高分子材料复习要点

合集下载

高分子材料成型加工复习(整理)

高分子材料成型加工复习(整理)

高分子材料成型加工复习(整理)1.高分子材料中加入添加剂的目的是什么?添加剂可分为哪些主要类型目的:满足成型加工上的要求满足制品性能上的要求满足制品功能上的要求满足制品经济上的要求主要类型:工艺性添加剂功能性添加剂2.哪些热稳定剂可以用作食品和医药包装材料有机锡类稳定剂有机锑类稳定剂无机稳定剂稀土类稳定剂3.哪一类热塑性聚合物在成型加工中需使用热稳定剂?为什么?热稳定性差的热塑性聚合物。

加入热稳定剂才能实现在高温下加工成型,制得性能优良的制品。

4.增塑剂的促进作用机理添加到高分子材料中,使体系的可塑性增加,改进柔软性、延伸性和加工性。

降低玻璃化温度tg第四章1.在高分子材料制品设计中,成型加工方法选择的依据是什么①制品形状②产品尺寸③材料特征④公差精度⑤加工成本第五章1.聚合物熔体在成型加工中有哪些流动类型①层流和湍流②平衡流动与不能平衡流动③等温流动和非等温流动④弯曲流动和剪切流动2.聚合物流体有哪些奇异流变现象,简述产生的原因①高粘度与剪切变稀行为②weissenb erg效应③barus效应④不平衡流动与熔体断裂⑤无管虹吸与无管侧吸⑥次级流动⑦触变性和震凝性⑧湍流减阻与渗流增阻3.聚合物熔体剪切黏度的影响因素①剪切速率②温度③压力④分子结构⑤添加剂第六章1.物料的混合有哪三种基本运动形式?聚合物成型时熔融物料的混合以哪一种运动形式为主?运动方式:①分子蔓延②涡旋蔓延③体积蔓延体积蔓延2.温度对生胶塑炼油何影响?为什么天然橡胶在110℃时塑炼效果最差?温度对橡胶的塑炼效果有很大影响,而且在不同温度范围内的影响也不同。

磷酸氢二钠温度高:①物料粘度低,剪切促进作用小,机械促进作用效果小②水解反应速度高,化学作用效果大塑炼温度高:①物料粘度低,剪切作用小,机械作用效果小②氧化反应速度高,化学作用效果大3.什么叫做塑料的混合和塑化,其主要区别在哪里塑料的混合:物料的初混合,在低于流动温度和较为缓和的剪切速率下进行,混合后,物料各组分的物理性质和化学性质无变化,只增加各组分颗粒的无规则排列程度,不改变颗粒大小塑料的塑化:再混合,在低于流动温度和较猛烈的剪切速率下展开,混合后,物料各组分物化性质有所发生改变4.塑料的塑化与橡胶的塑炼二者的目的和原理有何异同塑化:目的就是并使物料在一定温度和剪切力下熔融,剪除其中的水分和挥发物,并使各组分更趋光滑,获得具备一定可塑性的光滑物料橡胶的塑炼:目的是使生胶由强韧的弹性转变为柔软的便于加工的塑性状态的过程,使之适合于混炼,压延,压出,成型工艺操作,增加可塑性以便得到质量均匀的胶料。

