BP神经网络基本原理

合集下载

bp网络原理

bp网络原理

bp网络原理BP网络,即反向传播神经网络(Backpropagation Neural Network),是一种基于梯度下降算法的前馈神经网络。

它是一种常用的人工神经网络模型,被广泛应用于模式识别、预测和分类等任务中。

BP网络的基本原理是建立一个多层的神经网络结构,包括输入层、隐藏层和输出层。

每个神经元都与下一层的所有神经元连接,并通过权重连接进行信息传递。

输入信号从输入层经过权重连接传递到隐藏层,再经过隐藏层的激活函数作用后传递到输出层。

BP网络的训练过程主要分为前向传播和反向传播两个阶段。

在前向传播阶段,输入样本经过网络的各层神经元,得到输出结果。

每个神经元将输入信号与权重相乘并累加,然后经过激活函数进行非线性转换,得到该神经元的输出。

在反向传播阶段,通过计算输出层和期望输出之间的误差,按照梯度下降的方法不断调整每个神经元的权重,以最小化误差。

误差通过链式法则从输出层回传到隐藏层和输入层,根据权重的梯度进行更新。

反复迭代上述的前向传播和反向传播过程,直到网络的输出误差满足要求或训练次数达到指定值为止。

BP网络具有较好的非线性拟合能力和学习能力。

它的优点在于能够通过训练样本自动调整权重,从而对输入样本进行分类和预测。

然而,BP网络也存在一些问题,如容易陷入局部最小值、训练速度慢等。

为了克服BP网络的局限性,研究者们提出了一些改进方法,如改进的激活函数、正则化技术、自适应学习率等。

这些方法在提高网络性能和加速训练过程方面起到了积极的作用。

总结起来,BP网络是一种基于梯度下降算法的前馈神经网络,通过前向传播和反向传播的方式不断调整神经元的权重,以实现输入样本的分类和预测。

虽然存在一些问题,但通过改进方法可以提高其性能和训练速度。

BP神经网络基本原理

BP神经网络基本原理

BP神经网络基本原理2.1 BP神经网络基本原理BP网络模型处理信息的基本原理是:输入信号Xi通过中间节点(隐层点)作用于输出节点,经过非线形变换,产生输出信号Yk,网络训练的每个样本包括输入向量X和期望输出量t,网络输出值Y与期望输出值t之间的偏差,通过调整输入节点与隐层节点的联接强度取值Wij和隐层节点与输出节点之间的联接强度Tjk以及阈值,使误差沿梯度方向下降,经过反复学习训练,确定与最小误差相对应的网络参数(权值和阈值),训练即告停止。

此时经过训练的神经网络即能对类似样本的输入信息,自行处理输出误差最小的经过非线形转换的信息。

2.2 BP神经网络模型BP网络模型包括其输入输出模型、作用函数模型、误差计算模型和自学习模型。

(1)节点输出模型隐节点输出模型:Oj =f(∑Wij×Xi-qj) (1)输出节点输出模型:Yk =f(∑Tjk×Oj-qk) (2)f-非线形作用函数;q -神经单元阈值。

图1典型BP网络结构模型(2)作用函数模型作用函数是反映下层输入对上层节点刺激脉冲强度的函数又称刺激函数,一般取为(0,1)内连续取值Sigmoid函数: f(x)=1/(1+e-x)(3)(3)误差计算模型误差计算模型是反映神经网络期望输出与计算输出之间误差大小的函数: E p =1/2×∑(t pi -O pi )2 (4)t pi - i 节点的期望输出值;O pi -i 节点计算输出值。

(4)自学习模型神经网络的学习过程,即连接下层节点和上层节点之间的权重拒阵W ij 的设定和误差修正过程。

BP 网络有师学习方式-需要设定期望值和无师学习方式-只需输入模式之分。

自学习模型为△W ij (n+1)= h ×Фi ×O j +a ×△W ij (n) (5)h -学习因子;Фi -输出节点i 的计算误差;O j -输出节点j 的计算输出;a-动量因子。

BP神经网络的基本原理_一看就懂

BP神经网络的基本原理_一看就懂

BP神经网络的基本原理_一看就懂BP神经网络(Back Propagation Neural Network)是一种常用的人工神经网络模型,用于解决分类、回归和模式识别问题。

它的基本原理是通过反向传播算法来训练和调整网络中的权重和偏置,以使网络能够逐渐逼近目标输出。

1.前向传播:在训练之前,需要对网络进行初始化,包括随机初始化权重和偏置。

输入数据通过输入层传递到隐藏层,在隐藏层中进行线性加权和非线性激活运算,然后传递给输出层。

线性加权运算指的是将输入数据与对应的权重相乘,然后将结果进行求和。

非线性激活指的是对线性加权和的结果应用一个激活函数,常见的激活函数有sigmoid函数、ReLU函数等。

激活函数的作用是将线性运算的结果映射到一个非线性的范围内,增加模型的非线性表达能力。

2.计算损失:将网络输出的结果与真实值进行比较,计算损失函数。

常用的损失函数有均方误差(Mean Squared Error)和交叉熵(Cross Entropy)等,用于衡量模型的输出与真实值之间的差异程度。

3.反向传播:通过反向传播算法,将损失函数的梯度从输出层传播回隐藏层和输入层,以便调整网络的权重和偏置。

反向传播算法的核心思想是使用链式法则。

首先计算输出层的梯度,即损失函数对输出层输出的导数。

然后将该梯度传递回隐藏层,更新隐藏层的权重和偏置。

接着继续向输入层传播,直到更新输入层的权重和偏置。

在传播过程中,需要选择一个优化算法来更新网络参数,常用的优化算法有梯度下降(Gradient Descent)和随机梯度下降(Stochastic Gradient Descent)等。

