Analytical and experimental study of a skew bridge model
周锦志-西南交通大学人事处
84 (2014) 41–49.
2
中国科学技术大学
A类,0196-8904
SCI 1区
5.589
15
5
Analytical study of impact of the wick’s fractal parameters to the heat transfer capacity of a novel micro-channel loop heat pipe
明确:第一作者或通信作者论文:A++2篇;A+篇;A篇;B+篇;B篇。
2、学习经历
学历/学位
起止时间
毕业学校
所学专业
导师
培养方式
本科
2006.9-2010.7
合肥工业大学
过程装备及控制工程
干蜀义
全日制
硕士
2010.9-2013.7
中国科学技术大学
动力工程
何伟
全日制
博士
2014.9- 2018.12
赫尔大学
Applied Energy
178 (2016) 484-495
1
赫尔大学
A类,0306-2619
SCI 1区
7.182
4
2
Clear-days operational performance of a hybrid experimental space heating system employing the novel mini-channel solar thermal & PV/T panels and a heat pump
2.将微通道集热器与太阳能光伏发电片相结合,构成微通道光伏光热模块,并将此模块作为蒸发器与热泵系统结合起来。直膨式太阳能热泵以太阳辐照为热源,具有建筑采暖,全年提供电能的功能。微通道因其特殊结构可大幅度提高内部流体换热系数,全面提升光伏光热模块的综合效率。
JACS25位副主编的研究兴趣和实验室主页
JACS所有25位副主编列表:/page/jacsat/editors.htmlEric V. Anslyn: Supramolecular Analytical Chemistry, small molecule therapeutics/research/sm.htmlStephen J. Lippard: bioinorganic chemistry. The core activities include both structural and mechanistic studies of macromolecules as well as synthetic inorganic chemistry. The focus is on the synthesis, reactions, physical and structural properties of metal complexes as models for the active sites of metalloproteins and as anti-cancer drugs. Also included is extensive structural and mechanistic work on the natural systems themselves. A program in metalloneurochemistry is also in place./lippardlab/Weston Thatcher Borden: Computational Chemistry; Organic Chemistry; Organometallic Chemistry; Application of quantitative electronic structure calculations and qualitative molecular orbital theory to the understanding and prediction of the structures and reactivities of organic and organometallic compounds./people-node/weston-t-bordenThomas E. Mallouk: Chemistry of Nanoscale Inorganic Materials: Solar Photochemistry and Photoelectrochemistry; Nanowires; Functional Inorganic Layered Materials; In-Situ Remediation of Contaminants in Soil and Groundwater Using Nanoscale Reagents/mallouk/Benjamin F. Cravatt: Chemical Strategies for the Global Analysis of Enzyme Function; Technology Development: Activity-Based Protein Profiling (ABPP); Biological applications of ABPP - profiling enzyme activities in human cancer.; Advancing the ABPP technology; Technology Development: Protease Substrate Identification; Basic Discovery: The Enzymatic Regulation of Chemical Signaling /cravatt/research.htmlChad A. Mirkin: He is a chemist and a world renowned nanoscience expert, who is known for his development of nanoparticle-based biodetection schemes, the invention of Dip-Pen Nanolithography, and contributions to supramolecular chemistry. Our research focuses on developing strategic and surface nano-optical methods for controlling the architecture of molecules and materials on a 1-100 nm scale. Our researchers, with backgrounds ranging from medicine, biology, chemistry, physics and material science, are working together in solvingfundamental and applied problems of modern nanoscience. Research in the Mirkin laboratories is divided into the five areas listed below: Anisotropic Nanostructures; On-Wire Lithography (OWL); Dip-Pen Nanolithography; Organometallic Chemistry; Spherical Nucleic Acids/mirkin-group/research/Paul Cremer: works at the crossroads of biological interfaces, metamaterials, spectroscopy, and microfluidics. Biophysical and analytical studies are tied together through the employment of novel lab-on-a-chip platforms which enable high throughput/low sample volume analysis to be performed with unprecedented signal-to-noise. From neurodegenerative diseases to artificial hip implants, a huge variety of processes occur at biological interfaces. Our laboratory uses a wide variety of surface specific spectroscopy and microfluidic technologies to probe mechanisms of disease, build new biosensors against pathogens, and understand the molecular-level details of the water layer hugging a cell membrane. Research projects in the Cremer Group are divided into the five areas listed below. Click on your area(s) of interest to learn more. SFG of Water and Ions at Interfaces; Hofmeister Effects in Protein Solutions; Bioinorganic Chemistry and Biomaterial Properties of Lipid Bilayers; pH Modulation Sensing at Biomembranes; Metamaterialshttps:///cremer/Jeffrey S. Moore:Our research involves the synthesis and study of large organic molecules and the discovery of new polymeric materials. Most projects relate to one of three areas: new macromolecular architectures and their supramolecular organization; responsive polymers including self-healing materials; mechanochemical transduction. In general, our group uses the tools of synthetic and physical organic chemistry to address problems at the interface of chemistry and materials science. More in-depth information about our research can be found on our research page./Lyndon Emsley: NMRhttp://perso.ens-lyon.fr/lyndon.emsley/Lyndon_Emsley/Research.htmlKlaus Müllen: The group pursues a broad program of experimental research in macromolecular chemistry and material science. It has a wide range of research interests: from new polymer-forming reactions including methods of organometallic chemistry, multi-dimensional polymers with complex shape-persistent architectures, molecular materials with liquid crystalline properties for electronic and optoelectronic devices to the chemistry and physics of single molecules, nanocomposites or biosynthetic hybrids.http://www2.mpip-mainz.mpg.de/groups/muellenJean M. J. Fréchet:Our research is largely concerned with functional polymers, from fundamental studies to applications. The research is highly multidisciplinary at the interface of several fields including organic, polymer, biological, and materials chemistry. Chemical Engineering is also well represented with our research in energy-related materials and microfluidics./Eiichi Nakamura: Fascination to learn about the nature of the elements and molecules and to control their behavior goes back to ancient times. The research programs in our laboratories focus on the development of new and efficient synthetic reactions, new reactive molecules, and new chemical principles that will exert impact on the future of chemical, biological and material sciences. Under the specific projects listed below, we seek for the new paradigm of chemical synthesis and functional molecules. Discovery based on logical reasoning and imagination is the key term of our research and educational programs.http://www.chem.s.u-tokyo.ac.jp/users/common/NakamuraLabE.htmlGregory C. Fu: Transition Metal Catalysis; Nucleophilic Catalysis/research.htmlWilliam R. Roush:Our research centers around themes of total synthesis, reaction development and medicinal chemistry. Over 25 structurally complex, biologically active natural products have been synthesized in the Roush lab. These serve both as testing grounds for new methods and as inspiration for potential therapeutics.Our total synthesis projects are often attempted in parallel with reaction design. Synthetic applications of intramolecular Diels-Alder reactions and acyclic diastereoselective syntheses involving allylmetal compounds are of especial interest.Total synthesis and methods development interact synergistically toward the development of medicinally relevant compounds. Current targets of interest include chemotherapeutics built upon the exploitation of tumor cell metabolism, cystein protease inhibitors for treatment of parasitic diseases and diagnostic probes for the Scripps Molecular Screening Center./roush/Research.htmlMiguel García-Garibay:Our group is currently investigating the photochemical decarbonylation of crystalline ketones. Because the reactions take place in the solid state, they exhibit high selectivites that are not possible by the analogous solution reaction. From our experience, the solution photolysis yields many products, while there is often only one product in the solid. In order for the decarbonylation reaction to proceed in crystals, there are a few requirements forthe decarbonylation precursor: (1) The compound must be a crystalline solid. (2) There must be suitable radical stabilizing substituents present at both alpha centers./dept/Faculty/mgghome/Alanna Schepartz: The Schepartz laboratory develops chemical tools to study and manipulate protein–protein and protein–DNA interactions inside the cell. Our approach centers on the design of molecules that Nature chose not to synthesize--miniature proteins, ß-peptide foldamers, polyproline hairpins, and proto-fluorescent ligands--and the use of these molecules to answer biological questions that would otherwise be nearly impossible to address. Current topics include the use of miniature proteins to identify the functional role of discrete protein-protein interactions and rewire cellular circuits, the use of cell permeable molecules to image misfolded proteins or protein interactions in live cells, and the design of protein-like assemblies of ß-peptides that are entirely devoid of -amino acids./research/index.htmlMartin Gruebele:The Gruebele Group is engaged in experiments and computational modeling to study a broad range of fundamental problems in chemical and biological physics. A common theme in the experiments is the development of new instruments to interrogate and manipulate complex molecular systems. We coupled experiments with quantum or classical simulations as well as simple models. The results of these efforts are contributing to a deeper understanding of RNA and proteins folding in vitro and in vivo, of how vibrational energy flows around within molecules, of single molecule absorption spectroscopy, and of the dynamics of glasses./mgweb/Matthew S. Sigman: Our program is focused on the discovery of new practical catalytic reactions with broad substrate scope, excellent chemoselectivity, and high stereoselectivity to access novel medicinally relevant architectures. We believe the best strategy for developing new classes of catalysts and reactions applicable to organic synthesis is using mechanistic insight to guide the discovery process. This allows us to design new reaction motifs or catalysts in which unique bond constructions can be implemented furthering new approaches to molecule construction. An underlying theme to these methodologies is