运算,然后即可作出判断.【解答】解:A、x6÷x2=x4,故本选项错误;B、(3x)2=9x2,故本选项错误;C、(x2)3=x6,故本选项错误;D、x2•x3=x5,故本选项正确.故选:D.【点评】本题考查同底数幂的除法、同底数幂的乘法及幂的乘方与积的乘方的知识,其中幂的乘方是易混淆知识点,一定要记准法则才能做题.13.估计65的立方根大小在()A.8与9之间B.3与4之间C.4与5之间D.5与6之间【分析】由<<求解可得.【解答】解:∵<<,∴4<<5,∴估计65的立方根大小在4与5之间,故选:C.【点评】本题主要考查估算无理数的大小,解题的关键是掌握估算无理数大小的思维方法:用有理数逼近无理数,求无理数的近似值.14.在3.14,,﹣,,π这几个数中,无理数有()A.1个B.2个C.3个D.4个【分析】根据无理数是无限不循环小数,可得答案.【解答】解:=3,﹣,π是无理数,共有2个,故选:B.【点评】此题主要考查了无理数.解题的关键是掌握无理数的定义,明确初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.15.有一个数轴转换器,原理如图所示,则当输入的x为64时,输出的y是()A.8B.C.D.18【分析】根据算术平方根,即可解答.【解答】解:64的算术平方根是8,8的算术平方根是.故选:B.【点评】本题考查了算术平方根,解决本题的根据是熟记算术平方根的定义.16.不等式1﹣x<3的解集为()A.x>﹣2B.x<﹣2C.x<2D.x>2【分析】不等式移项合并,把x系数化为1,即可求出解集.【解答】解:不等式整理得:﹣x<2,解得:x>﹣2,故选:A.【点评】此题考查了解一元一次不等式,熟练掌握运算法则是解本题的关键.17.已知a<b,下列不等式中错误的是()A.a+z<b+z B.﹣4a>﹣4b C.2a<2b D.a﹣c>b﹣c 【分析】根据不等式的性质逐个判断即可.【解答】解:A、∵a<b,∴a+z<b+z,故本选项不符合题意;B、∵a<b,∴﹣4a>﹣4b,故本选项不符合题意;C、∵a<b,∴2a<2b,故本选项不符合题意;D、∵a<b,∴a﹣c<b﹣c,故本选项符合题意;故选:D.【点评】本题考查了不等式的性质,能熟记不等式的性质是解此题的关键,注意:不等式的性质有:①不等式的两边都加或减同一个数或式子,不等号的方向不变,②不等式的两边都乘以或除以同一个正数,不等号的方向不变,③不等式的两边都乘以或除以同一个负数,不等号的方向改变.18.在一次“疫情防护”知识竞赛中,竞赛题共25道,选对得4分,不选或选错扣2分,得分不低于60分得奖,那么得奖至少应选对的题数是()A.18B.19C.20D.21【分析】设应选对的题数是x道,根据“得分不低于60分”列出不等式,再解即可.【解答】解:设应选对的题数是x道,由题意得:4x﹣2(25﹣x)≥60,解得:x≥18,∴至少应选对的题数是19,故选:B.【点评】此题主要考查了一元一次不等式的应用,关键是正确理解题意,找出题目中的不等关系,列出不等式.19.已知关于x的不等式组整数解有4个,则b的取值范围是()A.7≤b<8B.7≤b≤8C.8≤b<9D.8≤b≤9【分析】首先确定不等式组的解集,先利用含b的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于b的不等式,从而求出b的范围.【解答】解:由不等式x﹣b≤0,得:x≤b,由不等式x﹣2≥3,得:x≥5,∵不等式组有4个整数解,∴其整数解为5、6、7、8,则8≤b<9,故选:C.【点评】本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.本题要根据整数解的取值情况分情况讨论结果,取出合理的答案.20.如果x>y,则下列变形中正确的是()A.﹣x y B.y C.3x>5y D.x﹣3>y﹣3【分析】根据不等式的性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变.不等式两边乘(或除以)同一个负数,不等号的方向改变.【解答】解:A、两边都乘以﹣,故A错误;B、两边都乘以,故B错误;C、左边乘3,右边乘5,故C错误;D、两边都减3,故D正确;故选:D.【点评】主要考查了不等式的基本性质,“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变.不等式两边乘(或除以)同一个负数,不等号的方向改变.21.小明将含30°的三角板和一把直尺如图放置,测得∠1=25°,则∠2的度数是()A.25°B.30°C.35°D.40°【分析】根据平行线的性质和三角形的内外角关系即可求解.【解答】解:如图:∵∠1=25°,∠3=∠1+30°,∴∠3=55°,∵直尺的对边平行,∴∠4=∠3=55°,∴∠2=180°﹣90°﹣∠4=180°﹣90°﹣55°=35°,故选:C.【点评】本题考查了平行线的性质和三角形的内外角关系.解题的关键是能够正确找出角度的关系得出答案.22.下列图形中线段PQ的长度表示点P到直线a的距离的是()A.B.C.D.【分析】根据点到直线的距离的定义,可得答案.【解答】解:由题意得PQ⊥a,P到a的距离是PQ垂线段的长,故选:C.【点评】本题考查了点到直线的距离,点到直线的距离是解题关键.23.如图,∠1和∠2是直线____和直线____被直线____所截得到的____.应选()A.a,b,c,同旁内角B.a,c,b,同位角C.a,b,c,同位角D.c,b,a,同位角【分析】根据两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角可得答案.【解答】解:∠1和∠2是直线b和直线c被直线a所截得到的同位角,故选:D.【点评】此题主要考查了同位角,关键是掌握同位角的边构成“F“形.24.如图,给出了过直线外一点作已知直线的平行线的方法,其依据是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.同旁内角互补,两直线平行D.两直线平行,同位角相等【分析】判定两条直线是平行线的方法有:可以由内错角相等,两直线平行;同位角相等,两直线平行;同旁内角互补两直线平行等,应结合题意,具体情况,具体分析.【解答】解:图中所示过直线外一点作已知直线的平行线,则利用了同位角相等,两直线平行的判定方法.故选:A.【点评】本题主要考查了平行线的判定方法.这是以后做题的基础.要求学生熟练掌握.25.下列语句是命题的是()(1)两点之间,线段最短(2)如果两个角的和是90度,那么这两个角互余(3)如果x2>0,那么x>0吗?(4)过直线外一点作已知直线的垂线A.(1)(2)B.(3)(4)C.(1)(3)D.(2)(4)【分析】根据命题的定义分别对四个语句进行判断即可.【解答】解:(1)两点之间,线段最短,对问题做出了判断,是命题,符合题意;(2)如果两个角的和是90度,那么这两个角互余,对问题做出了判断,是命题,符合题意;(3)如果x2>0,那么x>0吗?是疑问句,不是命题,不符合题意;(4)过直线外一点作已知直线的垂线是陈述句,不是命题,命题有(1)(2),故选:A.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.26.直线AB、CD、EF相交于O,则∠1+∠2+∠3=()A.90°B.120°C.180°D.140°【分析】根据对顶角相等可得∠4=∠3,再根据平角的定义解答.【解答】解:如图,∠4=∠3,∵∠2+∠1+∠4=180°,∴∠1+∠2+∠3=180°.故选:C.【点评】本题考查了对顶角相等的性质,平角的定义,准确识图是解题的关键.27.如图,直线a∥b,将一块含30°角(∠BAC=30°)的直角三角尺按图中方式放置,其中A和C两点分别落在直线a和b上.若∠1=20°,则∠2的度数为()A.20°B.30°C.40°D.50°【分析】直接利用平行线的性质结合三角形内角和定理得出答案.【解答】解:∵直线a∥b,∴∠1+∠BCA+∠2+∠BAC=180°,∵∠BAC=30°,∠BCA=90°,∠1=20°,∴∠2=40°.故选:C.【点评】此题主要考查了平行线的性质,正确掌握平行线的性质是解题关键.28.在下列四项调查中,方式正确的是()A.了解本市中学生每天学习所用的时间,采用全面调查的方式B.为保证运载火箭的成功发射,对其所有的零部件采用抽样调查的方式C.了解某市每天的流动人口数,采用全面调查的方式D.了解全市中学生的视力情况,采用抽样调查的方式【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、了解本市中学生每天学习所用的时间,调查范围广适合抽样调查,故A 不符合题意;B、为保证运载火箭的成功发射,对其所有的零部件采用全面调查的方式,故B不符合题意;C、了解某市每天的流动人口数,无法普查,故C不符合题意;D、了解全市中学生的视力情况,采用抽样调查的方式,故D符合题意;故选:D.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.29.为了了解2019年我校560名七年级学生期末考试的数学成绩,从中随机抽取了200名学生的数学成绩进行分析,下列说法正确的是()A.2019年我校七年级学生是总体B.样本容量是560C.60名七年级学生是总体的一个样本D.每一名七年级学生的数学成绩是个体【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【解答】解:A、2019年我校560名七年级学生期末考试的数学成绩是总体,故A不符合题意;B.样本容量是200,故B不符合题意;C、200名七年级学生的数学成绩是一个样本,故C不符合题意;D、每一名七年级学生的数学成绩是个体,故D符合题意;故选:D.【点评】考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体30.点M(3,﹣1)经过平移到达点N,N的坐标为(2,1),那么平移方式是()A.先向左平移1个单位,再向下平移2个单位B.先向右平移1个单位,再向下平移2个单位C.先向左平移1个单位,再向上平移2个单位D.先向右平移1个单位,再向上平移2个单位【分析】根据向左平移横坐标减,向上平移纵坐标加解答.【解答】解:∵点M(3,﹣1)经过平移到达点N,N的坐标为(2,1),∴平移方式是先向左平移1个单位,再向上平移2个单位.故选:C.【点评】本题考查了坐标与图形变化﹣平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.。
河北省保定市阜平县2022-2023学年八年级下学期7月期末数学试题(含答案)
2022~2023学年八年级第二学期期末质量检测数学(人教版)本试卷共8页,总分120分,考试时间120分钟.题号一二三20212223242526得分注意事项:1.仔细审题,工整作答,保持卷面整洁.2.考生完成试卷后,务必从头到尾认真检查一遍.一、选择题(本大题共16个小题,1~10小题每题3分,11~16小题每题2分,共42分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列属于最简二次根式的是()2.如图,在平行四边形ABCD 中,60A ∠=︒,则C ∠的度数为()A.30︒B.60︒C.90︒D.120︒3.a =+,则a =()C.2D.44.下列各组数中,能作为直角三角形三边长的是()A. B.1,2,3D.3,5,65.如图所示的条形统计图描述了某校若干名学生对课后延时服务的打分情况(满分5分),则所打分数的众数为()A.3分B.4分C.5分D.27分6.若等腰三角形的周长为30cm ,则底边长()cm y 与腰长()cm x (不写自变量的取值范围)之间的函数解析式为()A.15y x=- B.152y x=- C.30y x=- D.302y x=-7.某博物馆要招聘一名讲解员,一名应聘者笔试、试讲、面试三轮测试的得分分别为90分、94分、95分,综合成绩中笔试占30%,试讲占50%,面试占20%,则该应聘者的综合成绩为()A.88分B.90分C.92分D.93分8.依据图所标数据,则四边形ABCD 一定是()A.正方形B.矩形C.菱形D.四个角均不为90︒的平行四边形9.如图,分别以直角三角形的三边为边,向外作正方形,则阴影部分的面积1S ,2S 与3S 之间的数量()A.123S S S +>B.123S S S +<C.123S S S +=D.1232S S S +=10.函数12y x b =+的图象如图所示,点()1,1A x -,点()2,2B x 在该图象上,下列判断正确的是()甲:1x 与2x 之间的大小关系为12x x <;乙:关于x 的不等式102x b +>的解集为0x >A.只有甲对B.只有乙对C.甲、乙都对D.甲、乙都不对11.将矩形纸片的长减少,宽不变,就成为一个面积为248cm 的正方形纸片,则原矩形纸片的长为()A.2B.2C.2D.212.如图,直线111:l y k x b =+与直线222:l y k x b =+(其中120k k ≠)在同一平面直角坐标系中,则下列结论中一定正确的是()A.120k k +<B.120k k >C.120b b +=D.120b b >13.现有一四边形ABCD ,借助此四边形作平行四边形EFGH ,有以下两种方案,对于方案Ⅰ、Ⅱ,下列说法正确的是()方案Ⅰ作边AB ,BC ,CD ,AD 的垂直平分线1l ,2l ,3l ,4l ,分别交AB ,BC ,CD ,AD于点E ,F ,G ,H ,顺次连接这四点围成的四边形EFGH 即为所求.方案Ⅱ连接AC ,BD ,过四边形ABCD 各顶点分别作AC ,BD 的平行线EF ,GH ,EH ,FG ,这四条平行线围成的四边形EFGH 即为所求.A.Ⅰ可行、Ⅱ不可行B.Ⅰ不可行、Ⅱ可行C.Ⅰ、Ⅱ都可行D.Ⅰ、Ⅱ都不可行14.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离BC 为0.7m ,梯子顶端到地面的距离AC 为2.4m .若保持梯子底端位置不动,将梯子斜靠在右墙时,则梯子顶端到地面的距离A D '为1.5m ,则小巷的宽CD 为()A.2.7mB.2.5mC.2.4mD.2m15.甲、乙两地相距300千米,一辆货车和一辆轿车分别从甲地开往乙地,如图中的线段OA 和折线BCD 分别表示货车、轿车离甲地的距离()cm y 与货车行驶时间()h x 之间的函数关系,当轿车追上货车时,轿车行驶了()A.3.9hB.3.7hC.2.7hD.2.5h16.如图,在平面直角坐标系中,矩形ABCD 的边6AB =,3BC =.若不改变矩形ABCD 的形状和大小,当矩形顶点A 在y 轴的正半轴上上下移动时,矩形的另一个顶点B 始终在x 轴的正半轴上随之左右移动.已知M 是边AB 的中点,连接OM ,DM .下列判断正确的是()结论Ⅰ:在移动过程中,OM 的长度不变;结论Ⅰ:当45OAB ∠=︒时,四边形OMDA 是平行四边形A.结论Ⅰ、Ⅱ都对 B.结论Ⅰ、Ⅱ都不对C.只有结论Ⅰ对D.只有结论Ⅱ对二、填空题(本大题共3个小题,每小题3分,共9分.其中18小题第一空2分,第二空1分;19小题每空1分)17.数据3,4,4,5,6,的中位数是________18.如图,菱形ABCD 与正方形AECF 的顶点B ,E ,F ,D 在同一条直线上,且4AB =,60ABC ∠=︒.(1)BAE ∠的度数为________(2)点E 与点F 之间的距离为________.19.在平面直角坐标系中,直线()1:0l y kx b k =+≠由函数y x =-的图象平移得到,且经过点()1,1,直线1l 与y 轴交于点A .直线()2:10l y mx m =->与y 轴交于点B .(1)直线1l 的函数解析式为__________;(2)AB 的长度为__________;(3)当1x <时,对于x 的每一个值,()10y mx m =->的值都小于y kx b =+的值,则m 的取值范围是__________.三、解答题(本大题共7个小题,共69分,解答应写出文字说明、证明过程或演算步骤)20.计算下列各小题.(1÷;(2)2-.21.如图,四边形ABCD 是某校在校园一角开辟的一块四边形“试验田”,经过测量封得90B ∠=︒,24m AB =,7m BC =,15m CD =,20m AD =.(1)求AC 的长度和D ∠的度数;(2)求四边形“试验田”的面积22.为了考察甲、乙两种成熟期小麦的株高长势情况,现从中随机抽取6株,并测得它们的株高(单位:cm )为:甲:91,94,95,96,98,96;乙:93,95,95,96,96,95.(1)数据整理,补全下表;小麦平均数众数中位数方差甲95143乙95951(2)通过比较方差,判断哪种小麦的长势比较整齐.23.如图,在平行四边形ABCD 中,连接AC ,AC 恰好平分BAD ∠.(1)求证:四边形ABCD 是菱形;(2)已知E ,F 分别是边AB ,AD 的中点,连接EF ,交AC 于点G ,连接BD ,交AC 于点O .①若6BD =,求EF 的长度;②EF 与AC 之间的位置关系,为_______________.24.某科技活动小组制作了两款小型机器人,在同一赛道上进行运行试验.甲机器人离点A 的距离与出发时间满足一次函数关系,部分数据如下表所示,乙机器人在离点A 15米处出发,以0.5米/秒的速度匀速前进,两个机器人同时同向(远离点A )出发并保持前进的状态.出发时间x (秒)…510…甲机器人离点A 的距离y 甲(米)…1015…(1)分别求出甲、乙两机器人离点A 的距离y 甲(米),y 乙(米)与出发时间x (秒)之间的函数解析式;(2)求甲机器人出发时距离点A 多远?(3)求两机器人出发多长时间时相遇?25.如图,点A ,B ,C ,D 在同一条直线上,点E ,F 分别在直线AD 的两侧,且AE DF =,A D ∠=∠,AB DC =.(1)求证:四边形BFCE 是平行四边形;(2)若11AD =,4DC =,60FCB ∠=︒,①连接EF ,当BC EF =时,请直接写出四边形BFCE 的形状,并求CE 的长度;②当BE 的长为__________时,四边形BFCE 是菱形,并证明.26.经过点()1,4,()0,1的一次函数y kx b =+的图象(直线1l )在如图所示的平面直角坐标系中,某同学为观察k 对图象的影响,将上面函数中的k 减去2,b 不变得到另一个一次函数,设其图象为直线2l .(1)求直线1l 的函数解析式;(2)在图上画出直线2l (不要求列表计算),并求直线1l ,2l 和x 轴所围成的三角形的面积;(3)将直线2l 向下平移()0a a >个单位长度后,得到直线3l ,若直线1l 与3l 的交点在第三象限,求a 的取值范围;(4)若(),0P m 是x 轴上的一个动点,过点P 作y 轴的平行线,该平行线分别与直线1l ,2l 及x 轴有三个不同的交点,且其中一个交点的纵坐标是另外两个交点的纵坐标的平均数,请直接..写出m 的值.2022—2023学年八年级第二学期期末质量检测数学(人教版)参考答案评分说明:1.本答案仅供参考,若考生答案与本答案不一致,只要正确,同样得分.2.若答案不正确,但解题过程正确,可酌情给分.一、(1-10小题每题3分,11-16小题每题2分,共计42分)题号12345678910111213141516答案BBAABDDBCABBCACA二、(每小题3分,共9分.其中18小题第一空2分,第二空1分;19小题每空1分)17.418.(1)15︒;(2)419.(1)2y x =-+;(2)3;(3)02m <≤三、20.解:(1)原式=6;(2)原式=5-21.解:(1)在Rt ABC △中,24AB =,7BC =,根据勾股定理可得25AC =,即AC 的长度为25m .在ACD △中,2625AC =,2400AD =,2225CD =,222AC AD CD ∴=+,90D ∴∠=︒;(2)()2112471520234m 22⨯⨯+⨯⨯=,即四边形“试验田”的面积为2234m .22.解:(1)如下表所示;小麦平均数众数中位数方差甲959695.5143乙9595951(2)22S S > 甲乙,∴乙小麦的长势比较整齐.23.解:(1)证明: 四边形ABCD 是平行四边形,AD BC ∴∥,DAC BCA ∴∠=∠.AC 平分BAD ∠,DAC BAC ∴∠=∠,BCA BAC ∴∠=∠,AB BC ∴=,∴四边形ABCD 是菱形;(2)①E ,F 分别是边AB ,AD 的中点,132EF BD ∴==;②EF AC ⊥;24.解:(1)设甲机器人离点A 的距离y 甲(米)与出发时间x (秒)之间的函数解析式为y kx b =+.将()5,10,()10,15代入y kx b =+甲中,解得1,5,k b =⎧⎨=⎩5x y ∴=+甲.由题意得乙机器人离点A 的距离y 乙(米)与出发时间x (秒)之间的函数解析式为0.515y x =+乙;(2)当0x =时,55y x =+=甲,即甲机器人出发时距离点A 5米;(3)由题意得50.515x x +=+,解得20x =,即两机器人出发20秒时相遇.25.解:(1)证明:在ABE △和DCF △中,AE DF = ,A D ∠=∠,AB DC =,ABE DCF ∴△≌△,BE CF ∴=,ABE DCF ∠=∠.又180CBE ABE ∠=︒-∠ ,180FCB DCF ∠=︒-∠,CBE FCB ∴∠=∠,BE CF ∴∥,∴四边形BFCE 是平行四边形;(2)①四边形BFCE 是矩形;11AD = ,4DC AB ==,3BC ∴=.在Rt BCE △中,60EBC FCB ∠=∠=︒,30BCE ∴∠=︒,1322BE BC ∴==,根据勾股定理可得2CE =;②3;证明:由①可得3BC =. 四边形BFCE 是平行四边形,3BE CF ∴==,BE CF ∴=.又60FCB ∠=︒ ,BCF ∴△是等边三角形,BF CF ∴=,∴四边形BFCE 是菱形.26.解:(1)将()1,4,()0,1代入y kx b =+中,解得3,1,k b =⎧⎨=⎩∴直线1l 的函数解析式为31y x =+;(2)如图;由题意可得直线2l 的函数解析式为1y x =+.在直线1l 上,当0y =时,310x +=,解得13x =-.在直线2l 上,当0y =时,10x +=,解得1x =-,()12133∴---=.∴直线1l ,2l 和x 轴所围成的三角形的面积为1211233⨯⨯=;(3)由题意可得直线3l 的函数解析式为1y x a =+-.联立31,1,y x y x a =+⎧⎨=+-⎩解得,231.2a x a y ⎧=-⎪⎪⎨⎪=-⎪⎩ 交点在第三象限,0,2310,2aa ⎧-<⎪⎪∴⎨⎪-<⎪⎩解得23a >;(4)m 的值为1或12-或15-.【精思博考:将x m =代入31y x =+,得31y m =+,将x m =代入1y x =+,得1y m =+,∴过点(),0P m 与y 轴平行的直线与直线1l ,直线2l 的交点分别为(),31m m +,(),1m m +.根据图象,当0m >时,()31021m m ++=+,解得1m =;当103m -<<时,()10231m m ++=+,解得15m =-;当113m -<<-时,1310m m +++=,解得12m =-;当1m <-时,()31021m m ++=+,解得1m =,不符合题意.综上所述,m 的值为1或12-或15-】。
河北省邯郸市丛台区汉光中学2023-2024学年八年级下学期期末数学试题(含答案)