4.权重和偏置更新:根据反向传播计算得到的梯度,使用优化算法更新网络中的权重和偏置,逐步减小损失函数的值。

权重的更新通常按照以下公式进行:新权重=旧权重-学习率×梯度其中,学习率是一个超参数,控制更新的步长大小。

梯度是损失函数对权重的导数,表示了损失函数关于权重的变化率。

基于BP神经网络PID整定原理和算法步骤

基于BP神经网络PID整定原理和算法步骤

基于BP神经网络PID整定原理和算法步骤BP神经网络是一种常用的非线性拟合和模式识别方法,可以在一定程度上应用于PID整定中,提高调节器的自适应性。

下面将详细介绍基于BP神经网络的PID整定原理和算法步骤。

一、基本原理:BP神经网络是一种具有反馈连接的前向人工神经网络,通过训练样本的输入和输出数据,通过调整神经元之间的连接权重来模拟输入和输出之间的映射关系。

在PID整定中,可以将PID控制器的参数作为网络的输入,将控制效果指标作为网络的输出,通过训练网络来获取最优的PID参数。

二、算法步骤:1.确定训练数据集:选择一组适当的PID参数和相应的控制效果指标作为训练数据集,包括输入和输出数据。

2.构建BP神经网络模型:确定输入层、隐藏层和输出层的神经元数量,并随机初始化神经元之间的连接权重。

3.设置训练参数:设置学习速率、误差收敛条件和训练迭代次数等训练参数。

4.前向传播计算输出:将训练数据集的输入作为网络的输入,通过前向传播计算得到网络的输出。

5.反向传播更新权重:根据输出与期望输出之间的误差,利用误差反向传播算法来调整网络的连接权重,使误差逐渐减小。

6.判断是否达到收敛条件:判断网络的训练误差是否满足收敛条件,如果满足则跳转到第8步,否则继续迭代。

7.更新训练参数:根据训练误差的变化情况,动态调整学习速率等训练参数。

8.输出最优PID参数:将BP神经网络训练得到的最优权重作为PID 控制器的参数。

9.测试PID控制器:将最优PID参数应用于实际控制系统中,观察控制效果并进行评估。

10.调整PID参数:根据实际控制效果,对PID参数进行微调,以进一步优化控制性能。

三、应用注意事项:1.训练数据集的选择应尽量全面、充分,覆盖各种不同工况和负载情况。

2.隐藏层神经元数量的选择应根据实际情况进行合理调整,避免过拟合或欠拟合现象。

3.学习速率和训练迭代次数的设置应根据系统复杂度和训练误差的变化情况进行调整。

BP神经网络的基本原理_一看就懂

BP神经网络的基本原理_一看就懂

5.4 BP神经网络的基本原理BP(Back Propagation)网络是1986年由Rinehart和McClelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。

BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。

它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。

BP神经网络模型拓扑结构包括输入层(input)、隐层(hide layer)和输出层(output layer)(如图5.2所示)。

5.4.1 BP神经元图5.3给出了第j个基本BP神经元(节点),它只模仿了生物神经元所具有的三个最基本也是最重要的功能:加权、求和与转移。

其中x1、x2…xi…xn分别代表来自神经元1、2…i…n的输入;wj1、wj2…wji…wjn则分别表示神经元1、2…i…n与第j个神经元的连接强度,即权值;bj 为阈值;f(·)为传递函数;yj为第j个神经元的输出。

第j个神经元的净输入值为:(5.12)其中:若视,,即令及包括及,则于是节点j的净输入可表示为:(5.13)净输入通过传递函数(Transfer Function)f (·)后,便得到第j个神经元的输出:(5.14)式中f(·)是单调上升函数,而且必须是有界函数,因为细胞传递的信号不可能无限增加,必有一最大值。

5.4.2 BP网络BP算法由数据流的前向计算(正向传播)和误差信号的反向传播两个过程构成。

正向传播时,传播方向为输入层→隐层→输出层,每层神经元的状态只影响下一层神经元。

若在输出层得不到期望的输出,则转向误差信号的反向传播流程。

通过这两个过程的交替进行,在权向量空间执行误差函数梯度下降策略,动态迭代搜索一组权向量,使网络误差函数达到最小值,从而完成信息提取和记忆过程。

5.4.2.1 正向传播设 BP网络的输入层有n个节点,隐层有q个节点,输出层有m个节点,输入层与隐层之间(·),的权值为,隐层与输出层之间的权值为,如图5.4所示。

BP神经网路

BP神经网路

网络模型
根据连接方式的不同,神经网络的神经元之 间的连接有如下几种形式。 前向网络 神经元分层排列,分别组成输入层、中间层 和输出层。每一层的神经元只接受来自前一层 神经元的输入,后面的层对前面的层没有信号 反馈。BP网络均属于前向网络。如图1-11:

有反馈的前向网络 输出层对输入层有信息反馈。如图1-12:

x
计算隐含层输出:
H j f ( ij xi a j )
i 1 n
j 1, 2,..., l
公式中,l 为隐含层节点数;f 为隐含层激励函数。
步骤3:输出层输出计算。根据隐藏层输出H j , 链接权值 ij 和阈值 bk ,计算神经网络输出 Ok
Ok f ( H j jk bk ) k 1, 2,..., m
BP网络的局限性


1)易形成局部极小而得不到全局最优; 2)BP神经网络算法的学习收敛速度慢;BP 神经网络采用梯度下降法,它所要优化的 目标函数是非常复杂的,必然会出现“锯 齿形现象”,这使得BP算法低效。 3)隐节点的选取缺乏理论指导;
案例:利用三层BP神经网络来完成非线性函数 的逼近任务,其中隐层神经元个数为五个。 样本数据:
2)泛化能力 BP网络训练后将提取的样本对中的非线性映 射关系储存在权值矩阵中,在工作阶段,当向 网络输入一个新数据时,网络也能完成由输入 空间向输出空间的正确映射。这种能力称为 BP网络的泛化能力。 3)容错能力 允许输入样本中带有较大的误差甚至个别错 误。因为对权矩阵的调整过程是从大量的样本 对中提取统计特性的过程,反映正确规律的知 识来自全样本,个别样本中的误差不能左右对 权矩阵的调整。
步骤5:权值更新。根据网络误差 e更新网络链 接权值 wij 和 w jk 。

