5 Dengue Virus Pathogenesis an Integrated View

合集下载

人间传染的病原微生物目录

人间传染的病原微生物目录

人间传染的病原微生物目录表1.病毒分类目录附录:朊病毒注:BSL-n/ABSL-n:不同的实验室/动物实验室生物安全防护等级。

a.病毒培养:指病毒的分离、扩增和利用活病毒培养物的相关实验操作(包括滴定、中和试验、活病毒及其蛋白纯化、核酸提取时裂解剂或灭活剂的加入、病毒冻干、利用活病毒培养物或细胞提取物进行的生化分析、血清学检测、免疫学检测等)以及产生活病毒的重组实验。

b.动物感染实验:指以活病毒感染动物以及感染动物的相关实验操作(包括感染动物的饲养、临床观察、特殊检查,动物样本采集、处理和检测,动物解剖,动物排泄物、组织、器官、尸体等废弃物处理等)。

c.未经培养的感染材料的操作:指未经培养的感染材料在采用可靠的方法灭活前进行的病毒抗原检测、血清学检测、核酸检测、生化分析等操作。

未经可靠灭活或固定的人和动物组织标本因含病毒量较高,其操作的防护级别应比照病毒培养。

d.灭活材料的操作:指感染性材料或活病毒采用可靠的方法灭活,但未经验证确认后进行的操作。

e.无感染性材料的操作:指针对确认无感染性的材料的各种操作,包括但不限于无感染性的病毒DNA或cDNA操作。

f.运输包装分类:按国际民航组织文件Doc9284《危险品航空安全运输技术细则》的分类包装要求,将相关病原和标本分为A、B两类,对应的联合国编号分别为UN2814(动物病毒为UN2900)和UN3373。

对于A类感染性物质,若表中未注明“仅限于病毒培养物”,则包括涉及该病毒的所有材料;对于注明“仅限于病毒培养物”的A类感染性物质,则病毒培养物按UN2814包装,其它标本按UN3373要求进行包装。

凡标明B类的病毒和相关样本均按UN3373的要求包装和空运。

通过其他交通工具运输的可参照以上标准进行包装。

g.猴痘病毒:未经培养的感染材料的操作在BSL-2实验室,个人防护应遵从国家卫生健康委的相关规定。

h.这里特指亚欧地区传播的蜱传脑炎、俄罗斯春夏脑炎和中欧型蜱传脑炎。

细菌学检验智慧树知到期末考试章节课后题库2024年山西医科大学

细菌学检验智慧树知到期末考试章节课后题库2024年山西医科大学

细菌学检验智慧树知到期末考试答案章节题库2024年山西医科大学1.下列关于副溶血性弧菌的叙述,错误的是()答案:该菌感染仅致食物中毒2.目前已知致泻毒素中毒性最强的是()答案:霍乱肠毒素3.志贺菌属常引起()答案:细菌性痢疾4.以下关于变形杆菌属说法错误的是()答案:不产硫化氢###脲酶阴性5.按照用途对培养基进行分类,分为()答案:基础培养基###鉴别培养基###营养培养基###选择培养基6.可用于细菌分型的方法有()答案:生化试验###耐药谱分析###血清凝集试验###质粒图谱法7.下列能发生自溶的细菌是()答案:脑膜炎奈瑟菌###淋病奈瑟菌###肺炎链球菌8.关于立克次体说法正确的是()答案:对多种抗生素敏感###有细胞壁###大小介于细菌和病毒之间###有DNA和RNA两类核酸9.关于布鲁菌属说法错误的是()答案:有鞭毛10.下列描述的微生物特征中,不是所有微生物共同特征的是()答案:只能在活细胞内生长繁殖11.金黄色葡萄球菌在血平板上菌露生长形态错误的是()答案:菌落周围为一混浊带12.蜡样芽孢杆菌在MYP培养基上的菌落形态在下列描述中正确的是()答案:菌落为粉红色,周围有粉红色晕13.下列能引起肺炎的细菌是()答案:军团菌属14.用于细菌数量测定的方法有很多,以下哪种是物理计数法()答案:浊度法15.人类肠道的正常菌群是()答案:粪链球菌16.下列不是噬菌体特性的是()答案:具备细胞结构17.肥达反应的原理是()答案:凝集反应,用已知抗原测未知抗体18.关于细菌的芽孢,说法错误的是()答案:芽孢在100℃水中需2小时才能杀灭19.在用革兰氏染色法区分革兰阳、阴性菌时,阳性菌呈---色,阴性菌呈---色()①蓝色②紫色③红色④橙色答案:②③20.衣原体的生长发育周期包括()答案:原生小体和网转小体21.抗酸染色后细菌呈细长略带弯曲红色杆菌是()答案:结核分枝杆菌22.革兰氏染色阳性呈竹状排列的大杆菌是()答案:炭疽芽孢杆菌23.对肠杆菌科细菌的鉴定常用到甲基红试验和伏普试验,如大肠埃希菌属甲基红试验---,伏普试验--- ()答案:阳,阴24.以下哪些是细菌素的特征()①化学本质是蛋白质②具有抗菌作用③抗菌范围广④可作为分型依据答案:①②④25.下列不属于高效消毒剂的是()答案:苯扎溴铵26.培养支原体常采用的方法是()答案:采用普通培养基中加胆固醇、马血清、酵母液、抗生素27.伤寒与副伤寒为乙类传染病,其传播方式为()答案:通过污染的食物、水经口传播28.能杀灭各种细菌、真菌和病毒,包括细菌芽孢的消毒剂属于()答案:高效消毒剂29.属于真核细胞型的微生物是()答案:真菌30.细菌内毒素的主要毒性部分是()答案:脂质A31.欲从环境中分离粪便污染指示菌,即粪大肠菌群可采用()答案:鉴别培养基32.引起地方性斑疹伤寒的病原体为()答案:莫氏立克次体33.一般需经3~4 周培养才能见到有细菌生长的细菌是()答案:结核分枝杆菌34.以下属于最大的革兰阳性杆菌的是()答案:炭疽芽孢杆菌35.最适培养温度为42℃的细菌是()答案:弯曲菌属36.乳糖发酵管属于()答案:鉴别培养基37.与细菌黏附于黏膜的能力有关的结构是()答案:菌毛38.细菌所具有的细胞器是()答案:核糖体39.在进行钩端螺旋体病发生的流行病学调查时,致病性钩端螺旋体的环境样品为当地的()答案:地表水40.关于螺旋体属说法正确的是()答案:以二分裂方式繁殖41.革兰氏染色阴性,弧形或逗点状的细菌是()答案:霍乱弧菌42.肺炎链球菌在血平板上的溶血现象是()答案:α溶血43.在采集患者血液培养脑膜炎球菌时,不符合标本采集和运送的原则是()答案:标本送检中要保持低温和干燥的条件44.炭疽芽孢杆菌对环境的耐受力很强,可在土壤中存活()答案:数十年45.针对耶尔森菌的分离方法是()答案:使用冷增菌方法46.细胞壁的功能不应包括()答案:具有抗吞噬作用47.有关质粒的描述错误的是()答案:细菌生命活动不可缺少的基因48.以下主要依靠产毒素致病的细菌是()答案:肉毒梭菌49.以下描述α溶血正确的是()答案:又叫草绿色溶血,菌落周围血培养基变为绿色环状;红细胞外形完整无缺50.荚膜肿胀试验错误的是()答案:不可用于肺炎链球菌分型51.以下哪项不是细菌素的特征()答案:抗菌范围广52.以下哪种属于细菌表型分型技术()答案:细菌素分型53.下面哪个不是幽门螺杆菌的特性()答案:脲酶阴性54.脲酶活性最强的细菌是()答案:幽门螺杆菌55.对幽门螺杆菌性状的叙述,下列哪项不正确()答案:37℃、25℃、42℃均生长56.幽门螺杆菌主要感染人体的哪个器官()答案:胃部57.嗜肺军团菌的生化培养()答案:硝酸盐还原﹣###氧化酶﹣###明胶液化+###马尿酸盐水解+58.幽门螺杆菌感染的主要传播途径是什么()答案:食物和水传播59.关于幽门螺杆菌染色正确的是()答案:革兰阴性60.嗜肺军团菌的菌落特点()答案:紫色###白色###灰色###蓝色61.引起慢性胃炎的病原菌为()答案:幽门螺杆菌62.幽门螺杆菌感染的主要症状包括以下哪些()答案:腹痛和消化不良63.碳标记呼气试验可用于检测哪种病原菌的感染()答案:幽门螺杆菌64.嗜肺军团菌的主要能量来源是()答案:谷氨酸65.嗜肺军团菌在以下()描述是正确的。

常见微生物拉丁学名

常见微生物拉丁学名

引言概述:微生物是指体积小、仅能在显微镜下观察到的生物体,包括细菌、真菌、病毒等。

拉丁学名(学名)是对生物分类学中各种生物的命名系统,它由拉丁或拉丁化的词汇组成,通过国际生物命名法规定的规则进行命名。

本文将继续介绍常见微生物的拉丁学名,帮助读者更好地了解这些微生物的科学分类。

正文内容:一、病毒类(Viruses)1.官病毒(InfluenzaVirus)学名:Influenzavirus病毒类型:Orthomyxoviridae科2.乙肝病毒(HepatitisBVirus)学名:HepatitisBvirus病毒类型:Hepadnaviridae科3.腺病毒(Adenovirus)学名:Adenovirus病毒类型:Adenoviridae科4.结核分枝杆菌病毒(Mycobacteriophagetuberculosis)学名:Mycobacteriophagetuberculosis病毒类型:Siphoviridae科5.人类免疫缺陷病毒(HumanImmunodeficiencyVirus)学名:HumanImmunodeficiencyVirus病毒类型:Retroviridae科二、细菌类(Bacteria)1.大肠杆菌(Escherichiacoli)学名:Escherichiacoli菌属:Escherichia2.铜绿假单胞菌(Pseudomonasaeruginosa)学名:Pseudomonasaeruginosa菌属:Pseudomonas3.葡萄球菌(Staphylococcus)学名:Staphylococcus菌属:Staphylococcus4.肺炎克雷伯菌(Klebsiellapneumoniae)学名:Klebsiellapneumoniae菌属:Klebsiella5.霍乱弧菌(Vibriocholerae)学名:Vibriocholerae菌属:Vibrio三、真菌类(Fungi)1.白色念珠菌(Candidaalbicans)学名:Candidaalbicans真菌属:Candida2.黄曲霉(Aspergillusflavus)学名:Aspergillusflavus真菌属:Aspergillus3.铜绿假丝酵母(Cryptococcusneoformans)学名:Cryptococcusneoformans真菌属:Cryptococcus4.念珠菌属(Candida)学名:Candida真菌属:Candida5.白色念珠菌属(Candidaalbicans)学名:Candidaalbicans真菌属:Candida四、藻类(Algae)1.石藻(Diatom)学名:Diatom尖角藻类(Bacillariophyta)的一种2.衣藻(Chlorella)学名:Chlorella碧藻门(Chlorophyta)的一种3.螺旋藻(Spirulina)学名:Spirulina蓝藻门(Cyanobacteria)的一种4.毛藻(Volvox)学名:Volvox珊瑚藻门(Chlorophyta)的一种5.日耳曼藻(Gymnodinium)学名:Gymnodinium浮游甲藻纲(Dinophyceae)的一种五、原虫类(Protozoa)1.锥虫(Trypanosome)学名:Trypanosome动结核虫目(Kinetoplastida)的一种2.疟原虫(Plasmodium)学名:Plasmodium引起疟疾的原虫属(Trypanosomatidae)的一种3.草履虫(Amoeba)学名:Amoeba盘古动物门(Amoebozoa)的一种4.草履虫动物门(Amoebozoa)学名:Amoebozoa草履虫纲(Amoebidia)的一种5.肠道滴虫(Giardialamblia)学名:Giardialamblia鞭毛虫门(Metamonada)的一种总结:通过本文详细介绍了常见微生物的拉丁学名及其科学分类。

登革病毒C基因RNA二级结构及编码蛋白在病毒复制中的作用

登革病毒C基因RNA二级结构及编码蛋白在病毒复制中的作用

登革病毒C基因RNA二级结构及编码蛋白在病毒复制中的作用登革病毒(DEN)为黄病毒科(flaviviridae)黄病毒属(flavivirus)的重要成员,包括4个血清型(登革病毒1-4型,DEN 1-4)。

登革病毒感染可导致登革热(dengue fever,DF)和症状更加严重的登革出血热/登革休克综合征(dengue hemorrhagic fever/dengue shock syndrome,DHF/DSS)。

登革病毒基因组为长约11,000nt的单股正链RNA,包括5′非编码区(untranslated region,UTR)、单一开放读码框(open reading frame, ORF)和3′非编码区。