高分子材料基础复习资料

高分子材料基础复习资料

单体:单体是能与同种或他种分子聚合的小分子的统称。

是能起聚合反应或缩聚反应等而成高分子化合物的简单化合物重复单元又叫链节。

是高分子中重复出现的那部分,高分子结构式常以表示。

一般是由相应的小分子(事实上或假想的)衍生而来的。

结构单元构成高分子主链结构组成的单个原子或原子团。

【例】聚丙烯:其中—CH2—是一个链单元,也是一个结构单元;—CH(CH3)—是一个链单元,也是一个结构单元。

两者结成一个更大的结构单元—CH2—CH(CH3)—。

重复单元可以是—CH2—CH(CH3)—,也可以是—CH2—CH(CH3)—CH2—CH(CH3)—。

最小重复单元是—CH2—CH(CH3)—。

【注意】区分单体单元和重复单元如果高分子是由1种单体聚合而成的,其重复单元就是单体单元。

例如:聚氯乙烯,重复单元和结构单元都是—CH2—CHCl—,聚合度DP=n。

如果高分子是由2种或者2种以上的单体缩聚而成的,其重复单元由不同的单体单元组成,那么重复单元就不是单体单元了。

例如:尼龙,重复单元是—NH(CH2)6NHCO(CH2)4CO—,而单体单元是—NH(CH2)6NH—和—CO(CH2)4CO—两种,聚合度DP=2n。

齐聚物:由少数链节组成的聚合物。

如二聚体、三聚体、四聚体……无论是线形的还是环形的统称齐聚物。

齐聚物与通常所说的聚合物是很不同的,增减几个结构单元能使其物理性质有很大的变化。

聚合物定义:由千百个原子彼此以共价键结合形成相对分子质量特别大、具有重复结构单元的有机化合物。

是由一类相对分子质量很高的分子聚集而成的化合物,也称为高分子、大分子等。

一般把相对分子质量高于10000的分子称为高分子。

高分子通常由103~105个原子以共价键连接而成。

由于高分子多是由小分子通过聚合反应而制得的,因此也常被称为聚合物或高聚物。

平均分子量(1)数均分子量设聚合物试样中,共有N个大分子,总质量为W。

若其中分子量为Mi的大分子有Ni个,其质量为Wi=NiMi,则有下列关系式:(2)质均分子量 对聚合物的稀溶液用光散射方法测定的是质均分子量,等于分子量乘上相应质量分数的加合。

高分子材料复习重点

高分子材料复习重点
引发剂按分解方式分为热分解型和氧化还原分解型。热分解型引发剂分为偶氮类引发剂和过氧类引发剂(过氧化二酰 分解反应的化学式…)
引发剂分解速率方程:Rd=-d[I]/dt=kd[I] ln[i]/[i]0=-kt
一定温度下引发剂分解至起始浓度的一半时间称为引发剂分解半衰期,用t1/2表示。
引发效率 造成引发效率低的原因是诱导分解和笼蔽反应。
静态柔顺性又称平衡态柔顺性,是指大分子链在热力学平衡条件下的柔顺性。
高分子链的平衡态柔顺性,通常用链段长度和均方末端距来表征。链段是指从分子链划分出来可以任意取向的最小运动单元。
动态柔顺性是指高分子链在一定外界条件下,从一种平衡态构象转变到另一种平衡态构象的速度。
如果把若干个单键取作一个链段,把链段与链段之间的连接看作是自由的,那么高分子链可视为以链段为运动单元的自由连接链。
高弹性变的特点1小应力作用下的弹性形变很大2升温时,高弹性变的弹性模量与温度成正比3绝热拉伸时,材料会放热而使自身温度升高4高弹性变有力学松弛现象。
弹性应力σ=ρRT/Mc(λ-1/λ的平方)
应力松弛:恒温下将试样迅速拉伸到一定长度,保持该应变ε不变,发现试样内应力随时间逐渐衰减,这种现象称为应力松弛。
高分子材料应力应变曲线5种 硬而脆 硬而强 硬而韧 软而韧 软而弱
影响拉伸行为的外部因素1温度的影响2拉伸速率的影响3环境压力的影响
强迫高弹形变:当环境温度Tb<T<Tg时,虽然材料出于玻璃态,链段冻结,但在恰当速率下拉伸,材料仍能发生百分之几百的大型变,这种形变称为强迫高弹性变。
强迫高弹性变能够产生,说明提高应力可以促进分子链段在外力方向上运动。
(一)引发剂引发(二)热引发(三)光引发与辐射引发

