2013上测试试卷1与2
2013九年级数学上期期末试卷(含答案)
2013九年级数学上期期末试卷(含答案) 2012—2013学年度第一学期期末试卷九年级数学(满分:150分测试时间:120分钟)题号一二三总分合分人1-89-1819202122232425262728得分一.选择题(每题有且只有一个答案正确,请把你认为正确的答案前的字母填入下表相应的空格内,每题3分,计24分)题号12345678答案1.下列图形中,既是轴对称图形,又是中心对称图形的是()A.平行四边形B.等边三角形C.等腰梯形D.正方形2.如右图,数轴上点表示的数可能是()A.B.C.D.3.给出下列四个结论,其中正确的结论为()A.等腰三角形底边上的中点到两腰的距离相等B.正多边形都是中心对称图形C.三角形的外心到三条边的距离相等D.对角线互相垂直且相等的四边形是正方形4.已知⊙O1、⊙O2的半径分别为3cm、5cm,且它们的圆心距为8cm,则⊙O1与⊙O2的位置关系是()A.外切B.相交C.内切D.内含5.对任意实数,多项式的值是一个()A.正数B.负数C.非负数D.无法确定6.将抛物线先向左平移2个单位,再向下平移2个单位,那么所得抛物线的函数关系式是()A.y=(x+2)2+2B.y=(x+2)2-2C.y=(x-2)2+2D.y=(x-2)2-2 7.已知一元二次方程的两个解恰好分别是等腰△ABC的底边长和腰长,则△ABC的周长为()A.13B.11C.11或13D.128.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A、B两点,与y轴交于点C,点B坐标(﹣1,0),下面的四个结论:①OA=3;②a+b+c<0;③ac>0;④b2﹣4ac>0.其中正确的结论是()A.①④B.①③C.②④D.①②二、填空题(本大题共10个小题,每小题3分,共30分.)9.在函数关系式中,的取值范围是.10.已知梯形的中位线长是4cm,下底长是5cm,则它的上底长是cm.11.抛物线的顶点坐标是.12.平面直角坐标系内的三个点A(1,0)、B(0,-3)、C(2,-3)确定一个圆(填“能”或“不能”)。
2013年六年级数学上册期末试卷
2012年义务教育阶段六年级第一学期期末考试试卷数 学时量:90分钟 满分:100分一、仔细填空。
(每空1分,共计23分)1、( )÷8=()40= 0.5 = ( )% = ( ):( )。
2、实际造林面积比计划增加20%,实际造林面积相当于计划的( )%。
3、最大两位数的倒数是( ),119和( )互为倒数。
4、119和109的比值是( ),化简比是( )。
5、王大伯家养的母鸡只数是公鸡的8倍。
如果养了x 只公鸡,母鸡有( )只。
6、在31、0.333、33%、0.3中,最大的数是( ),最小的数是( )。
7、5.06吨=( )千克 9.04立方分米=( )毫升8、在下面的○里填上“<”、“>”、或“=”。
119×24○1195÷8○62.5%36÷72○36 132×49○1329、六(3)班有50人,今天2人请病假,今天的出勤率为( )%。
10、把两个棱长1分米的正方体拼成一个长方体。
这个长方体的体积是( )立方分米。
11、一个正方体的六个面上分别写有1、2、3、4、5、6。
把这个正方体任意上抛,落下后,数字“1”朝上的可能性是( )( ),奇数朝上的可能性是( )( ) 。
二、认真判断。
(5分)1.一个苹果重320 千克 ,也就是重15%千克。
…………………………( )2.一个长方体相邻的2个面是正方形,这个长方体一定是正方体。
……( )3.两条彩带都是长a 米,第一条用去41米,第二条用去41。
第二条用去的长。
( )4. 一批试制产品,合格的有120件,不合格的有30件,合格率是80%。
( )5. 把一个比的前项扩大3倍,后项缩小3倍,它的比值不变。
…………( )三、慎重选择。
(5)1. 一个不为0的数除以71,这个数就( )。
A 、扩大7倍 B 、缩小7倍 C 、减少7倍2. a 是一个不为0的自然数,在下面的各算式中,( )的得数最小。
2013年全国高考理综试题及答案-新课标
2013年普通高等学校招生全国统一考试理科综合能力测试注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2. 回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号框涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号框。
写在本试卷上无效。
3. 答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
4. 考试结束,将试题卷和答题卡一并交回。
可能用到的相对原子质量:H 1 C 12 N 14 O 16 F 19 Na 23 Al 27 S 32 Cl 35.5 K 39 Ca40 Cr 52 Fe 56 Ni 59 Cu 64 Zn 65一、选择题:本题共13小题,每小题6分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.关于DNA和RNA的叙述,正确的是A.DNA有氢键,RNA没有氢键B.一种病毒同时含有DNA和RNAC.原核细胞中既有DNA,也有RNAD.叶绿体、线粒体和核糖体都含有DNA2.关于叶绿素的叙述,错误的是A.叶绿素a和叶绿素b都含有镁元素B.叶绿素吸收的光可能用于光合作用C.叶绿素a和叶绿素b在红光区的吸收峰值不同D.植物呈现绿色是由于叶绿素能有效地吸收绿光3.下列与微生物呼吸有关的叙述,错误的是A.肺炎双球菌无线粒体,但能进行有氧呼吸B.与细菌呼吸有关的酶由拟核中的基因编码C.破伤风芽孢杆菌适宜生活在有氧的环境中D.有氧和无氧时,酵母菌呼吸作用产物不痛4.关于免疫细胞的叙述,错误的是A.淋巴细胞包括B细胞、T细胞和吞噬细胞B.血液和淋巴液中都含有T细胞和B细胞C.吞噬细胞和B细胞都属于免疫细胞D.浆细胞通过胞吐作用分泌抗体5. 在生命科学发展过程中,证明DNA是遗传物质的实脸是①孟德尔的豌豆杂交实验②摩尔根的果蝇杂交实脸③肺炎双球菌转化实验④T2噬菌体侵染大肠杆菌实验⑤ DNA的X光衍射实脸A.①②B.②③C.③④D.④⑤6. 关于酶的叙述,错误的是A. 同一种酶可存在于分化程度不同的活细胞中B.低温能降低酶活性的原因是其破坏了酶的空间结构C.酶通过降低化学反应的活化能来提高化学反应速度D.酶既可以作为催化剂,也可以作为另一个反应的底物7. 在一定条件下,动植物油脂与醇反应可制备生物柴油,化学方程式如下:下列叙述错误的是.A.生物柴油由可再生资源制得B. 生物柴油是不同酯组成的混合物C.动植物油脂是高分子化合物D. “地沟油”可用于制备生物柴油8. 下列叙述中,错误的是A.苯与浓硝酸、浓硫酸共热并保持55-60℃反应生成硝基苯B.苯乙烯在合适条件下催化加氢可生成乙基环己烷C.乙烯与溴的四氯化碳溶液反应生成1,2-二溴乙烷D.甲苯与氯气在光照下反应主要生成2,4-二氯甲笨9.N0为阿伏伽德罗常数的值.下列叙述正确的是A.1.OL1.0mo1·L-1的NaAIO2水溶液中含有的氧原子数为2N0B.12g石墨烯(单层石墨)中含有六元环的个数为0.5N0C. 25℃时pH=13的NaOH溶液中含有OH一的数目为0.1 N0D. I mol的羟基与1 mot的氢氧根离子所含电子数均为9 N010.能正确表示下列反应的离子方程式是A.浓盐酸与铁屑反应:2Fe+6H+=2Fe3++3H2↑B.钠与CuSO4溶液反应:2Na+Cu2+=Cu↓+2Na+C.NaHCO3溶液与稀H2SO4反应:CO2-3+2H+=H2O+CO2↑D.向FeCl3溶液中加入Mg(OH)2:3Mg(OH)2+2Fe3+=2Fe(OH)3+3Mg2+11.“ZEBRA”蓄电池的结构如图所示,电极材料多孔Ni/Nicl2和金属钠之间由钠离子导体制作的陶瓷管相隔。
期中测试卷二【测试范围:第一、二章】(解析版)高一化学上学期期中考试复习
2023−2024学年上学期期中模拟考试02高一化学时间:90分钟满分:100分测试范围:第一、二章可能用到的相对原子质量:H 1C 12N 14O 16Na 23S 32Cl 35.5Fe 56选择题答题卡题号123456789101112131415161718答案第Ⅰ卷(选择题共54分)一、选择题:本题共18个小题,每小题3分,共54分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.根据所学知识分析,下列物质分类正确的是混合物纯净物单质电解质A 氯水NaOH 石墨24K SO 溶液B 空气盐酸铁23Na CO C 胆矾2CuCl 水银盐酸D()3Fe OH 胶体3KNO 晶体3O NaCl【答案】D【解析】A .K 2SO 4溶液为混合物,不是电解质,A 错误;B .盐酸为混合物不是纯净物,B 错误;C .胆矾是五水硫酸铜,是纯净物不是混合物,盐酸是混合物不是电解质,C 错误;D .选项中四种物质分类正确,D 正确;故答案选D 。
2.下列关于各物质的说法正确的是A .Ca(OH)2是大理石的主要成分,常用于建筑材料B .ClO 2有强氧化性,可用于自来水的消毒C .NaHCO 3俗称小苏打,常用于造玻璃D .Na 2O 2是碱性氧化物,常用作供氧剂【答案】B【解析】A .CaCO 3是大理石的主要成分,常用于建筑材料,A 错误;B .ClO 2有强氧化性,能够使细菌、病毒的蛋白质分子结构发生改变而发生变性,因而会失去生理活性,因此可用于自来水的消毒,B正确;C.NaHCO3俗称小苏打,常用于治疗胃酸过多,但不能用于制造玻璃,C错误;D.Na2O2属于过氧化物,由于Na2O2能够与水及二氧化碳反应产生氧气,因此常用作供氧剂,D错误;故合理选项是B。
3.用如图所示的装置分别进行如下导电性实验,小灯泡的亮度比反应前明显减弱的是A.向硫化钠溶液中通入氯气B.向硝酸银溶液中通入少量氯化氢C.Ba(OH)2中加入适量稀硫酸D.向氢氧化钠溶液中通入少量氯气【答案】C【解析】A.向硫化钠溶液中通入氯气,发生反应:Na2S+Cl2=2NaCl+S↓,反应后的溶液中离子浓度有所增大,但由于反应前的S2-带两个单位负电荷,所以溶液导电能力变化不大,故A不选;B.向硝酸银溶液中通入少量氯化氢,发生反应:AgNO3+HCl=AgCl↓+HNO3,反应后的溶液中离子浓度变化不明显,溶液导电能力变化不明显,故B不选;C.Ba(OH)2中加入适量稀硫酸,发生反应:Ba(OH)2+H2SO4=BaSO4↓+2H2O,反应后的溶液中离子浓度明显变小,溶液导电能力明显下降,灯泡变暗,故C选;D.氢氧化钠溶液中通入少量氯气发生反应:2NaOH+Cl2=NaClO+NaCl+H2O,反应后的溶液中离子浓度变化不明显,溶液导电能力变化不明显,故D不选;答案选C。
2013-15年考研数学一、二、三答案
2013年考研数学一真题与解析一、选择题 1—8小题.每小题4分,共32分.1.已知c xxx k x =-→arctan lim0,则下列正确的是 (A )21,2-==c k (B )21,2==c k(C )31,3-==c k (D )31,3==c k【分析】这是0型未定式,使用洛必达则即可.或者熟记常见无穷小的马克劳林公式则可快速解答.【详解1】c kx x kx x x x x x k x k x kx ==+=--→-→→12012200lim 1lim arctan lim ,所以k ,c k 121==-,即31,3==c k .【详解2】 因为)(31arctan 33x o x x x +-=,显然331arctan x x x =-,当然有31,3==c k .应该选(D) 2.曲面0)cos(2=+++x yz xy x 在点)1,1,0(-的切平面方程为(A )2-=+-z y x (B )0=++z y x (C )32-=+-z y x (D )0=--z y x【分析】此题考查的是空间曲面在点),,(000z y x M 处的法向量及切平面的方程.其中法向量为()),,(000|,,z y x z y x F F F =.【详解】设x yz xy x z y x F +++=)cos(),,(2,则在点点)1,1,0(-处())1,1,1(|,,000,,(-==z y x z y x F F F ,从而切平面方程为0)1()1()0(=++---z y x ,即2-=+-z y x .应该选(A)3.设21)(-=x x f ,),2,1(d sin )(210 ==⎰n x x n x f b n π,令∑∞==1sin )(n n x n b x S π,则=⎪⎭⎫⎝⎛-49S(A)43 (B)41 (C)41- (D)43【分析】此题考查的是傅立叶级数的收敛性. 【详解】由条件可知,∑∞=1sin n n x n b π为21)(-=x x f 的正弦级数,所以应先把函数进行奇延拓,由收敛定理可知∑∞==1sin )(n nx n b x S π也是周期为2的奇函数,故41414141)49(-=⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-=-f S S S ,应选(C).4.设1:221=+y x L ,2:222=+y x L ,22:223=+y x L ,22:224=+y x L 为四条逆时针方向的平面曲线,记)4,3,2,1(32633=⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛+=⎰i dy x x dx y y I i L i ,则{}=4321,,,max I I I I (A)1I (B)2I (C)3I (D)4I 【分析】此题考查的是梅林公式和二重积分的计算. 【详解】由格林公式,⎰⎰⎰⎰⎰⎪⎪⎭⎫ ⎝⎛+-=⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛+=i i i D i D L i dxdy y x D S dxdy y x dy x x dx y y I 2)(21326222233. .8343)(43)2(403202222222222R dr r d dxdy y x dxdy y x R R y x R y x πθπ==+=+⎰⎰⎰⎰⎰⎰≤+≤+ 所以πππ85831=-=I ,248322πππ=⋅-=I ; 在椭圆D :12222≤+by a x 上,二重积分最好使用广义极坐标计算:πθθθθθθθπππ4)2(cos 4)2(sin 2cos 4sin 21cos )2(222022220222210222222201222222b a ab d ba ab b a ab abrdrr b r a d dxdy y x b y ax +=+=⎪⎪⎭⎫ ⎝⎛+=⎪⎭⎫⎝⎛+=+⎰⎰⎰⎰⎰⎰≤+故ππ82523-=I ,πππ222224=-=I . 显然π224=I 最大.故应选(D). 二、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)9.设函数)(x f y =由方程)1(y x e x y -=-确定,则=⎪⎪⎭⎫ ⎝⎛-⎪⎭⎫⎝⎛∞→11lim n f n n .