运筹学试题A(1)

合集下载

运筹学试题1_研究生考试-专业课

运筹学试题1_研究生考试-专业课

管理运筹学复习题第一章一、单项选择题1.用运筹学分析与解决问题的过程是一个( B )A.预测过程B.科学决策过程C.计划过程D.控制过程2.运筹学运用数学方法分析与解决问题,以达到系统的最优目标。

可以说这个过程是一个( C )A.解决问题过程B.分析问题过程C.科学决策过程D.前期预策过程3从趋势上看,运筹学的进一步发展依赖于一些外部条件及手段,其中最主要的是( C )A.数理统计 B.概率论 C.计算机 D.管理科学4运筹学研究功能之间关系是应用( A )A.系统观点 B.整体观点 C.联系观点 D.部分观点5运筹学的主要目的在于求得一个合理运用人力、物力和财力的( B )A.最优目标B.最佳方案C.最大收益D.最小成本6.运筹学的主要研究对象是各种有组织系统的( C )A.近期目标与具体投入B.生产计划及盈利C.管理问题及经营活动D.原始数据及相互关系7.运筹学研究和解决问题的优势是应用各学科交叉的方法,其具有的典型特性为( A )A.综合应用 B.独立研究 C.以计算为主 D.定性与定量8.数学模型中,“s·t”表示( B )A. 目标函数B. 约束C. 目标函数系数D. 约束条件系数9.用运筹学解决问题的核心是( B )A.建立数学模型并观察模型 B.建立数学模型并对模型求解C.建立数学模型并验证模型 D.建立数学模型并优化模型10.运筹学作为一门现代的新兴科学,起源于第二次世界大战的( B )A.工业活动B.军事活动C.政治活动D.商业活动11.运筹学是近代形成的一门( C )A.管理科学 B.自然科学 C.应用科学 D.社会科学12.用运筹学解决问题时,要对问题进行( B )A.分析与考察B.分析和定义C.分析和判断D.分析和实验13.运筹学中所使用的模型是( C )A.实物模型B.图表模型C.数学模型D.物理模型14.运筹学的研究对象是( B )A.计划问题 B.管理问题 C.组织问题 D.控制问题二、多项选择题1.运筹学的主要分支包括( ABDE )A.图论B.线性规划 C .非线性规划 D.整数规划 E.目标规划三、简答题1.运筹学的数学模型有哪些缺点?答:(1)数学模型的缺点之一是模型可能过分简化,因而不能正确反映实际情况。

运筹学考试试题

运筹学考试试题

运筹学考试试题一、选择题(每题2分,共10分)1. 线性规划的标准形式中,目标函数的系数应为:A. 正数B. 负数C. 任意非零数D. 零2. 在单纯形法中,如果某个非基变量的检验数大于零,则:A. 该变量不能进入基B. 该变量必须进入基C. 该变量的值可以增加D. 该变量的值可以减少3. 下列哪项不是运输问题的特殊矩阵?A. 平衡矩阵B. V型矩阵C. U型矩阵D. 散布矩阵4. 对于一个确定的线性规划问题,下列哪项是正确的?A. 只有一个最优解B. 有多个最优解C. 可能没有可行解D. 所有选项都是正确的5. 在动态规划中,状态转移方程的作用是:A. 确定初始状态B. 确定最终状态C. 确定中间状态D. 确定最优解二、简答题(每题5分,共20分)1. 简述单纯形法的基本步骤。

2. 解释什么是灵敏度分析,并说明其在运筹学中的应用。

3. 什么是网络流问题?请举例说明其在实际中的应用。

4. 描述动态规划的基本原理及其与分阶段决策过程的关系。

三、计算题(每题10分,共30分)1. 给定如下线性规划问题,请找出其最优解,并计算目标函数的最小值。

Maximize Z = 3x1 + 2x2Subject tox1 + 2x2 ≤ 103x1 + x2 ≤ 15x1, x2 ≥ 02. 考虑一个有三个仓库(A、B、C)和三个市场(D、E、F)的运输问题。

运输成本矩阵如下:| D E F ||--|--|--|A | 2 3 4 || B | 1 2 3 || C | 5 6 7 |每个仓库的供应量和每个市场的需求量如下:Supply/Demand: A: 10, B: 8, C: 5, D: 8, E: 10, F: 7使用北街角规则找出初始可行解。

3. 一个公司想要在三个城市(城市1、城市2、城市3)之间运输货物。

运输成本和需求量如下表所示:| 城市1 城市2 城市3 ||--|--|--|| 2 3 5 || 1 2 4 || 3 4 6 |需求量:城市1: 4, 城市2: 3, 城市3: 2请使用匈牙利算法解决此问题。

管理运筹学试题

管理运筹学试题

管理运筹学试题(A)一.单项选择(将唯一正确答案前面的字母填入题后的括号里。

正确得1分,选错、多选或不选得0分。

共15分)1.在线性规划模型中,没有非负约束的变量称为()A.多余变量B.松弛变量C.自由变量D.人工变量正确答案:A: B: C: D:2.约束条件为AX=b,X≥0的线性规划问题的可行解集是()A.补集B.凸集C.交集D.凹集正确答案:A: B: C: D:3.线性规划问题若有最优解,则一定可以在可行域的()上达到。