高分子总复习各章重点

高分子总复习各章重点

复习第一章绪论1.聚合物的命名(习惯)习惯命名法a.以单体名称来命名。

一种单体:“聚”+单体名。

如聚乙烯、聚丙烯、聚苯乙烯、聚甲基丙烯酸甲酯。

两种不同单体合成的共物:共聚单体中各取一个字后缀“树脂”“橡胶”。

苯酚-甲醛的聚合物称为酚醛树脂,丁二烯-苯乙烯共聚物称为丁苯橡胶。

两种不同单体合成的缩聚物:在其结构单元前加一个“聚”字。

如由己二胺、己二酸缩聚的产物称为聚己二酰己二胺。

b. 以聚合物的结构特征命名以聚合物的特征结构命名。

如聚酯、聚酰胺、聚氨酯、聚脲、聚砜等。

c. 以商品名称命名如涤纶(聚对苯二甲酸乙二醇酯),锦纶(尼龙6),维纶(聚乙烯醇缩甲醛),腈纶(聚丙烯腈),丙纶(聚丙烯)等。

尼龙后面的数字代表其单体来源,第一个数字代表二元胺中碳的数目,第二个数字代表二元酸中碳的数字。

例如尼龙-6,10即是用己二胺、癸二酸为单体合成的。

d.用英文缩写命名在文章和文献中经常采用英文缩写符号表示。

如聚苯乙烯(polystyrene)简称为PS,聚醋酸乙烯酯(polyvinylacetate)简称为PVAc等。

见附表1。

2.结构单元、重复单元、聚合度、单体单元的概念结构单元:由一种单体分子通过聚合进入重复单元的部分。

重复单元:大分子链上重复出现的、最小基本单元(分子式中括号内的部分)。

聚合度:高分子链中重复单元的数目称为聚合度。

单体单元:除电子结构改变外,原子种类及个数完全相同的结构单元。

3.判断聚合类型逐步聚合:通过单体上所带的能相互反应的官能团逐步反应形成二聚体、三聚体、四聚体等,直到最终在数小时内形成聚合物的反应。

连锁聚合:在链引发形成的活性中心的作用下,通过链增长、链终止、链转移等基元反应在极短时间内形成高分子的反应写出下列聚合物的一般名称、单体、聚合反应式,并指明这些聚合反应属于加聚反应还是缩聚反应,链式聚合还是逐步聚合?-(1) -[- CH2- CH-]n|COO CH3(2) -[- CH2- CH-]-n|OCOCH3(3) -[- CH2- C = CH- CH2-]-n|CH3(4) -[-NH(CH2)6NHCO(CH2)4CO-]n-(5) -[-NH(CH 2)5CO -]n - 知识点:H 2CCH COOCH3n CH 2CH COOCH3n丙烯酸甲酯 聚丙烯酸甲酯加聚反应、连锁聚合(1)(2)(3)(4)(5)CH 2CH OCOCH3n CH 2CH OCOCH3n醋酸乙烯 聚醋酸乙烯加聚反应、连锁聚合CH 2CCH 3H CCH 2n CH 2CCH 3CHCH 2n异戊二烯 聚异戊二烯加聚、连锁聚合NH 2(CH 2)6NH 2n +COOH(CH 2)4COOHn 己二胺 己二酸 尼龙-66(聚己二酰己二胺)逐步、聚合缩聚NH(CH2)5COn H+OH-NH(CH2)5CO n NH(CH2)5COn逐步聚合 开环聚合连锁聚合 开环聚合己内酰胺 尼龙-6NH(CH2)6NHOC(CH2)4COn课后作业P15—3写出聚乙烯、聚氯乙烯、尼龙66、维尼纶、天然橡胶、顺丁橡胶的分子式,根据表1-4所列这些聚合物的相对分子质量,计算这些聚合物的聚合度。

高分子材料学复习纲要

高分子材料学复习纲要

高分子材料学复习纲要第一章绪论一、药用高分子材料是具有生物相容性、经过安全评价且应用于药物制剂的一类高分子辅料。

药用高分子材料学则是研究药用的高分子材料的结构、物理化学性质、工艺性能及用途的理论和应用的专业基础学科。

学习的范围:(1)高分子材料的一般知识,如命名、分类、化学结构;高分子的合成反应及化学反应(加聚、共聚、聚合物的改性与老化);高分子材料的质量要求和制剂成形的物理、力学性能。

(2)药用高分子材料的来源、生产、化学结构、工艺学特性与功能性、安全性和在药物制剂中的应用。

高分子材料的分类(按来源):(1)天然高分子材。

如蛋白质类、多糖类、天然树胶。

(2)半合成高分子材料。

如淀粉、纤维素的衍生物。

(3)合成高分子材料。

如热固性树脂、热塑性树脂。

药用辅料是在药物制剂中经过合理的安全评价的不包括活性药物或前药的组分。

(国际药用辅料协会IPEC定义)使用辅料的目的:(1)在药物制剂制备过程中有助于成品的加工(2)有助于保护、保持和加强药物制剂稳定性及生物利用度或病人的顺应性(3)有助于鉴别药物制剂(4)增强药物制剂在贮藏或应用时的安全性和有效性药用高分子辅料有别与非药用的高分子材料,应具备一些特殊要求:(1)对特殊药物有适宜的载药能力(2)载药后有适宜的释药能力(3)无毒,并具有良好的生物相容性(4)无抗原性1(5)为适应制剂加工成型的要求,还需具备适宜的分子量和物理机械性质高分子材料在药剂学中的应用1・作为片剂和一般固体制剂的崩解剂、黏合剂、赋形剂、外壳常见的有:黏合剂、稀释剂、崩解剂、润滑剂和包衣材料 2・作为缓释、控释制剂的骨架材料和包衣材料(1)扩散控释材料(2)溶解、溶蚀或生物降解材料以及能形成水凝胶材料(3)具有渗透作用的高分子渗透膜(4)离子交换树脂3・作为液体制剂或半固体制剂的辅料 4・作为生物黏着性材料 5・可生物降解的高分子材料 6・用作新型给药装置的组件 7・用作药品的包装材料2021年3月23日发布了《药用辅料生产质量管理规范》,但至今无《药用辅料生产质量管理办法》第二章高分子的结构、合成和化学反应高分子化合物:简称高分子,是指相对分子质量很高的一类化合物(明胶、淀粉、纤维素是常见的天然高分子;聚乙烯醇、甲基丙烯酸树脂和聚二甲基硅氧烷是通过聚合反应制备的合成高分子)形成结构单元的小分子化合物称为单体,单体是合成聚合物的原料由一种单体聚合而成的高分子称为均聚物由两种或两种以上的单体聚合而成的聚合物称为共聚物2高分子的分类与命名:根据高分子的主链结构,可分为(1)有机高分子(2)元素有机高分子(3)无机高分子命名(1)习惯命名(2)商品名(3)系统命名高分子的结构特点高分子的结构按其研究单元不同分为高分子链结构和高分子聚集态结构两大类。