bp神经网络原理

bp神经网络原理

bp神经网络原理
BP神经网络,全称为反向传播神经网络,是一种常用的前馈
神经网络,通过反向传播算法来训练网络模型,实现对输入数据的分类、回归等任务。

BP神经网络主要由输入层、隐藏层
和输出层构成。

在BP神经网络中,每个神经元都有自己的权重和偏置值。


据从输入层进入神经网络,经过隐藏层的计算后传递到输出层。

神经网络会根据当前的权重和偏置值计算输出值,并与真实值进行比较,得到一个误差值。

然后,误差值会反向传播到隐藏层和输入层,通过调整权重和偏置值来最小化误差值。

这一过程需要多次迭代,直到网络输出与真实值的误差达到可接受的范围。

具体而言,BP神经网络通过梯度下降算法来调整权重和偏置值。

首先,计算输出层神经元的误差值,然后根据链式求导法则,将误差值分配到隐藏层的神经元。

最后,根据误差值和激活函数的导数,更新每个神经元的权重和偏置值。

这个过程反复进行,直到达到停止条件。

BP神经网络的优点是可以处理非线性问题,并且具有较强的
自适应能力。

同时,BP神经网络还可以通过增加隐藏层和神
经元的数量来提高网络的学习能力。

然而,BP神经网络也存
在一些问题,如容易陷入局部最优解,训练速度较慢等。

总结来说,BP神经网络是一种基于反向传播算法的前馈神经
网络,通过多次迭代调整权重和偏置值来实现模型的训练。


可以应用于分类、回归等任务,并具有较强的自适应能力。

但同时也有一些问题需要注意。

BP神经网络原理与应用实习论文

BP神经网络原理与应用实习论文

学年论文(本科)学院数学与信息科学学院专业信息与计算科学专业年级10级4班姓名徐玉琳于正平马孝慧李运凤郭双双任培培论文题目BP神经网络原理与应用指导教师冯志敏成绩2013年 9月 24日BP神经网络的原理与应用1.BP神经网络的原理1.1 BP神经网络的结构BP神经网络模型是一个三层网络,它的拓扑结构可被划分为:输入层(InputLayer )、输出层(Outp ut Layer ) ,隐含层(Hide Layer ).其中,输入层与输出层具有更重要的意义,因此也可以为两层网络结构(把隐含层划入输入层,或者把隐含层去掉)每层都有许多简单的能够执行并行运算的神经元组成,这些神经元与生物系统中的那些神经元非常类似,但其并行性并没有生物神经元的并行性高.BP神经网络的特点:1)网络由多层构成,层与层之间全连接,同一层之间的神经元无连接.2)BP网络的传递函数必须可微.因此,感知器的传递函数-——二值函数在这里没有用武之地.BP网络一般使用Sigmoid函数或线性函数作为传递函数.3)采用误差反向传播算法(Back-Propagation Algorithm)进行学习.在BP 网络中,数据从输入层隐含层逐层向后传播,训练网络权值时,则沿着减少误差的方向,从输出层经过中间各层逐层向前修正网络的连接权值.随着学习的不断进行,最终的误差越来越来小.BP神经网络的学习过程BP神经网络的学习算法实际上就是对误差函数求极小值的算法,它采用的算法是最速下降法,使它对多个样本进行反复的学习训练并通过误差的反向传播来修改连接权系数,它是沿着输出误差函数的负梯度方向对其进行改变的,并且到最后使误差函数收敛于该函数的最小点.1.3 BP网络的学习算法BP网络的学习属于有监督学习,需要一组已知目标输出的学习样本集.训练时先使用随机值作为权值,修改权值有不同的规则.标准的BP神经网络沿着误差性能函数梯度的反向修改权值,原理与LMS算法比较类似,属于最速下降法.拟牛顿算法牛顿法是一种基于二阶泰勒级数的快速优化算法.其基本方法是1(1)()()()x k x k A k g k -+=-式中 ()A k ----误差性能函数在当前权值和阀值下的Hessian 矩阵(二阶导数),即2()()()x x k A k F x ==∇牛顿法通常比较梯度法的收敛速度快,但对于前向型神经网络计算Hessian 矩阵是很复杂的,付出的代价也很大.有一类基于牛顿法的算法不需要二阶导数,此类方法称为拟牛顿法(或正切法),在算法中的Hessian 矩阵用其近似值进行修正,修正值被看成梯度的函数. 1)BFGS 算法在公开发表的研究成果中,你牛顿法应用最为成功得有Boryden,Fletcher,Goldfard 和Shanno 修正算法,合称为BFG 算法. 该算法虽然收敛所需的步长通常较少,但在每次迭代过程所需要的计算量和存储空间比变梯度算法都要大,对近似Hessian 矩阵必须进行存储,其大小为n n ⨯,这里n 网络的链接权和阀值的数量.所以对于规模很大的网络用RPROP 算法或任何一种梯度算法可能好些;而对于规模较小的网络则用BFGS 算法可能更有效. 2)OSS 算法 由于BFGS 算法在每次迭代时比变梯度算法需要更多的存储空间和计算量,所以对于正切近似法减少其存储量和计算量是必要的.OSS 算法试图解决变梯度法和拟牛顿(正切)法之间的矛盾,该算法不必存储全部Hessian 矩阵,它假设每一次迭代时与前一次迭代的Hessian 矩阵具有一致性,这样做的一个有点是,在新的搜索方向进行计算时不必计算矩阵的逆.该算法每次迭代所需要的存储量和计算量介于梯度算法和完全拟牛顿算法之间. 最速下降BP 法最速下降BP 算法的BP 神经网络,设k 为迭代次数,则每一层权值和阀值的修正按下式进行(1)()()x k x k g k α+=-式中()x k —第k 次迭代各层之间的连接权向量或阀值向量;()g k =()()E k x k ∂∂—第k 次迭代的神经网络输出误差对各权值或阀值的梯度向量.负号表示梯度的反方向,即梯度的最速下降方向;α—学习效率,在训练时是一常数.在MATLAB 神经网络工具箱中,,可以通过改变训练参数进行设置;()E K —第k 次迭代的网络输出的总误差性能函数,在MATLAB 神经网络工具箱中BP 网络误差性能函数默认值为均方误差MSE,以二层BP 网络为例,只有一个输入样本时,有2()()E K E e k ⎡⎤=⎣⎦21S≈22221()S i i i t a k =⎡⎤-⎣⎦∑ 222212,1()()()()s ii j i i j a k f w k a k b k =⎧⎫⎪⎪⎡⎤=-⎨⎬⎣⎦⎪⎪⎩⎭∑21221112,,11()(()())()s s i j i j i i i j j f w k f iw k p ib k b k ==⎧⎫⎡⎤⎛⎫⎪⎪=++⎢⎥ ⎪⎨⎬⎢⎥⎝⎭⎪⎪⎣⎦⎩⎭∑∑若有n 个输入样本2()()E K E e k ⎡⎤=⎣⎦21nS ≈22221()S ii i ta k =⎡⎤-⎣⎦∑根据公式和各层的传输函数,可以求出第k 次迭代总误差曲面的梯度()g k =()()E k x k ∂∂,分别代入式子便可以逐次修正其权值和阀值,并是总的误差向减小的方向变化,直到达到所需要的误差性能为止. 1.4 BP 算法的改进BP 算法理论具有依据可靠、推导过程严谨、精度较高、通用性较好等优点,但标准BP 算法存在以下缺点:收敛速度缓慢;容易陷入局部极小值;难以确定隐层数和隐层节点个数.在实际应用中,BP 算法很难胜任,因此出现了很多改进算.利用动量法改进BP 算法标准BP 算法实质上是一种简单的最速下降静态寻优方法,在修正W(K)时,只按照第K 步的负梯度方向进行修正,而没有考虑到以前积累的经验,即以前时刻的梯度方向,从而常常使学习过程发生振荡,收敛缓慢.动量法权值调整算法的具体做法是:将上一次权值调整量的一部分迭加到按本次误差计算所得的权值调整量上,作为本次的实际权值调整量,即:其中:α为动量系数,通常0<α<0.9;η—学习率,范围在0.001~10之间.这种方法所加的动量因子实际上相当于阻尼项,它减小了学习过程中的振荡趋势,从而改善了收敛性.动量法降低了网络对于误差曲面局部细节的敏感性,有效的抑制了网络陷入局部极小.自适应调整学习速率标准BP算法收敛速度缓慢的一个重要原因是学习率选择不当,学习率选得太小,收敛太慢;学习率选得太大,则有可能修正过头,导致振荡甚至发散.可采用图所示的自适应方法调整学习率.调整的基本指导思想是:在学习收敛的情况下,增大η,以缩短学习时间;当η偏大致使不能收敛时,要及时减小η,直到收敛为止.动量-自适应学习速率调整算法采用动量法时,BP算法可以找到更优的解;采用自适应学习速率法时,BP算法可以缩短训练时间.将以上两种方法结合起来,就得到动量-自适应学习速率调整算法.1. L-M学习规则L-M(Levenberg-Marquardt)算法比前述几种使用梯度下降法的BP算法要快得多,但对于复杂问题,这种方法需要相当大的存储空间L-M(Levenberg-Marquardt)优化方法的权值调整率选为:其中:e —误差向量;J —网络误差对权值导数的雅可比(Jacobian )矩阵;μ—标量,当μ很大时上式接近于梯度法,当μ很小时上式变成了Gauss-Newton 法,在这种方法中,μ也是自适应调整的. 