to convert relatively simple substrates into much more complex compounds allowing for access to known and novel pharmacaphores in a modular manner. This provides us the ability to readily synthesis analogs enabling us to understand the important structural features responsibility for a phenotypic response in a given biological assay. We are currently engaged in several collaborative projects to evaluate our compound collections for various cancer types at the Huntsman Cancer Institute atthe University of Utah and are engaged in follow-up investigations to identify improved compounds as well as understanding the mechanism of action. The group is engaged in the following diverse projects:/faculty/sigman/research.htmlSidney M. Hecht: Sidney M. Hecht, PhD, is the co-director for the Center for Bioenergetics in the Biodesign Institute at Arizona State University. He researches diseases caused by defects in the body's energy production processes. Energy production is similar mechanistically to other molecular processes that he has studied extensively. Hecht played a key role in the development of Hycamtin, a drug used to treat ovarian and lung cancer, as well as the study of the mechanism of the anti-tumor agent bleomycin./people/sidney-hechtDonald G. Truhlar: Theoretical and Computational ChemistryWe are carrying out research in several areas of dynamics and electronic structure, with a special emphasis on applying quantum mechanics to the treatment of large and complex systems. Dynamical calculations are being carried out for combustion (with a special emphasis on biofuel mechanisms) and atmospheric reactions in the gas phase and catalytic reactions in the condensed phase. Both thermal and photochemical reactions are under consideration. New orbital-dependent density functionals are being developed to provide an efficient route to the potential energy surfaces for these studies. New methods are also being developed for representing the potentials and for combined quantum mechanical and molecular mechanical methods, with a special emphasis in the latter case on improving the electrostatics. New techniques for modeling vibrational anharmonicity and for Feynman path integral calculations are also under development./truhlar/Joseph T. Hupp: Most research projects revolve around a theme of studying materials for alternative energy applications and other environmental issues. Due to the interdisciplinary nature of our research, we have many joint students with other researchers both at Northwestern and at other institutions./hupp/research.htmlHenry S. White: My colleagues and I are engaged in both experimental and theoretical aspects of electrochemistry, with diverse connections to analytical, biological, physical, and materials chemistry. Much of our current research is focused on electrochemistry in microscale and nanoscale domains./faculty/white/white.htmlTaeghwan Hyeon: The main theme of our research is synthesis, assembly, and applications of uniformly sized nanoparticles.http://nanomat.snu.ac.kr/index.php?mid=InterestsPeidong Yang: The Yang research group is interested in the synthesis of new classes of materials and nanostructures, with an emphasis on developing new synthetic approaches and understanding the fundamental issues of structural assembly and growth that will enable the rational control of material composition, micro/nano-structure, property and functionality. We are interested in the fundamental problems of electron, photon, and phonon confinement as well as spin manipulation within 1D nanostructures./index.php/research/interests/William D. Jones:Our research group has an interest in examining the reactions of homogeneous transition metal complexes with organic substrates with an emphasis on bond activation processes that are of potential interest to the chemical industry. We also are doing theoretical DFT modeling of this chemistry on our CCLab cluster/~wdjgrp/wdj_home.html#research下面是一些网友对部分副主编(部分已经不是了)的评价,没有罗列网友的ID了,一并表示感谢。
华南理工大学文献检索作业
文献检索报告项目名称:强动载作用下复合材料加筋板的冲击动力屈曲特性研究XXX,学号:2012302xxxxx一、检索总体情况表1 检索情况汇总表二、相关的重要文献1、中文文献(1)彭英. 冲击载荷下加筋板结构的非线性动力响应及屈曲研究[D]. 博士学位论文, 武汉: 武汉理工大学, 2007.摘要: 加筋板结构既能保证结构的可靠性和耐用性,又能减轻结构重量,提高结构效率和经济性,因而在航空航天、桥梁和船舶等工程领域中得到广泛应用。
但由于加强筋的引入带来结构上的不连续性和各向异性,因此分析它们的性能十分复杂。
其中,对加筋板结构动力响应尤其是非线性动力响应的研究还很不充分。
至于动力屈曲,即使是普通的板壳结构还有许多问题尚需进一步研究和完善,而对于冲击载荷下加筋板结构动力屈曲的研究,已公布的文献更是少见。
本文主要是从理论上对冲击载荷下加筋板结构的非线性动力响应及动力屈曲问题进行研究。
研究工作的一个重要方面,就是通过合理的理论分析模型和有效的数值计算方法,研究加筋板结构在冲击载荷下的动态行为,探讨加筋板结构动态响应特征与机理,考察由于加强筋的引入所带来的结构上的不连续性和各向异性对结构整体动态行为的影响。
论文研究工作的主要内容和成果如下:1.采用符合船舶实际情况的弹性转动约束边界条件,推导计算加筋板在冲击载荷下的非线性动力响应及动力屈曲的数值解法,并对加筋板动力响应及动力屈曲的影响因素做了详细分析。
文中有关边界约束影响的分析结论,可以为实际船体板架结构的设计和计算提供依据。
2.基于塑性理论,推导了计及轴力影响时,单轴对称截面的轴力-弯矩交互作用关系式(或称为广义屈服条件)。
文中所推出的理论公式,对结构的塑性动力分析具有重要意义。
3.采用具有单轴对称截面的梁(或交叉梁系)模型,分析了单向(或双向)加筋板的大挠度塑性动力响应问题,并将各种不同方法计算加筋板大挠度塑性动力响应的结果进行比较。
4.提出任意形状的冲击载荷可以用一个等效的矩形脉冲代换的简化方法,并为验证其可行性作了详细的对比计算。
中医英语复习全攻略
Lesson 1Lesson 2英文中文A comparison between Chinese and Western MedicineModern medical science is highly analytical and by reducing the body to its component parts, it devises appropriate therapy based on experimental studies of中西医区别现代医学科学是高度分析和减少身体的组成部分,它有效的治疗是建立在细菌学、5-15课part B 答案Lesson 51 2 3 4 5A C C DLesson 151 2 3 4 5A B C D C?Lesson 1中国医药学Traditional Chinese medicine中医基础理论basic TCM theory临床经验clinical experience辩证论治treatment based on syndrome differentiation 杂病miscellaneous diseases 中药学science of Chinese material medica 四气五味four properties and five flavors 针灸acupuncture and moxibustion中国古代哲学ancient Chinese philosophy病因学etiology方剂prescription医疗实践medical practice治疗原则therapeutic principle 寒凉药物herbs cold and cool in nature 滋阴降火nourishing yin and reducing fire 瘀血致病diseases caused by blood stasis1.中国医药学有数千年的历史,是中国人民长期同疾病作斗争的经验总结TCM has a history of thousand of years and is a summary of the Chinese people’s experience in their struggle against diseases.2.中医学有完整独立的理论体系。
浮筒辅助系泊系统主要参数对码头船舶荷载影响研究
浮筒辅助系泊系统主要参数对码头船舶荷载影响研究曹煜1,万宝进2(1.中交第一航务工程勘察设计院有限公司,天津 300220;2.山东港口烟台港集团有限公司建设管理中心分公司,山东烟台 265505)摘要:开敞式码头通常面临较差的风浪流条件,为了增强系泊系统对外部环境载荷的适应性,一种解决方案是在海侧增设浮筒辅助系泊。
目前,国内外关于浮筒辅助系泊系统的设计案例及标准规范等资料相对较少。
本文以南美某矿石码头为例,通过数值模拟手段分析了浮筒辅助系泊系统主要参数对码头系缆力、护舷反力的影响,探讨了设置浮筒辅助系泊系统关键设计要素,旨在为类似工程提供参考。
关键词:浮筒辅助系泊;开敞式码头;关键参数;敏感性分析中图分类号:U656.1 文献标识码:A 文章编号:2097-3519(2024)02-0025-06DOI: 10.16403/ki.ggjs20240206Impact on Shiploads by key parameters Adopted by Buoy-Assisted MooringSystemCao Yu1, Wan Baojin2( CC First Harbor Consultants Co., Ltd., Tianjin 300220, China; 2. Branch of Construction Management Center of Yantai Port Group Co., Ltd., Yantai Shandong 265505, China )Abstract: An open-type wharf is usually subject to poor conditions of wind, wave, and current. To make the mooring system adapt to external loads, a buoy-assisted system is proposed to be set at the seaside. By now, a few related design cases and standard are available in China and abroad. Based on an ore dock in South America, the numerical simulation is used to analyze the impact on wharf ’s mooring force and the reaction force against fenders by key parameters adopted by buoy-assisted mooring system, investigate the design essentials of the above system, which will provide a reference for similar projects.Key words: buoy-assisted mooring; open-type wharf; key parameters; sensitivity analysis引言在港口工程中,对于开敞式码头,当原有码头系缆不能满足船舶泊稳要求时,可增设浮筒系泊设施,保障码头作业安全。
水文水利类相关SCI和EI期刊汇总
水文水利类相关SCI、EI期刊汇总(2012-03-21 17:02:26)国内:水利学报、水科学进展、水力发电学报、水动力学研究与进展(A辑中文版EI收录,B辑英文版SCI收录)International Journal of Sediment Research(《International Journal of Sedi ment Re search》(译名《国际泥沙研究》)是国际泥沙研究培训中心主办的纯英文版科技期刊,为季刊。
自2007起成为SCI源刊,被SCI-E收录。
)国外主要期刊有:主要期刊有:Journal of Hydraulic Engineering, ASCEJournal of Hydraulic Research, IAHRJournal of Engineering Mechanics, ASCEJournal of Fluid Mechanics, CambridgeWater Resources Research, AGUWater Management, ICE UKAdvances in Water Resources, ElsevierEarth Surface Processes and Landforms, WileyRiver Research and Applications, Wiley (formerly Regulated Rivers: Research & Mana gement)相关机构有:IAHR: International Association of Hydraulic Engineering and ResearchIAHS: International Association of Hydrological ScienceIWA: International Water AssociationIWRA: International Water Resources AssociationAWRA: American Water Resources AssociationICOLD: International Commission on Large DamsASCE: American Society of Civil EngineersAGU: American Geophysical UnionUSGS: United States Geological SurveyICE: Institution of Civil Engineers, UKWASER: World Association of Sedimentation and Erosion ResearchCHES: Chinese Hydraulic Engineering Society相关期刊详细介绍:1 Journal of HydrologyISSN: 0022-1694IF=2.305网址:/wps/find ... ription#descriptionThe Journal of Hydrology publishes original research papers and comprehensive revi ews in all the subfields of the hydrological sciences including water based managem ent and policy issues that impact on economics and society. These comprise, but ar e not limited to the physical, chemical, biogeochemical, stochastic and systems aspe cts of surface and groundwater hydrology, hydrometeorology and hydrogeology. Rele vant topics incorporating the insights and methodologies of disciplines such as climat ology, water resource systems, hydraulics, agrohydrology, geomorphology, soil scienc e, instrumentation and remote sensing, civil and environmental engineering are inclu ded. Social science perspectives on hydrological problems such as resource and ecol ogical economics, environmental sociology, psychology and behavioural science, man agement and policy analysis are also invited. Multi-and interdisciplinary analyses of h ydrological problems are within scope.期刊简介:期刊发表有关水文科学领域的原创研究论文和全面性的综述,包括水管理和水政策对社会经济的影响,涉及内容包括地表和地下水水文、水文气象和水文地质的物理、化学、生物学、随机性和系统方面,但不仅限于此,相关主题包含各学科(气候学、水资源系统、水力学、农业水文学、地形地貌学、土壤科学、仪器仪表、遥感、土木和环境工程)的方法论和前瞻性研究。
中国机械工程学会会员注册指南
中国机械工程学会网址https:// 联系方式:中国机械工程学会特种加工分会秘书处 电话:0512-68321541,67274551 E-员注册专用码
二、 会费标准 学生会员一免费;普通会员一50元/年;高级会员一100元/年 三、微信注册流程
1-扫描右侧会员注册专用码; 2.根据本人条件选择会员类别:学生会员、普通会员或高级会员; 3-填写个人信息,提交注册申请; 4.补充完善信息,确认注册,并关注会员中心公众号(cmes1936); 5-审核通过后,交纳会费,取得正式会员资格; 6.登录学会官网可生成电子版会员证%
《电加工与模具>2021年第3期
(2) 在表面粗糙度值小#轴向平均切削力小的 要求下,可选取主轴转速为2000 r/min#切削深度为 0.6 mm,而切削宽度和每齿进给量可适当选择%
(3) 运用旋转超声振动铳削Cr12MoV模具钢, 可获得较好的加工质量%
因此,采用旋转超声振动辅助铳削方式加工 Cr12MoV模具钢时必须合理地选择加工参数,才能 在切 削 过程中 实现小的轴向 切削力 和良好的加工 表面质量%
[4] O'TOOLE L,KANG C W,FANG F 乙 Advances in rotary ultrasonic-assisteG machining 卩].Nanomanufacturing and Metrology, 2020,3 (2): 1-25.