初二数学期末试卷一.选择题(共16小题.42分)1.下列四个图象中,哪个不是y 关于x 的函数()A. B. C. D.2.下列方程中是一元二次方程的是()A. B. C. D.3.下列二次根式是最简二次根式的是()4.x 的取值范围是()A. B. C. D.5.已知a 、b 、c 是三角形的三边长,如果满足,则三角形的形状是()A.底与腰不相等的等腰三角形 B.等边三角形C.钝角三角形D.直角三角形6.小王参加某企业招聘测试,他的笔试、面试、技能操作得分分别为85分、80分、90分,若依次按照2:3:5的比例确定成绩,则小王的成绩是()A.255分 B.84分 C.84.5分 D.86分7.若是关于x 的一元二次方程的解,则()A.-1B.-2C.-3D.-68.已知在一次函数的图象上有三个点,,,则下列各式中正确的是()A. B. C. D.9.如图,的对角线AC 与BD 相交于点O ,.若AB =4,AC =6,则BD 的长是()A.8B.9C.10D.1110.关于函数,下列结论正确的是()210x -=21y x +=210x +=11x x+=3x ≠-3x ≥-3x ≤-3x >-()26100a -+=1x =220x ax b ++=36a b +=32y x =-+()13,A y -()23,B y ()34,C y -123y y y <<213y y y <<312y y y <<321y y y <<ABCD □AB AC ⊥21y x =-+A.图象必经过点(-2,1)B.图象经过第一、二、三象限C.当时,D.y 随x 的增大而增大11.如图,四边形ABCD 是平行四边形,下列结论中错误的是()A.当,平行四边形ABCD 是矩形B.当,平行四边形ABCD 是矩形C.当,平行四边形ABCD 是菱形D.当,平行四边形ABC D 是正方形12.如图,在中,D 是AB 上一点,,,垂足为点E ,F 是BC 的中点,若BD =16,则EF 的长为()A.32B.16C.8D.413.如图,所有阴影部分的四边形都是正方形,所有三角形都是直角三角形,若正方形A 、B 、D 的面积依次为5、13、30,则正方形C 的面积为()A.12B.18C.10D.2014.如图,嘉嘉利用刻度直尺(单位:cm )测量三角形纸片的尺寸,点B ,C 分别对应刻度尺上的刻度2和8,D 为BC 的中点,若,则AD 的长为()A.3cmB.4cmC.5cmD.6cm15.如图所示,一次函数(,b 是常数)与正比例函数(m 是常数)的图象相交于点M (1,2),下列判断错误的是()12x >0y <90ABC ∠=︒AC BD =AB BC =AC BD ⊥ABC △AD AC =AE CD ⊥90BAC ∠=︒y kx b =+k 0k ≠y mx =0m ≠A.关于x 的方程的解是B.关于x 的不等式的解集是C.当时,函数的值比函数的值大D.关于x ,y 的方程组的解是16.如图,在平面直角坐标系中,四边形OABC 是边长为1的正方形,顶点A 、C 分别在x 轴的负半轴、y 轴的正半轴上.若直线与边AB 有公共点,则k 的值可能为()A.B.C.D.3二、填空题(共3小题,17,18每题3分,19题4分)17.若一组数据1,3,x ,5,4,6的平均数是4,则这组数据的中位数是_______.18.若一次函数的图象向上平移5个单位恰好经过点(-1,4),则b 的值为_______.19.如图,△ABC 是等腰直角三角形,,AC =BC =4,点P 是AB 上的一个动点(点P 与点A 、B 不重合),过点P 分别作PE ⊥BC 于点E ,PF ⊥AC 于点F ,连接EF .(1)四边形PECF 的形状是_______.(2)线段EF 的最小值为_______.三.解答题(共8小题,68分.20题12分,21题8分,22题8分,23题8分,24题10分,25mx kx b =+1x =mx kx b <+1x >0x <y kx b =+y mx =0y mx y kx b -=⎧⎨=+⎩12x y =⎧⎨=⎩2y kx =+1232522y x b =+90C ∠=︒题10分,26题12分)20.(1);(2(3);(4).21.已知关于x 的一元二次方程.(1)若方程的一个根为-1,求k的值和方程的另一个根;(2)求证:不论取何值,该方程都有两个不相等的实数根.22.如图,在平行四边形ABCD 中,∠ABC 的平分线交AD 于点E ,交CD 的延长线于点F .(1)求证:BC =CF ;(2)若∠1=5∠2,求∠C 的度数23.某社区准备在甲乙两位射箭爱好者中选出一人参加集训,两人各射了5箭,他们的总成绩(单位:环)相同.小宇根据他们的成绩绘制了尚不完整的统计图表,并计算了甲成绩的平均数和方差(见小宇的作业).甲、乙两人射箭成绩统计表第1次第2次第3次第4次第5次甲成绩94746乙成绩7577(1),;(2)请完成图中表示乙成绩变化情况的折线;(3)①观察图,可看出_______的成绩比较稳定(填“甲”或“乙”),参照小宇的计算方法,计算乙成绩的方差,并验证你的判断.②请你从平均数和方差的角度分析,谁将被选中.24.综合与实践主题:检测雕塑(如图)底座正面的边AD 和边BC 是否分别垂直与底边AB .(÷()22+3810x -=2760y y -+=2(2)10k x k x -++-=k a_______a =_______x =乙素材:一个雕塑,一把卷尺步骤1:利用卷尺测量边AD ,边BC 和底边AB 的长度,并测量出点B 、D 之间的距离;步骤2:通过计算验证底座正面的边AD 和边BC 是否分别垂直于底边AB .解决问题:(1)通过测量得到边AD 的长是60厘米,边AB 的长是80厘米,BD 的长是100厘米,边AD 垂直于边AB 吗?为什么?(2)如果你随身只有一个长度为30cm 的刻度尺,你能有办法检验边AD 是否垂直于边AB 吗?如果能,请写出你的方法,并证明。
2020-2021学年第二学期期末教学质量检测八年级下册人教版数学试卷(五)(word版 含答案)
绝密★启用前2020-2021学年第二学期期末教学质量检测八年级数学试题(五)满分150考试时间120分钟注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、单选题 1.在函数y =1x +中,自变量x 的取值范围是( ) A .x≥-1B .x >-1C .x <-1D .x≤-12.下列计算正确的是 ( ) A .3+9=12B .36=18⨯C .5+20=35D .2814=2÷3.如图,直线y =-x +2与x 轴交于点A ,则点A 的坐标是( )A .(2,0)B .(0,2)C .(1,1)D .(2,2)4.若代数式2k-在实数范围内有意义,则一次函数(2)2y k x k =--+的图象可能是( )A .B .C .D .5.下列运算正确的是( ) A .422xy y x -= B .()2239x x -=- C .()32528a a -=-D .642a a a ÷=6.如图所示,直线y x b =-+与直线2y x =都经过点()1,2--A ,则方程组2y x by x =-+⎧⎨=⎩的解为( )试卷第2页,总6页A .12x y =-⎧⎨=⎩B .12x y =-⎧⎨=-⎩C .21x y =-⎧⎨=⎩D .21x y =-⎧⎨=-⎩7.某交警在一个路口统计某时间段来往车辆的车速情况如下表,则上述车速的中位数和众数分别是( )A .50,8B .50,50C .49,50D .49,88.已知(,)A m n ,(,)B a b ,且6AB =,若33(,)22C m n ,33(,)22D a b ,则CD 的长为( ) A .4B .9C .272D .839.以下列各组数据中,能构成直角三角形的是( ) A .2)3)4B .3)4)7C .5)12)13D .1)2)310.已知平面上四点A)0)0))B)10)0))C)12)6))D)2)6),直线y=mx)3m+6将四边形ABCD 分成面积相等的两部分,则m 的值为( ) A .13B .)1C .2D .1211.若一个四边形的两条对角线相等,则称这个四边形为对角线四边形.下列图形不是对角线四边形的是( ) A .平行四边形B .矩形C .正方形D .等腰梯形12.下列命题中,属于假命题的是( ). A .等角的余角相等B .在同一平面内垂直于同一条直线的两直线平行C .相等的角是对顶角D .有一个角是60°的等腰三角形是等边三角形第II 卷(非选择题)二、填空题13.若一次函数y=)a+3)x+a)3不经过第二象限,则a 的取值范围是________) 14.观察勾股数:3、4、5;8、6、10;15、8、17……则顺次第6组勾股数是_____. 15.如图,在四边形ABCD 中,2AB =,2BC =,3CD =,1DA =,且90ABC ∠=︒,则BAD ∠=______度.16.如图,一次函数y kx b =+(0k <)的图象经过点A .当3y <时,x 的取值范围是________.17.如图,在四边形ABCD 中,//,6,16AD BC AD BC ==, E 是BC 的中点.点P 以每秒1个单位长度的速度从点A 出发,沿AD 向点D 运动;点Q 同时以每秒3个单位长度的速度从 点C 出发,沿CB 向点B 运动.点P 停止运动时,点Q 也随之停止运动.当运动时间t 秒时,以点,,,P Q E D 为顶点的四边形是平行四边形.则t 的值为_________.18.当x_________时,分式23x -有意义.三、解答题19.小亮和爸爸登山,两人距离地面的高度y (米)与小亮登山时间x (分)之间的函数图象分别如图中折线OA AC -和线段DE 所示,根据函数图象进行以下探究:试卷第4页,总6页(1)爸爸开始登山时距离地面___________米,登山的速度是每分钟___________米. (2)求爸爸登山时距地面的高度y (米)与登山时间x (分)之间的函数关系式. (3)小亮和爸爸什么时候相遇?求出相遇的时间.(4)若小亮提速后,他登山的速度是爸爸速度的3倍,问小亮登山多长时间时开始提速?20.如图,P 为正方形ABCD 的对称中心,正方形ABCD的边长为10,tan 3ABO ∠=,直线OP 交AB 于N ,DC 于M ,点H 从原点O 出发沿x 轴的正半轴方向以1个单位每秒速度运动,同时,点R 从O 出发沿OM 方向以个单位每秒速度运动,运动时间为t,求:(1)直接写出A 、D 、P 的坐标; (2)求)HCR 面积S 与t 的函数关系式; (3)当t 为何值时,)ANO 与)DMR 相似?(4)求以A 、B 、C 、R 为顶点的四边形是梯形时t 的值. 21.已知,如图,AB ∥CD)(1)则图①中的∠1+∠2的度数是180°.(2)则图②中的∠1+∠2+∠3的度数是多少?解:如图⑤,过点E作EF∥AB(为了解题的需要,添加的线叫做辅助线,辅助线常常画成虚线).所以∠1+∠AEF=180°.因为AB∥CD,所以CD∥EF.所以∠FEC+∠3=180°.所以∠1+∠2+∠3=360°.认真阅读(2)的解题过程,求图③中∠1+∠2+∠3+∠4的度数是多少?探究图④中∠1+∠2+∠3+∠4+…+∠n的度数是多少?22.如图,已知直线L1经过点A(﹣1,0)与点B(2,3),另一条直线L2经过点B,且与x轴相交于点P(m,0).(1)求直线L1的解析式.(2)若△APB的面积为3,求m的值.(提示:分两种情形,即点P在A的左侧和右侧)23.为迎接新年,某单位组织员工开展娱乐竞赛活动,工会计划购进A、B两种电器共21件作为奖品.已知A种电器每件90元,B种电器每件70.设购买B种电器x件,购买两种电器所需费用为y元.(1)y与x的函数关系式为:(2)若购买B种电器的数量少于A种电器的数量,请给出一种最省费用的方案,并求出该方案所需费用.24.某公司招聘职员,对甲、乙两位候选人进行了面试和笔试,面试中包括形体和口才,笔试中包括专业水平和创新能力考察,他们的成绩(百分制)如下表:若公司根据经营性质和岗位要求认为:形体、口才、专业水平、创新能力按照4:6:5:5的比确定,请计算甲、乙两人各自的平均成绩,看看谁将被录取?25.计算或化简:(101)3+-(2)+⎝试卷第6页,总6页参考答案1.B【分析】根据被开方数大于等于0,分母不等于0列式进行计算即可得解.【详解】解:根据题意得,x+1≥0且1+x≠0,解得x≥-1且x≠-1自变量x的取值范围是x>-1.故选B.【点睛】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.2.C【解析】【分析】根据二次根式的加减法对A、C进行判断;根据二次根式的乘法法则对B进行判断;根据二次根式的除法法则对D进行判断.【详解】A.3,所以A选项错误;B. 原式=B选项错误;C. 原式D. 原式故选C.【点睛】本题考查二次根式的加、减、乘、除运算,熟练掌握二次根式的加减乘除运算是解决此题的关键.3.A【分析】答案第2页,总17页一次函数y =kx +b (k≠0,且k ,b 为常数)的图象是一条直线.令y=0,即可得到图象与x 轴的交点. 【详解】解:直线2y x =-+中,令0y =.则02x =-+. 解得2x =. ∴(2,0)A . 故选:A . 【点睛】本题主要考查了一次函数图象上点的坐标特征,一次函数y =kx +b (k≠0,且k ,b 为常数)与x 轴的交点坐标是(−bk,0),与y 轴的交点坐标是(0,b ). 4.C 【分析】根据二次根式有意义的条件和分式有意义的条件得到2k <,则20k -<,20k -+>,然后根据一次函数与系数的关系可判断一次函数的位置,从而可对各选项进行判断. 【详解】在实数范围内有意义, ∴20k ->, ∴2k <,∴20k -<,20k -+>,∴一次函数(2)2y k x k =--+的图象经过第一、二、四象限, 故选:C . 【点睛】本题考查了一次函数的图形和性质,解题的关键是熟练掌握一次函数图形与系数之间的关系. 5.D 【分析】根据整式的加减、完全平方公式、积的乘方、同底数幂的除法逐项判断即可. 【详解】A 、4xy 与2y 不是同类项,不可合并,此项错误B 、()22369x x x -=-+,此项错误 C 、()3232362(2)()8a a a -=-⋅=-,此项错误D 、64642a a a a -÷==,此项正确 故选:D . 【点睛】本题考查了整式的加减、完全平方公式、积的乘方、同底数幂的除法,熟记各运算法则是解题关键. 6.B 【分析】 方程组2y x by x =-+⎧⎨=⎩的解即为直线y x b =-+与直线2y x =的交点坐标.根据图象交点坐标直接判断即可. 【详解】解:∵直线y x b =-+与直线2y x =都经过点A (-1,-2),∴方程组2y x b y x =-+⎧⎨=⎩的解为12x y =-⎧⎨=-⎩,故选:B 【点睛】本题考查了一次函数与二元一次方程组的关系,主要考查学生的观察图形的能力和理解能力,题目比较典型,是一道比较容易出错的题目. 7.B 【解析】 【分析】把这组数据按照从小到大的顺序排列,第10、11个数的平均数是中位数,在这组数据中出现次数最多的是50,得到这组数据的众数. 【详解】解:要求一组数据的中位数,答案第4页,总17页把这组数据按照从小到大的顺序排列,第10、11两个数的平均数是50, 所以中位数是50,在这组数据中出现次数最多的是50, 即众数是50, 故选:B. 【点睛】本题考查一组数据的中位数和众数,在求中位数时,首先要把这列数字按照从小到大或从大到小排列,找出中间一个数字或中间两个数字的平均数即为所求. 8.B 【解析】 【分析】根据勾股定理求出两点间的距离,进而得22m a)(n b)36-+-=(,然后代入CD=CD. 【详解】解:∵(,)A m n ,(,)B a b ,且6AB =, ∴6=, 则22m a)(n b)36-+-=(, 又∵33(,)22C m n ,33(,)22D a b ,=9, 故选:B. 【点睛】本题考查的是用勾股定理求两点间的距离,求出22m a)(n b)36-+-=(是解题的关键. 9.C【分析】根据勾股定理逆定理逐项计算判断即可.【详解】详解: A. )22+32=13≠42)) 2,3,4不能构成直角三角形;B. )32+42=25≠72)) 3,4,7不能构成直角三角形;C. )52+122=169=132)) 5,12,13能构成直角三角形;D. )12+22=5≠32)) 1,2,3不能构成直角三角形;故选C.【点睛】本题考查了勾股定理逆定理,如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形,在一个三角形中,即如果用a )b )c 表示三角形的三条边,如果a 2+b 2=c 2,那么这个三角形是直角三角形.10.B【解析】如图,∵A(0,0),B (10,0),C (12,6),D (2,6),∴AB=10﹣0=10,CD=12﹣2=10,又点C 、D 的纵坐标相同,∴AB∥CD 且AB=CD ,∴四边形ABCD 是平行四边形,∵12÷2=6,6÷2=3,∴对角线交点P 的坐标是(6,3),∵直线y=mx ﹣3m+6将四边形ABCD 分成面积相等的两部分,∴直线y=mx ﹣3m+6经过点P ,∴6m﹣3m+6=3,解得m=﹣1.故选B .【点睛】本题考查了平行四边形的判定以及平行四边形中心对称的性质,也就是过对角线交点的直线把平行四边形分成的两个部分的面积相等.11.A【解析】)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))A)12.C【详解】A 、等角的余角相等,正确;B 、在同一平面内垂直于同一条直线的两直线平行,正确;C 、相等的两个角不一定是对顶角,因此C 选项是假命题,D 、有一个角是60°的等腰三角形是等边三角形,正确,故选C.13.a≤-3【解析】∵一次函数y=(a+3)x+a ﹣3的图象不经过第二象限,)a+3<0,a -3≤0解得a<-3, a≤3)所以a<-3.故答案是:a≤-3)14.48,14,50.【详解】试题分析:观察所给数据的特点可知,每个数都可以用第n 组的组数n 表示,第一个数是()211n +-,第2个数是()21n +,第3个数是()211n ++,按照此规律即可写出第6组勾股数是48,14,50.故答案为48,14,50.考点:数字的规律变化类问题.15.135【解析】【分析】根据勾股定理可得AC 的长度,再利用勾股定理逆定理可证明∠DAC=90°,进而可得∠BAD 的度数.【详解】∵AB=2,BC=2,∠ABC=90°,∴=,∠BAC=45°,∵12+(2=32,∴∠DAC=90°,∴∠BAD=90°+45°=135°,故答案是:135.【点睛】考查了勾股定理和勾股定理逆定理,关键是掌握如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形.16.x >2【详解】解:由图象可得,当3y =时,2x =,且y 随x 的增大而减小,则当3y <时,2x >故答案为:2x >.17.1秒或3.5秒【分析】分别从当Q 运动到E 和B 之间、当Q 运动到E 和C 之间去分析求解即可求得答案.【详解】∵E 是BC 的中点,∴BE=CE=12BC=8,①当Q运动到E和B之间,设运动时间为t,则得:3t−8=6−t,解得:t=3.5;②当Q运动到E和C之间,设运动时间为t,则得:8−3t=6−t,解得:t=1,∴当运动时间t为1秒或3.5秒时,以点P,Q,E,D为顶点的四边形是平行四边形.【点睛】此题考查平行四边形的判定,解题关键在于掌握判定定理.18.≠3【分析】根据分式有意义,分母不为0解答.【详解】解:∵分式23x-有意义,∴x-3≠0,解得:x≠3,故答案为:≠3.【点睛】本题考查了分式有意义的条件,熟知分式有意义分母不为0是解题关键.19.(1)100,10;(2)y=10x+100;(3)小亮登山6.5分钟时与爸爸相遇;(4)小亮登山1.5分钟时开始提速.【分析】(1)由图象可知爸爸开始登山时距地面100米,用爸爸登山的路程除以登山的时间即可求速度;(2)根据函数图象上两点D (0,100),E (20,300),用待定系数法可求解析式; (3)把B 点纵坐标代入(2)中解析式,求出m 即可;(4)根据提速后的速度是爸爸的3倍,求出速度,再求出开始提速到相遇的时间即可.【详解】解:(1)由图象可知,爸爸开始登山时距离地面100米, 爸爸登山的速度为:3001001020-=(米/分); 故答案为100,10;(2)设DE 的解析式为y=kx+b,把D (0,100),E (20,300)代入得, 10030020b k b=⎧⎨=+⎩, 解得,10010b k =⎧⎨=⎩∴爸爸登山时距地面的高度y (米)与登山时间x (分)之间的函数关系式为:y=10x+100; (3)把y=165代入y=10x+100得,165=10m+100,解得,m=6.5,∴小亮登山6.5分钟时与爸爸相遇;(4)∵小亮提速后,他登山的速度是爸爸速度的3倍,∴小亮提速后的速度为30米/分,16515530-=(分), 6.5-5=1.5(分),∴小亮登山1.5分钟时开始提速.【点睛】本题考查一次函数的应用,解题的关键是读懂图象,利用数形结合的数学思想,找出所求问题需要的条件.20.(1)C (4,1),D (3,4),P (2,2);(2)2212(04)212(4)2t t t S t t t ⎧-+<≤⎪⎪=⎨⎪-->⎪⎩;(3)2t =或3;(4) 4.5t =或134或13 【分析】(1)过点D 作DF ⊥y 轴于点F ,作CE ⊥x 轴于点E ,连接AC ,由tan ∠ABO =3可知3OA OB =,设OA =3x ,则OB =x ,再根据正方形ABCD,利用勾股定理可求出OA 及OB 的长,由全等三角形的判定定理可得出△AOB ≌△BEC ≌△DF A ,故可得出CD 的坐标,利用中点坐标公式即可得出P 点坐标;(2)由RH 速度为1,且∠ROH =45°,可知tan ∠ROH =1,故RH 始终垂直于x 轴,RH =OH =t ,设△HCR 的边RH 的高为h ,4h t =-,再由三角形的面积公式即可得出结论;(3)过点N 作NE ⊥AO 于点E ,过点M 作MS ⊥x 轴于点S ,过点A 作AF ⊥MS 于点F ,求出M 、N 两点坐标,再分∠DRM =45°和∠MDR =45°两种情况进行讨论;(4)分情况进行讨论,顶边和底边分别为BC 、AR ,此时BC ∥AR ,结合已知和已证求出R 点的坐标,求出t 即可;顶边、底边分别为CR 、AB ,此时CR ∥AB ,结合已知和已证求出R 点的坐标,求出t 即可.【详解】解:(1)如图,过点D 作DF ⊥y 轴于点F ,作CE ⊥x 轴于点E ,连接AC ,∵tan ∠ABO =3, ∴3OA OB=, ∴设OB =x ,则OA =3x ,∵正方形ABCD,∴△AOB 中222OA OB AB +=,即2229x x +=,解得:1x =,∴OA =3,OB =1,∴A (0,3),∵∠OAB +∠ABO =90°,∠ABO +∠CBE =90°,∠CBE +∠BCE =90°,∴∠OAB =∠CBE ,∠ABO =∠BCE ,在△AOB 与△BEC 中,OAB CBE AB BCABO BCE ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AOB ≌△BEC ,同理可得,△AOB ≌△BEC ≌△DF A ,∴BE =DE =3,CE =AF =1,∴C (4,1),D (3,4),∵P 为正方形ABCD 的对称中心,∴P 是AC 的中点,∴点P (0+42,312+),即P (2,2), 故C (4,1),D (3,4),P (2,2);(2)∵RH 速度为1,且∠ROH =45°,∴tan ∠ROH =1,∴RH 始终垂直于x 轴,∴RH =OH =t ,设△HCR 的边RH 的高为h , 则4h t =-, ∴211422HCR S h t t t =⋅⋅=-+⋅,∴2212(04)212(4)2t t t S t t t ⎧-+<≤⎪⎪=⎨⎪-->⎪⎩; (3)如图,过点N 作NE ⊥AO 于点E ,过点M 作MS ⊥x 轴于点S ,过点A 作AF ⊥MS 于点F ,由(1)可得:B (1,0),∴直线AB 的解析式为:33y x =-+;直线OP 的解析式为:y x =,联立33y x y x =-+⎧⎨=⎩, 解得:3434x y ⎧=⎪⎪⎨⎪=⎪⎩, 直线CD 的解析式为:313y x =-+,联立313y x y x=-+⎧⎨=⎩, 解得:134134x y ⎧=⎪⎪⎨⎪=⎪⎩∴M (134,134),∴44ON OM ==∵4DM =,4AN ==, 当∠MDR =45°时,∵∠AON =45°,∴∠MDR =∠AON ,∵AN ∥DM ,∴∠ANO =∠DMP ,∴△ANO ∽△RMD , ∴MR AN DM NO ==,解得:MR =,则OR OM MR =-=,则2t =,同理可得:当∠DRM =45°时,t =3,△ANO 与△DMR 相似,综上可知:t =2或3时当△ANO 与△DMR 相似;(4)以A 、B 、C 、R 为顶点的梯形,有三种可能:①顶边和底边分别为BC 、AR ,此时BC ∥AR .如图3,延长AD ,交OM 于点R ,则AD 的斜率为1tan 3BAO ∠=, ∴则直线AD 为:33x y =+, ∴则R 坐标为(4.5,4.5),∴则此时四边形ABCR 为直角梯形,则t =4.5;②顶边、底边分别为CR 、AB ,此时CR ∥AB ,且R 与M 重合,四边形ABCR 为梯形. 