A.内点B.外点C.极点D.几何点正确答案:A: B: C: D:4.对偶问题的对偶是()A.基本问题B.解的问题C.其它问题D.原问题正确答案:A: B: C: D:5.若原问题是一标准型,则对偶问题的最优解值就等于原问题最优表中松弛变量的()A.值B.个数C.机会费用D.检验数正确答案:A: B: C: D:6.若运输问题已求得最优解,此时所求出的检验数一定是全部()A.大于或等于零B.大于零C.小于零D.小于或等于零正确答案:A: B: C: D:7.设V是一个有n个顶点的非空集合,V={v1,v2,……,vn},E是一个有m条边的集合,E={e1,e2,……em},E中任意一条边e是V 的一个无序元素对[u,v],(u≠v),则称V和E这两个集合组成了一个()A.有向树B.有向图C.完备图D.无向图正确答案:A: B: C: D:8.若开链Q中顶点都不相同,则称Q为()A.基本链B.初等链C.简单链D.饱和链正确答案:A: B: C: D:9.若图G 中没有平行边,则称图G为()A.简单图B.完备图C.基本图D.欧拉图正确答案:A: B: C: D:10.在统筹图中,关键工序的总时差一定()A.大于零B.小于零C.等于零D.无法确定正确答案:A: B: C: D:11.若Q为f饱和链,则链中至少有一条后向边为f ()A.正边B.零边C.邻边D.对边正确答案:A: B: C: D:12.若f 是G的一个流,K为G的一个割,且Valf=CapK,则K一定是()A.最小割B.最大割C.最小流D.最大流正确答案:A: B: C: D:13.对max型整数规划,若最优非整数解对应的目标函数值为Zc,最优整数解对应的目标值为Zd,那么一定有( )A.Zc ∈Zd B.Zc =Zd C.Zc ≤Zd D.Zc ≥Zd正确答案:A: B: C: D:14.若原问题中xI为自由变量,那么对偶问题中的第i个约束一定为()A.等式约束B.“≤”型约束C.“≥”约束D.无法确定正确答案:A: B: C: D:15.若f*为满足下列条件的流:Valf*=max{Valf |f为G的一个流},则称f*为G的()A.最小值B.最大值C.最大流D.最小流正确答案:A: B: C: D:二.多项选择题(每题至少有一个答案是正确的。

山东工商学院2022秋季考试_运筹学复习资料_普通用卷

山东工商学院2022秋季考试_运筹学复习资料_普通用卷

山东工商学院2020学年第二学期运筹学课程试题 A卷(考试时间:120分钟,满分100分)特别提醒:1、所有答案均须填写在答题纸上,写在试题纸上无效。

2、每份答卷上均须准确填写函授站、专业、年级、学号、姓名、课程名称。

一单选题 (共170题,总分值170分 )1. 约束矩阵A中任何一组m个线性无关的列向量构成的子矩阵称为该问题的一个( )(1 分)A. 基B. 最优解C. 基本解D. 基向量2. 线性规划的标准型中P称为( )(1 分)A. 技术向量B. 价值向量C. 资源向量D. 约束矩阵3. 决策问题的构成要素不包含()(1 分)A. 决策者B. 策略C. 收益D. 约束4. 去掉整数约数条件后得到的线性规划称为原整数规划的()(1 分)A. 松弛问题B. 增益问题C. 对偶问题D. 反问题5. X、Y分别是原问题和对偶问题的可行解,且,则X、Y分别是原问题和对偶问题的( ) (1 分)A. 基本可行解B. 最优解C. 基本解D. 不知6. A是m×n矩阵,则共有多少个非基向量( )(1 分)A. m×nB. mC. nD. n-m7. 约束矩阵A中任何一组m个线性无关的列向量构成的子矩阵称为该问题的一个( ) (1 分)A. 基B. 最优解C. 基本解D. 基向量8. 在排队系统的符号表示[A/;/;]:[;/E/F]中,A对应的是()(1 分)A. 顾客到达的时间间隔B. 分布服务时间的分布C. 服务台数D. 顾客源总体数目9. 下面不属于决策类型的是()(1 分)A. 战略决策B. 非常决策C. 静态决策D. 动态决策10. Kruskal算法属于哪种思路的方法()(1 分)A. 破圈B. 避圈C. 智能搜索D. 枚举11. 不属于按问题性质和条件分类的决策类型是()(1 分)A. 确定性决策B. 非确定决策C. 连续性决策D. 风险性决策12. 哪个不是常用的存贮策略有()(1 分)A. T-循环策略B. (s,S)策略C. (s,Q)策略D. (T,s,S)策略13. 线性规划在转化标准型时,转换约束条件时新增非负变量称为( )(1 分)A. 决策变量B. 松弛变量C. 资源变量D. 凸变量14. 线性规划问题的可行域是( ) (1 分)A. 四边形B. 凸集C. 不规则形D. 任意集15. 对于无后效性的多阶段决策过程,系统由阶段k到阶段k+1的状态转移方程是()(1 分)A.B.C.D.16. 1947年谁得到了线性规划的单纯形法( )(1 分)A. ErlangB. HarrisC. ShewhartD. Dantzig17. 图G中既无环又无平行边,则称作()(1 分)A. 有向图B. 简单图C. 初级图: 子图18. 在排队系统的符号表示[A/B/C]:[D/E/F]中,A对应的是()。

《运筹学》试题

《运筹学》试题

《运筹学》试题一、名词解释(20分)对偶可行基影子价格灵敏度分析平衡运输问题不平衡运输问题纯整数规划0—1规划问题混合整数规划网络最大流问题二、选择题(20分)1、我们可以通过()来验证模型最优解。