1.5 BP 神经网络的设计 网络的层数输入层节点数取决于输入向量的维数.应用神经网络解决实际问题时,首先应从问题中提炼出一个抽象模型,形成输入空间和输出空间.因此,数据的表达方式会影响输入向量的维数大小.例如,如果输入的是64*64的图像,则输入的向量应为图像中所有的像素形成的4096维向量.如果待解决的问题是二元函数拟合,则输入向量应为二维向量.理论上已证明:具有偏差和至少一个S 型隐含层加上一个线性输出层的网络,能够逼近任何有理数.增加层数可以更进一步的降低误差,提高精度,但同时也使网络复杂化,从而增加了网络权值的训练时间.而误差精度的提高实际上也可以通过增加神经元数目来获得,其训练效果也比增加层数更容易观察和调整.所以一般情况下,应优先考虑增加隐含层中的神经元数. 隐含层的神经元数网络训练精度的提高,可以通过采用一个隐含层,而增加神经元数了的方法来获得.这在结构实现上,要比增加隐含层数要简单得多.那么究竟选取多少隐含层节点才合适?这在理论上并没有一个明确的规定.在具体设计时,比较实际的做法是通过对不同神经元数进行训练对比,然后适当地加上一点余量.1)0niMi C k =>∑,k 为样本数,M 为隐含层神经元个数,n 为输入层神经元个数.如i>M,规定C i M =0.2)和n 分别是输出层和输入层的神经元数,a 是[0.10]之间的常量.3)M=2log n ,n 为输入层神经元个数.初始权值的选取由于系统是非线性的,初始值对于学习是否达到局部最小、是否能够收敛及训练时间的长短关系很大.如果初始值太大,使得加权后的输入和n落在了S型激活函数的饱和区,从而导致其导数f (n)非常小,从而使得调节过程几乎停顿下来.所以一般总是希望经过初始加权后的每个神经元的输出值都接近于零,这样可以保证每个神经元的权值都能够在它们的S型激活函数变化最大之处进行调节.所以,一般取初始权值在(-1,1)之间的随机数.学习速率学习速率决定每一次循环训练中所产生的权值变化量.大的学习速率可能导致系统的不稳定;但小的学习速率导致较长的训练时间,可能收敛很慢,不过能保证网络的误差值不跳出误差表面的低谷而最终趋于最小误差值.所以在一般情况下,倾向于选取较小的学习速率以保证系统的稳定性.学习速率的选取范围在0.01-0.8之间.1.6BP神经网络局限性需要参数多且参数选择没有有效的方法对于一些复杂问题 ,BP 算法可能要进行几小时甚至更长的时间训练,这主要是由于学习速率太小所造成的.标准BP 网络学习过程缓慢,易出现平台,这与学习参数率l r的选取有很大关系.当l r较时,权值修改量大,学习速率也快,但可能产生振荡;当l r较小时,虽然学习比较平稳,但速度十分缓慢.容易陷入局部最优BP网络易陷入局部最小, 使 BP网络不能以高精度逼近实际系统.目前对于这一问题的解决有加入动量项以及其它一些方法.BP 算法本质上是以误差平方和为目标函数 , 用梯度法求其最小值的算法.于是除非误差平方和函数是正定的, 否则必然产生局部极小点, 当局部极小点产生时 , BP算法所求的就不是解.1.6.3 样本依赖性这主要表现在网络出现的麻痹现象上.在网络的训练过程中,如其权值调的过大,可能使得所有的或大部分神经元的加权值偏大,这使得激活函数的输入工作在S型转移函数的饱和区,从而导致其导函数非常小,使得对网络权值的调节过程几乎停顿下来.通常为避免这种现象的发生,一是选取较小的初始权值,二是采用较小的学习速率,但又要增加时间训练.初始权敏感对于一些复杂的问题,BP算法可能要进行几个小时甚至更长时间的训练.这主要是由于学习速率太小造成的.可采用变化的学习速率或自适应的学习速率来加以改进.2.BP神经网络应用2.1 手算实现二值逻辑—异或这个例子中,采用手算实现基于BP网络的异或逻辑.训练时采用批量训练的方法,训练算法使用带动量因子的最速下降法.在MATLAB中新建脚本文件main_xor.m,输入代码如下:%脚本%批量训练方式.BP网络实现异或逻辑%%清理clear allclcrand('seed',2)eb = 0.01; %误差容限eta = 0.6; %学习率mc = 0.8; %动量因子maxiter = 1000; %最大迭代次数%% 初始化网络nSampNum = 4;nSampDim = 2;nHidden = 3;nOut = 1;w = 2*(rand(nHidden,nSampDim)-1/2);b = 2*(rand(nHidden,1)-1/2);wex = [w,b];W = 2*(rand(nOut,nHidden)-1/2);B = 2*(rand(nOut,1)-1/2);WEX = [W,B];%%数据SampIn=[0,0,1,1;...0,1,0,1;…1,1,1,1];expected = [0,1,1,0];%%训练iteration = 0;errRec = [];outRec =[];for i = 1:maxiter% 工作信号正向传播hp = wex*SampIn;tau = logsig(hp);tauex = [tau',1*ones(nSampNum,1)]';HM = WEX*tauex;out = logsig(HM);outRec = [outRec,out'];err = expected - out;sse = sumsqr(err);errRec = [errRec,sse];fprintf('第%d 次迭代,误差:%f \n',i,sse);% 判断是否收敛iteration = iteration + 1;if sse <= ebbreak;end% 误差信号反向传播% DELTA 和delta 为局部梯度DELTA = err.*dlogsig(HM,out);delta = W' * DELTA.*dlogsig(hp,tau);dWEX = DELTA*tauex';dwex = delta*SampIn';% 更新权值if i == 1WEX = WEX + eta*dWEX;wex = wex + eta*dwex;elseWEX = WEX + (1-mc)*eta*dWEX + mc*dWEXold;wex = wex + (1-mc)*eta*dwex+mc*dwexold;enddWEXold = dWEX;dwexold = dwex;W = WEX(:,1:nHidden);end%%显示figure(1)grid[nRow,nCol]=size(errRec);semilogy(1:nCol,errRec,'LineWidth',1.5);title('误差曲线');xlabel('迭代次数');x=-0.2:.05:1.2;[xx,yy] = meshgrid(x);for i=1:length(xx)for j=1:length(yy)xi=[xx(i,j),yy(i,j),1];hp = wex*xi';tau = logsig(hp);tauex = [tau',1]';HM = WEX*tauex;out = logsig(HM);z (i,j) =out;endendfigure(2)mesh(x,x,z);figure(3)plot([0,1],[0,1],'*','LineWidth',2);hold onplot([0,1],[1,0],'O','LineWidth',2);[c,h]=contour(x,x,z,0.5,'b');clabel(c,h);legend('0','1','分类面');title('分类面')2.2 误差下降曲线如下图所示:Finger 1010*******400500600700800900100010-210-110误差曲线迭代次数网格上的点在BP 网络映射下的输出如下图:Finger 2异或本质上是一个分类问题,,分类面如图:Finger 3分类面-0.200.20.40.60.81 1.2本文介绍了神经网络的研究背景和现状,分析了目前神经网络研究中存在的问题.然后描述了BP神经网络算法的实现以及BP神经网络的工作原理,给出了BP网络的局限性.本文虽然总结分析了BP神经网络算法的实现,给出了实例分析,但是还有很多的不足.所总结的BP神经网络和目前研究的现状都还不够全面,经过程序调试的图形有可能都还存在很多细节上的问题,而图形曲线所实现效果都还不够好,以及结果分析不够全面、正确、缺乏科学性等,这些都还是需加强提高的.近几年的不断发展,神经网络更是取得了非常广泛的应用,和令人瞩目的发展.在很多方面都发挥了其独特的作用,特别是在人工智能、自动控制、计算机科学、信息处理、机器人、模式识别等众多方面的应用实例,给人们带来了很多应用上到思考,和解决方法的研究.但是神经网络的研究最近几年还没有达到非常热门的阶段,这还需有很多热爱神经网络和研究神经网络人员的不断研究和创新,在科技高度发达的现在,我们有理由期待,也有理由相信.我想在不久的将来神经网络会应用到更多更广的方面,人们的生活会更加便捷.学年论文成绩评定表。