则CD 的斜率=-3,且直线CD 过点C ,∴直线CD 为:y -1=-3•(x -4),即y =-3x +13,∵OM 与CD 交于点M (即R ),∴点M (134,134),∴OM =, ∴134t =, ③当AC ∥BR 时,可求得AC 解析式为:132x y =-+,BR 解析式为:2122x y =-+, 联立:2122x y y x⎧=-+⎪⎨⎪=⎩,可求得R 坐标为(13,13), 此时13t =, 综上所述: 4.5t =或134或13. 【点睛】本题考查相似三角形的判定和性质,涉及到全等三角形的判定和性质、二次不等式,正方形的性质及梯形的判定定理,解答此题时要注意分类讨论,不要漏解.21.540°;(n -1)•180°.【分析】分别过C ,D 作CE)AB ,DF)AB ,则CE)DF)CD ,根据平行线的性质即可得到结论;根据角的个数n 与角的和之间的关系是(n -1)•180°,于是得到)1+)2+)3+)4+…+)n 的度数=(n -1)•180°.【详解】如图),分别过E ,F 作GE)AB ,HF)AB ,则AB)EG)FH)CD ,))A +)AEG =)GEF +)HFE =)C +)CFH =180°,))1+)2+)3+)4=)A +)AEG+)GEF +)HFE+)C +)CFH =540°=3×180°;由(1)(2)可得角的个数n 与角的和之间的关系是(n -1)•180°,))1+)2+)3+)4+…+)n 的度数为(n -1)•180°.【点睛】本题考查了平行线的性质和判定,能灵活运用平行线的性质进行推理是解此题的关键. 22.(1)y =x +1;(2)m 的值为1或﹣3.【分析】(1)根据待定系数法即可求解.(2)根据三角形的面积公式分点P 在点A 的右侧时与点P 在点A 的左侧分别求解即可.【详解】解:(1)设直线L 1的解析式为y =kx +b ,∵直线L 1经过点A (﹣1,0)与点B (2,3),∴023k b k b -+=⎧⎨+=⎩, 解得11k b =⎧⎨=⎩. 所以直线L 1的解析式为y =x +1.(2)当点P 在点A 的右侧时,AP =m ﹣(﹣1)=m +1,有S △APB =12×(m +1)×3=3, 解得:m =1.此时点P 的坐标为(1,0).当点P 在点A 的左侧时,AP =﹣1﹣m ,有S △APB =12×|﹣m ﹣1|×3=3,解得:m =﹣3, 此时,点P 的坐标为(﹣3,0).综上所述,m 的值为1或﹣3.【点睛】此题主要考查一次函数与几何综合,解题的关键是熟知待定系数法的应用.23.(1)y=-20x+1890(x 为整数且0≤x ≤21);(2)费用最省的方案为购买A 种电器11件,B种电器10件,此时所需费用为1690元.【分析】(1)设购买B种电器x件,则购买A种电器(21-x)件,根据“总费用=A种电器的单价×购买A种电器数量+B种电器的单价×购买B种电器数量”即可得出y关于x的函数关系式;(2)根据购买B种电器的数量少于A种电器的数量可得出关于x的一元一次不等式,解不等式即可求出x的取值范围,再结合一次函数的性质即可得出结论.【详解】解:(1)设购买B种电器x件,则购买A种电器(21-x)件,由已知得:y=70x+90(21-x)化简得,y=-20x+1890(x为整数且0≤x≤21).(2)由已知得:x<21-x,解得:x<10.5.∵y=-20x+1890中-20<0,∴当x=10时,y取最小值,最小值为1690.答:费用最省的方案为购买A种电器11件,B种电器10件,此时所需费用为1690元.【点睛】本题考查了一次函数的应用、解一元一次不等式以及一次函数的性质,解题的关键是:(1)根据数量关系列出y关于x的函数关系式;(2)根据数量关系列出关于x的一元一次不等式.本题属于基础题,难度不大,解决该题型题目时,根据数量关系列出方程(不等式或函数关系式)是关键.24.选择乙.【解析】【分析】由形体、口才、专业水平、创新能力按照4:6:5:5的比确定,根据加权平均数的计算方法分别计算不同权的平均数,比较即可,【详解】形体、口才、专业水平、创新能力按照4:6:5:5的比确定,则甲的平均成绩为8649069659254655⨯+⨯+⨯+⨯+++=91.2.乙的平均成绩为9248869559354655⨯+⨯+⨯+⨯+++4+6+5+5=91.8.答案第16页,总17页乙的成绩比甲的高,所以应该录取乙.【点睛】本题考查加权平均数,熟练掌握计算方法是解题的关键.25.(1)4;(2)4.5【分析】(1)根据二次根式的乘法运算法则,零指数幂运算法则,绝对值的性质对各项进行化简,最后相加减即可;(2)先化为最简二次根式,最后根据平方差公式进行简便运算.【详解】解:(1)原式1321343=-+=-+=;(2)原式(333 4.52222⎛+=⨯⨯=⎝⎭==.【点睛】本题考查二次根式的混合运算,熟练掌握其运算法则是解题的关键,第(2)可利用平方差公式进行简便计算.。
_第19章 一次函数性质考察(一)期末复习练习 2020-2021学年 人教版八年级数学下册
2020-2021学年八年级数学人教版下册期末复习:一次函数性质考察(一)1.如图,平面直角坐标系中,点O为坐标原点,直线AB分别与x轴、y轴交于点A(5,0),B(0,5),动点P的坐标为(a,a﹣1).(1)求直线AB的函数表达式;(2)连接AP,若直线AP将△AOB的面积分成相等的两部分,求此时P点的坐标.2.已知直线a过点M(﹣1,﹣4.5),N(1,﹣1.5).(1)求此直线的函数解析式;(2)求出此函数图象与x轴、y轴的交点A,B的坐标;(3)若直线a与b相交于点P(4,n),a,b与x轴围成的△PAC的面积为6,求出点C的坐标.3.已知一次函数y=kx+b的图象经过点A(0,2)和点B(﹣a,3)且点B在正比例函数y=﹣3x的图象上.(1)求a的值.(2)求一次函数的解析式.(3)若P(m,y1),Q(m﹣1,y2)是这个一次函数图象上的两点,试比较y1与y2的大小.4.学习完一次函数后,某班同学在数学老师的指导下,继续对函数y=|x﹣1|的图象和性质进行探究.同学们在研究的过程中发现,这个函数的自变量x的取值范围是全体实数,他们将x与y 的几组对应值列表(如下表),并画出了函数图象的一部分(如图).x…﹣3 ﹣2 ﹣1 0 1 2 3 4 5 …y…m 3 2 1 0 1 2 3 4 …请你完成以下的研究问题:(1)表中的m=.(2)根据上表的数据,画出函数图象的另一部分.(3)请你根据函数y=|x﹣1|的图象判断以下两种说法(在相应的空内填“对”或“错”).①当x<1时,y随x的增大而增大;②函数图象一定经过点(﹣5,6).5.已知函数,y=kx(k为常数且k≠0);(1)当x=1,y=2时,则函数解析式为;(2)当函数图象过第一、三象限时,k;(3)k,y随x的增大而减小;(4)如图,在(1)的条件下,点A在图象上,点A的横坐标为1,点B(2,0),求△OAB的面积.6.如图,已知点A位于第一象限,且在直线y=2x﹣3上,过点A做AB⊥x轴垂足为点B,AC⊥y轴垂足为点C,BC=.(1)求点A坐标;(2)如果点E位于第四象限,且在直线y=2x﹣3上,点D在y轴上,坐标平面内是否存在点F,使得四边形ADEF是正方形,如果存在,请求出点E的坐标;如果不存在,请说明理由.7.如图,直线y=﹣x+b与x轴,y轴分别交于A,B两点,点A的坐标为(6,0).在x轴的负半轴上有一点C(﹣4,0),直线AB上有一点D,且CD=OD.(1)求b的值及点D的坐标;(2)在线段AB上有一个动点P,点P的横坐标为a,作点P关于y轴的对称点Q,当点Q落在△CDO内(不包括边界)时,求a的取值范围.8.如图,已知四边形ABCD是正方形,点B,C分别在两条直线y=2x和y=kx上,点A,D是x轴上两点.(1)若此正方形边长为2,k=;(2)若此正方形边长为a,k的值是否会发生变化?若不会发生变化说明理由;若会发生变化,试求出a的值.9.如图,梯形OABC中,O为直角坐标系的原点,A、B、C的坐标分别为(a,0)、(a,b)、(c,b),且a,b,c满足|a﹣14|++(c﹣4)2=0,OC=5,点P、Q 同时从原点出发作匀速运动.其中,点P沿OA向终点A运动,速度为每秒1个单位,点Q沿OC、CB向终点B运动.当这两点中有一点到达自己的终点时,另一点也停止运动.(1)求点A、B、C的坐标;(2)如果点Q的速度为每秒2个单位,求出发运动5秒时,P、Q两点的坐标;(3)在(2)的条件下:经过多长时间,线段PQ恰好将梯形OABC的面积分成相等的两部分,并求这时Q点的坐标.10.如图,直线y=kx+6与x轴y轴分别相交于点E,F.点E的坐标(8,0),点A的坐标为(6,0).点P(x,y)是第一象限内的直线上的一个动点(点P不与点E,F重合).(1)求k的值;(2)在点P运动的过程中,求出△OPA的面积S与x的函数关系式.(3)若△OPA的面积为,求此时点P的坐标.11.如图,直线y=kx+8分别与x轴,y轴相交于A,B两点,O为坐标原点,A点的坐标为(4,0)(1)求k的值;(2)过线段AB上一点P(不与端点重合)作x轴,y轴的垂线,垂足分别为M,N.当长方形PMON的周长是10时,求点P的坐标.12.如图,直线y=2x+3与x轴相交于点A,与y轴相交于点B.(1)求△AOB的面积;(2)过B点作直线BP与x轴相交于P,△ABP的面积是,求点P的坐标.13.已知直线y=x+3.(1)若点(﹣1,a)和(,b)都在该直线上,比较a和b的大小;(2)在平面直角坐标系中,求该直线与两坐标轴的交点坐标;(3)求该直线上到x轴的距离等于2的点的坐标.14.如图,在平面直角坐标系xOy中,直线l1经过点A(0,1)、B(2,2).将直线l1向下平移m个单位得到直线l2,已知直线l2经过点(﹣1,﹣2),且与x轴交于点C.(1)求直线l1的表达式;(2)求m的值与点C的坐标;(3)点D为直线l2上一点,如果A、B、C、D四点能构成平行四边形,求点D的坐标.15.如图,在平面直角坐标系中,直线l1:y1=k1x+b经过点(,)和(1,3),直线l2:y2=k2x经过点(m,m).(1)分别求出两直线的解析式;(2)填空:①当y1>y2时,自变量x的取值范围是;②将直线l1向上平移2个单位,则平移后的直线与直线l2和x轴围成的区域内有个整数点(横、纵坐标都为整数的点叫整数点,不包括边界上的整数点).16.如图,直线:y=﹣2x+2与坐标轴交于A、B两点,点C、D的坐标分别为(0,﹣3),(6,0).(1)求直线CD:y=kx+b与AB交点E的坐标;(2)直接写出不等式﹣2x+2≥kx+b的解集是;(3)求四边形OBEC的面积.参考答案1.解:(1)设抛物线的解析式为y=kx+b,把点A(5,0),B(0,5)代入上式,得,解得:,∴直线AB的函数表达式为y=﹣x+5;(2)∵直线AP将△AOB的面积分成相等的两部分,∴直线AP经过OB的中点(0,),设直线AP的解析式为y=mx+n,把A(5,0),(0,)代入上式,得,解得,∴直线AP的解析式为y=﹣,把p(a,a﹣1)代入y=﹣中,得,解得:a=,∴点P的坐标为(,).2.解:(1)设直线a的解析式为y=kx+b,把M(﹣1,﹣4.5),N(1,﹣1.5)代入得:,解得:,则直线解析式为y=1.5x﹣3;(2)令x=0,得到y=﹣3;令y=0,得到x=2,则A(2,0),B(0,﹣3);(3)把P(4,n)代入y=1.5x﹣3得:n=3,即P(4,3),设C的横坐标是m,∵a,b与x轴围成的△PAC的面积为6,∴|m﹣2|×3=6,解得:m=﹣2,或m=6.则C的坐标是:(﹣2,0)或(6,0).3.解:(1)把B(﹣a,3)代入y=﹣3x得﹣3×(﹣a)=3,解得a=1;(2)把A(0,2),B(﹣1,3)分别代入y=kx+b得,解得,所以一次函数解析式为y=﹣x+2,(3)因为一次函数y=﹣x+2中,k=﹣1<0,所以y随x的增大而减小,∵m>m﹣1,所以y1<y2.4.解:(1)把x=﹣3代入y=|x﹣1|得,y=4,∴m=4,故答案为:4;(2)函数图象如下:(3)根据第二问的函数图象可知,①当x<1时,y随x的增大而减小,故错误,②函数图象一定经过点(﹣5,6),故正确;故答案为:错,对.5.解:(1)当x=1,y=2时,2=k,∴y=2x,故答案为y=2x;(2)∵函数图象过第一、三象限,∴k>0,故答案为>0;(3)∵y随x的增大而减小,∴函数图象经过第二、四象限,∴k<0,故答案为<0;(4)∵y=2x,点A的横坐标为1,∴A(1,2),∵B(2,0),∴OB=2,∴△OAB的面积=×2×2=2.6.解:(1)设点A的坐标为(a,2a﹣3),∵AB⊥x轴,AC⊥y轴,∴OB=a,OC=2a﹣3,∵BC=,∠BOC=90°,∴5=a2+(2a﹣3)2,∴a=2或a=,∴点A的坐标为(2,1)或(,﹣)∵点A在第一象限,∴点A的坐标为(2,1);(2)如图,分别过点A、点E作AH⊥y轴于H、EG⊥y轴于G,∵∠HAD+∠ADH=90°,∠EDG+∠ADH=90°,∴∠HAD=∠EDG,在△HAD与EDG中,,∴△HAD≌GDE(AAS),∴AH=DG=2,DH=GE,根据E在第四象限且在直线y=2x﹣3上,设E(m,2m﹣3),则GE=DH=m,OG=3﹣2m,∴OG+OH=DH+DG=3﹣2m+1=2+m,∴m=,∴E的坐标为(,﹣).7.解:(1)将点A的坐标为(6,0)代入y=﹣x+b,解得b=3.y=﹣x+3,∵CD=OD,点C坐标为(﹣4,0),∴点D横坐标为﹣2,当x=﹣2时,y=4,∴点D坐标为(﹣2,4).(2)∵点P所在直线解析式为:y=﹣x+3(0≤x≤6),点P关于y轴的对称点Q,且点Q落在△CDO内(不包括边界),∴点Q所在直线解析式为:y=x+3(﹣6<x<0).设CD所在直线解析式为:y=kx+b,将C(﹣4,0),D(﹣2,4)代入解析式得k =2,b=8,即y=2x+8.设OD所在直线解析式为:y=mx,将D(﹣2,4)代入解析式得m=﹣2,即y=﹣2x.联立方程,解得.联立方程,解得.∵点Q横坐标为﹣a,∴﹣<﹣a<﹣,解得<a<.8.解:(1)∵正方形边长为2,∴AB=2,在直线y=2x中,当y=2时,x=1,∴OA=1,OD=1+2=3,∴C(3,2),将C(3,2)代入y=kx,得2=3k,∴k=;故答案为:;(2)k的值不会发生变化,理由:∵正方形边长为a,∴AB=a,在直线y=2x中,当y=a时,x=,∴OA=,OD=,∴C(,a),将C(,a)代入y=kx,得a=k×,∴k=.9.解:(1)∵|a﹣14|++(c﹣4)2=0,∴a﹣14=0,3﹣b=0,c﹣4=0,解得a=14,b=3,c=4,∴A、B、C的坐标分别为(14,0),(14,3),(4,3).(2)点Q运动路程为2×5=10,∴BQ=OC+BC﹣10=5+14﹣4﹣10=5,∴点Q横坐标为14﹣5=9,∴Q(9,3),∵OP=1×5=5,∴P(5,0).(3)设运动时间为t,则AP=14﹣t,BQ=15﹣2t(t≥),∴梯形PABQ的面积为(BQ+AP)•AB=﹣t,∵梯形OABC的面积为(BC+OA)•AB=36,∴当﹣t=36时满足题意,解得t=,∴BQ=15﹣2t=,∴点Q横坐标为14﹣=,∴点Q坐标为(,3).10.解:(1)∵直线y=kx+6与x轴交于点E,且点E的坐标(8,0)∴8k+6=0,解得k=﹣,∴y=﹣x+6;(2)过点P作PD⊥OA于点D,∵点P(x,y)是第一象限内的直线上的一个动点∴PD=﹣x+6.∵点A的坐标为(6,0)∴S=×6×(﹣x+6)=﹣x+18;(3)∵△OPA的面积为,∴﹣x+18=,解得x=,将x=代入y=﹣x+6得y=,∴P(,).11.解:(1)∵直线y=kx+8经过A(4,0)∴0=4k+8,∴k=﹣2.(2)∵点P在直线y=﹣2x+8上,设P(t,﹣2t+8),∴PN=t,PM=﹣2t+8,∵四边形PNOM是长方形,∴C=(t﹣2t+8)×2=10,解得t=3,∴点P的坐标为(3,2).12.解:(1)由x=0得:y=3,即:B(0,3).由y=0得:2x+3=0,解得:x=﹣,即:A(﹣,0),∴OA=,OB=3,∴△AOB的面积:×3×=;(2)由B(0,3)、A(﹣,0)得:OB=3,OA=,∵S△ABP=AP•OB=,∴AP=,解得:AP=3.∴P点坐标为(1.5,0)或(﹣4.5,0).13.解:(1)∵一次函数y=﹣x+3中,k=﹣<0,∴y随x的增大而减小,∵﹣1<,∴a>b;(2)∵令y=0,则x=6;令x=0,则y=3,∴直线与x、y轴的交点坐标分别为:(6,0)、(0,3);(3)该直线上到x轴的距离等于2的点的坐标为(x,﹣x+3),∵|﹣x+3|=2,∴﹣x+3=2或﹣x+3=﹣2,解得x=2或x=10,当x=2时,﹣x+3=(﹣)×2+3=2;当x=10时,﹣x+3=(﹣)×10+3=﹣2;∴该直线上到x轴的距离等于2的点的坐标为:(2,2)或(10,﹣2).14.解:(1)设直线l1的表达式为y=kx+b,∵直线l1经过点A(0,1)、B(2,2),∴,解得,∴设直线l1的表达式为y=x+1;(2)将直线l1向下平移m个单位得到直线l2,则直线l2为y=x+1﹣m,∵直线l2经过点(﹣1,﹣2),∴﹣2=+1﹣m,解得m=,∴直线l2为y=x﹣,令y=0,则求得x=3,∴点C的坐标为(3,0);(3)由题意可知AB∥CD,当A、B、C、D四点构成平行四边形ABDC时,∵A(0,1)、B(2,2),C(3,0),∴点A向右平移3个单位,再向下平移1个单位与C点重合,∴点B向右平移3个单位,再向下平移1个单位与D点重合,此时D的坐标为(5,1);∵AB∥CD,当A、B、C、D四点构成平行四边形ABCD时,∵A(0,1)、B(2,2),C(3,0),∴点B向右平移1个单位,再向下平移2个单位与C点重合,∴点A向右平移1个单位,再向下平移2个单位与D点重合,此时D的坐标为(1,﹣1);综上,如果A、B、C、D四点能构成平行四边形,点D的坐标为(5,1)或(1,﹣1).15.解:(1)∵直线l1:y1=k1x+b经过点(,)和(1,3),∴,解得,∴直线l1:y1=﹣x+4;∵直线l2:y2=k2x经过点(m,m),∴m=mk2,∴k2=1,∴直线l2:y2=x;(2)①由图象可知,当y1>y2时,自变量x的取值范围是x<2;②将直线l1向上平移2个单位,则平移后的直线为y=﹣x+6,与x轴的交点为(6,0),由解得,∴交点为(3,3),∴平移后的直线与直线l2和x轴围成的区域内的整点有(2,1),(3,1),(3,2),(4,1)共4个,故答案为①x<2;②4.16.解:(1)∵点C、D的坐标分别为(0,﹣3),(6,0).∴,解得,∴直线CD为y=x﹣3,解得,∴点E的坐标为(2,﹣2);(2)观察图象,不等式﹣2x+2≥kx+b的解集是x≤2;故答案为x≤2;(3)由直线y=﹣2x+2可知,B(1,0),∴BD=5,∴四边形OBEC的面积=S△COD﹣S△BED=3×6﹣=4.。
期末考试模拟试卷(1)(原卷版)-2020-2021学年八年级数学下册精讲精练(人教版)
期末考试模拟试卷(1)(满分100分,考试时间120分钟)一、单项选择题(本题8个小题,每题3分,共24分)1.当1<a<2时,代数式+|1﹣a|的值是()A.﹣1 B. 1 C.2a﹣3 D.3﹣2a2.(2019•山东聊城)下列各式不成立的是()A.﹣=B.=2C.=+=5 D.=﹣3.(2020•黑龙江)如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DH⊥AB于点H,连接OH,若OA =6,OH=4,则菱形ABCD的面积为()A.72 B.24 C.48 D.964.(2020•陕西)如图,在3×3的网格中,每个小正方形的边长均为1,点A,B,C都在格点上,若BD是△ABC的高,则BD的长为()A.1013√13B.913√13C.813√13D.713√135.(2020•黑龙江)一组从小到大排列的数据:x ,3,4,4,5(x 为正整数),唯一的众数是4,则该组数据的平均数是( ) A .3.6B .3.8或3.2C .3.6或3.4D .3.6或3.26.(2019广西桂林)如图,四边形ABCD 的顶点坐标分别为(4,0)A -,(2,1)B --,(3,0)C ,(0,3)D ,当过点B 的直线l 将四边形ABCD 分成面积相等的两部分时,直线l 所表示的函数表达式为( )A .116105y x =+ B .2133y x =+ C .1y x =+ D .5342y x =+ 7.(2020•上海)小明从家步行到学校需走的路程为1800米.图中的折线OAB 反映了小明从家步行到学校所走的路程s (米)与时间t (分钟)的函数关系,根据图象提供的信息,当小明从家出发去学校步行15分钟时,到学校还需步行( )A.150B.250C.350D.4508.(2020•温州)如图,在△ABC 中,∠A =40°,AB =AC ,点D 在AC 边上,以CB ,CD 为边作▱BCDE ,则∠E 的度数为( )A .40°B .50°C .60°D .70°二、填空题(本题9个小题,每空3分,共27分)9.(2020•哈尔滨)计算√24+6√16的结果是 . 10.若=3﹣x ,则x 的取值范围是 .11.Rt △ABC 中,∠ABC=90°,AB=3,BC=4,过点B 的直线把△ABC 分割成两个三角形,使其中只有一个是等腰三角形,则这个等腰三角形的面积是_____. 12.(2019•四川绵阳)单项式x -|a -1|y 与2xy 是同类项,则a b =______.13.实数a ,b 在数轴上对应点的位置如图所示,化简||a 的结果是 .14.(2020•湖州)计算:√8+|√2−1|=_______15.(2020•淮安)菱形的两条对角线长分别为6和8,则这个菱形的边长为 .16.(2020•甘孜州)如图,在▱ABCD 中,过点C 作CE ⊥AB ,垂足为E ,若∠EAD =40°,则∠BCE 的度数为 .17.(2020•长沙)长沙地铁3号线、5号线即将试运行,为了解市民每周乘坐地铁出行的次数,某校园小记者随机调查了100名市民,得到如下统计表:次数 7次及以上6 5 4 3 2 1次及以下人数81231241564这次调查中的众数和中位数分别是 , .三、解答题(本题6个题,18题6分、19题8分、20题8分、21题8分、22题9分、23题10分,共49分)18.用拆解法化简)23)(25(24335++++19.已知如图,四边形ABCD中,,,,,,求这个四边形的面积.20.阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+=(1+)2.善于思考的小明进行了以下探索:设a+b=(m+n)2(其中a、b、m、n均为整数),则有a+b=m2+2n2+2mn.∴a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若a+b=,用含m、n的式子分别表示a、b,得:a= ,b= ;(2)利用所探索的结论,找一组正整数a、b、m、n填空:+2=(+)2;(3)若a+4=,且a、m、n均为正整数,求a的值?21.如图,在□ABCD中,BE平分∠ABC,BC=6,DE=2,求□ABCD的周长.22.小明放学后从学校回家,出发5分钟时,同桌小强发现小明的数学作业卷忘记拿了,立即拿着数学作业卷按照同样的路线去追赶小明.小强出发10分钟时,小明才想起没拿数学作业卷,马上以原速原路返回,在途中与小强相遇.两人离学校的路程y(米)与小强所用时间t(分钟)之间的函数图象如图所示.(1)求函数图象中a的值;(2)求小强的速度;(3)求线段AB的函数解析式,并写出自变量的取值范围.23.(2020•贵阳)2020年2月,贵州省积极响应国家“停课不停学”的号召,推出了“空中黔课”.为了解某中学初三学生每天听空中黔课的时间,随机调查了该校部分初三学生.根据调查结果,绘制出了如图统计图表(不完整),请根据相关信息,解答下列问题:部分初三学生每天听空中黔课时间的人数统计表时间/h 1.5 2 2.5 3 3.5 4人数/人 2 6 6 10 m 4(1)本次共调查的学生人数为,在表格中,m=;(2)统计的这组数据中,每天听空中黔课时间的中位数是,众数是;(3)请就疫情期间如何学习的问题写出一条你的看法.。
2020-2021学年人教版数学八年级下册期末压轴题专项复习卷(含答案)