【详解】当0=x 时,1)0(==f y ,利用隐函数求导法则知1)0('=f .1)0('1)0(1lim 11lim ==-⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛∞→∞→f nf n f n f n n n . 10.已知x x x x x xe y xe e y xe e y 2322231,,-=-=-=是某个二阶常系数线性微分方程三个解,则该方程的通解为 .【详解】显然x e y y 331=-和x e y y =-32是对应的二阶常系数线性齐次微分方程两个线性无关的解,由解的结构定理,该方程的通解为x x x xe e C e C y 2231-+=,其中21,C C 为任意常数.11.设⎩⎨⎧+==t t t y t x cos sin sin t 为参数,则==422|πt dx y d .【详解】t dx dy tdt t dy tdt dx ===,cos ,cos ,t t dxy d sec cos 122==, 所以2|422==πt dx yd .12.=+⎰∞+x d x x12)1(ln . 【详解】2ln |1ln )1(1|1ln 11ln )1(ln 111112=+=+++-=+-=+∞+∞+∞+∞+∞+⎰⎰⎰x x dx x x x x x xd x d x x 三、解答题15.(本题满分10分) 计算⎰10)(dx xx f ,其中⎰+=x dt t t x f 1)1ln()(. 【分析】被积函数中含有变上限积分,所以应该用分部积分法.【详解】π282ln 414|)1ln(4)1ln(4)1ln(2|)(2)(2)(1010110101010-+-=+++-=+-=+-==⎰⎰⎰⎰⎰dx xxx x x d x dx x x x x f x x d x f dx xx f16.(本题满分10分)设数列{}n a 满足条件:)2(0)1(,1,3110≥=--==-n a n n a a a n n ,)(x S 是幂级数∑∞=0n n n x a 的和函数. (1)证明:0)()(=-''x S x S ; (2)求)(x S 的表达式.【详解】(1)证明:由幂级数和函数的分析性质可知,;)(100∑∑∞=∞=+==n n n n nn x a a x a x S∑∑∑∑∑∞=+∞=+∞=-∞=∞=++=+==+==1110111100)1()1()'()'()('n n n n nn n n n n nn n nn x a n a x a n xna x a a x a x S ;∑∑∑∞=+∞=-+∞=+++=+=++=''02111111)2)(1()1()')1(()('n n n n n n n nn x a n n xa n n x a n a x S ,由条件可得n n a a n n =+++2)2)(1(, 所以)()2)(1()('02x S x a x a n n x S n nn n nn ==++=''∑∑∞=∞=+, 也就有0)()(=-''x S x S .(2)解:由于,)(100∑∑∞=∞=+==n n n n nn x a a xa x S 所以3)0(0==a S∑∞=+++=111)1()('n n n x a n a x S ,所以1)0('1==a S ,解微分方程1)0(',3)0(,0)()(===-''S S x S x S , 可得x x e e x S 2)(+=-. 17.(本题满分10分)求函数yx e x y y x f +⎪⎪⎭⎫ ⎝⎛+=3),(3的极值.18.(本题满分10分)设奇函数)(x f 在[]1,1-上具有二阶导数,且1)1(=f ,证明: (1)存在)1,0(∈ξ,使得()1'=ξf ;(2)存在)1,1(-∈η,使得1)()(='+''ηηf f . 【详解】证明:(1)由于)(x f 为奇函数,则0)0(=f ,由于)(x f 在[]1,1-上具有二阶导数,由拉格朗日定理,存在)1,0(∈ξ,使得101)0()1()('=--=f f f ξ.(2)由于)(x f 为奇函数,则)('x f 为偶函数,由(1)可知存在)1,0(∈ξ,使得()1'=ξf ,且()1'=-ξf , 令)1)('()(-=x f e x x ϕ,由条件显然可知)(x ϕ在[]1,1-上可导,且0)()(==-ξϕξϕ, 由罗尔定理可知,存在)1,1(),(-⊂-∈ξξη,使得(),0'=ηϕ即1)()(='+''ηηf f . 19.(本题满分10分)设直线L 过,)0,0,1(A )1,1,0(B 两点,过L 绕Z 轴旋转一周得到曲面∑,曲面∑与平面2,0==z z 所围成的立体为Ω.(1)求曲面∑的方程;(2)求立体Ω的质心坐标. 【详解】(1)直线L 的对称式方程为1111zy x ==--, 设),,(z y x M 为曲面∑上的任意一点,并且其对应于直线L 上的点为),,(0000z y x M , 由于过L 绕Z 轴旋转一周得到曲面∑,所以有如下式子成立⎪⎪⎪⎩⎪⎪⎪⎨⎧==--+=+=11110002202200z y x y x y x z z ,整理可得,122222+-=+z z y x ,这就是曲面∑的方程. (2)设Ω的质心坐标为()z y x ,,,由对称性,显然0,0==y x ,57310314)122()22(2220231222012220222222==+-+-===⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+-≤++-≤+ΩΩππππdz z z dz z z z dxdy zdzdxdy dzdvzdv z z z y x z z y x , 所以Ω的质心坐标为()⎪⎭⎫ ⎝⎛=57,0,0,,z y x .2013年考研数学二真题及答案一、选择题 1—8小题.每小题4分,共32分.1.设2)(),(sin 1cos παα<=-x x x x ,当0→x 时,()x α ( )(A )比x 高阶的无穷小 (B )比x 低阶的无穷小(C )与x 同阶但不等价无穷小 (D )与x 等价无穷小 【详解】显然当0→x 时)(~21~)(sin ,21~)(sin 1cos 2x x x x x x x ααα--=-,故应该选(C ). 2.已知()x f y =是由方程()1ln cos =+-x y xy 确定,则=⎪⎪⎭⎫ ⎝⎛-⎪⎭⎫⎝⎛∞→12lim n f n n ( )(A )2 (B )1 (C )-1 (D )-2 【分析】本题考查的隐函数的求导法则信函数在一点导数的定义.【详解】将0=x 代入方程得1)0(==f y ,在方程两边求导,得01')')(sin(=+-+-yy xy y xy ,代入1,0==y x ,知1)0(')0('==f y .2)0('22)0()2(lim 212lim ==-=⎪⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛∞→∞→f nf n f n f n n n ,故应该选(A ). 3.设⎩⎨⎧∈∈=]2,[,2),0[,sin )(πππx x x x f ,⎰=x dt t f x F 0)()(则( )(A)π=x 为)(x F 的跳跃间断点. (B)π=x 为)(x F 的可去间断点. (C))(x F 在π=x 连续但不可导. (D))(x F 在π=x 可导. 【详解】只要注意π=x 是函数)(x f 的跳跃间断点,则应该是⎰=x dt t f x F 0)()(连续点,但不可导.应选(C).4.设函数⎪⎪⎩⎪⎪⎨⎧≥<<-=+-e x xx e x x x f ,ln 11,)1(1)(11αα,且反常积分()dx x f ⎰∞+收敛,则( )(A )2-<α (B )2>a (C )02<<-a (D )20<<α 【详解】⎰⎰⎰∞++-∞++-=e e dx xx x dx dx x f 1111ln 1)1()(αα, 其中⎰⎰---=-10111)1(e e t dt x dxαα当且仅当11<-α时才收敛;而第二个反常积分x x dx xx x eαξαααln lim 11|ln 1ln 111+∞→∞+-∞++-=-=⎰,当且仅当0>a 才收敛. 从而仅当20<<α时,反常积分()dx x f ⎰∞+才收敛,故应选(D).5.设函数()xy f x y z =,其中f 可微,则=∂∂+∂∂yz x z y x ( ) (A ))('2xy yf (B ))('2xy yf -(C ))(2xy f x (D ))(2xy f x- 【详解】)('2)(')(1)(')(22xy yf xy yf xy f xxy f x y xy f x y y x y z x z y x =++⎪⎪⎭⎫ ⎝⎛+-=∂∂+∂∂.应该选(A ). 6.设k D 是圆域{}1|),(22≤+=y x y x D 的第k 象限的部分,记⎰⎰-=kD k dxdy x y I )(,则( )(A )01>I (B )02>I (C )03>I (D )04>I 【详解】由极坐标系下二重积分的计算可知()ππππππθθθθθθθθ22122110222)1(|cos sin 31)sin (sin 31)cos (sin )(k k kk kk D k d dr r d dxdy x y I k ---+-=-=-=-=⎰⎰⎰⎰⎰所以ππ32,32,04231-====I I I I ,应该选(B ). 二、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)9. =⎪⎭⎫⎝⎛+-→xx x x 10)1ln(2lim . 【详解】21)(21(lim)1ln(lim 101022202)1ln(1lim )1ln(2lim e eex x x x x x x o x x x xx x xx xx x x ===⎪⎭⎫ ⎝⎛+-+=⎪⎭⎫ ⎝⎛+-+--+-→→→→.10.设函数dt e x f x t ⎰--=11)(,则)(x f y =的反函数)(1y f x -=在0=y 处的导数==0|y dydx. 【详解】由反函数的求导法则可知11011|1|--==-==e dxdy dy dx x y .11.设封闭曲线L 的极坐标方程为⎪⎭⎫ ⎝⎛≤≤-=663cos πθπθr t 为参数,则L 所围成的平面图形的面积为 .【详解】12cos 313cos 2121202662662πθθθπππππ====⎰⎰⎰--dt t d d r A所以.答案为12π.12.曲线上⎪⎩⎪⎨⎧+==21ln arctan ty tx 对应于1=t 处的法线方程为 .【详解】当1=t 时,2ln 21,4==y x π,1|111|'1221=++===t t t t ty ,所以法线方程为 )4(12ln 21π--=-x y ,也就是042ln 21=--+πx y .13.已知x x x x x xe y xe e y xe e y 2322231,,-=-=-=是某个二阶常系数线性微分方程三个解,则满足1)0(',0)0(==y y 方程的解为 .【详解】显然x e y y 331=-和x e y y =-32是对应的二阶常系数线性齐次微分方程两个线性无关的解,由解的结构定理,该方程的通解为x x x xe e C e C y 2231-+=,其中21,C C 为任意常数.把初始条件代入可得1,121-==C C ,所以答案为x x x xe e e y 23--= 三、解答题15.(本题满分10分)当0→x 时,x x x 3cos 2cos cos 1-与nax 是等价无穷小,求常数n a ,.【分析】主要是考查0→x 时常见函数的马克劳林展开式. 【详解】当0→x 时,)(211cos 22x o x x +-=,)(21)()2(2112cos 2222x o x x o x x +-=+-=,)(291)()3(2113cos 2222x o x x o x x +-=+-=,所以)(7))(291))((21))((211(13cos 2cos cos 122222222x o x x o x x o x x o x x x x +=+-+-+--=-,由于x x x 3cos 2cos cos 1-与nax 是等价无穷小,所以2,7==n a .16.(本题满分10分) 设D 是由曲线3x y =,直线a x =)0(>a 及x 轴所转成的平面图形,y x V V ,分别是D 绕x 轴和y 轴旋转一周所形成的立体的体积,若y x V V =10,求a 的值. 【详解】由微元法可知πππ35320253a dx x dx y V a ax ===⎰⎰;πππ37340762)(2a dx x dx x xf V a ay ===⎰⎰;由条件y x V V =10,知77=a .17.(本题满分10分)设平面区域D 是由曲线8,3,3=+==y x x y y x 所围成,求⎰⎰Ddxdy x 2. 【详解】341683622332222221=+=+=⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰-xx xx D D Ddy dx x dy dx x dxdy x dxdy x dxdy x . 18.(本题满分10分)设奇函数)(x f 在[]1,1-上具有二阶导数,且1)1(=f ,证明: (1)存在)1,0(∈ξ,使得()1'=ξf ;(2)存在)1,1(-∈η,使得1)()(='+''ηηf f . 【详解】证明:(1)由于)(x f 为奇函数,则0)0(=f ,由于)(x f 在[]1,1-上具有二阶导数,由拉格朗日定理,存在)1,0(∈ξ,使得101)0()1()('=--=f f f ξ.(2)由于)(x f 为奇函数,则)('x f 为偶函数,由(1)可知存在)1,0(∈ξ,使得()1'=ξf ,且()1'=-ξf , 令)1)('()(-=x f e x x ϕ,由条件显然可知)(x ϕ在[]1,1-上可导,且0)()(==-ξϕξϕ, 由罗尔定理可知,存在)1,1(),(-⊂-∈ξξη,使得(),0'=ηϕ即1)()(='+''ηηf f . 19.(本题满分10分)求曲线)0,0(133≥≥=+-y x y xy x 上的点到坐标原点的最长距离和最短距离. 【分析】考查的二元函数的条件极值的拉格朗日乘子法. 【详解】构造函数)1(),(3322-+-++=y xy x y x y x L λ令⎪⎪⎪⎩⎪⎪⎪⎨⎧=+-=-+=∂∂=-+=∂∂10)3(20)3(23322y xy x x y y y Ly x x x L λλ,得唯一驻点1,1==y x ,即)1,1(1M . 考虑边界上的点,)0,1(),1,0(32M M ;距离函数22),(y x y x f +=在三点的取值分别为1)0,1(,1)1,0(,2)1,1(===f f f ,所以最长距离为2,最短距离为1.20.(本题满分11) 设函数xx x f 1ln )(+=⑴求)(x f 的最小值;⑵设数列{}n x 满足11ln 1<++n n x x ,证明极限n n x ∞→lim 存在,并求此极限.【详解】 (1)22111)('xx x x x f -=-=, 令0)('=x f ,得唯驻点1=x ,当)1,0(∈x 时,0)('<x f ,函数单调递减;当),1(∞∈x 时,0)('>x f ,函数单调递增. 