BP神经网络算法

BP神经网络算法
BP神经网络算法
1


一、BP神经网络算法概述
二、BP神经网络算法原理
三、BP神经网络算法特点及改进
2
一.BP神经网络算法概述
BP神经网络(Back-Propagation Neural Network),即误差
后向传播神经网络,是一种按误差逆向传播算法训练的多层前馈网
络,是目前应用最广泛的网络模型之一。
11
二.BP神经网络算法原理
图5 Tan-Sigmoid函数在(-4,4)范围内的函数曲线
12
二.BP神经网络算法原理
激活函数性质:
① 非线性
② 可导性:神经网络的优化是基于梯度的,求解梯度需要确保函
数可导。
③ 单调性:激活函数是单调的,否则不能保证神经网络抽象的优
化问题转化为凸优化问题。
④ 输出范围有限:激活函数的输出值范围有限时,基于梯度的方

= 1 ෍
=1
7
,
= 1,2,3 … , q
二.BP神经网络算法原理
输出层节点的输出为:

j = 2 ෍ ,
= 1,2,3. . . ,
=1
至此,BP网络完成了n维空间向量对m维空间的近似映射。
图2 三层神经网络的拓扑结构
8
二.BP神经网络算法原理
BP神经网络是多层前馈型神经网络中的一种,属于人工神经网
络的一类,理论可以对任何一种非线性输入输出关系进行模仿,因
此 被 广 泛 应 用 在 分 类 识 别 ( classification ) 、 回 归
(regression)、压缩(compression)、逼近(fitting)等领域。
在工程应用中,大约80%的神经网络模型都选择采用BP神经网

BP神经网络基本原理与应用PPT

BP神经网络基本原理与应用PPT

BP神经网络的学习
• 网络结构 – 输入层有n个神经元,隐含层有q个神经元, 输出层有m个神经元
BP神经网络的学习
– 输入层与中间层的连接权值: wih
– 隐含层与输出层的连接权值: – 隐含层各神经元的阈值: bh
who
– 输出层各神经元的阈值: bo
– 样本数据个数: k 1,2, m
– 激活函数:
(二)误差梯度下降法
求函数J(a)极小值的问题,可以选择任意初始点a0,从a0出发沿着负 梯度方向走,可使得J(a)下降最快。 s(0):点a0的搜索方向。
BP神经网络的学习
(三) BP算法调整,输出层的权值调整
直观解释
当误差对权值的 偏导数大于零时,权 值调整量为负,实际 输出大于期望输出, 权值向减少方向调整, 使得实际输出与期望 输出的差减少。当误 差对权值的偏导数小 于零时,权值调整量 为正,实际输出少于 期望输出,权值向增 大方向调整,使得实 际输出与期望输出的 差减少。
❖ 众多神经元之间组合形成神经网络,例如下图 的含有中间层(隐层)的网络
人工神经网络(ANN)
c
k l
c
k j
cqk
… … c1 Wp1
W1j cj Wpj
W1q cq
输出层LC
W11 Wi1
Wij
Wiq Wpq W
… b1 Vn1
Vh1 V11
V1i bi Vhi
… Vni
V1p bp Vhp Vnp
BP神经网络的学习
(三) BP算法调整,输出层的权值调整
式中: —学习率 最终形式为:
BP神经网络的学习
(三) BP算法调整,隐藏层的权值调整
隐层各神经元的权值调整公式为:

bp神经网络基本原理

bp神经网络基本原理

bp神经网络基本原理
BP神经网络,指的是反向传播算法(Back Propagation),它是深度学习里面几乎用最多
的算法,也是机器学习里最重要的一种算法之一。

BP神经网络可以看成是一个节点网络,由复杂的连接层组成。

每个节点的输入是一系列的数据,
这些数据会被权重(Weight)乘法处理,得到一个有着一定函数关系的节点输出。

这个输出会激
活其它节点,以此形成一个层与层之间连接,最
后输出我们制定的标准输出。

正如人类的大脑一样,BP神经网络通过积极学习来逐步改善对外界变化做出更加合理的反应,
从而更长久的记忆。

在机器学习里,它就是通过
反复训练调整神经元之间的权重,来使得神经网路得到更好的调整,以便学习效果最佳的状态。

由此可见,BP神经网络是互联网领域中一种极其重要的算法,对于一些比较繁杂的业务运行场景,通过分层的处理,不但能提高计算效率,同时也能较好的处理复杂的数据训练,从而给用户带来更加可靠准确的服务体验。

机器学习-BP(back propagation)神经网络介绍

机器学习-BP(back propagation)神经网络介绍

BP神经网络BP神经网络,也称为反向传播神经网络(Backpropagation Neural Network),是一种常见的人工神经网络类型,用于机器学习和深度学习任务。