A观察B应用C实验D调查2、建立运筹学模型的过程不包括()阶段。

A观察环境B数据分析C模型设计D模型实施3、建立模型的一个基本理由是去揭晓那些重要的或有关的()A数量B变量 C 约束条件 D 目标函数4、模型中要求变量取值()A可正B可负C非正D非负5、运筹学研究和解决问题的效果具有()A连续性 B 整体性 C 阶段性 D 再生性6、如果线性规划问题有可行解,那么该解必须满足()A所有约束条件 B 变量取值非负 C 所有等式要求 D 所有不等式要求7、如果线性规划问题存在目标函数为有限值的最优解,求解时只需在()集合中进行搜索即可得到最优解。

A基 B 基本解 C 基可行解 D 可行域8、线性规划问题是针对()求极值问题.A约束B决策变量 C 秩D目标函数9、如果第K个约束条件是“≤”情形,若化为标准形式,需要()A左边增加一个变量B右边增加一个变量C左边减去一个变量D右边减去一个变量10、若某个bk≤0, 化为标准形式时原不等式()A不变 B 左端乘负1 C 右端乘负1 D 两边乘负1三、填空题(20分)1、线性规划问题具有对偶性,即对于任何一个求最大值的线性规划问题,都有一个求()的线性规划问题与之对应,反之亦然。

2、在一对对偶问题中,原问题的约束条件的右端常数是对偶问题的()。

3、如果原问题的某个变量无约束,则对偶问题中对应的约束条件应为()。

4、对偶问题的对偶问题是()。

5、若原问题可行,但目标函数无界,则对偶问题()。

6、在某线性规划问题中,已知某资源的影子价格为Y1,相应的约束常数b1,在灵敏度容许变动范围内发生Δb1的变化,则新的最优解对应的最优目标函数值是()(设原最优目标函数值为Z﹡)7、若某约束常数bi的变化超过其容许变动范围,为求得新的最优解,需在原最优单纯形表的基础上运用()求解。

运筹学试卷及参考答案

运筹学试卷及参考答案

运筹学试卷及参考答案运筹学试卷一、选择题(每小题2分,共20分)1、下列哪个不是线性规划的标准形式?() A. min z = 3x1 + 2x2B. max z = -4x1 - 3x2C. s.t. 2x1 - x2 <= 1D. s.t. x1 + x2 >= 0答案:C2、以下哪个是最小生成树的Prim算法?() A. 按照权值从小到大的顺序选择顶点 B. 按照权值从大到小的顺序选择顶点 C. 按照距离从小到大的顺序选择顶点 D. 按照距离从大到小的顺序选择顶点答案:B3、下列哪个不是网络流模型的典型应用?() A. 道路交通流量优化 B. 人员部署 C. 最短路径问题 D. 生产计划答案:C4、下列哪个是最小化问题中常用的动态规划解法?() A. 自顶向下的递推求解 B. 自底向上的递推求解 C. 分治算法 D. 回溯法答案:A5、下列哪个是最大流问题的 Ford-Fulkerson 算法?() A. 增广路径的寻找采用深度优先搜索 B. 增广路径的寻找采用广度优先搜索 C. 初始流采用最大边的二分法求解 D. 初始流采用最小边的二分法求解答案:B二、简答题(每小题10分,共40分)1、请简述运筹学在现实生活中的应用。

答案:运筹学在现实生活中的应用非常广泛。

例如,线性规划可以用于生产计划、货物运输和资源配置等问题;网络流模型可以用于解决道路交通流量优化、人员部署和生产计划等问题;动态规划可以用于解决最短路径、货物存储和序列安排等问题;图论模型可以用于解决最大流、最短路径和最小生成树等问题。

此外,运筹学还可以用于医疗资源管理、金融风险管理、军事战略规划等领域。

总之,运筹学的理论和方法可以帮助人们更好地解决实际生活中的问题,提高决策的效率和准确性。

2、请简述单纯形法求解线性规划的过程。

答案:单纯形法是一种求解线性规划问题的常用方法。

它通过不断迭代和修改可行解,最终找到最优解。

具体步骤如下: (1) 将线性规划问题转化为标准形式; (2) 根据标准形式构造初始可行基,通常选取一个非基变量,使其取值为零,其余非基变量的取值均为零; (3) 根据目标函数的系数,计算出目标函数值; (4) 通过比较目标函数值和已选取的非基变量的取值,选取最优的非基变量进行迭代; (5) 在迭代过程中,不断修正基变量和非基变量的取值,直到找到最优解或确定无解为止。

运筹学试卷A试题

运筹学试卷A试题

D、分支定界法在处理整数规划问题时,借用线性规划单纯形法的基本思想,在求相应的线性模型解的同时,逐步加入对各变量的整数要求限制,从而把原整数规划问题通过分支迭代求出最优解。

7、下列变量组是一个闭回路的有()A、{x21,x11,x12,x32,x33,x23}B、{ x11,x12,x23,x34,x41,x13}C、{x21,x13,x34,x41,x12,x14}D、{ x12,x22,x32,x33,x23,x21}8、工序(i,j)的最早开工时间T ES(i,j)等于()A、T E(i)B、max{ T Es(k)+ t ki }C、T L(i)D、min{ T L(j)- t ij }9、对于不确定型的决策,某人采用悲观主义准则进行决策,则应在收益表中()A、大中取小B、大中取大C、小中取小D、小中取大10、以下哪项是决策结果的方法程序()A、收集信息-确定目标-提出方案-方案优化-决策B、确定目标-收集信息-决策-提出方案-优化方案C、确定目标-收集信息-提出方案-方案优化-决策D、确定目标-提出方案-收集信息-方案优化-决策单项选择题答题表二、判断题,正确打√,错误打×, 并将修改建议简写在对应题号下的改错栏。