高分子材料概论复习概括

高分子材料概论复习概括

高分子材料概论复习概括《高分子材料概论》复习概要《高分子材料概论》第1章绪论 1.2.1 塑料塑料是在玻璃态下使用的、具有可塑性的高分子材料。

它是以树脂为主要组分,加入各种添加剂,能在一定温度和压力下加工成形的各种材料的总称。

塑料的组成:1)树脂: 塑料的主要组分。

2)填充剂(填料): 提高塑料的力学、电学性能或降低成本等。

3)增塑剂: 提高塑料的可塑性和柔软性4)稳定剂: 提高塑料对热、光、氧等的稳定性,延长使用寿命。

5)增色剂: 赋予塑料制品各种色彩。

6)润滑剂: 提高塑料在加工成形过程中的流动性和脱模能力,同时可使制品光亮美观。

7)固化剂: 与树脂发生交联反应,使受热可塑的线型结构变成热稳定好的体型结构。

8)其他: 还有发泡剂、催化剂、阻燃剂等。

塑料的分类(注意分类举例) 1)按塑料热性质分类:热塑性塑料:受热时软化或熔融、冷却后硬化,韧性好,可反复成型加工。

聚乙烯、聚氯乙烯热固性塑料:在加热、加压并经过一定时间后即固化为不溶、不熔的坚硬制品,立体网状结构,不可再生。

具有更好耐热性和抗蠕变能力。

酚醛树脂、环氧树脂 2)按塑料的功能和用途分类:通用塑料:产量大、用途广、价格低的塑料,但性能一般,主要用于非结构材料。

聚乙烯、聚氯乙烯、聚苯乙烯工程塑料:具有较高力学性能,能替代金属制造机械零件和工程构件的塑料。

具有较宽的温度适用范围,能在苛刻条件下长时间使用。

通用工程塑料:长期在100~150℃范围内应用的塑料聚酰胺、聚苯醚、聚甲醛、聚碳酸酯特种工程塑料:在150 ℃以上长期使用的塑料。

聚砜、聚四氟乙烯、聚酰亚胺、聚芳酯功能塑料:导电塑料、导磁塑料、感光塑料等 1.2.2 橡胶橡胶是以高分子化合物为基础的、具有良好高弹性的材料。

线形柔性高分子聚合物,以生胶为原料,加入适量配合剂而形成。

橡胶的结构特征:(1)分子链具有足够的柔性;(2)玻璃化温度比室温低得多:(3)在使用条件下不结晶或结晶较小,理想情况是在拉伸时可结晶,除去外力后结晶又消失,网状结构橡胶的组成:橡胶是以生胶为主要成分,添加各种配合剂和增强材料制成的。

高分子材料化学重点知识点总结

高分子材料化学重点知识点总结

第一章水溶性高分子1)..水溶性高分子的性能:水溶性;2.增黏性;3.成膜性;4.表面活性剂功能;5.絮凝功能;6.粘接作用。

2)..造纸行业中的水溶性高分子:(1)聚丙烯酰胺:1)分子量小于100万:主要用于纸浆分散剂;2)分子量在100万和500万之间:主要用于纸张增强剂;3)分子量大于500万:造纸废水絮凝剂(超高分子量);(2)聚氧化乙烯:用作纸浆长纤维分散剂,用作餐巾纸、手帕纸、茶叶袋滤纸,湿强度很高;(3)聚乙烯醇:强粘结力和成膜性;用作涂布纸的颜料粘合剂;纸张施胶剂;纸张再湿性粘合剂。