它是一种监督学习算法,用于解决分类和回归问题。

以下是BP神经网络的基本概念和工作原理:神经元(Neurons):BP神经网络由多个神经元组成,通常分为三层:输入层、隐藏层和输出层。

输入层接收外部数据,隐藏层用于中间计算,输出层产生网络的最终输出。

权重(Weights):每个连接两个神经元的边都有一个权重,表示连接的强度。

这些权重是网络的参数,需要通过训练来调整,以便网络能够正确地进行预测。

激活函数(Activation Function):每个神经元都有一个激活函数,用于计算神经元的输出。

常见的激活函数包括Sigmoid、ReLU(Rectified Linear Unit)和tanh(双曲正切)等。

前向传播(Forward Propagation):在训练过程中,输入数据从输入层传递到输出层的过程称为前向传播。

数据经过一系列线性和非线性变换,最终产生网络的预测输出。

反向传播(Backpropagation):反向传播是BP神经网络的核心。

它用于计算网络预测的误差,并根据误差调整网络中的权重。

这个过程分为以下几个步骤:1.计算预测输出与实际标签之间的误差。

2.将误差反向传播回隐藏层和输入层,计算它们的误差贡献。

3.根据误差贡献来更新权重,通常使用梯度下降法或其变种来进行权重更新。

训练(Training):训练是通过多次迭代前向传播和反向传播来完成的过程。

目标是通过调整权重来减小网络的误差,使其能够正确地进行预测。

超参数(Hyperparameters):BP神经网络中有一些需要人工设置的参数,如学习率、隐藏层的数量和神经元数量等。

这些参数的选择对网络的性能和训练速度具有重要影响。

BP神经网络在各种应用中都得到了广泛的使用,包括图像分类、语音识别、自然语言处理等领域。

BP神经网络的基本原理+很清楚

BP神经网络的基本原理+很清楚

BP神经网络的基本原理简介BP神经网络是一种前馈式的人工神经网络,也是最常用的人工神经网络之一。

由于其强大的非线性处理能力和适应性,BP神经网络在许多领域中都具有广泛的应用,如模式识别、预测、分类等。

BP神经网络的基本原理是通过一次或多次前向传输和反向传输的过程,来训练神经网络的权值和偏置,从而使神经网络的输出误差最小化。

在训练过程中,利用误差反向传播算法将误差从输出层向输入层进行传递,并根据误差大小对网络的权值和偏差进行调整,直到误差小于设定的阈值为止。

BP神经网络的结构BP神经网络由多个神经元组成,通常分为输入层、输出层和至少一个隐藏层。

隐藏层的数量可以根据应用需求进行设置。

每个神经元都与其他神经元相连,权值和阈值决定了神经元之间的连接强度。

输入层接收输入信号,输出层输出网络的输出结果,隐藏层则负责处理和转换输入层到输出层之间的信息传递。

每个神经元都有一个激活函数,用于将输入信号转化为输出信号。

BP神经网络的训练过程BP神经网络的训练过程包含以下几个步骤:1.初始化权值和偏置,通常使用随机数进行初始化。

2.将训练数据集输入神经网络,网络输出结果和期望结果进行比较,计算误差。

3.根据误差反向传播算法,计算每个神经元的误差,并更新权值和偏置。

4.计算整个训练集的平均误差,直到误差小于设定的阈值为止。

反向传播算法是BP神经网络训练中的关键步骤,其基本原理是将误差从输出层反向传播到输入层,并根据误差大小训练每个神经元的权值和偏置。

该算法通过链式法则计算每个神经元的输出、误差和权值的梯度,并利用梯度下降法来更新权值和偏置。

BP神经网络的优缺点BP神经网络具有以下优点:1.具有强大的非线性处理能力。

2.可以对任意复杂的输入输出关系进行建模和预测。

3.训练过程不需要先验知识,具有较高的自适应性。

BP神经网络的不足之处:1.训练过程需要大量的计算资源和时间。

2.容易受到局部最优解的影响。

3.容易出现过拟合的问题。

阐述bp神经网络的原理

阐述bp神经网络的原理

阐述bp神经网络的原理
BP神经网络全称为反向传播神经网络,是一种常用的人工神经网络模型。

其原理基于两个基本思想:前向传播和反向误差传播。

前向传播:BP神经网络是一个多层感知器,由输入层、隐藏层和输出层组成。

输入层接收外部输入的数据,隐藏层负责处理输入,并传递给输出层,输出层根据处理结果生成输出。

隐藏层和输出层的每个神经元都有一个权重向量,用于对输入数据进行线性组合。

然后,通过激活函数对线性组合结果进行非线性变换,得到该神经元的输出。

隐藏层和输出层的每个神经元的输出都会作为下一层神经元的输入。

反向误差传播:当神经网络的输出与期望输出之间存在差异时,需要通过反向传播算法来调整权重,以减小这个误差。

算法的基本思想是将误差从输出层向隐藏层逐层传递,通过调整每个神经元的权重,最终使得网络的输出与期望输出尽可能接近。

具体实现时,首先计算输出层的误差,然后根据误差调整输出层的权重。

接下来,将误差反向传播到隐藏层,再根据误差调整隐藏层的权重。

这个过程会不断迭代,直到网络的输出与期望输出的误差足够小。

通过反向误差传播算法,BP神经网络可以学习到输入-输出的映射关系,从而能
够对未知输入进行预测或分类。

然而,BP神经网络也存在一些问题,例如容易陷入局部极小值、对初始权重较敏感等,因此在实际应用中需要进行一定的调优和训练策略。

bp神经网络的基本原理

bp神经网络的基本原理

bp神经网络的基本原理
BP神经网络是一种常用的人工神经网络模型,用于解决分类和回归问题。

它的基本原理是通过反向传播算法来调整网络的权重和偏置,从而使网络能够学习和逼近输入输出之间的非线性关系。

BP神经网络由输入层、隐藏层和输出层组成。

输入层接收外部输入的数据,隐藏层是网络中间的处理层,输出层给出最终的结果。

每个神经元都与前一层的神经元以及后一层的神经元相连接,每个连接都有一个权重值。

BP神经网络的学习过程首先需要给定一个训练数据集,并设置好网络的结构和参数。

然后,通过前向传播将输入数据从输入层传递到隐藏层和输出层,计算网络的输出结果。

接着,根据输出结果与实际输出之间的差异,使用误差函数来评估网络的性能。

在反向传播阶段,根据误差函数的值,利用链式法则计算每个连接的权重和偏置的梯度。

然后,根据梯度下降法更新连接的权重和偏置,使误差不断减小。

这个过程反复进行,直到网络输出的误差达到了可接受的范围或者训练次数达到了预设的最大值。

通过不断地调整权重和偏置,BP神经网络可以逐渐学习到输入输出之间的映射关系,从而在面对新的输入数据时能够给出合理的输出。

同时,BP神经网络还具有一定的容错性和鲁棒性,可以处理一些噪声和不完整的数据。

总的来说,BP神经网络的基本原理是通过反向传播算法来训练网络,将输入数据从输入层传递到输出层,并且根据实际输出与期望输出之间的差异来优化网络的权重和偏置,以达到学习和逼近输入输出之间关系的目的。