2021年人教版数学八年级下册期末《压轴题专项》复习卷1.如图,点A的坐标是(-2,0),点B的坐标是(6,0),点C在第一象限内且△OBC为等边三角形,直线BC交y轴于点D,过点A作直线AE⊥BD,垂足为E,交OC于点F.(1)求直线BD的函数表达式;(2)求线段OF的长;(3)连接BF,OE,试判断线段BF和OE的数量关系,并说明理由.2.阅读下面材料:我们知道一次函数y=kx+b(k≠0,k、b是常数)的图象是一条直线,到高中学习时,直线通常写成Ax+By+C=0(A≠0,A、B、C是常数)的形式,点P(x0,y0)到直线Ax+By+C=0的距离可用公式d=计算.例如:求点P(3,4)到直线y=﹣2x+5的距离.根据以上材料解答下列问题:(1)求点Q(﹣2,2)到直线3x﹣y+7=0的距离;(2)如图,直线y=﹣x沿y轴向上平移2个单位得到另一条直线,求这两条平行直线之间的距离.3.已知正方形ABCD,AB=8,点E、F分别从点A、D同时出发,以每秒1m的速度分别沿着线段AB、DC向点B、C方向的运动,设运动时间为t.(1)求证:OE=OF.(2)在点E、F的运动过程中,连结AF.设线段AE、OE、OF、AF所形成的图形面积为S.探究:①S的大小是否会随着运动时间为t的变化而变化?若会变化,试求出S与t的函数关系式;若不会变化,请说明理由.②连结EF,当运动时间为t为何值时,△OEF的面积恰好等于的S.4.如图,在平面直角坐标系中,一次函数y=kx+b的图象与x轴交于点A(-3,0),与y轴交于点B,且与正比例函数的图象交点为C(m,4).求:(1)一次函数y=kx+b的解析式;(2)若点D在第二象限,△DAB是以AB为直角边的等腰直角三角形,则点D的坐标为;(3)在x轴上求一点P使△POC为等腰三角形,请求出所有符合条件的点P的坐标.5.将正方形ABCD放在如图所示的直角坐标系中,A点的坐标为(4,0),N点的坐标为(3,0),MN平行于y轴,E是BC的中点,现将纸片折叠,使点C落在MN上,折痕为直线EF.(1)求点G的坐标;(2)求直线EF的解析式;(3)设点P为直线EF上一点,是否存在这样的点P,使以P, F, G的三角形是等腰三角形?若存在,直接写出P点的坐标;若不存在,请说明理由.6.如图,已知直线y=kx+1经过点A(3,-2)、点B(a,2),交y轴于点M.(1)求a的值及AM的长(2)在x轴的负半轴上确定点P,使得△AMP成等腰三角形,请你直接写出点P的坐标.(3)将直线AB绕点A逆时针旋转45°得到直线AC,点D(-3,b)在AC上,连接BD,设BE是△ABD 的高,过点E的射线EF将△ABD的面积分成2:3两部分,交△ABD的另一边于点F,求点F的坐标.7.阅读理解:运用“同一图形的面积相等”可以证明一些含有线段的等式成立,这种解决问题的方法我们称之为面积法.如图1,在等腰△ABC中,AB=AC,AC边上的高为h,点M为底边BC 上的任意一点,点M到腰AB、AC的距离分别为h1、h2,连接AM,利用S△ABC=S△ABM+S△ACM,可以得出结论:h=h1+h2.类比探究:在图1中,当点M在BC的延长线上时,猜想h、h1、h2之间的数量关系并证明你的结论.拓展应用:如图2,在平面直角坐标系中,有两条直线l1:y=0.75x+3,l2:y=﹣3x+3,若l2上一点M到l1的距离是1,试运用“阅读理解”和“类比探究”中获得的结论,求出点M 的坐标.8.如图,在平面直角坐标系xOy中,矩形ABCD的AB边在x轴上,AB=3,AD=2,经过点C的直线y=x ﹣2与x轴、y轴分别交于点E、F.(1)求:①点D的坐标;②经过点D,且与直线FC平行的直线的函数表达式;(2)直线y=x﹣2上是否存在点P,使得△PDC为等腰直角三角形?若存在,求出点P 的坐标;若不存在,请说明理由.(3)在平面直角坐标系内确定点M,使得以点M、D、C、E为顶点的四边形是平行四边形,请直接写出点M的坐标.9.如图,在平面直角坐标系中,△AOB的顶点O为坐标原点,点A的坐标为(4,0),点B的坐标为(0,1),点C为边AB的中点,正方形OBDE的顶点E在x轴的正半轴上,连接CO,CD,CE.(1)线段OC的长为;(2)求证:△CBD≌△COE;(3)将正方形OBDE沿x轴正方向平移得到正方形O1B1D1E1,其中点O,B,D,E的对应点分别为点O1,B1,D1,E1,连接CD,CE,设点E的坐标为(a,0),其中a≠2,△CD1E1的面积为S.①当1<a<2时,请直接写出S与a之间的函数表达式;②在平移过程中,当S=时,请直接写出a的值.10.如图,直线y=2x+m(m>0)与x轴交于点A(-2,0)直线y=-x+n(n>0)与x轴、y轴分别交于B、C 两点,并与直线y=2x+m(m>0)相交于点D,若AB=4.(1)求点D的坐标;(2)求出四边形AOCD的面积;(3)若E为x轴上一点,且△ACE为等腰三角形,直接写出点E的坐标.11.如图,直线l:交x、y轴分别为A、B两点,C点与A点关于y轴对称.动点P、Q分别在线段AC、AB上(点P不与点A、C重合),满足∠BPQ=∠BAO.(1)点A坐标是, BC= .(2)当点P在什么位置时,△APQ≌△CBP,说明理由。
2020-2021学年八年级数学人教版下册 期末复习:一次函数实际应用(一)
2020-2021学年八年级数学人教版下册期末复习:一次函数实际应用(一)1.小明骑单车上学,当他骑了一段路时,想起要买某本书,于是又折回到刚经过的某书店,买到书后继续去学校.以下是他本次上学所用的时间与离家距离的关系示意图.根据图中提供的信息回答下列问题:(1)小明家到学校的路程是米.(2)本次上学途中,小明一共行驶了米.一共用了分钟.(3)在整个上学的途中最快的速度是米/分.(4)小明当出发分钟离家1200米.2.一辆轿车和一辆货车同时从甲地出发驶往乙地,轿车到达乙地后立即以另一速度原路返回甲地,货车到达乙地后停止.如图所示的图象分别表示货车、轿车离甲地的距离y(千米)与轿车行驶时间x(小时)的关系.(1)求轿车在返回甲地过程中的速度;(2)当轿车从乙地返回甲地的途中与货车相遇时,求相遇处离甲地的距离;(3)请求出两车出发多久后相距10千米.3.小明家距离学校8千米.一天早晨,小明骑车上学途中自行车出现故障,他于原地修车,车修好后,立即在确保安全的前提下以更快的速度匀速骑行到达学校.如图反映的是小明上学过程中骑行的路程(千米)与他所用的时间(分钟)之间的关系,请根据图象,解答下列问题:(1)小明骑行了千米时,自行车出现故障;修车用了分钟;(2)自行车出现故障前小明骑行的平均速度为千米/分,修好车后骑行的平均速度为千米/分;(3)若自行车不发生故障,小明一直按故障前的速度匀速骑行,与他实际所用时间相比,将早到或晚到学校多少分钟?4.小明从家里跑步去体育场,在那里锻炼了一会儿后,又走到文具店去买笔,然后走回家,小明的家、体育场、文具店在同一条直线上.如图是小明离家的距离与时间的关系图象.根据图象回答下列问题:(1)体育场离小明家千米.(2)小明在文具店逗留了分钟.(3)求小明从文具店到家的速度是千米/时.5.如图反映的过程是:小明从家出发去菜地浇水,又去玉米地锄草,然后回家.其中x表示时间,y表示小明离他家的距离,小明家,菜地,玉米地在同一直线上.根据图象回答下列问题:(1)菜地离小明家多远?小明走到菜地用了多长时间?小明给菜地浇水用了多长时间?(2)菜地离玉米地多远?小明草菜地到玉米地用了多长时间?(3)小明给玉米地锄草用了多长时间?(4)玉米地离小明家多远?小明从玉米地走回家的平均速度是多少?6.深圳校服已成为城市的一张名片,也成了在外游子“认亲”的凭证.夏季来临,深圳某校服生产厂为提高生产效益引进了新的设备来生产夏季校服,其中甲表示新设备的产量y (万套)与生产时间x(天)的关系,乙表示旧设备的产量y(万套)与生产时间x(天)的关系.(1)由图象可知,新设备因工人操作不当停止生产了天;(2)旧设备每天生产万套夏季校服,新设备正常生产每天生产万套夏季校服.(3)在生产过程中,x=时,新旧设备所生产的校服数量相同.7.小明和小华是姐弟俩,某日早晨,小明7:40先从家出发去学校,走了一段后,在途中广场看到志愿者们在向过往行人讲解卫生防疫常识,小明想起自己在学校学到的卫生防疫常识,于是停下来加入了志愿者队伍,后来发现上课时间快到了,就开始跑步上学,恰好在8:00赶到学校;小华离家后沿着与小明同一条道路前往学校,速度一直保持不变,也恰好在8:00赶到学校,他们从家到学校已走的路程s(米)和所用时间t(分钟)的关系图如图所示,请结合图中信息解答下列问题:(1)小明家和学校的距离是米;小明在广场向行人讲解卫生防疫常识所用的时间是分钟;(2)分别求小华的速度和小明从广场跑去学校的速度;(3)求小华在广场看到小明时是几点几分?(4)如果小明在广场进行卫生防疫常识讲解后,继续以之前的速度去往学校,假设讲解1次卫生防疫常识需要1分钟,在保证不迟到(不超过8:00)的情况下,通过计算求小明最多可以讲解几次?(结果保留整数)8.新冠病毒防疫期间,草莓摊主小钱为避免交叉感染的风险,建议顾客选择微信支付,尽量不使用现金,早上开始营业前,他查看了自己的微信零钱;销售完20kg后,他又一次查看了微信零钱,由于草莓所剩不多,他想早点卖完回家,于是每千克降价10元销售,很快销售一空,小钱弟弟根据小钱的微信零钱(元)与销售草莓数量(kg)之间的关系绘制了下列图象,请你根据以上信息回答下列问题:(1)图象中A点表示的意义是什么?(2)降价前草莓每千克售价多少元?(3)小钱卖完所有草莓微信零钱应有多少元?9.某长途客运公司规定旅客可免费携带一定质量的行李,当行李的质量超过规定时,需支付相应的行李费.设x表示行李的质量(kg),y表示行李费(元),y与x的函数关系如图所示,请写出x,y变化过程中的实际意义.10.A,B,C三地在同一条公路上,C地在A,B两地之间,且到A,B两地的路程相等.甲、乙两车分别从A,B两地出发,匀速行驶.甲车到达C地并停留1小时后以原速继续前往B地,到达B地后立即调头(调头时间忽略不计),并按原路原速返回C地停止行驶,乙车经C地到达A地停止行驶.在两车行驶的过程中,甲、乙两车距C地的路程y(单位:千米)与所用的时间x(单位:小时)之间的函数图象如图所示,请结合图象信息解答下列问题:(1)直接写出A,B两地的路程和甲车的速度;(2)求乙车从C地到A地的过程中y与x的函数关系式(不用写自变量的取值范围);(3)出发后几小时,两车在途中距C地的路程之和为180千米?请直接写出答案.11.甲、乙两人同时从相距90千米的A地前往B地,甲乘汽车,乙骑电动车,甲到达B 地停留半个小时后返回A地,如图是他们离A地的距离y(千米)与经过时间x(小时)之间的函数关系图象.(1)甲从B地返回A地的过程中,直接写出y与x之间的函数关系式及自变量x的取值范围;(2)若乙出发后108分钟和甲相遇,求乙从A地到B地用了多少分钟?(3)甲与乙同时出发后,直接写出经过多长时间他们相距20千米?12.某天,甲组工人为灾区加工棉衣,工作中有一次停产检修机器,然后继续加工,由于任务紧急,乙组工人加入与甲组工人一起加工棉衣,甲停产前后各保持匀速生产,乙在工作时间内保持匀速生产,两组各自加工棉衣的数量y(件)与甲组工人加工时间x(小时)的函数图象如图所示.(1)求乙组加工棉衣的数量y与时间x之间的函数关系式;(2)直接写出甲组加工棉衣总量a的值.(3)如果要求x=8时,加工棉衣的总数量为480件,求乙组工人应提前多长时间加工棉衣.13.四名同学两两一队,从学校集合进行徒步活动,目的地是距学校10千米的前海公园.由于乙队一名同学迟到,因此甲队两名同学先出发.24分钟后,乙队两名同学出发.甲队出发后第30分钟,一名同学受伤,处理伤口,稍作休息后,甲队由一名同学骑单车载受伤的同学继续赶往目的地.若两队距学校的距离s(千米)与时间t(小时)之间的函数关系如图所示,请结合图象,解答下列问题:(1)甲队在队员受伤前的速度是千米/时,甲队骑上自行车后的速度为千米/时;(2)当t=时,甲乙两队第一次相遇;(3)当t≥1时,什么时候甲乙两队相距1千米?14.明明的家与书店、学校依次在同一直线上,明明骑自行车从家出发去学校上学,当他骑了一段路时,想起要买某本书,于是又返回到刚经过的书店,买到书后继续去学校.下面图象反映了明明本次上学离家距离y(单位:m)与所用时间x(单位:min)之间的对应关系.请根据相关信息,解决下列问题:(Ⅰ)填表:离开家的时间/min 2 5 8 11离家的距离/m400 600(Ⅱ)填空:①明明家与书店的距离是m;②明明在书店停留的时间是min;③明明与家距离900m时,明明离开家的时间是min.(Ⅲ)当6≤x≤14时,请直接写出y与x的函数关系.15.A,B,C三地在同一条公路上,C地在A,B两地之间,且与A,B两地的路程相等.甲、乙两车分别从A,B两地同时出发,匀速行驶.甲车到达C地停留1小时后以原速度继续前往B地,到达B地后立即调头(调头时间忽略不计),并按原路原速返回A地停止;乙车经C地到达A地停止,且比甲车早1小时到达A地.两车距B地的路程y(km)与所用时间x(h)的函数关系如图所示.请结合图象信息解答下列问题:(1)A,B两地的路程为km,乙车的速度为km/h;(2)求图象中线段GH所表示的y与x的函数解析式(不需要写出自变量x的取值范围);(3)两车出发后经过多长时间相距120km的路程?请直接写出答案.参考答案1.解:(1)由图象可得,小明家到学校的路程是1500米,故答案为:1500;(2)本次上学途中,小明一共行驶了:1500+(1200﹣600)×2=2700(米),一共用了14(分钟),故答案为:2700,14;(3)由图象可知,在整个上学的途中,12分钟至14分钟小明骑车速度最快,最快的速度为:(1500﹣600)÷(14﹣12)=450米/分钟,故答案为:450;(4)设t分钟时,小明离家1200米,则t=6或t﹣12=(1200﹣600)÷450,得t=13,即小明出发6分钟或13分钟离家1200米.故6或13.2.解:(1)根据图象可得当x=1.5小时时,离甲地的距离是90千米,当x=2.5小时时,离甲地的距离是0千米,∴轿车在返回甲地过程中的速度为:90÷(2.5﹣1.5)=90(千米/小时),答:轿车在返回甲地过程中的速度为90千米/小时;(2)设货车离甲地的距离y(千米)与轿车行驶时间x(小时)的的函数解析式是y=kx+b,则2k=90,解得:k=45,则函数解析式是y=45x(0≤x≤2);设轿车在返回甲地过程中离甲地的距离y(千米)与轿车行驶时间x(小时)的的解析式是y=mx+b,则,解得:,则函数解析式是y=﹣90x+225.根据题意得:﹣90x+225=45x,解得:x=,则轿车从乙地返回甲地的途中与货车相遇时,相遇处到甲地的距离是45×=75(千米).答:当轿车从乙地返回甲地的途中与货车相遇时,相遇处离甲地的距离是75千米;(3)设两车出发a小时相距10千米轿车到达乙地前,(90÷1.5﹣45)a=10,解得:a=;轿车到达乙地后与货车相遇前:﹣90a+225﹣45a=10,解得:a=;轿车到达乙地后与货车相遇后:45a﹣(﹣90a+225)=10,解得:a=;答:两车出发小时或小时或小时后相距10千米.3.解:(1)由图可知,小明行了3千米时,自行车出现故障,修车用了15﹣10=5(分钟);故答案为:3;5;(2)修车前速度:3÷10=0.3(千米/分),修车后速度:5÷15=(千米/分);故答案为:0.3;;(3)8÷(分钟),30﹣=(分钟),故他比实际情况早到分钟.4.解:(1)由图象可知,体育场离小明家2.5千米.故答案为:2.5;(2)由图象可知,小明在文具店逗留了:65﹣45=20(分钟).故答案为:20;(3)1.5÷=(km/h),即小明从文具店到家的速度为km/h.故答案为:.5.解:由图象得:(1)菜地离小明家1.1千米,小明从家到菜地用了15分钟,小明给菜地浇水用了25﹣15=10(分钟);(2)菜地离玉米地2﹣1.1=0.9(千米),小明从菜地到地用了37﹣25=12(分钟);(3)小明给玉米地锄草用了55﹣37=18(分钟);(4)玉米地离小明家2千米,小明从玉米地走回家的平均速度=2÷=4.8(千米/小时).6.解:(1)由图象知,新设备因工人操作不当停止生产了2天,故答案为:2.(2)旧设备每天生产:1.4÷7=0.2(万套),新设备每天生产:0.4÷1=0.4(万套),故答案为:0.2,0.4;(3)①0.2x=0.4,解得x=2;②0.2x=0.4(x﹣2),解得x=4;故答案为:2或4.7.解:(1)由图象可知,小明家和学校的距离是1280米;小明在广场向行人讲解卫生防疫常识所用的时间是:14﹣8=6(分钟);故答案为:1280;6;(2)小华的速度为:1280÷(20﹣4)=80(米/分),小明从广场跑去学校的速度为:(1280﹣560)÷(20﹣14)=120(米/分);(3)560÷80=7(分),40+4+7=51(分),答:小华在广场看到小明时是7:51;(4)1280÷(560÷8)=(分),20﹣=(分),,答:在保证不迟到的情况下,小明最多可以讲解1次.8.解:(1)由图象可知,小钱开始营业前微信零钱有50元;(2)由图象可知,销售草莓20kg后,小钱的微信零钱为650元,∴销售草莓20kg,销售收入为650﹣50=600元,∴降价前草莓每千克售价为:600÷20=30(元);(3)降价后草莓每千克售价为:30﹣10=20元,∴小钱卖完所有草莓微信零钱为:650+5×20=750(元),答:小钱卖完所有草莓微信零钱应该有750元.9.解:∵y是x的一次函数,∴设y=kx+b(k≠0)由图可知,函数图象经过点(40,6),(60,10),,∴函数表达式为y=0.2x﹣2,将y=0代入y=0.2x﹣2,得0=0.2x﹣2,∴x=10,所以,旅客最多可免费携带行李的质量为10kg;当x>10,即当行李质量超过10kg时,超出部分的行李每千克需要加收0.2元.10.解:(1)当0h时,甲车和乙车距C地为180km,∴两地的路程为:180+180=360km,设甲车经过180km用了xh,则:x+x+x+1=5.5,∴x=1.5,则甲车速度为:180÷1.5=120(km/h);(2)设乙车从C地到A地的过程中y与x的函数关系式为:y=kx+b(k≠0),将(3,0),(6,180)代入y=kx+b(k≠0),得:,解得:,∴乙车从C地到A地的过程中y与x的函数关系式为:y=60x﹣180;(3)由图可知,分别在3个时间段可能两车在途中距C地路程之和为180km,①甲车从A地到C地,乙车从B到C,﹣120x+180+60x+180=180,解得:x=1;②甲车从C到B,乙车从C到A,﹣120x﹣300+60x﹣180=180,记得:x=;③甲车从B到C,乙车从C到A,﹣120x+660+60x﹣180=180,解得:x=5.总上所述:分别在1h,h,5h这三个时间点,两车在途中距C地的路程之和为180km.11.解:(1)设甲从B地返回A地的过程中,y与x之间的函数关系式为y=kx+b,根据题意得:,解得,所以y=﹣60x+180(1.5≤x≤3);(2)∵当x=时,y=﹣60×1.8+180=72,∴骑电动车的速度为72÷1.8=40(千米/时),∴乙从A地到B地用时为90÷40=2.25(小时)=135分钟.答:乙从A地到B地用了135分钟.(3)根据题意得:90x﹣40x=20或60(x﹣1.5)+40x=90﹣20或60(x﹣1.5)+40x =90+20,解得x=或x=或x=2,答:经过时或时或2时,他们相距20千米.12.解:(1)设y乙=kx+b(k≠0),将(4.5,0),(8,252)代入得:,解得,∴y乙=72x﹣324;(2)把x=7代入y乙=72x﹣324,得y乙=72×7﹣324=180,当4≤x≤8时,设甲组加工棉衣的数量y与时间x之间的函数关系式为y甲=mx+n,将(7,180),(4,90)代入得:,解得,∴y甲=30x﹣30(4≤x≤8),将x=8代入,得y甲=30×8﹣30=210,即a=210;(3)由图象可知,乙组工人加工252件棉衣所用时间为:8﹣4.5=3.5(小时),∴乙的加工速度为:252÷3.5=72(件/小时),∵480﹣210=270(件),270÷72=3.75(小时),∴3.75﹣3.5=0.25(小时),即乙组工人应提前0.25小时加工棉衣.13.解:(1)由图象可得,甲队在队员受伤前的速度是:2÷=4(千米/时),甲队骑上自行车后的速度为:(10﹣2)÷(2﹣1)=8(千米/时),故答案为:4,8;(2)由图象可得,乙队的速度为:10÷(2.4﹣)=5(千米/时),令5×(t﹣)=2,解得t=0.8,即当t=0.8时,甲乙两队第一次相遇,故答案为:0.8;(3)由题意可得,[5×(t﹣)]﹣[2+8(t﹣1)]=1或[2+8(t﹣1)]﹣[5×(t﹣)]=1或[5×(t ﹣)]=10﹣1,解得t=1或t=或t=,即当t≥1时,1小时、小时或小时时,甲乙两队相距1千米.14.解:有图象可知,明明从家到学校分四段,当0≤x≤6时,图象经过(0,0)和(6,1200),∴解析式为:y1=200x;当6<x≤8时,设函数解析式为:y2=kx+b,∵图象经过(6,1200)和(8,600),∴,解得:,∴函数解析式为:y2=﹣300x+3000;当8<x≤12时路程没有变化说明明明在书店停留,∴y3=600;当12<x≤14时,设函数解析式为:y4=ax+m,∵图象经过(12,600)和(14,1500),∴,解得:,∴函数解析式为:y4=450x﹣4800;Ⅰ∵x=5时属于第①钟情况,∴y=1000(m),∵x=11时属于第③种情况,∴y=600(m);Ⅱ①由图象知明明家书店的距离是600m;②明明在书店停留的时间为:12﹣8=4(min);③从图象上可知x在0~6,6~8,12~14时可以距家900m,当0≤x≤6时,当y=900时,即200x=900,∴x=(min),当6<x≤8时,当y=900时,即﹣300x+3000=900,∴x=7(min),当12<x≤14时,当y=900时,即450x﹣4800=900,∴x=(min),∴明明与家距离900m时,明明离开家的时间为min或7min或min;Ⅲ由上面解法知:y=.故答案为:Ⅰ、1000,600;Ⅱ、①600,②4,③或7或.15.解:(1)∵C地在A,B两地之间,且与A,B两地的路程相等,且E、F纵坐标为180,∴A、B两地距离为180×2=360(km),又P横坐标为6,∴乙车速度为360÷6=60(km/h),故答案为:360,60;(2)∵乙车经C地到达A地停止,且比甲车早1小时到达A地,∴H(7,360),∵甲车到达C地停留1小时后以原速度继续前往B地,∴甲车行驶的时间一共6小时,即甲车行驶360km需要3小时,∴甲车速度为120km/h,G(4,0),设GH的解析式为y=kx+b,将H(7,360)、G(4,0)代入得:,解得:,∴GH的解析式为y=120x﹣480;(3)有三个时刻两车距120km,①刚出发t小时两车距120km,则360﹣(120t+60t)=120,解得:t=(h),②甲车停1小时后重新出发,设经过的时间是x小时两车相距120km,则120(x﹣1)+60x﹣120=360,解得:x=(h),③甲4小时达到B地,此时乙所行路程为4×60=240(千米),即两车此时距240千米,设再过y小时二车相距120千米,则120y﹣60y=240﹣120,解得y=2,∴两车第三次相距120千米,经过的时间是4+y=6(h),综上所述,两车出发后相距120km的路程,时间分别是小时、小时、6 小时.。
河北省唐山市路北区2021-2022学年八年级下学期期末数学试题
断它是否获奖,只需知道学生决赛得分的( )
A.平均数
B.中位数
C.众数
D.方差
11.平面直角坐标系中,过点 2,3 的直线 l 经过一、二、三象限,若点 0, a ,1,b ,
c,1 都在直线 l 上,则下列判断正确的是( )
A. a b
B. a 3
C. b 3
D. c 2
12.如图,四边形 ABCD 是矩形,连接 AC.根据尺规作图痕迹,判断直线 MN 与 CB
B.10
C.12
D.18
7.函数 y1 2x 与 y2 ax 3 的图像相交于点 Am, 2 ,则( )
A. a 1
B. a 2
C. a 1
D. a 2
8.在△ABC 中,AB=AC=5,BC=6,若点 P 在边 AC 上移动,则 BP 的最小值是( )
A.5
B.6
C.4
D.4.8
9.如图,在 VABC 中,ACB 90 ,BAC ,将 VABC 绕点 C 顺时针旋转 90°得到 试卷第 1 页,共 6 页
试卷第 5 页,共 6 页
(1)求证:△ BDA≌△BFE; (2)①CD+DF+FE 的最小值为; ②当 CD+DF+FE 取得最小值时,求证:AD∥BF. (3)如图 2,M,N,P 分别是 DF,AF,AE 的中点,连接 MP,NP,在点 D 运动的过 程中,请判断∠MPN 的大小是否为定值.若是,求出其度数;若不是,请说明理由.
