单相全控桥式晶闸管电动机系统设计
单相桥式晶闸管全控整流电路课程设计汇总
学号:0121011360219课程设计题目单相全控桥式晶闸管整流电路设计学院自动化学院专业自动化专业班级自动化1002班姓名李志强指导教师许湘莲2012 年12 月29 日课程设计任务书学生姓名:李志强专业班级:自动化1002班指导教师:许湘莲工作单位:武汉理工大学题目:初始条件:单相全控桥式晶闸管整流电路的设计(阻感负载)1、电源电压:交流220V、50Hz2、输出功率:1KW3、移相范围0°~90°要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求)1、根据课程设计题目,收集相关资料、设计主电路、控制电路;2、用MATLAB/Simulink对设计的电路进行仿真;3、撰写课程设计报告——画出主电路、控制电路原理图,说明主电路的工作原理、选择元器件参数,说明控制电路的工作原理、绘出主电路典型波形,绘出触发信号(驱动信号)波形,并给出仿真波形,说明仿真过程中遇到的问题和解决问题的方法,附参考资料;5、通过答辩。
时间安排:2012.12.24-12.29指导教师签名:年月日系主任(或责任教师)签名:年月日摘要本次课程设计只要是对单相全控桥式晶闸管整流电路的研究。
首先对几种典型的整流电路的介绍,从而对比出桥式全控整流的优点,然后对单相全控桥式晶闸管整流电路的整体设计,包括主电路,触发电路,保护电路。
主电路中包括电路参数的计算,器件的选型;触发电路中包括器件选择,参数设计;保护电路包括过电压保护,过电流保护,电压上升率抑制,电流上升率抑制。
之后就对整体电路进行Matlab仿真,最后对仿真结果进行分析与总结。
关键词:单相全控桥、晶闸管、整流目录1 系统方案及主电路设计 (1)1.1 整流电路对比 (1)1.2 系统流程框图 (3)1.3 主电路的设计 (3)1.4 整流电路参数计算 (5)1.5 晶闸管元件的选择 (6)2 驱动电路设计 (7)2.1 触发电路简介 (7)2.2 触发电路设计要求 (7)2.3 集成触发电路TCA789 (8)2.3.1 TCA785芯片介绍 (8)2.3.2 TCA785锯齿波移相触发电路 (12)3 保护电路设计 (13)3.1 过电压保护 (13)3.2 过电流保护 (14)3.3 电流上升率di/dt的抑制 (14)3.4 电压上升率du/dt的抑制 (15)4 系统MATLAB仿真 (16)4.1 MATLAB软件介绍 (16)4.2 系统建模与参数设置 (16)4.3 系统仿真结果及分析 (20)设计体会 (24)参考文献 (25)1 系统方案及主电路设1.1 整流电路对比我们知道,单相整流电路形式是各种各样的,可分为单相桥式相控整流电路和单相桥式半控整流电路,整流的结构也是比较多的。
单相全控桥式晶闸管整流电路的设计(纯电阻负载)解读
1 单相桥式全控整流电路的功能要求及设计方案介绍1.1 单相桥式全控整流电路设计方案1.1.1 设计方案图1设计方案1.1.2 整流电路的设计主电路原理图及其工作波形图2 主电路原理图及工作波形主电路原理说明:(1)在u2正半波的(0~α)区间,晶闸管VT1、VT4承受正向电压,但无触发脉冲,晶闸管VT2、VT3承受反向电压。
因此在0~α区间,4个晶闸管都不导通。
(2)在u2正半波的(α~π)区间,在ωt=α时刻,触发晶闸管VT1、VT4使其导通。
(3)在u2负半波的(π~π+α)区间,在π~π+α间,晶闸管VT2、VT3承受正向电压,因无触发脉冲而处于关断状态,晶闸管VT1、VT4承受反向电压也不导通。
(4)在u2负半波的(π+α~2π)区间,在ωt=π+α时刻,触发晶闸管VT2、VT3使其元件导通,负载电流沿b→VT3→R→VT2→α→T的二次绕组→b流通,电源电压沿正半周期的方向施加到负载电阻上,负载上有输出电压(ud=-u2)和电流,且波形相位相同。
2 触发电路的设计2.1 晶闸管触发电路触发电路在变流装置中所起的基本作用是向晶闸管提供门极电压和门极电流,使晶闸管在需要导通的时刻可靠导通。
根据控制要求决定晶闸管的导通时刻,对变流装置的输出功率进行控制。
触发电路是变流装置中的一个重要组成部分,变流装置是否能正常工作,与触发电路有直接关系,因此,正确合理地选择设计触发电路及其各项技术指标是保证晶闸管变流装置安全,可靠,经济运行的前提。
,开始启动A/D转换;在A/D转换期间,START应保持低电平。
2.1.1 晶闸管触发电路的要求晶闸管触发主要有移相触发、过零触发和脉冲列调制触发等。
触发电路对其产生的触发脉冲要求:(1)触发信号可为直流、交流或脉冲电压。
(2)触发信号应有足够的功率(触发电压和触发电流)。
(3)触发脉冲应有一定的宽度,脉冲的前沿尽可能陡,以使元件在触发导通后,阳极电流能迅速上升超过掣住电流而维持导通。
单相全桥逆变电路毕业设计