[5] ELHAMI S, RAZFAR M R, FARAHNAKIAN M. Analytical, numerical and experimental study of cutting
参考文献:
[1] 彭颖.铸造冷作模具钢切削加工性的研究[D].长春:吉 林大学,2015.
建筑钢结构进展近两年文章列表中英文参考文献
附件:《建筑钢结构进展》近两年文章列表(中英文参考文献格式)2018年王元清,廖小伟,贾单锋,石永久. 钢结构的低温疲劳性能研究进展综述[J]. 建筑钢结构进展,2018,20(1):1-11. DOI:10.13969/31-1893.2018.01.001.WANG Y uanqing, LIAO Xiaowei, JIA Danfeng, SHI Yongjiu. Overview of research progress for the low-temperature fatigue performance of steel structures[J]. Progress in Steel Building Structures, 2018, 20(1): 1-11. DOI:10.13969/31-1893.2017.01.001. (in Chinese)池沛,董军,彭洋. 自复位耗能结构的概念、分类及研究进展[J]. 建筑钢结构进展,2018,20(1):12-22,38. DOI:10.13969/31-1893.2018.01.002.CHI Pei, DONG Jun, PENG Yang. Concept, classification and development of self-centering energy-dissipative structures[J]. Progress in Steel Building Structures, 2018, 20(1):12-22, 38.DOI:10.13969/31-1893.2018.01.002. (in Chinese)罗小奇,陈麟,吴珊瑚. 自复位钢板剪力墙结构性能分析[J]. 建筑钢结构进展,2018,20(1):23-31.DOI:10.13969/31-1893.2018.01.003.LUO Xiaoqi, CHEN Lin, WU Shanhu. Behavior analysis of self-centering steel plate shear wall structures [J].Progress in Steel Building Structures, 2018, 20(1): 23-31. DOI:10.13969/31-1893.2018.01.003. (in Chinese)蔡鑫,邹昀,郑黎君,李天祺,丁杰,赵桃干,张祖雪. 基于损伤可控的梁柱节点受力性能的试验研究[J]. 建筑钢结构进展,2018,20(1):32-38. DOI:10.13969/31-1893.2018.01.004.CAI Xin, ZOU Yun, ZHENG Lijun, LI Tianqi, DING Jie, ZHAO Taogan, ZHANG Zuxue. Experimental study on mechanical performance of beam-column joint based on damage control theory[J]. Progress in Steel Building Structures, 2018,20(1):32-38. DOI:10.13969/31-1893.2018.01.004. (in Chinese)张有振,杨璐,赵梦晗,卫璇,周宇航. 奥氏体型S30408不锈钢角焊缝连接承载性能有限元分析[J]. 建筑钢结构进展,2018,20(1):39-47,72. DOI:10.13969/31-1893.2018.01.005.ZHANG Youzhen, Y ANG Lu, ZHAO Menghan, WEI Xuan, ZHOU Yuhang. Finite element analysis of loading capacity of fillet weld connections fabricated using austenitic grade S30408 stainless steel[J].Progress in Steel Building Structures, 2018,20(1):39-47,72. DOI:10.13969/31-1893.2018.01.005.(in Chinese)张浩,杜咏,盛红梅,王惠蕾. 局部火灾下基于数值方法的张弦梁力学特征参数分析[J]. 建筑钢结构进展,2018,20(1):48-57, 112. DOI:10.13969/31-1893.2018.01.006.ZHANG Hao, DU Yong, SHENG Hongmei, W ANG Huilei. Parametric analysis on the mechanical response of beam string structures under localized fire based on numerical simulation[J]. Progress in Steel Building Structures, 2018, 20(1):48-57, 112. DOI:10.13969/31-1893.2018.01.006. (in Chinese)张晓亮,王培军,肖邵文. 火灾下防屈曲支撑最小填充层厚度简化计算方法[J]. 建筑钢结构进展,2018,20(1):58-63,99. DOI:10.13969/31-1893.2018.01.007.ZHANG Xiaoliang, W ANG Peijun, XIAO Shaowen. Simplified calculation method for minimum infill layer thickness of buckling-restrained braces exposed to fire[J]. Progress in Steel Building Structures, 2018, 20(1):58-63,99. DOI:10.13969/31-1893.2018.01.007. (in Chinese)黄宏,朱彦奇, 郭晓宇,陈梦成. 不同材料内管的圆中空夹层钢管混凝土构件轴压性能研究[J]. 建筑钢结构进展,2018,20(1):64-72. DOI:10.13969/31-1893.2018.01.008.HUANG Hong, ZHU Yanqi, GUO Xiaoyu, CHEN Mengcheng. Study of circular concrete-filled double skin steel tubes with different materials of inner tube under axial compression[J]. Progress in Steel Building Structures, 2018, 20(1):64-72. DOI:10.13969/31-1893.2018.01.008.(in Chinese)陈梦成,林博洋,黄宏. 锈蚀圆钢管混凝土短柱轴压承载力研究[J]. 建筑钢结构进展,2018,20(1):73-81. DOI:10.13969/31-1893.2018.01.009.CHEN Mengcheng, LIN Boyang, HUANG Hong. Research on the bearing capacity of corroded circular concrete filled steel tubular short columns[J]. Progress in Steel Building Structures, 2018, 20(1):73-81.DOI:10.13969/31-1893.2018.01.009. (in Chinese)林彦,周学军. 方钢管混凝土柱与外包钢-混凝土组合梁外伸内隔板式节点抗震性能试验研究[J]. 建筑钢结构进展,2018,20(1):82-89. DOI:10.13969/31-1893.2018.01.0010.LIN Yan, ZHOU Xuejun. Experimental study on the seismic behavior of the joint of concrete-filled square steel tubular column to steel-encased concrete composite beam[J]. Progress in Steel Building Structures, 2018, 20(1):82-89. DOI:10.13969/31-1893.2018.01.0010. (in Chinese)贾斌,张其林,赖伟,余少乐. 铝合金耗能支撑对大跨钢拱桥减震加固性能研究[J]. 建筑钢结构进展,2018,20(1):90-99. DOI:10.13969/31-1893.2018.01.011.JIA Bin, ZHANG Qilin, LAI Wei1, YU Shaole. Research on seismic retrofit of large-span steel arch bridge with aluminum alloy energy dissipation braces[J]. Progress in Steel Building Structures, 2018, 20(1):90-99.DOI:10.13969/31-1893.2018.01.011. (in Chinese)姜玉挺,陈志华,韩宁,林昊. 滨海图书馆整体结构抗连续倒塌分析[J]. 建筑钢结构进展,2018,20(1):100-105. DOI:10. 13969/31-1893.2018.01.012.JIANG Yuting,CHEN Zhihua,HAN Ning,LIN Hao. Integral structural analysis on resisting progressive collapse of the Binhai Library [J]. Progress in Steel Building Structures, 2018, 20(1):100-105. DOI:10.13969/31-1893.2018.01.012. (in Chinese)李媛媛,汪蔚,曹平周. 江苏大剧院综艺厅钢外壳施工方案对比分析[J]. 建筑钢结构进展,2018,20(1):106-112. DOI:10. 13969/31-1893.2018.01.013.LI Yuanyuan,WANG Wei,CAO Pingzhou. Comparison on construction schemes of the steel shell in the variety hall of Jiangsu Grand Theater[J]. Progress in Steel Building Structures, 2018, 20(1):106-112.DOI:10. 13969/31-1893.2018.01.013. (in Chinese)吕昊,万馨. 体育场罩棚索桁架结构施工方法及监测[J]. 建筑钢结构进展,2018,20(1):113-118. DOI:10.13969/31-1893.2018.01.014.L YV Hao, WAN Xin. Construction method and monitoring of the cable-truss structure of a stadium canopy [J]. Progress in Steel Building Structures, 2018, 20(1):113-118. DOI:10.13969/31-1893.2018.01.014. (in Chinese)徐伟,刘姗姗. 绿色钢结构住宅增量成本与效益研究[J]. 建筑钢结构进展,2018,20(1):119-124.DOI:10. 13969/31-1893.2018.01.015.XU Wei, LIU Shanshan. Incremental cost and benefit analysis for green steel structure residential buildings [J]. Progress in Steel Building Structures, 2018, 20(1):119-124. DOI:10.13969/31-1893.2018.01.015. (in Chinese)于竞宇,张龙雨,王静峰,钟治峰,朱力. 钢结构建筑产业化政策分析与推进机制研究[J]. 建筑钢结构进展,2018,20(2):1-12. DOI:10. 13969/31-1893.2018.02.001.YU Jingyu,ZHANG Longyu,WANG Jingfeng,ZHONG Zhifeng,ZHU Li. Study on the policy analysis and promotion mechanism of steel structure construction industrialization[J]. Progress in Steel Building Structures, 2018,20(2):1-12. DOI:10. 13969/31-1893.2018.02.001. (in Chinese)钟琼,霍静思,王海涛,陈俊. 预制装配式组合梁栓钉连接件抗剪性能试验研究[J]. 建筑钢结构进展,2018,20(2):13-19,27. DOI: 10. 13969/31-1893.2018.02.002.ZHONG Qiong, HUO Jingsi,WANG Haitao, CHEN Jun. Experimental study on the shear bearing capacity of stud connectors in prefabricated composite beams[J]. Progress in Steel Building Structures, 2018, 20(2):13-19,27. DOI: 10. 13969/31-1893.2018.02.002. (in Chinese)王静峰,庞帅,鲁萌萌,仇多宏. 预制冷弯薄壁型钢-轻聚合物复合墙体抗弯性能试验研究[J]. 建筑钢结构进展,2018,20(2):20-27. DOI: 10. 13969/31-1893.2018.02.003.WANG Jingfeng, PANG Shuai, LU Mengmeng, QIU Duohong. Experimental study on the flexural behavior of precast cold-formed thin-walled steel framing (CTSF) composite walls infilled with light polymer material [J]. Progress in Steel Building Structures, 2018, 20(2):20-27. DOI: 10. 13969/31-1893.2018.02.003.(in Chinese)白杨,王卫华,张伟,徐哲人,李升才. 开缝钢板剪力墙滞回性能研究[J]. 建筑钢结构进展,2018,20(2):28-35. DOI: 10. 13969/31-1893.2018.02.004.BAI Yang, W ANG Weihua, ZHANG Wei, XU Zheren, LI Shengcai. Research on the hysteretic behavior of steel plate shear wall with slits[J]. Progress in Steel Building Structures, 2018, 20(2):28-35. DOI: 10.13969/31-1893.2018.02.004. (in Chinese)王静峰,张猛,张娜. 圆中空夹层钢管混凝土柱单边螺栓端板连接节点试验及数值模拟[J]. 建筑钢结构进展,2018,20(2):36-43. DOI: 10. 13969/31-1893.2018.02.005.WANG Jingfeng, ZHANG Meng, ZHANG Na. Experimental and analytical study of the blind bolted end plate steel beam to circular CFDST column joints[J]. Progress in Steel Building Structures, 2018, 20(2):36-43. DOI: 10. 13969/31-1893.2018.02.005. (in Chinese)王静峰,邓权,邢文彬. 圆钢管混凝土桁架K形节点极限承载力计算方法研究[J]. 建筑钢结构进展,2018,20(2):44-52. DOI: 10. 13969/31-1893.2018.02.006.WANG Jingfeng, DENG Quan, XING Wenbin. Calculation method of the ultimate bearing capacity for circular CFST truss K-joints [J]. Progress in Steel Building Structures, 2018, 20(2):44-52. DOI: 10.13969/31-1893.2018.02.006. (in Chinese)王志滨,郭俊涛,高扬虹,池思源,余鑫,林挺伟. 中空夹层薄壁钢管混凝土短柱轴压性能研究[J]. 建筑钢结构进展,2018,20(2):53-59. DOI: 10. 13969/31-1893.2018.02.007.WANG Zhibin, GUO Juntao, GAO Yanghong, CHI Siyuan, YU Xin, LIN Tingwei. Study on the behavior of concrete-filled double-skin thin-walled steel tubular stub columns under axial compression[J]. Progress in Steel Building Structures, 2018, 20(2):53-59. DOI: 10. 13969/31-1893.2018.02.007. (in Chinese) 李永进,廖飞宇,黄海清. 矩形不锈钢管混凝土柱双向偏压力学性能试验研究[J]. 建筑钢结构进展,2018,20(2):60-66. DOI: 10. 