(完整版)BP神经网络原理

(完整版)BP神经网络原理

BP 神经网络原理2。

1 基本BP 算法公式推导基本BP 算法包括两个方面:信号的前向传播和误差的反向传播.即计算实际输出时按从输入到输出的方向进行,而权值和阈值的修正从输出到输入的方向进行.图2—1 BP 网络结构Fig.2-1 Structure of BP network图中:jx 表示输入层第j 个节点的输入,j =1,…,M ;ijw 表示隐含层第i 个节点到输入层第j 个节点之间的权值;iθ表示隐含层第i 个节点的阈值;()x φ表示隐含层的激励函数;ki w 表示输出层第k 个节点到隐含层第i 个节点之间的权值,i =1,…,q ;ka 表示输出层第k 个节点的阈值,k =1,…,L ; ()x ψ表示输出层的激励函数;ko 表示输出层第k 个节点的输出.(1)信号的前向传播过程 隐含层第i 个节点的输入net i :1Mi ij j ij net w x θ==+∑ (3—1)隐含层第i 个节点的输出y i :1()()Mi i ij j i j y net w x φφθ===+∑ (3-2)输出层第k 个节点的输入net k :111()qqMk ki i k ki ij j i ki i j net w y a w w x a φθ====+=++∑∑∑ (3—3)输出层第k 个节点的输出o k :111()()()qq M k k ki i k ki ij j i k i i j o net w y a w w x a ψψψφθ===⎛⎫==+=++ ⎪⎝⎭∑∑∑ (3—4)(2)误差的反向传播过程误差的反向传播,即首先由输出层开始逐层计算各层神经元的输出误差,然后根据误差梯度下降法来调节各层的权值和阈值,使修改后的网络的最终输出能接近期望值。

对于每一个样本p 的二次型误差准则函数为E p :211()2Lp k k k E T o ==-∑ (3—5)系统对P 个训练样本的总误差准则函数为:2111()2P Lp p k k p k E T o ===-∑∑ (3—6)根据误差梯度下降法依次修正输出层权值的修正量Δw ki ,输出层阈值的修正量Δa k ,隐含层权值的修正量Δw ij ,隐含层阈值的修正量i θ∆。

bp网络的基本原理

bp网络的基本原理

bp网络的基本原理bp网络是一种常用的人工神经网络模型,用于模拟和解决复杂问题。

它是一种前馈型神经网络,通过前向传播和反向传播的过程来实现信息的传递和参数的更新。

在bp网络中,首先需要定义输入层、隐藏层和输出层的神经元。

输入层接收外部输入的数据,隐藏层用于处理和提取数据的特征,输出层用于输出最终的结果。

每个神经元都有一个对应的权重和偏置,用于调节输入信号的强弱和偏移。

前向传播是bp网络中的第一步,它从输入层开始,将输入的数据通过每个神经元的加权和激活函数的运算,逐层传递到输出层。

加权和的计算公式为:S = Σ(w * x) + b其中,w是权重,x是输入,b是偏置。

激活函数则负责将加权和的结果转换为神经元的输出。

常用的激活函数有sigmoid 函数、ReLU函数等。

反向传播是bp网络的第二步,它通过比较输出层的输出与实际值之间的误差,反向计算每个神经元的误差,并根据误差调整权重和偏置。

反向传播的目标是不断减小误差,使神经网络的输出与实际值更加接近。

具体的反向传播算法是通过梯度下降法实现的,它通过计算每个神经元的误差梯度,按照梯度的方向更新权重和偏置。

误差梯度表示误差对权重和偏置的变化率,通过链式法则可以计算得到。

在更新权重和偏置时,一般使用学习率来调节更新的步长,避免权重和偏置的变化过大。

通过多次迭代的前向传播和反向传播过程,bp网络不断优化和调整参数,最终使得输出与实际值的误差达到最小。

这样的训练过程可以使bp网络逐渐学习到输入数据之间的关联性和规律性,从而达到对问题进行分类、回归等任务的目的。

总结起来,bp网络的基本原理是通过前向传播将输入的数据逐层传递并计算每个神经元的输出,然后通过反向传播根据实际输出与目标输出之间的误差来调整权重和偏置,最终达到训练和优化神经网络的目标。

BP神经网络的基本原理_一看就懂

BP神经网络的基本原理_一看就懂

BP神经网络的基本原理_一看就懂BP神经网络(Back propagation neural network)是一种常用的人工神经网络模型,也是一种有监督的学习算法。