所以函数在1=x 处取得最小值1)1(=f . (2)证明:由于11ln 1<++n n x x ,但11ln ≥+nn x x ,所以n n x x 111<+,故数列{}n x 单调递增. 又由于11ln ln 1<+≤+n n n x x x ,得到e x n <<0,数列{}n x 有界.由单调有界收敛定理可知极限n n x ∞→lim 存在.令a x n n =∞→lim ,则11ln 1ln lim 1≤+=⎪⎪⎭⎫ ⎝⎛++∞→a a x x n n n ,由(1)的结论可知1lim ==∞→a x n n .21.(本题满分11) 设曲线L 的方程为)1(ln 21412e x x x y ≤≤-=. (1)求L 的弧长.(2)设D 是由曲线L ,直线e x x ==,1及x 轴所围成的平面图形,求D 的形心的横坐标. 【详解】(1)曲线的弧微分为dx xx dx x x dx y dx )1(211411'12+=⎪⎭⎫ ⎝⎛-+=+=, 所以弧长为41)1(2121+=+==⎰⎰e dx x x ds s e .(2)设形心坐标为()y x ,,则)7(4)32(31271632324324ln 214101ln 21410122---=---===⎰⎰⎰⎰⎰⎰⎰⎰--e e e e e e dy dx dy xdx dxdy xdxdyx x x x x eD D.2013年考研数学三真题及答案一、选择题 1—8小题.每小题4分,共32分.1.当0→x 时,用)(x o 表示比x 高阶的无穷小,则下列式子中错误的是( )(A ))()(32x o x o x =⋅ (B ))()()(32x o x o x o = (C ))()()(222x o x o x o =+ (D ))()()(22x o x o x o =+【详解】由高阶无穷小的定义可知(A )(B )(C )都是正确的,对于(D )可找出反例,例如当0→x 时)()(),()(2332x o x x g x o x x x f ===+=,但)()()(x o x g x f =+而不是)(2x o 故应该选(D ). 2.函数xx x x x f xln )1(1)(+-=的可去间断点的个数为( )(A )0 (B )1 (C )2 (D )3 【详解】当0ln →x x 时,x x ex xx xln ~11ln -=-,1ln ln limln )1(1lim)(lim 0==+-=→→→x x x x x x x x x f x xx x ,所以0=x 是函数)(x f 的可去间断点.21ln 2ln limln )1(1lim)(lim 011==+-=→→→xx xx xx x x x f x xx x ,所以1=x 是函数)(x f 的可去间断点. ∞=+-=+-=-→-→-→xx x x xx x x x f x x x x ln )1(ln limln )1(1lim)(lim 111,所以所以1-=x 不是函数)(x f 的可去间断点.故应该选(C ).3.设k D 是圆域{}1|),(22≤+=y x y x D 的第k 象限的部分,记⎰⎰-=kD k dxdy x y I )(,则( )(A )01>I (B )02>I (C )03>I (D )04>I 【详解】由极坐标系下二重积分的计算可知()ππππππθθθθθθθθ22122110222)1(|cos sin 31)sin (sin 31)cos (sin )(k k kk kk D k d dr r d dxdy x y I k ---+-=-=-=-=⎰⎰⎰⎰⎰所以ππ32,32,04231-====I I I I ,应该选(B ). 4.设{}n a 为正项数列,则下列选择项正确的是( ) (A )若1+>n n a a ,则∑∞=--11)1(n n n a 收敛;(B )若∑∞=--11)1(n n n a 收敛,则1+>n n a a ;(C )若∑∞=1n na收敛.则存在常数1>P ,使n pn a n ∞→lim 存在;(D )若存在常数1>P ,使n pn a n ∞→lim 存在,则∑∞=1n na收敛.【详解】由正项级数的比较审敛法,可知选项(D )正确,故应选(D).此小题的(A )(B )选项想考查的交错级数收敛的莱布尼兹条件,对于选项(A ),但少一条件0lim =∞→n n a ,显然错误.而莱布尼兹条件只是交错级数收敛的充分条件,不是必要条件,选项(B )也不正确,反例自己去构造.二、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)9.设曲线)(x f y =和x x y -=2在点()0,1处有切线,则=⎪⎭⎫⎝⎛+∞→2lim n n nf n . 【详解】由条件可知()1)1(',01==f f .所以2)1('22222)1(221lim 2lim -=-=-+⋅+--⎪⎭⎫ ⎝⎛+-+=⎪⎭⎫⎝⎛+∞→∞→f nn n f n f n n nf n n 10.设函数()y x z z ,=是由方程()xy y z x=+确定,则=∂∂)2,1(|xz. 【详解】设()xy y z z y x F x-+=)(,,,则()1)(),,(,)ln()(,,-+=-++=x z x x y z x z y x F y y z y z z y x F ,当2,1==y x 时,0=z ,所以2ln 22|)2,1(-=∂∂xz. 11.=+⎰∞+x d x x12)1(ln .【详解】2ln |1ln )1(1|1ln 11ln )1(ln 111112=+=+++-=+-=+∞+∞+∞+∞+∞+⎰⎰⎰x x dx x x x x x xd x d x x 12.微分方程041=+'-''y y y 的通解为 . 【详解】方程的特征方程为041=+-λλr,两个特征根分别为2121==λλ,所以方程通解为221)(xe x C C y +=,其中21,C C 为任意常数.三、解答题15.(本题满分10分)当0→x 时,x x x 3cos 2cos cos 1-与nax 是等价无穷小,求常数n a ,.【分析】主要是考查0→x 时常见函数的马克劳林展开式. 【详解】当0→x 时,)(211cos 22x o x x +-=,)(21)()2(2112cos 2222x o x x o x x +-=+-=,)(291)()3(2113cos 2222x o x x o x x +-=+-=,所以)(7))(291))((21))((211(13cos 2cos cos 122222222x o x x o x x o x x o x x x x +=+-+-+--=-,由于x x x 3cos 2cos cos 1-与nax 是等价无穷小,所以2,7==n a .16.(本题满分10分) 设D 是由曲线3x y =,直线a x =)0(>a 及x 轴所转成的平面图形,y x V V ,分别是D 绕x 轴和y 轴旋转一周所形成的立体的体积,若y x V V =10,求a 的值. 【详解】由微元法可知πππ35032253a dx x dx y V a a x ===⎰⎰;πππ370340762)(2a dx x dx x xf V a a y ===⎰⎰;由条件y x V V =10,知77=a . 17.(本题满分10分)设平面区域D 是由曲线8,3,3=+==y x x y y x 所围成,求⎰⎰D dxdy x 2.【详解】341683622332222221=+=+=⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰-xx x x D D Ddy dx x dy dx x dxdy x dxdy x dxdy x . 18.(本题满分10分)设生产某产品的固定成本为6000元,可变成本为20元/件,价格函数为,100060QP -=(P 是单价,单位:元,Q 是销量,单位:件),已知产销平衡,求: (1)该的边际利润.(2)当P=50时的边际利润,并解释其经济意义. (3)使得利润最大的定价P . 【详解】(1)设利润为y ,则6000100040)206000(2--=+-=Q Q Q PQ y , 边际利润为.50040'Q y -= (2)当P=50时,Q=10000,边际利润为20.经济意义为:当P=50时,销量每增加一个,利润增加20.(3)令0'=y ,得.40100002000060,20000=-==P Q19.(本题满分10分)设函数()x f 在),0[+∞上可导,()00=f ,且2)(lim =+∞→x f x ,证明(1)存在0>a ,使得();1=a f(2)对(1)中的a ,存在),0(a ∈ξ,使得af 1)('=ξ. 【详解】证明(1)由于2)(lim =+∞→x f x ,所以存在0>X ,当X x >时,有25)(23<<x f , 又由于()x f 在),0[+∞上连续,且()00=f ,由介值定理,存在0>a ,使得();1=a f (2)函数()x f 在],0[a 上可导,由拉格朗日中值定理, 存在),0(a ∈ξ,使得aa f a f f 1)0()()('=-=ξ.2014年考研数学一真题与解析一、选择题 1—8小题.每小题4分,共32分.1.下列曲线有渐近线的是(A )x x y sin += (B )x x y sin +=2(C )xx y 1sin += (D )xx y 12sin+= 2.设函数)(x f 具有二阶导数,x f x f x g )())(()(110+-=,则在],[10上( ) (A )当0≥)('x f 时,)()(x g x f ≥ (B )当0≥)('x f 时,)()(x g x f ≤ (C )当0≤'')(x f 时,)()(x g x f ≥ (D )当0≤'')(x f 时,)()(x g x f ≤ 【分析】此题考查的曲线的凹凸性的定义及判断方法.【详解1】如果对曲线在区间],[b a 上凹凸的定义比较熟悉的话,可以直接做出判断.如果对区间上任意两点21x x ,及常数10≤≤λ,恒有())()()()(212111x f x f x x f λλλλ+-≥+-,则曲线是凸的. 显然此题中x x x ===λ,,1021,则=+-)()()(211x f x f λλ)()())((x g x f x f =+-110,而())()(x f x x f =+-211λλ,故当0≤'')(x f 时,曲线是凸的,即())()()()(212111x f x f x x f λλλλ+-≥+-,也就是)()(x g x f ≥,应该选(C )【详解2】如果对曲线在区间],[b a 上凹凸的定义不熟悉的话,可令x f x f x f x g x f x F )())(()()()()(110---=-=,则010==)()(F F ,且)(")("x f x F =,故当0≤'')(x f 时,曲线是凸的,从而010==≥)()()(F F x F ,即0≥-=)()()(x g x f x F ,也就是)()(x g x f ≥,应该选(C )3.设)(x f 是连续函数,则=⎰⎰---y y dy y x f dy 11102),((A)⎰⎰⎰⎰---+210011010x x dy y x f dx dy y x f dx ),(),((B)⎰⎰⎰⎰----+010111012x x dy y x f dx dy y x f dx ),(),((C)⎰⎰⎰⎰+++θθππθθπθθθθθθsin cos sin cos )sin ,cos ()sin ,cos (1021020dr r r f d dr r r f d(D)⎰⎰⎰⎰+++θθππθθπθθθθθθsin cos sin cos )sin ,cos ()sin ,cos (1021020rdr r r f d rdr r r f d【分析】此题考查二重积分交换次序的问题,关键在于画出积分区域的草图. 【详解】积分区域如图所示如果换成直角坐标则应该是⎰⎰⎰⎰---+xx dy y x f dx dy y x f dx 10101012),(),(,(A ),(B ) 两个选择项都不正确;如果换成极坐标则为⎰⎰⎰⎰+++θθππθθπθθθθθθsin cos sin cos )sin ,cos ()sin ,cos (1021020rdr r r f d rdr r r f d .应该选(D )4.若函数{}⎰⎰-∈---=--ππππdx x b x a x dx x b x a x Rb a 2211)sin cos (min)sin cos (,,则=+x b x a s in c o s 11(A)x sin 2 (B)x cos 2 (C)x sin π2 (D)x cos π2 【详解】注意3232πππ=⎰-dx x ,222πππππ==⎰⎰--dx x dx x sin cos ,0==⎰⎰--dx x x dx x x ππππsin cos cos , πππ2=⎰-dx x x sin ,所以b b a dx x b x a x πππππ42322232-++=--⎰-)()sin cos ( 所以就相当于求函数b b a 422-+的极小值点,显然可知当20==b a ,时取得最小值,所以应该选(A ).二、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)9.曲面)sin ()sin (x y y x z -+-=1122在点),,(101处的切平面方程为 .【详解】曲面)sin ()sin (x y y x z -+-=1122在点),,(101处的法向量为()),,(|,,),,(1121101--=-y x z z ,所以切平面方程为0110112=--+--+-))(())(()(z y x ,即012=---z y x .10.设)(x f 为周期为4的可导奇函数,且[]2012,),()('∈-=x x x f ,则=)(7f . 【详解】当[]20,∈x 时,C x x dx x x f +-=-=⎰2122)()(,由00=)(f 可知0=C ,即x x x f 22-=)(;)(x f 为周期为4奇函数,故1117==-=)()()(f f f .11.微分方程0=-+)ln (ln 'y x y xy 满足31e y =)(的解为 .【详解】方程的标准形式为x y x y dx dy ln =,这是一个齐次型方程,设xyu =,得到通解为1+=Cx xe y ,将初始条件31e y =)(代入可得特解为12+=x xey .12.设L 是柱面122=+y x 和平面0=+z y 的交线,从z 轴正方向往负方向看是逆时针方向,则曲线积分⎰=+Lydz zdx .【详解】由斯托克斯公式⎰⎰⎰∑∂∂∂∂∂∂=++RQ P z y x dxdy dzdx dydz Rdz Qdy Pdx L 可知π===+=+⎰⎰⎰⎰⎰⎰⎰∑∑xyD Ldxdy dxdy dzdx dydz ydz zdx .其中⎩⎨⎧≤+=+∑1022y x z y :取上侧,{}122≤+=y x y x D xy |),(. 三、解答题15.(本题满分10分)求极限)ln())((limxx dt t e t x tx 1112112+--⎰+∞→.【分析】.先用等价无穷小代换简化分母,然后利用洛必达法则求未定型极限.