13969/31-1893.2018.02.008.LI Yongjin, LIAO Feiyu, HUANG Haiqing. Experimental study on the behavior of concrete filled rectangular stainless steel tubular columns under bi-axial eccentric compression[J]. Progress in Steel Building Structures, 2018,20(2):60-66. DOI: 10. 13969/31-1893.2018.02.008. (in Chinese)韩浩,廖飞宇,周翔,李永进. 带球冠形脱空缺陷的钢管混凝土构件抗弯性能研究[J]. 建筑钢结构进展,2018,20(2):67-73,102. DOI: 10. 13969/31-1893.2018.02.009.HAN Hao, LIAO Feiyu, ZHOU Xiang, LI Yongjin. Study on flexural behavior of concrete filled steel tubular members with spherical-cap gap[J]. Progress in Steel Building Structures, 2018, 20(2):67-73,102. DOI: 10.13969/31-1893.2018.02.009. (in Chinese)林挺伟. 脱空缺陷对长期荷载作用下圆钢管混凝土构件静力性能的影响研究[J]. 建筑钢结构进展,2018,20(2):74-78,109. DOI: 10. 13969/31-1893.2018.02.010.LIN Tingwei. Study on the effect of gap on the static behavior of circular concrete-filled steel tubular (CFST) members under long-term loading[J]. Progress in Steel Building Structures, 2018, 20(2):74-78,109. DOI: 10.13969/31-1893.2018.02.010. (in Chinese)江汉,王静峰,沈奇罕. 椭圆钢管混凝土构件受弯性能与承载力计算[J]. 建筑钢结构进展,2018,20(2):79-85. DOI: 10. 13969/31-1893.2018.02.011.JIANG Han, W ANG Jingfeng, SHEN Qihan. The bending behavior and bearing capacity calculation of elliptical concrete-filled steel tubular members[J]. Progress in Steel Building Structures, 2018, 20(2):79-85.DOI: 10. 13969/31-1893.2018.02.011. (in Chinese)林沁,江汉,沈奇罕,王静峰. 偏压下椭圆钢管混凝土短柱力学性能研究[J]. 建筑钢结构进展,2018,20(2):86-93. DOI: 10. 13969/31-1893.2018.02.012.LIN Qin, JIANG Han, SHEN Qihan, W ANG Jingfeng. Study on the mechanical behavior of elliptical concrete-filled steel tubular short columns under eccentric compression[J]. Progress in Steel Building Structures, 2018,20(2):86-93. DOI: 10. 13969/31-1893.2018.02.012. (in Chinese)江汉,王静峰,沈奇罕. 椭圆钢管混凝土构件受剪性能数值分析研究[J]. 建筑钢结构进展,2018,20(2):94-102. DOI: 10. 13969/31-1893.2018.02.013.JIANG Han, W ANG Jingfeng, SHEN Qihan. Numerical analysis on the shear behavior of elliptical concrete-filled steel tubular members[J]. Progress in Steel Building Structures, 2018, 20(2):94-102. DOI: 10.13969/31-1893.2018.02.013. (in Chinese)於忠华,王静峰,沈奇罕. 椭圆钢管混凝土长柱偏压受力性能研究[J]. 建筑钢结构进展,2018,20(2):103-109. DOI: 10. 13969/31-1893.2018.02.014.YU Zhonghua, WANG Jingfeng, SHEN Qihan. Study on the eccentrically compressive behavior of elliptical concrete-filled steel tubular slender columns[J]. Progress in Steel Building Structures, 2018, 20(2):103-109.DOI: 10. 13969/31-1893.2018.02.014. (in Chinese)汪永平. 空间钢桁架临时支撑卸载综合预警评估法及应用[J]. 建筑钢结构进展,2018,20(2):110-116.DOI: 10. 13969/31-1893.2018.02.015.WANG Yongping. A comprehensive assessment and early warning method and its application for spatial steel trusses during the unloading process of temporary supports[J]. Progress in Steel Building Structures, 2018, 20(2):110-116. DOI: 10. 13969/31-1893.2018.02.015. (in Chinese)刘源,罗金辉,李元齐,傅学怡. 大宽厚比矩形钢管混凝土柱纵向加劲肋构造研究现状[J]. 建筑钢结构进展,2018,20(3):1-10. DOI: 10. 13969/31-1893.2018.03.001.LIU Yuan, LUO Jinhui, LI Yuanqi, FU Xueyi. Research on the longitudinal stiffener of rectangle concrete filled steel columns with large width to thickness ratio[J]. Progress in Steel Building Structures, 2018, 20(3):1-10. DOI: 10. 13969/31-1893.2018.03.001. (in Chinese)肖顺,童乐为. 三维表面裂纹应力强度因子数值计算方法比较[J]. 建筑钢结构进展,2018,20(3):11-18. DOI: 10. 13969/31-1893.2018.03.002.XIAO Shun, TONG Lewei. Comparison of different numerical methods for evaluating stress intensity factor of a three-dimensional surface crack[J]. Progress in Steel Building Structures, 2018, 20(3):11-18. DOI: 10.13969/31-1893.2018.03.002. (in Chinese)杨大彬,胡明娜,周学军,姚云龙. 纤维单元单轴材料本构对圆钢管轴向滞回性能模拟的影响研究[J].建筑钢结构进展,2018,20(3):19-25,32. DOI: 10. 13969/31-1893.2018.03.003.YANG Dabin, HU Mingna, ZHOU Xuejun, YAO Yunlong. A study on the influence of uniaxial constitutive models on the axial hysteretic behavior of circular steel tubes [J]. Progress in Steel Building Structures, 2018, 20(3):19-25,32. DOI: 10. 13969/31-1893.2018.03.003. (in Chinese)王震,李国强. 一种新型高效的几何非线性梁-柱单元[J]. 建筑钢结构进展,2018,20(3):26-32. DOI:10. 13969/31-1893.2018.03.004.WANG Zhen, LI Guoqiang. A new efficient geometric nonlinear beam-column element[J]. Progress in Steel Building Structures, 2018, 20(3):26-32. DOI: 10. 13969/31-1893.2018.03.004. (in Chinese)徐忠根,郭俊宇,邓长根. 带不等高梁的外传力式矩形钢管柱框架节点抗震性能有限元分析[J]. 建筑钢结构进展,2018,20(3):33-41,57. DOI: 10. 13969/31-1893.2018.03.005.XU Zhonggen, GUO Junyu, DENG Changgen. Finite element analysis of seismic behavior of force-transforming plates outside box column frame joint with different beam height[J]. Progress in Steel Building Structures, 2018, 20(3):33-41,57. DOI: 10. 13969/31-1893.2018.03.005. (in Chinese) 邓宇,张鹏,张祥宁,和真理. 预应力部分外包组合梁抗弯承载力试验研究与理论分析[J]. 建筑钢结构进展,2018,20(3):42-50. DOI: 10. 13969/31-1893.2018.03.006.DENG Yu, ZHANG Peng, ZHANG Xiangning, HE Zhenli. Experimental and analytical study on flexural capacity of prestressed simply supported partially concrete encased composite beams[J]. Progress in Steel Building Structures, 2018, 20(3):42-50. DOI: 10. 13969/31-1893.2018.03.006. (in Chinese)赵欣,母瑞强,张驰,王舒扬. 轻钢龙骨泡沫混凝土预制楼板受弯性能研究[J]. 建筑钢结构进展,2018,20(3):51-57. DOI: 10. 13969/31-1893.2018.03.007.ZHAO Xin, MU Ruiqiang, ZHANG Chi, WANG Shuyang. A study on the bending capacity of prefabricated composite slabs consisting of foam concrete and light-gauge steel frame[J]. Progress in Steel Building Structures, 2018, 20(3):51-57. DOI: 10. 13969/31-1893.2018.03.007. (in Chinese)高立堂,蔡维沛,李晓东. 火灾后型钢混凝土异形柱正截面承载力非线性分析[J]. 建筑钢结构进展,2018,20(3):58-71. DOI: 10. 13969/31-1893.2018.03.008.GAO Litang, CAI Weipei, LI Xiaodong. Nonlinear analysis of section bearing capacity of steel reinforced concrete special-shaped columns after fire[J]. Progress in Steel Building Structures, 2018, 20(3):58-71. DOI:10. 13969/31-1893.2018.03.008. (in Chinese)张浩,杜咏,王慧蕾. 轴向约束圆钢管高温屈曲后承载力实用计算方法[J]. 建筑钢结构进展,2018,20(3):72-77. DOI: 10. 13969/31-1893.2018.03.009.ZHANG Hao, DU Yong, WANG Huilei. Empirical method of axially restrained chords for ultimate fire resistance at post-buckling stage[J]. Progress in Steel Building Structures, 2018,20(3):72-77. DOI: 10.13969/31-1893.2018.03.009. (in Chinese)许强,苏项庭,关超. 关于钢销轴设计的几点讨论[J]. 建筑钢结构进展,2018,20(3):78-85. DOI: 10.13969/31-1893.2018.03.010.XU Qiang, SU Xiangting, GUAN Chao. Discussions on the design of steel pin[J]. Progress in Steel Building Structures, 2018, 20(3):78-85. DOI: 10. 13969/31-1893.2018.03.010. (in Chinese)胡振青,蔡琪锐. 大型商业建筑的TMD减振控制研究[J]. 建筑钢结构进展,2018,20(3):86-96. DOI:10. 13969/31-1893.2018.03.011.HU Zhenqing, CAI Qirui. The study of TMD vibration control in large commercial buildings[J]. Progress in Steel Building Structures, 2018, 20(3):86-96. DOI: 10. 13969/31-1893.2018.03.011. (in Chinese) 王晋,马天龙,李玉强,张海波. 大跨度连廊钢结构临时支承体系施工阶段计算分析[J]. 建筑钢结构进展,2018,20(3):97-103. DOI: 10. 13969/31-1893.2018.03.012.WANG Jin, MA Tianlong, LI Yuqiang, ZHANG Haibo. Analysis of temporary support system for large-span corridor steel structure under construction stage[J]. Progress in Steel Building Structures, 2018, 20(3):97-103. DOI: 10. 13969/31-1893.2018.03.012. (in Chinese)张伟,周元,丁志胜,谢官模. 预应力空间钢桁架结构吊挂承载力研究[J]. 建筑钢结构进展,2018,20(3):104-109,116. DOI: 10. 13969/31-1893.2018.03.013.ZHANG Wei, ZHOU Yuan, DING Zhisheng, XIE Guanmo. Research on hanging capacity of prestressed spatial steel truss structures[J]. Progress in Steel Building Structures, 2018, 20(3):104-109,116. DOI: 10.13969/31-1893.2018.03.013. (in Chinese)赏莹莹,沈奕,王丽佳. 长江传媒大厦屋顶钢结构高空滑移施工技术研究[J]. 建筑钢结构进展,2018,20(3):110-116. DOI: 10. 13969/31-1893.2018.03.014.SHANG Yingying, SHEN Yi, W ANG Lijia. The sliding construction technology of Changjiang Media Building roof steel structure[J]. Progress in Steel Building Structures, 2018, 20(3):110-116. DOI: 10.13969/31-1893.2018.03.014. (in Chinese)宋廷苏,阿拉塔,管庆松,牛喜伟,王艳茹. 近断层速度脉冲型地震动对隔震结构设计影响初探[J]. 建筑钢结构进展,2018,20(4):1-11. DOI: 10. 13969/31-1893.2018.04.001.SONG Tingsu, A Lata, GUAN Qingsong, NIU Xiwei, WANG Yanru. The design of seismic isolation structure subjected to velocity pulse ground motion near fault[J]. Progress in Steel BuildingStructures, 2018, 20(4):1-11. DOI: 10. 13969/31-1893.2018.04.001. (in Chinese)南子森,李海锋,罗俊,孙伟. 考虑焊接影响的低屈服点钢L Y100超低周疲劳破坏机理研究[J]. 建筑钢结构进展,2018,20(4):12-17,66. DOI: 10. 