它基于错误的反向传播来调整网络权重,以逐渐减小输出误差,从而实现对模型的训练和优化。

1.初始化网络参数首先,需要设置网络的结构和连接权重。

BP神经网络通常由输入层、隐藏层和输出层组成。

每个神经元与上下层之间的节点通过连接权重相互连接。

2.传递信号3.计算误差实际输出值与期望输出值之间存在误差。

BP神经网络通过计算误差来评估模型的性能。

常用的误差计算方法是均方误差(Mean Squared Error,MSE),即将输出误差的平方求和后取平均。

4.反向传播误差通过误差反向传播算法,将误差从输出层向隐藏层传播,并根据误差调整连接权重。

具体来说,根据误差对权重的偏导数进行计算,然后通过梯度下降法来更新权重值。

5.权重更新在反向传播过程中,通过梯度下降法来更新权重值,以最小化误差。

梯度下降法的基本思想是沿着误差曲面的负梯度方向逐步调整权重值,使误差不断减小。

6.迭代训练重复上述步骤,反复迭代更新权重值,直到达到一定的停止条件,如达到预设的训练轮数、误差小于一些阈值等。

迭代训练的目的是不断优化模型,使其能够更好地拟合训练数据。

7.模型应用经过训练后的BP神经网络可以应用于新数据的预测和分类。

将新的输入数据经过前向传播,可以得到相应的输出结果。

需要注意的是,BP神经网络对于大规模、复杂的问题,容易陷入局部最优解,并且容易出现过拟合的情况。

针对这些问题,可以采用各种改进的方法,如加入正则化项、使用更复杂的网络结构等。

综上所述,BP神经网络通过前向传播和反向传播的方式,不断调整权重值来最小化误差,实现对模型的训练和优化。

它是一种灵活、强大的机器学习算法,具有广泛的应用领域,包括图像识别、语音识别、自然语言处理等。

基于BP神经网络的股票价格预测模型设计与分析

基于BP神经网络的股票价格预测模型设计与分析

基于BP神经网络的股票价格预测模型设计与分析股票价格的预测一直是投资者和分析师们关注的焦点之一。

随着信息技术的发展,神经网络成为了股票价格预测的一种重要工具。

其中,反向传播(Backpropagation,BP)神经网络在股票价格预测中得到了广泛应用。

本文将介绍基于BP神经网络的股票价格预测模型的设计和分析方法。

一、BP神经网络基本原理BP神经网络是一种具有反馈连接的前馈神经网络。

它的基本原理是通过权值和偏置的反向传播来调整网络的输出误差,从而使预测结果逐步逼近真实值。

BP神经网络通常包括输入层、隐藏层和输出层,其中隐藏层的神经元数量和层数的选择是通过试验和调整来确定的。

二、BP神经网络的设计过程1. 数据集的准备在进行股票价格预测之前,需要准备大量的历史数据作为训练集。

这些数据应该包括多个相关因素,如时间、交易量、交易额和股票技术指标等。

2. 数据的预处理在输入到神经网络之前,需要对数据进行预处理。

这包括数据的标准化、归一化和去除异常值等。

标准化可以将数据转化为均值为0,方差为1的形式,以提高网络的鲁棒性。

3. 神经网络的构建根据问题的复杂性和数据的特点,确定神经网络的结构。

一般情况下,一个基本的BP神经网络包括输入层、若干个隐藏层和输出层。

隐藏层的神经元数目通常取决于问题的复杂性,而输出层的神经元数目取决于预测的目标。

4. 神经网络的训练将数据集输入到神经网络中,通过反向传播算法来调整网络的权值和偏置,以减小输出误差。

训练过程中需要选择合适的学习率、激活函数和迭代次数等参数。

5. 神经网络的测试在完成神经网络的训练后,需要通过测试集来验证模型的性能。

通过与真实值进行比对,可以评估预测误差,并调整网络参数以提高模型的准确性。

三、BP神经网络模型的分析1. 模型的准确性通过计算预测值与真实值之间的误差,可以评估BP神经网络模型的准确性。

常用的评价指标包括均方根误差(Root Mean Square Error,RMSE)和平均绝对误差(Mean Absolute Error,MAE)等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2 BP内涵
我们知道在神经网络信号的正向传(for wardp r o p a g a t i o n)中,神经元 接 收 到来自其他神经元的 输 入信号,这 些 信号乘以 权 重 累加到 神 经 元 接 收的 总输入值上,随后与当前神经元的阈值进行比较, 然后 通 过 激 活函数 处 理 ,产生神 经 元 的 输出。理 想
(1)求得在特定输入下实际输出与理想输出的 平方误差函数(误差函数或者叫代价函数)。(2)利 用误差函数对神经网络中的阈值以及连接权值进行 求导,求导原则就是导数的“链式求导”法则。(3) 根 据梯度 下降 算 法,对 极小 值 进行 逼 近,当 满足 条 件时,跳出循环。
3 有监督的BP模型训练
3.1 BP训练思想
中图分类号: 码:1672-7274(2 018)0 8- 0 0 49 - 0 3
Basic Principle of BP Neural Networks
Yuan Bingqing, Cheng Gong, Zheng Liugang (The State Radio Monitoring Centre Shanghai Station, Shanghai, 201419)
的激活函数是阶跃函数:
,“0”对
应 神 经 元 抑 制,“1”对应 神 经 元兴 奋。然而 阶 跃 函 数的缺点是不连 续,不 可导,所用常用sig m oid函 数:sigmoid(x)=1/(1+e-x ),sigmoid函数及其导数 如图1所 示。使 用s i g m o i d函数作为 激 活函数时BP网 络输入与输出关系:
Keywords: Machine Learning; Neural Networks; Error Back Propagation
1 引言
机 器 学习中,神 经 网 络算 法可以说 是 当下使 用 最 广泛的算法。神经网络的结 构 模仿生物 神经网 络,生物 神 经网络中的 每 个神 经 元 与其 他 神 经 元 相 连,当它“兴奋”时,向下一级相连的神经元发送化 学 物质,改 变 这 些 神 经 元 的电位;如 果 某 神 经 元 的 电位 超 过一 个 阈 值 ,则 被 激 活,否则 不 被 激 活。其 中误差逆传播(er ror BackPropagation)算法是神 经 网 络中最有代 表 性 的算 法,也 是 迄今为止使 用最 多、最成功的算法。
输入:n e t = x1w1+ x 2w 2+⋯+ x nw n 输出:y=f(net)=1/(1+e-net )
作者简介:袁冰清,女,工程师,2012年毕业于上海大学物理系,同年进入国家无线电监测中心上海监测站工作,主要从事短波无线电监测工作。 程 功,男,助理工程师,2017年毕业于东华大学信息科学与技术学院,同年进入国家无线电监测中心上海监测站工作,主要从事短波无线电 监测工作。 郑 柳刚,男,高级 工程 师。2 0 0 4 年 毕业于上海海 事大学,同年进 入国家无 线电 监测中心上海监测站工作,主要从事无 线电 监测工作。
3.2 具体理论推导
以最简单的BP神经网络为例来推导原理,如图 2 所 示:假 设 网 络结 构 输 入 层 有n 个神 经 元,隐含层 有p个神经元,输出层有q个神经元。
图2 BP网络结构图
定义变量如下:
输入向量:x = (x1, x 2 ,…, x n) 隐含层输入向量:h i = ( h i1, h i 2 ,…, h i p) 隐含层输出向量:h o = ( h o1, h o2 ,…, h o p) 输出层输入向量:y i = ( y i1,y i 2 ,…,y i q ) 输出层输出向量:yo = ( yo1,yo2 ,…,yo q ) 期望输出向量:d = (d1, d 2 ,…, d q ) 输入层与中间层的连 接权值: w i h 隐含层与输出层的连续权值:who 隐含层各神经元的阈值:bh 输出层各神经元的阈值:bo 样本数 据个数:k =1, 2…m 激活函数:f(.)
Radio Wave Guard 电波卫士
BP神经网络基本原理
袁冰清,程 功,郑柳刚
(国家无线电监测中心上海监测站,上海 201419)
摘要:本文主要介绍误差反向传播算法的理论推导,理解如何利用BP算法、梯度下降法找到神经网络参数的最优解。
关键词:机器学习;神经网络;误差逆传播
doi:10.3969/J.ISSN.1672-7274.2018.08.017
误差逆传播算法,简称BP网络算法,而一般说 到BP网络算法时,默认指用BP算法训练的多层前馈 神经网络。BP神经网络模型的拓扑结构包括输入层 (input)、隐含层(hide layer)和输出层(Out put l a y e r)。本 文 就以 最简单的 B P 神 经 网络,只包含一 层隐含层为例来推导理解BP原理。
有监督的BP模型训练表示我们有一个训练集, 它包括了:input X和它被期望拥有的输出output Y。 所以对于当前的一个BP 模型,我们能够获得它针 对 于 训 练 集 的 误 差。正向 传 播 :输 入 样 本 ——输 入 层——各隐层——输出层;若输出层的实际输出与期 望的输出不符,则误差反传:误差表示——修正各层 神经元的权值;直到网络输出的误差减少到可以接 受的程度,或者进行到预先设定的学习次数为止。
49 数字通信世界
2018.08
导航 GNSS WORLD 天地 电波卫士 Radio Wave Guard
图1 sigmoid函数及其导数
因此 BP的核心思想就是:通 过调整各神经元 之 间的 权值 ,将误 差由隐 含层向 输 入 层逐 层反传, 也就是先实现信号的正向传播到误差的反向传播过 程。所以BP算法的核心步骤如下:
Abstract: This paper mainly introduces the theoretical derivation of error back propagation, and understands how to get the optimal solution of the neural networks parameters by the BP algorithm and gradient descent method.
相关文档
最新文档