【详解】21121111111222121122112=⎪⎭⎫ ⎝⎛-++=--=--=+--∞→∞→+∞→+∞→⎰⎰x x o x x x x e x xdtt e t x x dtt e t x xx xtx x tx )((lim ))((lim ))((lim)ln())((lim16.(本题满分10分)设函数)(x f y =由方程06223=+++y x xy y 确定,求)(x f 的极值. 【详解】解:在方程两边同时对x 求导一次,得到0223222=++++)(')(xy y y x xy y , (1)即222232xxy y xyy dx dy ++--=, 令0=dx dy 及06223=+++y x xy y ,得到函数唯一驻点21-==y x ,. 在(1)式两边同时对x 求导一次,得到(022*******=+++++++y y x xy y y x xy y yy ")(')''(把0121=-==)(',,y y x 代入,得到0941>=)("y ,所以函数)(x f y =在1=x 处取得极小值2-=y . 17.(本题满分10分)设函数)(u f 具有二阶连续导数,)cos (y e f z x=满足xx e y e z yz x z 222224)c o s (+=∂∂+∂∂.若0000==)(',)(f f ,求)(u f 的表达式.【详解】设y e u x cos =,则)cos ()(y e f u f z x ==,y e u f y e u f xze uf xzx x y x cos )('cos )(",)('cos +=∂∂=∂∂2222; y e u f y e u f yz y e u f y z x x xcos )('sin )(",sin )('-=∂∂-=∂∂2222; xx x e y e f e u f yz x z 222222)cos (")("==∂∂+∂∂ 由条件xx e y e z yz x z 222224)cos (+=∂∂+∂∂,可知 u u f u f +=)()("4这是一个二阶常用系数线性非齐次方程. 对应齐次方程的通解为:u ue C eC u f 2221-+=)(其中21C C ,为任意常数.对应非齐次方程特解可求得为u y 41-=*.故非齐次方程通解为u e C e C u f u u 412221-+=-)(. 将初始条件0000==)(',)(f f 代入,可得16116121-==C C ,. 所以)(u f 的表达式为u e e u f u u 4116116122--=-)(. 18.(本题满分10分)设曲面)(:122≤+=∑z y x z 的上侧,计算曲面积分:dxdy z dzdx y dydz x )()()(11133-+-+-⎰⎰∑【详解】设⎩⎨⎧≤+=∑11221y x z :取下侧,记由1∑∑,所围立体为Ω,则高斯公式可得 123322222221120(1)(1)(1)(3(1)3(1)1)(33766)(337)(37)4rx dydz y dzdx z dxdy x y dxdydzx y x y dxdydz x y dxdydzd rdr r dz πθπ∑+∑ΩΩΩ-+-+-=--+-+=-++--=-++=-+=-⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰在⎩⎨⎧≤+=∑11221y x z :取下侧上,0111111133=-=-+-+-⎰⎰⎰⎰∑∑dxdy dxdy z dzdx y dydz x )()()()(, 所以dxdy z dzdx y dydz x )()()(11133-+-+-⎰⎰∑=π4111133-=-+-+-⎰⎰∑+∑dxdy z dzdx y dydz x )()()( 19.(本题满分10分) 设数列{}{}n n b a ,满足2020ππ<<<<n n b a ,,n n n b a a cos cos =-且级数∑∞=1n nb收敛.(1) 证明0=∞→n n a lim ;证明级数∑∞=1n nnb a 收敛. 【详解】(1)证明:由n n n b a a cos cos =-,及2020ππ<<<<n n b a ,可得20π<-=<n n n b a a cos cos ,所以20π<<<n n b a ,由于级数∑∞=1n nb收敛,所以级数∑∞=1n na也收敛,由收敛的必要条件可得0=∞→n n a lim .(2)证明:由于2020ππ<<<<n n b a ,,所以2222nn n n n n n n a b a b b a b a -≤-+≤+sin ,sin2sinsin cos cos 22n n n n n n nn nn a b b aa ab b b b +--==222222222n n n nn n n n n n n a b b a b a b b b b b +--≤=<=由于级数∑∞=1n n b 收敛,由正项级数的比较审敛法可知级数∑∞=1n nnb a 收敛. 2014年考研数学二真题一、选择题 1—8小题.每小题4分,共32分.1.当+→0x 时,若)(ln x 21+α,α11)cos (x -均是比x 高阶的无穷小,则α的可能取值范围是( )(A )),(+∞2 (B )),(21 (C )),(121 (D )),(210 2.下列曲线有渐近线的是( )(A )x x y sin += (B )x x y sin +=2(C )xx y 1sin += (D )xx y 12sin+= 3.设函数)(x f 具有二阶导数,x f x f x g )())(()(110+-=,则在],[10上( )(A )当0≥)('x f 时,)()(x g x f ≥ (B )当0≥)('x f 时,)()(x g x f ≤ (C )当0≥'')(x f 时,)()(x g x f ≥ (D )当0≥'')(x f 时,)()(x g x f ≤4.曲线⎩⎨⎧++=+=14722t t y t x ,上对应于1=t 的点处的曲率半径是( ) (A)5010(B)10010 (C)1010 (D)105 5.设函数x x f arctan )(=,若)(')(ξxf x f =,则=→22xx ξlim( )(A)1 (B)32 (C)21(D)316.设),(y x u 在平面有界闭区域D 上连续,在D 的内部具有二阶连续偏导数,且满足02≠∂∂∂yx u及02222=∂∂+∂∂y ux u ,则( ). (A )),(y x u 的最大值点和最小值点必定都在区域D 的边界上; (B )),(y x u 的最大值点和最小值点必定都在区域D 的内部; (C )),(y x u 的最大值点在区域D 的内部,最小值点在区域D 的边界上;(D )),(y x u 的最小值点在区域D 的内部,最大值点在区域D 的边界上.二、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)9.⎰∞-=++12521dx x x .10.设)(x f 为周期为4的可导奇函数,且[]2012,),()('∈-=x x x f ,则=)(7f .11.设),(y x z z =是由方程4722=+++z y x e yz 确定的函数,则=⎪⎭⎫ ⎝⎛2121,|dz .12.曲线L 的极坐标方程为θ=r ,则L 在点⎪⎭⎫⎝⎛=22ππθ,),(r 处的切线方程为 . 13.一根长为1的细棒位于x 轴的区间[]10,上,若其线密度122++-=x x x )(ρ,则该细棒的质心坐标=x . 三、解答题15.(本题满分10分)求极限)ln())((limxx dt t e t x tx 1112112+--⎰+∞→.16.(本题满分10分)已知函数)(x y y =满足微分方程''y y y x -=+122,且02=)(y ,求)(x y 的极大值和极小值. 17.(本题满分10分) 设平面区域{}004122≥≥≤+≤=y x y x y x D .,|),(.计算⎰⎰++Ddxdy y x y x x )sin(22π 18.(本题满分10分)设函数)(u f 具有二阶连续导数,)cos (y e f z x=满足xx e y e z yz x z 222224)c o s (+=∂∂+∂∂.若0000==)(',)(f f ,求)(u f 的表达式.19.(本题满分10分)设函数)(),(x g x f 在区间[]b a .上连续,且)(x f 单调增加,10≤≤)(x g ,证明: (2) []b a x a x dt t g xa,,)(∈-≤≤⎰0;⎰⎰≤⎰+badtt g a adx x g x f dx x f ba )()()()(.20.(本题满分11分)设函数[]101,,)(∈+=x xxx f ,定义函数列 )()(x f x f =1,))(()(x f f x f 12=, )),(()(,x f f x f n n 1-=设n S 是曲线)(x f y n =,直线01==y x ,所围图形的面积.求极限n n nS ∞→lim .21.(本题满分11分) 已知函数),(y x f 满足)(12+=∂∂y yf,且y y y y y f ln )()(),(--+=212,求曲线0=),(y x f 所成的图形绕直线1-=y 旋转所成的旋转体的体积.2014年考研数学三真题与解析一、选择题 1—8小题.每小题4分,共32分.1.设0≠=∞→a a n n lim ,则当n 充分大时,下列正确的有( )(A )2a a n >(B )2a a n <(C )n a a n 1-> (D)na a n 1+< 【详解】因为0≠=∞→a a n n lim ,所以0>∀ε,N ∃,当N n >时,有ε<-a a n ,即εε+<<-a a a n ,εε+≤<-a a a n ,取2a =ε,则知2a a n >,所以选择(A )2.下列曲线有渐近线的是(A )x x y sin += (B )x x y sin +=2 (C )xx y 1sin += (D )xx y 12sin += 【分析】只需要判断哪个曲线有斜渐近线就可以. 【详解】对于x x y 1sin +=,可知1=∞→x y x lim且01==-∞→∞→xx y x x sin lim )(lim ,所以有斜渐近线x y =应该选(C )3.设32dx cx bx a x P +++=)(,则当0→x 时,若x x P tan )(-是比3x 高阶的无穷小,则下列选项中错误的是( )(A )0=a (B )1=b (C )0=c (D )61=d 【详解】只要熟练记忆当0→x 时)(tan 3331x o x x x ++=,显然31010====d c b a ,,,,应该选(D ) 4.设函数)(x f 具有二阶导数,x f x f x g )())(()(110+-=,则在],[10上( )(A )当0≥)('x f 时,)()(x g x f ≥ (B )当0≥)('x f 时,)()(x g x f ≤ (C )当0≥'')(x f 时,)()(x g x f ≥ (D )当0≥'')(x f 时,)()(x g x f ≤ 【分析】此题考查的曲线的凹凸性的定义及判断方法.【详解1】如果对曲线在区间],[b a 上凹凸的定义比较熟悉的话,可以直接做出判断.如果对区间上任意两点21x x ,及常数10≤≤λ,恒有())()()()(212111x f x f x x f λλλλ+-≥+-,则曲线是凸的. 显然此题中x x x ===λ,,1021,则=+-)()()(211x f x f λλ)()())((x g x f x f =+-110,而())()(x f x x f =+-211λλ,故当0≥'')(x f 时,曲线是凹的,即())()()()(212111x f x f x x f λλλλ+-≤+-,也就是)()(x g x f ≤,应该选(D )【详解2】如果对曲线在区间],[b a 上凹凸的定义不熟悉的话,可令x f x f x f x g x f x F )())(()()()()(110---=-=,则010==)()(F F ,且)(")("x f x F =,故当0≥'')(x f 时,曲线是凹的,从而010==≤)()()(F F x F ,即0≤-=)()()(x g x f x F ,也就是)()(x g x f ≤,应该选(D )二、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)9.设某商品的需求函数为p Q 240-=(p 为商品的价格),则该商品的边际收益为 . 【详解】2240p p pQ p R -==)(,边际收益p p R 440-=)('.10.设D 是由曲线01=+xy 与直线0=+y x 及2=y 所围成的有界区域,则D 的面积为 . 【详解】22112101ln +=+=⎰⎰⎰⎰--yydx dy dx dy S 11.设412=⎰ax dx xe ,则=a . 【详解】411241244120202+-=-==⎰)(|)(a e x e dx xe a ax ax .所以.21=a12.二次积分=⎪⎪⎭⎫ ⎝⎛-⎰⎰dx e xe dy y y x 11022. 【详解】)()(12111010101010100110101102222222222-==+-=--=-=⎪⎪⎭⎫ ⎝⎛-⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰e dy ye dy ye dy e edy y e dy x ex d dx e dy dy x e dx dx e x e dy y y y dxx xy x x y y x y y x三、解答题15.(本题满分10分)求极限)ln())((limxx dt t e t x tx 1112112+--⎰+∞→.【分析】.先用等价无穷小代换简化分母,然后利用洛必达法则求未定型极限. 【详解】21121111111222121122112=⎪⎭⎫ ⎝⎛-++=--=--=+--∞→∞→+∞→+∞→⎰⎰x x o x x x x e x xdtt e t x x dtt e t x xx xtx x tx )((lim ))((lim ))((lim)ln())((lim16.(本题满分10分)设平面区域{}004122≥≥≤+≤=y x y x y x D .,|),(.计算⎰⎰++Ddxdy y x y x x )sin(22π 【详解】由对称性可得432112121212022222222-==+=+++=++=++⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰D D D Ddr r r d dxd y x dxdy y x y x y x dxd y x y x y dxd y x y x x πθπππππsin )sin()sin()()sin()sin(17.(本题满分10分)设函数)(u f 具有二阶连续导数,)cos (y e f z x=满足xx e y e z yz x z 222224)c o s (+=∂∂+∂∂.若0000==)(',)(f f ,求)(u f 的表达式.【详解】设y e u xcos =,则)cos ()(y e f u f z x==,y e u f y e u f xz e u f xzxx y x cos )('cos )(",)('cos +=∂∂=∂∂2222; y e u f y e u f yz y e u f y z xx x cos )('sin )(",sin )('-=∂∂-=∂∂2222; x x x e y e f e u f yzx z 222222)cos (")("==∂∂+∂∂由条件x x e y e z yzx z 222224)cos (+=∂∂+∂∂,可知u u f u f +=)()("4这是一个二阶常用系数线性非齐次方程.对应齐次方程的通解为:u u e C e C u f 2221-+=)(其中21C C ,为任意常数.对应非齐次方程特解可求得为u y 41-=*. 故非齐次方程通解为u e C eC u f u u412221-+=-)(.将初始条件0000==)(',)(f f 代入,可得16116121-==C C ,. 所以)(u f 的表达式为u e e u f u u 4116116122--=-)(. 18.(本题满分10分) 求幂级数∑∞=++031n nxn n ))((的收敛域、和函数.【详解】 由于11=+∞→nn n a a lim,所以得到收敛半径1=R .当1±=x 时,级数的一般项不趋于零,是发散的,所以收敛域为()11,-. 令和函数)(x S =∑∞=++031n nxn n ))((,则3211121112131111234)('"'")())(()()(x xx x x x x x x n x n n x n n x S n n n n n nn nn n--=⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=++++=++=∑∑∑∑∑∞=+∞=+∞=∞=∞=19.(本题满分10分)设函数)(),(x g x f 在区间[]b a .上连续,且)(x f 单调增加,10≤≤)(x g ,证明: (3) []b a x a x dt t g xa,,)(∈-≤≤⎰0;。