其ORF编码3种结构蛋白(C, prM和E)和至少7种非结构蛋白(NS1,NS2A,NS2B,NS3,NS4A,NS4B和NS5)。

黄病毒的衣壳(capsid,C)蛋白是病毒核衣壳的基本构成成分,多拷贝的C蛋白将病毒RNA包裹形成核衣壳结构。

黄病毒C蛋白具有4个α螺旋结构(α1-α4),且该蛋白具有功能多样性。

目前已经发现部分黄病毒的C蛋白对病毒RNA复制及蛋白翻译具有调节作用,并且C蛋白对病毒复制的调节与其核定位现象有关。

登革病毒C蛋白的核定位现象提示我们,在登革病毒RNA复制过程中,C蛋白也可能发挥了一定功能。

除C蛋白本身外,C基因在病毒RNA复制和翻译过程中也发挥了重要作用。

黄病毒C基因紧邻与病毒复制密切相关的5′非编码区,而且在C基因中已经发现了多个在病毒复制和翻译过程中发挥重要作用的RNA结构元件。

位于C基因内的5′环化序列(cyclization sequence, CS)和cHP元件对于病毒的复制和翻译均具有重要意义。

但目前黄病毒C蛋白及C基因中的结构元件调节病毒复制的机制还不十分清楚。

在登革病毒中,尚无C蛋白参与调节病毒复制的报道,而在C基因中是否存在其它影响病毒复制的RNA结构元件的问题也没有明确的答案。

艰难梭菌感染--抗生素滥用引发的全球公共健康威胁

艰难梭菌感染--抗生素滥用引发的全球公共健康威胁

SCIENCE艰难梭菌感染—抗生素滥用引发 的全球公共健康威胁0李星星陶亮抗生素是20世纪最伟大的发现之一,它一出现即带来了人类健康领域的一场革命抗生素在对抗病菌感染时是如此高效和便利,以至于生活在抗生素时代的多数人对病菌威胁失去了警惕然而.随着抗生素几十年如一曰的大规模滥用,耐药菌感染问题不断显现而哏唯梭菌感染作为其中的典型代表,已悄然成为一个全球性的公共健康问题抗生素滥用和随之大量产生的抗生素耐药菌是当今全球公共健康、食品安全和经济发展的最大威胁之一,它深刻地影响着我们每一个人,无论性别、年龄 和国籍一份2016年进行的调查显示,全球每年有不少于70万名患者死于耐药菌感染据估计,这个 数字到2050年将上升到1000万人,这比所有类型的 癌症死亡人数加起来(约每年800万)还要多!美国疾病预防控制中心2019年最新发布的北美耐 药菌威胁报告里列出了包括碳青霉烯抗性不动杆菌、耳 念珠菌、艰难梭菌、碳青霉烯抗性肠杆菌、耐药淋病奈瑟 氏菌在内的5种紧急威胁耐药菌,以及数十种严重威胁 和忧虑威胁的其他耐药菌其中,艰难梭菌近年来在全 球各地造成了一系列爆发性感染,自2013年起被美国 疾病预防控制中心列为最高级别威胁的耐药病菌,它也 可以看作是当今耐药菌问题爆发的一个典型缩影艰难梭菌(CVos/r/c Z/o/c/e s a^//Vc//e)是—种专性 厌氧的革兰氏阳性细菌,形状多为杆状、棒状、梭状,可 产生芽孢。

该菌最早于1935年由哈尔(I.Hall)和奧 图尔(E.O’Toole)在健康婴儿的肠道中分离得到,因其在实验室条件下分离培养非常困难而得名“艰难”李星博丨:研究生;陶亮.研究员:西湖大学屮命科f学院,杭州 310024 *********************.cnLi Xingxing, Ph.D. candidate; Tao Liang, Research Professor; School of Life Sciences, Westlake University, Hangzhou 310024.虽然研究者很早就发现艰难梭菌的培养物对实验动物有毒害作用,然而由于艰难梭菌最初分离自健康婴 儿,且没有其他相关致病报道,于是艰难梭菌在发现后的数十年内一直被认为是正常肠道细菌之一,因而被人 们所长期忽视。

无指盘臭蛙免疫调节肽、其基因和变异体及其在制药中的应用[发明专利]

无指盘臭蛙免疫调节肽、其基因和变异体及其在制药中的应用[发明专利]

专利名称:无指盘臭蛙免疫调节肽、其基因和变异体及其在制药中的应用
专利类型:发明专利
发明人:赖仞,李建许,李东升,宋玉竹
申请号:CN200710065669.9
申请日:20070212
公开号:CN101037473A
公开日:
20070919
专利内容由知识产权出版社提供
摘要:本发明涉及无指盘臭蛙免疫调节肽、基因和变异体及其在制药中的应用,属生物医学技术领域。

无指盘臭蛙免疫调节肽是一种环状多肽,分子量1791.12道尔顿,等电点9.84,无指盘臭蛙免疫调节肽的全序列为:Thr Ser Arg Cys Tyr Ile Gly Tyr Arg ArgLys Val Val Cys
Ser(TSRCYIGYRRKVVCS),其第4位的半胱氨酸和第14位的半胱氨酸形成分子内二硫键。

编码的基因由307个核苷酸组成,其中编码成熟部分的为第141-186位核苷酸。

无指盘臭蛙免疫调节肽原始序列中第4个氨基酸发生替代所产生的变异体,人工合成的无指盘臭蛙免疫调节肽及其变异体具有强烈的免疫调节活性和肿瘤抑制活性,作为制备免疫调节、肿瘤治疗和化疗药物的应用。

本发明还具有序列简单、合成方便等优点。

申请人:中国科学院昆明动物研究所
地址:650224 云南省昆明市五华区教场东路32号
国籍:CN
代理机构:昆明正原专利代理有限责任公司
代理人:杨宏珍
更多信息请下载全文后查看。

登革热诊疗方案(2024年版)

登革热诊疗方案(2024年版)

附件2登革热诊疗方案(2024年版)登革热(Dengue fever,DF)是由登革病毒(Dengue virus,DENV)引起,经媒介伊蚊叮咬传播的急性传染病。

其临床特征为突起发热、全身疼痛、皮疹、出血及白细胞减少等,严重者出现休克及重要器官衰竭,甚至死亡。

近年来,我国输入引发的本地传播登革热疫情累及地区呈扩大趋势,有由南方亚热带地区向中、北部温带地区扩散倾向。

为进一步规范登革热临床诊疗工作,在《登革热诊疗指南(2014年第2版)》基础上,结合国内外研究进展和诊疗经验,制订本诊疗方案。

一、病原学登革病毒属黄病毒科黄病毒属,病毒颗粒呈球形,直径45~55nm,共有4个血清型(DENV-1、DENV-2、DENV-3和DENV-4),均可导致人类感染,引发重症,其中DENV-4型病毒传播力较弱,累及范围较小。