3)..日用品、化妆品行业中的水溶性高分子:对乳化或悬浮状态的分散体系起稳定作用,另外具有增稠、成膜、粘合、保湿功能等。

4)..壳聚糖:优良的生物相容性和成膜性;显著的美白效果;修饰皮肤及刺激细胞再生的功能5)..水处理行业中的水溶性高分子:(1)聚天冬氨酸(掌握其一):1)以天冬氨酸为原料:(方程式);2)以马来酸酐为原料:(方程式);特点:生物降解性好;可用于高热和高钙水。

1996年Donlar公司获美国总统绿色化学挑战奖;(2)聚环氧琥珀酸(方程式)特点:无磷、无氮,不会引起水体的富营养化。

第二章、离子交换树脂1)..离子交换树脂的结构与性能要求:(1)结构要求:1)其骨架或载体是交联聚合物,2)聚合物链上含有可以离子化的功能基。

(2)性能要求:a、一定的机械强度;b、高的热稳定性、化学稳定性和渗透稳定性;c、足够的亲水性;d、高的比表面积和交换容量;e、合适的粒径分布。

2)..离子交换树脂的分类:(1)按照树脂的孔结构可以分为凝胶型(不含不参与聚合反应的其它物质,透明)和大孔型(含有不参与聚合反应物质,不透明)。

(2)根据所交换离子的类型:阳离子交换树脂(-SO3H);阴离子交换树脂(-N+R3Cl-);两性离子交换树脂3)..离子交换树脂的制备:(1)聚苯乙烯型:(方程式)4)..离子交换树脂的选择性:高价离子,大半径离子优先5)..离子交换树脂的再生:a. 钠型强酸型阳离子交换树脂可用10%NaCl溶液再生;b. OH型强碱型阴离子交换树脂则用4%NaOH 溶液再生。

高分子材料应用技术复习重点

高分子材料应用技术复习重点

1、高分子材料科学:研究高分子化合物的合成、结构、性能、加工与应用的一门学科。

涉及高分子化学、高分子物理、高分子工程三个基础性分支学科以及功能高分子和高分子新材料两个综合性研究领域。

2、聚合度,用DP表达。

一个高分子化合物的相对分子质量M可用下式表达:M = DP×M0 。

M0为单体的相对分子质量3、相对分子质量小于1000的,一般为小分子化合物;而相对分子质量大于10000的,称为高分子或高聚物;处在中间范围的也许为高分子(低聚物),也也许为小分子。

4、由两种或两种以上单体聚合而成的聚合物称为共聚物。

根据各种单体单元在分子链中的排列状况,可将共聚物分为无规共聚物、交替共聚物、嵌段共聚物、接枝共聚物等。

5、分子主链上所有由碳和氢组成,因此称为碳链聚合物。

分子主链上除了碳原子外,尚有O、N、S、P等杂原子,因此称为杂链聚合物。

Xn = 2 DP = 2 n6、重要的碳链聚合物:重要的杂链聚合物:7、根据高分子受热后的形态变化分类:根据受热后发生的形态变化,可将高分子化合物分为热塑性高分子和热固性高分子两大类。

热塑性高分子在受热后会从固体状态逐步转变为流动状态。

8、热固性高分子在受热后先转变为流动状态,进一步加热则转变为固体状态。

这种转变是不可逆的。

换言之,热固性高分子是不可再生的。

典型的热固性高分子如:酚醛树脂、环氧树脂、氨基树脂、不饱和聚酯、聚氨酯、硫化橡胶等9、根据高分子的实际用途,可将其分为塑料、橡胶、化学纤维、涂料、粘合剂和功能高分子六大类。

10、聚甲基丙烯酸甲酯,人们称其为“有机玻璃”;由玻璃纤维增强的不饱和聚酯或环氧树脂,因其坚硬如钢,俗称“玻璃钢”。

11、连锁聚合的特点:(1)聚合需要活性中心,如自由基、阳离子、阴离子等,因此有自由基聚合、阳离子聚合、阴离子聚合之分。

(2)聚合过程由链引发、链增长、链终止等基元反映组成。

(3)聚合过程中相对分子质量变化不大,体系始终由单体、高分子量聚合物和引发剂组成。

高分子材料与工程 知识点

高分子材料与工程 知识点

高分子材料与工程知识点
高分子材料与工程是一门涉及高分子化学、材料科学和工程技
术的综合学科,它研究的是由大量重复单元组成的高分子化合物在
材料制备和工程应用中的性能、结构和加工工艺。