(20分,每题2分)1、线性规划问题的每一个基可行解对应可行域的一个顶点。

(√)2、图解法同单纯形法虽然求解的形式不同,但从几何上理解,两者是一致的。

(√)3、线性规划模型中增加一个约束条件,可行区域的范围一般将缩小,减少一个约束条件,可行域的范围一般将扩大。

(√)4、紧前工序是前道工序,后序工序是紧后工序。

( )5、在折衷主义准则中,乐观系数α的确定与决策者对风险的偏好有关。

( )6、旅行售货员问题是遍历每一条边的问题。

( )7、按最小元素法给出的初始基可行解,从每一空格出发可以找出而且仅能找出唯一的闭回路。

(√)8、在目标规划模型中,正偏差变量应取正值,负偏差变量应取负值。

《运筹学》(A)参考答案.docx

《运筹学》(A)参考答案.docx

《运筹学》(A)参考答案一、不定项选择题(每小题3分,共9分)1.线性规划的标准型有特点(B D )0A、右端项非零;B、目标求最大;C、有等式或不等式约束;D、变量均非负。

2.一个线性规划问题(P)与它的对偶问题(D)有关系(BCD)。

A、(P)无可行解则(D) 一定无可行解;B、(P)、(D)均有可行解则都有最优解;C、(P)的约束均为等式,则(D)的所有变量均无非负限制;D、若(D)是(P)的对偶问题,则(P)是(D)的对偶问题。

3.关于动态规划问题的下列命题中(B )是错误的。

A、动态规划阶段的顺序与求解过程无关;B、状态是由决策确定的;C、用逆序法求解动态规划问题的重要基础之一是最优性原理;D、列表法是求解某些离散变量动态规划问题的有效方法。

二、判断题(每小题2分,共10分)1.若某种资源的影子价格等于Q在其他条件不变的情况下,当该种资源增加5个单位时,相应的目标函数值将增大5k个单位。

(X)2.如果运输问题单位运价表的某一行(或某一列)元素分别加上一个常数久最优调运方案将不会发生变化。

(V)3.运输问题是一种特殊的线性规划模型,因而求解结果也可能出现下列四种情况之一:有唯一最优解,有无穷多最优解,无界解,无可行解。

(X )4.用割平面法求解纯整数规划问题时,要求包括松弛变量在内的全部变量必须取整数值。

(V )5.如图中某点匕有若干个相邻点,与其距离最远的相邻点为耳,则边卩,刀必不包含在最小支撑树内。

(X)三(20分)、考虑下列线性规划:max z = 3xj + 5x2 + x34xj + 2X2+x3 < 14< X] + x2 + x3 < 4Xj > 0, j = 1,2,31(10分)、写出此线性规划的最优解、最优值、最优基B和它的逆沪;2(2分)、求线性规划的对偶问题的最优解;3(4分)、试求C2在什么范围内,此线性规划的最优解不变;4 (4分)、若^=14变为9,最优解及最优值是什么?解:1(10分)、写出此线性规划的最优解、最优值、最优基B和它的逆沪;标准形式:max z = 3xj + 5x2 + x34xj + 2*2 + X3 + 卩=14< X] + *2 + X3 + x5 = 4X j > 0, j = 1,2,3,4,5最优解 X' =(0,4,0,6,0)『 最优值r =20 ---------------- (1分) 最优基5 = P 2]---------------- (2分)0 1 "1 -2B~l= o ]---------------- (2 分)2(2分)、求线性规划的对偶问题的最优解; 对偶问题的最优解厂=(0,5)3(4分)、试求c?在什么范围内,此线性规划的最优解不变;(1分)(2分)要使得原最优解不变,则所有检验数非正,即 3 — c 2 W 0 <1-C 2 <0 ,解得c 2 >3--------------- (2 分)~C 2 - 04(4分)、若$=14变为9,最优解及最优值是什么?-2j9 1 4最优值r =20-四(10分)、下述线性规划问题:max z = 10“ + 24x 2 + 20x 3 + 2O.r 4 + 25x 5X] + x 2 + 2x, + 3X 4 + 5X 5 < 19 < 2x 1 + 4X 2 + 3x, + 2X 4 + x 5 < 57 ">(2分)(2分)0, j =l,2,---,5以几,力为对偶变量写出其对偶问题。