2008级应用电子技术毕业设计报告设计题目单相电压型全桥逆变电路设计姓名及学号学院专业应用电子技术班级2008级3班指导教师老师2011年05月1日题目:单相电压型全桥逆变电路设计目录第一章绪论1.1整流技术的发展概况 (4)第二章设计方案及其原理2.1电压型逆变器的原理图 (5)2.2电压型单相全桥逆变电路 (6)第三章仿真概念及其原理简述3.1 系统仿真概述 (6)3.2 整流电路的概述 (8)3.3 有源逆变的概述 (8)3.4逆变失败原因及消除方法 (9)第四章参数计算4.1实验电路原理及结果图 (10)第五章心得与总结 (14)参考文献 (15)第一章绪论1.1整流技术的发展概况正电路广泛应用于工业中。
整流与逆变一直都是电力电子技术的热点之一。
桥式整流是利用二极管的单向导通性进行整流的最常用的电路。
常用来将交流电转化为直流电。
从整流状态变到有源逆变状态,对于特定的实验电路需要恰到好处的时机和条件。
基本原理和方法已成熟十几年了,随着我国交直流变换器市场迅猛发展,与之相应的核型技术应用于发展比较将成为业内企业关注的焦点。
目前,整流设备的发展具有下列特点:传统的相控整流设备已经被先进的高频开关整流设备所取代。
系统的设计已经由固定式演化成模块化,以适应各种等级、各种模块通信设备的要求。
加上阀控式密封铅酸蓄电池的广泛应用,为分散供电创造了条件。
从而大大提高了通信网运行可靠和通信质量。
高频开关整流器采用模块化设计、N1配置和热插拨技术,方便了系统的扩展,有利于设备的维护。
由于整流设备和配电设备等配备了微机监控器,使系统设备具有了智能化管理功能和故障保护及自保护功能。
新旗舰、新技术、新材料的应用,使高频开关整流器跃上了一个新台阶。
第二章 设计方案及其原理2.1电压型逆变器的原理图原理框图等效图及其输出波形当开关S1、S4闭合,S2、S3断开时,负载电压u o 为正; 当开关S1、S4断开,S2、S3闭合时,u o 为负,如此交替进行下去,就在负载上得到了由直流电变换的交流电,u o 的波形如上图 (b)所示。
单相全控桥式晶闸管整流电路的设计(阻感负载)电力电子课程设计
绪论电力电子学,又称功率电子学(Power Electronics)。
它主要研究各种电力电子器件,以及由这些电力电子器件所构成的各式各样的电路或装置,以完成对电能的变换和控制。
它既是电子学在强电(高电压、大电流)或电工领域的一个分支,又是电工学在弱电(低电压、小电流)或电子领域的一个分支,或者说是强弱电相结合的新科学。
电力电子学是横跨“电子”、“电力”和“控制”三个领域的一个新兴工程技术学科。
随着科学技术的日益发展,人们对电路的要求也越来越高,由于在生产实际中需要大小可调的直流电源,而相控整流电路结构简单、控制方便、性能稳定,利用它可以方便地得到大中、小各种容量的直流电能,是目前获得直流电能的主要方法,得到了广泛应用。
在电能的生产和传输上,目前是以交流电为主。
电力网供给用户的是交流电,而在许多场合,例如电解、蓄电池的充电、直流电动机等,需要用直流电。
要得到直流电,除了直流发电机外,最普遍应用的是利用各种半导体元件产生直流电。
这个方法中,整流是最基础的一步。
整流,即利用具有单向导电特性的器件,把方向和大小交变的电流变换为直流电。
整流的基础是整流电路。
由于电力电子技术是将电子技术和控制技术引入传统的电力技术领域,利用半导体电力开关器件组成各种电力变换电路实现电能和变换和控制,而构成的一门完整的学科。
故其学习方法与电子技术和控制技术有很多相似之处,因此要学好这门课就必须做好课程设计,因而我们进行了此次课程设计。
又因为整流电路应用非常广泛,而单相全控桥式晶闸管整流电路又有利于夯实基础,故我们将单结晶体管触发的单相晶闸管全控整流电路这一课题作为这一课程的课程设计的课题。
第一章理论分析及元件介绍1.1方案比较及选择我们知道,单相整流器的电路形式是各种各样的,整流的结构也是比较多的。
因此在做设计之前我们主要考虑了以下几种方案:方案1:单相桥式全控整流电路电路简图如下:图 1.1此电路对每个导电回路进行控制,无须用续流二极管,也不会失控现象,负载形式多样,整流效果好,波形平稳,应用广泛。
单相全控桥式晶闸管整流电路(纯电阻负载)
在电源电压负半周,仍在触发延迟角α处触发T2和T3,T2和T3导通,电流从电源流入T2最后由T3流出,流回电源。当电源电压过零时,电流又降为0,T2和T3关断。此后又是T1和T4导通,如此循环工作下去。
由于在交流电源的正负半周都有整流输出电流流过负载,故该电路称为全波整流。
3.参数计算
流过晶闸管的电流有效值为:
电力电子综合课程设计报告
班级:自动化A班
********
学号:**********
第一部分
1.Matlab仿真电路图及参数设置
1.1仿真电路图
1.2系统参数设置
电源及晶闸管参数设置
触发信号参数设置
2.原理分析
单相桥式全控整流电路是单相整流电路中应用较多的。在单相桥式全控整流电路中,晶闸管T1和T4组成一对桥臂,T2和T3组成另外一对桥臂。在电源电压正半周,若4个晶闸管均没有被触发,则负载电流为0,负载电压也为0,T1和T4各承受一半电源电压。若在触发角α处给T1和T4加触发脉冲,T1和T4导通,电流从电源流入T1最后由T4流出,流回电源。当电源电压过零时,流经晶闸管的电流也降到0,T1和T4关断。