2013六年级第一学期综合试卷(原创)
2013~2014学年度第一学期期末学业水平测试六 年 级 数 学笔试部分(分值100分,90分钟完成) 等第:一、填空。
(共22分。
每题2分) 1.()()=0.375=( )︰24=6÷( )=( )% 2. 比20米多51是( )米; 8千克的43和10千克的()()同样重。
3.43时=( )分 3600平方米=( )公顷 1500毫升=( )升=( )立方分米 4.白兔和灰兔只数的比是3:2。
灰兔只数是兔子总数的()()。
如果白兔有15只,那么灰兔有( )只。
5.一根钢管长98米,将它平均截成4段,每段是这根钢管的( ),每段是1米的( )。
6.“红花的朵数比黄花多41”这句话中,是把( )看作单位“1”,( )是( )的41,红花的朵数相当于黄花的( )%。
7.仓库里有20吨钢材,第一天用去总数的25%,第二天用去了51吨,两天一共用去( )吨。
8.有一个长10厘米,宽8厘米,高2厘米的长方体,如果把高增加1厘米,那么体积增加( )立方厘米,表面积增加( )平方厘米。
9.小敏(女生)所在的六(1)班有男生20人,女生25人。
现从中选1人参加演讲比赛,小敏被选上的可能性是( ),如果要从班级中选一男一女主持节目,小敏被选中的可能性是( )。
10.妈妈准备用a 元买2千克的苹果,每千克的香蕉比苹果便宜2.5元,如果她换买2千克香蕉就要( )(填“多”或“少”)花( )元,买2千克香蕉要( )元。
11.17cm 323cm 3图中一个小玻璃球的体积是( )立方厘米,大玻璃球的体积是( )立方厘米。
二、选择。
(8分。
每题1分)1. 下面的图形中,折叠后能围成正方体的是( )。
① ② ③2.a 是一个大于0的数,下面的算式中得数最大的是( ) 。
① a ×53 ② a ÷53 ③ 78a 3.一根绳子,剪去了52,还剩52米,剪去的与剩下的相比,( )。
① 剩下的长 ② 剪去的长 ③ 同样长 ④ 无法比较 4.1~20这20个自然数中,任意抽取1个数,抽到素数的可能性是( )。
2013届九年级上学期期末考试数学试题(2套)
湖南省双峰县2012年九年级第一学期期末考试试卷数 学考试时量:120分钟 满分:120分考生注意:请将解答写在答题卡上,答案写在本试卷上无效。
一、精心选一选,旗开得胜(每小题3分,共30分,每小题只有一个选项是正确的) 1、若5x 2=6x -8化为一元二次方程的一般形式后,二次项系数、一次项系数和常数项分别是A 、5,6,-8B 、5,-6,-8C 、5,-6,8D 、6,5,-82、现有一个测试距离为5m 的视力表(如图),根据这个视力表,小华想制作一个测试距离为3m 的视力表,则图中的ab 的值为A .32B .23C .35D .533、经过调查研究,某工厂生产一种产品的总利润L (元)与产量X (件)的关系式为L=-x 2+2000x-10000(0<x <1900),要使总利润达到99万元,则这种产品应生产A.1000件B.1200件C. 2000件D.10000件 4、下列命题中错误的命题是A 2)3(-的平方根是3±B 平行四边形是中心对称图形C 单项式y x 25与25xy -是同类项D 近似数31014.3⨯有三个有效数字 5、如图,在Rt △ABC 中,∠ACB=90°,BC=1,AB=2,则下列结论正确的是2 B.tanA=1226、一个口袋中装有4个红球,3个绿球,2个黄球,每个球除颜色外其它都相同,搅均后随机地从中摸出一个球是绿球的概率是 A.B.C.D.7、如图,点A 是反比例函数(x <0)的图象上的一点,过点A 作平行四边形ABCD ,使点B 、C 在x 轴上,点D 在y 轴上,则平行四边形ABCD 的面积为A.1B.3C.6D.12ab(第3题图)8、已知抛物线y=x 2﹣4x+3,则下列判断错误的是A. 对称轴x=2B. 最小值y=-1C. 在对称轴左侧y 随x 的增加而减小D. 顶点坐标(-2,-1)9、已知a 、b 、c 分别是三角形的三边,则方程(a + b)x 2+ 2cx + (a + b)=0的根的情况是A .没有实数根B .可能有且只有一个实数根C .有两个相等的实数根D .有两个不相等的实数根10、如果两个相似三角形的相似比是,那么它们的面积比是 AB .C .D .二、精心填一填,一锤定音(每小题4分,共32分)11、 已知x = 1是关于x 的一元二次方程2x 2 + kx -1 = 0的一个根,则实数k 的值是 。
2013高考全国2数学试卷及解析
2013年普通高等学校招生全国统一考试(Ⅱ)一.选择题(共12小题)1.已知集合M={x|(x﹣1)2<4,x∈R},N={﹣1,0,1,2,3},则M∩N=()A.{0,1,2}B.{﹣1,0,1,2}C.{﹣1,0,2,3}D.{0,1,2,3}2.设复数z满足(1﹣i)z=2i,则z=()A.﹣1+i B.﹣1﹣i C.1+i D.1﹣i3.等比数列{a n}的前n项和为S n,已知S3=a2+10a1,a5=9,则a1=()A.B.C.D.4.已知m,n为异面直线,m⊥平面α,n⊥平面β.直线l满足l⊥m,l⊥n,l⊄α,l⊄β,则()A.α∥β且l∥αB.α⊥β且l⊥βC.α与β相交,且交线垂直于l D.α与β相交,且交线平行于l5.已知(1+ax)(1+x)5的展开式中x2的系数为5,则a=()A.﹣4 B.﹣3 C.﹣2 D.﹣16.执行右面的程序框图,如果输入的N=10,那么输出的S=()A.B.C.D.7.一个四面体的顶点在空间直角坐标系O﹣xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,则得到正视图可以为()A.B.C.D.8.设a=log36,b=log510,c=log714,则()A.c>b>a B.b>c>a C.a>c>b D.a>b>c9.已知a>0,实数x,y满足:,若z=2x+y的最小值为1,则a=()A.2 B.1 C.D.10.已知函数f(x)=x3+ax2+bx+c,下列结论中错误的是()A.∃x0∈R,f(x0)=0B.函数y=f(x)的图象是中心对称图形C.若x0是f(x)的极小值点,则f(x)在区间(﹣∞,x0)单调递减D.若x0是f(x)的极值点,则f′(x0)=011.设抛物线C:y2=2px(p>0)的焦点为F,点M在C上,|MF|=5,若以MF为直径的圆过点(0,2),则C的方程为()A.y2=4x或y2=8x B.y2=2x或y2=8xC.y2=4x或y2=16x D.y2=2x或y2=16x12.已知点A(﹣1,0),B(1,0),C(0,1),直线y=ax+b(a>0)将△ABC分割为面积相等的两部分,则b的取值范围是()A.(0,1)B.C.D.二.填空题(共4小题)13.已知正方形ABCD的边长为2,E为CD的中点,则•=.14.从n个正整数1,2,…,n中任意取出两个不同的数,若取出的两数之和等于5的概率为,则n=.15.设θ为第二象限角,若tan(θ+)=,则sinθ+cosθ=.16.等差数列{a n}的前n项和为S n,已知S10=0,S15=25,则nS n的最小值为.三.解答题(共7小题)17.△ABC在内角A、B、C的对边分别为a,b,c,已知a=bcosC+csinB.(Ⅰ)求B;(Ⅱ)若b=2,求△ABC面积的最大值.18.如图,直棱柱ABC﹣A1B1C1中,D,E分别是AB,BB1的中点,AA1=AC=CB=AB.(Ⅰ)证明:BC1∥平面A1CD(Ⅱ)求二面角D﹣A1C﹣E的正弦值.19.经销商经销某种农产品,在一个销售季度内,每售出1t该产品获利润500元,未售出的产品,每1t亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130t该农产品.以x(单位:t,100≤x≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.(Ⅰ)将T表示为x的函数;(Ⅱ)根据直方图估计利润T不少于57000元的概率;(Ⅲ)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,并以需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若x∈[100,110))则取x=105,且x=105的概率等于需求量落入[100,110)的频率,求T的数学期望.20.平面直角坐标系xOy中,过椭圆M:(a>b>0)右焦点的直线x+y﹣=0交M于A,B两点,P为AB的中点,且OP的斜率为.(Ⅰ)求M的方程(Ⅱ)C,D为M上的两点,若四边形ACBD的对角线CD⊥AB,求四边形ACBD面积的最大值.21.已知函数f(x)=e x﹣ln(x+m)(Ι)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性;(Ⅱ)当m≤2时,证明f(x)>0.22.已知动点P、Q都在曲线(β为参数)上,对应参数分别为β=α与β=2α(0<α<2π),M为PQ的中点.(1)求M的轨迹的参数方程;(2)将M到坐标原点的距离d表示为α的函数,并判断M的轨迹是否过坐标原点.2018年04月22日fago的高中数学组卷参考答案与试题解析一.选择题(共12小题)1.已知集合M={x|(x﹣1)2<4,x∈R},N={﹣1,0,1,2,3},则M∩N=()A.{0,1,2}B.{﹣1,0,1,2}C.{﹣1,0,2,3}D.{0,1,2,3}【分析】求出集合M中不等式的解集,确定出M,找出M与N的公共元素,即可确定出两集合的交集.【解答】解:由(x﹣1)2<4,解得:﹣1<x<3,即M={x|﹣1<x<3},∵N={﹣1,0,1,2,3},∴M∩N={0,1,2}.故选:A.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.设复数z满足(1﹣i)z=2i,则z=()A.﹣1+i B.﹣1﹣i C.1+i D.1﹣i【分析】根据所给的等式两边同时除以1﹣i,得到z的表示式,进行复数的除法运算,分子和分母同乘以分母的共轭复数,整理成最简形式,得到结果.【解答】解:∵复数z满足z(1﹣i)=2i,∴z==﹣1+i故选:A.【点评】本题考查代数形式的除法运算,是一个基础题,这种题目若出现一定是一个送分题目,注意数字的运算.3.等比数列{a n}的前n项和为S n,已知S3=a2+10a1,a5=9,则a1=()A.B.C.D.【分析】设等比数列{a n}的公比为q,利用已知和等比数列的通项公式即可得到,解出即可.【解答】解:设等比数列{a n}的公比为q,∵S3=a2+10a1,a5=9,∴,解得.∴.故选:C.【点评】熟练掌握等比数列的通项公式是解题的关键.4.已知m,n为异面直线,m⊥平面α,n⊥平面β.直线l满足l⊥m,l⊥n,l⊄α,l⊄β,则()A.α∥β且l∥αB.α⊥β且l⊥βC.α与β相交,且交线垂直于l D.α与β相交,且交线平行于l【分析】由题目给出的已知条件,结合线面平行,线面垂直的判定与性质,可以直接得到正确的结论.【解答】解:由m⊥平面α,直线l满足l⊥m,且l⊄α,所以l∥α,又n⊥平面β,l⊥n,l⊄β,所以l∥β.由直线m,n为异面直线,且m⊥平面α,n⊥平面β,则α与β相交,否则,若α∥β则推出m∥n,与m,n异面矛盾.故α与β相交,且交线平行于l.故选:D.【点评】本题考查了平面与平面之间的位置关系,考查了平面的基本性质及推论,考查了线面平行、线面垂直的判定与性质,考查了学生的空间想象和思维能力,是中档题.5.已知(1+ax)(1+x)5的展开式中x2的系数为5,则a=()A.﹣4 B.﹣3 C.﹣2 D.﹣1【分析】由题意利用二项展开式的通项公式求得展开式中x2的系数为+a•=5,由此解得a的值.【解答】解:已知(1+ax)(1+x)5=(1+ax)(1+x+x2+x3+x4+x5)展开式中x2的系数为+a•=5,解得a=﹣1,故选:D.【点评】本题主要考查二项式定理的应用,二项式展开式的通项公式,求展开式中某项的系数,属于中档题.6.执行右面的程序框图,如果输入的N=10,那么输出的S=()A. B.C. D.【分析】从赋值框给出的两个变量的值开始,逐渐分析写出程序运行的每一步,便可得到程序框图表示的算法的功能.【解答】解:框图首先给累加变量S和循环变量i赋值,S=0+1=1,k=1+1=2;判断k>10不成立,执行S=1+,k=2+1=3;判断k>10不成立,执行S=1++,k=3+1=4;判断k>10不成立,执行S=1+++,k=4+1=5;…判断i>10不成立,执行S=,k=10+1=11;判断i>10成立,输出S=.算法结束.故选:B.【点评】本题考查解决程序框图中的循环结构时,常采用写出前几次循环的结果,找规律.7.一个四面体的顶点在空间直角坐标系O﹣xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,则得到正视图可以为()A.B.C.D.【分析】由题意画出几何体的直观图,然后判断以zOx平面为投影面,则得到正视图即可.【解答】解:因为一个四面体的顶点在空间直角坐标系O﹣xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),几何体的直观图如图,是正方体的顶点为顶点的一个正四面体,所以以zOx平面为投影面,则得到正视图为:故选:A.【点评】本题考查几何体的三视图的判断,根据题意画出几何体的直观图是解题的关键,考查空间想象能力.8.