我国本地传播登革病毒流行株血清型与境外输入病毒相关联,以DENV-1型、DENV-2型多见。

基因组为单股正链RNA,内含单一可读框依次编码3种结构蛋白和7种非结构蛋白。

NS1抗原是非结构蛋白中的一种糖蛋白,在急性期血清中大量存在,可作为早期诊断指标。

登革病毒对热敏感,56℃30分钟可灭活,在4℃条件下其感染性可保持数周,在-70℃或冷冻干燥状态下可长期存活。

超声波、紫外线、0.05%甲醛溶液、乳酸、高锰酸钾、龙胆紫均可灭活病毒。

二、流行病学(一)传染源。

登革热患者、隐性感染者和带病毒的非人灵长类动物。

(二)传播途径。

主要通过伊蚊叮咬传播。

在我国传播媒介主要为白纹伊蚊和埃及伊蚊。

(三)易感人群。

人群普遍易感,感染后部分人发病。

登革病毒感染后,可对相同血清型病毒产生持久免疫力,但对不同血清型病毒感染不能形成有效保护。

(四)流行特征。

登革热在全球存在媒介伊蚊分布的热带、亚热带地区广泛流行,累及全球100多个国家和地区。

拉丁美洲地区、西太平洋区、东南亚区、东地中海区等地区,登革热传播可常年发生。

我国虽尚未形成稳定的登革热本地传播疫源地,但输入性病例常年可见。

WHONET微生物中英文对照及其代码

WHONET微生物中英文对照及其代码

WHONET微生物中英文对照及其代码WHONET微生物中英文对照及其代码常见细菌中英文对照、菌组、菌属及代码〔革兰阴性局部〕代码革兰英文名称中文名称细菌分类菌属139-Vibrio cholerae O139霍乱弧菌O139血清型FERM弧菌属157-Escherichia coli O157:H7大肠埃希菌O157:H7EBC埃希菌属aba-Acinetobacter baumannii鲍曼不动杆菌NFR不动杆菌属abu-Arcobacter butzleri比茨莱弓形菌GNCB弓形菌属ac--Acinetobacter sp.不动杆菌属NFR不动杆菌属aca-Acinetobacter calcoaceticus醋酸钙不动杆菌NFR不动杆菌属acb-Actinobacillus sp.放线杆菌属GNCB放线杆菌属ach-Achromobacter sp.无色杆菌属NFR无色杆菌属acv-Aeromonas caviae豚鼠气单胞菌FERM气单胞菌属acx-Acidovorax sp.食酸菌属NFR食酸菌属acy-Arcobacter cryaerophilus嗜低温弓形菌GNCB弓形菌属ade-Alcaligenes xylosoxidans ss. denitrificans反硝化无色杆菌NFR无色杆菌属adf-Acidovorax delafieldii德拉菲尔德食酸菌NFR食酸菌属adf-Pseudomonas delafieldii德拉菲尔德食酸菌NFR 食酸菌属aeh-Aeromonas hydrophila嗜水气单胞菌FERM气单胞菌属aeq-Actinobacillus equuli马驹放线杆菌马驹亚种GNCB放线杆菌属aer-Aeromonas sp.气单胞菌属FERM气单胞菌属aeu-Aeromonas eucrenophila嗜矿泉气单胞菌FERM气单胞菌属afa-Alcaligenes odorans香味类香味菌NFR产碱杆菌属afc-Acidovorax facilis速生食酸菌NFR食酸菌属afc-Pseudomonas facilis速生食酸菌NFR 食酸菌属afd-Afipia clevelandensis克利夫兰阿菲波菌GNCB阿菲波菌属afi-Afipia sp.阿菲波菌属GNCB阿菲波菌属afo-Afipia broomeae布氏阿菲波菌GNCB阿菲波菌属agr-Agrobacterium sp.根瘤菌属NFR根瘤菌属aha-Acinetobacter haemolyticus溶血不动杆菌NFR不动杆菌属aja-Aeromonas jandaei让达气单胞菌FERM气单胞菌属ajo-Acinetobacter johnsonii约氏不动杆菌NFR不动杆菌属aju-Acinetobacter junii琼氏不动杆菌NFR不动杆菌属alc-Alcaligenes sp.产碱杆菌属NFR产碱杆菌属ali-Actinobacillus lignieresii利尼埃放线杆菌GNCB放线杆菌属alm-Alteromonas sp.交替单胞菌属check交替单胞菌属alw-Acinetobacter lwoffii鲁氏不动杆菌NFR不动杆菌属aly-Alysiella sp.小链球菌check小链球菌amd-Aeromonas media中间气单胞菌FERM气单胞菌属ant-Arcobacter nitrofigilis固氮弓形菌GNCB弓形菌属apf-Afipia felis猫阿菲波菌GNCB阿菲波菌属api-Alcaligenes piechaudii皮埃肖无色杆菌NFR产碱杆菌属apl-Actinobacillus pleuropneumoniae胸膜肺炎放线杆菌GNCB放线杆菌属apl-Haemophilus pleuropneumoniae胸膜肺炎放线杆菌GNCB放线杆菌属apn-Aeromonas punctata斑点气单胞菌斑点亚种FERM气单胞菌属apn-Aeromonas punctata ss. punctata斑点气单胞菌斑点亚种FERM气单胞菌属arc-Arcobacter sp.弓形菌属GNCB弓形菌属ari-Arizona sp.亚利桑那菌属EBC沙门菌属asa-Aeromonas salmonicida杀鲑气单胞菌FERM气单胞菌属asb-Aeromonas veronii biovar sobria温和气单胞菌FERM气单胞菌属ash-Aeromonas schubertii舒氏气单胞菌FERM气单胞菌属aso-Aeromonas sobria温和气单胞菌FERM气单胞菌属asu-Actinobacillus suis猪放线杆菌GNCB放线杆菌属atm-Acidovorax temperans中等食酸菌NFR食酸菌属atr-Aeromonas trota肠棕气单胞菌FERM气单胞菌属atu-Agrobacterium radiobacter放射杆菌根瘤菌NFRatu-Rhizobium radiobacter放射杆菌根瘤菌NFRaur-Actinobacillus ureae脲放线杆菌GNCB放线杆菌属aur-Pasteurella ureae脲放线杆菌GNCB放线杆菌属ave-Aeromonas veronii维龙气单胞菌FERM气单胞菌属avv-Aeromonas veronii biovar veronii维龙气单胞菌FERM气单胞菌属axy-Alcaligenes xylosoxidans木糖氧化无色杆菌木糖氧化亚种NFR产碱杆菌属axy-Alcaligenes xylosoxidans ss. xylosoxidans木糖氧化无色杆菌木糖氧化亚种NFR无色杆菌属b01-Shigella boydii serotype 1鲍氏志贺菌血清1型EBC志贺菌属b02-Shigella boydii serotype 2鲍氏志贺菌血清2型EBC志贺菌属b03-Shigella boydii serotype 3鲍氏志贺菌血清3型EBC志贺菌属b04-Shigella boydii serotype 4鲍氏志贺菌血清4型EBC志贺菌属b05-Shigella boydii serotype 5鲍氏志贺菌血清5型EBC志贺菌属b06-Shigella boydii serotype 6鲍氏志贺菌血清6型EBC志贺菌属b07-Shigella boydii serotype 7鲍氏志贺菌血清7型EBC志贺菌属b08-Shigella boydii serotype 8鲍氏志贺菌血清8型EBC志贺菌属b09-Shigella boydii serotype 9鲍氏志贺菌血清9型EBC志贺菌属b10-Shigella boydii serotype 10鲍氏志贺菌血清10型EBC志贺菌属b11-Shigella boydii serotype 11鲍氏志贺菌血清11型EBC志贺菌属b12-Shigella boydii serotype 12鲍氏志贺菌血清12型EBC志贺菌属b13-Shigella boydii serotype 13鲍氏志贺菌血清13型EBC志贺菌属b14-Shigella boydii serotype 14鲍氏志贺菌血清14型EBC志贺菌属b15-Shigella boydii serotype 15鲍氏志贺菌血清15型EBC志贺菌属b16-Shigella boydii serotype 16鲍氏志贺菌血清16型EBC志贺菌属b17-Shigella boydii serotype 17鲍氏志贺菌血清17型EBC志贺菌属b18-Shigella boydii serotype 18鲍氏志贺菌血清18型EBC志贺菌属baq-Budvicia aquatica水生布戴约维采菌EBC布戴约维采菌属bar-Bartonella sp.巴尔通体属GNCB巴尔通体属bav-Bordetella avium鸟鲍特菌GNCB鲍特菌属bba-Bartonella bacilliformis杆状巴尔通体check巴尔通体属bbr-Bordetella bronchiseptica支气管炎鲍特菌GNCB鲍特菌属bca-Branhamella catarrhalis卡他莫拉菌NFR莫拉菌属bca-Moraxella (Branh.) catarrhalis卡它摩拉菌NFR莫拉菌属bd--Bordetella sp.鲍特菌属GNCB鲍特菌属ber-Bergeyella sp.伯杰菌属NFR伯杰菌属bez-Bartonella elizabethae伊丽沙白巴尔通体GNCB巴尔通体属bez-Rochalimaea elizabethae伊丽沙白巴尔通体GNCB巴尔通体属bgl-Burkholderia gladioli唐菖蒲伯克霍尔德菌NFR伯克霍尔德菌属bgl-Pseudomonas gladioli唐菖蒲伯克霍尔德菌+B1447NFR伯克霍尔德菌属bhe-Bartonella henselae汉氏巴尔通体GNCB巴尔通体属bhe-Rochalimaea henselae汉氏巴尔通体〔罗卡利马体〕GNCB巴尔通体属bhm-Bordetella holmesii霍氏鲍特菌GNCB鲍特菌属bhz-Bordetella hinzii欣茨鲍特菌GNCB鲍特菌属bma-Burkholderia mallei鼻疽伯克霍尔德菌NFR伯克霍尔德菌属bma-Pseudomonas mallei鼻疽伯克霍尔德菌NFR伯克霍尔德菌属bmt-Brucella melitensis马耳他布鲁菌GNCB布鲁菌属boc-Bacteroides ochraceus黄褐二氧化碳嗜纤维菌GNCBboc-Capnocytophaga ochracea黄褐二氧化碳嗜纤维菌GNCBbpa-Bordetella parapertussis副百日咳鲍特菌GNCB鲍特菌属bpe-Bordetella pertussis百日咳鲍特菌GNCB鲍特菌属bqu-Bartonella quintana五日热巴尔通体GNCB巴尔通体属bqu-Rochalimaea quintana五日热巴尔通体GNCB巴尔通体属br--Brucella sp.布鲁菌属GNCB布鲁菌属brv-Brevundimonas sp.短波单胞菌属NFR短波单胞菌属bua-Buttiauxella sp.布丘菌属EBC布丘菌属bud-Budvicia sp.布戴约维采菌属EBC布戴约维采菌属buk-Burkholderia sp.伯克霍尔德菌属NFR伯克霍尔德菌属bvi-Rochalimaea vinsonii文森巴尔通体GNCB巴尔通体属bvi-Bartonella vinsonii文氏巴尔通体文氏亚种GNCB巴尔通体属c10-Citrobacter genomospecies 10柠檬酸杆菌基因种10EBC柠檬酸杆菌属c11-Citrobacter genomospecies 11柠檬酸杆菌基因种11EBC柠檬酸杆菌属c2c-Flavobacterium group IIc黄杆菌IIc生物群NFR黄杆菌属c2e-Flavobacterium group IIe黄杆菌IIe生物群NFR黄杆菌属c2h-Flavobacterium group IIh黄杆菌IIh生物群NFR黄杆菌属c2i-Flavobacterium group IIi黄杆菌IIi生物群NFR黄杆菌属c4d-Pseudomonas-like group 2类假单胞菌2型NFR假单胞菌属cac-amonas acidovorans食酸代尔夫特菌NFRcac-Delftia acidovorans食酸代尔夫特菌cac-Pseudomonas acidovorans食酸代尔夫特菌NFR丛毛单胞菌属caj-Campylobacter jejuni空肠弯曲菌空肠亚种GNCB弯曲菌属caj-Campylobacter jejuni ss. jejuni空肠弯曲菌空肠亚种GNCB弯曲菌属cam-Campylobacter sp.弯曲菌属GNCB弯曲菌属cap-Capnocytophaga sp.二氧化碳嗜纤维菌属GNCBcar-Cardiobacterium sp.心杆菌属HAK心杆菌属cas-Capnocytophaga sputigena生痰二氧化碳嗜纤维菌GNCBcbb-Campylobacter sputorum ss. bulbulus唾液弯曲菌牛生物变种GNCB弯曲菌属cbk-Citrobacter braakii布拉克柠檬酸杆菌EBC柠檬酸杆菌属cbt-Coxiella burnetii伯氏考克斯体(立克次体)GNCB考克斯体属ccm-Capnocytophaga canimorsus狗咬二氧化碳嗜纤维菌GNCBcco-Campylobacter coli大肠弯曲菌GNCB弯曲菌属ccy-Capnocytophaga cynodegmi犬咬二氧化碳嗜纤维菌GNCBcda-Cedecea davisae戴维斯XX西菌EBCXX西菌属cdi-Citrobacter diversus差异柠檬酸杆菌EBC柠檬酸杆菌属ce3-Cedecea sp. 3XX西菌3EBCXX西菌属ce5-Cedecea sp. 5XX西菌5EBCXX西菌属ced-Cedecea sp.XX西菌属EBCXX西菌属cfa-Citrobacter farmeri法默柠檬酸杆菌EBC柠檬酸杆菌属cfe-Campylobacter fetus胎儿弯曲菌胎儿亚种GNCB弯曲菌属cfe-Campylobacter fetus ss. fetus胎儿弯曲菌胎儿亚种GNCB弯曲菌属cfr-Citrobacter freundii弗劳地柠檬酸杆菌EBC柠檬酸杆菌属cfv-Campylobacter fetus ss. venerealis胎儿弯曲菌性病亚种GNCB弯曲菌属cgi-Capnocytophaga gingivalis牙龈二氧化碳嗜纤维菌GNCBcgn-Capnocytophaga granulosa颗粒二氧化碳嗜纤维菌GNCBcgr-Calymmatobacterium granulomatis肉芽肿鞘杆菌GNCB鞘杆菌属chb-Chryseobacterium sp.金黄杆菌属NFR金黄杆菌属chc-Capnocytophaga haemolytica溶血二氧化碳嗜纤维菌GNCBchl-Chlamydia sp.衣原体属GNCB衣原体属chm-Chromobacterium sp.色杆菌属FERM色杆菌属cho-Cardiobacterium hominis人心杆菌HAK心杆菌属chr-Chryseomonas sp.金色单胞菌属check金色单胞菌属cht-Chlamydia trachomatis沙眼衣原体GNCB衣原体属chy-Campylobacter hyointestinalis豚肠弯曲菌GNCB弯曲菌属ci--Citrobacter sp.柠檬酸杆菌属EBC柠檬酸杆菌属ci9-Citrobacter genomospecies 9柠檬酸杆菌基因种9EBC柠檬酸杆菌属cj1-Campylobacter jejuni biotype 1空肠弯曲菌生物1型GNCB弯曲菌属cj2-Campylobacter jejuni biotype 2空肠弯曲菌生物2型GNCB弯曲菌属cjd-Campylobacter jejuni ss. doylei空肠弯曲菌德莱亚种GNCB弯曲菌属cle-Cedecea lapagei拉氏XX西菌EBCXX西菌属clr-Campylobacter laridis海鸟弯曲菌GNCB弯曲菌属clr-Campylobacter lari红嘴鸥弯曲菌GNCB弯曲菌属clt-Chryseomonas luteola浅黄假单胞菌check金色单胞菌属clt-Pseudomonas luteola浅黄假单胞菌check金色单胞菌属cmb-Calymmatobacterium sp.鞘杆菌属GNCB鞘杆菌属cml-Citrobacter amalonaticus无丙二酸柠檬酸杆菌EBC柠檬酸杆菌属cmu-Campylobacter mucosalis粘膜弯曲菌GNCB弯曲菌属t-Cedecea neteri内特XX西菌EBCXX西菌属t-Cedecea sp. 4XX西菌4EBCXX西菌属-amonas sp.丛毛单胞菌属NFR丛毛单胞菌属cox-Coxiella sp.