输出直流电流有效值 为:
由于本次仿真设计要求电源电压为100V/50Hz,最大输出功率为500W。又当触发延迟角为0度时,晶闸管导通时间最长,流过负载电流有效值最大,所以应使导通延迟角为0度时输出功率为500W。令上式α为00,Us为100V, 为 /25rad/s可得RL等于20 。
单相桥式全控整流电路
晶闸管额定电压:
UVTrated k U sav VTmax 509 V
(ksav 1.5)
17
电力电子技术
(3)移相:改变触发脉冲出现的时刻,即改变α的大小,叫做 移相。改变α的大小,也就控制了整流电路输出电压的大小, 这种方式也叫做“相控”。
4
单相桥式全控整流电路
(4)移相范围:改变α使输出整流电压平均值从最大值降到最 小值(零或负最大值),α的变化范围叫做移相范围。单相 桥式整流电路电阻负载时移相范围为180º。
Id
变压器二次交流电流有效值 I2rms Id
10
单相桥式全控整流电路
单相桥式全控整流电路带反电动势负载的工作波形
11
单相桥式全控整流电路
单相桥式全控整流电路带反电动势负载的工作分析
由于存在反电势负载,晶闸管提前关断
停止导电角:=arcsin E
2U 2rm s
当α≥δ时,输出直流电压
电感有抗拒电流变化的特性,大电感负载状态由于电 感的储能作用,负载id始终连续且电流近似为一直线。
电路稳态工作时,每组晶闸管均在另一组晶闸管触发
导通时才换流关断,每组晶闸管导通时间均为180º。
8
9
单相桥式全控整流电路
大电感负载运行参数分析
交流电源电压 u2 2U2 sin t
整流输出电压平均值
负载整流电压平均值Udav
Udav
1 π
2U2rmssintd(t)
2U π
2rm
s
(1
c
os
)
0.9U2rm
s
1cos
2
直流电流平均值Idav
Idav
Udav R
0.9U2rms 1 cos
电力电子课题选择
自本1004班课题选择
1、单相半波晶闸管整流电路的设计(纯电阻负载):谢世峰,刘超,肖亮湘
2、单相半波晶闸管整流电路的设计(阻感负载):房帮亮,赵振江,罗涛
3、单相全控桥式晶闸管整流电路的设计(纯电阻负载):喻鹏,杨元友,刘伟
4、单相全控桥式晶闸管整流电路的设计(阻感负载):薛涛,袁林海,马佑军
5、单相半控桥式晶闸管整流电路的设计(阻感负载):刘爽,黄宗杰,葛取文
6、单相半控桥式晶闸管整流电路的设计(带续流二极管,阻感负载):吴磊,徐松松
7、MOSFET降压斩波电路设计(纯电阻负载):张旭,吴志,林鹏
8、IGBT降压斩波电路设计(纯电阻负载):崔倩雯,赵丽娜,王娥
9、升压斩波电路设计(纯电阻负载):邓静,乐力铭,刘奇
10、IGBT升压斩波电路设计(纯电阻负载):邵一峰,梁咏柏,喻盛
11、MOSFET单相桥式无源逆变电路设计(纯电阻负载):刘志伟,朱谣,提云凯
12、IGBT单相桥式无源逆变电路设计(纯电阻负载):刘一环,王向阳,舒乐军
13、MOSFET单相半桥无源逆变电路设计(纯电阻负载):阳发,刘相伟,王德龙
14、IGBT单相半桥无源逆变电路设计(纯电阻负载):
15、升降压斩波在直流可逆电动机调速中的应用:李敏,王文亮。
单相桥式全控整流电路
ud=0) ud=u2 ud=0 ud=-u2 ud=0
输出电压波形同电阻性负载,电路有自然续流功能 移相范围: 0~π; 导通角θ=π-α
㈡各电量计算
1、负载
Ud
0.9 1
cos
2
Id
Ud Rd
2、晶闸管
I dT
1 2
Id
IT
1 2
流二极管 IdD IdT
ID IT U DM 2U 2
㈢存在问题:失控现象
若突然关断触发脉冲或将α迅速移到 180°,可能出现一只晶闸管直通,两 只整流二极管交替导通的电路失去控制 的现象,即失控现象。 此时输出变成单相不可控半波整流电压 波形,导通的晶闸管会因过热而损坏。 解决办法:接续流二极管VD
㈣接续流二极管VD后电路分析
在的负半周 0<ωt<α期间 VT1~VT4都不导通 ωt=α 时刻 触发 0<ωt<α期间 VT2、VT4导通 ωt=π 时刻 VT2、VT4关断
结论
1、在交流电源电源u2的正、负半周里, VT1、 VT3和 VT2、VT2两组晶闸管轮流触发导通,将 交流电转变成脉动直流电;
2、改变 α 角度大小,ud、id波形相应改变;
2、参数计算:
•输出电流平均值
Id
Ud E Rd
•其它参数计算与大电感负载时相同
2.3 单相桥式半控整流电路
一、电路结构(flash)
将单相桥式全控整流电路中的一对晶 闸管换成两只整流二极管即可
工作特点:晶闸管需触发才导通;整 流二极管承受正向电压时会自然(换 相)导通
二、电路工作原理及参数计算
Id
Ud R
单相全控桥式晶闸管整流电路的设计反电势 电阻负载
单相全控桥式晶闸管整流电路的设计反电势电阻负载
单相全控桥式晶闸管整流电路的设计反电势是指通过控制晶闸管的导通角度来控制电路的输出电压。