13969/31-1893.2018.04.002.NAN Zisen,LI Haifeng,LUO Jun,SUN Wei. A study on extremely low cycle fatigue mechanism of low yield point steel LY100 considering welding effect[J]. Progress in Steel Building Structures, 2018, 20(4):12-17,66. DOI: 10. 13969/31-1893.2018.04.002. (in Chinese)李帼昌,郭丰伟,杨志坚,章潇. 开口型压型钢板-混凝土组合楼板抗弯承载力试验研究[J]. 建筑钢结构进展,2018,20(4):18-23,84. DOI: 10. 13969/31-1893.2018.04.003.LI Guochang, GUO Fengwei, YANG Zhijian, ZHANG Xiao. Research on flexural capacity of opened profiled steel sheeting-concrete composite slabs[J]. Progress in Steel Building Structures, 2018, 20(4):18-23,84. DOI: 10. 13969/31-1893.2018.04.003. (in Chinese)孔丹丹,张文烽,赵欣. 钢网格盒式结构空腹桁架与柱弱轴相交节点抗震性能试验研究[J]. 建筑钢结构进展,2018,20(4):24-33. DOI: 10. 13969/31-1893.2018.04.004.KONG Dandan, ZHANG Wenfeng, ZHAO Xin. Experimental study on the seismic behavior of intersection joints of vierendeel truss with column in weak-axis in steel grid cassette structures [J]. Progress in Steel Building Structures, 2018, 20(4):24-33. DOI: 10. 13969/31-1893.2018.04.004.(in Chinese)张艳霞,郑明召,黄威振,江锟,宁广. 箱形柱内套筒式全螺栓拼接节点试验数值模拟[J]. 建筑钢结构进展,2018,20(4):34-46. DOI: 10. 13969/31-1893.2018.04.005.ZHANG Yanxia,ZHENG Mingzhao, HUANG Weizhen, JIANG Kun, NING Guang. Analytical study on fully-bolted box-section column-column connection with inner sleeve[J]. Progress in Steel Building Structures, 2018, 20(4):34-46. DOI: 10. 13969/31-1893.2018.04.005. (in Chinese)张一凡,陈以一. 贯通式梁-柱端板连接节点滞回性能的组件法模型[J]. 建筑钢结构进展,2018,20(4):47-57,96. DOI: 10. 13969/31-1893.2018.04.006.ZHANG Yifan, CHEN Yiyi. Component method models for the analysis of end-plate joints with continuous beam and column under cyclic loads[J]. Progress in Steel Building Structures, 2018, 20(4):47-57,96. DOI: 10. 13969/31-1893.2018.04.006. (in Chinese)郁有升,张孝栋,于志军. “互”形装配式节点受力性能的有限元研究[J]. 建筑钢结构进展,2018,20(4):58-66. DOI: 10. 13969/31-1893.2018.04.007.YU Yousheng, ZHANG Xiaodong, YU Zhijun. Finite element analysis on the mechanical behavior of "HU" assembly connection[J]. Progress in Steel Building Structures, 2018, 20(4):58-66. DOI: 10.13969/31-1893.2018.04.007. (in Chinese)侯瑞,吕志军,李宏亮,杨光辉. 基于荷载及其分布的薄壁钢结构高层货架动力稳定性研究[J]. 建筑钢结构进展,2018,20(4):67-74. DOI: 10. 13969/31-1893.2018.04.008.HOU Rui, L YU Zhijun, LI Hongliang, Y ANG Guanghui.Study on dynamic stability of high-rise storage racks in thin-walled steel structures based on load and its distribution[J]. Progress in Steel Building Structures, 2018, 20(4):67-74. DOI: 10.13969/31-1893.2018.04.008. (in Chinese)李宏江. 波形钢腹板PC组合箱梁动力性能研究综述[J]. 建筑钢结构进展,2018,20(4):75-84. DOI:10. 13969/31-1893.2018.04.009.LI Hongjiang. Review on the dynamic performance of prestressed concrete box girders with corrugated steel webs[J]. Progress in Steel Building Structures, 2018, 20(4):75-84. DOI: 10.13969/31-1893.2018.04.009. (in Chinese)张哲,王柯,张猛. 高强钢管混凝土柱的抗火性能研究[J]. 建筑钢结构进展,2018,20(4):85-96. DOI:10. 13969/31-1893.2018.04.010.ZHANG Zhe, W ANG Ke, ZHANG Meng. Fire resistance of concrete-filled high strength steel tubular columns[J]. Progress in Steel Building Structures, 2018, 20(4):85-96. DOI: 10.13969/31-1893.2018.04.010. (in Chinese)夏金环,王培军,周吉学. 火灾下三面和两相邻面受火H形截面钢柱的临界温度[J]. 建筑钢结构进展,2018,20(4):97-102,108. DOI: 10. 13969/31-1893.2018.04.011.XIA Jinhuan, W ANG Peijun, ZHOU Jixue. Critical temperature of H-section steel columns heated from three or two adjacent sides[J]. Progress in Steel Building Structures, 2018, 20(4):97-102,108.DOI: 10. 13969/31-1893.2018.04.011. (in Chinese)周国庆,周军红,李可军,刘菁,郝天存. 某国外大型机场航站楼深化设计技术[J]. 建筑钢结构进展,2018,20(4):103-108. DOI: 10. 13969/31-1893.2018.04.012.ZHOU Guoqing, ZHOU Junhong, LI Kejun, LIU Jing, HAO Tiancun. Detailed design technology of steel structure for a large foreign airport terminal[J]. Progress in Steel Building Structures, 2018, 20(4):103-108. DOI: 10. 13969/31-1893.2018.04.012. (in Chinese)薛子蓬,王庆杰,王培军. 双层斜开槽钢板剪力墙受力性能研究[J]. 建筑钢结构进展,2018,20(5):1-10.DOI: 10. 13969/31-1893.2018.05.001.XUE Zipeng, WANG Qingjie, WANG Peijun. Mechanical behavior of steel plate shear wall with two-layer incline-slotted infill plates[J]. Progress in Steel Building Structures, 2018, 20(5):1-10. DOI:10. 13969/31-1893.2018.05.001. (in Chinese)杨怡亭,侯兆新,龚超,王燕. 高强型钢混凝土柱抗震性能影响因素研究[J]. 建筑钢结构进展,2018,20(5):11-21. DOI: 10. 13969/31-1893.2018.05.002.YANG Yiting, HOU Zhaoxin, GONG Chao, W ANG Yan. Analysis on influencing factors of seismic performance for high-strength steel reinforced concrete columns[J]. Progress in Steel Building Structures, 2018, 20(5):11-21. DOI: 10. 13969/31-1893.2018.05.002. (in Chinese)蒋蕴涵,李国强,侯兆新,张杰华,陆烨. 8.8级国产单向螺栓连接轴向拉伸刚度试验研究[J]. 建筑钢结构进展,2018,20(5):22-30. DOI: 10. 13969/31-1893.2018.05.003.JIANG Yunhan,LI Guoqiang,HOU Zhaoxin,ZHANG Jiehua,LU Ye. Experimental study on the axial tensile stiffness of 8.8 grade domestic blind bolt connections[J]. Progress in Steel Building Structures, 2018, 20(5):22-30. DOI: 10. 13969/31-1893.2018.05.003. (in Chinese)秦凯,胡夏闽,江雨辰,洪万,顾明明. 部分外包混凝土组合梁负弯矩区翼缘板裂缝试验研究[J]. 建筑钢结构进展,2018,20(5):31-38,46. DOI: 10. 13969/31-1893.2018.05.004.QIN Kai, HU Xiamin, JIANG Yuchen, HONG Wan, GU Mingming. Experimental study on slab cracks in the negative moment regions of partially concrete encased composite beams[J]. Progress in Steel Building Structures, 2018, 20(5):31-38,46. DOI: 10. 13969/31-1893.2018.05.004. (in Chinese)包恩和,王天成,李琦. 外露式钢柱脚低层钢框架结构动力性能分析[J]. 建筑钢结构进展,2018,20(5):39-46. DOI: 10. 13969/31-1893.2018.05.005.BAO Enhe, WANG Tiancheng, LI Qi. Dynamic behavior for exposed steel column base in low-rise steel frame structures[J]. Progress in Steel Building Structures, 2018, 20(5):39-46. DOI: 10.13969/31-1893.2018.05.005. (in Chinese)董素芹,魏献忠,高兵. 基于正交试验和有限元模拟的圆钢管再生混凝土柱力学性能敏感因素分析[J].建筑钢结构进展,2018,20(5):47-53. DOI: 10. 13969/31-1893.2018.05.006.DONG Suqin, WEI Xianzhong, GAO Bing. Sensitivity analysis on mechanical properties of recycled concrete filled circular steel tubular columns based on orthogonal test and numerical simulation[J]. Progress in Steel Building Structures, 2018, 20(5):47-53. DOI: 10. 13969/31-1893.2018.05.006. (in Chinese)唐敢,陈文生,尹凌峰,蔺志强,马梦云. 货物重心及偏心对货架抗震性能的影响研究[J]. 建筑钢结构进展,2018,20(5):54-62. DOI: 10. 13969/31-1893.2018.05.007.TANG Gan, CHEN Wensheng, YIN Lingfeng, LIN Zhiqiang, MA Mengyun. Research on the effect of gravity center and eccentricity on the seismic behavior of steel storage racks[J]. Progress in Steel Building Structures, 2018, 20(5):54-62. DOI: 10. 13969/31-1893.2018.05.007. (in Chinese)曾菁,王向锋,杜刚,江欢成. 世侨中心高层钢网格结构设计[J]. 建筑钢结构进展,2018,20(5):63-69. DOI: 10. 13969/31-1893.2018.05.008.ZENG Jing, W ANG Xiangfeng, DU Gang, JIANG Huancheng. Design of high-rise steel grid structure in ShiQiao Center[J]. Progress in Steel Building Structures, 2018, 20(5):63-69. DOI: 10.13969/31-1893.2018.05.008. (in Chinese)朱思宇,梁存之,张建林. 某大跨度煤棚结构方案选型及计算[J]. 建筑钢结构进展,2018,20(5):70-75,97. DOI: 10. 13969/31-1893.2018.05.009.ZHU Siyu, LIANG Cunzhi, ZHANG Jianlin. Structure selection and design of a large-span dry coal shed structure[J]. Progress in Steel Building Structures, 2018, 20(5):70-75,97. DOI: 10.13969/31-1893.2018.05.009. (in Chinese)王占飞,金霞宇,陈小军,张军涛,邢宇玥. 屈曲约束支撑对钢桁架拱桥抗震性能改善效果的研究[J].建筑钢结构进展,2018,20(5):76-84. DOI: 10. 13969/31-1893.2018.05.010.WANG Zhanfei, JIN Xiayu, CHEN Xiaojun, ZHANG Juntao, XING Yuyue. Effect of buckling restrained braces on the seismic performance of steel truss arch bridges[J]. Progress in Steel Building Structures, 2018, 20(5):76-84. DOI: 10. 13969/31-1893.2018.05.010. (in Chinese)林克强, 庄胜智, 吴忠哲, 李昭贤, 林志翰, 蔡克铨. 钢骨箱形柱内横隔板采用改良型电热熔渣焊细部及梁翼板高程差对梁柱接合抗震性能的影响[J]. 建筑钢结构进展,2018,20(5):85-97. DOI: 10.13969/31-1893.2018.05.011.LIN Kerchun, JHUANG Shengjhih, WU Chungche, LI Chaohsien, LIN Chinhan, TSAI Kehchyuan. Seismic Performance of beam-to-column connections affected by modified details of ESWs and elevation deviation of beam flanges[J]. Progress in Steel Building Structures, 2018, 20(5):85-97. DOI: 10.13969/31-1893.2018.05.011. (in Chinese)杨果岳,杜冕,刘秀. Q235A钢在不同加载速率下的声发射特性分析[J]. 建筑钢结构进展,2018,20(5):98-103,108. DOI: 10. 13969/31-1893.2018.05.012.YANG Guoyue,DU Mian,LIU Xiu. Acoustic emission analysis of Q235A steel under different loading rates [J]. Progress in Steel Building Structures, 2018, 20(5):98-103,108. DOI: 10.13969/31-1893.2018.05.012. (in Chinese)许亚磊,曹辉发,宋理志. 关于钢结构BIM中Tekla Structure模型导入Revit时数据信息完整性的分析[J]. 建筑钢结构进展,2018,20(5):104-108. DOI: 10. 