25.某车间在 3 月份和 4 月份加工了 A,B 两种型号的零件,规定每名工人当月只加工 一种型号的零件,且每名工人每个月加工 A 型(或 B 型)零件的数量相同,该车间加工 A,B 两种型号零件的人数与加工总量的情况如下表:
2020-2021初二数学下期末试卷(及答案)
2020-2021初二数学下期末试卷(及答案)一、选择题1.若(5-x)2=x﹣5,则x的取值范围是()A.x<52.若代数式x+1x-1B.x≤5C.x≥5D.x>5有意义,则x的取值范围是()A.x>﹣1且x≠1B.x≥﹣1C.x≠1D.x≥﹣1且x≠1 3.如图,E、F分别是正方形ABCD的边CD、AD上的点,且CE=DF,AE、BF相交于点O,下列结论:(1)AE=BF;(2)AE⊥BF;(3)AO=OE;(4)S∆AOB =S四边形DEOF中正确的有A.4个B.3个C.2个D.1个4.正比例函数y=kx(k≠0)的函数值y随x的增大而增大,则一次函数y=x-k的图象大致是()A.B.C.D.5.已知y=(k-3)x|k|-2+2是一次函数,那么k的值为()A.±3B.3C.-3D.无法确定6.如图,以△Rt ABC的斜边BC为一边在△ABC的同侧作正方形BCEF,设正方形的中心为O,连接AO,如果AB=4,AO=62,那么AC的长等于()A.12B.16C.43D.827.在体育课上,甲,乙两名同学分别进行了5次跳远测试,经计算他们的平均成绩相同.若要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的()A.众数B.平均数C.中位数D.方差8.如图(1),四边形ABCD中,AB∥CD,∠ADC=90°,P从A点出发,以每秒1个单位长度的速度,按A→B→C→D的顺序在边上匀速运动,设P点的运动时间为t秒,△P AD的面积为S,S关于t的函数图象如图(2)所示,当P运动到BC中点时,△APD 的面积为()A.4B.5C.6D.79.如图,在矩形ABCD中,对角线AC、BD交于点O,以下说法不一定成立的是()A.∠ABC=90°B.AC=BD C.OA=OB D.OA=AD10.如图,在ABCD中,AB=6,BC=8,∠BCD的平分线交AD于点E,交BA的延长线于点F,则AE+AF的值等于()A.2B.3C.4D.611.如图,一个工人拿一个2.5米长的梯子,底端A放在距离墙根C点0.7米处,另一头B点靠墙,如果梯子的顶部下滑0.4米,梯子的底部向外滑()米A.0.4B.0.6C.0.7D.0.812.正比例函数y=kx(k≠0)的函数值y随x的增大而增大,则y=kx-k的图象大致是()A.B.C.D.二、填空题13.如图,BD是△ABC的角平分线,DE∥BC,交AB于点E,DF∥AB,交BC于点F,当△ABC满足_________条件时,四边形BEDF是正方形.14.在函数y=x-4x+1中,自变量x的取值范围是______.15.如图,直线l1:y=x+n–2与直线l2:y=mx+n相交于点P(1,2).则不等式mx+n<x+n–2的解集为______.16.如图所示,将四根木条组成的矩形木框变成ABCD的形状,并使其面积变为原来的一半,则这个平行四边形的一个最小的内角的度数是_____.17.如图,边长为3的正方形ABCD绕点C按顺时针方向旋转30°后得到正方形EFCG,EF交AD于点H,那么DH的长是______.18.将直线y=2x向下平移3个单位长度得到的直线解析式为_____.19.已知a<0,b>0,化简(a-b)2=________20.已知点M(1,a)和点N(2,b)是一次函数y=-2x+1图象上的两点,则a与b的大小关系是_________.三、解答题21.在学校组织的“文明出行”知识竞赛中,8(1)和8(2)班参赛人数相同,成绩分为A、B、C三个等级,其中相应等级的得分依次记为A级100分、B级90分、C级80分,达到B级以上(含B级)为优秀,其中8(2)班有2人达到A级,将两个班的成绩整理并绘制成如下的统计图,请解答下列问题:(1)求各班参赛人数,并补全条形统计图;(2)此次竞赛中8(2)班成绩为C级的人数为_______人;(3)小明同学根据以上信息制作了如下统计表:8(1)班8(2)班平均数(分)m91中位数(分)9090方差n29请分别求出m和n的值,并从优秀率和稳定性方面比较两个班的成绩;22.已知:如图,在平行四边形ABCD中,E、F是对角线AC上的两点,且AE=CF.求证:∠EBF=∠EDF.23.甲乙两位同学参加数学综合素质测试,各项成绩如下表:(单位:分)学生甲学生乙数与代数9394空间与图形9392统计与概率8994综合与实践9086(1)分别计算甲、乙同学成绩的中位数;(2)如果数与代数,空间与图形,统计与概率,综合与实践的成绩按4:3:1:2计算,那么甲、乙同学的数学综合素质成绩分别为多少分?24.甲、乙两车分别从相距480km的A、B两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,途径C地,甲车到达C地停留1小时,因有事按原路原速返回A 地.乙车从B地直达A地,两车同时到达A地.甲、乙两车距各自出发地的路程y(千米)与甲车出发所用的时间x(小时)的关系如图,结合图象信息解答下列问题:(1)乙车的速度是千米/时,t=小时;(2)求甲车距它出发地的路程y与它出发的时间x的函数关系式,并写出自变量的取值范围;(3)直接写出乙车出发多长时间两车相距120千米.25.如图所示,ABC中,D是BC边上一点,E是AD的中点,过点A作BC的平行线交CE的延长线于F,且AF=BD,连接BF.(1)求证:D是BC的中点;(2)若AB=AC,试判断四边形AFBD的形状,并证明你的结论.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】因为a2=-a(a≤0),由此性质求得答案即可.【详解】∵(5-x)2=x-5,∴5-x≤0∴x≥5.故选C.【点睛】此题考查二次根式的性质:a2=a(a≥0),a2=-a(a≤0).2.D解析:D【解析】【分析】此题需要注意分式的分母不等于零,二次根式的被开方数是非负数.【详解】依题意,得x+1≥0且x-1≠0,解得x≥-1且x≠1.故选A.⎨∠BAD=∠ADE DEOF【点睛】本题考查了二次根式有意义的条件和分式有意义的条件.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.3.B解析:B【解析】【分析】根据正方形的性质得AB=AD=DC,∠BAD=∠D=90°,则由CE=DF易得AF=DE,根据“SAS”可判断△ABF≌△DAE,所以AE=BF;根据全等的性质得∠ABF=∠EAD,利用∠EAD+∠EAB=90°得到∠ABF+∠EAB=90°,则AE⊥BF;连结BE,BE>BC,BA≠BE,而BO⊥AE,根据垂直平分线的性质得到OA≠OE;最后根据△ABF≌△DAE得S△ABF =S△DAE,则S△ABF△-S AOF=S△DAE△-S AOF,即S△AOB=S四边形.【详解】解:∵四边形ABCD为正方形,∴AB=AD=DC,∠BAD=∠D=90°,而CE=DF,∴AF=DE,△在ABF和△DAE中⎧AB=DA⎪⎪⎩AF=DE∴△ABF≌△DAE,∴AE=BF,所以(1)正确;∴∠ABF=∠EAD,而∠EAD+∠EAB=90°,∴∠ABF+∠EAB=90°,∴∠AOB=90°,∴AE⊥BF,所以(2)正确;连结BE,形-∵BE >BC ,∴BA≠BE , 而 BO ⊥AE ,∴OA≠OE ,所以(3)错误;∵△ABF ≌△DAE , ∴S △ABF =S △DAE ,∴S △ABF △-S AOF =S △DAE △-S AOF ,∴S △AOB =S 四边DEOF ,所以(4)正确.故选 B .【点睛】本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等.也考查了正方形的性质.4.B解析:B【解析】 【分析】先根据正比例函数 y = kx 的函数值 y 随 x 的增大而增大判断出 k 的符号,再根据一次函数 的性质进行解答即可. 【详解】解:Q 正比例函数 y = kx 的函数值 y 随 x 的增大而增大,∴ k >0, k <0 ,∴ 一次函数 y = x - k 的图象经过一、三、四象限.故选 B . 【点睛】本题考查的知识点是一次函数的图象与正比例函数的性质,解题关键是先根据正比例函数的性质判断出 k 的取值范围.5.C解析:C【解析】 【分析】根据一次函数的定义可得 k -3≠0,|k|-2=1,解答即可. 【详解】一次函数 y=kx+b 的定义条件是:k 、b 为常数,k≠0,自变量次数为 1. 所以|k|-2=1, 解得:k=±3,因为 k -3≠0,所以 k≠3, 即 k=-3.故选:C .(62)+(62)=12,【点睛】本题主要考查一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.6.B解析:B【解析】【分析】首选在AC上截取C G=AB=4,连接OG,利用SAS△可证ABO≌△GCO,根据全等三角形的性质可以得到:O A=OG=62,∠AOB=∠COG,则可证△AOG是等腰直角三角形,利用勾股定理求出AG=12,从而可得AC的长度.【详解】解:如下图所示,在AC上截取C G=AB=4,连接OG,∵四边形BCEF是正方形,∠BAC=90︒,∴OB=OC,∠BAC=∠BOC=90︒,∴点B、A、O、C四点共圆,∴∠ABO=∠ACO,△在ABO△和GCO中,BA=CG{∠ABO=∠ACO,OB=OC∴△ABO≌△GCO,∴OA=OG=62,∠AOB=∠COG,∵∠BOC=∠COG+∠BOG=90︒,∴∠AOG=∠AOB+∠BOG=90︒,∴△AOG是等腰直角三角形,∴AG=22∴AC=12+4=16.故选:B.【点睛】⨯ ⨯ 4 = 5;本题考查正方形的性质;全等三角形的判定与性质;勾股定理;直角三角形的性质.7.D解析:D【解析】 【分析】方差是反映一组数据的波动大小的一个量.方差越大,则各数据与其平均值的离散程度越 大,稳定性也越小;反之,则各数据与其平均值的离散程度越小,稳定性越好。
2023-2024学年河北省沧州市沧县八年级下学期期末数学试题
2023-2024学年河北省沧州市沧县八年级下学期期末数学试题1.函数中自变量的取值范围是()A.B .C.D .2.以下调查中,适合普查的是()A .了解全市八年级学生的视力情况B .调查小明家池塘里现有鱼的数量C .检测神舟十八号载人飞船的零部件D .检测沧州市的空气质量3.“猫在老鼠南偏西方向50米处”与这句话对应的是()A.B.C.D .4.如果是正比例函数,则a的值是()A .B.0C.D .5.根据所标数据,下列不一定...是平行四边形的是()A.B.C.D .6.在统计某校八年级学生对篮球、排球、足球的喜爱情况时,调查员将统计情况的有关数据制成如图所示不完整的扇形统计图,已知喜爱足球的有40人,则喜爱篮球的有()A .90人B .95人C .96人D .160人7.如图,在矩形中,点的坐标是,则的长是()A.3B.C.D.48.已知一次函数的图象如图所示,则下列判断中正确的是()A.,B.方程的解是C.当时,D.随的增大而减小9.在平面直角坐标系中,已知点,,若线段轴,则线段的长为()A.1B.2C.3D.410.嘉琪将本班某次数学成绩绘制成如图所示的频数分布直方图(每组含前一个数值,不含后一个数值),下列说法错误的是()A.频数分布直方图的组距为10B.成绩在内的人数最多C.优秀(分)的人数是22人D.成绩在内的人数占总人数的11.如图,将五边形沿虚线裁去一个角,得到六边形,则下列说法正确的是()①周长变大;②周长变小;③外角和增加;④六边形的内角和为.A.①③B.①④C.②③D.②④12.如图①,正方形在直角坐标系中,其中边在y轴上,其余各边均与坐标轴平行,直线沿y轴的正方向以每秒1个单位的速度平移,在平移的过程中,该直线被正方形的边所截得的线段长为m,平移的时间为t(秒),m与t的函数图象如图②所示,则图②中b的值为()A.6B.9C.D.13.描述我市一周内每天最高气温的变化趋势,最合适的统计图是______统计图.(填“条形”或“折线”或“扇形”).14.菱形的两条对角线分别长为10cm,24cm,则菱形的面积为_____cm2.15.已知直线与直线相交于点,则关于,的二元一次方程组的解为______.16.在平面直角坐标系中,对于点,我们把叫做点的伴随点.已知点的伴随点为,点的伴随点为,点的伴随点为,……,这样依次得到点,,,……,.若点的坐标为,则点的坐标为______.17.如图是由边长为1的若干个小正方形拼成的方格图,的顶点,,均在小正方形的顶点上.(1)在图中建立恰当的平面直角坐标系,取小正方形的边长为1个单位长度,使点的坐标为,并写出,两点的坐标;(2)在(1)中建立的平面直角坐标系内画出关于轴对称的,并写出各顶点的坐标.18.一根弹簧,原来的长应为厘米,当弹簧受到拉力时(在一定范围内),弹簧的长度用表示,测得有关数据如下表:拉力/千克…弹簧的长度/厘米…(1)写出弹簧的长度与拉力之间的函数关系式;(2)若挂上千克的物体,则弹簧的长度是多少?(3)需挂上多少千克的物体,弹簧长度为厘米?19.为了了解名初三毕业生一分钟跳绳次数的情况,某校抽取了一部分初三毕业生进行一分钟跳绳的测试,将所得数据进行处理,得到如下频率分布表:组别分组频数频率140.04230.033450.454b c560.06620.02合计a 1.00(1)这个问题中,总体是_____;样本容量_____;(2)第四小组的频数_____,频率_____;(3)若次数在次(含次)以上为达标,试估计该校初三毕业生一分钟跳绳次数的达标率是多少?20.某中学举行校庆活动,使用了两架小型无人机进行现场拍揪,1号机所在高度与上升时间的函数图像如图所示;2号机从高度,以的速度上升.两架无人机同时起飞,设2号机所在高度为.(1)求1号机所在高度与上升时间之间的函数关系式(不必写出的取值范围);(2)多少秒后1号机所在高度大于2号机所在高度?21.如图,,是的中线,,与交于点,且点恰好是的中点.(1)求证:四边形是菱形;(2)若,,求菱形的周长.22.落实“双减”要求,丰富学生校园生活,某学校开展了学科月活动.学校随机抽取了部分学生对学科月最喜欢的活动进行调查(每人必须参加且只能选择一项):A.知识竞赛;B.象棋大赛;C.剪纸大赛;D.书签设计大赛.根据调查结果绘制成如下两幅不完整的统计图,请根据图中提供的信息解答以下问题:“学科月活动”主题日活动日程表(座位数)地点1号多功能厅(110座)2号多功能厅(205座)时间AC(1)求一共调查了多少名学生?补全条形统计图;(2)求扇形统计图中“D.书签设计大赛”对应扇形的圆心角度数;(3)学校有500名学生参加本次活动,地点安排在两个多功能厅每场活动时间为60分钟.由上面的活动日程表可知,A和C两场活动时间与场地已经确定.在确保参加活动的每名同学都有座位的情况下,请你合理安排二场活动,补全此次活动日程表,并说明理由.23.如图,在四边形中,,,,,,点从点出发,以的速度向点运动;点从点同时出发,以的速度向点运动.规定其中一个动点到达端点时,另一个动点也随之停止运动.设点,运动的时间为.(1)边的长度为______,的取值范围为______.(2)从运动开始,当取何值时,四边形为矩形?(3)在整个运动过程中是否存在值,使得四边形是菱形.若存在,请求出值;若不存在,请说明理由.24.如图,在平面直角坐标系中,直线的图像分别与轴、轴交于、两点,直线的图像分别与轴、轴交于、两点,且点坐标为;和是第一象限中的两个点,连接.(1)求直线的函数解析式;(2)求、与轴所围成的三角形的面积;(3)直线分别与直线、交于点和点,当时,求的值;(4)将线段向左平移个单位,若与直线、同时有公共点,直接写出的取值范围.。
期末备考 第十九章《一次函数》 实际应用选择专项(三)2020-2021学年 人教版八年级数学下册
八年级数学人教版下册期末备考:第十九章《一次函数》实际应用选择专项(三)1.甲、乙两人在笔直的人行道上同起点、同终点、同方向匀速步行1800米,先到终点的人原地休息.已知甲先出发3分钟,在整个步行过程中,甲、乙两人间的距离y(米)与甲出发后步行的时间t(分)之间的关系如图所示,下列结论:①甲步行的速度为60米/分;②乙走完全程用了22.5分钟;③乙用9分钟追上甲;④乙到达终点时,甲离终点还有270米.其中正确的结论有()A.1个B.2个C.3个D.4个2.已知弹簧的长度y(cm)与所挂物体的质量x(kg)之间的函数关系如图所示,则弹簧不挂物体时的长度为()A.12cm B.11cm C.10cm D.9cm 3.2021年自贡环青龙湖半程马拉松的赛程是21.0975公里,甲乙两选手的行程y(千米)随时间x(时)变化的图象(全程)如图所示.有下列说法:①第1小时两人都跑了10千米;②起跑1小时过后,甲在乙的后面;③在起跑后的0.5至1.5小时,甲比乙跑得更慢;④乙比甲先到达终点.其中正确的说法有()A.1个B.2个C.3个D.4个4.A、B两地相距80km,甲、乙两人沿同一条路从A地到B地.l1,l2分别表示甲、乙两人离开A地的距离s(km)与时间t(h)之间的关系.对于以下说法:①乙车出发1.5小时后甲才出发;②两人相遇时,他们离开A地20km;③甲的速度是40km/h,乙的速度是km/h;④当乙车出发2小时时,两车相距km.其中正确的结论是()A.①③B.①④C.②③D.②③④5.在我国川西高原某山脉间有一河流,当河流中的水位上升到一定高度时因河堤承压有溃堤的危险.于是水利工程师在此河段的某处河堤上修了一个排水的预警水库联通另一支流.当河流的水位超过警戒位时就有河水流入预警的水库中,当水库有一定量的积水后,就会自动打开水库的排水系统流入另一支流.当河流的水位低于警戒位时水库的排水系统的排水速度则变慢.假设预警水库的积水时间为x分钟,水库中积水量为y吨,图中的折线表示某天y与x的函数关系,下列说法中:①这天预警水库排水时间持续了80分钟;②河流的水位超过警戒位时预警水库的排水速度比进水速度少25吨/分;③预警水库最高积水量为1500吨;④河流的水位低于警戒位时预警水库的排水速度为30吨/分.其中正确的信息判断是()A.①④B.①③C.②③D.②④6.杆秤是我国传统的计重工具.如图,可以用秤砣到秤纽的水平距离,来得出秤钩上所挂物体的质量.称重时,若秤砣到秤纽的水平距离为x(单位:cm)时,秤钩所挂物重为y(单位:kg),则y是x的一次函数.下表记录了四次称重的数据,其中只有一组数据记录错误,它是()组数 1 2 3 4x/cm 1 2 4 7y/kg0.80 1.05 1.65 2.30A.第1组B.第2组C.第3组D.第4组7.设甲、乙两车在同一直线公路上匀速行驶,开始甲车在乙车的前面,当乙车追上甲车后,两车停下来,把乙车的货物转给甲车,然后甲车继续前行,乙车向原地返回,设x秒后两车间的距离为y米,y关于x的函数关系如图所示,则甲车的速度为()A.10米/秒B.11米/秒C.12米/秒D.13米/秒8.在一条公路上每隔100千米有一个仓库(如图),共有五个仓库.1号仓库存有10吨货物,2号仓库存有20吨货物,5号仓库存有40吨货物,其余两个仓库是空的.现在想把所有的货物集中存放在一个仓库里,如果每吨货物运输1千米需要0.5元的运费,那么最少要花()元运费才行.A.5000 B.5500 C.6000 D.6500 9.甲、乙两人在笔直的公路上同起点、同终点、同方向匀速步行1200米,先到终点的人原地休息.已知甲先出发3分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图所示,下列结论:①甲步行的速度为40米/分;②乙用9分钟追上甲;③整个过程中,有4个时刻甲乙两人的距离为90米;④乙到达终点时,甲离终点还有280米.其中正确的结论有()A.①③B.①②④C.①③④D.①②③④10.一辆轿车和一辆货车分别从甲、乙两地同时出发,匀速相向而行,相遇后继续前行,已知两车相遇时轿车比货车多行驶了90千米,设行驶的时间为x(小时),两车之间的距离为y(千米),图中的折线表示从两车出发至轿车到达乙地这一过程中y与x之间的函数关系,根据图象提供的信息,以下选项中正确的个数是()①甲乙两地的距离为450千米;②轿车的速度为70千米/小时;③货车的速度为45千米/小时;④点C的实际意义是轿车出发5小时后到达乙地,此时两车间的距离为300千米.A.1 B.2 C.3 D.411.在A、B两地之间有汽车站C(C在直线AB上),甲车由A地驶往C站,乙车由B 地驶往A地,两车同时出发,匀速行驶甲、乙两车离C站的距离y1,y2(千米)与行驶时间x(小时)之间的函数图象如图所示,则下列结论:①A、B两地相距360千米;②甲车速度比乙车速度快15千米/时;③乙车行驶11小时后到达A地;④两车行驶4.4小时后相遇.其中正确的结论有()A.1 B.2个C.3个D.4个12.甲、乙两地之间是一条直路,在全民健身活动中,赵明阳跑步从甲地往乙地,王浩月骑自行车从乙地往甲地,两人同时出发,王浩月先到达目的地,两人之间的距离s(km)与运动时间t(h)的函数关系大致如图所示,下列说法中错误的是()A.两人出发1小时后相遇B.赵明阳跑步的速度为8km/hC.王浩月到达目的地时两人相距10kmD.王浩月比赵明阳提前1.5h到目的地13.甲、乙两车分别从A、B两地同时出发,甲车匀速前往B地,到达B地立即以另一速度按原路匀速返回到A地;乙车匀速前往A地.设甲、乙两车距A地的路程为y千米,甲车行驶的时间为x小时,y与x之间的关系如图所示,对于以下说法:①甲车从A地到达B地的行驶时间为2小时;②甲车返回时,y与x之间的关系式是y=﹣100x+550;③甲车返回时用了3个小时;④乙车到达A地时,甲车距A地的路程是170千米.其中正确的结论是()A.①②B.②③C.③④D.②③④14.甲、乙两船沿直线航道AC匀速航行.甲船从起点A出发,同时乙船从航道AC中途的点B出发,向终点C航行.设t小时后甲、乙两船与B处的距离分别为d1,d2,则d,d2与t的函数关系如图.下列说法:1①乙船的速度是40千米/时;②甲船航行1小时到达B处;③甲、乙两船航行0.6小时相遇;④甲、乙两船的距离不小于10千米的时间段是0≤t≤2.5.其中正确的说法的是()A.①②B.①②③C.①②④D.①②③④15.甲、乙两辆摩托车同时从相距40km的A、B两地出发,相向而行、图中l1,l2、分别表示甲、乙两辆摩托车到A地的距离s(km)与行驶时间t(h)的函数关系.则下列说法错误的是()A.乙摩托车的速度较快B.经过0.6小时甲摩托车行驶到A、B两地的中点C.经过小时两摩托车相遇D.当乙摩托车到达A地时,甲摩托车距离B地km16.甲、乙两车从A地驶向B地,并以各自的速度匀速行驶,甲车比乙车早行驶2h,并且甲车途中休息了0.5h,如图是甲、乙两车行驶的距离y(km)与时间x(h)的函数图象,有以下结论:①m=1;②a=40;③甲车从A地到B地共用了7小时;④当两车相距50km时,乙车用时为h.其中正确结论的个数是().A.4 B.3 C.2 D.117.一个装有进水管和出水管的容器,从某时刻开始4min内只进水不出水,在随后的8min 内既进水又出水,接着关闭进水管直到容器内的水放完,每分钟的进水量和出水量是两个常数,容器内的水量y(单位:L)与时间x(单位:min)之间的关系如图所示,则下列说法中错误的是()A.每分钟进水5LB.每分钟出水3.75LC.容器中水为25L的时间是8min或14minD.第2或min时容器内的水恰为10升18.有甲、乙两车从A地出发去B地,甲比乙车早出发,如图中m1、m2分别表示两车离开A地的距离y(km)与行驶时间t(h)之间的函数关系.现有以下四个结论:①m1表示甲车,m2表示乙车;②乙车出发4小时后追上甲车;③两车相距100km的时间只有甲车出发11小时的时候;④若两地相距260km,则乙车先到达B地,其中正确的是()A.①②③④B.②③④C.①②③D.①②④19.有一个进水管和一个出水管的容器,从某时刻开始5分钟内只进水不出水,在随后的20分钟内既进水又出水,在第25分钟开始只出水不进水,每分钟的进水量和出水量是两个常数,容器内水量(L)与时间(min)之间的函数关系如图所示,求在第33分钟时,容器内剩余水量为()A.8 B.10 C.12 D.1420.小明从家步行到学校需走的路程为1800米.图中的折线OAB反映了小明从家步行到学校所走的路程s(米)与时间t(分钟)的函数关系,根据图象提供的信息,判断下列说法中错误的是()A.小明从家步行到学校共用了20分钟B.小明从家步行到学校的平均速度是90米/分C.当t<8时,s与t的函数解析式是s=120tD.小明从家出发去学校步行15分钟时,到学校还需步行360米参考答案1.解:由图可得,甲步行的速度为:180÷3=60米/分,故①正确,乙走完全程用的时间为:1800÷(12×60÷9)=22.5(分钟),故②正确,乙追上甲用的时间为:12﹣3=9(分钟),故③正确,乙到达终点时,甲离终点距离是:1800﹣(3+22.5)×60=270米,故④正确,故选:D.2.解:设弹簧的长度y(cm)与所挂物体的质量x(kg)之间的函数关系式为y=kx+b,∵该函数经过点(6,15),(20,22),∴,解得,即弹簧的长度y(cm)与所挂物体的质量x(kg)之间的函数关系式为y=0.5x+12,当x=0时,y=12,即弹簧不挂物体时的长度为12cm,故选:A.3.解:由图象可得,第1小时两人相遇,都跑了10千米,故①正确;由纵坐标看出,起跑后1小时后,甲在乙的后面,故②正确;由纵坐标看出,起跑后0.5小时,甲在乙的前面,起跑后1小时,乙追上甲,起跑后1.5小时,乙在甲的前面,所以在起跑后的0.5至1.5小时,甲比乙跑得更慢,故③正确;④起跑后2小时,乙到达终点,2小时后,甲才到达终点,所以乙比甲先到达终点,故④正确;故选:D.4.解:由图可得,乙车出发1.5小时后甲已经出发一段时间,故①错误;两人相遇时,他们离开A地20km,故②正确;甲的速度是(80﹣20)÷(3﹣1.5)=40(km/h),乙的速度是40÷3=(km/h),故③正确;当乙车出发2小时时,两车相距:[20+40×(2﹣1.5)]﹣×2=(km),故④正确;故选:D.5.解:由图象得:0~10分,水库开始积水,10~30分,水库有一定量的积水,水库的排水系统打开,30~80分时,水库停止进水,只排水,这天预警水库排水时间持续了80﹣10=70分钟,故①错误;=25(吨/分),也就是水位超过警戒位时预警水库的排水速度比进水速度少25吨/分,②正确;从图象看出预警水库积水量为1500吨时停止进水,并不能反映出预警水库的最高积水量,③错误;从图象看出河流的水位低于警戒位时预警水库的排水速度为1500÷(80﹣30)=30(吨/分),④正确.故选:D.6.解:设y=kx+b,把x=1,y=0.80,x=2,y=1.05代入可得:,解得,∴y=0.25x+0.55,当x=4时,y=0.25×4+0.55=1.55,∴第3组数据不在这条直线上,当x=7时,y=0.25×7+0.55=2.30,∴第4组数据在这条直线上,故选:C.7.