《运筹学》 期末考试 试卷A 答案

《运筹学》 期末考试 试卷A 答案

《运筹学》试题样卷(一)一、判断题(共计10分,每小题1分,对的打√,错的打X )1. 无孤立点的图一定是连通图。

2. 对于线性规划的原问题和其对偶问题,若其中一个有最优解, 另一个也一定有最优解。

3. 如果一个线性规划问题有可行解,那么它必有最优解。

4.对偶问题的对偶问题一定是原问题。

5.用单纯形法求解标准形式(求最小值)的线性规划问题时,与0>j σ对应的变量都可以被选作换入变量。

6.若线性规划的原问题有无穷多个最优解时,其对偶问题也有无穷 多个最优解。

7. 度为0的点称为悬挂点。

8. 表上作业法实质上就是求解运输问题的单纯形法。

9. 一个图G 是树的充分必要条件是边数最少的无孤立点的图。

二、建立下面问题的线性规划模型(8分)某农场有100公顷土地及15000元资金可用于发展生产。

农场劳动力情况为秋冬季3500人日;春夏季4000人日。

如劳动力本身用不了时可外出打工,春秋季收入为25元 / 人日,秋冬季收入为20元 / 人日。

该农场种植三种作物:大豆、玉米、小麦,并饲养奶牛和鸡。

种作物时不需要专门投资,而饲养每头奶牛需投资800元,每只鸡投资3元。

养奶牛时每头需拨出1.5公顷土地种饲料,并占用人工秋冬季为100人日,春夏季为50人日,年净收入900元 / 每头奶牛。

养鸡时不占用土地,需人工为每只鸡秋冬季0.6人日,春夏季为0.3人日,年净收入2元 / 每只鸡。

农场现有鸡舍允许最多养1500只鸡,牛栏允许最多养200头。

三种作物每年需要的人工及收入情况如下表所示:试决定该农场的经营方案,使年净收入为最大。

三、已知下表为求解某目标函数为极大化线性规划问题的最终单纯形表,表中54,x x 为(1)写出原线性规划问题;(4分) (2)写出原问题的对偶问题;(3分)(3)直接由上表写出对偶问题的最优解。

(1分) 四、用单纯形法解下列线性规划问题(16分)3212max x x x Z +-=s. t. 3 x 1 + x 2 + x 3 ≤ 60 x 1- x 2 +2 x 3 ≤ 10 x 1+ x 2- x 3 ≤ 20 x 1, x 2 , x 3 ≥0五、求解下面运输问题。

运筹学试题及答案

运筹学试题及答案

一、填空题:(每空格2分,共16分)1、线性规划的解有唯一最优解、无穷多最优解、 无界解 和无可行解四种。

2、在求运费最少的调度运输问题中,如果某一非基变量的检验数为4,则说明 如果在该空格中增加一个运量运费将增加4 。

3、“如果线性规划的原问题存在可行解,则其对偶问题一定存在可行解”,这句话对还是错? 错4、如果某一整数规划: MaxZ=X 1+X 2 X 1+9/14X 2≤51/14 -2X 1+X 2≤1/3 X 1,X 2≥0且均为整数所对应的线性规划(松弛问题)的最优解为X 1=3/2,X 2=10/3,MaxZ=6/29,我们现在要对X 1进行分枝,应该分为 X 1≤1 和 X 1≥2 。

5、在用逆向解法求动态规划时,f k (s k )的含义是: 从第k 个阶段到第n 个阶段的最优解 。

6。

假设某线性规划的可行解的集合为D ,而其所对应的整数规划的可行解集合为B ,那么D 和B 的关系为 D 包含 B7. 已知下表是制订生产计划问题的一张LP 最优单纯形表(极大化问题,约束条问:(1)写出B -1=⎪⎪⎪⎭⎫ ⎝⎛---1003/20.3/1312(2)对偶问题的最优解: Y =(5,0,23,0,0)T8。

线性规划问题如果有无穷多最优解,则单纯形计算表的终表中必然有___某一个非基变量的检验数为0______;9。

极大化的线性规划问题为无界解时,则对偶问题_无解_________;10。

若整数规划的松驰问题的最优解不符合整数要求,假设X i =b i 不符合整数要求,INT (b i )是不超过b i 的最大整数,则构造两个约束条件:Xi ≥INT (b i )+1 和Xi ≤INT(b i ) ,分别将其并入上述松驰问题中,形成两个分支,即两个后继问题。

11. 知下表是制订生产计划问题的一张LP 最优单纯形表(极大化问题,约束条问:(1)对偶问题的最优解: Y =(4,0,9,0,0,0)T (2)写出B —1=⎪⎪⎪⎭⎫ ⎝⎛611401102二、计算题(60分) 1、已知线性规划(20分) MaxZ=3X 1+4X 2 1+X 2≤5 2X 1+4X 2≤12 3X 1+2X 2≤81,X 2≥02)若C 2从4变成5,最优解是否会发生改变,为什么?3)若b 2的量从12上升到15,最优解是否会发生变化,为什么?4)如果增加一种产品X 6,其P 6=(2,3,1)T ,C 6=4该产品是否应该投产?为什么? 解:1)对偶问题为Minw=5y1+12y2+8y3 y1+2y2+3y 3≥3y1+4y2+2y 3≥4 y1,y2≥02)当C 2从4变成5时,σ4=-9/8 σ5=—1/4由于非基变量的检验数仍然都是小于0的,所以最优解不变. 3)当若b 2的量从12上升到15 X=9/829/8 1/4由于基变量的值仍然都是大于0的,所以最优解的基变量不会发生变化。