13969/31-1893.2018.05.013.XU Yalei,CAO Huifa,SONG Lizhi. Analysis of data information integrity in Tekla Structure model imported into Revit in steel structure BIM[J]. Progress in Steel Building Structures, 2018, 20(5):104-108.DOI: 10. 13969/31-1893.2018.05.013. (in Chinese)胡淑军,熊进刚,宋固全. 一种新型扩孔螺栓连接型消能梁段及其力学性能[J]. 建筑钢结构进展,2018,20(6):1-9. DOI: 10. 13969/31-1893.2018.06.001.HU Shujun, XIONG Jingang, SONG Guquan. A new shear link with slotted bolted connection and its mechanical performance[J]. Progress in Steel Building Structures, 2018, 20(6):1-9. DOI: 10.13969/31-1893.2018.06.001. (in Chinese)熊哲,郭小农,罗永峰,季跃. 铝合金板式节点刚度对网壳稳定性能影响研究[J]. 建筑钢结构进展,2018,20(6):10-15. DOI: 10. 13969/31-1893.2018.06.002.XIONG Zhe, GUO Xiaonong, LUO Yongfeng, JI Yue. Study on influence of the stiffness of aluminum alloygusset joints on the stability of shells[J]. Progress in Steel Building Structures, 2018, 20(6):10-15. DOI: 10.13969/31-1893.2018.06.002. (in Chinese)万馨,白尧尧,李相勇. 钢板组合剪力墙-钢梁外肋板节点静力拉伸有限元分析[J]. 建筑钢结构进展,2018,20(6):16-24. DOI: 10. 13969/31-1893.2018.06.003.WAN Xin, BAI Yaoyao, LI Xiangyong. FEM analysis of external rib plate joints between composite steel plate and concrete shear wall and steel beam under static tension loading[J]. Progress in Steel Building Structures, 2018, 20(6):16-24. DOI: 10. 13969/31-1893.2018.06.003. (in Chinese)李景芳,金晓飞,陈友,孙建运,史鹏飞. 网架模型日照温度效应试验研究[J]. 建筑钢结构进展,2018,20(6):25-29. DOI: 10. 13969/31-1893.2018.06.004.LI Jingfang, JIN Xiaofei, CHEN You, SUN Jianyun, SHI Pengfei. Experimental study on temperature effect to grid model in sunshine[J]. Progress in Steel Building Structures, 2018, 20(6):25-29. DOI: 10.13969/31-1893.2018.06.004. (in Chinese)孔丹丹,王新峰,赵欣,王可意,刘客. 钢网格盒式结构空腹楼板与柱相交组合节点及纯钢节点的抗震性能试验研究[J]. 建筑钢结构进展,2018,20(6):30-38,56. DOI: 10.13969/31-1893.2018.06.005.KONG Dandan, W ANG Xinfeng, ZHAO Xin, W ANG Keyi, LIU Ke. Experimental study on seismic behavior of cassette structure hollow floor-slab-to-column composite joints and bare steel joints[J]. Progress in Steel Building Structures, 2018, 20(6):30-38,56. DOI: 10. 13969/31-1893.2018.06.005. (in Chinese)汪贤聪,杜咏,周浩. 火灾高温下材料力学性能测试技术试验研究[J]. 建筑钢结构进展,2018,20(6):39-45,56. DOI: 10. 13969/31-1893.2018.06.006.WANG Xiancong, DU Yong, ZHOU Hao. Experimental study on the measuring technology of mechanical properties of materials at elevated temperatures[J]. Progress in Steel Building Structures, 2018, 20(6):39-45,56. DOI: 10. 13969/31-1893.2018.06.006. (in Chinese)王紫珮,楼国彪,饶雯婷,刘晓光,鞠晓臣,许清风. 圆钢管混凝土柱火灾升温试验及钢管温度计算方法[J]. 建筑钢结构进展,2018,20(6):46-56. DOI: 10. 13969/31-1893.2018.06.007.WANG Zipei, LOU Guobiao, RAO Wenting, LIU XiaoGuang, JU Xiaochen, XU Qingfeng. Fire test of circular concrete-filled steel tubular columns and thermal analysis of steel tube[J]. Progress in Steel Building Structures, 2018, 20(6):46-56. DOI: 10. 13969/31-1893.2018.06.007. (in Chinese)王海江,李国强,黄小坤,孙飞飞. 屈曲约束钢板联肢剪力墙结构的弹性分析[J]. 建筑钢结构进展,2018,20(6):57-67. DOI: 10. 13969/31-1893.2018.06.008.WANG Haijiang, LI Guoqiang, HUANG Xiaokun, SUN Feifei. Elastic analysis of coupled shear walls with buckling-restrained steel plates[J]. Progress in Steel Building Structures, 2018, 20(6):57-67. DOI: 10.13969/31-1893.2018.06.008. (in Chinese)王海江,李国强,黄小坤,孙飞飞. 屈曲约束钢板联肢剪力墙结构的弹塑性分析[J]. 建筑钢结构进展,2018,20(6):68-78. DOI: 10. 13969/31-1893.2018.06.009.WANG Haijiang, LI Guoqiang, HUANG Xiaokun, SUN Feifei. Elastic-plastic analysis of coupled shear walls with buckling-restrained steel plates [J]. Progress in Steel Building Structures, 2018, 20(6):68-78. DOI: 10. 13969/31-1893.2018.06.009. (in Chinese)王海江,李国强,黄小坤,孙飞飞. 屈曲约束钢板联肢剪力墙结构的弹塑性分析[J]. 建筑钢结构进展,2018,20(6):68-78. DOI: 10. 13969/31-1893.2018.06.009.WANG Haijiang, LI Guoqiang, HUANG Xiaokun, SUN Feifei. Elastic-plastic analysis of coupled shear walls with buckling-restrained steel plates [J]. Progress in Steel Building Structures, 2018, 20(6):68-78. DOI: 10. 13969/31-1893.2018.06.009. (in Chinese)乔小帅,庄建杰,虎彦政,王佳佳,梁跃华. 新型复杂高层煤气化厂房抗震可行性研究[J]. 建筑钢结。
珠江虎门河口近二十年来的水沙特性变化及地貌动力分析
7.WRIGHT L D.COLEMAN J M Variations in morphology of major river deltas as functions of ocean wave and river discharge regimes 1973
65.MCLAREN P.POWYS R I L The use of sediment trends to assess the fate of dredged material 1989
66.MCLAREN P.LITTLE D I The effects of sediment transport on contaminant disposal:an example from Milford Haven 1987
8.WRIGHT L D.COLEMAN J M Mississippi river mouth processes:effluent dynamics and morphologic development 1974
9.Wang Z B.Louters T Morphodynamic modeling for a tidal inlet in the WaddenSea 1995
52.张越美.孙英兰ECOM模式在丁字湾的应用[期刊论文]-青岛海洋大学学报(自然科学版) 2001(5)
53.张越美.孙英兰渤海湾三维变动边界潮流数值模拟[期刊论文]-青岛海洋大学学报(自然科学版) 2002(3)
旋转超声振动铣削Cr12MoV轴向切削力与表面粗糙度研究
Cr12MoV模具钢具有硬度高、耐磨性和淬透性 好等优点,在汽车制造、轮船制造、航空、机电产品 制造及家用电器等行业中占有重要地位叫常被用 于制造形状较大、承受较大工作负载的各种工具和 模具叫 然而,由于Cr12MoV模具钢切削加工困难,
收稿日期:2021-01-01 第一作者简介:安强,男,1997年生,硕士研究生。
减小,当切削宽度大于2 mm时,切削力增大,但仍 低于切削宽度为1-5 mm时的切削力。
表4轴向平均切削力极差分析结果&!/(r-min"1)
y/mm
Op/mm
o/mm
&1
10.3
16.436
13.14
16.01
&2
15.4
17.916
14.03
17.69
&3
20.45
17.332
16.394
20.05
表面粗糙度%#!m
0.659 0.471 0.478 1.366 1.495 0.552 0.472 1.13 1.297 0.491 0.466 0.687 0.453 0.461 0.547 0.62 0.538 0.544 0.787 0.338 0.433 0.452 0.417 0.586 0.471
《电加工与模具>2021年第3期
超声加工及其他特种加工
旋转超声振动铳削Crl2MoV轴向 切削力与表面粗糙度研究
安强1,靳伍银1,周志楷2
(1.兰州理工大学机电工程学院,甘肃兰州730050; 2.中国铁建重工集团股份有限公司,湖南长沙410100 )
摘要:为研究切削参数对切削效果的影响,将旋转超声振动铣削引入Cr12MoV模具钢铣削过 程中;通过正交试验设计开展切削试验,从轴向平均切削力和表面粗糙度两方面研究了旋转超声 振动铣削参数选择对Cr12MoV模具钢加工的影响#结果表明:在旋转超声振动辅助铣削Cr12MoV 模具钢的过程中,主轴转速和切削深度对轴向平均切削力和表面粗糙度影响最大;在主轴转速 2000 r/min%切削深度0.6 mm时,可获得较小的轴向平均切削力和较好的表面粗糙度;将旋转超声 振动应用到Cr12MoV模具钢铣削过程中,能获得较好的加工效果#
英语试题汇总(答案)
1.()翻译如下短语和论文标题:1)…短语‟热解与着火的动力学行为kinetic behavior of pyrolysis and ignition2)…短语‟城市火灾的危害性预测与风险评估hazard prediction and risk assessment of urban fires3)…短语‟腔室建筑中的机械排烟系统smoke extracting system in the compartment buildings4)…短语‟野火三角中燃料、地形和天气之间的相互作用interactions among the fuel, terrain and weather in a wild fire triangle5)…短语‟坡度和风对火灾发展的影响influence of the slope and wind on the fire growth6)…标题‟细水雾对油池火影响机制的实验与数值研究experimental and simulating study of the suppression mechanism of water mist on pool fire7)…标题‟过去20年中国建筑火灾的统计分析statistical analysis of Chinese building fires in the past 20 years8)…标题‟高层建筑中的人员疏散与火灾安全设计:理论模拟pedestrian evacuation and fire safety design in high buildings: theoretical simulation9)…标题‟火诱导的温度场和速度场的机理分析mechanism analysis of the temperature field and velocity field induced by fire 10)…标题‟火灾信号特征在研制火灾探测器方面的应用application of the characteristics of fire signals in the development of fire detectors 11)…短语‟火灾安全科学与消防工程fire safety science and fire protection engineering12)…短语‟利用多信号报警的火灾探测系统Fire detection system using multi-signals alarm13)…短语‟有焰和无焰燃烧的动力学行为kinetics behavior of flame and flameless combustion14)…短语‟热量释放速率和火蔓延速度Heat release rate and fire spreading velocity15)…短语‟火诱导的温度场和速度场temperature field and velocity field induced by fire16)…标题‟火灾人员疏散的理论与实验研究Theoretical and experimental study of the human evacuation in fires17)…标题‟火灾抑制和扑救技术的发展:回顾与展望development of fire suppression and fighting technology: review and prospect18)…标题‟野火中垂直火旋风的理论分析与数值模拟Theoretical analysis and numerical simulation of the vertical fire whirl in the wild fires 19)…标题‟中国建筑火灾中轰燃和回燃的统计调查Statistical survey of the flashover and backdraft of building fires in China20)…标题‟野火三角中燃料、地形和天气三因子之间相互作用的机理分析Mechanism analysis of the interactions among the fuel, terrain and weather in a wild fire triangle21)燃料类型对自发着火动力学行为的影响:实验研究Influence of fuel type on the spontaneous ignition dynamical behavior: Experimental Study 22)大尺度池火诱导的速度场和温度场理论分析theoretical analysis of velocity field and temperature field induced by Large-scale pool fire23)坡度和风速对地表火蔓延中火焰高度和长度所起的作用:理论分析与测量The role of slope and wind velocity on the flame height and length in the ground fire : theoretical analysis and measurement24)野火中垂直火旋风的热释放速率和燃烧速率heat release rate and burning rate of the vertical fire whirl in the wild fires25)易燃和可燃材料着火温度的特征分析characteristics analysis of the ignition temperature of the flammable and Combustible marterial26)建筑腔室火灾中的轰燃与回燃动力学:非线性数值模拟Dynamic of flashover and backdraft in Building compartment fire:non-linear numerical simulation27)自动火灾探测与报警系统对人员疏散的作用的统计性分析statistical analysis of the role of automatic fire alarm system in personnel evacuation 28)关于炭化和非炭化材料热解化学反应动力学的综述Overview about the decomposition Chemical reaction dynamics of the charring and non-charring material29)火的燃烧与其诱导流动之间的相互作用机理mechanism analysis of the interaction between the fire combustion and induced flow30)分区模拟方法在建筑火灾烟气运动研究中的应用application of zone modeling in the study of the smoke movement of building fires1、The importance of flashover results from the fact that it is of great danger when a compartmentfire occurs. 翻译成中文,并且用表达因果关系的两种不同方式改写。