解:设甲车的速度为v1m/s,乙车的速度为v2m/s,由图象可知:开始时,乙车与甲车相距300米,乙车用100秒追上了甲车,∴100v1+300=100v2,装完货物后,甲乙两车行驶了20秒后,两车相距500米,∴20v1+20v2=500,∴,解得:,故选:B.8.解:设把所有的货物集中存放在x号仓库里,需要的总运费为w元,当x≤2时,w=10×(x﹣1)×100×0.5+20×(2﹣x)×100×0.5+40×(5﹣x)×100×0.5=﹣2500x+11500,∵﹣2500<0,∴w随x的增大而减小,∴当x=2时,w取得最小值,最小值=﹣2500×2+11500=6500;当2<x≤5时,w=10×(x﹣1)×100×0.5+20×(x﹣2)×100×0.5+40×(5﹣x)×100×0.5=﹣500x+7500,∵﹣500<0,∴w随x的增大而减小,∴当x=5时,w取得最小值,最小值=﹣500×5+7500=5000.∵6500>5000,∴最少要花5000元运费才行.故选:A.9.解:由题意可得:甲步行的速度为=40(米/分);故①结论正确;由图可得,甲出发9分分钟时,乙追上甲,故乙用6分钟追上甲,故②结论错误;由函数图象可得:当y=90时,有4个时刻甲乙两人的距离为90米,故③结论正确;设乙的速度为x米/分,由题意可得:9×40=(9﹣3)x,解得x=60,∴乙的速度为60米/分;∴乙走完全程的时间==20(分),乙到达终点时,甲离终点距离是:1200﹣(3+20)×40=280(米),故④结论错误;故正确的结论有①③④共3个.故选:C.10.解:由图可得,甲乙两地的距离为150×3=450(千米),故①正确;∵两车相遇时轿车比货车多行驶了90千米,两车相遇时正好是3小时,∴轿车每小时比货车多行驶30千米,∴轿车的速度为:[450÷3﹣30]÷2+30=90(千米/小时),故②错误;货车的速度为:[450÷3﹣30]÷2=60(千米/小时),故③错误;轿车到达乙地用的时间为:450÷90=5(小时),此时两车间的距离为:60×5=300(千米),故④正确;由上可得,正确的是①④,故选:B.11.解:①A、B两地相距=360+80=440(千米),故①错误,②甲车的平均速度==60(千米/小时),乙车的平均速度==40(千米/小时),∴甲车速度比乙车速度快60﹣40=20(千米/小时),故②错误•,③440÷40=11(小时),∴乙车行驶11小时后到达A地,故③正确,④设t小时相遇,则有:(60+40)t=440,∴t=4.4(小时),∴两车行驶4.4小时后相遇,故④正确,故选:B.12.解:由图象可知,两人出发1小时后相遇,故选项A正确;赵明阳跑步的速度为24÷3=8(km/h),故选项B正确;王浩月的速度为:24÷1﹣8=16(km/h),王浩月从开始到到达目的地用的时间为:24÷16=1.5(h),故王浩月到达目的地时两人相距8×1.5=12(km),故选项C错误;王浩月比赵明阳提前3﹣1.5=1.5h到目的地,故选项D正确;故选:C.13.解:①300÷(180÷1.5)=2.5(小时),所以甲车从A地到达B地的行驶时间是2.5小时,故①错误;②设甲车返回时y与x之间的函数关系式为y=kx+b,∴,解得:,∴y与x之间的函数关系式是y=﹣100x+550,故②正确;③5.5﹣2.5=3,∴甲车返回时用了3个小时,故③正确;④乙车的速度为(300﹣180)÷1.5=80(千米/小时),300÷80=3.75,x=3.75时,y=﹣100×3.75+550=175千米,所以乙车到达A地时甲车距A地的路程是175千米,故④错误,所以②③正确,故选:B.14.解:乙船从B到C共用时3小时,走过路程为120千米,因此乙船的速度是40千米/时,①正确;乙船经过0.6小时走过0.6×40=24千米,甲船0.6小时走过60﹣24=36千米,所以甲船的速度是36÷0.6=60千米/时,开始甲船距B点60千米,因此经过1小时到达B点,②正确;航行0.6小时后,甲乙距B点都为24千米,但是乙船在B点前,甲船在B点后,二者相距48千米,因此③错误;开始后,甲乙两船之间的距离越来越小,甲船经过1小时到达B点,此时乙离B地40千米,航行2.5小时后,甲离B地:60×1.5=90千米,乙离B地:40×2.5=100千米,此时两船相距10千米,当2.5<t≤3时,甲乙的距离小于10,因此④正确;综上所述,正确的说法有①②④.故选:C.15.解:由图象可得,乙摩托车的速度较快,故选项A正确;经过0.6小时甲摩托车行驶到A、B两地的中点,故选项B正确;甲车的速度为40÷1.2=(km/h),乙车的速度为:40÷1=40(km/h),故甲乙两车相遇的时间为:=(小时),故选项C错误;当乙摩托车到达A地时,甲摩托车距离B地×(1.2﹣1)=km,故选项D正确;故选:C.16.解:由题意,得m=1.5﹣0.5=1,故①结论正确;120÷(3.5﹣0.5)=40(km/h),则a=40,故②结论正确;设甲车休息之后行驶路程y(km)与时间x(h)的函数关系式为y=kx+b,由题意,得:,解得,当y=260时,260=40x﹣20,解得:x=7,∴甲车从A地到B地共用了7小时,故③结论正确;当1.5<x≤7时,y=40x﹣20.设乙车行驶的路程y与时间x之间的解析式为y=k'x+b',由题意得:,解得,∴y=80x﹣160.当40x﹣20﹣50=80x﹣160时,解得:x=,当40x﹣20+50=80x﹣160时,解得:x=,∴,,所以乙车行驶小时或小时,两车恰好相距50km,故④结论错误.∴正确结论的个数是3个.故选:B.17.解:A.每分进水的速度为:20÷4=5(L/min);B.出水管的出水速度是每分钟5﹣==3.75(L/min);C.设当4≤x≤12时,求y与x的函数解析式为y=kx+b,根据题意得,解得,∴y=x+15(4≤x≤12);设tmin时该容器内的水恰好为25升,根据题意得,t+15=25或30﹣3.75×(t﹣12)=25,解得t=8或.即容器中水为25L的时间是8min或min;D.设m分钟时该容器内的水恰好为10升,根据题意得,5m=10或30﹣3.75×(m﹣12)=10,解得m=2或,即第2或min时容器内的水恰为10升.故说法中错误的是C.故选:C.18.解:由题意可得,m表示甲车,m2表示乙车,故①正确;1甲的速度为160÷4=40(km/h),乙车的速度为120÷(4﹣2)=60(km/h),设乙车出发a小时后追上甲车,60a=40(a+2),解得,a=4,即乙车出发4小时后追上甲车,故②正确;当t=2时,甲乙两车相距40×2=80(km),故两车相距100km的时间只有在两车相遇之后,设甲车出发b小时时,两车相距100km,60(b﹣2)﹣40b=100,解得,b=11,即两车相距100km的时间只有甲车出发11小时的时候,而如果甲车出发不到11小时乙就到达B地,则此小题的说法错误,故③错误;260÷40=6.5(小时),260÷60=4(小时),∵6.5>4+2,∴若两地相距260km,则乙车先到达B地,故④正确;故选:D.19.解:当5≤x<25时,设y=kx+b,将(5,30),(15,40)代入得,解得:,故y=x+25,当x=25时,设y=25+25=50,当25≤x<35时,设y=k1x+b1,将(25,50),(35,0)代入,解得:,故y=﹣5x+175,当x=33时,设y=﹣5×33+175=10,故选:B.20.解:由图象可知,小明从家步行到学校共用了20分钟,故A正确;根据图象,小明从家步行到学校共用了20分钟,所以小明的平均速度为1800÷20=90(米/分),故B正确;当1<8时,小明走的路程为960米,速度为960÷8=120(米/分),s与t的函数解析式是s=120t,故C正确;当8≤t≤20时,设s=kt+b,将(8,960)、(20,1800)代入,得:,解得:,∴s=70t+400;当t=15时,s=1450,1800﹣1450=350(米),∴当小明从家出发去学校步行15分钟时,到学校还需步行350米,故D错误.故选:D.。
2020-2021学年河北省石家庄外国语学校八年级(下)期末数学试卷 (解析版)
2020-2021学年河北省石家庄外国语学校八年级(下)期末数学试卷一、选择题(共15小题,每题3分,共计45分)1.下列各式中是二次根式的是()A.B.C.D.2.下列说法中正确的是()A.四边相等的四边形是菱形B.一组对边相等,另一组对边平行的四边形是菱形C.对角线互相垂直的四边形是菱形D.对角线互相平分的四边形是菱形3.使式子成立的条件是()A.a≥5B.a>5C.0≤a≤5D.0≤a<54.若二次根式有意义,则x的取值范围是()A.B.C.D.5.四边形ABCD的对角线AC和BD相交于点O,下列判断正确的是()A.若AO=OC,则ABCD是平行四边形B.若AC=BD,则ABCD是平行四边形C.若AO=BO,CO=DO,则ABCD是平行四边形D.若AO=OC,BO=OD,则ABCD是平行四边形二、填空题(共1小题,每小题3分,满分3分)6.如图,在正方形ABCD中,,若点P为线段AD上方一动点,且满足PD=2,∠BPD=90°,则点A到直线BP的距离为.三、选择题(共9小题,每小题3分,满分27分)7.如图,在▱ABCD中,AB=3,BC=5,对角线AC、BD相交于点O.过点O作OE⊥AC,交AD于点E.连接CE,则△CDE的周长为()A.3B.5C.8D.118.如图,点P是平行四边形ABCD内一点,已知S△PAB=7,S△PAD=4,那么S△PAC等于()A.4B.3.5C.3D.无法确定9.下列函数中,是正比例函数且y随x增大而减小的是()A.y=﹣4x+1B.y=2(x﹣3)+6C.y=3(2﹣x)+6D.10.关于正比例函数y=﹣3x,下列结论正确的是()A.图象不经过原点B.y随x的增大而增大C.图象经过第二、四象限D.当x=时,y=111.《九章算术》是我国古代一部著名的数学专著,其中记载了一个“折竹抵地”问题:今有竹高一丈,末折抵地,去本三尺,问折者高几何?其意思是:有一根与地面垂直且高一丈的竹子(1丈=10尺),现被大风折断成两截,尖端落在地面上,竹尖与竹根的距离为三尺.问折断处高地面的距离为()A.5.45尺B.4.55尺C.5.8尺D.4.2尺12.某山区今年6月中旬的天气情况是:前5天小雨,后5天暴雨.那么反映该地区某河流水位变化的图象大致是()A.B.C.D.13.已知某商品的原价为m元,现降价促销,降价15%,则降价后的价格n与原价m之间的关系式为()A.n=15%m B.n=(1﹣15%)m C.n=D.n=14.深圳某旅行社组织游客到广西桂林旅游,他们要乘船参观桂林山水,若旅行社租用8座的船x艘,则余下6人无座位;若租用12座的船则可少租用1艘,且最后一艘还没坐满,则乘坐最后一艘12座船的人数是()A.18﹣4x B.6﹣4x C.30﹣4x D.18﹣8x15.如图,在菱形ABCD中,∠D=135°,AD=3,CE=2,点P是线段AC上一动点,点F是线段AB上一动点,则PE+PF的最小值()A.2B.3C.2D.二、填空题(本题共计5小题,每题3分,共计15分,)16.计算:+=.17.已知+=0,则+=.18.如图,在Rt△ABC中,CD是AB斜边上的中线,如果CD=2cm,那么AB=cm.19.如图,四边形ABCD的对角线相交于点O,且OA=OB=OC=OD,则它是形.若∠AOB=60°,则AB:AC=.20.如图,O点是矩形ABCD的对角线AC的中点,菱形ABEO的边长为2,则BC =.三、解答题(本题共计6小题,每题10分,共计60分,)21.如图,在数轴上作出表示的点(不写作法,要求保留作图痕迹).22.已知三角形的三条边长分别是3、x、,求三角形的周长(要求结果化简);并选取自己喜欢的一个数值代入使得周长的结果为整数.23.已知两条线段的长分别为和,当第三条线段的长取何值时,这三条线段能围成一个直角三角形?24.如图,在△AEC、△BED中,∠AEC=∠BED=90°,AC、BD相交于点O,且O是AC、BD的中点.求证:四边形ABCD是矩形.25.如图,菱形ABCD中,E,F分别为AD,AB上的点,且AE=AF,连接并延长EF,与CB的延长线交于点G,连接BD.(1)求证:四边形EGBD是平行四边形;(2)连接AG,若∠FGB=30°,GB=AE=2,求AG的长.26.(1)如图1是一个重要公式的几何解释,请你写出这个公式;(2)伽菲尔德(1881年任美国第20届总统)利用(1)中的公式和图2证明了勾股定理(1876年4月1日发表在《新英格兰教育日志》上),现请你尝试证明过程.说明:c2=a2+b2.参考答案一、选择题(本题共计15小题,每题3分,共计45分,)1.下列各式中是二次根式的是()A.B.C.D.【分析】根据二次根式的定义即可求出答案.解:A、符合二次根式的定义;故本选项正确;B、是三次根式;故本选项错误;C、﹣42=﹣16<0,无意义;故本选项错误D、﹣5<0,无意义;故本选项错误.故选:A.2.下列说法中正确的是()A.四边相等的四边形是菱形B.一组对边相等,另一组对边平行的四边形是菱形C.对角线互相垂直的四边形是菱形D.对角线互相平分的四边形是菱形【分析】根据菱形的判定:一组邻边相等的平行四边形是菱形;四条边都相等的四边形是菱形.对角线互相垂直的平行四边形是菱形分别进行分析即可.解:A、四边相等的四边形是菱形,说法正确;B、一组对边相等,另一组对边平行的四边形是菱形,说法错误;C、对角线互相垂直的四边形是菱形,说法错误;D、对角线互相平分的四边形是菱形,说法错误;故选:A.3.使式子成立的条件是()A.a≥5B.a>5C.0≤a≤5D.0≤a<5【分析】根据分式有意义分母不为0及二次根式的被开方数为非负数可得出答案.解:由题意得:,解得:a>5.故选:B.4.若二次根式有意义,则x的取值范围是()A.B.C.D.【分析】二次根式有意义的条件是二次根式中的被开方数是非负数.解:由题意可知:3x+2≥0,∴.故选:C.5.四边形ABCD的对角线AC和BD相交于点O,下列判断正确的是()A.若AO=OC,则ABCD是平行四边形B.若AC=BD,则ABCD是平行四边形C.若AO=BO,CO=DO,则ABCD是平行四边形D.若AO=OC,BO=OD,则ABCD是平行四边形【分析】若AO=OC,BO=OD,则四边形的对角线互相平分,根据平行四边形的判定定理可知,该四边形是平行四边形.解:∵AO=OC,BO=OD,∴四边形的对角线互相平分所以D能判定ABCD是平行四边形.故选:D.二、填空题(共1小题,每小题3分,满分3分)6.如图,在正方形ABCD中,,若点P为线段AD上方一动点,且满足PD=2,∠BPD=90°,则点A到直线BP的距离为﹣1.【分析】由“ASA”可证△ADP≅△ABE,可得BE=DP,AE=AP,可证△AEP为等腰直角三角形,由等腰直角三角形的性质可得PE=2AH,进而可得BP=BE+PE=2AH+PD,即可求解.解:如图,作正方形ABCD的外接圆,另外以点D为圆心,2为半径作圆,两圆在线段AD上方的交点即为点P,连接AC、BD、PD、PB、PA,作AH⊥BP,垂足为H,过点A 作AE⊥AP,交BP于点E,∵四边形ABCD是正方形,∴∠ADB=45°,∵,∴BD=4,∵DP=2,∴,∵AE⊥AP,∴∠EAD+∠DAP=90°,又∵∠BAE+∠EAD=90°,∴∠DAP=∠BAE,∵∠ADP=∠ABE,AD=AB,∴△ADP≅△ABE(ASA),∴BE=DP,AE=AP,∴△AEP为等腰直角三角形,∵AH⊥PE,∴PE=2AH,∴BP=BE+PE=2AH+PD,即,即点A到BP的距离为.故答案为:.三、选择题(共9小题,每小题3分,满分27分)7.如图,在▱ABCD中,AB=3,BC=5,对角线AC、BD相交于点O.过点O作OE⊥AC,交AD于点E.连接CE,则△CDE的周长为()A.3B.5C.8D.11【分析】由平行四边形ABCD的对角线相交于点O,OE⊥AC,根据线段垂直平分线的性质,可得AE=CE,又由平行四边形ABCD的AB+BC=AD+CD=8,继而可得△CDE的周长等于AD+CD.解:∵四边形ABCD是平行四边形,∴OA=OC,AB=CD,AD=BC,∵AB=3,BC=5,∴AD+CD=8,∵OE⊥AC,∴AE=CE,∴△CDE的周长为:CD+CE+DE=CD+CE+AE=AD+CD=8.故选:C.8.如图,点P是平行四边形ABCD内一点,已知S△PAB=7,S△PAD=4,那么S△PAC等于()A.4B.3.5C.3D.无法确定【分析】根据平行四边形的对边相等,可得AB=DC;再设假设P点到AB的距离是h1,假设P点到DC的距离是h2,将平行四边形的面积分割组合,即可求得.解:∵四边形ABCD是平行四边形,假设P点到AB的距离是h1,假设P点到DC的距离是h2,∴S△PAB=AB•h1,S△PDC=DC•h2,∴S△PAB+S△PDC=(AB•h1+DC•h2)=DC•(h1+h2),∵h1+h2正好是AB到DC的距离,∴S△PAB+S△PDC=S▱ABCD=S△ABC=S△ADC,∵S△PAB+S△PDC=S▱ABCD=S△ABC=S△ADC,即S△ADC=S△PAB+S△PDC=7+S△PDC,而S△PAC=S△ADC﹣S△PDC﹣S△PAD,∴S△PAC=7﹣4=3.故选:C.9.下列函数中,是正比例函数且y随x增大而减小的是()A.y=﹣4x+1B.y=2(x﹣3)+6C.y=3(2﹣x)+6D.【分析】由于正比例函数的形式为y=kx,并且y随x增大而减小,所以可确定k的正负,也就确定了选择项.解:∵正比例函数的形式为y=kx,并且y随x增大而减小,∴k<0,故选:D.10.关于正比例函数y=﹣3x,下列结论正确的是()A.图象不经过原点B.y随x的增大而增大C.图象经过第二、四象限D.当x=时,y=1【分析】根据正比例函数的性质直接解答即可.解:A.图象经过原点,错误;B.y随x的增大而减小,错误;C、图象经过第二、四象限,正确;D.当x=时,y=﹣1,错误;故选:C.11.《九章算术》是我国古代一部著名的数学专著,其中记载了一个“折竹抵地”问题:今有竹高一丈,末折抵地,去本三尺,问折者高几何?其意思是:有一根与地面垂直且高一丈的竹子(1丈=10尺),现被大风折断成两截,尖端落在地面上,竹尖与竹根的距离为三尺.问折断处高地面的距离为()A.5.45尺B.4.55尺C.5.8尺D.4.2尺【分析】设折断后的竹子的高为x尺,根据勾股定理列出方程求解即可.解:设折断后的竹子高AC为x尺,则AB长为(10﹣x)尺,根据勾股定理得:AC2+BC2=AB2,即:x2+32=(10﹣x)2,解得:x=4.55,故选:B.12.某山区今年6月中旬的天气情况是:前5天小雨,后5天暴雨.那么反映该地区某河流水位变化的图象大致是()A.B.C.D.【分析】依题意,前5天小雨后5天暴雨,故水位将不断增加,且增长会越来越快.解:下雨的话,水位将不断增加,排除B,C.下暴雨的话,水位增长将变快.故选:A.13.已知某商品的原价为m元,现降价促销,降价15%,则降价后的价格n与原价m之间的关系式为()A.n=15%m B.n=(1﹣15%)m C.n=D.n=【分析】根据降价后的价格=原价×(1﹣15%),即可解答.解:根据题意得:n=(1﹣15%)m.故选:B.14.深圳某旅行社组织游客到广西桂林旅游,他们要乘船参观桂林山水,若旅行社租用8座的船x艘,则余下6人无座位;若租用12座的船则可少租用1艘,且最后一艘还没坐满,则乘坐最后一艘12座船的人数是()A.18﹣4x B.6﹣4x C.30﹣4x D.18﹣8x【分析】由租用的8座船可求有(8x+6)人,再由12座船的情况可求得:(8x+6)﹣12(x﹣2)=﹣4x+30.解:∵租用8座的船x艘,则余下6人无座位,∴一共有(8x+6)人,租用12座的船(x﹣1)艘,∵最后一艘还没坐满,最后一艘船坐:(8x+6)﹣12(x﹣2)=﹣4x+30,故选:C.15.如图,在菱形ABCD中,∠D=135°,AD=3,CE=2,点P是线段AC上一动点,点F是线段AB上一动点,则PE+PF的最小值()A.2B.3C.2D.【分析】先作点E关于AC的对称点点G,再连接BG,过点B作BH⊥CD于H,运用勾股定理求得BH和GH的长,最后在Rt△BHG中,运用勾股定理求得BG的长,即为PE+PF 的最小值.解:作点E关于AC的对称点点G,连接PG、PE,则PE=PG,CE=CG=2,连接BG,过点B作BH⊥CD于H,则∠BCH=∠CBH=45°,∴Rt△BHC中,BH=CH=BC=3,∴HG=3﹣2=1,∴Rt△BHG中,BG==,∵当点F与点B重合时,PE+PF=PG+PB=BG(最短),∴PE+PF的最小值是.故选:D.二、填空题(本题共计5小题,每题3分,共计15分,)16.计算:+=2.【分析】利用二次根式的性质将二次根式化简得出即可.解:原式=﹣1+1+=2.故答案为:2.17.已知+=0,则+=.【分析】根据非负数的性质列方程求出a、b的值,然后代入代数式进行计算即可得解.解:由题意得,a﹣3=0,2﹣b=0,解得a=3,b=2,所以,+=+=+=.故答案为:.18.如图,在Rt△ABC中,CD是AB斜边上的中线,如果CD=2cm,那么AB=4cm.【分析】已知CD的长,则根据直角三角形斜边上的中线等于斜边的一半即可求得AB的长.解:∵在Rt△ABC中,CD是AB斜边上的中线,如果CD=2cm,∴AB=4cm.故答案为:4.19.如图,四边形ABCD的对角线相交于点O,且OA=OB=OC=OD,则它是矩形.若∠AOB=60°,则AB:AC=1:2.【分析】根据SAS证明△AOB≌△COD,进而利用平行四边形的判定和矩形的判定解答即可.解:∵OA=OB=OC=OD,∠AOB=∠COD,∴△AOB≌△COD(SAS),∴AB=CD,同理得AD=BC,∴ABCD是平行四边形,∵OA=OB=OC=OD,∴ABCD是矩形,∴∠ABC=90°,又∵∠AOB=60°,∴△AOB是等边三角形,∴∠ABO=60°,∴∠ACB=30°,∴,∴AB:AC=1:2.故答案为:矩;1:2.20.如图,O点是矩形ABCD的对角线AC的中点,菱形ABEO的边长为2,则BC=2.【分析】根据菱形的性质分别求得AB和AC的长后利用勾股定理求得BC的长即可.解:∵菱形ABEO的边长为2,∴AB=AO=2,∵O点是矩形ABCD的对角线AC的中点,∴∠ABC=90°,AC=2AO=4,∴BC===2,故答案为:2.三、解答题(本题共计6小题,每题10分,共计60分,)21.如图,在数轴上作出表示的点(不写作法,要求保留作图痕迹).【分析】根据勾股定理,作出以2和3为直角边的直角三角形,则其斜边的长即是;再以原点为圆心,以为半径画弧与数轴的正半轴的交点即为所求.解:所画图形如下所示,其中点A即为所求;.22.已知三角形的三条边长分别是3、x、,求三角形的周长(要求结果化简);并选取自己喜欢的一个数值代入使得周长的结果为整数.【分析】把三角形的三边长相加,即为三角形的周长.再运用二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并.选择合适的数值代入,只要使它的周长为整数即可.解:周长=3+x+=++=当x=48时,周长=×12=27.23.已知两条线段的长分别为和,当第三条线段的长取何值时,这三条线段能围成一个直角三角形?【分析】分两种情况考虑:若为斜边,不为斜边,利用勾股定理求出第三边即可.解:若为斜边,根据勾股定理得:第三边为=2;若不为斜边,根据勾股定理得:第三边为=4,则当第三条线段的长取2或4时,这三条线段能围成一个直角三角形.24.如图,在△AEC、△BED中,∠AEC=∠BED=90°,AC、BD相交于点O,且O是AC、BD的中点.求证:四边形ABCD是矩形.【分析】连接EO,首先根据O为BD和AC的中点,在Rt△AEC中EO=AC,在Rt △EBD中,EO=BD,进而得到AC=BD,再根据对角线相等的平行四边形是矩形可证出结论.【解答】证明:连接EO,∵O是AC、BD的中点,∴AO=CO,BO=DO,在Rt△EBD中,∵O为BD中点,∴EO=BD,在Rt△AEC中,∵O为AC中点,∴EO=AC,∴AC=BD,又∵四边形ABCD是平行四边形,∴平行四边形ABCD是矩形.25.如图,菱形ABCD中,E,F分别为AD,AB上的点,且AE=AF,连接并延长EF,与CB的延长线交于点G,连接BD.(1)求证:四边形EGBD是平行四边形;(2)连接AG,若∠FGB=30°,GB=AE=2,求AG的长.【分析】(1)连接AC,再根据菱形的性质得出EG∥BD,根据对边分别平行证明是平行四边形即可.(2)过点A作AH⊥BC,再根据直角三角形的性质和勾股定理解答即可.【解答】证明:(1)连接AC,如图1:∵四边形ABCD是菱形,∴AC平分∠DAB,且AC⊥BD,∵AF=AE,∴AC⊥EF,∴EG∥BD.又∵菱形ABCD中,ED∥BG,∴四边形EGBD是平行四边形.(2)过点A作AH⊥BC于H.∵∠FGB=30°,∴∠DBC=30°,∴∠ABH=2∠DBC=60°,∵GB=AE=2,∴AB=AD=4,在Rt△ABH中,∠AHB=90°,∴AH=2,BH=2.∴GH=4,∴AG===2.26.(1)如图1是一个重要公式的几何解释,请你写出这个公式;(2)伽菲尔德(1881年任美国第20届总统)利用(1)中的公式和图2证明了勾股定理(1876年4月1日发表在《新英格兰教育日志》上),现请你尝试证明过程.说明:c2=a2+b2.【分析】(1)边长为(a+b)的正方形分别由边长为a、b的正方形和两个长宽为a、b 的长方形组成,利用面积法即可得到完全平方公式(a+b)2=a2+2ab+b2;(2)易证得Rt△DEC≌Rt△EAB,则∠DEC=∠EAB,而∠EAB+∠AEB=90°,于是∠DEC+∠AEB=90°,可得到△AED为等腰直角三角形,再利用S梯形ABCD=S△Rt△ABE+S Rt△+S Rt△DEA得到DCE(b+a)(a+b)=ab+ab+c2,然后再利用(1)中的结论即可得到c2=a2+b2.解:(1)(a+b)2=a2+2ab+b2;(2)如图,∵Rt△DEC≌Rt△EAB,∴∠DEC=∠EAB,∵∠EAB+∠AEB=90°,∴∠DEC+∠AEB=90°,∴△AED为等腰直角三角形,∵S梯形ABCD=S△Rt△ABE+S Rt△DCE+S Rt△DEA,∴(b+a)(a+b)=ab+ab+c2,即(a+b)2=2ab+c2,∵(a+b)2=a2+2ab+b2,∴a2+2ab+b2=2ab+c2,∴c2=a2+b2.。
河北省廊坊市三河市2023-2024学年八年级下学期期末数学试题