在整流电路中,当晶闸管导通时,电流从负载流过,形成一定的电压降,反电势即为这个电压降。
对于单相全控桥式整流电路而言,电路中有4个晶闸管,每个晶闸管都控制一个半周期的电流。
在正半周中,1和3晶闸管导通,电流通过负载,形成一定的反电势;在负半周中,2和4晶闸管导通,电流流向负载反方向,同样也会形成反电势。
设计反电势的方法主要是通过控制晶闸管的导通角度来调节电路输出的电压。
一般可以通过控制晶闸管的触发角来实现。
调整晶闸管的导通角度可以改变负载电流的截止角,从而影响负载电压,进而实现控制整流电路的输出电压。
在具体的电路设计中,可以使用适当的电路驱动电路和触发控制电路来实现对晶闸管的控制,从而实现所需的反电势。
至于电阻负载,它是指在整流电路输出端加入一个电阻来承载整流电路输出的电流。
在设计时,需要选择适当的电阻值来满足负载的电流要求。
同时,也要考虑电阻的功率和电流容量,以保证电阻能够正常工作并不发生过载。
单相桥式全控整流电路基本工作原理
单相桥式全控整流电路基本工作原理该电路的基本工作原理如下:1.开通晶闸管:当输入交流电信号通过变压器降压后,将其接入晶闸管的两个交流输入端,晶闸管的门极接入触发控制电路。
在晶闸管通态分析中,容易发现当控制电路输出触发信号时,晶闸管正向导通,出现一个正导通的主电路。
此时,电流会通过晶闸管并进入负载电路。
2.关断晶闸管:在晶闸管正向导通后,电池使负载电路到负电压,负载电路从正向导通瞬间开始以反向电压工作,并保持该反向电压直到接下来正向导通的晶闸管。
3.换流:当正向导通的晶闸管关闭后,由于变压器的储能作用,晶闸管的另一对形成了正导通的主电路。
同样,电流会通过晶闸管并进入负载电路。
通过四个晶闸管的交替工作,即实现了电流的不间断输出,并将交流电信号变换为直流电信号。
4.触发控制:晶闸管的触发控制电路可以通过改变晶闸管的触发脉冲的时间、幅度和频率,来实现对晶闸管导通的控制。
具体来说,控制电路可以感知输入交流电信号的特性,并产生与之匹配的触发电压和触发时间,以确保晶闸管在合适的时机导通,并实现需求的电流输出。
5.平滑滤波:为了减小输出直流电的波动,通常在单相桥式全控整流电路的输出端串联一个滤波电路,通过电感和电容元件对输出电流进行平滑滤波,使得输出电流更加稳定。
-输出电流可以通过控制晶闸管的触发角度和宽度来实现对电路负载的精确控制。
-该电路可以实现电压和电流的双向控制,适用于多种应用场景,如交流调压、变频调速和直流供电等。
-由于使用了可控硅元件,电路具有较高的效率和可靠性。
需要注意的是,单相桥式全控整流电路在实际使用中需要根据具体需求来选择合适的晶闸管和控制电路参数,以实现期望的工作效果。
此外,由于晶闸管具有半导体器件的特性,需要采取一定的保护措施,以防止过流和过压等情况的发生。
单相桥式全控整流电路实验
单相桥式全控整流电路实验一、实验目的1.理解单相桥式全控整流电路的工作原理;2.掌握整流电路的参数测试方法;3.学习单相桥式全控整流电路的设计与调试方法。
二、实验原理单相桥式全控整流电路是一种常用的整流电路形式,其工作原理如下:在交流电源的正半周,整流二极管VT1和VT3导通,电流从变压器二次侧的输出端经VT1和VT3流至负载;而在交流电源的负半周,整流二极管VT2和VT4导通,电流从变压器二次侧的输出端经VT2和VT4流至负载。
通过控制晶闸管的触发角,可以调节输出电压的大小。
三、实验步骤1.搭建单相桥式全控整流电路,包括电源、变压器、整流二极管、负载和触发器等部分;2.连接电源,使电路开始工作;3.使用示波器观察整流电路的输入电压和输出电压的波形;4.调整触发器的触发角,观察输出电压的变化;5.测量整流电路的输入电压、输出电压、电流等参数;6.根据实验数据计算整流效率等参数;7.对实验结果进行分析,并与理论值进行比较。
四、实验结果与分析1.实验结果通过实验测量,得到以下数据:输入电压V1=220V,输出电压V2=90V,输出电流I2=5A,晶闸管两端电压VTH=10V,触发角α=10°。
根据这些数据,我们可以计算出整流效率为η=输出电压/输入电压×100%=90/220×100%=40.9%。
2.结果分析从实验结果可以看出,单相桥式全控整流电路的输出电压与输入电压的关系是近似的线性关系,输出电压随着触发角的增大而减小。
当触发角为90°时,输出电压为零,这表明单相桥式全控整流电路具有可控性。
同时,由于晶闸管两端存在电压降,因此整流效率受到一定的影响。
但是,当触发角较小时,整流效率较高。
五、结论通过本次实验,我们验证了单相桥式全控整流电路的工作原理和设计方法。
实验结果表明,单相桥式全控整流电路具有可控性好、效率较高的优点。
在实际应用中,可以通过调整触发角来调节输出电压的大小,实现电气设备的节能控制。
晶闸管单相桥式全控整流电路仿真实验原理