考克斯体属GNCB考克斯体属cpn-Chlamydia pneumoniae肺炎嗜衣原体GNCBcpn-Chlamydophila pneumoniae肺炎嗜衣原体GNCBcpt-Chlamydia psittaci鹦鹉热嗜衣原体GNCBcpt-Chlamydophila psittaci鹦鹉热嗜衣原体GNCBcsk-Citrobacter sedlakii塞德拉克柠檬酸杆菌EBC柠檬酸杆菌属ctg-amonas terrigena土生丛毛单胞菌NFR丛毛单胞菌属cts-amonas testosteroni睾丸酮丛毛单胞菌NFR丛毛单胞菌属cts-Pseudomonas testosteroni睾丸酮丛毛单胞菌NFR丛毛单胞菌属cup-Campylobacter upsaliensis乌普萨拉弯曲菌GNCB弯曲菌属cvb-Pseudomonas stutzeri-like类斯氏假单胞菌NFR假单胞菌属cvi-Chromobacterium violaceum紫色色杆菌FERM色杆菌属cwe-Citrobacter werkmanii沃克曼柠檬酸杆菌EBC柠檬酸杆菌属cyo-Citrobacter youngae杨氏柠檬酸杆菌EBC柠檬酸杆菌属d01-Shigella dysenteriae serotype 1痢疾志贺菌血清1型EBC志贺菌属d02-Shigella dysenteriae serotype 2痢疾志贺菌血清2型EBC志贺菌属d03-Shigella dysenteriae serotype 3痢疾志贺菌血清3型EBC志贺菌属d04-Shigella dysenteriae serotype 4痢疾志贺菌血清4型EBC志贺菌属d05-Shigella dysenteriae serotype 5痢疾志贺菌血清5型EBC志贺菌属d06-Shigella dysenteriae serotype 6痢疾志贺菌血清6型EBC志贺菌属d07-Shigella dysenteriae serotype 7痢疾志贺菌血清7型EBC志贺菌属d08-Shigella dysenteriae serotype 8痢疾志贺菌血清8型EBC志贺菌属d09-Shigella dysenteriae serotype 9痢疾志贺菌血清9型EBC志贺菌属d10-Shigella dysenteriae serotype 10痢疾志贺菌血清10型EBC志贺菌属d11-Shigella dysenteriae serotype 11痢疾志贺菌血清11型EBC志贺菌属d12-Shigella dysenteriae serotype 12痢疾志贺菌血清12型EBC志贺菌属d13-Shigella dysenteriae serotype 13痢疾志贺菌血清13型EBC志贺菌属d14-Shigella dysenteriae serotype 14痢疾志贺菌血清14型EBC志贺菌属d15-Shigella dysenteriae serotype 15痢疾志贺菌血清15型EBC志贺菌属e26-Bordetella-like species类鲍特菌GNCB鲍特菌属ea1-Enterobacter amnigenus 1河生肠杆菌生物1型EBC肠杆菌属ea2-Enterobacter amnigenus 2河生肠杆菌生物2型EBC肠杆菌属ead-Escherichia coli (alkalescens-dispar)大肠埃希菌(产碱殊异株)EBC埃希菌属eae-Enterobacter aerogenes产气肠杆菌EBC肠杆菌属eag-Enterobacter agglomerans成团泛菌EBC泛菌属eag-Pantoea agglomerans成团泛菌EBC泛菌属eal-Erwinia amylovora解淀粉欧文氏菌EBC欧文菌属eam-Enterobacter amnigenus河生肠杆菌EBC肠杆菌属ear-Ewingella americana美洲爱文菌EBC爱文菌属eas-Enterobacter asburiae阿氏肠杆菌EBC肠杆菌属ebl-Escherichia blattae蟑螂埃希菌EBC埃希菌属ebr-Empedobacter brevis短稳杆菌NFR稳杆菌属ebr-Flavobacterium breve短稳杆菌NFR稳杆菌属ece-Erwinia carnegieana大仙人掌欧文菌EBC欧文菌属ecg-Enterobacter taylorae生癌肠杆菌EBC肠杆菌属ecl-Enterobacter cloacae阴沟肠杆菌阴沟亚种EBC肠杆菌属eco-Escherichia coli大肠埃希菌EBC埃希菌属ecr-Eikenella corrodens啮蚀艾肯菌HAK艾肯菌属ect-Erwinia carotovora胡萝卜软腐病解果胶杆菌胡萝卜软腐亚种EBC欧文菌属edi-Enterobacter dissolvens阴沟肠杆菌液化亚种EBC肠杆菌属edw-Edwardsiella sp.爱德华菌属EBC爱德华菌属efe-Escherichia fergusonii弗格森埃希菌EBC埃希菌属egg-Enterobacter gergoviae日沟维肠杆菌EBC肠杆菌属ehc-Ehrlichia canis犬埃里希体GNCB埃里希体属ehe-Escherichia hermannii赫氏埃希菌EBC埃希菌属ehf-Ehrlichia chaffeensis恰菲埃里希体GNCB埃里希体属ehm-Enterobacter hormaechei霍尔姆肠杆菌EBC肠杆菌属eho-Edwardsiella hoshinae保科爱德华菌EBC爱德华菌属ehr-Ehrlichia sp.埃里希体属GNCB埃里希体属ehs-Ehrlichia sennetsu腺热埃里希体GNCB埃里希体属eic-Edwardsiella ictaluri鲶鱼爱德华菌EBC爱德华菌属eik-Eikenella sp.艾肯菌属HAK艾肯菌属ein-Enterobacter intermedius中间肠杆菌EBC肠杆菌属emp-Empedobacter sp.稳杆菌属NFR稳杆菌属en--Enterobacter sp.肠杆菌属EBC肠杆菌属enp-Enterobacter nimipressuralis超压肠杆菌EBC肠杆菌属erw-Erwinia sp.欧文菌属EBC欧文菌属esa-Enterobacter sakazakii阪崎肠杆菌EBC肠杆菌属esc-Escherichia sp.埃希菌属EBC埃希菌属eta-Edwardsiella tarda迟钝爱德华菌EBC爱德华菌属evu-Escherichia vulneris伤口埃希菌EBC埃希菌属ewi-Ewingella sp.爱文菌属EBC爱文菌属f01-Shigella flexneri serotype 1福氏志贺菌血清1型EBC志贺菌属f02-Shigella flexneri serotype 2福氏志贺菌血清2型EBC志贺菌属f03-Shigella flexneri serotype 3福氏志贺菌血清3型EBC志贺菌属f04-Shigella flexneri serotype 4福氏志贺菌血清4型EBC志贺菌属f05-Shigella flexneri serotype 5福氏志贺菌血清5型EBC志贺菌属f06-Shigella flexneri serotype 6福氏志贺菌血清6型EBC志贺菌属f1a-Shigella flexneri serotype 1a福氏志贺菌1a血清型EBC志贺菌属f1b-Shigella flexneri serotype 1b福氏志贺菌1b血清型EBC志贺菌属f2a-Shigella flexneri serotype 2a福氏志贺菌2a血清型EBC志贺菌属f2b-Shigella flexneri serotype 2b福氏志贺菌2b血清型EBC志贺菌属f3a-Shigella flexneri serotype 3a福氏志贺菌3a血清型EBC志贺菌属f3b-Shigella flexneri serotype 3b福氏志贺菌3b血清型EBC志贺菌属f4a-Shigella flexneri serotype 4a福氏志贺菌4a血清型EBC志贺菌属f4b-Shigella flexneri serotype 4b福氏志贺菌4b血清型EBC志贺菌属f4c-Shigella flexneri serotype 4c福氏志贺菌4c血清型EBC志贺菌属f5a-Shigella flexneri serotype 5a福氏志贺菌5a血清型EBC志贺菌属f5b-Shigella flexneri serotype 5b福氏志贺菌5b血清型EBC志贺菌属fgl-Chryseobacterium gleum粘金黄杆菌NFR金黄杆菌属fgl-Flavobacterium gleum粘金黄杆菌NFR金黄杆菌属fho-Francisella tularensis ss. holarctica土拉热弗郎西斯菌全北区亚种GNCB弗郎西斯菌属fin-Chryseobacterium indologenes产吲哚金黄杆菌NFR金黄杆菌属fin-Flavobacterium indologenes吲哚金黄杆菌NFR金黄杆菌属fla-Flavobacterium sp.黄杆菌属NFR黄杆菌属flu-Fluoribacter sp.荧光杆菌属check荧光杆菌属flv-Flavimonas sp.黄单胞菌属check黄单胞菌属fmd-Francisella tularensis ss. mediasiatica土拉热弗郎西斯菌中亚细亚亚种GNCB弗郎西斯菌属fme-Chryseobacterium meningosepticum脑膜败血伊丽莎白金菌NFR金黄杆菌属fme-Elizabethkingia meningosepticum脑膜败血伊丽莎白金菌NFRfme-Flavobacterium meningosepticum脑膜败血伊丽莎白金菌NFR金黄杆菌属fmz-Flavobacterium mizutaii水氏黄杆菌NFR黄杆菌属fmz-Sphingobacterium mizutae水田黄杆菌NFR黄杆菌属fnv-Francisella novicida新凶手弗郎西斯菌GNCB弗郎西斯菌属fod-Flavobacterium odoratum香味类香味菌NFRfor-Flavimonas oryzihabitans栖稻假单胞菌check黄单胞菌属for-Pseudomonas oryzihabitans栖稻假单胞菌check黄单胞菌属fph-Francisella philomiragia蜃楼弗郎西斯菌GNCB弗郎西斯菌属fph-Yersinia philomiragia蜃楼弗郎西斯菌GNCB弗郎西斯菌属fpl-Francisella tularensis Type B土拉热弗郎西斯菌B型GNCB弗郎西斯菌属fra-Francisella sp.弗郎西斯菌属GNCB弗郎西斯菌属fth-Flavobacterium thalpophilum嗜温鞘氨醇杆菌NFR鞘氨醇杆菌属fth-Sphingobacterium thalpophilum嗜温鞘氨醇杆菌NFR鞘氨醇杆菌属ftu-Francisella tularensis土拉热弗郎西斯菌GNCB弗郎西斯菌属ftu-Francisella tularensis Type A土拉热弗郎西斯菌A型GNCB弗郎西斯菌属ftu-Francisella tularensis ss. tularensis土拉热弗郎西斯菌土拉热亚种GNCB弗郎西斯菌属gm--Gram negative bacteria革兰阴性gnc-Gram negative cocci革兰阴性球菌GNCgne-Gram negative enteric organism革兰阴性肠道菌EBCgnr-Gram negative rods革兰阴性杆菌GNRha--Haemophilus sp.嗜血杆菌属GNCB嗜血杆菌属hac-Actinobacillus actinomycetemitans伴放线菌凝聚杆菌HAKhac-Haemophilus actinomycetemitans伴放线凝聚杆菌HAKhaf-Hafnia sp.哈夫尼亚菌属EBC哈夫尼亚菌属hag-Haemophilus aegyptius埃及嗜血杆菌GNCB嗜血杆菌属hal-Hafnia alvei蜂房哈夫尼亚菌EBC哈夫尼亚菌属hap-Haemophilus aphrophilus嗜沫凝聚杆菌HAK嗜血杆菌属hap-Haemophilus paraphrophilus副嗜沫凝聚杆菌HAK嗜血杆菌属hdu-Haemophilus ducreyi杜克嗜血杆菌GNCB嗜血杆菌属hel-Helicobacter sp.螺杆菌属GNCB螺杆菌属heq-Haemophilus equigenitalis马生殖器泰勒菌check泰勒菌属heq-Taylorella equigenitalis马生殖器泰勒菌check泰勒菌属hfe-Helicobacter felis猫螺杆菌GNCB螺杆菌属hfn-Campylobacter fennelliae芬内尔螺杆菌GNCB螺杆菌属hha-Haemophilus haemoglobinophilus嗜血红素嗜血杆菌GNCB嗜血杆菌属hhe-Haemophilus haemolyticus溶血嗜血杆菌GNCB嗜血杆菌属hib-Haemophilus influenzae (type b)流感嗜血杆菌〔b型〕GNCB嗜血杆菌属hin-Haemophilus influenzae流感嗜血杆菌GNCB嗜血杆菌属hmu-Helicobacter mustelae红嘴欧螺杆菌GNCB螺杆菌属hne-Helicobacter nemestrinae幽门螺杆菌GNCB螺杆菌属hpc-Haemophilus paracuniculus副兔嗜血杆菌GNCB嗜血杆菌属hpg-Haemophilus paragallinarum类鹑鸡鸟杆菌GNCB嗜血杆菌属hph-Haemophilus parahaemolyticus副溶血嗜血杆菌GNCB嗜血杆菌属hpi-Haemophilus parainfluenzae副流感嗜血杆菌GNCB嗜血杆菌属hpl-Haemophilus paraphrohaemolyticus副溶血嗜沫嗜血杆菌GNCB嗜血杆菌属hpr-Haemophilus parasuis副猪嗜血杆菌GNCB嗜血杆菌属hpu-Helicobacter pullorum幼禽螺杆菌GNCB螺杆菌属hpy-Helicobacter pylori幽门螺杆菌GNCB螺杆菌属hse-Haemophilus segnis惰性凝聚杆菌HAKhxb-Haemophilus influenzae (not type b)非b型流感嗜血杆菌GNCB嗜血杆菌属hxt-Haemophilus influenzae (not typable)未分型流感嗜血杆菌GNCB嗜血杆菌属inf-Salmonella Infantis沙门菌婴儿血清型EBC沙门菌属kas-Kluyvera ascorbata抗坏血酸克吕沃菌EBC克吕沃菌属kcr-Kluyvera cryocrescens栖冷克吕沃菌EBC克吕沃菌属kde-Kingella denitrificans脱硝金菌HAK金菌属kin-Kingella sp.金菌属HAK金菌属kki-Kingella kingae金氏金菌HAK金菌属kl--Klebsiella sp.克雷伯菌属EBC克雷伯菌属klu-Kluyvera sp.克吕沃菌属EBC克吕沃菌属kol-Kingella oralis口金菌HAK金菌属kor-Klebsiella ornithinolytica解鸟氨酸拉乌尔菌EBC克雷伯菌属kor-Klebsiella Enteric Group 47克雷伯菌肠道菌群47型EBC克雷伯菌属kox-Klebsiella oxytoca产酸克雷伯菌EBC克雷伯菌属koz-Klebsiella ozaenae肺炎克雷伯菌臭鼻亚种EBC克雷伯菌属koz-Klebsiella pneumoniae ss. ozaenae肺炎克雷伯菌臭鼻亚种EBC克雷伯菌属kpl-Klebsiella trevisanii植生拉乌尔菌EBC克雷伯菌属kpn-Klebsiella pneumoniae肺炎克雷伯菌EBC克雷伯菌属kpn-Klebsiella pneumoniae ss. pneumoniae肺炎克雷伯菌肺炎亚种EBC克雷伯菌属krn-Klebsiella rhinoscleromatis鼻硬结克雷伯菌EBC克雷伯菌属krn-Klebsiella pneumoniae ss. rhinoscleromatis肺炎克雷伯菌鼻硬结亚种EBC克雷伯菌属kte-Klebsiella terrigena土生拉乌尔菌EBC克雷伯菌属laa-Legionella anisa不同军团菌GNCB军团菌属lad-Escherichia adecarboxylata非脱羧勒克菌EBC勒克菌属lad-Leclercia adecarboxylata非脱羧勒克菌EBC勒克菌属lan-Listonella anguillarum鳗利斯顿菌check利斯顿菌属lbi-Legionella birminghamensis伯明翰军团菌GNCB军团菌属lbn-Legionella brunensis布吕嫩军团菌GNCB军团菌属lbo-Fluoribacter bozemanii博兹曼荧光杆菌check荧光杆菌属lbo-Legionella bozemanii博兹曼荧光杆菌check荧光杆菌属lch-Legionella cherrii彻氏军团菌GNCB军团菌属l-Legionella cincinnatiensis辛辛那提军团菌GNCB军团菌属ldu-Fluoribacter dumoffii迪莫夫荧光杆菌check荧光杆菌属ldu-Legionella dumoffii杜莫夫荧光杆菌check荧光杆菌属lec-Leclercia sp.勒克菌属EBC勒克菌属leg-Legionella sp.军团菌属GNCB军团菌属lem-Leminorella sp.勒米诺菌属EBC勒米诺菌属len-Legionella pneumophila嗜肺军团菌GNCB军团菌属len-Legionella pneumophila ss. pneumophila嗜肺军团菌嗜肺亚种GNCB军团菌属ler-Legionella erythra艾里塔拉军团菌GNCB军团菌属lfr-Legionella pneumophila ss. fraseri嗜肺军团菌弗雷泽亚种GNCB军团菌属lge-Legionella geestiae吉斯特军团菌GNCB军团菌属lgo-Fluoribacter gormanii戈尔曼荧光杆菌check荧光杆菌属lgo-Legionella gormanii戈曼荧光杆菌check荧光杆菌属lgr-Leminorella grimontii格利蒙勒米诺菌EBC勒米诺菌属lha-Legionella hackeliae哈开理军团菌GNCB军团菌属lir-Legionella israelensis以色列军团菌GNCB军团菌属lit-Listonella sp.