河北省廊坊市三河市2023-2024学年八年级下学期期末数学试题一、单选题1.下列二次根式中,是最简二次根式的是( )A B C D 2.对于函数34y x =-+,下列结论正确的是( )A .它的图象必经过点(-1,1)B .它的图象不经过第三象限C .当0x >时,0y >D .y 的值随x 值的增大而增大3.一组数据2,3,4,x ,1,4,3有唯一的众数4,则这组数据的平均数、中位数分别( ) A .4,4 B .3,4 C .4,3 D .3,3 4.下列各组数据中能作为直角三角形的三边长的是( )A .1,2,2B .1,1C .4,5,6D .1 2 5.下列条件中,不能判定四边形ABCD 是平行四边形的是( )A .A C ∠=∠,AB CD PB .AB CD ∥,AB CD =C .AB CD =,AD BC ∥ D .AB CD ∥,AD BC ∥6.若直角三角形的两边长分别为12和5,则第三边长为( )A .13B .13C .13或15D 7.直线y kx b =+经过一、二、四象限,则直线y bx k =-的图象只能是图中的( ) A . B .C .D .8.用图像法解二元一次方程组020kx y b x y -+=⎧⎨-+=⎩时,小英所画图像如图所示,则方程组的解为( )A .12x y =⎧⎨=⎩B .21x y =⎧⎨=⎩C .12.5x y =⎧⎨=⎩D .13x y =⎧⎨=⎩9.如图,直线()0y kx b k =+>经过点()4,1A -,当14kx b x +>-时,x 的取值范围为( )A .14x >-B .0x <C .4x <-D .>-4x10.如图,将边长为4的菱形纸片ABCD 折叠,使点A 恰好落在对角线的交点O 处,若折痕EF =A ∠=( )A .120︒B .100︒C .60︒D .30︒11.如图,直线l 上有三个正方形a ,b ,c ,若正方形a ,c 的面积分别为5和11,则正方形b 的边长为( )A .55B .16C .6D .412.如图,正方形ABCD 中,点E ,F ,G 分别为边AB ,BC ,AD 上的中点,连接AF ,DE 交于点M ,连接GM ,CG ,CG 与DE 交于点N ,则结论①GM CM ⊥;②CD DM =;③四边形AGCF 是平行四边形;④CMD AGM ∠=∠中正确的有( )个.A .1B .2C .3D .4二、填空题13.若一组数据2,3,x ,5,6的平均数为5,则x =.14.如图,矩形ABCD 的对角线AC 和BD 相交于点O ,过点O 的直线分别交AD 和BC 于点E 、F ,3AB =,4BC =,则图中阴影部分的面积为.15.某博物馆拟招聘一名优秀志愿讲解员,其中某位志愿者笔试、试讲、面试三轮测试得分分别为90分、94分、92分,综合成绩中笔试占30%,试讲占50%,面试占20%,则该名志愿者的综合成绩为是分.16.在菱形ABCD 中,2,60AB BAD =∠=︒,点E 是AB 的中点,P 是对角线AC 上的一个动点,则PE PB +的最小值为.三、解答题17.(12;(2)计算:(((0222⋅-. 18.在平行四边形ABCD 中,过点D 作DE AB ⊥于点E ,点F 在边CD 上,DF BE =,连接AF ,BF .(1)求证:四边形BFDE 是矩形;(2)若3,4,5AE DE DF ===,求证:AF 平分DAB ∠.19.如图,已知一次函数y kx b =+ 的图象经过A (-2,-1), B (1,3)两点,并且交x 轴于点C ,交y 轴于点D .(1)求该一次函数的解析式;(2)求△AOB 的面积.20.小丽早晨6:00从家里出发,骑车去菜场买菜,然后从菜场返回家中.小丽离家的路程y (米)和所经过的时间x (分)之间的函数图象如图所示,请根据图象回答下列问题:(1)小丽去菜场途中的速度是多少?在菜场逗留了多长时间?(2)小丽几点几分返回到家?21.如图,在矩形ABCD 中,对角线AC ,BD 相交于点O ,DE CA ∥交BA 的延长线于点E .(1)求证:DB DE =;(2)若60AOB ∠=︒,4BD =,求四边形BCDE 的面积.22.某校为了解学生每天参加户外活动的情况,随机抽查了一部分学生每天参加户外活动的时间情况,绘制出如下的统计图①和图②,请根据相关信息,解答下列问题; (Ⅰ)在图①中,m 的值为 ,表示“2小时”的扇形的圆心角为 度;(Ⅱ)求统计的这组学生户外运动时间的平均数、众数和中位数.23.A 、B 两个蔬菜基地要向C 、D 两城市运送蔬菜,已知A 基地有蔬菜200吨,B 基地有蔬菜300吨,C 城市需要蔬菜240吨,D 城市需要蔬菜260吨.从A 基地运往C 、D 两城市的费用分别为每吨20元和每吨25元,从B 基地运往C 、D 两城市的费用分别为每吨15元和每吨18元,设从B 基地运往C 城市的蔬菜为x 吨,A 、B 两个蔬菜基地的总运费为w 元.(1)求w 与x 之间的函数解析式,并写出x 的取值范围;(2)写出总运费最小时的运送方案,并求出此时的总运费;(3)如果从B 基地运往C 城市的费用每吨减少m 元(015m <<且2)m ≠,其余线路的运费不变,请直接写出总运费最小时的运送方案.24.如图,正方形ABCD ,点E ,F 是对角线AC 上的两点,45EBF ∠=︒,连接BE ,BF ,ABE V 和GBE V关于直线BE 对称.点G 在BD 上,连接FG .(1)求FBC ∠的度数;(2)如备用图,延长BF 交CD 于点H .连接HG①求证:四边形GHCF 是菱形;②求CD CH的值.。
河北省石家庄市裕华区2023-2024学年八年级下学期期末数学试题
河北省石家庄市裕华区2023-2024学年八年级下学期期末数学试题一、单选题1.下列调查方式适合用普查的是( ) A .检测一批LED 灯的使用寿命 B .检测一批家用汽车的抗撞击能力C .测试2024神舟十八号载人飞船的零部件质量情况D .中央电视台《2024年第九季诗词大会》的收视率 2.已知点(1,2)A m m --在第三象限,则m 的取值范围是( ) A .3m > B .23m << C .m>2 D .2m <3.如图是两圆柱形连通容器,向甲容器匀速注水,则下面可以近似的刻画甲容器的水面高度()cm h 随时间t (分)的变化情况的是( )A .B .C .D .4.“天宫课堂”是为发挥中国空间站的综合效益推出的首个太空科普教育品牌.由中国航天员担任“太空教师”,以青少年为主要对象,采取天地协同互动方式开展.某校有1000名学生在线观看了“天宫课堂”第四课,并参加了关于“你最喜爱的太空实验”的问卷调查,从中抽取100名学生的问卷调查情况进行统计分析,以下说法错误的是( ) A .1000名学生的问卷调查情况是总体 B .100名学生是样本容量C .100名学生的问卷调查情况是样本D .每一名学生的问卷调查情况是个体5.关于一次函数32y x =-+,下列说法正确的是( )A .函数图象与x 轴的交点为()02,B .当0x <时,0y <C .点()11,A x y ,()22,B x y 在该函数图象上,若12x x >,则12y y <D .函数图象经过第二、三、四象限6.如图,在平面直角坐标系中,点A ,B 的坐标分别为()3,0,()0,2,若将线段AB 平移至CD ,则a b +的值为( ).A .2B .3C .4D .57.某班学生最喜欢的一项球类运动的统计表和扇形统计图如下所示,其中统计表不小心被污染了一部分.对于下列结论说法不正确的是( )A .该班最喜欢篮球的人数是13人B .该班最喜欢篮球的人数少于13人C .一共调查了50人D .扇形图中m 与n 的和为528.如图,五边形ABCDE 中,AB CD P ,1∠、2∠、3∠分别是BAE ∠、AED ∠、EDC ∠的邻补角,则123∠+∠+∠等于( )A .90︒B .180︒C .210︒D .270︒9.数形结合是我们解决数学问题常用的思想方法.如图,一次函数=1y x --与y mx n =+ (m ,n 为常数,0m ≠)的图象相交于点(1)2-,,则不等式1x mx n --<+的解集在数轴上表示正确的是( )A .B .C .D .10.在ABC ∆中,点D 是边BC 上的点(与B ,C 两点不重合),过点D 作∥DE AC ,DF AB P ,分别交AB ,AC 于E ,F 两点,下列说法正确的是( )A .若AD BC ⊥,则四边形AEDF 是矩形B .若AD 垂直平分BC ,则四边形AEDF 是矩形 C .若BD CD =,则四边形AEDF 是菱形 D .若AD 平分BAC ∠,则四边形AEDF 是菱形11.“这么近那么美,周末到河北”,河北某文化旅游公司推出野外宿营活动,有两种优惠方案:方案一:以团队为单位办理会员卡(会员卡花费a 元),所有人都按半价优惠;方案二:所有人都按六折优惠.某团队有x 人参加该活动,购票总花费为y 元,这两种方案中y 关于x 的函数图象如图所示,则下列说法不正确的是( )A .400a =B .原票价为400元/人C .方案二中y 关于x 的函数解析式为240y x =D .若方案一比方案二更优惠,则6x > 12.如图,在ABCD Y 中,按照如下尺规作图的步骤进行操作:①以点B 为圆心,以适当长为半径画弧,分别与AB ,BC 交于点E ,F ;②分别以E ,F 为圆心,以适当长为半径画弧,两弧交于点G ,作射线BG ,与边AD 交于点H ;③以B 为圆心,BA 长为半径画弧,交于边BC 于点M .若5AB =,8BH =,则点A ,M 之间的距离为( )A .5B .6C .7D .813.如图1在矩形ABCD 中,点P 从点A 出发,匀速沿AB BD →向点D 运动,连接DP ,设点P 的运动距离为x DP ,的长为y y ,关于x 的函数图像如图2所示,则当点P 为AB 中点时,DP 的长为( )A .5B .8C .D .14.如图,在平面直角坐标系中,矩形ABCD 的边6AB =,3BC =.若不改变矩形ABCD 的形状和大小,当矩形顶点A 在y 轴的正半轴上上下移动时,矩形的另一个顶点B 始终在x 轴的正半轴上随之左右移动,已知M 是边AB 的中点,连接OM ,DM .下列判断正确的是()结论Ⅰ:在移动过程中,OM 的长度不变;结论Ⅱ:当45OAB ∠=︒时,四边形OMDA 是平行四边形.A .结论Ⅰ、Ⅱ都对B .结论Ⅰ、Ⅱ都不对C .只有结论Ⅰ对D .只有结论Ⅱ对15.如图,一个点在第一、四象限运动,在第1次,它从()0,2-运动到点()1,1,用了1秒,然后以折线状向右运动,即 ()()()()0,21,12,13,2-→→-→→…,它每运动一次需要1 秒,那么第2024秒时点所在位置的坐标是( )A .()2023,1B .()2023,1-C .()2024,2D .()2024,2-16.如图,在正方形ABCD 中,4,AB E =为对角线AC 上与点,A C 不重合的一个动点,过点E 作EF AB ⊥于点F ,EG BC ⊥于点G ,连接,DE FG ,有以下结论:①DE FG =;②DE FG ^;③BFG ADE ∠=∠;④FG 的最小值为 )A .②③④B .①②③C .①②③④D .①③④二、填空题 17.函数321=-y x 自变量x 的取值范围是. 18.门卫保安老张在校门口观察马路上车辆通行情况,观察了10分钟,其间共有50辆车通过.其中自行车5辆,电动车25辆,汽车20辆,在这段时间内,电动车通过的频率是. 19.用五个大小完全相同的长方形在平面直角坐标系中摆成如图所示的图案,若点A 的坐标为()4,13-,则点B 的坐标为.20.如图,在菱形ABCD 中,E 是AD 上一点,沿BE 折叠ABE V ,点A 恰好落在BD 上的点F 处,连接CF ,若110DFC ∠=︒,则A ∠=.三、解答题21.已知函数()213y m x m =++-,m 为常数. (1)若函数图象经过原点,求m 的值;(2)若该函数的图象与直线33y x =-平行,求m 的值;(3)若这个函数是一次函数,且函数图象不经过第二象限,求m 的取值范围.22.平面直角坐标系中,将点A 、B 先向下平移3个单位长度,再向右平移2个单位后,分别得到点()3,2A '-,()2,4B '-.(1)点A 坐标为 ,点B 坐标为 ,并在图中标出点A 、B ; (2)若点C 的坐标为()2,2-,求ABC V 的面积;(3)在(2)的条件下,如图所示网格中,点E 为图中格点(不与C 重合),且使得ABC V 与ABE V 的面积相等,符合条件的E 点有 个.23.如图,已知ABCD Y ,AC BD 、相交于点O ,延长CD 到点E ,使CD DE ,连接AE .(1)求证:四边形ABDE 是平行四边形;(2)连接BE ,交AD 于点F ,连接OF ,判断CE 与OF 的数量关系,并说明理由. 24.2018年3月,某市教育主管部门在初中生中开展了“文明礼仪知识竞赛”活动,活动结束后,随机抽取了部分同学的成绩(x 均为整数,总分100分),绘制了如下尚不完整的统计图表. 调查结果统计表根据以上信息解答下列问题:(1)统计表中,a= ,b= ,c= ;(2)扇形统计图中,m 的值为 ,“C”所对应的圆心角的度数是 ;(3)若参加本次竞赛的同学共有5000人,请你估计成绩在95分及以上的学生大约有多少人?25.如图,在平面直角坐标系中,点O 是坐标原点,直线3124y x =-+与x 轴交于点A ,与y轴交于点B ,与直线364y x =+交于点P .点C 为直线364y x =+与x 轴的交点.(1)求点P 的坐标.(2)点D 是y 轴上一动点,当9PDC S =V 时,求点D 坐标.(3)点Q 是线段CA 上的一个动点(点Q 不与点C ,A 重合),过点Q 作平行于y 轴的直线l ,分别交直线AB PC ,于点M ,点N ,设点Q 的横坐标为m ,当2NQ MN =时,请直接写出m 的值.26.武汉某文化公司向市场投放A 型和B 型商品共200件进行试销.A 型商品成本价140元/件,B 型商品成本价120元/件,要求两种商品的总成本价不超过26400元,已知A 型商品的售价为200元/件,B 型商品的售价为170元/件,全部售出且获得的利润不低于10800元.设该公司投放A 型商品x 件,销售这批商品的利润为y 元. (1)求y 与x 之间的函数解析式.并求出x 的取值范围;(2)要使这批商品的利润最大,该公司应该向市场投放多少件A 型商品?最大利润是多少? (3)该公司决定在试销活动中每售出一件A 型商品,就从一件A 型商品的利润中捐慈善资金()0a a >元,当该公司售完这200件商品并捐献资金后获得的最大收益为10960元时.求a的值.27.如图,矩形OABC 的顶点A 、C 分别在y 、x 轴的正半轴上,点B 的坐标为()6,8,一次函数6y mx =-+的图象与边OA 、BC 分别交于点D 、E ,并且满足AD CE =,点P 是线段DE上的一个动点.(1)求一次函数的解析式;平分线上,求点P的坐标;(2)若点P在AOC(3)连接OP,若OP把四边形ODEC面积分成3:5两部分,求点P的坐标;(4)设点Q是x轴上方平面内的一点,以O,D,P,Q为顶点的四边形为菱形时,直接写出点Q的坐标.。
河北省唐山市路北区2023-2024学年八年级下学期期末数学试题
河北省唐山市路北区2023-2024学年八年级下学期期末数学试题一、单选题1.如图,平面直角坐标中点()2,1A -和点()2,1B -的位置关系是( )A .关于原点对称B .关于x 轴对称C .关于y 轴对称D .无法确定2.在Rt ABC △中,斜边9AB =,则22AC BC +=( )A .3B .9C .18D .813.一次函数y =x ﹣1的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限 4.如图,在ABC V 中,点E 、F 分别为AB 、AC 的中点,12BC =,则EF =( )A .3B .6C .12D .2452=( ) A .0 B .7 C .14 D .496.某经销商销售一种边长为()cm x 的正方形板材,板材的售价y (元)与x 成正比例.当10x =时,40y =,则y 与x 满足的函数关系式为( )A .4y x =B .10y x =C .25y x =D .40y x = 7.如图,在▱ABCD 中,对角线AC 、BD 相交于点O ,则图中相等的线段共有的对数为( )A .1B .2C .3D .48.下图是老师随机抽查本班20名学生读课外书册数的情况绘制成的条形图,则这20名学生读书册数的众数和中位数分别是( )A .6,4.5B .6,3C .9,8.5D .9,99.如图,正方形Ⅰ的边长为a ,面积为8;正方形Ⅱ的边长为b ,面积为18,则()a b +的几倍( )A .3B .4C .5D .610.已知一次函数()0y ax b a =+≠,x 和y 的部分对应值如表,则不等式4ax b +>的解集为( )A .4x >B .4x <C .1x >-D .1x <- 11.如图,四边形ABCD 的对角线AC ,BD 交于点O ,根据图中所标数据,再添加一个条件,使四边形ABCD 为矩形,添加的条件可以是( )A .5OB = B .5OD =C .5AB =D .8BC =12.如图,在Rt ABC △中,90ACB ∠=︒,6AC =,将斜边AB 绕点A 顺时针旋转90︒至AD ,连接CD ,则ADC △的面积为( )A .6B .12C .18D .36二、填空题13.长度为3cm 4cm 5cm 、、的铁丝围成直角三角形.(填“能”或“不能”)14.如图,菱形ABCD 中,对角线AC 与BD 相交于点O ,若3cm AO BD ==,则菱形的面积是2cm .15.甲、乙两人进行了五次射击测试,测试成绩如图所示:(1)甲测试成绩的平均数是环;(2)甲、乙两人成绩的方差记为2S 甲、2S 乙,则2S 甲2S 乙.(填“>”“<”或“=”)16.如图,在平面直角坐标系中,直线l :y x b =-+,四边形OABC 为正方形,点A 的坐标为()4,0.(1)若直线l 经过点C ,则b =;(2)若直线l 被正方形OABC b =.三、解答题17.(1(2)计算:)2118.如图,BD 是菱形ABCD 的对角线.(1)求证:12∠=∠;(2)若120∠=︒,求C ∠的度数.19.如图,B ,C 两点被池塘隔开,不能直接测量其距离.经小组商讨,在岸边选一点A ,使30ACB ∠=︒,90B ??,连接AC ,AB ,随后测得200m AB =,求B ,C 间的距离. 1.732≈,结果取整数)20.某公司要在甲、乙两人中招聘一名职员,对两人的学历、经验、能力这三项进行了测试,各项满分均为10分,成绩高者被录用,甲、乙测试成绩如下表:(1)分别求出甲、乙三项成绩之和,并指出会录用谁:(2)若将甲,乙的三项测试成绩,按照扇形统计图各项所占之比,分别计算两人各自的综合成绩,并指出会录用谁.21.某种机器是在油箱加满的状态下开始工作,当停止工作时,油箱中油量为5L.在整个过程中,油箱里的油量y(单位:L)与时间x(单位:min)之间的关系如图所示.(1)机器工作时每分钟耗油量为______L;(2)求机器工作时y关于x的函数解析式,并写出自变量x的取值范围;(3)求机器工作半个小时后油箱中剩余的油量.22.如图,在正方形ABCD中,点P是CD边上一点,点E在AP的延长线上.将线段AE绕点A顺时针旋转90 ,得到线段AF,连接EF、DE,点B恰好在线段EF上.(1)求证:ADE ABF V V ≌;(2)求证:DE EF ⊥;(3)直接写出....2BE ,2BF ,2AB 三者之间的数量关系.23.如图,平面直角坐标系中,直线:1m y kx =-,直线1:3n y x b =+经过点()1,2A .(1)求b 的值并说明直线m 必过点()0,1-;(2)若直线m 与直线n 交于x 轴上一点,求k 的值并在直角坐标系中画出直线m ;(3)若直线m 与直线n 的交点总在点A 的右侧,直接写出....k 的取值范围. 24.如图1,在矩形ABCD 中,4AB =,6AD =,点E 在边BC 上,且2BE =,动点P 从点E 出发,沿折线EB BA AD --以每秒1个单位长度的速度运动.作90PEQ ∠=︒,EQ 交边AD 或边DC 于点Q ,连接PQ .当点Q 与点C 重合时,点P 停止运动.设点P 的运动时间为t 秒()0t >(1)当点P 和点B 重合时,求线段PQ 的长;(2)如图2,当点P 在边AD 上时,猜想PQE V 的形状,并说明理由;(3)作点E 关于直线PQ 的对称点F ,当点F 恰好落在边AB 上时,直接写出t 的值。
河北省唐山市遵化市2023-2024学年八年级下学期期末数学试题
河北省唐山市遵化市2023-2024学年八年级下学期期末数学试题一、单选题1.点(1,-3)在( ) A .第一象限B .第二象限C .第三象限D .第四象限2.下列曲线中,不能表示y 是x 的函数的是( )A .B .C .D .3.某校年级有600名学生,从中随机抽取了80名学生进行立定跳远测试.下列说法中: (1)这种调查方式是抽样调查; (2)600名学生是总体;(3)这80名学生的立定跳远成绩是总体的一个样本; (4)80名学生是样本容量;(5)每名学生的立定跳远成绩是个体. 正确的说法有( )个. A .2B .3C .4D .54.若(2x -1)0有意义,则x 的取值范围是( ) A .x =-2B .x ≠0C .x ≠12D .x =125.关于函数y =﹣2x +3,下列说法中不正确的是( ) A .该函数是一次函数B .该函数的图象经过一、二、四象限C .当x 值增大时,函数y 值也增大D .当x =﹣1时,y =56.若函数72y x m =-+-是正比例函数,则m 的值为( ) A .0B .1C .2-D .27.某人用了t 分钟加工了100个零件,用n 表示每分钟加工零件的个数,下列说法正确的是( )A .数100和n ,t 都是常量B .只有n 是变量C .n 与t 之间的关系式为100n t =D .n 与t 之间的关系式为100n t=8.爷爷在离家900米的公园锻炼后回家,离开公园20分钟后,爷爷停下来与朋友聊天10分钟,接着又走了15分钟回到家中.下面图形中表示爷爷离家的距离y (米)与爷爷离开公园的时间x (分)之间的函数关系是( )A .B .C .D .9.如图,四边形ABCD 是平行四边形,下列结论中错误的是( )A .当90ABC ∠=︒,平行四边形ABCD 是矩形B .当AC BD =,平行四边形ABCD 是矩形 C .当AB BC =,平行四边形ABCD 是菱形 D .当AC BD ⊥,平行四边形ABCD 是正方形10.在平面直角坐标系中,与点()3,4A -关于原点对称的点的坐标是( )A .()3,4--B .()3,4C .()3,4-D .()4,3-11.某学校在某商城的南偏西60︒方向上,且距离商城1500m ,则下列表示正确的是( )A.B.C.D.12.如图,直角坐标系中四边形的面积是()A.4 B.5.5 C.4.5 D.513.要反映经开区2023年5月份每天的最高气温的变化情况,宜采用()A.统计表B.扇形统计图C.条形统计图D.折线统计图14.现有一矩形ABCD,借助此矩形作菱形,两位同学提供了如下方案:方案I:取边,,,AB BC CD DA的中点,,,E F G H,顺次连接这四点,围成的四边形EFGH即为所求.方案II:连接AC,作AC的垂直平分线交,AD BC于点,F E,连接,AE CF,四边形AECF即为所求.对于方案Ⅰ,Ⅱ,说法正确的是( )A .I 可行、Ⅱ不可行B .I 不可行、Ⅱ可行C .I 、Ⅱ都可行D .I 、Ⅱ都不可行15.如图,面积为S 的菱形ABCD 中,点O 为对角线的交点,点E 是线段BC 单位中点,过点E 作EF ⊥BD 于F ,EG ⊥AC 于G ,则四边形EFOG 的面积为( )A .14SB .18SC .112S D .116S 16.如图1是一座立交桥的示意图(道路宽度忽略不计),A 为人口,F ,G 为出口,其中直行道为AB ,CG ,EF ,且AB =CG =EF ;弯道为以点O 为圆心的一段弧,且»BC,»CD ,»DE 所对的圆心角均为90°.甲、乙两车由A 口同时驶入立交桥,均以10m/s 的速度行驶,从不同出口驶出,其间两车到点O 的距离y (m )与时间x (s )的对应关系如图2所示.结合题目信息,下列说法错误的是( )A .甲车在立交桥上共行驶8sB .从F 口出比从G 口出多行驶40mC .甲车从F 口出,乙车从G 口出D .立交桥总长为150m二、填空题17.当x =时,函数y =3x +1与y =2x -4的函数值相等. 18.如图,五边形ABCDE 是正五边形,若12l l //,则12∠-∠=.19.已知点()()124,,2,y y -都在直线122y x =+上,则1y 2y (填“>”“<”或“=”).三、解答题20.已知点()24,1P m m +-,请分别根据下列条件,求出点P 的坐标. (1)点P 在y 轴上;(2)点P 的纵坐标比横坐标大3;(3)点P 在过点()2,4A -且与y 轴平行的直线上.21.如图所示,小明家、食堂、图书馆在同一条直线上.小明从家去食堂吃早餐,接着去图书馆读报,然后回家.如图反映了这个过程中,小明离家的距离y 与时间x 之间的对应关系.根据图象回答下列问题:(1)食堂离小明家多远?小明从家到食堂用了多少时间? (2)小明吃早餐用了多少时间?(3)食堂离图书馆多远?小明从食堂到图书馆用了多少时间? (4)小明读报用了多少时间?(5)图书馆离小明家多远?小明从图书馆回家的平均速度是多少?22.如图,在平行四边形ABCD 中,对角线AC ,BD 交于点O ,过点O 任意作直线分别交AB 、CD 于点E 、F .(1)求证:AEO CFO V V ≌;(2)若10CD =,8AD =,3OE =,求四边形AEFD 的周长.23.促进青少年健康成长是实施“健康中国”战略的重要内容,为了引导学生积极参与体育运动,某校举办了一分钟跳绳比赛,随机抽取了40名学生一分钟跳绳的次数进行调查统计,并根据调查统计结果绘制了如下表格和统计图:请结合上述信息完成下列问题: (1)=a _______,b = _____; (2)请补全频数分布直方图;(3)在扇形统计图中,“良好”等级对应的圆心角的度数是_______;(4)根据抽样调查结果,请估计该校学生一分钟跳绳次数达到合格及以上的百分比.24.如图,已知直线1l 经过点()0,3B 、点()2,3C -,交x 轴于点D ,点P 是x 轴上一个动点,过点C 、P 作直线2l .(1)求直线1l 的表达式; (2)已知点()7,0A ,当12DPC ACD S S =△△时,求点P 的坐标. 25.如图,在矩形ABCD 中,6BC =,连接AC ,且30BAC ∠=︒.点E 从点A 出发,沿AC 方向以每秒2个单位长度的速度向终点C 运动,同时点G 从点C 出发,沿CB 方向以每秒1个单位长度的速度向终点B 运动,当其中一个点到达终点时,另一个点也随之停止运动.设点E 运动的时间是t 秒(0)t >,过点E 作EF AB ⊥于点F ,连接FG .(1)AB 的长为_________;用含t 的式子表示EF 的长度:EF =_________; (2)求证:四边形EFGC 是平行四边形,并求当四边形EFGC 为菱形时的周长;(3)连接EG ,试判断EGF ∠是否能为90︒,若能,求出相应的t 值;若不能,请说明理由; (4)当点G 关于点E 的对称点G '在ACD V 的边上时,请直接写出t 的值.。
2021-2022学年河北省保定市唐县八年级下学期期末数学试题