高分子材料与工
程的知识点包括但不限于以下几个方面:
1. 高分子化学基础,包括高分子化合物的结构、合成方法、聚
合反应机理、分子量分布等基本概念。

2. 高分子材料的性能,研究高分子材料的力学性能、热学性能、电学性能、光学性能等各种性能指标,以及这些性能与材料结构、
组成、加工工艺等因素之间的关系。

3. 高分子材料的结构与组织,研究高分子材料的分子结构、晶
体结构、无定形结构等组织形态,以及这些结构与材料性能之间的
关系。

4. 高分子材料的加工工艺,研究高分子材料的成型加工、改性
加工、复合加工等各种加工工艺,以及不同工艺对材料性能的影响。

5. 高分子材料的应用,研究高分子材料在塑料、橡胶、纤维、涂料、粘合剂、高分子复合材料等各种领域的应用,以及不同应用条件下材料性能的要求和变化。

综上所述,高分子材料与工程是一门涉及广泛、内容丰富的学科,它不仅涉及到高分子化学的基础理论,还涉及到材料科学和工程技术的实际应用,对于推动材料科学和工程技术的发展具有重要意义。

高分子材料复习资料

高分子材料复习资料

衿第一章:绪论
薇高分子材料:指由许许多多原子或原子团,主要以共价键结合而成的相对分子质量很高(104~107)的化合物.
蒃均聚物:由一种单体聚合而成的聚合物称为均聚物。

腿共聚物:由两种或两种以上单体共聚而成的聚合物称为共聚物。

芈高分子材料分类:
芇按用途分类---塑料、橡胶、纤维、粘合剂、涂料
蒄按主链的元素组成分类---碳链、杂链、元素有机和无机高分子
蒂按聚合物受热时的不同行为分类---热塑性和热固性
螈聚合物英文缩写
肈PE 聚乙烯 PP 聚丙烯
节 PS 聚苯乙烯 PTFE 聚四氟乙烯
薀 PVC 聚氯乙烯 ABS 丙烯腈—丁二烯—苯乙烯共聚物膇 PA 聚酰胺 POM 聚甲醛
螈 PAN 聚丙烯腈 PC 聚碳酸酯
莃 PMMA 聚甲基丙烯酸甲酯 CPE 氯化聚乙烯
羃 PF 酚醛树脂 EP 环氧树脂
袀 BR 聚丁二烯橡胶 PU 聚氨酯
芄 SBR 丁苯橡胶 NBR 丁腈橡胶
莅 CR 氯丁橡胶 NR 天然橡胶
肁 PET 聚对苯二甲酸乙二醇酯 PBT 聚对苯二甲酸丁二醇酯。

(完整版)高分子材料基础知识

(完整版)高分子材料基础知识

名词解释:1. 通用型热塑性塑料:是指综合性能好,力学性能一般,产量大,适用范围广泛,价格低廉的一类树脂。

2. 通用型热固性塑料:为树脂在加工过程中发生化学变化,分子结构从加工前的线型结构转变成为体型结构,再加热后也不会软化流动的一类聚合物。

3. 聚乙烯相对分子量的大小常用熔体流动速率(MFR )来表示。

4. 共混改性是指两种或两种以上聚合物材料以及助剂在一定温度下进行掺混,最终形成一种宏观上均与且力学,热学,光学以及其它性能得到改善的新材料的过程。

5. 茂金属聚苯乙烯:为在茂金属催化剂作用下合成的间同结构聚苯乙烯树脂,它的苯环交替排列在大分子链的两侧。

6. 通常把使用量大、长期使用温度在100~150℃、可作为结构材料7. 使用的塑料材料称为通甩工程塑料,而将使用量较小、价格高、长期使用温度在150℃以上的塑料材料特种工程塑料。