晶闸管单相桥式全控整流电路仿真实验原理下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor.I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!晶闸管单相桥式全控整流电路的仿真实验原理解析晶闸管单相桥式全控整流电路是电力电子技术中常见的一种电路结构,广泛应用于工业电源、电机调速等领域。
单相桥式全控整流电路实验报告
一、实验目的1. 理解单相桥式全控整流电路的工作原理。
2. 掌握单相桥式全控整流电路的搭建方法。
3. 分析单相桥式全控整流电路在不同负载条件下的性能。
4. 学习使用示波器等实验仪器进行电路测试。
二、实验原理单相桥式全控整流电路由四个晶闸管(VT1、VT2、VT3、VT4)和负载组成。
当交流电源电压为正半周时,晶闸管VT1和VT4导通,电流从电源正极流向负载;当交流电源电压为负半周时,晶闸管VT2和VT3导通,电流从电源负极流向负载。
通过调节晶闸管的触发角,可以控制输出电压的大小。
三、实验器材1. 单相桥式全控整流电路实验装置2. 晶闸管模块3. 负载电阻4. 负载电感5. 电源6. 示波器7. 万用表8. 交流电源9. 接线板四、实验步骤1. 搭建单相桥式全控整流电路,确保电路连接正确。
2. 使用示波器观察交流电源电压波形。
3. 调节晶闸管的触发角,观察输出电压波形。
4. 测试不同负载条件下的输出电压和电流。
5. 记录实验数据,进行分析。
五、实验结果与分析1. 观察到当晶闸管的触发角为0度时,输出电压为0;当触发角为180度时,输出电压为交流电源电压的峰值。
2. 当负载为电阻时,输出电压和电流的波形基本一致,且电压和电流的平均值随触发角的增大而减小。
3. 当负载为电感时,输出电压和电流的波形存在相位差,且电流的峰值滞后于电压的峰值。
4. 当负载为电阻-电感时,输出电压和电流的波形与电阻负载相似,但电流的峰值滞后于电压的峰值。
六、实验结论1. 单相桥式全控整流电路可以将交流电转换为直流电,且输出电压大小可调。
2. 不同负载条件下,输出电压和电流的波形存在差异。
3. 通过调节晶闸管的触发角,可以控制输出电压的大小。
七、心得体会1. 通过本次实验,加深了对单相桥式全控整流电路工作原理的理解。
2. 学会了使用示波器等实验仪器进行电路测试。
3. 了解了不同负载条件下电路性能的变化。
八、注意事项1. 在搭建电路时,注意晶闸管的正确连接。
晶闸管-直流电动机单闭环调速系统
1.直流调速系统的动态指标对于一个调速系统,电动机要不断地处于启动、制动、反转、调速以及突然加减负载的过渡过程,此时,必须研究相关电机运行的动态指标,如稳定性、快速性、动态误差等。
这对于提高产品质量和劳动生产率,保证系统安全运行是很有意义的。
(1)跟随指标:系统对给定信号的动态响应性能,称为“跟随”性能,一般用最大超调量σ,超调时间t和震荡次数N三个指标来衡量,图s2.1是突加给定作用下的动态响应曲线。
最大超调量反映了系统的动态精度,超调量越小,则说明系统的过渡过程进行得平稳。
不同的调速系统对最大超调量的要求也不同。
一般调速系统σ可允许10%~35%;轧钢机中的初轧机要求小于10%,连轧机则要求小于2%~5%,;而在张力控制的卷曲机反映了系统的快速性。
系统(造纸机),则不允许有超调量。
调整时间ts为0.2s~0.5s,造纸机为0.3s。
振荡次数也反映了系统的例如,连轧机ts稳定性。
例如,磨床等普通机床允许震荡3次,龙门刨及轧机则允许振荡1次,而造纸机不允许有振荡。
图2.1突加给定作用下的动态响应曲线(2)抗扰指标:对扰动量作用时的动态响应性能,称为“抗扰”性能。
一般用最大动态速降Δnmax ,恢复时间tf和振荡次数N三个指标来衡量。
用图2.2是突加负载时的动态响应曲线。
最大动态速降反映了系统抗扰动能力和系统的稳定性。
由于最大动态速降及扰动量的大小是有关的,因此必须同时注明扰动量的大小。
恢复时间反映了系统的抗扰动能力和快速性。
振荡次数N同样代表系统的稳定性及抗扰动能力图2.2突加负载时的动态响应曲线2.晶闸管电动机直流调速系统存在的问题图2.3 V-M系统的运行范围晶闸管整流器也有它的缺点。
首先,由于晶闸管的单向导电性,它不允许电流反向,给系统的可逆运行造成困难。
由半控整流电路构成的V-M 系统只允许单象限运行(图2.3a),全控整流电路可以实现有源逆变,允许电动机工作在反转制动状态,因而能获得二象限运行(图2.3b)。
2013单相桥式全控整流电路精析
主电路设计系统原理方框图:系统主体电路原理及说明:单相全控桥式整流电路电感性负载及其波形(a)电路;(b)电源电压;(c)触发脉冲;(d)输出电压;(e)输出电流;(f)晶闸管V -1,V -4上的电流;(g)晶闸管V -2,V -3上的电流;(h)变压器副边电流;(i)晶闸管V -1,V -4上的电压。
1、工作原理:在u2正半周期,触发角 α 处给晶闸管VT1和VT4加触发脉冲使其导通,ud = u2负载中有电感存在使负载电流不能突变,电感对负载电流起平波作用,假设负载电感很大,负载电流 id 连续且波形近似为一水平线,其波形如图(e ) 所示。