运筹学试卷及参考答案

运筹学试卷及参考答案

济南大学继续教育学院运筹学试卷(A)学年:学期:年级:专业:学习形式:层次:(本试题满分100分,时间90分钟)一、判断题(每小题2分,共20分)1.用层次分析法解决问题,构造好问题的层次结构图是解决问题的关键.()A.正确B.错误2.目标规划模型中的目标函数按问题要求分别表示为求min或max.()A.正确B.错误3.所谓主观概率基本上是对事件发生可能性做出的一种主观猜想和臆测,缺乏必要科学依据.()A.正确B.错误4.在任一图G中,当点集V确定后,树图是G中边数最少的连通图.()A.正确B.错误5.对于一个动态规划问题,应用顺推或者逆推解法可能会得出不同的最优解.()A.正确B.错误6.排队系统中,顾客等待时间的分布不受排队服务规则的影响.()A. 正确B. 错误7.在折中主义准则中,乐观系数a的确定与决策者对风险的偏好有关.()A.正确B.错误8.求目标函数最小值问题不可能转换为求目标函数最大值问题.()A.正确B.错误9.不平衡运输问题不一定有最优解.()A.正确B.错误10.部分变量要求是整数的规划问题称为纯整数规划.()A.正确B.错误二、单选题(每小题3分,共30分)1.关于互为对偶的两个模型的解的存在情况,下列说法不正确的是().A. 都有最优解B. 都无可行解C. 都为无界解D. 一个为无界解,另一个为无可行解2.有6个产地4个销地的平衡运输问题模型具有特征().A. 有10个变量24个约束B. 有24个变量10个约束C. 有24个变量24约束D. 有9个基变量10个非基变量3.人数大于任务数的指派问题中,应该采取的措施是().A. 虚拟人B. 虚拟任务C. 都可以D. 不需要4.容量网络的条件包括().A. 网络中有一个始点和一个终点B. 流过网络的流量都具有一定方向C. 每边(弧)都赋予了一个容量,表示容许通过该弧的最大流量D. 以上都是5.用逆序法求解资源分配问题时,为保证独立性,状态变量取值一般为().A. 各阶段分配的资源数B. 当前阶段开始时前部过程已分配的资源数C. 当前阶段开始时剩余给后部过程的资源数D. 资源的总数6.设有一单人打字室,顾客的到达为普阿松流,平均到达时间间隔为20分钟,打字时间服从指数分布,平均时间为15分钟,打字室内顾客的平均数为().A.1/4B.1/3C.4D.37.对于不确定型的决策,某人采用乐观主义准则进行决策,则应在收益表中().A. 大中取大B. 大中取小C. 小中取大D. 小中取小8.为了使各因素之间进行两两比较得到量化的判断矩阵,引入()的标度.A. 1~7B. 1~8C. 1~9D. 随便9.下列线性规划与目标规划之间错误的关系是().A. 线性规划的目标函数由决策变量构成,目标规划的目标函数由偏差变量构成第 1 页共 9 页。

《运筹学》期末考试试题及参考答案

《运筹学》期末考试试题及参考答案

《运筹学》期末考试试题及参考答案《运筹学》期末考试试题及参考答案一、填空题1、运筹学是一门新兴的_________学科,它运用_________方法,研究有关_________的一切可能答案。

2、运筹学包括的内容有_______、、、_______、和。

3、对于一个线性规划问题,如果其目标函数的最优解在某个整数约束条件的约束范围内,那么该最优解是一个_______。

二、选择题1、下列哪一项不是运筹学的研究对象?( ) A. 背包问题 B. 生产组织问题 C. 信号传输问题 D. 原子核物理学2、以下哪一个不是运筹学问题的基本特征?( ) A. 唯一性 B. 现实性 C. 有解性 D. 确定性三、解答题1、请简述运筹学在日常生活中的应用实例,并就其中一个进行详细说明。

2、某企业生产三种产品,每种产品都可以选择用手工或机器生产。

假设生产每件产品手工需要的劳动时间为3小时,机器生产为2小时,卖价均为50元。

此外,手工生产每件产品的材料消耗为10元,机器生产为6元。

已知每个工人每天工作时间为24小时,可生产10件产品,每件产品的毛利润为50元。

请用运筹学方法确定手工或机器生产的数量,以达到最大利润。

参考答案:一、填空题1、交叉学科;数学;合理利用有限资源,获得最大效益2、线性规划、整数规划、动态规划、图论与网络、排队论、对策论3、整点最优解二、选择题1、D 2. A三、解答题1、运筹学在日常生活中的应用非常广泛。

例如,在背包问题中,如何在有限容量的背包中选择最有价值的物品;在生产组织问题中,如何合理安排生产计划,以最小化生产成本或最大化生产效率;在信号传输问题中,如何设计最优的信号传输路径,以确保信号的稳定传输。