利斯顿菌属check利斯顿菌属lja-Legionella jamestowniensis詹姆斯敦军团菌GNCB军团菌属ljr-Legionella jordanis约旦军团菌GNCB军团菌属llg-Legionella lansingensis兰斯格军团菌GNCB军团菌属lln-Legionella londoniensis伦敦军团菌GNCB军团菌属llo-Legionella longbeachae长滩军团菌GNCB军团菌属lma-Legionella maceachernii麦凯克伦埃特洛克菌check埃特洛克菌属lma-Tatlockia maceachernii麦凯克伦埃特洛克菌check埃特洛克菌属lmc-Legionella micdadei麦克达德埃特洛克菌check埃特洛克菌属lmc-Tatlockia micdadei麦克达德埃特洛克菌check埃特洛克菌属lmr-Legionella moravica摩拉维采军团菌GNCB军团菌属lna-Legionella nautarum水手军团菌GNCB军团菌属lok-Legionella oakridgensis橡树岭军团菌GNCB军团菌属lpa-Legionella parisiensis巴黎军团菌GNCB军团菌属lpc-Legionella pneumophila ss. pascullei嗜肺军团菌牧场亚种GNCB军团菌属lpe-Listonella pelagia海利斯顿菌check利斯顿菌属lqi-Legionella quinlivanii昆里万军团菌GNCB军团菌属lqu-Legionella quateirensis考特拉军团菌GNCB军团菌属lri-Leminorella richardii理查德勒米诺菌EBC勒米诺菌属lru-Legionella rubrilucens红光军团菌GNCB军团菌属lsc-Legionella santicrucis卫生十字军团菌GNCB军团菌属lsh-Legionella sainthelensi赫伦荒原军团菌GNCB军团菌属lsk-Legionella shakespearei沙氏军团菌GNCB军团菌属lsp-Legionella spiritensis斯皮里特湖军团菌GNCB军团菌属lst-Legionella steigerwaltii斯太格尔沃特军团菌GNCB军团菌属ltu-Legionella tucsonensis图森军团菌GNCB军团菌属lwa-Legionella wadsworthii沃斯沃军团菌GNCB军团菌属lwo-Legionella worsleiensis沃斯利军团菌GNCB军团菌属mat-Moraxella atlantae亚特兰大莫拉菌NFR莫拉菌属mbv-Moraxella bovis牛莫拉菌NFR莫拉菌属meb-Methylobacterium sp.甲基杆菌属NFR甲基杆菌属mex-Methylobacterium extorquens扭脱甲基杆菌NFR甲基杆菌属mla-Moraxella lacunata腔隙摩拉菌NFR莫拉菌属mme-Methylobacterium mesophilicum嗜中温甲基杆菌NFR甲基杆菌属mme-Pseudomonas mesophilica嗜中温甲基杆菌NFR甲基杆菌属mmo-Morganella morganii摩根摩根菌EBC摩根菌属mmo-Morganella morganii ss. morganii摩根摩根菌摩根亚种EBC摩根菌属mnl-Moraxella nonliquefaciens不液化摩拉菌NFR莫拉菌属mo--Branhamella sp.布兰汉菌属NFR莫拉菌属mo--Moraxella sp.莫拉菌属NFR莫拉菌属moe-Moellerella sp.米勒菌属EBC米勒菌属moi-Moritella sp.被孢霉属checkmor-Morganella sp.摩根菌属EBC摩根菌属mos-Moraxella osloensis奥斯陆摩拉菌NFR莫拉菌属mpp-Moraxella phenylpyruvica苯丙酮酸摩拉菌NFR莫拉菌属msb-Morganella morganii ss. sibonii摩根摩根菌塞氏亚种EBC摩根菌属mut-Moraxella urethralis尿道莫拉菌NFR莫拉菌属mwi-Moellerella wisconsensis威斯康星米勒菌EBC米勒菌属mxc-Moraxella canis犬莫拉菌NFR莫拉菌属nca-Neisseria canis狗奈瑟菌GNC奈瑟菌属ncb-Gram negative coccobacilli革兰阴性球杆菌GNCBnci-Neisseria cinerea灰质奈瑟菌GNC奈瑟菌属nde-Neisseria denitrificans反硝化伯杰菌GNC奈瑟菌属ne--Neisseria sp.奈瑟菌属GNC奈瑟菌属nel-Neisseria elongata长奈瑟菌GNC奈瑟菌属nel-Neisseria elongata ss. elongata长奈瑟菌长亚种GNC奈瑟菌属nfl-Neisseria flavescens浅黄奈瑟菌GNC奈瑟菌属nfr-Non-fermenting gram negative rods非发酵革兰阴性杆菌NFRnfv-Neisseria subflava biovar flava微黄奈瑟菌黄色生物变种GNC奈瑟菌属ngl-Neisseria elongata ss. glycolytica长奈瑟菌解糖亚种GNC奈瑟菌属ngo-Neisseria gonorrhoeae淋病奈瑟菌GNC奈瑟菌属nko-Neisseria kochii柯霍奈瑟菌GNC奈瑟菌属nko-Neisseria gonorrhoeae ss. kochii淋病奈瑟菌柯霍亚种GNC奈瑟菌属nla-Neisseria lactamica乳糖奈瑟菌GNC奈瑟菌属nmc-Neisseria meningitidis, serogroup c脑膜炎奈瑟菌C血清型GNC奈瑟菌属nme-Neisseria meningitidis脑膜炎奈瑟菌GNC奈瑟菌属nmu-Neisseria mucosa粘液奈瑟菌GNC奈瑟菌属nni-Neisseria elongata ss. nitroreducens长奈瑟菌硝酸盐复原亚种GNC奈瑟菌属nni-Moraxella sp. M-6莫拉菌M-6GNC奈瑟菌属npe-Neisseria subflava biovar perflava微黄奈瑟菌深黄生物变种GNC奈瑟菌属npo-Neisseria polysaccharea多糖奈瑟菌GNC奈瑟菌属nsb-Neisseria subflava biovar subflava微黄奈瑟菌浅黄生物变种GNC奈瑟菌属nsi-Neisseria sicca枯燥奈瑟菌GNC奈瑟菌属nsu-Neisseria subflava微黄奈瑟菌GNC奈瑟菌属nwe-Moraxella sp. M-5莫拉菌M-5GNC奈瑟菌属nwe-Neisseria weaveri韦弗奈瑟菌GNC奈瑟菌属oan-Ochrobactrum anthropi人苍白杆菌NFR苍白杆菌属och-Ochrobactrum sp.苍白杆菌属NFR苍白杆菌属oli-Oligella sp.寡源杆菌属NFR寡源杆菌属ori-Orientia sp.东方体属GNCB东方体属ots-Orientia tsutsugamushi恙虫病东方体GNCB东方体属ots-Rickettsia tsutsugamushi恙虫病立克次体GNCB东方体属oul-Oligella ureolytica解脲寡源杆菌NFR寡源杆菌属our-Oligella urethralis尿道寡源杆菌NFR寡源杆菌属pae-Pseudomonas aeruginosa铜绿假单胞菌NFR假单胞菌属pag-Pseudomonas alcaligenes产碱假单胞菌NFR假单胞菌属pal-Providencia alcalifaciens产碱普罗威登斯菌EBC变形杆菌属pal-Proteus inconstans无恒变形杆菌EBC变形杆菌属pam-Pasteurella multocida多杀巴斯德菌FERM巴斯德菌属pam-Pasteurella multocida ss. multocida多杀巴斯德菌多杀亚种FERM巴斯德菌属pan-Pantoea sp.泛菌属EBC泛菌属pas-Pasteurella sp.巴斯德菌属FERM巴斯德菌属pat-Pasteurella anatis鸭鸡杆菌FERM巴斯德菌属pau-Salmonella Saintpaul沙门菌圣保罗血清型EBC沙门菌属pav-Haemophilus avium鸟鸟杆菌FERM巴斯德菌属pav-Pasteurella avium鸟鸟杆菌FERM巴斯德菌属pbe-Pasteurella bettyae贝氏巴斯德菌FERM巴斯德菌属pce-Burkholderia cepacia洋葱伯克霍尔德菌NFR伯克霍尔德菌属pce-Pseudomonas cepacia洋葱伯克霍尔德菌NFR伯克霍尔德菌属pch-Pseudomonas chlororaphis绿针假单胞菌绿针亚种NFR假单胞菌属p-Pasteurella canis犬巴斯德菌FERM巴斯德菌属pda-Pasteurella dagmatis达可马巴斯德菌FERM巴斯德菌属pdi-Brevundimonas diminuta缺陷短波单胞菌NFR短波单胞菌属pdi-Pseudomonas diminuta缺陷短波单胞菌NFR短波单胞菌属pdm-Listonella damsela美人鱼发光杆菌美人鱼亚种check发光杆菌属pdm-Photobacterium damsela ss. damsela美人鱼发光杆菌美人鱼亚种check发光杆菌属pdm-Vibrio damsela美人鱼发光杆菌美人鱼亚种check发光杆菌属pdp-Photobacterium damsela ss. piscicida美人鱼发光杆菌杀鱼亚种check发光杆菌属pec-Pectobacterium sp.溶果胶杆菌属check溶果胶杆菌属pfl-Pseudomonas fluorescens荧光假单胞菌NFR假单胞菌属pg1-Pseudomonas sp. group 1假单胞菌1型NFR假单胞菌属pga-Pasteurella multocida ss. gallicida多杀巴斯德菌鸡杀亚种FERM巴斯德菌属pgl-Pasteurella gallinarum鸡鸟杆菌FERM巴斯德菌属pha-Pasteurella haemolytica溶血曼海姆菌FERMphb-Photobacterium sp.发光杆菌属check发光杆菌属phe-Providencia heimbachae亨巴赫普罗威登斯菌EBC普罗威登斯菌属pim-Psychrobacter immobilis静止嗜冷杆菌NFR嗜冷杆菌属ple-Plesiomonas sp.邻单胞菌属EBC邻单胞菌属pln-Pasteurella langaa兰氏巴斯德菌FERM巴斯德菌属ply-Pasteurella lymphangitidis淋巴管巴斯德菌FERM巴斯德菌属pma-Pseudomonas maltophilia嗜麦芽窄食单胞菌NFR窄食单胞菌属pma-Stenotrophomonas maltophilia嗜麦芽窄食单胞菌NFR窄食单胞菌属pma-Xanthomonas maltophilia嗜麦芽窄食单胞菌NFR窄食单胞菌属pme-Pseudomonas mendocina门多萨假单胞菌NFR假单胞菌属pmi-Proteus mirabilis奇异变形杆菌EBC变形杆菌属pmr-Pasteurella mairii麦氏巴斯德菌FERM巴斯德菌属pmy-Proteus myxofaciens产粘变形菌EBC变形杆菌属pog-Pasteurella aerogenes产气巴斯德菌FERM巴斯德菌属ppe-Proteus penneri彭氏变形杆菌EBC变形杆菌属ppg-Pseudomonas pertucinogena穿孔素假单胞菌NFR假单胞菌属ppi-Burkholderia pickettii皮氏罗尔斯顿菌NFR罗尔斯顿菌属ppi-Pseudomonas pickettii皮氏罗尔斯顿菌NFR罗尔斯顿菌属ppi-Ralstonia pickettii皮氏罗尔斯顿菌NFR罗尔斯顿菌属ppi-Pseudomonas thomasii托氏假单胞菌NFR罗尔斯顿菌属ppl-Pseudomonas pseudoalcaligenes类产碱假单胞菌NFR假单胞菌属ppm-Burkholderia pseudomallei假鼻疽伯克霍尔德菌NFR伯克霍尔德菌属ppm-Pseudomonas pseudomallei类鼻疽伯克霍尔德菌NFR伯克霍尔德菌属ppu-Pseudomonas putida恶臭假单胞菌NFR假单胞菌属pr--Proteus sp.变形杆菌属EBC变形杆菌属pre-Proteus rettgeri雷极普罗威登斯菌EBC变形杆菌属pre-Providencia rettgeri雷极普罗威登斯菌EBC变形杆菌属prg-Providencia rustigianii雷特格普罗威登斯菌EBC普罗威登斯菌属prv-Providencia sp.普罗威登斯菌属EBC普罗威登斯菌属ps--Pseudomonas sp.假单胞菌属NFR假单胞菌属psh-Plesiomonas shigelloides类志贺邻单胞菌EBC邻单胞菌属psm-Pasteurella stomatis口巴斯德菌FERM巴斯德菌属psp-Pasteurella septica败血巴斯德菌FERM巴斯德菌属psp-Pasteurella multocida ss. septica多杀巴斯德菌败血亚种FERM巴斯德菌属pst-Providencia stuartii斯氏普罗威登斯菌EBC普罗威登斯菌属psu-Providencia stuartii urea +尿素阳性斯氏普罗威登斯菌EBC普罗威登斯菌属psy-Psychrobacter sp.嗜冷杆菌属NFR嗜冷杆菌属psz-Pseudomonas stutzeri斯氏假单胞菌NFR假单胞菌属ptr-Pasteurella trehalosi海藻糖比贝尔施泰因菌FERM巴斯德菌属pts-Pasteurella testudinis龟巴斯德菌FERM巴斯德菌属pty-Salmonella Paratyphi沙门菌巴拿马血清型EBC沙门菌属pve-Brevundimonas vesicularis泡囊短波单胞菌NFR短波单胞菌属pve-Pseudomonas vesicularis泡囊短波单胞菌NFR短波单胞菌属pvo-Pasteurella volantium家禽鸟杆菌FERM巴斯德菌属pvu-Proteus vulgaris普通变形杆菌EBC变形杆菌属rah-Rahnella sp.拉恩菌属EBC拉恩菌属rak-Rickettsia akari螨立克次体GNCB立克次体属ral-Ralstonia sp.罗尔斯顿菌属NFR罗尔斯顿菌属raq-Rahnella aquatilis水生拉恩菌EBC拉恩菌属rce-Roseomonas cervicalis颈玫瑰单胞菌NFR玫瑰单胞菌属rco-Rickettsia conorii斑疹热立克次体GNCB立克次体属reu-Ralstonia euphora杀虫嗜铜菌NFR罗尔斯顿菌属rfa-Roseomonas fauriae福尔玫瑰单胞菌NFR玫瑰单胞菌属rgi-Roseomonas gilardii吉拉尔玫瑰单胞菌NFR玫瑰单胞菌属ric-Rickettsia sp.立克次体属GNCB立克次体属rja-Rickettsia japonica日本立克次体GNCB立克次体属ro4-Roseomonas genomospecies 4玫瑰单胞菌基因种4NFR玫瑰单胞菌属ro5-Roseomonas genomospecies 5玫瑰单胞菌基因种5NFR玫瑰单胞菌属ro6-Roseomonas genomospecies 6玫瑰单胞菌基因种6NFR玫瑰单胞菌属ros-Roseomonas sp.玫瑰单胞菌属NFR玫瑰单胞菌属rpw-Rickettsia prowazekii普氏立克次体GNCB立克次体属rri-Rickettsia rickettsii立氏立克次体GNCB立克次体属s01-Shigella sonnei Form II型宋内志贺菌EBC志贺菌属s02-Shigella sonnei Form IIII型宋内志贺菌EBC志贺菌属saa-Salmonella Paratyphi A甲型副伤寒EBC沙门菌属sab-Salmonella Paratyphi B乙型副伤寒EBC沙门菌属sab-Salmonella Schottmuelleri乙型副伤寒沙门菌EBC沙门菌属sac-Salmonella Paratyphi C丙型副伤寒EBC沙门菌属sag-Salmonella Agona沙门菌阿哥纳血清型EBC沙门菌属sal-Salmonella sp.沙门菌属EBC沙门菌属sam-Salmonella Typhimurium沙门菌鼠伤寒血清型EBC沙门菌属sat-Salmonella Typhi伤寒沙门菌血清型EBC沙门菌属sav-Salmonella Arechavaleta沙门菌阿雷查瓦莱塔血清型EBC沙门菌属sbe-Shewanella benthica深海希瓦菌NFR希瓦菌属sbg-Salmonella bongori沙门菌乍得血清型EBC沙门菌属sbl-Salmonella Blockley沙门菌布洛克兰血清型EBC沙门菌属sbm-Salmonella Bovismorbificans沙门菌病牛血清型EBC沙门菌属sbn-Salmonella Brandenburg沙门菌勃兰登堡血清型EBC沙门菌属sbr-Salmonella Braenderup沙门菌布灵得卢柏血清型EBC沙门菌属sch-Salmonella Choleraesuis猪霍乱沙门菌EBC沙门菌属sd1-Shigella dysenteriae Type 1痢疾志贺菌1型EBC志贺菌属sdu-Salmonella Dublin沙门菌都柏林血清型EBC沙门菌属se--Serratia sp.沙雷菌属EBC沙雷菌属sem-Serratia entomophila嗜虫沙雷菌EBC沙雷菌属。