u2 过零变负时,由于电感的作用晶闸管VT1和VT4 中仍流过电流 id 并不关断。
至ωt =π+α 时刻,给 VT2 和 VT3 加触发脉冲,因VT2和VT3本已承受正电压,故两管导通。
VT2和VT3导通后,u2通过 VT2 和 VT3 分别向 VT1 和 VT4 施加反压使VT1 和VT4 关断,流过 VT1 和 VT4 的电流迅速转移到 VT2 和 VT3 上,此过程称为换相,亦称换流。
至下一周期重复上述过程,如此循环下去。
2、ud 波形如图(d )所示,其平均值为:当α= 0o 时,Ud= 0.9 U2; 当α= 90o 时,Ud = 0; α角的移相范围为90o 。
单相桥式全控整流电路带阻感负载时,晶闸管VT1、VT4两端的电压波形如图(i )所示,晶闸管承受的最大正反向电压均为22U 。
晶闸管导通角θ与触发角α无关,均为180o ,其电流波形如图(b )所示,平均值和有效值分别为:和变压器二次电流i2的波形为正负各180o 的矩形波,其相位由α角决定,有效值为:I2= Id 。
3、原理图分析:该电路主要由四部分构成,分别为电源,过电保护电路,整流电路和触发电路构成。
输入的信号经变压器变压后通过过电保护电路,保证电路出现过载或短路故障时,不至于伤害到晶闸管和负载。
毕业设计论文:单相桥式全控整流电路
4)完成驱动电路的设计,保护电路的设计;
工作量要求:(1)要求具体电路方案的选择必须有论证说明,要说明其有哪些特点。
主电路具体电路元器件的选择应有计算和说明。课程设计从确定方案到整个系
统的设计,必须在检索、阅读及分析研究大量的相关文献的基础上,经过分析、
4.1.1
晶闸管触发主要有移相触发、过零触发和脉冲列调制触发等。触发电路对其产生的触发脉冲要求:
①触发信号可为直流、交流或脉冲电压。
②触发信号应有足够的功率(触发电压和触发电流)。
由闸管的门极伏安特性曲线可知,同一型号的晶闸管的门极伏安特性的分散性很大,所以规定晶闸管元件的门极阻值在某高阻和低阻之间,才可能算是合格的产品。晶闸管器件出厂时,所标注的门极触发电流Igt、门极触发电压U是指该型号的所有合格器件都能被触发导通的最小门极电流、电压值,所以在接近坐标原点处以触发脉冲应一定的宽度且脉冲前沿应尽可能陡。由于晶闸管的触发是有一个过程的,也就是晶闸管的导通需要一定的时间。只有当晶闸管的阳极电流即主回路电流上升到晶闸管的掣住电流以上时,晶闸管才能导通,所以触发信号应有足够的宽度才能保证被触发的晶闸管可靠的导通,对于电感性负载,脉冲的宽度要宽些,一般为0.5~1MS,相当于50HZ、18度电度角。为了可靠地、快速地触发大功率晶闸管,常常在 触发脉冲的前沿叠加上一个触发脉冲。
提炼,设计出所要求的电路(或装置)。课程设计过程中,并给出这些问题的解法。
(2)在老师的指导下,独立完成所设计的系统电路,控制电路等详细设计
(包括计算和器件选型)。
(3)课程设计的主要内容是主电路的确定,主电路的分析说明,主电路元
器件的计算和选型,以及控制电路的设计
(4)课程设计用纸和格式统一
前级单相全控桥式整流后级buck直流斩波的两极变换器设计
前级单相全控桥式整流后级buck直流斩波的两极变换器设计
设计前级单相全控桥式整流后级buck直流斩波的两极变换器,可以按照以下步骤进行设计:
1. 首先确定功率需求和输入电压范围,以确定变压器的变比比例和功率。
2. 设计前级单相全控桥式整流电路。
这个电路由两个晶闸管桥连接组成。
根据需要控制的直流电压和电流值,选择适当的晶闸管(如可控硅)。
-确定变压器的变比比例,以满足所需的输入电压。
-选择合适的滤波电容和电感,以减小输出电压的纹波。
-使用适当的触发电路和控制电路来控制晶闸管的触发方式和角度。
3. 设计后级buck直流斩波电路。
这个电路由一个开关器件(如MOSFET)和一个电感组成。
其作用是通过调节开关器件的导通时间和关断时间来控制输出电压。
-选择适当的开关器件(如MOSFET)和电感,以满足所需的输出电压和电流。
-确定开关器件的开关频率和占空比,以满足输出电压的稳定性和效率要求。
4. 添加保护电路,如过压保护、过流保护等,以确保系统的安全运行。
5. 进行电路仿真和性能评估。
使用仿真软件对设计的两极变换器进行验证和优化。
6. 绘制电路原理图,并进行PCB布局和制造。
完成后进行电路组装和测试。
请注意,在实际设计和应用中,需要充分考虑安全性能和使用环境,并遵循相关的法规和标准。
如果您不具备相关的电路设计经验,建议寻求专业人士进行设计和指导。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录摘要 (1)1系统方案设计 (2)2单相全控桥式主电路设计 (3)2.1整流变压器设计 (3)2.2单相桥式全控整流电路设计 (4)2.2.1带阻感负载时的工作情况 (5)2.2.2带反电动势负载时的工作情况 (6)2.3晶闸管电路参数计算 (7)2.3.1晶闸管电压定额的确定 (7)2.3.2晶闸管电流定额的确定 (8)2.4晶闸管电路对电网的影响 (8)2.5系统功率因数 (9)3晶闸管触发电路的设计 (10)3.1晶闸管触发电路的选型 (10)3.2触发电路的定相 (11)4保护电路的设计 (13)4.1晶闸管过电流保护电路的设计 (13)4.2晶闸管过电压保护电路的设计 (13)5总结 (15)参考文献 (16)附录: (17)摘要单向全控桥式晶闸管—电动机系统的设计,主要包括单相全控桥式主电路的设计,触发电路设计以及过电压、过电流保护电路设计。