8. 聚酰胺(PA):俗称尼龙,是指分子主链上含有酰胺基团的高分子化合物。

聚酰胺可以由二元胺和二元酸通过缩聚反应制得,也可由w-氨基酸或内酰胺自聚而得。

聚酰胺的命名是二元胺和二元酸的碳原子数来决定的。

9. 单体浇注聚酰胺(MC 聚酰胺),是以氢氧化钠为主催化剂、将聚酰胺6 单体直接浇注到模具内进行聚合并制成制品。

制备的主要特点有:①只要简单的模具就能铸造各种大型机械零件。

②工艺设备及模具都很简单,容易掌握。

③MC 聚酰胺的各项物理机械性能,比一般聚酰胺优越。

④可以浇注成各种型材,并经切削加工成所需要的零件,因此适合多品种,小批量产品的试制。

10. RIM 聚酰胺:是将具有高反应活性的原料在高压下瞬间反应,再注入密封的模具中成型的一种液体注射成型的方法。

11. 共聚甲醛:是以三聚甲醛为原料,与二氧五环作用,在以三氟化硼-乙醚络合物为催化剂的情况下共聚,再经后处理出去大分子链两端不稳定部分而成的。

12. 均聚甲醛:是以三聚甲醛为原料,以三氟化硼-乙醚络合物为催化剂,在石油醚中聚合,再经端基封闭而得到的。

高分子材料学复习重点

高分子材料学复习重点

高分子材料1.药用高分子材料学:研究药用的高分子材料的结构、物理化学性质、工艺性能及用途的理论和应用的专业基础学科。

2.聚集态结构:指高分子材料整体的内部结构,包括晶态结构、非晶态结构、取向结构和织态结构等。

3.生物降解:是指聚合物在生物环境中大分子的完整性受到破坏,产生碎片或其他降解产物的现象。

4.生物溶蚀:水不溶性的高分子制品在溶液中因所含的单体、低聚物等溶解丧失而引起的聚合物质量的损失。

仅发生在表面的侵蚀称表面侵蚀或非均相侵蚀,发生在整体材料的称为均相侵蚀。

5.水凝胶:是指一种在水中能显著溶胀、保持大量水分的亲水性凝胶,为三维网络结构。

6.淀粉糊化:淀粉形成均匀糊状溶液的现象。

7.离子交换树脂:是一类带有功能基团的不溶性惰性高分子材料,可以再生,反复使用,不被生物体吸收。

有三部分组成:具有三维空间立体结构的网状骨架;与网状骨架载体主链以共价键结合的活性基团;与活性基团以离子键键合的带相反电荷的活性离子。

8.水分散体:是指以水为分散剂,聚合物以直径约50nm ~ 1.2μm的胶状颗粒悬浮的具有良好物理稳定性的非均相系统,其外观呈不透明的乳白色,故也称为乳胶。

9.取代度:DS,是指被取代羟基数的平均值。

10.反应度:DR,是指与每个葡萄糖单体反应的环氧烃的平均摩尔数。

11.增塑剂的意义和种类。

意义:增塑剂分子插入聚合物分子间,削弱链间的相互作用力,增加聚合物柔性,降低玻璃化转变温度、熔点、软化温度等,以改善聚合物制品的柔软性、弹性、抗冲击性和耐寒性。

种类:常用的增塑剂有邻苯二甲酸酯、磷酸酯、脂肪族二元酸酯、枸橼酸酯和聚氧乙烯类等。

12.明胶P175药用明胶按制法分为酸法明胶和碱法明胶。

酸法:原料一般是猪皮,等电点在pH7 ~ 9碱法:把原料浸泡在15~20℃的氢氧化钙中1~3个月,等电点比酸法低,可低到pH4.7~5.3性质:①明胶遇冷水会溶胀应用:①最主要的用途是作为硬胶囊、软胶囊以及微囊的囊材。

高分子材料复习整理DOC

高分子材料复习整理DOC

高分子材料复习整理1. 什么叫热塑性塑料?什么叫热固性塑料?试各举三例说明。

(P124)热塑性塑料:塑料加热后软化,冷却后变硬,这种软化、变硬可重复循环,因此可重复成型。

(聚乙烯、聚丙烯、聚氯乙烯)热固性塑料:有单体直接形成网状聚合物或通过交联线型预聚体而形成,一旦形成交联聚合物,受热后不能再回复到可塑状态。

(制品不溶不熔)(酚醛树脂、环氧树脂、氨基树脂、不饱和聚酯)2. 高分子构型与构象的区别(P79)高分子的几何异构和旋光异构称为构型,构型不同,分子形状也不同,但要改变构型非破坏化学键不可一般而言,大分子链是由众多的C-C单键(或C-N,C-O,Si-O等类单键)构成的。

这些单键是由σ电子组成的σ键,其电子云分布对键轴是对称的,所以以σ键连接的两个原子可以相对旋转,这称为分子的内旋转。

在分子内旋转的作用下,大分子链具有很大的柔曲性,可采取各种可能的形态,每种形态所对应原子及键的空间排列称为构象。

构象是由分子内部热运动而产生的,是一种物理结构。

3.ABS树脂的结构,每个组分的作用ABS树脂是由苯乙烯、丁二烯和丙烯腈三种成分构成的共混物。

最初以机械共混法制备,现在多采用接枝共聚-共混法。

苯乙烯:贡献是刚性、表面光洁性和易加工性丁二烯:贡献是柔顺性、高抗冲性和耐低温性丙烯腈:贡献是耐化学药品性、热稳定性和老化稳定性ABS塑料的具体性能决定于三种单体的比例和形态结构ABS塑料存在有两相,连续相成称为基体(由苯乙烯或其烷基衍生物和丙烯腈的共聚树脂所组成),以丁二烯为基础形成的弹性体为分散相4. 产量大、应用广的工程塑料主要有哪些?(P136~137)产量大、应用广的工程塑料有聚酰胺(PA):开发最早的工程塑料,产量首位;聚碳酸酯(PC),应用广泛;聚甲醛(POM):产量位居第三位。