科学家在人体内发现一种新型病毒

科学家在人体内发现一种新型病毒

科学家在人体内发现一种新型病毒腾讯科学讯美国州立圣迭戈大学的生物学家在研究人体肠道微生物时,意外发现了一些过去从未见过的DNA片段,这些DNA片段在已有的数据库中根本查不到属于哪种微生物,经过精细的研究发现这是一种新型的病毒。

科学家把它们命名为“crAssphage”,实际上是一类以细菌为宿主的病毒。

实际上,发现一种新型病毒并不罕见,特别之处在于人们以为许多人体内的病毒都已经被发现,在我们身体中存在了这么长时间没有被发现是件非常奇怪的事情。

科学家对人群粪便样本进行分析后显示,这种病毒很可能潜伏在大约一半的人体内。

题目的历史也非常悠久,很有可能和人类的历史一样长。

该病毒的传播途径还不明确,但在婴儿的粪便样本中却没有它存在的迹象,这表明它们可能不是通过母婴传播的,而是在人们成长的过程中进入体内的。

目前科学家研究显示,这种病毒以拟杆菌为宿主,而这种拟杆菌与糖尿病以及一些肠道疾病有关联。

█ 事实+病毒和细菌的区别1.形态方面细菌的大小远比病毒大,通常细菌的大小以微米来衡量,而病毒的大小以纳米来衡量。

细菌的外部形态大多为球状、杆状、螺旋状,并且也因此命名为球菌、杆菌以及螺旋菌。

而病毒为多面体结构,为了能达到最佳稳定结构,以及最佳比表面积,病毒多位一十二面体。

2.结构方面(1)细菌:原核生物的一种,主要特点是没有核膜,其遗传物质分散在细胞质内一个相对固定的区域内,称为核区。

细菌的外边包裹着一层细胞壁,一般为多糖聚合而成。

(2)病毒:构造很简单,外面是一层蛋白质,称为病毒外壳。

蛋白质外壳内部包裹着病毒的遗传物质,可以是DNA,也可以是RNA。

病毒自己不能完成新陈代谢,也不能完成繁殖,需要寄生在其它细胞内完成。

虽然细菌没有细胞核只有类是的拟核结构,但是细菌仍具有一定的细胞结构,即细胞壁、细胞膜、细胞质。

更进一步的,根据细菌细胞壁结构和成分的不同,发展出的革兰氏染色机制,将细菌分为革兰氏阴性菌和革兰氏阳性菌。

病毒不具有以上所述的细胞结构,它由核衣壳包裹遗传物质所构成。

毒性噬菌体名词解释

毒性噬菌体名词解释

毒性噬菌体名词解释
毒性噬菌体(bacteriophage)是一类寄生于细菌的病毒,它能
感染并破坏细菌细胞。

毒性噬菌体主要由一个蛋白质外壳和一个包裹着核酸的尾巴构成。

在细菌界中,噬菌体是最丰富的生物实体,数量估计比细菌还要多。

毒性噬菌体的感染和复制过程包括吸附、注射遗传物质、复制、组装以及释放。

首先,噬菌体的尾巴会与宿主细菌表面的受体结合,使噬菌体与细菌结合。

然后,噬菌体尾巴中的注射器会将基因组中的核酸注射进细菌细胞内,这一过程类似于病毒感染动物细胞的方式。

噬菌体的核酸在细菌细胞内进行复制,并合成新的噬菌体蛋白质。

最后,新的毒性噬菌体组装成粒子后,细菌细胞会被溶解释放出新的噬菌体。

毒性噬菌体的作用与帮助人类抵抗病原菌相关。

首先,它们可以作为天然的抗菌剂,通过感染和杀死细菌来控制细菌性感染和疾病。

研究已经表明,毒性噬菌体能够有效地杀死耐药细菌,这对于解决耐药性细菌感染这一全球性问题具有重要意义。

此外,毒性噬菌体在基因工程和生物技术领域也具有广泛的应用价值。

使用噬菌体可以实现基因的转导和转化,从而用于外源基因的表达和研究。

毒性噬菌体还可作为载体传递基因,被用于治疗一些疾病,如肿瘤。

此外,噬菌体显示了在细菌学、免疫学和替代能源等领域中的巨大潜力。

总之,毒性噬菌体是一类寄生于细菌的病毒,它们通过感染细菌细胞并破坏宿主细胞来繁殖。

毒性噬菌体在抗菌、基因工程
和生物技术等方面具有重要作用和广泛应用前景。

研究和利用毒性噬菌体将有助于我们更好地理解和应对细菌感染和疾病。

从毒蛇毒液中发现新型生物活性分子

从毒蛇毒液中发现新型生物活性分子

从毒蛇毒液中发现新型生物活性分子毒蛇毒液中不仅包含着致命的神经毒素和血液毒素,还蕴藏着无数与人类健康息息相关的生物活性分子。

在毒蛇毒液中探索和发现新型生物活性分子,成为了当今生物医药领域的重要研究方向之一。

在众多毒蛇毒液中,一种名为罗氏角腹蛇的毒蛇毒液被科学家们视为“活黄金”般的宝藏。

这种毒液来源于澳大利亚东海岸地区的罗氏角腹蛇,被广泛应用于医药领域。

其中,最为著名的神奇成分莫过于ACE抑制剂——Captopril。

Captopril是一种降压药,为一种ACE(Angiotensin-Converting Enzyme,血管紧张素转化酶)类似物,通过抑制ACE逆转肾素-血管紧张素系统发挥作用,在全球治疗高血压和心血管疾病方面发挥了极其重要的作用。

Captopril被称为“ACE的神经毒素”,因为这一分子首次被发现于罗氏角腹蛇毒液中,并且其结构中的功能团绝大多数来源于毒液中的天然氨基酸。

罗氏角腹蛇毒液中的Captopril结构可以说,毒蛇毒液是新型生物活性分子的重要来源。

因此,科学家们越来越注重从毒蛇毒液中发现新型药物和医学用途的生物活性分子,如针对癌症、神经系统疾病、心血管疾病和自身免疫性疾病等领域的治疗药物。

针对罗氏角腹蛇毒液中的Captopril这一事例,科学家们进一步研究发现,不同种类的毒蛇毒液中存在不同种类的ACE抑制剂。

对于蛇类而言,ACE抑制剂可以起到降血压和促进心脏功能的作用。

但几乎所有的ACE抑制剂都是由天然氨基酸结构组成,这意味着它们有很大的局限性,不太可能发展出优异性、高特异性的分子。

因此,科学家们研究的方向需要向更宏大开发。

从毒蛇毒液中寻找新型ACE抑制剂并非最终的研究目标,只是用以启迪科学家们对天然界中更多潜在的新型药物和疗法探索的一部分。

毒蛇毒液中蕴藏的新型生物活性分子,是科学家们无尽的研究源泉。

在今后的研究当中,科学家们会继续把探索毒蛇毒液中新型生物活性分子的研究视为一项重要的方向。

新型基因重组牛痘病毒[发明专利]

新型基因重组牛痘病毒[发明专利]

专利名称:新型基因重组牛痘病毒专利类型:发明专利
发明人:中尾慎典,川濑龙也,中村贵史申请号:CN201780033837.8
申请日:20170529
公开号:CN109477089B
公开日:
20220524
专利内容由知识产权出版社提供
摘要:本发明提供对于癌症的预防或治疗有效的基因重组牛痘病毒。

具体而言,本发明提供包含编码IL‑7的多核苷酸和编码IL‑12的多核苷酸这两种多核苷酸的牛痘病毒、含有包含编码IL‑7的多核苷酸的牛痘病毒和包含编码IL‑12的多核苷酸的牛痘病毒这两种牛痘病毒的组合试剂盒、以及上述两种牛痘病毒的组合使用。

申请人:安斯泰来制药株式会社,国立大学法人鸟取大学
地址:日本东京都
国籍:JP
代理机构:中原信达知识产权代理有限责任公司
更多信息请下载全文后查看。

耐药菌毒力因子或可开发新型抗生素

耐药菌毒力因子或可开发新型抗生素

耐药菌毒力因子或可开发新型抗生素
导读:近日,一项发表于国际杂志MolecularMicrobiology上的研究论文中,来自阿德莱德大学的科学家通过研究发现了一种新型靶点,该靶点或为开发抵御引发疾病细菌的新型抗生素提供一定
近日,一项发表于国际杂志MolecularMicrobiology上的研究论文中,来自阿德莱德大学的科学家通过研究发现了一种新型靶点,该靶点或为开发抵御引发疾病细菌的新型抗生素提供一定的帮助;文章中研究者鉴别出了对许多细菌毒力因子较为常见的结构单元,细菌的毒力因子是一种可以引发疾病的特殊蛋白质,比如毒素类或降解酶。

这种结构单元名为旅客相关的运输重复结构(PATR,Passenger-associatedTransportRepeat),这种结构是在许多有害细菌的毒力因子中发现的,比如沙门氏菌、志贺氏菌、脑膜炎球菌以及一些引发囊性纤维化的细菌;而且这种结构在很多革兰氏阴性菌中都存在,其中就包括一些对很多抗生素产生耐药性的细菌。

PATR在细菌毒力因子运输至细胞表面的过程可以表现出较为完整的结构以便其作为致病因子发挥作用;研究者MatthewDoyle说道,当细菌毒力因子被适当产生并且被分泌到细胞表面时其就会引发疾。

日本:针对多重耐药细菌的新型抗生素开发成功

日本:针对多重耐药细菌的新型抗生素开发成功

日本:针对多重耐药细菌的新型抗生素开发成功
佚名
【期刊名称】《科技传播》
【年(卷),期】2022(14)24
【摘要】近日,日本北海道大学市川聪教授领导的团队详细介绍了一种高效抗菌化合物的开发,该化合物可有效对抗最常见的多重耐药细菌。

研究人员表示,最近,他们合成了一种类似球霉素(sphaerimicin)的抗菌化合物,这些化合物能阻断细菌中MraY蛋白质的功能。

【总页数】1页(PI0006)
【正文语种】中文
【中图分类】R28
【相关文献】
1.治疗耐药细菌:一类新型的抗生素——逆转抗生素
2.耐药细菌所致感染的抗生素治疗:介绍几种新型复方抗生素
3.与细菌对抗生素耐药性赛跑的农工党员们—记重庆大学活跃着的新型抗生素研究组
4.耐药细菌所致感染的抗生素治疗——介绍几种新型复合型抗生素
5.封闭式负压引流、抗生素骨水泥联合皮瓣修复对合并多重耐药细菌感染的Gustilo Ⅲ型胫腓骨骨折的疗效分析
因版权原因,仅展示原文概要,查看原文内容请购买。

弧菌的耐药基因

弧菌的耐药基因

弧菌的耐药基因弧菌简介弧菌(Vibrio)是一类革兰氏阴性的细菌,常见于水体中,尤其是海洋和淡水环境中。

弧菌属于革兰氏阴性杆菌,细胞呈弯曲状,故得名。

弧菌是一类常见的病原微生物,其中一些种类可以引起人类和动物的感染。

例如,弧菌霍乱(Vibrio cholerae)是引起霍乱的主要病原体。

此外,弧菌还可以引起食物中毒、创伤感染等。

弧菌耐药性问题随着抗生素的广泛应用,细菌逐渐产生了对抗生素的耐药性。

弧菌也不例外,在不恰当或过度使用抗生素的情况下,弧菌可通过突变或基因水平上的水平转移来获得耐药基因。

目前已经发现了许多与弧菌耐药相关的基因。

这些耐药基因可以使细菌对抗生素产生不同程度的抵抗力,并且可能导致治疗效果下降,甚至治疗失败。

弧菌耐药基因的类型弧菌耐药基因主要可以分为以下几类:1. 氨基糖苷类耐药基因氨基糖苷类抗生素是一类广谱抗生素,常用于治疗细菌感染。

然而,弧菌已经发展出多种氨基糖苷类抗生素的耐药性。

这种耐药性主要由编码氨基酸修饰酶(AAC)和核酸修饰酶(ANT)的基因所致。

2. β-内酰胺类耐药基因β-内酰胺类抗生素是一类广谱抗生素,常用于治疗细菌感染。

弧菌对β-内酰胺类抗生素的耐药性主要由编码β-内酰胺酶(β-lactamase)的基因所致。

这些β-内酰胺酶能够水解抗生素分子中的内酰胺环结构,从而使其失去活性。

3. 磺胺类耐药基因磺胺类抗生素是一种广泛使用的抗生素,常用于治疗细菌感染。

弧菌耐药性主要由编码磺胺酰二氢叶酸还原酶(DHPS)的基因所致。

这种酶能够降解磺胺类抗生素,从而减少其抗菌活性。

4. 四环素类耐药基因四环素类抗生素是一类广谱抗生素,常用于治疗细菌感染。

弧菌对四环素类抗生素的耐药性主要由编码四环素酶(tet)的基因所致。

这种酶能够降解或转运四环素类抗生素,从而减少其对细菌的杀菌作用。

5. 氟喹诺酮类耐药基因氟喹诺酮类抗生素是一类广谱抗生素,常用于治疗细菌感染。

弧菌对氟喹诺酮类抗生素的耐药性主要由编码DNA拓扑异构酶(gyrase)和拓扑异构酶IV (topoisomerase IV)的基因所致。

救必应皂苷类成分的组织化学研究

救必应皂苷类成分的组织化学研究

救必应皂苷类成分的组织化学研究代蕾;应鸽;黄培琪;丁平【期刊名称】《广东药学院学报》【年(卷),期】2012(28)4【摘要】目的应用植物解剖学和组织化学技术,研究救必应皂苷成分的累积分布状态.方法将救必应不同部位的显微切片用5%(质量浓度)香草醛-冰醋酸和高氯酸混合试剂进行染色后,放置于显微镜下观察并拍摄显微图片,阴性对照为用FAA固定液浸泡1个月后的组织切片.结果救必应皂苷成分在根中主要分布于次生韧皮部和皮层薄壁细胞中;在茎中主要分布于次生韧皮部细胞中,少量分布在韧皮部;在叶中则主要分布在栅栏组织中,海绵组织有少量分布.结论救必应中的皂苷成分主要分布在营养器官的薄壁组织细胞中.%Objective To investigate the localization of saponins with anatomical and histochemieal methods in Ilex rotunda Thunb. . Methods Different cross-sections of/, rotunda were dyed with mixed 5% vanillin-glacial acetic acid and perchloric acid,then observed in a microscope and photographed. The negative control product was the biopsy tissue socked with FAA for 1 month. Results Histochemistry results showed that saponins distributed irTsecondary phloem and parenchyma cells of root cortex, in secondary phloem and a little in phloem of stem,mainly in palisade tissue and a little in spongy tissue of leaf. Conclusion Saponins accumulated mainly in parenchyma cells of vegetative organs of /. rotunda.【总页数】3页(P400-402)【作者】代蕾;应鸽;黄培琪;丁平【作者单位】广州中医药大学中药学院,广东广州510006;广州中医药大学中药学院,广东广州510006;广州中医药大学中药学院,广东广州510006;广州中医药大学中药学院,广东广州510006【正文语种】中文【中图分类】R284.1【相关文献】1.散结镇痛胶囊中皂苷类成分的指纹图谱研究和多指标成分定量测定 [J], 秦建平;吴建雄;李家春;陈保来;红梅;萧伟2.救必应酸的单体制备及RP-HPLC法测定救必应药材及精制品中3种活性成分的含量 [J], 王圆;高兵;陈华;张雷3.转基因西洋参冠瘿组织培养基中人参皂苷类成分的分离鉴定 [J], 张爱丰;朱建华;于荣敏4.西洋参冠瘿组织悬浮培养及其人参皂苷类成分的分离 [J], 于荣敏;金钱星;孙辉;叶文才;赵昱5.山药化学成分及皂苷类成分药理作用的研究进展 [J], 范晓阳;侯彦婕;贾世艳;司瑞花;郑博文;刘光珍因版权原因,仅展示原文概要,查看原文内容请购买。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