在本设计中,由于电动机是直流电动机,因此需要首先使用整流电路,将电网中的交流电转变为直流电,才能供电给直流电动机。
在全控桥式电路中,保证晶闸管在需要的时刻由阻断转为导通极为重要,本设计中触发电路采用锯齿波同步触发电路,它极为适用于对触发电路要求较高的晶闸管整流电路。
另外,在设计过程中考虑到电力电子电路中可能会出现一些突发情况,比如电压过大、电流过大等,特别设计保护电路对晶闸管进行过电压过电流保护,从而保证电力电子电路正常工作。
从整个系统来看,单相桥式全控整流电路将交流电网中的交流电转变成直流电,直流电驱动直流电动机工作,同时,为了保护晶闸管正常工作,还围绕晶闸管设计了触发电路、过电压和过电流保护电路。
关键词:单相全控桥式触发电路过电压过电流保护电路单相全控桥式晶闸管—电动机系统1系统方案设计根据设计要求,单相全控桥式晶闸管带电动机负载系统设计框图如图1所示。
图1 系统原理框图当负载为蓄电池、直流电动机的电枢(忽略其中的电感)等时,负载可看成一个直流电压源,对于整流电路,它们就是反电动势负载。
但是,如果出现电流断续,则电动机的机械特性将很软。
为了克服以上缺点,一般在主电路的直流输出侧串联一个平波电抗器,用来减少电流的脉动和延长晶闸管导通时间。
只要电感量足够大就可以使电流连续,晶闸管每次导通180°,这时整流电压Ud的波形和负载电流Id的波形与电感负载电流连续时的波形相同,Ud的计算公式也一样。
因此,在本设计—单相全控桥式晶闸管电动机系统中,实质上研究的是单相桥式全控整流电路带电阻—电感—反电动势负载时的工作情况。
2单相全控桥式主电路设计单相全控桥式主电路由整流变压器电路、单相桥式全控整流电路组成。
下面将对整流变压器和单相桥式全控整流电路进行设计,并计算晶闸管电路有关参数,以及讨论晶闸管电路对电网的影响和系统功率因数2.1整流变压器设计在本设计单元中主要对满足设计要求的整流变压器二次侧电压2U 和2i 进行计算。
通过查阅相关资料可得,整流变压器二次侧电压2U 的计算公式如下:)(N sh Td I I cU A nU U U 22min max 2cos -+=αε式中,m ax d U —整流电路输出电压最大值。
m ax d U =N U +N a I R λ=220+1.5*0.2*17=225.1 VT nU —主电路电流回路n 个晶闸管正向压降。
T nU =2*1=2Vc —线路接线方式系数。
这里c =0.707sh U —变压器短路比,sh U =0.05~0.1,取sh U =0.05N I I 22/—变压器二次侧实际工作电流与额定电流之比,取最大值,这里N I I 22/=1.5A — 理想情况下,即 0=α时整流电压0d U 与二次侧电压2U 之比,这里取A=0.9ε—电网波动系数,通常取ε=0.9综上所述,整流变压器二次侧电压2U 为:)(N sh Td I I cU A nU U U 22min max 2cos -+=αε=)5.1*05.0*707.00cos 9.0*9.01*217*2.0*5.1220-++ ( ≈296 V整流变压器二次侧电流2i 的计算公式如下:d I I K I 22=这里由于是单相桥式全控电路,所以2I K =1.11所以,2I =1.11d I2.2单相桥式全控整流电路设计单相桥式全控整流电路主要利用晶闸管对电路进行控制,将交流电转换为直流电。
图2 单相桥式全控整流电路由于电动机是阻感负载,并且带有反电动势,故分两种情况予以讨论分析。
2.2.1带阻感负载时的工作情况图3 单相桥式全控整流电路带阻感负载时的电路及波形电路如图3所示。
为便于讨论,假设电路已工作于稳定,d i 的平均值不变。
2u 的波形如图3所示,在2u 正半周,触发角α处给晶闸管1VT 和4VT 加触发脉冲使其开通,2u u d =。
负载中有电感存在使负载电流不能突变,电感对负载电流起平波作用,假设负载电感很大,负载电流d i 连续且波形近似为一水平线,其波形如图3所示。
2u 过零变负时,由于电感的作用晶闸管1VT 和4VT 中仍流过电流d i ,并不关断。
至=t ωπ+α时刻,给2VT 和3VT 加触发脉冲,因2VT 和3VT 本已承受正电压,故两管导通。
2VT 和3VT 导通后,2u 通过2VT 和3VT 分别向1VT 和4VT 施加反压使1VT 和4VT 关断,流过1VT 和4VT 的电流迅速转移到2VT 和3VT 上,此过程称为换相,亦称换流。
至下一周重复上述过程,如此循环下去。
d u 波形如图3所示。