设a=log36,b=log510,c=log714,则()A.c>b>a B.b>c>a C.a>c>b D.a>b>c【分析】利用log a(xy)=log a x+log a y(x、y>0),化简a,b,c然后比较log32,log52,log72大小即可.【解答】解:因为a=log36=1+log32,b=log510=1+log52,c=log714=1+log72,因为y=log2x是增函数,所以log27>log25>log23,∵,,所以log32>log52>log72,所以a>b>c,故选:D.【点评】本题主要考查不等式与不等关系,对数函数的单调性的应用,不等式的基本性质的应用,属于基础题.9.已知a>0,实数x,y满足:,若z=2x+y的最小值为1,则a=()A.2 B.1 C.D.【分析】作出不等式对应的平面区域,利用线性规划的知识,通过平移即先确定z的最优解,然后确定a的值即可.【解答】解:作出不等式对应的平面区域,(阴影部分)由z=2x+y,得y=﹣2x+z,平移直线y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点C时,直线y=﹣2x+z的截距最小,此时z最小.即2x+y=1,由,解得,即C(1,﹣1),∵点C也在直线y=a(x﹣3)上,∴﹣1=﹣2a,解得a=.故选:C.【点评】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.10.已知函数f(x)=x3+ax2+bx+c,下列结论中错误的是()A.∃x0∈R,f(x0)=0B.函数y=f(x)的图象是中心对称图形C.若x0是f(x)的极小值点,则f(x)在区间(﹣∞,x0)单调递减D.若x0是f(x)的极值点,则f′(x0)=0【分析】利用导数的运算法则得出f′(x),分△>0与△≤0讨论,列出表格,即可得出.【解答】解:f′(x)=3x2+2ax+b.(1)当△=4a2﹣12b>0时,f′(x)=0有两解,不妨设为x1<x2,列表如下x(﹣∞,x1)x1(x1,x2)x2(x2,+∞)f′(x)+0﹣0+f(x)单调递增极大值单调递减极小值单调递增由表格可知:①x2是函数f(x)的极小值点,但是f(x)在区间(﹣∞,x2)不具有单调性,故C不正确.②∵+f(x)=+x3+ax2+bx+c=﹣+2c,=,∵+f(x)=,∴点P为对称中心,故B正确.③由表格可知x1,x2分别为极值点,则,故D正确.④∵x→﹣∞时,f(x)→﹣∞;x→+∞,f(x)→+∞,函数f(x)必然穿过x轴,即∃xα∈R,f(xα)=0,故A正确.(2)当△≤0时,,故f(x)在R上单调递增,①此时不存在极值点,故D正确,C不正确;②B同(1)中②正确;③∵x→﹣∞时,f(x)→﹣∞;x→+∞,f(x)→+∞,函数f(x)必然穿过x轴,即∃x0∈R,f(x0)=0,故A正确.综上可知:错误的结论是C.由于该题选择错误的,故选:C.【点评】熟练掌握导数的运算法则、中心得出的定义、单调性与极值的关系等基础知识与方法,考查了分类讨论的思想方法等基本方法.11.设抛物线C:y2=2px(p>0)的焦点为F,点M在C上,|MF|=5,若以MF为直径的圆过点(0,2),则C的方程为()A.y2=4x或y2=8x B.y2=2x或y2=8xC.y2=4x或y2=16x D.y2=2x或y2=16x【分析】根据抛物线方程算出|OF|=,设以MF为直径的圆过点A(0,2),在Rt△AOF 中利用勾股定理算出|AF|=.再由直线AO与以MF为直径的圆相切得到∠OAF=∠AMF,Rt△AMF中利用∠AMF的正弦建立关系式,从而得到关于p的方程,解之得到实数p的值,进而得到抛物线C的方程.【解答】解:∵抛物线C方程为y2=2px(p>0),∴焦点F坐标为(,0),可得|OF|=,∵以MF为直径的圆过点(0,2),∴设A(0,2),可得AF⊥AM,Rt△AOF中,|AF|==,∴sin∠OAF==,∵根据抛物线的定义,得直线AO切以MF为直径的圆于A点,∴∠OAF=∠AMF,可得Rt△AMF中,sin∠AMF==,∵|MF|=5,|AF|=∴=,整理得4+=,解之可得p=2或p=8因此,抛物线C的方程为y2=4x或y2=16x.故选:C.方法二:∵抛物线C方程为y2=2px(p>0),∴焦点F(,0),设M(x,y),由抛物线性质|MF|=x+=5,可得x=5﹣,因为圆心是MF的中点,所以根据中点坐标公式可得,圆心横坐标为=,由已知圆半径也为,据此可知该圆与y轴相切于点(0,2),故圆心纵坐标为2,则M点纵坐标为4,即M(5﹣,4),代入抛物线方程得p2﹣10p+16=0,所以p=2或p=8.所以抛物线C的方程为y2=4x或y2=16x.故选:C.【点评】本题给出抛物线一条长度为5的焦半径MF,以MF为直径的圆交抛物线于点(0,2),求抛物线的方程,着重考查了抛物线的定义与简单几何性质、圆的性质和解直角三角形等知识,属于中档题.12.已知点A(﹣1,0),B(1,0),C(0,1),直线y=ax+b(a>0)将△ABC分割为面积相等的两部分,则b的取值范围是()A.(0,1)B.C.D.【分析】解法一:先求得直线y=ax+b(a>0)与x轴的交点为M(﹣,0),由﹣≤0可得点M在射线OA上.求出直线和BC的交点N的坐标,①若点M和点A重合,求得b=;②若点M在点O和点A之间,求得<b<;③若点M在点A的左侧,求得>b>1﹣.再把以上得到的三个b的范围取并集,可得结果.解法二:考查临界位置时对应的b值,综合可得结论.【解答】解:解法一:由题意可得,三角形ABC的面积为=1,由于直线y=ax+b(a>0)与x轴的交点为M(﹣,0),由直线y=ax+b(a>0)将△ABC分割为面积相等的两部分,可得b>0,故﹣≤0,故点M在射线OA上.设直线y=ax+b和BC的交点为N,则由可得点N的坐标为(,).①若点M和点A重合,则点N为线段BC的中点,故N(,),把A、N两点的坐标代入直线y=ax+b,求得a=b=.②若点M在点O和点A之间,此时b>,点N在点B和点C之间,由题意可得三角形NMB的面积等于,即=,即=,可得a=>0,求得b<,故有<b<.③若点M在点A的左侧,则b<,由点M的横坐标﹣<﹣1,求得b>a.设直线y=ax+b和AC的交点为P,则由求得点P的坐标为(,),此时,由题意可得,三角形CPN的面积等于,即•(1﹣b)•|x N﹣x P|=,即(1﹣b)•|﹣|=,化简可得2(1﹣b)2=|a2﹣1|.由于此时b>a>0,0<a<1,∴2(1﹣b)2=|a2﹣1|=1﹣a2 .两边开方可得(1﹣b)=<1,∴1﹣b<,化简可得b>1﹣,故有1﹣<b<.再把以上得到的三个b的范围取并集,可得b的取值范围应是,故选:B.解法二:当a=0时,直线y=ax+b(a>0)平行于AB边,由题意根据三角形相似且面积比等于相似比的平方可得=,b=1﹣,趋于最小.由于a>0,∴b>1﹣.当a逐渐变大时,b也逐渐变大,当b=时,直线经过点(0,),再根据直线平分△ABC的面积,故a不存在,故b<.综上可得,1﹣<b<,故选:B.【点评】本题主要考查确定直线的要素,点到直线的距离公式以及三角形的面积公式的应用,还考察运算能力以及综合分析能力,分类讨论思想,属于难题.二.填空题(共4小题)13.已知正方形ABCD的边长为2,E为CD的中点,则•=2.【分析】根据两个向量的加减法的法则,以及其几何意义,可得要求的式子为()•(),再根据两个向量垂直的性质,运算求得结果.【解答】解:∵已知正方形ABCD的边长为2,E为CD的中点,则=0,故=()•()=()•()=﹣+﹣=4+0﹣0﹣=2,故答案为2.【点评】本题主要考查两个向量的加减法的法则,以及其几何意义,两个向量垂直的性质,属于中档题.14.从n个正整数1,2,…,n中任意取出两个不同的数,若取出的两数之和等于5的概率为,则n=8.【分析】列出从n个正整数1,2,…,n中任意取出两个不同的数的所有取法种数,求出和等于5的种数,根据取出的两数之和等于5的概率为列式计算n的值.【解答】解:从n个正整数1,2,…,n中任意取出两个不同的数,取出的两数之和等于5的情况有:(1,4),(2,3)共2种情况;从n个正整数1,2,…,n中任意取出两个不同的数的所有不同取法种数为,由古典概型概率计算公式得:从n个正整数1,2,…,n中任意取出两个不同的数,取出的两数之和等于5的概率为p=.所以,即,解得n=8.故答案为8.【点评】本题考查了古典概型及其概率计算公式,考查了组合数公式,解答此题时既可以按有序取,也可以按无序取,问题的实质是一样的.此题是基础题.15.设θ为第二象限角,若tan(θ+)=,则sinθ+cosθ=﹣.【分析】已知等式利用两角和与差的正切函数公式及特殊角的三角函数值化简,求出tanθ的值,再根据θ为第二象限角,利用同角三角函数间的基本关系求出sinθ与cosθ的值,即可求出sinθ+cosθ的值.【解答】解:∵tan(θ+)==,∴tanθ=﹣,而cos2θ==,∵θ为第二象限角,∴cosθ=﹣=﹣,sinθ==,则sinθ+cosθ=﹣=﹣.故答案为:﹣【点评】此题考查了两角和与差的正切函数公式,以及同角三角函数间的基本关系,熟练掌握公式是解本题的关键.16.等差数列{a n}的前n项和为S n,已知S10=0,S15=25,则nS n的最小值为﹣49.【分析】由等差数列的前n项和公式化简已知两等式,联立求出首项a1与公差d的值,结合导数求出nS n的最小值.【解答】解:设等差数列{a n}的首项为a1,公差为d,∵S10=10a1+45d=0,S15=15a1+105d=25,∴a1=﹣3,d=,∴S n=na1+d=n2﹣n,∴nS n=n3﹣n2,令nS n=f(n),∴f′(n)=n2﹣n,∴当n=时,f(n)取得极值,当n<时,f(n)递减;当n>时,f(n)递增;因此只需比较f(6)和f(7)的大小即可.f(6)=﹣48,f(7)=﹣49,故nS n的最小值为﹣49.故答案为:﹣49.【点评】此题考查了等差数列的性质,以及等差数列的前n项和公式,熟练掌握性质及公式是解本题的关键.三.解答题(共7小题)17.△ABC在内角A、B、C的对边分别为a,b,c,已知a=bcosC+csinB.(Ⅰ)求B;(Ⅱ)若b=2,求△ABC面积的最大值.【分析】(Ⅰ)已知等式利用正弦定理化简,再利用两角和与差的正弦函数公式及诱导公式变形,求出tanB的值,由B为三角形的内角,利用特殊角的三角函数值即可求出B的度数;(Ⅱ)利用三角形的面积公式表示出三角形ABC的面积,把sinB的值代入,得到三角形面积最大即为ac最大,利用余弦定理列出关系式,再利用基本不等式求出ac的最大值,即可得到面积的最大值.【解答】解:(Ⅰ)由已知及正弦定理得:sinA=sinBcosC+sinBsinC①,∵sinA=sin(B+C)=sinBcosC+cosBsinC②,∴sinB=cosB,即tanB=1,∵B为三角形的内角,∴B=;(Ⅱ)S=acsinB=ac,△ABC由已知及余弦定理得:4=a2+c2﹣2accos≥2ac﹣2ac×,整理得:ac≤,当且仅当a=c时,等号成立,则△ABC面积的最大值为××=××(2+)=+1.【点评】此题考查了正弦、余弦定理,三角形的面积公式,两角和与差的正弦函数公式,以及基本不等式的运用,熟练掌握定理及公式是解本题的关键.18.如图,直棱柱ABC﹣A1B1C1中,D,E分别是AB,BB1的中点,AA1=AC=CB=AB.(Ⅰ)证明:BC1∥平面A1CD(Ⅱ)求二面角D﹣A1C﹣E的正弦值.【分析】(Ⅰ)通过证明BC1平行平面A1CD内的直线DF,利用直线与平面平行的判定定理证明BC1∥平面A1CD(Ⅱ)证明DE⊥平面A1DC,作出二面角D﹣A1C﹣E的平面角,然后求解二面角平面角的正弦值即可.【解答】解:(Ⅰ)证明:连结AC1交A1C于点F,则F为AC1的中点,又D是AB中点,连结DF,则BC1∥DF,因为DF⊂平面A1CD,BC1⊄平面A1CD,所以BC1∥平面A1CD.(Ⅱ)因为直棱柱ABC﹣A1B1C1,所以AA1⊥CD,由已知AC=CB,D为AB的中点,所以CD⊥AB,又AA1∩AB=A,于是,CD⊥平面ABB1A1,设AB=2,则AA1=AC=CB=2,得∠ACB=90°,CD=,A1D=,DE=,A1E=3故A1D2+DE2=A1E2,即DE⊥A1D,所以DE⊥平面A1DC,又A1C=2,过D作DF⊥A1C于F,∠DFE为二面角D﹣A1C﹣E的平面角,在△A1DC中,DF==,EF==,所以二面角D﹣A1C﹣E的正弦值.sin∠DFE=.【点评】本题考查直线与平面平行的判定定理的应用,二面角的平面角的求法,考查空间想象能力与计算能力.19.经销商经销某种农产品,在一个销售季度内,每售出1t该产品获利润500元,未售出的产品,每1t亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130t该农产品.以x(单位:t,100≤x≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.(Ⅰ)将T表示为x的函数;(Ⅱ)根据直方图估计利润T不少于57000元的概率;(Ⅲ)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,并以需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若x∈[100,110))则取x=105,且x=105的概率等于需求量落入[100,110)的频率,求T的数学期望.【分析】(Ⅰ)由题意先分段写出,当x∈[100,130)时,当x∈[130,150)时,和利润值,最后利用分段函数的形式进行综合即可.(Ⅱ)由(I)知,利润T不少于57000元,当且仅当120≤x≤150.再由直方图知需求量X ∈[120,150]的频率为0.7,利用样本估计总体的方法得出下一个销售季度的利润T不少于57000元的概率的估计值.(Ⅲ)利用利润T的数学期望=各组的区间中点值×该区间的频率之和即得.【解答】解:(Ⅰ)由题意得,当x∈[100,130)时,T=500x﹣300(130﹣x)=800x﹣39000,当x∈[130,150)时,T=500×130=65000,∴T=.(Ⅱ)由(Ⅰ)知,利润T不少于57000元,当且仅当120≤x≤150.由直方图知需求量X∈[120,150]的频率为0.7,所以下一个销售季度的利润T不少于57000元的概率的估计值为0.7.(Ⅲ)依题意可得T的分布列如图,T4500053006100065000p0.10.20.30.4所以ET=45000×0.1+53000×0.2+61000×0.3+65000×0.4=59400.【点评】本题考查用样本的频率分布估计总体分布及识图的能力,求解的重点是对题设条件及直方图的理解,了解直方图中每个小矩形的面积的意义,是中档题.20.平面直角坐标系xOy中,过椭圆M :(a>b>0)右焦点的直线x+y ﹣=0交M于A,B两点,P为AB的中点,且OP 的斜率为.(Ⅰ)求M的方程(Ⅱ)C,D为M上的两点,若四边形ACBD的对角线CD⊥AB,求四边形ACBD面积的最大值.【分析】(Ⅰ)把右焦点(c,0)代入直线可解得c.设A(x1,y1),B(x2,y2),线段AB的中点P(x0,y0),利用“点差法”即可得到a,b的关系式,再与a2=b2+c2联立即可得到a,b,c.