C LINICAL M ICROBIOLOGY R EVIEWS,Oct.2009,p.564–581Vol.22,No.4 0893-8512/09/$08.00ϩ0doi:10.1128/CMR.00035-09Copyright©2009,American Society for Microbiology.All Rights Reserved.Dengue Virus Pathogenesis:an Integrated ViewByron E.E.Martina,*Penelope Koraka,and Albert D.M.E.OsterhausErasmus MC,Department of Virology,P.O.Box2040,3000CA Rotterdam,The Netherlands INTRODUCTION (564)THE PATHOGENESIS OF DENV INFECTIONS:CURRENT HYPOTHESES (565)DENV Tropism (565)Cells of the immune system (565)Organ pathology (565)EC (566)Virus Virulence (566)Activation of the Complement System (567)Transient Autoimmunity (567)Host Genetic Factors (567)Antibody-Dependent Enhancement (568)Cross-Reactive T-Cell Response (569)Soluble Factors (569)THE INTERGRATED VIEW (571)DISCUSSION (573)ACKNOWLEDGMENTS (574)REFERENCES (574)INTRODUCTIONDengue virus(DENV)belongs to the family Flaviviridae, genus Flavivirus,and is transmitted to humans by Aedes mos-quitoes,mainly Aedes aegypti.Based on neutralization assay data,four serotypes(DENV-1,DENV-2,DENV-3,and DENV-4)can be distinguished.DENV infection is a major cause of disease in tropical and subtropical areas,with an estimated50million infections occurring each year and more than2.5billion people being at risk of infection(75).Infection with any of the DENV serotypes may be asymptomatic in the majority of cases or may result in a wide spectrum of clinical symptoms(87),ranging from a mildflu-like syndrome(known as dengue fever[DF])to the most severe forms of the disease, which are characterized by coagulopathy,increased vascular fragility,and permeability(dengue hemorrhagic fever[DHF]). The latter may progress to hypovolemic shock(dengue shock syndrome[DSS]).In Asia the risk of developing severe disease is greater in DENV-infected children(Յ15years)than in adults(30,80,109,172).In contrast,in the Americas mainly the adult population is affected,resulting in mild disease(84, 186,188),although an increasing trend of cases progressing toward DHF/DSS has also been observed in adults there(75, 79,87,126,186).DF is manifested as an incapacitating disease in older children,adolescents,and adults.It is characterized by the rapid onset of fever in combination with severe headache, retro-orbital pain,myalgia,arthralgia,gastrointestinal discom-fort,and usually rash.Minor hemorrhagic manifestations may occur in the form of petechiae,epistaxis,and gingival bleeding. Leukopenia is a commonfinding,whereas thrombocytopenia may occasionally be observed in DF,especially in those with hemorrhagic signs(76,109).The World Health Organization (WHO)classifies DHF in four grades(I to IV).DHF grades I and II represent relatively mild cases without shock,whereas grade III and IV cases are more severe and accompanied by shock.DHF is characterized by all the symptoms of DF,in combination with hemorrhagic manifestations(positive tour-niquet test or spontaneous bleeding),thrombocytopenia,and evidence of increased vascular permeability(increased hemocon-centration orfluid effusion in chest or abdominal cavities).The life-threatening DSS stage occurs at the time of or shortly after defervescence,which is characterized by a rapid,weak pulse (Յ20mm Hg)or hypotension with cold,clammy skin in the early stage of shock(grade III).If patients do not receive prompt and appropriate treatment,a stage of profound shock may set in,in which pulse and blood pressure become unde-tectable(grade IV),resulting in death within12to36h after onset of shock(262a).It is important to realize that the WHO case definition was originally proposed as a tool for clinical diagnosis using the results of repeated clinical tests.The WHO classification system poses a problem for everyday clinical practice,because it may be not sufficiently accurate in correctly classifying disease severity and may lack good agreement with clinical practice(213).Consequently,the WHO classification system is currently being reconsidered,and a new classification system is to be expected soon.The stage of prolonged shock may trigger or accelerate the development of disseminated intravascular coagulation(DIC)(228).Data that support or refute the occurrence of DIC in severe dengue are inconclu-sive,so better studies using prospective cohorts are needed to show the frequency of DIC in DHF/DSS patients and its as-sociation with clinical outcome(30,152,262).Massive loss of blood is rare in DHF and DSS and if present it is largely restricted to the gastrointestinal tract.This is usually due to prolonged shock resulting in blood being shunted away from*Corresponding author.Mailing address:Erasmus Medical Center, Institute of Virology,P.O.Box2040,3000CA Rotterdam,The Neth-erlands.Phone:31107044279.Fax:31107044760.E-mail:b.martina@erasmusmc.nl.564the gastrointestinal tract,leading to anoxia,cell death,and gastrointestinal bleeding.In contrast,the mild forms of hem-orrhages seen early in infection,such as petechiae,result from different mechanisms related to virus infection in combination with the release of vasculogenic cytokines.Understanding the mechanism underlying the development of shock is crucial for the development of novel strategies to improve patient man-agement.It is worth noting that patients classified as having DHF and DSS have no generalized edema;rather,a selective plasma leakage tends to occur in the pleural and abdominal cavities(12,230,246,252,256),which is detectable by means of radiology or sonography.Ultrasonographic examinations have revealed that plasma leakage occurs before defervescence or changes in hemoconcentration become apparent(12,230, 252).Attempts to explain the pathogenesis of dengue in all its complexity must consider all the clinical,immunological, pathological,and epidemiological features of DENV infection. The aim of this review is to outline the current views of DHF/ DSS pathogenesis and to identify the gaps in our knowledge that represent critical challenges for the future.THE PATHOGENESIS OF DENV INFECTIONS:CURRENT HYPOTHESESDENV TropismCell and tissue tropism of DENV may have a major impact on the outcome of DENV infections.The absence of an ap-propriate animal disease model largely hampers our under-standing of the role played by DENV tropism.In vitro data and autopsy studies suggest that three organ systems play an im-portant role in the pathogenesis of DHF/DSS:the immune system,the liver,and endothelial cell(EC)linings of blood vessels.The tropism of DENV for cells of the respective sys-tems,the corresponding pathological effects of DENV infec-tion of these systems,and the relevance of these events for the overall pathogenesis of DENV infection will be described. Cells of the immune system.During the feeding of mosqui-toes on humans,DENV is presumably injected into the blood-stream,with spillover in the epidermis and dermis,resulting in infection of immature Langerhans cells(epidermal dendritic cells[DC])(136,263),and keratinocytes(136).Infected cells then migrate from site of infection to lymph nodes,where monocytes and macrophages are recruited,which become tar-gets of infection.Consequently,infection is amplified and virus is disseminated through the lymphatic system.As a result of this primary viremia,several cells of the mononuclear lineage, including blood-derived monocytes(59),myeloid DC(20,91, 92,123,133),and splenic and liver macrophages(18,54d,96, 101,117)are infected.DENV has also been shown to have tropism for circulating mononuclear cells in blood and for cells residing in the spleen,lymph nodes,and bone marrow of in-fected AG129mice(124).Leukocytes also have been shown to be infected with DENV in experimentally infected nonhumans primates(156).It should be noted that during secondary in-fections with heterologous DENV,high concentrations of DENV-specific immunoglobulin G(IgG)will complex newly produced virus that adheres to and is taken up by mononuclear cells.Following infection,mononuclear cells predominantly die by apoptosis(61,182),while abortively infected or by-stander DC are stimulated to produce the bulk of mediators that are involved in inflammatory(22,47,91,133,145)and hemostatic(48,60,97,120,236)responses of the host.In this regard,factors that influence the amount of target cells in-fected,and consequently the levels of viremia,may determine the ratio of different proinflammatory and anti-inflammatory cytokines,chemokines,and other mediators,as well as the way in which the inflammatory response affects the hemostatic sys-tem(35,59).Bone marrow stromal cells have also been shown to be susceptible to infection with DENV(124,171,202). Organ pathology.Although thousands of patients with con-firmed dengue have been recognized in Southeast Asia and the Americas in the past60years,autopsies have been performed on only a small number of these patients,and whether those cases are representative in reflecting the viral tropism in the acute phase of infection is unclear.Histopathological research is difficult to perform because fatal cases of DHF/DSS are rare and occur mainly in remote parts of the world where appro-priate laboratory technology is largely lacking and thus fresh or frozen patient materials are rare.In addition,due to cultural and religious practices,autopsy is not conducted on the ma-jority of fatal cases,and usually families opt for rapid burial or cremation.The interpretation of the pathologicalfindings in fatal cases of DHF/DSS in relation to viral tropism described in the literature is complicated by a skewed age distribution, different times of sample collection,and the range of different techniques used to confirm the presence of virus in affected tissues.DENV cell tropism can be inferred from studies that had used in situ hybridization,immunohistochemistry,or a combination of PCR and virus isolation techniques.A review of the literature describingfindings on autopsy samples from a total of160fatal cases,mostly children or young adolescents(4 to18years old)who died within36h of developing shock, revealed,in order of frequency,the presence of DENV in cells in the skin(104),liver(13,14,53,54d,69,96,101,104,137, 164,173,199,208),spleen(13,14,101,164,199,208),lymph node(13,14,101,104,173,199,208),kidney(14,78,101), bone marrow(13,78,101,173),lung(13,78,101,137,164, 173),thymus(106),and brain(164).The presence of infectious virus in these samples was not always investigated,but in gen-eral virus could be isolated only from liver and peripheral blood mononuclear cells.The failure to isolate virus from most organ samples may indicate that those tissues contained pri-marily degraded virus or virus complexed with antibodies that prevent infection of cells in vitro.In general,the presence of DENV in several organs was not associated with gross or microscopic evidence of severe organ pathology(17),which is in agreement with the pathogenesis of DHF/DSS.Similar or-gan tropism has been observed in the primate model,with high concentrations of virus isolated from the skin and gastrointes-tinal tract whereas low concentrations of virus were recovered from the spleen,thymus,and several peripheral lymph nodes (157).DENV has been recovered from the spleen,liver,pe-ripheral lymph nodes,and central nervous system in alpha/beta interferon(IFN-␣/␤)-deficient mice(13,267).One notable difference between humans and the mouse model is the tro-pism of DENV for neuronal cells.It is interesting to note that a generally used argument in the literature is that when shock sets in,virus is no longer detect-able in blood and therefore the host response should play a keyV OL.22,2009DENGUE VIRUS PATHOGENESIS565role in pathogenesis(134,166).Most autopsy data did not specifically compare the presence of viral antigens or nucleic acid in blood and autopsy samples,but the limited evidence suggests that DENV replication may occur in some organs, while viremia is no longer detectable(199).In agreement with thesefindings it was shown in the rhesus macaque model that DENV could be recovered from some autopsy samples but not from blood.The liver is commonly involved in DENV infections in hu-mans and mouse models(181,212),with some reports suggest-ing an association between elevated liver enzyme levels and spontaneous bleeding tendencies(54e,124,261).Cases of den-gue-associated hepatitis have been described,which were char-acterized by moderate midzonal hepatocyte necrosis,microve-sicular steatosis,and councilman bodies(63,78,124,181,254). Although DENV was found in a significant proportion of hu-man hepatocytes and Kupffer cells,little inflammation was seen within the liver,indicating that much of the observed apoptosis and necrosis was virally induced.The higher preva-lence of apoptosis over necrosis could explain the limited in-flammation seen in the liver,a picture similar to what is ob-served in the early phase of yellow fever or Rift Valley fever (57,190,191).It has been proposed that the severe hepatic damage seen,for instance,in yellow fever,Rift Valley fever, and late Ebola virus infections results in decreased liver func-tion,which could account for the decreased synthesis of coag-ulation factors and development of coagulopathy(43,269). Although severe hepatic damage is not common in DENV infections,elevated liver enzymes suggest that the liver is af-fected,but the role of hepatic damage in coagulopathy and disease severity remains to be established.EC.EC play an important role in the coagulation response upon severe systemic inflammation.The integrity of the EC bed is physiologically regulated by many factors.The tropism of DENV for EC in vivo remains controversial.Early studies of skin biopsy specimens indicated that the microvasculature lo-cated in the dermal papillae is the main site affected,although DENV antigen was not detected in EC but was detected in cells surrounding the microvasculature(21,203).In contrast, there is evidence for the presence of DENV antigen in the pulmonary vascular endothelium(101).It is important to re-alize,however,that the mere presence of viral RNA or antigen in EC is no proof for viral replication.In contrast to mononu-clear cells,EC do not carry Fc receptors and thus will not take up immune-complexed virus.Therefore,the presence of viral RNA in these cells would more likely be explained by a mech-anism of pinocytosis(101).In vitro studies have shown that all DENV serotypes can actively replicate in EC(7,19,95),and infection results in functional rather than morphological dam-age.It is not clear whether EC of different vascular-bed sys-tems have different susceptibilities to DENV infection.In this regard,it has been proposed that the coagulation responses upon severe systemic inflammation by EC in different parts of the vascular-bed system are not the same(200,201).Similarly, DENV infection patterns in microvascular cells in vitro suggest that EC from different tissues have different activation patterns (184).Although increased peripheral microvascular perme-ability has been shown to occur in both DHF and DSS patients (16),it is conceivable that EC from the pulmonary and abdom-inal territories react in a specific way to either infection with or the response to DENV infection(28,39),resulting in the selective vascular leakage syndrome characteristic of DHF/ DSS.Several studies suggest that vascular damage or dysfunc-tion is central in the pathogenesis of DHF/DSS(26,29,39,115, 168).It is interesting to note that selective apoptosis of the microvascular EC in pulmonary and intestinal tissues has been detected in fatal cases of DHF/DSS(137),providing a possible explanation for the profound plasma leakage seen in pleural and peritoneal cavities.In this regard,it is worth mentioning that the major nonstructural protein1(NS1)of DENV has been shown to bind preferentially to EC of lung and liver tissues(9).It has been