关于做实验题材的作文英语
关于做实验题材的作文英语Title: The Fascination of Experimental Exploration。
In the realm of scientific inquiry, the pursuit of knowledge through experimentation is a cornerstone. From unraveling the mysteries of the cosmos to understanding the intricacies of the microscopic world, experiments serve as the bedrock upon which our understanding of the universe is built. In this essay, we delve into the allure and significance of experimental exploration, examining itsrole in shaping our understanding of the world around us.First and foremost, experiments offer a practical avenue for testing hypotheses and theories. They provide a controlled environment in which variables can be manipulated and outcomes observed, allowing researchers to draw conclusions based on empirical evidence. Through meticulously designed experiments, scientists can validate or refute existing theories, paving the way for the advancement of knowledge.Moreover, experimentation fosters innovation and discovery. The process of trial and error inherent in experimentation often leads to unexpected outcomes and serendipitous discoveries. As researchers navigate through uncharted territory, they may stumble upon phenomena that challenge existing paradigms or open new avenues of inquiry. These breakthroughs not only expand the boundaries of human knowledge but also have the potential to revolutionizeentire fields of study.Furthermore, experiments play a crucial role in the development of practical applications and technologies. Whether it be the discovery of new materials with unique properties or the optimization of industrial processes, experimental research drives progress across various sectors. By translating theoretical concepts into tangible outcomes, experiments bridge the gap between pure science and real-world applications, driving innovation and economic growth.Additionally, experimentation fosters critical thinkingand problem-solving skills. The iterative process of designing, conducting, and analyzing experiments encourages researchers to think analytically and creatively. They must carefully consider factors such as experimental design, data interpretation, and potential sources of error, honing their ability to think critically and approach problems methodically.Moreover, experiments promote collaboration and interdisciplinary exchange. In many cases, solving complex scientific problems requires expertise from multiple disciplines. Collaborative research endeavors bring together scientists with diverse backgrounds and perspectives, fostering cross-pollination of ideas and catalyzing innovation. Through interdisciplinary collaboration, researchers can tackle multifaceted challenges that transcend the boundaries of individual fields.Furthermore, experiments serve as a means of engaging and inspiring future generations of scientists. Hands-on experimentation allows students to experience the thrill ofdiscovery firsthand, sparking curiosity and fostering a passion for inquiry. By providing opportunities for practical exploration, educators can instill in students a deep appreciation for the scientific method and its role in advancing human understanding.In conclusion, experimental exploration lies at the heart of scientific inquiry, driving discovery, innovation, and progress. Through meticulous observation, systematic experimentation, and analytical reasoning, researchers unlock the mysteries of the universe and push the boundaries of human knowledge. As we continue to explore the frontiers of science, experimentation will remain an indispensable tool for unraveling the complexities of the natural world and shaping the future of humanity.。
近年主要成果-上海交通大学
1.承担项目情况:1)国家自然基金项目,“辊弯成形全流程动态模拟技术研究”,编号:50375095, 经费:24万元,起止年月:2004.1~2006.12,负责人。
2)国家自然基金重点项目,“材料智能化近终成形加工技术的若干基础问题”,编号:50634010, 经费:180万元,起止年月:2007.01~2010.12,主要参加人。
3)国家973计划前期研究项目“材料制备新方法探索及性能研究”,编号:2006CB708600,总经费:1094万元,起止年月:2006.12~2008.11,负责人。
4)国家863计划重点项目,“高强高韧镁合金及其应用技术研究”,编号:002AA331120,经费:340万元,起止年月:2002.6~2005.6,负责人。
5)国防科工委民口配套项目,“XXX轴承的研究”,编号:MKPT-05-268,经费:165万元,起止年月:2005.1~2006.12,负责人。
6)上海市重大基础研究项目“成形制造中材料微观结构与应力场控制”,编号:06dj14005, 经费:500万元,起止年月:2007.01~2010.12,主要参加人。
7)上海市重点基础研究项目,“镁合金板材变形机理及温热冲压成形性能研究”,编号:03JC14045,经费:30万元,项目起止年月:2003.12~2006.12,负责人。
8)教育部高等学校博士点专项科研基金,“基于细观织构演化的金属板材成形性能理论研究”,编号:20030248029。
经费:5万元,起止年月:2004.1~2006.12,负责人。
9)宝钢股份有限公司委托项目“ERW高频直缝焊管排辊成形工艺数字化平台技术研究”,经费:110万元,起止年月:2006.12~2008.4,负责人。
10)美国福特汽车公司University Research Project (URP)项目“Integrated Computational Materials Engineering (ICME) Methodology Development forAlloy Design & Defects Control for Al & Mg Extrusions”, 经费:12万美元,起止年月:2007.1~2009.12,负责人。
三元锂电池正级材料回收工艺化学流程
三元锂电池正级材料回收工艺化学流程1.首先,收集废旧的三元锂电池正级材料。
Firstly, collect the waste ternary lithium battery positive electrode materials.2.然后将收集到的废旧材料进行分类和清洗。
Then classify and clean the collected waste materials.3.接下来进行材料的破碎和粉碎处理。
Next, the materials are crushed and pulverized.4.将粉碎后的材料进行酸洗和浸取过程。
The pulverized materials are then subjected to acid washing and leaching process.5.通过化学反应,使材料中的有价金属得以溶解。
The valuable metals in the materials are dissolved through chemical reactions.6.随后,对溶液进行过滤和沉淀处理。
Subsequently, the solution is filtered and precipitated.7.得到的物质经过干燥处理后,形成了回收后的三元锂电池正级材料。
The resulting substance, after drying treatment, formsthe recovered ternary lithium battery positive electrode materials.8.最后对回收的材料进行再生利用,以减少对自然资源的开采和浪费。
Finally, the recycled materials are reused to reduce the exploitation and waste of natural resources.9.整个工艺化学流程要符合环保标准,确保不会对环境造成污染。
冲击耐受电流 英语
冲击耐受电流英语Electrical current is a fundamental concept in the field of physics and engineering, and understanding its behavior is crucial for the design and operation of various electrical systems. One important aspect of electrical current is its ability to withstand sudden surges or spikes, known as the "shock resistance" or "impulse current" of a system.The shock resistance of an electrical system refers to its capacity to withstand high-intensity, short-duration electrical pulses or surges without sustaining damage or compromising its functionality. These surges can be caused by various factors, such as lightning strikes, power grid disturbances, or the switching of inductive loads. The ability of a system to withstand these transient events is crucial for ensuring the safety and reliability of electrical equipment and preventing costly damages.The concept of impulse current is closely related to shock resistance. Impulse current refers to the rapid and intense flow of electric charge that occurs during a short-duration event, such as a lightning strike or a switching transient. The magnitude and duration of the impulse current can have significant implications for the design and performance of electrical systems.In the context of electrical systems, the shock resistance or impulse current rating is a measure of the system's ability to withstand these high-intensity, short-duration electrical events without experiencing failure or malfunction. This rating is typically expressed in terms of the maximum current that the system can safely withstand for a specific duration, often in the range of microseconds or milliseconds.The importance of understanding and designing for shock resistance and impulse current cannot be overstated. Electrical systems that are not adequately protected against these transient events can suffer from a range of problems, including equipment damage, system downtime, and potential safety hazards. As such, electrical engineers and designers must carefully consider the shock resistance and impulse current requirements of their systems during the design and development process.To achieve the desired level of shock resistance and