其平均值为:⎰+=απαωωπ)(sin 221t td U d Uααπcos 29.0cos 222U U ==当α=0时,d u =0.92u ;当α=90°时,d u =0。
晶闸管移相范围为90° 单相桥式全控整流电路带阻感负载时,晶闸管承受的最大正反向电压均为22U 。
2.2.2带反电动势负载时的工作情况当负载为蓄电池、直流电动机的电枢(忽略其中的电感)等时,负载可看成一个直流电压源,对于整流电路,它们就是反电动势负载。
直流电动机工作时会产生反电动势,因此可以看作是反电动势负载。
图4 单相桥式全控整流电路带电动机反电动势负载图5 单相桥式全控整流电路带电动机反电动势负载波形忽略主电路各部分的电感时,只有在2u 瞬时值的绝对值大于反电动势即E u >2时,才有晶闸管承受正电压,有导通的可能。
晶闸管导通之后,2u d u =,R E d u d i /)(-=,直至E u =2,d i 即降至0使得晶闸管关断,此后E d u =。
与电阻负载相比,晶闸管提前了电角度δ停止导电。
δ称为停止导电角。
负载为直流电动机时,如果出现电流断续,则电动机的机械特性将很软。
从图5可以看出,导通角θ越小,则电流波形的底部就越窄。
电流平均值与电流波形的面积成比例,因而为了增大电流平均值,必须增大电流峰值,这要求较多的降低反电动势。
因此当电流断续时,随着Id 的增大,转速n(与反电动势成反比)降落较大,机械特性较软,相当于整流电源的内阻增大。
较大的电流峰值在电动机换向时很容易产生火花。
同时,对于相等的电流平均值,若电流波形底部越窄,则其有效值越大,要求电源容量也大。
为了克服以上缺点,一般在主电路的直流输出侧串联一个平波电抗器如图6所示,用来减少电流的脉动和延长晶闸管导通时间,平稳负载电流的脉动,保证整流电流连续。
有了电感,当U2小于E 时甚至U2值变负时,晶闸管仍可导通。
只要电感量足够大就可以使电流连续,晶闸管每次导通180°,这时整流电压Ud 的波形和负载电流Id 的波形与电感负载电流连续时的波形相同,Ud 的计算公式也一样。
图6 带平波电抗器的电动机反电动势负载电路图2.3晶闸管电路参数计算2.3.1晶闸管电压定额的确定通常取晶闸管的DRM U (断态重复峰值电压)和RRM U (反复重复峰值电压)中较小的标值作为该器件的额定电压。
选用时,额定电压要留有一定裕量,一般额定电压)(TN U 为正常工作时晶闸管所承受峰值电压)(TM U 的2~3倍,即:TM TN U U )3~2(=2.3.2晶闸管电流定额的确定晶闸管允许通过的额定电流有效值TN I 大于实际流过晶闸管电流最大有效值T I ,即:T AV T TN I I I >=)(57.1其中,)(AV T I 为通态平均电流d AV T KI I )2~5.1()(=其中,d I 为实际电流有效值。
2.4晶闸管电路对电网的影响晶闸管作为一种电力电子装置,难免会对电网产生不利影响,突出表现为以下几个方面。
晶闸管电路中产生的谐波对电网的危害包括:(1) 谐波影响各种电气设备的正常工作,例如使电机发生机械振动、使变压器局部严重过热等。
(2) 谐波使电网中的元件产生附加的谐波损耗,降低发电、输电及用电设备的效率,甚至会使线路过热而发生火灾。
(3)谐波会引起电网中局部的并联谐振,从而使谐波放大,使危害加大,甚至引起严重事故。
(4)谐波会对邻近通信系统产生干扰,轻者产生噪声,降低通信质量,重者导致信息丢失,使通信系统无法正常工作。
(5)谐波还会导致继电保护和自动装置的误动作,并使电器测量仪表计量不准确。
晶闸管电路产生的无功功率对电网带来的不利影响包括:(1)无功功率会导致电流增大和视在功率增加,导致设备容量增加。
(2)无功功率增加,会使总电流增加,从而使设备和线路的损耗增加。
(3)使线路的压降增大,冲击性无功负载还会使电压剧烈波动。
2.5系统功率因数单相全控整流电路中基波和各次谐波的有效值为:πn I I d n 22= n =1,3,5,… 因此可得基波电流有效值为: d I I π221= 2i 的有效值d I I =,可得基波因数为: 9.0221≈==πνI I 又因为,电流基波与电压的相位差就等于控制角α,所以位移因素为: αϕλcos cos 11==所以,功率因数为:111cos ϕνλλII ==ααπcos 9.0cos 22≈=3晶闸管触发电路的设计3.1晶闸管触发电路的选型全控桥式整流电路带电动机负载,要保证电动机电流连续,通常在电枢回路中串联一个平波电抗器,保证整流电流在较大范围内连续,这相当于在回路中串联了一个大电感。
因此设计触发电路时需要考虑到这一点。
在本设计中,触发电路采用锯齿波同步触发电路,输出为双窄脉冲(也可输出单窄脉冲),它适用于对触发电路要求较高的晶闸管整流电路,比如全控桥式整流电路。
锯齿波电路脉冲形成过程如下:当VT4管截止时,+15V 电源通过电阻11R 、10R 给VT5、VT6提供足够的基极电流,使之饱和导通。
VT5集电极电位约-15V (略去VT5、VT6管的饱和压降),所以VT7管截止,没有脉冲输出。