hypothesized that recognition of NS1by anti-NS1antibodies could then contribute to the selective pul-monary vascular leakage.Virus VirulenceAccording to the virus virulence hypothesis,certain DENV strains are responsible for more severe disease.DENV sero-types can be further classified into different genotypes on the basis of nucleotide variations.Viral genetic differences have been associated with differences in virulence(51,131,206, 248).Remarkably,thefirst outbreak of DHF in the Americas occurred in1981,which coincided with the introduction of the possibly more virulent DENV-2Southeast Asian genotype, while the less virulent indigenous DENV-2genotype was al-ready circulating in the region(118,195–197).It has also been proposed that intraepidemic evolution of the circulating DENV might be responsible for increased severity of disease. During the1981DENV-2epidemic in Cuba,it was noted that severity of disease manifestations and case-fatality rates were increased toward the end of the epidemic(118,119),suggest-ing that the circulating DENV-2might have become more virulent through passage in hosts during the epidemic.A sim-ilar situation was observed in the1992DENV epidemic in Townsville,Australia(234),and again in Cuba during the1997 epidemic(81).Analysis of DENV genomes has shown that DENV indeed evolves during an epidemic(42,198);however, more data are needed to establish an association between intraepidemic virus evolution and increased disease severity. Epidemiological observations in the Americas and in Singa-pore suggested that the sequence of infection with particular serotypes and the time interval between primary infection and secondary infection may play an important role in the devel-opment of DHF.Epidemics with high incidences of DHF have been linked to primary infection with DENV-1followed by infection with DENV-2or DENV-3(79,83,178).Further-more,these studies indicated that the longer the interval be-tween primary and secondary infections,the higher the risk of developing severe disease.In addition,age has been shown to influence the outcome of disease following a secondary infec-tion with heterologous DENV(80).In Asia,the risk of severe disease is greater in children than in adults,in contrast to the Americas,where the adult population is mainly affected and infection results in milder disease.This difference in disease severity caused by Asian and American genotypes correlated with structural differences in the two strains of DENV(51, 131).It has also been shown that different geographical DENV strains or different serotypes may vary in their ability to infect different cell types or cause severe disease(56,251).However,566MARTINA ET AL.C LIN.M ICROBIOL.R EV.the observation that DHF/DSS is seen primarily in a relative small percentage of secondary DENV infections and to a much lesser extent in primary infections even with allegedly virulent strains suggests that host factors must be crucial determinants of severe disease development.It is important to realize that virulence has traditionally been considered a microbial prop-erty,evaluated independently of the host or only in vitro or in often inbred animals.However,an increasing body of evidence incriminates the host immune response in the pathogenesis of many microbial infections(31).Therefore,in studying DENV virulence,both host and viral factors should be considered.Activation of the Complement SystemThe complement system is one of the main humoral com-ponents of the innate immunity and interacts closely with the hemostatic system to provide thefirst line of defense against pathogens.These innate immune mechanisms provide the host with the time needed to maximally induce the more slowly developing adaptive immunity.With regard to DENV,inves-tigators noticed that around the time of defervescence,when plasma leakage may become apparent,high levels of the acti-vation products C3a and C5a are measured in the plasma, followed by an accelerated consumption and a marked reduc-tion of the complement components in patients with DSS(50, 174,214).Therefore,it was hypothesized that complement activation plays an important role in the pathogenesis of parison of global gene expression profiles in periph-eral blood mononuclear cells of DF and DHF/DSS patients also suggests the involvement of the complement system in disease severity(249).However,many aspects of complement activation and its role in DENV pathogenesis remain to be investigated.It has been proposed that NS1is an important trigger for complement activation(122).Binding of heterotypic antibod-ies to NS1expressed on infected cells may result in comple-ment activation(8,142).In addition,it is believed that NS1 released from infected cells can directly activate complement factors present in thefluid phase(122).Production of the C5b-C9complex could then trigger cellular reactions and stim-ulate the production of inflammatory cytokines that are asso-ciated with development of DHF/DSS(8).Alternatively,the C5b-C9complex could independently trigger other local and systemic effects(158),which may be implicated in intravascular coagulation.It is important to realize that coagulation enzymes can also activate the complement system,illustrating the ex-tensive interaction that exists between the complement and the coagulation system.Several groups have shown that both IgG1and IgG3were the predominant subclasses involved in the specific antibody response in human DENV infections(116,242).Both IgG subclasses canfix and activate the complement system effec-tively,whereas IgG2and IgG4are less effective in this respect (90).Although IgG1,IgG2,and IgG4are able to activate the classical complement pathway,they require the unlikely event of two IgG molecules binding close to the antigen in order to promote C1q binding(90).IgG3,on the other hand,has the capacity to self-associate into multivalent complexes,thereby increasing functional affinity and the likelihood of C1q binding. The presence of sialic acid in the glycans of IgG subclasses could also affect their complement-fixing properties(100)and possibly their infection-enhancing activity(65,163,266).It is important to understand what determines the threshold of activation needed and how activation participates in develop-ment of DHF/DSS.Transient AutoimmunityAntibodies produced during a DENV infection have been shown to cross-react with some self-antigens,but it is not clear if production of these antibodies is associated with secondary DENV infections.For instance,antibodies recognizing a linear epitope in the E protein have been shown to bind human plasminogen and inhibit plasmin activity(49,64,94,159).The presence of serum antibodies specific to NS1also has been shown to correlate with disease severity(134,218).Cross-reaction of anti-NS1with cells of the liver,EC,and platelets (33,140,177,237)could be at the basis of this observation. Anti-NS1antibodies cross-reactive with EC could trigger these cells to express nitric oxide(NO)and undergo apoptosis(141). Although NO has been shown to inhibit DENV replication (239),its overproduction could also lead to cell damage(141, 215).It is worth reiterating that morphological damage is not a common observation in lethal cases of DHF/DSS.Anti-NS1 antibodies have also been shown to enhance expression of interleukin-6(IL-6),IL-8,and intracellular adhesion molecule 1(ICAM-1)(138).Further studies are needed to see if cross-reactivity of anti-NS1with EC could lead to the increased permeability that is characteristic of DSS.In addition,anti-NS1antibodies were also shown to cross-react with human and mouse platelets and were able to cause transient thrombocy-topenia and hemorrhage in mice(142,237),indicating that such cross-reactive antiplatelet antibodies are pathogenic.This observation may have implications for vaccine development, especially for live-attenuated vaccines.Therefore,it is impor-tant to understand why the autoimmune phenomenon ob-served in some DENV-infected patients does not persist.Since the kinetics of anti-NS1antibodies is difficult to reconcile with the short duration of the sudden hyperpermeabilty event that leads to shock,the autoimmune hypothesis has remained con-troversial.Although it is likely that the cross-reactive antibod-ies to self-antigens are of the short-lived IgM isotype(139, 204),vaccination strategies should not result in memory IgG responses to such antigens.Clearly,more efforts should be deployed in identifying the putative self-antigens that are rec-ognized by anti-DENV antibodies and in understanding their role,if any,in dengue pathogenesis.Host Genetic FactorsDifferences in disease severity can be seen at both the indi-vidual and population levels.Several epidemiological studies indicated that genetic factors constitute important components in disease susceptibility.Several human HLA class I and II alleles are associated with development of DHF(Table1). Polymorphism in the tumor necrosis factor alpha(TNF-␣), Fc␥receptor,vitamin D receptor,CTLA-4,and transforming growth factor␤(TGF-␤)genes has been associated with de-velopment of DHF/DSS.Certain host factors,such as glucose-6-phosphate dehydrogenase(G6PD)deficiency,may also con-V OL.22,2009DENGUE VIRUS PATHOGENESIS567tribute to increased replication of DENV in monocytes. Deficiency in G6PD,a ubiquitous X-linked enzyme,is the most common enzyme deficiency worldwide,with high prevalence seen in the African population(175).G6PD deficiency causes abnormal cellular redox,thereby affecting production of nitric oxide,superoxide,and hydrogen peroxide.Oxidative stress is known to affect viral proliferation and virulence by increasing viral receptors on target cells or increasing production of viral particles(264).Although,it is possible that G6PD deficiency provides a more suitable milieu for viral replication,it is worth noting that a low incidence of severe disease was reported in populations of African origin in studies conducted in Cuba and Haiti(54b,54c).Polymorphism in the mannose-binding lectin 2(MBL2)gene was shown to be associated with thrombocy-topenia and an increased risk for developing DHF.MBL is a member of the collectin family and is assumed to play an important role in pattern recognition and innate immune de-fense.Mutation in the promoter region of MBL results in low serum levels of MBL,resulting in a common immunodefi-ciency syndrome present in up to10%of the U.S.population (243).Polymorphism in transporters associated with antigen presentation and human platelet antigen has also been associ-ated with increased risk for developing DHF(224).The risk to develop DHF and DSS following infection with DENV is likely to be determined by a combination of multiple common ge-netic traits,each with mild to moderate effects,predisposing to a more severe form of disease.It remains to be determined whether single gene defects that confer profound susceptibility to DENV infection exist,as has been identified for a number of common pathogens,such as pneumococci and mycobacteria (185).In this respect,individuals who develop DHF or DSS but are otherwise healthy may serve as a pool to identify polymorphism and single-gene defects predisposing to the de-velopment of the most severe forms of DENV infection.Antibody-Dependent EnhancementIn most acute virus infection models,the presence of anti-bodies,both neutralizing and nonneutralizing,correlates with control,elimination,and eventually protection.However,a possible detrimental role of virus-specific antibodies has been described for several viruses as measured by in vitro enhance-ment of infection of cells(72,73,93,98,189,235,238,240,255),a phenomenon that is not restricted to viral pathogens only(150).This in vitro phenomenon was also described for DENV infection(86),and epidemiological studies have shown an increased risk of developing DHF/DSS after a secondary DENV infection(74,111,207,245).Halstead and colleagues observed that the incidence of DHF and DSS peaked in two populations of young children.One peak occurred in infants (at the age of6to9months)who were infected with a DENV serotype different from that which had infected their mothers. The key observation there was that severe disease occurred in infants for whom maternal antibodies had declined to low, subneutralizing levels.The other peak was observed in young children who had experienced an earlier,usually mild or sub-clinical,infection and were later infected with a different DENV serotype.These observations led to the conclusion that subsequent infection of preimmune individuals with a different DENV serotype could exacerbate rather than mitigate disease, a phenomenon that was claimed to be caused by antibodies and termed antibody-dependent enhancement(ADE)of dis-ease(85).Several subsequent epidemiological studies provided further circumstantial evidence for the role of preimmunity in the pathogenesis of DHF(25,80,82,112).ADE could result in infection of a higher number of target cells,which could lead to the high viral load observed in many studies(132,221,245,251, 258,259).Despite several clinical studies,evidence for the role of ADE in human disease,such as in DENV infections,re-mains circumstantial.Although some studies have shown a correlation between enhancing activity of serum,high levels of viremia,and an increased risk for DHF/DSS(38),not all cases of severe disease are associated with ADE or preceded by infection with a heterologous serotype or by high viral loads.In some cases,when DHF/DSS is seen,the presence of viral RNA became undetectable(132).In general,however,a high viral load and the presence of virus on the day of defervescence are important risk factors for the development of severe disease. As stated above,it is not completely clear whether the absence of viremia always correlates with clearance of virus from in-fected tissues(155,199).An alternative or complementary hypothesis is that Fc␥R-mediated entry suppresses the antiviral immune response.For instance,a study with Ross River virus showed that viral entry via the Fc␥R pathway could suppress antiviral genes and en-hance IL-10production in murine macrophages,while entry via the normal cellular receptor did not change the antiviral environment(135,151).Furthermore,it was shown that virus replication was necessary in order to promote IL-10expres-sion.Unfortunately,the Fc receptor that was involved in ADE was not identified.It was also shown that DENV infection of THP-1cells via FcR suppressed the transcription and produc-tion of IL-12,IFN-␥,TNF-␣,and NO but enhanced expression of the anti-inflammatory cytokines IL-6and IL-10(36),indi-cating that ADE of DENV infection also resulted in a milieu that promoted viral replication.These results must be inter-preted with caution,however,since the effect of ADE of in-fection on gene expression may be cell dependent(20).This effect of Fc␥R-mediated entry on the antiviral state is not unique to viral pathogens.For instance,Fc␥R-mediated infec-tion of murine macrophages with Leishmania amastigotes was required to sustain persistent infection(108,180,244).Infec-tion of humans and mice with Leishmania major in the pres-TABLE1.Summary of non-HLA and HLA-associated geneticfactors involved in the development of DHF/DSSGenetic factor Reference(s)Vitamin D receptor polymorphism (143)Fc␥RIIa polymorphism (143)G6PD (35)MBL2 (1)TGF-␤ (45)TNF-␣308A polymorphism (66)CTLA-4 (45)Transporters associated with antigenpresentation and human platelet antigen......................224,225DC-SIGN polymorphism (205)HLA class I alleles A*01,A*0207,A*24,B*07,B*46,B*51.............................................................144,232,270HLA class II alleles DQ*1,DR*1,DR*4.........................125,187568MARTINA ET AL.C LIN.M ICROBIOL.R EV.。

相关文档
最新文档