(Ⅱ)由CD⊥AB,可设直线CD的方程为y=x+t,与椭圆的方程联立得到根与系数的关系,即可得到弦长|CD|.把直线x+y﹣=0与椭圆的方程联立得到根与系数的关系,即可得到=即可得到关于t的表达式,利用二次函数的单调性弦长|AB|,利用S四边形ACBD即可得到其最大值.【解答】解:(Ⅰ)把右焦点(c,0)代入直线x+y﹣=0得c+0﹣=0,解得c=.设A(x1,y1),B(x2,y2),线段AB的中点P(x0,y0),则,,相减得,∴,∴,又=,∴,即a2=2b2.联立得,解得,∴M的方程为.(Ⅱ)∵CD⊥AB,∴可设直线CD的方程为y=x+t,联立,消去y得到3x2+4tx+2t2﹣6=0,∵直线CD与椭圆有两个不同的交点,∴△=16t2﹣12(2t2﹣6)=72﹣8t2>0,解﹣3<t<3(*).设C(x3,y3),D(x4,y4),∴,.∴|CD|===.联立得到3x2﹣4x=0,解得x=0或,∴交点为A(0,),B,∴|AB|==.===,∴S四边形ACBD∴当且仅当t=0时,四边形ACBD面积的最大值为,满足(*).∴四边形ACBD面积的最大值为.【点评】本题综合考查了椭圆的定义、标准方程及其性质、“点差法”、中点坐标公式、直线与椭圆相交问题转化为方程联立得到一元二次方程根与系数的关系、弦长公式、四边形的面积计算、二次函数的单调性等基础知识,考查了推理能力、数形结合的思想方法、计算能力、分析问题和解决问题的能力.21.已知函数f(x)=e x﹣ln(x+m)(Ι)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性;(Ⅱ)当m≤2时,证明f(x)>0.【分析】(Ⅰ)求出原函数的导函数,因为x=0是函数f(x)的极值点,由极值点处的导数等于0求出m的值,代入函数解析式后再由导函数大于0和小于0求出原函数的单调区间;(Ⅱ)证明当m≤2时,f(x)>0,转化为证明当m=2时f(x)>0.求出当m=2时函数的导函数,可知导函数在(﹣2,+∞)上为增函数,并进一步得到导函数在(﹣1,0)上有唯一零点x0,则当x=x0时函数取得最小值,借助于x0是导函数的零点证出f(x0)>0,从而结论得证.【解答】(Ⅰ)解:∵,x=0是f(x)的极值点,∴,解得m=1.所以函数f(x)=e x﹣ln(x+1),其定义域为(﹣1,+∞).∵.设g(x)=e x(x+1)﹣1,则g′(x)=e x(x+1)+e x>0,所以g(x)在(﹣1,+∞)上为增函数,又∵g(0)=0,所以当x>0时,g(x)>0,即f′(x)>0;当﹣1<x<0时,g(x)<0,f′(x)<0.所以f(x)在(﹣1,0)上为减函数;在(0,+∞)上为增函数;(Ⅱ)证明:当m≤2,x∈(﹣m,+∞)时,ln(x+m)≤ln(x+2),故只需证明当m=2时f(x)>0.当m=2时,函数在(﹣2,+∞)上为增函数,且f′(﹣1)<0,f′(0)>0.故f′(x)=0在(﹣2,+∞)上有唯一实数根x0,且x0∈(﹣1,0).当x∈(﹣2,x0)时,f′(x)<0,当x∈(x0,+∞)时,f′(x)>0,从而当x=x0时,f(x)取得最小值.由f′(x0)=0,得,ln(x0+2)=﹣x0.故f(x)≥=>0.综上,当m≤2时,f(x)>0.【点评】本题考查了利用导数研究函数的单调性,利用导数求函数在闭区间上的最值,考查了不等式的证明,考查了函数与方程思想,分类讨论的数学思想,综合考查了学生分析问题和解决问题的能力.熟练函数与导数的基础知识是解决该题的关键,是难题.22.已知动点P、Q都在曲线(β为参数)上,对应参数分别为β=α与β=2α(0<α<2π),M为PQ的中点.(1)求M的轨迹的参数方程;(2)将M到坐标原点的距离d表示为α的函数,并判断M的轨迹是否过坐标原点.【分析】(1)利用参数方程与中点坐标公式即可得出;(2)利用两点之间的距离公式、三角函数的单调性即可得出.【解答】解:(1)依题意有P(2cosα,2sinα),Q(2cos2α,2sin2α),因此M(cosα+cos2α,sinα+sin2α).M的轨迹的参数方程为为参数,0<α<2π).(2)M点到坐标原点的距离d=(0<α<2π).当α=π时,d=0,故M的轨迹过坐标原点.【点评】本题考查了参数方程与中点坐标公式、两点之间的距离公式、三角函数的单调性,考查了推理能力与计算能力,属于中档题.23.【选修4﹣﹣5;不等式选讲】设a,b,c均为正数,且a+b+c=1,证明:(Ⅰ)(Ⅱ).【分析】(Ⅰ)依题意,由a+b+c=1⇒(a+b+c)2=1⇒a2+b2+c2+2ab+2bc+2ca=1,利用基本不等式可得3(ab+bc+ca)≤1,从而得证;(Ⅱ)利用基本不等式可证得:+b≥2a,+c≥2b,+a≥2c,三式累加即可证得结论.【解答】证明:(Ⅰ)由a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ca得:a2+b2+c2≥ab+bc+ca,由题设得(a+b+c)2=1,即a2+b2+c2+2ab+2bc+2ca=1,所以3(ab+bc+ca)≤1,即ab+bc+ca≤.(Ⅱ)因为+b≥2a,+c≥2b,+a≥2c,故+++(a+b+c)≥2(a+b+c),即++≥a+b+c.所以++≥1.【点评】本题考查不等式的证明,突出考查基本不等式与综合法的应用,考查推理论证能力,属于中档题.。
2013年第一学期初三科学二模试卷
新世纪教育网精选资料版权全部@新世纪教育网2013 年初中科学毕业生学业考试模拟试卷1.本卷共四大题, 36 小题。
满分 200 分,考试时间 120 分钟。
2.试卷分为试题卷 ( 共 8 页 ) 和答题卷 (4 页 ) ,请在答题卷上写上考生姓名、班级、试场号、准考据号,全部答案写在答题卷上,写在试题卷上无效。
3.本卷可能用到的相对原予质量有: H- 1 C ― 12 O - l6 Mg -24 Cl -35.5 Ca ― 40 Fe― 56卷Ⅰ一、选择题(此题有20 小题,每题 4 分,共 80 分。
每题只有一个选项是正确的,不选、多项选择、错选均不给分)1. 以下图的机械中属于省力的是()A. 镊子B.天平C.定滑轮D.开瓶器2. 在以下图的四种情境中,人对物体做功的是()A. 提着水桶在水平川面上匀速行进B.扛着米袋慢慢爬上楼梯C. 使劲推汽车,汽车没动D.举着杠铃原地不动3. 以下有关右图四种细胞的表达中,不正确的是()A. 都是细胞分化的结果B.都有细胞壁、细胞质和细胞核C.不一样的形态适应不一样的功能D.全部活细胞,都能进行呼吸作用4.为了进一步认识樱桃花的构造,小明联合课本插图(如图所示)对樱桃花实物进行仔细察看,以下不行行的是()A.数清花瓣、花萼的数目B.正确描绘樱桃花各构造的颜色C.利用放大助察,并察果D.利用高倍微直接桃花做整体察5.足球运梅西在某次比中,踢出一奇特的“香蕉球”,足球从右“人”射入球,如右所示。
是因踢出的足球()A. 左空气流速慢B.两空气流速同样C. 左空气流速快D.不停改旋方向6. 以下操作正确的选项是()A. 倒液体B.气体气味C.液体体D.液体加7. 在以下几个例中,属于增大摩擦的是()8. 四位同学在一同某种物,依据他的判断物是()A.CHB.COC.C H OHD.H42529.分法是一种卓有成效、易行的科学方法。
小所学知行,此中甲包含了乙、丙、丁⋯⋯。
2013八年级上册物理第1、2章测试卷(人教版)
2013八年级上册物理第1、2章测试卷(人教版)2013-2014学年度上学期第一次单元质量调研八年级物理试题说明:1.全卷共10页,满分为100分,考试用时80分钟。
2.答卷前,考生务必将自己的姓名、准考证号写、涂在答卷指定位置上。
3.答题时一律用黑色签字笔按要求答在答卷上,不能用铅笔或红笔。
答案写在试题上无效。
4.考试结束时,将答卷交回。
一、选择题(以下四个选择项中只有一个是正确的,请将正确的序号填在括号内。
本大题共10小题,每小题3分,共30分)1.我国l元硬币的直径最接近于()A.2nmB.2mmC.2cmD.2dm2.下列数据中最接近现实生活的是:()A.初中生的平均身高约为1.65×106μmB.人正常步行的平均速度是5m/sC.初中生掷实心球的距离约为30cmD.电动自行车的最高速度为30m/s3.小明的发言声音太小,老师要他大声重复一次,老师是要求小明提高声音的()A.音调B.频率C.响度D.音调及响度4.关于误差,下列说法中正确的是()A.误差就是实验中产生的错误B.认真测量可以避免误差C.实验中误差不可避免,只能采取措施尽量减小误差D.采用精密测量仪器,改进测量方法可以避免误差5.下列日常用语中所讲的“高”指的是音调的是()A.“引亢高歌”B.“不敢高声语,恐惊天上人”C.“请勿高声喧哗”D.“这音太高,我唱不上去”6.在人民公园平静的湖面上,小刚同学坐在航行的游船里观光,若说他是静止的,所选的参照物是()A.湖岸B.湖水C.游船D.岸上的建筑物7.甲、乙两车都在做匀速直线运动,它们运动的速度之比是2:3,通过的路程之比是1:2,则两车运动的时间之比是()A.2:3B.3:4C.4:3D.1:38.某物体做匀速直线运动,由速度公式可知,物体的()A.速度大小恒定不变,与路程、时间无关B.速度与路程成正比C.速度与时间成反比D.速度与路程、时间都有关9.有关课堂上的声现象,下列说法正确的是()A.老师的讲课声是由空气振动产生的B.能听到老师的讲课声是由于空气能够传声C.听录音时,调节音量按钮实质上是在改变声音的音调D.关闭门窗是为了在声源处减弱噪声10.平直的公路边有一农舍,它的烟囱正冒着烟,插有旗帜的a车在农舍旁的公路上。
2013上学期期末数学试卷1.doc
2013上学期期末数学试卷1一、选择题1.小明从正面观察下图所示的两个物体,看到的是()正面 A B CD2.若a<0,b>0,则b、b+a、b-a中最大的一个数是()A.aB.b+aC.b -aD.不能确定3.如果知道a与b互为相反数,且x与y互为倒数,那么代数式|a + b| - 2xy 的值为()A.0 B.-2 C.-1D.无法确定4.已知,+=0,则2m-n值为()A.13B.11C.9D.155.两个角的大小之比是7∶3,他们的差是72°,则这两个角的关系是()A.相等B.互余C.互补 D.无法确定6.若直线a∥b、b∥c,则直线a与c的位置关系是()A. a⊥c;B.a∥c;C.a∥c或a⊥c;D.不能确定。
7.某种品牌的彩电降价30℅以后,每台售价为a元,则该品牌彩电每台原价为()A.0.7a元 B.0.3a元 C.元 D.元8.七(3)班有y个学生,其中女生占45%,那么男生人数为()A.45%B.(1-45%)yC.D.9.某中学某班的学生喜欢各类体育活动,他们最喜欢的一项体育活动情况见图1,现给出以下说法①最受欢迎的球类运动是乒乓球;②最喜欢排球的学生达到班级学生总数的;③最喜欢羽毛球的学生达到班级学生总数的。
其中正确的结论为()A.①②B.①③C.②③ D.①②③10.在一个装有12只乒乓球(只有颜色不同)箱子中,有7只白色、4只红色、1只黄色,则下列说法:(1)摸到白球可能性最大;(2)摸到黄球可能性最小;(3)可能摸到红球;(4)一定摸不到黄球;(5)不太可能摸到黄球。
其中正确的说法有()A.1个;B.2个;C.3个;D.4个。
二、填空题11.在下列方程中① x+2y=3,②,③,④,是一元一次方程的有(填序号).12.一个木匠想将一根细木条固定在墙上,至少需要个钉子,其理由是___________ .13.3ab-4bc+1=3ab-(),括号里面应填写的代数式为_________________.14.在日历中竖列上相邻的三个数的和是45,则这三天分别是.15.如图2是一副三角尺拼成的图案,则∠BAD=,∠DEC=.16.如图3,在线段AB上有两点C、D,AB=24 cm,AC=6 cm,点D是BC的中点,则线段AD=cm.17.如果x=-3是方程(a-1)X=-X+2a的解,那么a=.18.关于x的一元一次方程(2m-6)x│m│-2=m2的解为.19.一家商店将某种商品按成本提高40%后标价,现以8折销售,售价为280元,这种商品的成本价是.20.掷一个骰子,掷得点数是3的倍数比掷得奇数点的可能性____(大或小).三.解答题21.计算或化简:(1)(2)22.解方程(1)(2)23.设,,当为何值时,、互为相反数?24.张明出生时的身高为50cm,下表是他的身高记录:(1)选择适当的统计图表示他的身高在0~30岁期间的变化情况,并简要说明你选择这种统计图的理由。
2013全国卷一卷二数学试卷及答案
2013全国卷一数学满分:班级:_________ 姓名:_________ 考号:_________一、单选题(共12小题)1.已知集合A={1,2,3,4},,则A∩B=()A.{1,4}B.{2,3}C.{9,16}D.{1,2}2.()A.B.C.D.3.从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是()A.B.C.D.4.已知双曲线的离心率为,则的渐近线方程为()A.B.C.D.5.已知命题,;命题,,则下列命题中为真命题的是()A .B .C .D .6.设首项为,公比为的等比数列的前项和为,则()A.B.C.D.7.执行右面的程序框图,如果输入的t∈[-1,3],则输出的s属于()A.[-3B.[-5, 4 ], 2 ]C .[-4 , 3 ]D .[-2 , 5 ]8.为坐标原点,为抛物线的焦点,为上一点,若,则的面积为()A.B.C.D.9.函数在的图像大致为()A .B .C .D .10.已知锐角的内角的对边分别为,,,,则()A.B.C.D.11.某几何函数的三视图如图所示,则该几何的体积为()A.B.C.D.12.已知函数,若,则的取值范围是()A.B.C.D.二、填空题(共4小题)13.设满足约束条件,则的最大值为______。
14.已知是球的直径上一点,,平面,为垂足,截球所得截面的面积为,则球的表面积为_______。
15.设当时,函数取得最大值,则______.16.已知两个单位向量的夹角为,,若,则_____。
三、解答题(共8小题)17.已知等差数列的前项和满足,。
(Ⅰ)求的通项公式;(Ⅱ)求数列的前项和。
18.为了比较两种治疗失眠症的药(分别成为A药,B药)的疗效,随机地选取20位患者服用A药,20位患者服用B药,这40位患者服用一段时间后,记录他们日平均增加的睡眠时间(单位:h)实验的观测结果如下:服用A药的20位患者日平均增加的睡眠时间:服用B药的20位患者日平均增加的睡眠时间:(1)分别计算两组数据的平均数,从计算结果来看,哪种药的效果好?(2)完成茎叶图,从茎叶图来看,哪种药疗效更好?19.如图,三棱柱中,,,。
2013八年级上学期物理试题及答案
八年级物理第一章测试题一、单项选择题。
请将正确答案前面的序号填写在下面的表格内(每小题2分,共24分)学 班 姓名 考号 装 订 线4.2011年11月9日,我国第一个火星探测器“萤火一号”与俄罗斯“火卫一”探测器捆绑发射。