以下以背包问题为例进行详细说明。

在背包问题中,给定一组物品,每个物品都有自己的重量和价值。

现在需要从中选择若干物品放入背包中,使得背包的容量恰好被填满,同时物品的总价值最大。

这是一个典型的0-1背包问题,属于运筹学的研究范畴。

运筹学期末试题及答案

运筹学期末试题及答案

运筹学期末试题及答案一、选择题1. 运筹学是通过分析和决策来实现最佳利益的学科。

以下哪个选项最准确地描述了运筹学的定义?A. 运筹学是一门研究如何安排和管理物流的学科。

B. 运筹学是一门研究如何制定合理的销售策略的学科。

C. 运筹学是一门研究如何决策和规划资源的学科。

D. 运筹学是一门研究如何提高生产效率的学科。

答案:C2. 线性规划是一种常用于解决最优化问题的数学方法。

以下哪个选项最准确地解释了线性规划问题?A. 线性规划是一种通过建立线性方程组来寻找最小值或最大值的方法。

B. 线性规划是一种通过建立非线性方程组来寻找最小值或最大值的方法。

C. 线性规划是一种通过建立线性方程组来寻找全局最优解的方法。

D. 线性规划是一种通过建立非线性方程组来寻找局部最优解的方法。

答案:C3. 整数规划是一种特殊的线性规划问题,其中决策变量必须是整数。

以下哪个选项最准确地描述了整数规划的特点?A. 整数规划只适用于小规模问题,无法处理大规模问题。

B. 整数规划可以保证找到问题的最优整数解。

C. 整数规划只能用于决策变量为0或1的二进制问题。

D. 整数规划在求解过程中需要考虑所有可能的整数解。

答案:B4. 单纯形法是一种用于解决线性规划问题的常用算法。

以下哪个选项最准确地描述了单纯形法的特点?A. 单纯形法只能用于求解可行解存在且有限的线性规划问题。

B. 单纯形法可以保证找到线性规划问题的最优解。

C. 单纯形法在求解过程中需要考虑所有可能的解空间。

D. 单纯形法只适用于二维线性规划问题,无法处理高维问题。

答案:B5. 敏感性分析是一种用于评估线性规划模型解的稳定性和可靠性的方法。

以下哪个选项最准确地解释了敏感性分析?A. 敏感性分析是一种通过调整决策变量的值来优化线性规划模型的方法。

B. 敏感性分析是一种通过改变约束条件的值来评估线性规划模型的可行性的方法。

C. 敏感性分析是一种通过改变目标函数系数的值来评估线性规划模型解的稳定性的方法。

《运筹学》考试题(A卷)题解

《运筹学》考试题(A卷)题解

x1 1 或 x2 2 ,利用这一结果,可以把 ( IL0 ) 划分为两个子问题:
max f x1 3 x 2 2 x1 3 x 2 4 x1 2 x 2 7 ; ( IL2 ) ( IL1 ) s.t.3x1 x 2 9 x 1 1 x1 0且为整数 , x 2 0
2 x1 3 x 2 4 x 2 x 7 1 2 s.t.3 x1 x 2 9 x 1 1 x1 0 , x 2 0
解之得: x1 1, x2 4, f1 13 ,最优解中 x1 已是整数,因而它也是 ( IL1 ) 的最优解。同时,
3 2 A 4 C B 1 2 3 1 F 3 E 3 4 D 1 G
解: (1)当 k 3 时,显然,有
f 3 ( D) 1
f 3 ( E) 3
f 3 (F ) 4
6
(2)当 k 2 时,求 f 2 ( B), f 2 (C) 。 由 B 出发有三种走法: B D, B E , B F ,即 D2 ( B) {D, E, F},故有
d1 ( A, B) f 2 ( B) 2 4 f1 ( A) min 6( A B D G ) d1 ( A, C ) f 2 (C ) 4 3

f1 ( A) min d 2 ( A, X ) f 2 ( X ) 2 4,4 3 6( A B D G )

f 2 (C ) min d 2 (C , X ) f 3 ( X ) 3 1,3 3,1 4 4(C D G )
X D2 ( C )
(3)当 k 1 时,求 f1 ( A) 。 由 A 出发有两种走法: A B1 , A B2 ,即 D1 ( A) {B, C} ,故有

运筹学精彩试题及问题详解(共两套)

运筹学精彩试题及问题详解(共两套)

运筹学A卷)一、单项选择题(从下列各题四个备选答案中选出一个正确答案,答案选错或未选者,该题不得分。

每小题1分,共10分)1.线性规划具有唯一最优解是指A.最优表中存在常数项为零B.最优表中非基变量检验数全部非零C.最优表中存在非基变量的检验数为零D.可行解集合有界2.设线性规划的约束条件为则基本可行解为A.(0, 0, 4, 3) B.(3, 4, 0, 0)C.(2, 0, 1, 0) D.(3, 0, 4, 0)3.则A.无可行解B.有唯一最优解mednC.有多重最优解D.有无界解4.互为对偶的两个线性规划, 对任意可行解X 和Y,存在关系A.Z > W B.Z = WC.Z≥W D.Z≤W5.有6 个产地4个销地的平衡运输问题模型具有特征A.有10个变量24个约束B.有24个变量10个约束C.有24个变量9个约束D.有9个基变量10个非基变量A.标准型的目标函数是求最大值B.标准型的目标函数是求最小值C.标准型的常数项非正D.标准型的变量一定要非负7. m+n-1个变量构成一组基变量的充要条件是A.m+n-1个变量恰好构成一个闭回路B.m+n-1个变量不包含任何闭回路C.m+n-1个变量中部分变量构成一个闭回路D.m+n-1个变量对应的系数列向量线性相关8.互为对偶的两个线性规划问题的解存在关系A.原问题无可行解,对偶问题也无可行解B.对偶问题有可行解,原问题可能无可行解C.若最优解存在,则最优解相同D.一个问题无可行解,则另一个问题具有无界解9.有m个产地n个销地的平衡运输问题模型具有特征A.有mn个变量m+n个约束…m+n-1个基变量B.有m+n个变量mn个约束C.有mn个变量m+n-1约束D.有m+n-1个基变量,mn-m-n-1个非基变量10.要求不超过第一目标值、恰好完成第二目标值,目标函数是A.)(m in22211+-+++=ddpdpZB.)(m in22211+-+-+=ddpdpZC.)(m in22211+---+=ddpdpZD.)(m in22211+--++=ddpdpZ二、判断题(你认为下列命题是否正确,对正确的打“√”;错误的打“×”。