impulse current protection, various strategies and technologies can be employed. These may include the use of surge protective devices, such as surge arrestors or transient voltage surge suppressors (TVSS), which are designed to divert or absorb high-energy surges before they can reach sensitive equipment. Additionally, the selection of appropriate insulation materials, the proper grounding of the system, and the implementation of effective circuit breakers or fuses can allcontribute to the overall shock resistance and impulse current protection of an electrical system.In the design and analysis of electrical systems, the assessment of shock resistance and impulse current is often a critical step. Engineers may use simulation tools, analytical models, and experimental testing to evaluate the performance of their designs under various transient conditions. This allows them to identify potential vulnerabilities, optimize the system's protection mechanisms, and ensure the overall reliability and safety of the electrical infrastructure.Furthermore, the study of shock resistance and impulse current has implications beyond the realm of electrical engineering. In fields such as power systems, telecommunications, and automotive electronics, the ability to withstand high-intensity electrical events is essential for the proper functioning and longevity of the equipment. As such, the understanding and application of these principles are crucial for the development of robust and resilient electrical systems that can withstand the challenges of the modern technological landscape.In conclusion, the concept of shock resistance and impulse current is a fundamental aspect of electrical engineering that plays a critical role in the design, operation, and safety of electrical systems. By carefully considering these factors and implementing appropriatemitigation strategies, engineers can ensure the reliable and secure performance of electrical infrastructure, ultimately contributing to the advancement of technology and the betterment of society.。
制退器膛口流场数值模拟
制退器膛口流场数值模拟摘要:为研究不同尺寸腔室的膛口制退器情况下对弹丸以及膛口流场产生的影响,运用动网格技术,对弹丸在不同腔室尺寸的膛口制退器下发射时产生的对称流场进行了数值模拟。
展示了制退器膛口流场的发展规律,冲击波、瓶装激波、射流等典型的膛口流场特征随不同腔室尺寸的变化。
探明了不同尺寸腔室的膛口制退器情况下对弹丸以及膛口流场产生的影响。
关键词:炮膛合力;膛口流场;数值模拟;制退器一.研究意义火炮发射时,后效期高温高压的火药气体从膛口瞬时流出,对火炮主体形成很强的后坐力,对炮架产生强冲击作用,影响火炮射击精度和机动性能,制约高性能火炮的发展。
炮口制退器作为一种安装在炮口部位的排气装置,通过控制后效期火药气体的流量分配和气流速度,减小射击时火药气体作用于后坐部分的冲量,并为炮身提供制退力,减小火炮后坐动能和炮架的射击载荷,因而成为一种广泛应用的反后坐技术。
二.研究现状按照结构形式的不同,传统的炮口制退器分为冲击式、反作用式及冲击反作用式。
由于工艺、重量的限制,高效率与低负面效应往往难以兼顾。
近年来,增材制造技术的发展为复杂异型结构的加工制造以及钛合金等难加工轻金属材料的成型制备提供了有力支撑。
也为传统装置结构的优化与创新设计提供了更大的自由空间。
随着计算机技术和计算流体力学的发展,数值模拟已成为低成本研究膛口流场及膛口装置的重要手段,例如:张焕好等、代淑兰等利用数值模拟方法,对不同类型炮口制退器的膛口流场波系、膛口激波及二次焰特征进行了详细研究,得到了制退器装置效率;Lei等、 Chaturvedi 等通过将流场仿真与流固耦合相结合,实现了炮口制退器结构应力与变形响应研究及性能评价。
本研究利用增材制造技术优势,针对机载火炮小口径炮口制退器综合性能的设计需求,提出一种叠加冲击式与反作用式传统制退器结构特征与优点的钛合金新型炮口制退器结构方案,对膛口流场发展过程及特征进行数值模拟分析,并以传统的高效率冲击式炮口制退器为参照,对新型结构制退器的综合性能予以评价。
沥青面层施工碾压阶段排放来源分析栗豪展玉华董舒静路少坤王毓晨党万涛赵瑜隆
沥青面层施工碾压阶段排放来源分析栗豪展玉华董舒静路少坤王毓晨党万涛赵瑜隆发布时间:2023-07-02T09:54:25.224Z 来源:《中国建设信息化》2023年8期作者:栗豪展玉华董舒静路少坤王毓晨党万涛赵瑜隆[导读] 为了确保路基工程的高品质,每一个施工的环节都必须经过周密而严密的把控。
随着社会经济水平不断提高,公路建设事业也取得了巨大的发展,同时对道路质量要求越来越高,如何降低能耗、减少污染成为目前公路工程建设中亟待解决的问题。
目前,国内针对沥青混凝土路面的能耗与排放的定量评估研究还不够完善,这严重制约了其在相关研究中的广泛应用与推广。
要想建设出一条高品质的道路就一定要认真细致地进行各项建设工作。
为此,论文对道路施工中的路面路面进行了全面、系统的理论分析和实际应用研究并对不同路面结构形式下能耗与污染物排放量以及能源消耗等方面进行了对比。
提出可行的能源节约和减少排放,结合具体案例进行深入分析和综合总结。
山东交通学院交通土建工程学院山东济南 250357摘要:为了确保路基工程的高品质,每一个施工的环节都必须经过周密而严密的把控。
随着社会经济水平不断提高,公路建设事业也取得了巨大的发展,同时对道路质量要求越来越高,如何降低能耗、减少污染成为目前公路工程建设中亟待解决的问题。
目前,国内针对沥青混凝土路面的能耗与排放的定量评估研究还不够完善,这严重制约了其在相关研究中的广泛应用与推广。
要想建设出一条高品质的道路就一定要认真细致地进行各项建设工作。
为此,论文对道路施工中的路面路面进行了全面、系统的理论分析和实际应用研究并对不同路面结构形式下能耗与污染物排放量以及能源消耗等方面进行了对比。
提出可行的能源节约和减少排放,结合具体案例进行深入分析和综合总结。
关键词:沥青面层;碾压;能源消耗和废气排放量;节约能源和减少废气排放量0 引言全球气候变暖已经对人类的生产、生活产生了重要的影响,控制和减少温室气体的排放成为当前亟需解决的问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0141-0296/$ - see front matter # 2004 Elsevier Ltd. All rights reserved. doi:10.1016/j.engstruct.2004.03.013
1128
J. Meng et al. / Engineering Structures 26 (2004) 1127–1142
b
a
Received 2 January 2003; received in revised form 1 November 2003; accepted 16 March 2004
Abstract This paper describes an experimental study of a skew bridge model conducted at the Federal Highway Administration TurnerFairbank Highway Research Center. The objectives of the experiment are: (1) to perform a pilot study on the design, construction, instrumentation, testing and data processing of a skew bridge model, (2) to provide experimental data to validate a 3D finite element model developed for the skew bridge, and (3) to confirm the applicability of a simplified bridge model (the dual-beam stick model) developed for the dynamic analysis of skew bridges. Details of the design, construction, instrumentation, testing and data processing of the model bridge are described. Results for static displacements, natural frequencies, mode shapes and damping of the model bridge will be presented. A comparison of the results obtained from these tests with those obtained numerically from a finite element analysis and analytically from the dual stick bridge model shows that good correlation is obtained. # 2004 Elsevier Ltd. All rights reserved.
frequencies, mode shapes and damping that were required in a dynamic analysis. In what follows, the design, construction, instrumentation, testing and data processing of the bridge model are discussed. 2. Design and construction of the bridge model Generally, a dynamic experiment involves three constituent phases: test preparation, dynamic response measurements and modal parameter identification. Test preparation may include model selection, model design, model construction, instrumentation and data acquisition system setup. Details of the test preparation will be discussed in this section. 2.1. Model selection Skew bridges are often used for overpasses. Modern overpasses are typically continuous over two or three spans and designed for two to four lanes of traffic. Including medians, shoulders and guard rails, the width of a typical skew bridge often lies in the range of 36 ft (11 m) to 60 ft (22 m), and the length of each span is in the range of 40 ft (12 m) to 100 ft (30.5 m) [3]. Ideally, a full-scale model should be used for the tests. However, due to limitations on experimental expenses and other lab conditions, a scaled model was used instead. The size of the scaled model was determined primarily by the size of the NDE laboratory in the Federal Highway Administration’s Turner-Fairbank Highway Research Center in McLean, Virginia. Based on the feasibility of setting up the largest possible size skew bridge model in the given lab space and proper considerations given to similitude [17–20], a two-span continuous bridge with a span length and deck width of 12 ft (3.6 m) and 7 ft (2 m), respectively, was designed. This represented a scale factor of
c
Bryant Associates, Syracuse, NY 13202, USA Federal Highway Administration, 6300 Georgetown Pike, McLean, VA 22101-2296, USA Department of Civil and Environmental Engineering, Syracuse University, 220 Hinds Hall, Syracuse, NY 13244-1190, USA
Keywords: Skew bridge; Dynamic analysis; Experimental study
1. Introduction The experimental study of the vibration characteristics of structural systems is an important element in our efforts to understand and control the many vibration phenomena encountered in design. Very often, tests are performed on a complex structure with the objective of obtaining an empirical description of its dynamic behavior, or providing verification for an analytiel. To quantify the dynamic response of a given structure, the determination of its intrinsic dynamic properties such as natural frequencies, vibration modes and damping, etc., is of particular importance. These structural characteristics can be determined using a modal test [6,8]. Performing a modal test on a structure allows an analyst to validate results generated using a finite element (or other analytical or numerical) model, and so more confidence can be placed on the structural model to provide meaningful analysis results.
à Corresponding author. Tel.: +1-315-443-2311; fax: +1-315-4431243. E-mail address: emlui@ (E.M. Lui).