2021-2022学年河北省保定市唐县八年级下学期期末数学试题1.下列二次根式中,是最简二次根式的是()A.B.C.D.2.以下列各组数为边长,能构成直角三角形的是()A.1,2,3 B.2,2,6 C.3,4,5 D.4,5,63.抢微信红包已成为中国传统节日人们最喜爱的祝福方式,今年端午节期间,某人在自己的微信群中发出红包,一共有10名好友抢到红包,抢到红包的金额情况如下表:A.4.5,5 B.4.5,6 C.8,4.5 D.5,4.54.关于直线,下列说法正确的是()A .直线过原点B.随的增大而减小C.直线经过点(1,2)D.直线经过二、四象限5.已知四边形ABCD中有四个条件:AB∥CD,AB=CD,BC∥AD,BC=AD,从中任选两个,不能使四边形ABCD成为平行四边形的选法是()A. AB∥CD,AB=CD B. AB∥CD,BC∥ADC. AB∥CD,BC=ADD. AB=CD,BC=AD6.一次函数y=-x+1的图象大致是()A.B.C.D.7.下列计算正确的是()A.B.= 4 C.()2= 6 D.= 2 8.如图所示,一架长5m的梯子(AB),斜靠在与地面(OM)垂直的墙(ON)上,这时梯子的顶端A距地面4m.梯子的正中间P点处有一只老鼠,梯子顶端A的正下方墙角O 处有一只猫.下列说法错误的是()A.梯子的底端B到墙的距离为3mB.P处的老鼠离地面的距离为2mC.梯子顶端沿墙下滑的长度和梯子底端沿地面向右滑行的距离不一定相等D.梯子下滑的时候老鼠就会离猫越来越近9.如图,在平面直角坐标系中,点P坐标为(-2,3),以点O为圆心,以OP的长为半径画弧,交x轴的负半轴于点A,则点A的横坐标介于()A.-4和-3之间B.3和4之间C.-5和-4之间D.4和5之间10.琳琳在做数学作业时,因钢笔漏水,不小心将部分字迹污染了,作业过程如下(涂黑部分即为污染部分).如图,已知四边形ABCD是矩形,对角线AC,BD交与点O,求证:AC=BD.证明:∵四边形ABCD是矩形,∴①,∠ABC=∠DCB=90°,又∵②,∴ΔABCΔDCB,∴AC=BD,污染部分的内容有以下四个选项供选择,a.AD=BC;b.AB=CD;c.AO=CO;d.BC=CB.下列说法正确的是()A.①是a,②是d B.①是b,②是cC.①a,是②是c D.①是b,②是d.11.如图,直线与相交于点,则关于的不等式的解集为()A.B.C.D.12.如图,矩形ABCD的顶点A、C分别在直线a、b上,且a∥b,∠1=60°,则∠2的度数为()A.30°B.45°C.60°D.75°13.如图,在中,延长至使得,过中点作(点位于点右侧),且,连接.若,则的长为()A.B.C.D.14.问题情境:“一粒米千滴汗,粒粒粮食汗珠换.”“为积极响应习近平总书记提出的坚决抵制餐饮浪费行为的重要指示,某送餐公司推出了“半份餐”服务,餐量是整份餐的一半,价格也是整份餐的一半,整份餐单价为10元,希望中学每天中午从该送餐公司订200份午餐,其中半份餐订x份(0<x≤200),其余均为整份餐,该中学每天午餐订单总费用为y 元.则y与x之间的函数关系式为()A.B.C.D.15.我们定义:若一个函数图象上存在横、纵坐标相等的点,则称该点为这个函数图象的“均值点”,例如:点(2,2)和点(-3,-3)是正比例函数的图象的:“均值点”,那么一次函数图象“均值点”坐标为()A.(2,2)B.(3,3)C.(-3,-3)D.(-3,-3)和(3,3)16.如图,平面直角坐标系中,在边长为1的正方形ABCD的边上有一动点P沿A→D→C→B→A运动一周,则P的纵坐标y与P点走过的路程s之间的函数关系用图象表示大致是()A.B.C.D.17.已知:,则ab=_____.18.如图,在Rt△ ABC中,∠C=90°,∠A=30°,直线DE是边AB的垂直平分线,连接BE.(1)∠ABE==_____;(2)若BE=2,则AC=_____.19.如图,直线y=2x+1与y轴交于点A,直线上一点B(m,3),在x轴上存在一点P,使PA+PB最小.(1)点P的坐标为_____.(2)PA+PB=_____.20.计算:(1);(2).21.已知两个有理数:-8和4(1)计算:;(2)若再填一个负整数a,且-8,4与a这三个数的平均数仍小于a,求a的值.22.如图,在平行四边形ABCD中,AB=3,BC=5,对角线AC⊥AB,点E、F分别是BC,AD上的点,且.(1)求证:四边形AECF是平行四边形.(2)当AE长度为______时,四边形AECF是矩形,说明四边形AECF是矩形的理由.23.受疫情影响,国家推出了“网络授课”,使得初中学生越来越离不开手机,“沉迷手机”现象再次受到社会的关注,记者小吴随机调查了某小区若干名学生和家长对中学生配带手机的看法,统计整理并作了如图统计图:根据统计图中提供的信息,解答下列问题:(1)求本次调查的家长总人数________.(2)补全条形统计图,并求出家长“反对”带手机所占扇形圆心角的度数;(3)估计该小区800名学生中“反对”配带手机的学生人数.24.表格中的两组对应值满足一次函数y=kx+b.现画出了它的图象为直线l,如图.数学兴趣小组为观察k、b对图象的影响,将上面函数中的k、b交换位置后得另一个一次函数,设其图象为直线.(1)求直线l的解析式.(2)请在图中画出直线(不要求列表计算),并求出直线l和的交点坐标.(3)求出直线l和与y轴围成的三角形的面积.25.新冠肺炎疫情爆发以来,口罩成为需求最为迫切的防护物质.某商场欲购进A,B两种型号的口罩共50箱,两种口罩每箱的进价和售价如下表所示.设购进A种型号口罩x箱(x 为正整数),且所购进的两种型号的口罩能全部卖出,获得的总利润为W元.(2)求总利润w关于x的函数关系式;(3)如果购进两种口罩的总费用不超过2100元,那么该商场如何进货才能获利最多?并求出最大利润.26.如图1,在平面直角坐标系中,菱形ABCD的顶点分别在x轴、y轴上,其中C,D两点的坐标分别为(4,0),(0,-3).两动点P、Q分别从A、C同时出发,点P以每秒1个单位的速度沿线段AB向终点B运动,点Q以每秒2个单位的速度沿线段CD向终点D运动,设运动的时间为t秒.(1)求菱形ABCD的高h和面积S的值;(2)当点Q在CD边上运动时,t为何值时直线PQ将菱形ABCD的面积分成1:2两部分;(3)设四边形APCQ的面积为y,求y关于t的函数关系式(写出t的取值范围);在点P、Q运动的整个过程中是否存在y的最大值?若存在,求出这个最大值,若不存在,请说明理由.。
2020-2021学年河北省石家庄外国语中学八年级(下)期末数学复习试卷(附答案详解)
2020-2021学年河北省石家庄外国语中学八年级(下)期末数学复习试卷一、选择题(本大题共12小题,共36.0分)1.要使式子√1−x有意义,则x的取值范围是()A. x≤1B. x≥1C. x>0D. x>−12.在函数y=√x−1中,自变量x的取值范围是()1−xA. x≥1B. x>1C. x<1D. x≤13.一次函数y=kx−1(常数k<0)的图象一定不经过的象限是()A. 第一象限B. 第二象限C. 第三象限D. 第四象限4.下列说法中不正确的是()A. 一次函数不一定是正比例函数B. 不是一次函数就一定不是正比例函数C. 正比例函数是特殊的一次函数D. 不是正比例函数就一定不是一次函数5.如图,从一个大正方形中可以裁去面积为8cm2和32cm2的两个小正方形,则大正方形的边长为()A. 2√2cmB. 4√2cmC. 6√2cmD. 8√2cm6.如图,在矩形AOBC中,A(−2,0),B(0,1).若正比例函数y=kx的图象经过点C,则k的值为()A. −12B. 12C. −2D. 27.下列各曲线中不能表示y是x的函数的是()A. B.C. D.8.小明跟同学在某餐厅吃饭,如图为此餐厅的菜单.若他们一共点了10份重庆小面,x杯饮料,y份沙拉,则他们点了几份A餐?()A餐:一份重庆小面B餐:一份重庆小面加一杯饮料C餐:一份重庆小面加一杯饮料和一份沙拉A. 10−xB. 10−yC. 10−x+yD. 10−x−y9.如图,在水塔O的东北方向15m处有一抽水站A,在水塔的东南方向8m处有一建筑工地B,在AB间建一条直水管,则水管的长为()A. 7mB. 12mC. 17mD. 22m10.如图,某校园内有一池塘,为得到池塘边的两棵树A,B间的距离,小亮测得了以下数据:∠B=∠DEC,AD=DC,DE=5m,则A,B间的距离是()A. 10mB. 15mC. 20mD. 25m11.如图,矩形纸片ABCD中,AB=4,AD=3,折叠纸片使AD边与对角线BD重合,则折痕DG的长为()A. 32B. 43C. 32√5 D. √1312.一次函数y1=kx+b与y2=x+a的图象如图,则下列结论①k<0;②a>0;③当x<3时,y1<y2中,正确的个数是()A. 0B. 1C. 2D. 3二、填空题(本大题共7小题,共21.0分)13.______ 的平行四边形是菱形.(填一个合适的条件)14.已知菱形的两条对角线长分别为6和8,则菱形的周长是______ ,面积是______ .15.已知x=32,化简√(x−2) 2+|x−5|的结果是______.16.如图,▱ABCD的周长为20,对角线AC与BD交于点O,△AOB的周长比△BOC的周长多2,则AB=______.17.如图,有两棵树,一棵高8米,另一棵高2米,两树相距8米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,则它至少要飞行______米.18.如图,正方形4个顶点均在圆上,且边长为4cm,则圆的面积为______ .19.水银体温计的读数y(℃)与水银柱的长度x(cm)之间具有某种函数关系,现有一支水银体温计,如图9,其部分刻度线已经不清晰,表中记录了该体温计部分清晰刻度线的度数及其对应水银柱的长度,则用该体温计测体温时,如果水银柱的长度为7.2cm,那么此时体温计的读数为______℃.水银柱的长度x(cm) 4.2…8.29.8体温计的读数y(℃)35.0…40.042.0三、解答题(本大题共6小题,共62.0分)20.计算:(1)√27−√12+√1;3(2)(√48−√75)×√11.321.y=√x−3+√3−x+8,求3x+2y的值.22.已知:如图,四边形ABCD中,AD//BC,AD=CD,E是对角线BD上一点,且EA=EC.(1)求证:四边形ABCD是菱形;(2)如果BE=BC,且∠CBE:∠BCE=2:3,求证:四边形ABCD是正方形.23.如图,在平行四边形ABCD中,已知对角线AC、BD相交于点O,若E、F是AC上两动点,分别从A、C两点以相同的速度1cm/s向点O运动.(1)当E与F不重合时,四边形DEBF是否是平行四边形?请说明理由;(2)若AC=16cm,BD=12cm,点E,F在运动过程中,四边形DEBF能否为矩形?如能,求出此时的运动时间t的值,如不能,请说明理由.24.节约是中华民族的传统美德.为倡导市民节约用水的意识,某市对市民用水实行“阶梯收费”,制定了如下用水收费标准:每户每月的用水不超过10立方米时,水价为每立方米1.5元,超过10立方米时,超过的部分按每立方米2.5元收费.(1)该市某户居民9月份用水x立方米(x>10),应交水费y元,请你用含x的代数式表示y;(2)如果某户居民12月份交水费25元,那么这个月该户居民用了多少立方米水?25.如图,在△ABC中,tanB=1,∠C=45°,AD=6,AD⊥BC于点D,动点E从点2D出发沿DB向点B以每秒1个单位长度的速度运动.将线段DE绕点D顺时针旋转90°,得到线段DF,过点F作FG//AC,交射线DC于点G,以EG和FG为邻边作平行四边形EGFP,平行四边形EGFP与△ABC重叠部分的面积为S.当点E与点B重合时停止运动,设点E的运动时间为t秒(t>0).(1)当点P落到边AB上时,t的值为______;(2)当点F在线段AD上时,求S与t之间的函数解析式;(3)平行四边形EGFP的边PE被AB分成1:3两部分时,求t的值;(4)当△PEF的外心在△ABC的内部时,直接写出t的取值范围.答案和解析1.【答案】A【解析】解:由题意得,1−x≥0,解得x≤1.故选:A.根据被开方数大于等于0列式计算即可得解.本题考查的知识点为:二次根式的被开方数是非负数.2.【答案】B【解析】【分析】本题主要考查了函数自变量的取值范围的确定,根据分母不等于0,被开方数大于等于0列式计算即可,是基础题,比较简单.根据被开方数大于等于0,分母不等于0列式求解即可.【解答】解:根据题意得x−1≥0,1−x≠0,解得x>1.故选B.3.【答案】A【解析】解:∵一次函数y=kx−1(常数k<0),b=−1<0,∴一次函数y=kx−1(常数k<0)的图象一定经过第二、三,四象限,不经过第−象限.故选:A.一次函数y=kx−1(常数k<0)的图象一定经过第二、三,四象限,不经过第−象限.本题主要考查了函数图象上的点与图象的关系,图象上的点满足解析式,满足解析式的点在函数图象上.并且本题还考查了一次函数的性质,都是需要熟记的内容.4.【答案】D【解析】【分析】本题考查了一次函数的概念,正比例函数的概念,解题关键是掌握一次函数与正比例函数的定义及关系:一次函数不一定是正比例函数,正比例函数是特殊的一次函数.根据一次函数与正比例函数的定义解答即可.【解答】解:A、正确,一次函数y=kx+b,当b≠0时函数不是正比例函数;B、正确,因为正比例函数一定是一次函数;C、正确,一次函数y=kx+b,当b=0时函数是正比例函数;D、错误,一次函数y=kx+b,当b≠0时函数不是正比例函数.故选D.5.【答案】C【解析】解:从一个大正方形中裁去面积为8cm2和32cm2的两个小正方形,则大正方形的边长是√8+√32=2√2+4√2=6√2.故选:C.根据已知部分面积求得相应正方形的边长,从而得到大正方形的边长.本题考查了二次根式的应用,正确化简二次根式是解题的关键.6.【答案】A【解析】解:∵A(−2,0),B(0,1).∴OA=2、OB=1,∵四边形AOBC是矩形,∴AC=OB=1、BC=OA=2,则点C的坐标为(−2,1),将点C(−2,1)代入y=kx,得:1=−2k,解得:k=−1,2故选:A.根据矩形的性质得出点C的坐标,再将点C坐标代入解析式求解可得.本题主要考查正比例函数图象上点的坐标特征,解题的关键是掌握矩形的性质和待定系数法求函数解析式.7.【答案】B【解析】解:显然A、C、D三选项中,对于自变量x的任何值,y都有唯一的值与之相对应,y是x的函数;B、对于x>0的任何值,y都有二个值与之相对应,则y不是x的函数;故选:B.在坐标系中,对于x的取值范围内的任意一点,通过这点作x轴的垂线,则垂线与图形只有一个交点.根据定义即可判断.本题主要考查了函数的定义,在定义中特别要注意,对于x的每一个值,y都有唯一的值与其对应.8.【答案】A【解析】【分析】本题考查列代数式,能够根据题意,准确列出代数式是解题的关键.根据点的饮料能确定在B和C套餐中点了x份重庆小面,根据题意可得点A套餐的份数.【解答】解:一共点了x杯饮料,则点了x份B和C套餐,所以在B和C套餐共点了x份重庆小面.因为共点了10份重庆小面,所以点了(10−x)份A套餐.故选:A.9.【答案】C【解析】解:已知东北方向和东南方向刚好是一直角,∴∠AOB=90°,又∵OA=15m,OB=8m,∴AB=√OA2+OB2=√152+82=17(m).故选:C.由题意可知东北方向和东南方向间刚好是一直角,利用勾股定理解图中直角三角形即可.本题考查的知识点是勾股定理的应用,正确运用勾股定理,善于观察题目的信息是解题以及学好数学的关键.10.【答案】A【解析】解:∵∠B=∠DEC,∴DE//AB.∵AD=DC,∴CE=BE,∴DE是△CAB的中位线,∴AB=2DE=10m.故选:A.根据已知条件判断出DE是△OAB的中位线,根据三角形的中位线定理即可求解.本题主要考查了三角形中位线定理,即三角形的中位线平行于第三边,并且等于第三边的一半.11.【答案】C【解析】解:设AG=x,∵四边形ABCD是矩形,∴∠A=90°,∵AB=4,AD=3,∴BD=√AD2+AB2=5,由折叠的性质可得:A′D=AD=3,A′G=AG=x,∠DA′G=∠A=90°,∴∠BA′G=90°,BG=AB−AG=4−x,A′B=BD−A′D=5−3=2,∵在Rt△A′BG中,A′G2+A′B2=BG2,∴x2+22=(4−x)2,解得:x=3,2∴AG=3,2∴在Rt△ADG中,DG=√AD2+AG2=3√5.2故选:C.首先设AG=x,由矩形纸片ABCD中,AB=4,AD=3,可求得BD的长,又由折叠的性质,可求得A′B的长,然后由勾股定理可得方程:x2+22=(4−x)2,解此方程即可求得AG的长,继而求得答案.此题考查了折叠的性质、矩形的性质以及勾股定理.此题难度适中,注意掌握折叠前后图形的对应关系,注意掌握数形结合思想与方程思想的应用.12.【答案】B【解析】【分析】本题考查了两条直线相交问题,难点在于根据函数图象的走势和与y轴的交点来判断各个函数k,b的值.根据y1=kx+b和y2=x+a的图象可知:k<0,a<0,所以当x<3时,相应的x的值,y1图象均高于y2的图象.【解答】解:∵y1=kx+b的函数值随x的增大而减小,∴k<0;故①正确∵y2=x+a的图象与y轴交于负半轴,∴a<0;当x<3时,相应的x的值,y1图象均高于y2的图象,∴y1>y2,故②③错误.故选B.13.【答案】对角线互相垂直【解析】解:对角线互相垂直或一组邻边相等.判定菱形有两个定理,对角线互相垂直的平行四边形是菱形;一组邻边相等的平行四边形是菱形.任何一个都行.本题考查菱形的判定,需熟练掌握菱形的判定定理.14.【答案】20;24【解析】解:∵菱形的两条对角线长分别为6和8,∴两对角线的一半分别为3、4,由勾股定理得,菱形的边长=√32+42=5,所以,菱形的周长=4×5=20;×6×8=24.面积=12故答案为:20;24.根据菱形的对角线互相垂直平分求出两对角线的一半,再利用勾股定理列式求出边长,然后根据菱形的四条边都相等求解即可;根据菱形的面积等于对角线乘积的一半列式计算即可得解.本题考查了菱形的性质,主要利用了菱形的对角线互相垂直平分以及菱形的面积的求解.15.【答案】4,【解析】解:∵x=32∴x−2<0,x−5<0,=4.∴原式=−x+2+(5−x)=7−2×32故答案是:4.根据x的值,确定x−2和x−5的符号,然后对二次根式进行化简即可求解.本题考查了二次根式的性质,理解:√a2=|a|是关键.16.【答案】6【解析】解:∵△AOB的周长比△BOC的周长多2,∴AB−BC=2.又平行四边形ABCD周长为20,∴AB+BC=10.∴AB=6.故答案为6.根据已知易得AB−BC=2,AB+BC=10,解方程组即可.本题主要考查了平行四边形的性质,解决平行四边形的周长问题一般转化为两邻边和处理.17.【答案】10【解析】解:过点D作DE⊥AB于E,连接BD.在Rt△BDE中,DE=8米,BE=8−2=6米.根据勾股定理得BD=10米.从题目中找出直角三角形并利用勾股定理解答.注意作辅助线构造直角三角形,熟练运用勾股定理.18.【答案】8πcm2【解析】解:连接AC,如图,∵ABCD是正方形,∴∠ABC=90°.∴AC为圆的直径.由题意:AB=BC=4cm,∴AC√AB2+BC2=√42+42=4√2(cm).AC=2√2(cm).∴圆的半径为12∴圆的面积为π×(2√2)2=8π(cm2).故答案为8πcm2.连接AC,由于90°的圆周角所对的弦是直径,在Rt△ABC中,由勾股定理AC可求,半径可得,利用圆的面积公式结论可得.本题主要考查了正方形与圆的关系,利用90°的圆周角所对的弦是直径是解题的关键.19.【答案】1494【解析】解:设y 关于x 的函数关系式为y =kx +b(k ≠0),将点(4.2,35)、(8.2,40)代入y =kx +b ,{4.2k +b =358.2k +b =40,解得:{k =54b =1194, ∴y 关于x 的函数关系式为y =54x +1194 当x =7.2时,y =54×6+1194=1494. 答:此时体温计的读为1494℃. 故答案为:1494.根据表格中的数据利用待定系数法,即可求出y 关于x 的函数关系式;将x =7.2代入(1)的结论中求出y 值即可.本题考查了一次函数的应用、待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,解题的关键是:根据表格中的数据利用待定系数法,求出y 关于x 的函数关系式.20.【答案】解:(1)原式=3√3−2√3+√33=4√33; (2)原式=(4√3−5√3)×2√33 =−√3×2√33=−2.【解析】(1)先把各二次根式化为最简二次根式,然后合并同类二次根式;(2)先把各二次根式化为最简二次根式,然后把合并内合并后进行二次根式的乘法运算. 本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.21.【答案】解:∵√x −3与√3−x 有意义,∴{x −3≥03−x ≥0, 解得x =3,∴y =8,∴3x+2y=3×3+2×8=9+16=25.【解析】先根据二次根式有意义的条件求出x的值,进而得出y的值,代入代数式进行计算即可.本题考查的是二次根式有意义的条件,熟知二次根式具有非负性是解答此题的关键.22.【答案】证明:(1)在△ADE与△CDE中,{AD=CD DE=DE EA=EC,∴△ADE≌△CDE,∴∠ADE=∠CDE,∵AD//BC,∴∠ADE=∠CBD,∴∠CDE=∠CBD,∴BC=CD,∵AD=CD,∴BC=AD,∴四边形ABCD为平行四边形,∵AD=CD,∴四边形ABCD是菱形;(2)∵BE=BC∴∠BCE=∠BEC,∵∠CBE:∠BCE=2:3,∴∠CBE=180°×22+3+3=45°,∵四边形ABCD是菱形,∴∠ABE=45°,∴∠ABC=90°,∴四边形ABCD是正方形.【解析】(1)首先证得△ADE≌△CDE,由全等三角形的性质可得∠ADE=∠CDE,由AD//BC可得∠ADE=∠CBD,易得∠CDB=∠CBD,可得BC=CD,易得AD=BC,利用平行四边形的判定定理可得四边形ABCD为平行四边形,由AD=CD可得四边形ABCD是菱形;(2)由BE=BC可得△BEC为等腰三角形,可得∠BCE=∠BEC,利用三角形的内角和定=45°,易得∠ABE=45°,可得∠ABC=90°,由正方形的判理可得∠CBE=180°×14定定理可得四边形ABCD是正方形.本题主要考查了正方形与菱形的判定及性质定理,熟练掌握定理是解答此题的关键.23.【答案】解:(1)当E与F不重合时,四边形DEBF是平行四边形理由:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD;∵E、F两动点,分别从A、C两点以相同的速度向C、A运动,∴AE=CF;∴OE=OF;∴BD、EF互相平分;∴四边形DEBF是平行四边形;(2)∵四边形DEBF是平行四边形,∴当BD=EF时,四边形DEBF是矩形;∵BD=12cm,∴EF=12cm;∴OE=OF=6cm;∵AC=16cm;∴OA=OC=8cm;∴AE=2cm或14cm,由于动点的速度都是1cm/s,所以t=2(s)或14(s)故当运动时间t=2s或14s时,以D、E、B、F为顶点的四边形是矩形.【解析】(1)判断四边形DEBF是否为平行四边形,需证明其对角线是否互相平分;已知了四边形ABCD是平行四边形,故OB=OD;而E、F速度相同,方向相反,故OE=OF;由此可证得BD、EF互相平分,即四边形DEBF是平行四边形;(2)若以D、E、B、F为顶点的四边形是矩形,则必有BD=EF,可据此求出时间t的值.注意有两解;本题考查平行四边形的性质、矩形的判定等知识,熟练掌握平行四边形、矩形的判定和性质,是解答此题的关键.24.【答案】解:(1)∵每户每月的用水不超过10立方米时,水价为每立方米1.5元,超过10立方米时,超过的部分按每立方米2.5元收费,而x>10,∴y=15+2.5(x−10)=2.5x−10;(2)∵10×1.5=15(元),∴25>15,∴2.5x−10=25,解得:x=14,答:这个月该户居民用了14立方米水.【解析】(1)根据x的取值,得出y与x的函数关系式;(2)该户居民上月缴水费25元,说明属于第二种缴费方式,用25减去10立方米的水费,除以“调节价”即可得出超过10立方米的用水量,再加上10,即为该户当月用水量,由此解决问题.本题考查了一元一次方程的应用,关键是掌握10吨这个分界点,仔细审题,注意分段运算.25.【答案】3【解析】解:(1)如图1,因为AD⊥BC于点D,所以∠ADC=∠ADB=90°,因为FG//AC,∠C=45°,所以∠FGD=∠C=45°,所以DF=DG=DE=t,即EG=2t,AF=6−t,因为四边形EGFP是平行四边形,所以PF//BC,PF=EG=2t,即∠APF=∠B,因为tanB=12,所以tan∠APF=AFPF =12,即6−t2t=12,解得t=3.故答案为:3.(2)①当0<t≤3时,S=S平行四边形EGFP=EG⋅FD=2t2,②当3<t≤6时,如图2,设平行四边形EGFP与AB边交于点H和M,作HN⊥PF于N,因为∠AMF=∠NMH=∠B,tanB=12,AF=6−t,所以MF=2(6−t),PM=PF−MF=2t−2(6−t)=4t−12,MN=2HN,因为∠P=∠FGE=45°,所以PN=HN,即HN=13PM=13(4t−12),因为S=S平行四边形EGFP −S△PMH=EG⋅DF−12PM⋅HN,所以S=2t2−12×13(4t−12)2=−23t2+16t−24,综上所述,S ={2t 2(0<t ≤3)−23t 2+16t −24(3<t ≤6); (3)如图2,因为∠P =∠FGE =45°,所以PH =√2HN =√23(4t −12),PE =FG =√2DF =√2t , 当PH HE =13时,PE =4PH ,所以√2t =4×√23(4t −12), 解得t =4813,当PH HE =3时,PE =43PH ,所以√2t =43×√23(4t −12), 解得t =487,综上所述平行四边形EGFP 的边PE 被AB 分成1:3两部分时,t 的值为4813或487.(4)作EQ ⊥PF 交PF 于Q ,如图3,可得△PEF 为等腰三角形,所以△PEF 的外心在PF 上,即点Q ,即QF =DE =t ,由(1)得P 在AB 上时,t =3,因为PF =2QF ,所以Q 在AB 上时,t =6,因为Q 在△ABC 内部,所以t <6,综上所述0<t <6.(1)由FG//AC 可得∠FGD =∠C =45°,DF =DG =DE =t ,根据平行四边形的性质可得PF=EG=2t,PF//BC,根据平行线的性质可得∠APF=∠B,根据tan∠APF=AFPF =12列方程求出t即可.(2)当0<t≤3时,根据平行四边形的面积公式可得s与t的关系;当3<t≤6时,设平行四边形EGFP与AB边交于点H和M,作HN⊥PF于N,根据∠AMF=∠NMH=∠B,利用tanB=12可用t表示出PM和HN的长,根据S=S平行四边形EGFP−S△PMH即可求出s 与t的关系式,综上即可得答案.(3)如(2)中图,分PHHE =13和PHHE=3两种情况,根据PH=√2HN,PE=FG=√2DF列方程分别求出t值即可得答案.(4)作EQ⊥PF交PF于Q,得出△PEF是等腰三角形,即可得出QF=DE=t,由(1)得出t,进而得出PF,得出t的取值范围.本题考查了圆的综合题,解题过程中涉及了平行四边形的性质,等腰直角三角形,平行线的性质,平行四边形的面积,动点问题,分段函数,等腰三角形的性质以及三角形的外接圆与外心等知识点,难度较大,考查了学生的计算能力.。