《运筹学》-期末考试-试卷A-答案

《运筹学》-期末考试-试卷A-答案

《运筹学》试题样卷(一)题号一二三四五六七八九十总分得分X)1. 无孤立点的图一定是连通图。

2. 对于线性规划的原问题和其对偶问题,若其中一个有最优解,另一个也一定有最优解。

3. 如果一个线性规划问题有可行解,那么它必有最优解。

4.对偶问题的对偶问题一定是原问题。

5.用单纯形法求解标准形式(求最小值)的线性规划问题时,与对应的变量都可以被选作换入变量。

6.若线性规划的原问题有无穷多个最优解时,其对偶问题也有无穷多个最优解。

7. 度为0的点称为悬挂点。

8. 表上作业法实质上就是求解运输问题的单纯形法。

9. 一个图G 是树的充分必要条件是边数最少的无孤立点的图。

①②③④⑤⑥⑦⑧⑨某农场有100公顷土地与15000元资金可用于发展生产。

农场劳动力情况为秋冬季3500人日;春夏季4000人日。

如劳动力本身用不了时可外出打工,春秋季收入为25元/ 人日,秋冬季收入为20元/ 人日。

该农场种植三种作物:大豆、玉米、小麦,并饲养奶牛和鸡。

种作物时不需要专门投资,而饲养每头奶牛需投资800元,每只鸡投资3元。

养奶牛时每头需拨出1.5公顷土地种饲料,并占用人工秋冬季为100人日,春夏季为50人日,年净收入900元/ 每头奶牛。

养鸡时不占用土地,需人工为每只鸡秋冬季0.6人日,春夏季为0.3人日,年净收入2元/ 每只鸡。

农场现有鸡舍允许最多养1500只鸡,牛栏允许最多养200头。

三种作物每年需要的人工与收入情况如下表所示:大豆玉米麦子秋冬季需人日数春夏季需人日数年净收入(元/公顷)205030003575410010404600试决定该农场的经营方案,使年净收入为最大。

三、已知下表为求解某目标函数为极大化线性规划问题的最终单纯形表,表中为松弛变量,问题的约束为形式(共8分)5/201/211/205/21-1/2-1/61/30-40-4-2(1)写出原线性规划问题;(4分)(2)写出原问题的对偶问题;(3分)(3)直接由上表写出对偶问题的最优解。

运筹学试题及答案(共两套)

运筹学试题及答案(共两套)

运筹学A卷)一、单项选择题(从下列各题四个备选答案中选出一个正确答案,答案选错或未选者,该题不得分。

每小题1分,共10分)1.线性规划具有唯一最优解是指A.最优表中存在常数项为零B.最优表中非基变量检验数全部非零C.最优表中存在非基变量的检验数为零D.可行解集合有界2.设线性规划的约束条件为则基本可行解为A.(0, 0, 4, 3) B.(3, 4, 0, 0)C.(2, 0, 1, 0) D.(3, 0, 4, 0)3.则A.无可行解B.有唯一最优解mednC.有多重最优解D.有无界解4.互为对偶的两个线性规划, 对任意可行解X 和Y,存在关系A.Z > W B.Z = WC.Z≥W D.Z≤W5.有6 个产地4个销地的平衡运输问题模型具有特征A.有10个变量24个约束B.有24个变量10个约束C.有24个变量9个约束D.有9个基变量10个非基变量A.标准型的目标函数是求最大值B.标准型的目标函数是求最小值C.标准型的常数项非正D.标准型的变量一定要非负7. m+n-1个变量构成一组基变量的充要条件是A.m+n-1个变量恰好构成一个闭回路B.m+n-1个变量不包含任何闭回路C.m+n-1个变量中部分变量构成一个闭回路D.m+n-1个变量对应的系数列向量线性相关8.互为对偶的两个线性规划问题的解存在关系A.原问题无可行解,对偶问题也无可行解B.对偶问题有可行解,原问题可能无可行解C.若最优解存在,则最优解相同D.一个问题无可行解,则另一个问题具有无界解9.有m个产地n个销地的平衡运输问题模型具有特征A.有mn个变量m+n个约束…m+n-1个基变量B.有m+n个变量mn个约束C.有mn个变量m+n-1约束D.有m+n-1个基变量,mn-m-n-1个非基变量10.要求不超过第一目标值、恰好完成第二目标值,目标函数是A.)(m in22211+-+++=ddpdpZB.)(m in22211+-+-+=ddpdpZC.)(m in22211+---+=ddpdpZD.)(m in22211+--++=ddpdpZ二、判断题(你认为下列命题是否正确,对正确的打“√”;错误的打“×”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2
三、写出下面线性规划问题的对偶问题(10分)。

⎪⎪⎩⎪⎪⎨
⎧≥≤≤+≥+-=-+++=0
,01413121110987
654324max 32121321321321,x x x x x x x x x x x x x x z 无约束
五、求下列运输问题(20分)。

有三个产地甲、乙、丙生产同一种物品,使用地为A、B、C,各产地的年产量、各使用地的需求量及从各产地到各使用地的单位运价示于表2。

1.建立该问题的产销平衡表。

2. 用表上作业法求该运输问题的最优运输方案(用vogel法求解),并对最优解进行检验。

4
七、构建线性规划数学模型(10分)。

某糖果厂用原料A、B、C加工成三种不同牌号的糖果甲、乙、丙。

已知各种牌号糖果中A、B、C含量,原料成本,各种原料的每月限制用量,三种牌号糖果的单位加工费用及售价如表4所示。

问该厂每月生产这三种牌号糖果各多kg,使该厂获利最大?试建立这个问题的线性规划的数学模型。

6。

相关文档
最新文档