在捆绑发射升空的过程中,以下列哪个物体为参照物,“萤火一号”是静止的( )A.地球B.“火卫一”探测器C.太阳D.火星5.下列有关误差的说法中正确的是()A.多次测量取平均值可以减小误差B.误差就是测量中产生的错误C.只要认真测量,就可以避免误差D.选用精密的测量仪器可以消除误差6. 从匀速直线运动的速度公式v = s/ t得出的结论,正确的是()A.速度与路程成正比B.速度与时间成反比C.速度不变,路程与时间成正比D.速度与路程成反比7. 有位诗人坐船远眺,写下了著名诗词:“满眼风光多闪烁,看山恰似走来迎;仔细看山山不动,是船行”,诗人在诗词中前后两次对山的运动的描述,所选择的参照物分别是()A.风和水B、船和地面C、山和船D、风和地面8、关于参照物,下列说法错误的是()A.物体的运动和静止是相对的B.只能选择那些固定在地面上不动的物体作为参照物C.一个物体是运动还是静止,都是相对于所选定的参照物而言的D.研究地面上物体的运动,常选地面或固定在地面上不动的物体为参照物9、下列单位换算正确的是()A.1.5m=1.5×100=150cm B.1.5m=1.5m×100=150cm C.1.5m=1.5×100cm=150cm D.1.5m=1.5m×100cm=150cm 10.如上所示,甲图是某物体运动的s-t图像,则图(乙)中能与之相对应的v-t图像是()11. 汽车速度是36km/h,运动员速度是10m/s,自行车1min 通过0.6km的路程,则( )A.自行车的速度最大B.短跑运动员速度最大C.汽车速度最大D.三者速度一样大12. 晓燕在学校春季运动会百米赛跑中以16s的成绩获得冠军,测得她在50m处的速度是6m/s,到终点时的速度为7.5m/s,则全程内的平均速度是()A.6m/sB. 6.25m/sC. 6.75m/sD.7.5m/s13.甲、乙两列火车在两条平行的铁轨上匀速行驶,两车交汇时,甲车座位上的乘客从车窗看到地面上的树木向北运动,看到乙车向南运动.由此可判断()A.甲、乙两车都向南运动B.甲、乙两车都向北运动C.甲车向南运动,乙车向北运动D.甲车向北运动,乙车向南运动14.一列队伍长50m,跑步速度是2.5m/s,队伍全部通过一长100m的涵洞,需耍的时间是( ) A .60s B .50s C .40s D .20s二.填空题(每空1分,14分)15.在国际单位制中,长度的单位是______,时间的单位是______,速度的单位是________。
2013年第一次中考适应性测试物理试题-(2)
2013年第一次中考适应性测试物理试题-(2)2013年第一次中考适应性测试物理试题第1卷(选择题共20分)第1卷共20题,每题2分,共20分.每题给出的四个选项中只有一个选项正确.答案请按要求填涂在答题卡上.1.在同一架钢琴上,弹奏C调“3(mi)和“1(dou)”这两个音,以下说法正确的是A.音色一定不同B.音调一定不同C.响度一定不同D.音调、音色和响度部不同2.在班上开展“生活处处有物理”的观察实践活动中,小明观察了家里的厨房设备,在他所观察到的现象和对现象的解释中,正确的是A.打开醋瓶能闻到酸味是因为分子在不停地做无规则运动B.用高压锅煮食物容易熟,是因为锅内气体压强越大,液体沸点越低C.不慎滴入几滴水到锅内热油中会发出“吱吱”声,这是发生了升华现象D.用煤气炉煲汤,在沸腾时调大火焰能提高汤的温度3.如图所示的四种现象中,由光的直线传播形成的是A.海市蜃楼B.水面“折”枝C.水中倒影D.手影4.如图所示,把人参泡在酒中,通过酒瓶看见的是人参的放大虚像,这时的瓶和酒相当于一个A.凸透镜B.凹透镜c.凸面镜D.凹面镜5.在原子核中,带正电的粒子是A.质子B.中子C.电子D.原子6.我国北斗导航卫星系统传递信息利用的是A.次声波B.红外线C.超声波D.微波7.关于物体的惯性,下列说法正确的是A.足球在静止时没有惯性,运动时才具有惯性B.跳高运动员起跳前要助跑,是为了获得惯性D.小球上下运动过程中,动能与势能不断相互转化第Ⅱ卷(非选择题共70分)26.(3分)用如图所示的滑轮组,将重为10N的物体以0.1 m/s的速度匀速向上提升,拉力F =6N,拉力的功率为____W,滑轮组的机械效率___,若不计绳重及摩擦,动滑轮的重力为____N.27.(4分)小丽家中的电能表表盘如图所示,则小丽家已消耗的电能为____kW·h,可以同时使用的用电器总功率不能超过___W.若电冰箱(主要技术参数见下表)单独正常工作一天(24小时),电能表的转盘转____转;在使用电冰箱的过程中,小丽发现冰箱门打开时,冰箱内照明灯亮,压缩机不一定在工作,则冰箱的压缩机和照明灯是__联的.海尔BC-110B电冰箱额定28.(5分)可将太供夜晚路灯照明.LED是一种发光二极管,通过电流时发光,可以把电能直接转化成___能.若在一定时间内,太阳光辐射到该太阳能电池扳的能量为 1.8×107J,这与完全燃烧___kg的煤放出的热量相当(煤的热值为3×107J/kg);这些能量经转化后,可供额定功率为30W 的LED照明路灯正常工作50h,则该太阳能路灯的能量转化效率是___%.29.(4分)资料表明:盛夏季节将皮肤晒黑的罪魁祸首是太阳光中的紫外线,某物理兴趣小组为此检测了若干衣服的防晒效果.检测方法:先用光纤探头测算出阳光中紫外线的强度,再把衣服挡在光纤探头上,测算出透射到光纤探头上的紫外线强度,利用先后两次测得的紫外线的强度计算出紫外线的透过率.实验数据如下表所示:实验序号衣服材质衣服布料层数紫外线透过率1 天蚕丝 1 12%2 2 5%3 化纤 1 28%4 2 14%5 全棉T恤 1 7%(白色)6 全棉T恤(黑色)1 4%分析表中数据,同答下列问题:(1)该实验是通过比较_______来分析衣服的防晒效果的;(2)比较实验1、2或3、4得到的结论是_________________;(3)根据测量结果,请向你的家人提出一条夏季户外活动时着装的建议:_______________________.30.(5分)小红为了测量盐水的密度,进行了如下实验:(I)将天平放在水平台面上,将游码移到标尺的零刻线处.横梁静止时,指针指在分度盘中央刻度线的左侧,如图甲所示.为使横梁在水平位置平衡,应将横梁右端的平衡螺母向____端移动;(2)将盛有适量盐水的杯子放在调节好的天平左盘内,测出杯子和盐水的总质量为128g.然后将杯中盐水的一部分倒入量筒中,如图乙所示,则量筒中盐水的体积为_____cm3;(3)再将盛有剩余盐水的杯子放在天平左盘内,改变砝码的个数和游码的位置,使天平横梁再次在水平位置平衡,此时右盘中砝码质量和游码在标尺上的位置如图丙所示,则杯子及杯内剩余盐水的总质量为____g;(4)根据上述实验数据计算盐水的密度为____kg/m3.31.(6分)按照题目要求作图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013生物上学期期末测试卷11、植物的根既能吸收土壤中的氮、磷、钾等营养物质,又能把其它不需要的物质挡在外面,这主要是由于( ) A .细胞壁具有保护细胞的功能 B .细胞膜具有保护细胞的功能 C .细胞壁具有控制物质进出细胞的功能 D .细胞膜具有控制物质进出细胞的功能2、右图是模拟膈肌的运动与呼吸的关系示意图。
下列叙述正确的是( )A.甲图演示吸气,膈肌收缩B.乙图演示吸气,膈肌舒张C.甲图演示呼气,膈肌舒张D.乙图演示呼气,膈肌收缩3、小丽在医院静脉注射葡萄糖后,感觉到了甜味,这是注射的葡萄糖到达了舌上味蕾的缘故。
葡萄糖从手臂到达味蕾依次经过( )A .肺循环和体循环B .体循环和肺循环C .体循环、肺循环和体循环D .肺循环、体循环和肺循环 4、经检查,因车祸受伤的病人,闭眼时手指不能准确地指正自己的鼻尖,则肯定受伤的部位是( ) A .大脑 B .小脑 C .脑干 D .脊髓5、在一个以肌肉为效应器的反射弧中,如传出神经受到损伤,而其它部分正常,当感受器受到刺激时将表现为( ) A 、失去感觉,但能运动 B 、失去感觉,同时肌肉无收缩反应 C 、有感觉且能运动 D 、有感觉,但肌肉无收缩反应6、如图是某人在一次平静呼吸中肺内气压的变化曲线。
请分析曲线BC 段的变化中,胸廓的前后径和左右径的变化分别是( )A.前后径增大、左右径缩小B.前后径缩小、左右径增大C.前后径和左右径均增大D.前后径和左右径均缩小 7、因激素分泌异常而导致人体患呆小症和侏儒症的内分泌腺分别是( )A.垂体、甲状腺B.胰岛、甲状腺C.甲状腺、垂体D.垂体、肾上腺8、如图为人体血液循环过程中某物质含量的变化情况,如果I 代表肺泡问的毛细血管,Ⅲ代表组织细胞间的毛细血管,则该物质最可能是( ) A .氧气 B .二氧化碳 C .养料 D .废物 9、如图表示血液流经肾单位时,尿素、尿酸的含量变化曲线( ) A 、入球小动脉 B 、出球小动脉 C 、肾小球 D 、肾小管10、如图为人体血液循环模式图,请据图回答: (1)若从手臂处静脉注射药物,药物则最先到达心脏的[ ] 。
(2)当膈肌处于 状态时,空气入肺。
经过[5]处的气体交换后,血液成分发生的主要变化是 。
(3)[6]小肠适于消化食物的主要特点有:(至少答出三点)。
① ② ③ (4)下表为某健康人血浆、原尿和尿液的成分及含量:(单位:g/100 mL )根据表中数据分析,[B]与[C]的成分差别是由于图中[ ] 的 作用形成的。
11、下图是人体部分生理活动示意图,①~③代表生理过程,④~⑤代表相关物质,请据图回答:⑴①②过程叫 ,所需的酶是由 、 、 等消化腺分泌的。
过程②③发生的主要部位是 ,过程③叫 。
⑵正常人体吸收的葡萄糖进入血液后其含量相对稳定,这与 的调节作用有直接关系。
⑶空气中的⑤在血液中依靠 运输。
⑷人体代谢过程中产生的尿素等废物主要以尿液的形式排出体外,尿的形成过程主要包括 和 。
12、解读曲线图:⑴右图表示淀粉、脂肪、蛋白质在消化道各部位(用A 、B 、C 、D 、E 表示)被消化的程度。
图中表示淀粉被消化过程的曲线是___________;蛋白质被消化的起始部位是[ ]____________;淀粉、脂肪、蛋白质被消化的主要部位是[ ]___________。
⑵你可能患过感冒并为此打过“吊针”。
当针尖刺入皮肤时,你会不由自主地一颤,还会感到疼痛。
这说明了脊髓 的________________________功能。
当药液从你前臂的血管注入并进入肺时,药液经过的途径依次是(按顺序填入相应序号)_________________________________________。
①肺静脉 ②肺动脉 ③上腔静脉 ④下腔静脉 ⑤右心房 ⑥左心房 ⑦右心室 ⑧左心室13、读消化系统模式图,分析回答下列问题: ⑴消化食物和吸收营养物质的主要场所是[ ]______________,与其消化吸收功能相适应的结构特点有_________________________ __ _________。
⑵分泌的消化液中不含消化酶的消化腺是[ ]_____________,它所分泌的消化液的名称和作用分别是___________、 。
⑶图中[6]除能分泌消化液参与食物消化外,还能分泌________________,调节___________________________________。
⑷张涛同学外出郊游,饿了就到附近摊点买了些熟食,吃时虽然觉得有点异味但并未在意,回到家后出现腹痛、腹泻、便中带血等症状,这说明病原微生物已损伤到肠壁黏膜内的_________________。
从此事件中应吸取的教训是_____________ ____。
2013生物上学期期末测试卷21、央视科技频道报道:一对15岁的双胞胎姐妹聪明伶俐,但身高只有1米左右,为了能长高,姐妹俩每天都注射一种针剂。
你认为这种针剂的有效成分应该是() A.甲状腺激素B.生长激素C.胰岛素D.性激素2、正常人的血浆、原尿和尿液中都含有的物质有()①水②无机盐③尿素④葡萄糖⑤蛋白质 A.①②③ B.①③④ C.②③⑤ D.①④⑤3、下列关于氧气含量是由低到高排列的是( )A、静脉血、组织细胞、动脉血、肺泡B、组织细胞、静脉血、动脉血、肺泡C、组织细胞、动脉血、静脉血、肺泡D、肺泡、组织细胞、动脉血、静脉血4、人体的结构层次是()A.细胞→组织→系统→器官→个体 B.细胞→组织→器官→系统→个体C.细胞→器官→系统→组织→个体 D.系统→器官→组织→细胞→个体5、科学家为了证明某一观点先后做了如下两个实验:(1)破坏蝌蚪的甲状腺,发现蝌蚪停止发育,不能发育成成蛙;(2)在饲养缸中的水中放入甲状腺激素,破坏了甲状腺的蝌蚪有发育成成蛙。
这两个实验可以证明()A、甲状腺能分泌甲状腺激素B、生长激素能促进蝌蚪的生长C、甲状腺激素能促进幼小动物个体的发育D、A和C6、人体吸收的氧的最终去向是( )A.用来构成组织 B.用来与血红蛋白结合 C.用来分解有机物 D.用来交换二氧化碳7、心脏瓣膜的作用是保证血液流动的方向是()A.心房→心室→静脉B.心室→心房→动脉C.心房→心室→动脉D.心室→心房→动脉8、一粒种子长成参天大树的主要原因是()A. 细胞数目增多B. 细胞体积增大C. 细胞数目增多,细胞体积增大D. 细胞分裂9、血液循环的规律是()A心室→动脉→毛细血管→静脉→心房B、心室→静脉→毛细血管→动脉→心房C、心房→动脉→毛细血管→静脉→心室D、心房→静脉→毛细血管→动脉→心室10、肾单位是形成尿的结构功能单位,如图是肾单位的结构示意图,请据图回答下列问题。
⑴血液在流经[ ]___________时,通过[ 1 ] 和[ 2 ]的____________作用,除____________和大分子蛋白质外,血液中其它成分,都可以进入肾小囊腔中,形成原尿。
⑵当健康人的原尿流经[ ] ________时,全部被重吸收回血液的成分是____________,完全不被重吸收的成分是____________,它和多余的水、无机盐一起形成尿液。
⑶人体排尿,不仅能够起到排出___________的作用,而且对调节体内______________的平衡也有重要的作用。
⑷原尿与血液相比,明显少了和,原尿与血浆相比,明显少了,都是因为作用。
尿液与原尿相比,明显少了和小分子,是因为作用。
⑸从血液中分离出尿液并且排出体外的具体途径是:肾动脉→→→→→收集管→输尿管→→→体外。
⑹血液流经肾脏时,始终在血管里流动的路线是:肾动脉→→→→→肾静脉。
⑺血液流经肾脏时,先离开血管后又回到血管的路线是:肾动脉→→→→→→肾静脉。
11、如图所示是人体部分生理活动示意图,请据图回答:(1)若b、c表示组织内的气体交换过程,该过程是通过完成的。
(2)图中所示与外界相连的4条途径中,属于排泄的是。
(3)某人患肩周炎,对其静脉注射消炎药,药物到达病灶共经过A腔次,共经过心脏次。
(4)血管②与血管①相比,②中的血液内含量明显降低的物质有。
(5)请写出小肠与过程a相适应的所有结构特点。
(6)在C腔从开始舒张到舒张结束的这一时间段内,D腔的状态是。
12、2011年5月15日黄河口国际马拉松赛暨全国马拉松积分赛举行。
马拉松长跑是赛程超过40km历时2h以上的极限运动。
如图示运动员以淀粉为主要食物的消化终产物a进入血液和组织细胞的过程及部分相关的代谢活动示意图。
请据图分析回答:⑴淀粉消化的终产物a是。
a由消化道进入血液的生理过程叫,该物质随血液循环首先到达心脏的腔室名称是。
⑵小肠吸收来的a进入血液,运至下肢骨骼肌,在组织细胞内的中被彻底氧化分解从而被利用。
⑶图中的b是;组织细胞产生的c通过作用进入血液。
⑷组织细胞利用血液循环获得a和b,通过呼吸作用释放出用于人体的活动。
⑸呼出气体c和排除尿液f的过程称都可称为。
⑹图中c代表的气体从肺泡排出体外,在此过程中,膈肌所处的状态是(选填收缩或舒张)⑺健康人的尿液形成过程中,下列液体中尿素浓度最高的是。
A、尿液B、血浆C、原尿D、血液⑻图中肾小囊中的液体d主要含有以下五种小分子物质,即、、、和小分子蛋白质。
而图中e主要指d中的全部的、大部分的和部分。
e从肾小管处进入血液的生理过程叫。