5.高聚物高弹性的特点(P95)高弹性即橡胶弹性,同一般的固体物质所表现出的普弹性相比,有如下特点:(1)弹性模量小,形变大。

(整理)高分子材料复习要点1

(整理)高分子材料复习要点1

绪论:1.标志性的事件:塑料的(1)19世纪中叶第一种工业化的塑料----赛璐珞”(Celluloid)的塑料(1869)(最早被应用的塑料)(2)雷奥.比克兰德合成酚醛树脂(PF)也是第一个工业化生产的合成树脂(第一种人工合成树脂)(3)1920年,Staudinger首先提出了高分子的概念(4)Zieglar-Natta催化剂合成出了低压高密度聚乙烯(HDPE, 1953~1955)和聚丙烯(PP)橡胶的(1)1823年,苏格兰化学家马金托什,像印第安人一样把白色浓稠的橡胶液体涂抹在布上,制成防雨布,并缝制了“马金托什”防水斗蓬,这是世界上最早的雨衣,也是橡胶工业的起点(2)1826年,英国人汉考克发明了双辊开炼机,用此设备可以将各种助剂混入橡胶中,1839年,美国化学家固特异尔偶然中发明了橡胶的硫化,解决了橡胶遇热变软发粘的缺点,制造出了世界第一双橡胶防水鞋,这两项发明使橡胶的应用得到了突破性的进展,奠定了现代橡胶加工业的基础(是什么发现导致了近现代意义橡胶工业的诞生?)橡胶是继石油、铁矿和有色金属之后的第四大战略资源2、概念:通用塑料:产量大、用途广、价格低、性能一般,主要用于非结构材料,如:聚乙烯(PE)、聚丙烯(PP)、聚氯乙烯(PVC)、聚苯乙烯(PS)。

工程塑料:具有较高的力学性能,能够经受较宽的温度变化范围和较苛刻的环境条件,并在此条件下长时间使用,可作为结构材料。

热塑性塑料:受热熔融、可进行各种成型加工,冷却时硬化。

再受热又可熔融、加工。

具有多次重复加工性。

热固性塑料:受热熔化,成型的同时发生固化发应,形成高分子立体网状结构,再受热不熔融,也不在溶剂中溶解。

树脂:树脂通常是指受热后有软化或熔融范围,软化时在外力作用下有流动倾向,常温下是固态、半固态,有时也可以是液态的有机聚合物。

广义地讲,可以作为塑料制品加工原料的任何聚合物都称为树脂。

橡胶:是一类线型柔性高分子聚合物。

其分子链柔顺性好,在外力作用下可产生较大的变形,除去外力后能迅速恢复原状。

高分子材料复习要点

高分子材料复习要点

高分子材料的复习要点一、名词解释:单体:能合成高聚物的低分子化合物称为单体结构单元:由一种单体分子通过聚合反应而进入聚合物重复单元的那一部分称为结构单元聚合度:组成高分子的结构单元数热塑性塑料:受热时软化或熔融、冷却后硬化,韧性好,可反复成形。

热固性塑料:在加热、加压并经过一定时间后即固化为不溶、不熔的坚硬制品,不可再生。

具有更好耐热性和抗蠕变能力。

工程塑料:具有较高性能,能替代金属制造机械零件和工程构件的塑料。

橡胶:橡胶是一种材料,它在大的变形下能迅速而有力地恢复其变形,能够被改性(硫化)纤维:长径比为100倍以上的均匀条状或丝状的材料称为纤维材料基本性能的定义:耐热性:材料和覆盖层抗热的能力。

、抗冻性被冷却的生物,在体内已出现冰晶的状态下仍能生存的特性。

、耐水性型煤浸水2小时前后的平均抗压强度之差与浸水前的平均抗压强度的百分比。

、耐老化性材料及其制品耐老化作用的能力。

、耐磨性:材料在一定摩擦条件下抵抗磨损的能力,以磨损率的倒数来评定。

、阻燃性推迟火焰蔓延的性质。

、抗拉强度材料在拉伸断裂前所能够承受的最大拉应力。

抗弯强度:材料抵抗弯曲不断裂的能力,主要用于考察陶瓷等脆性材料的强度。

、抗压强度:单向面积上所能承受的最大载荷、刚度:作用在弹性元件上的力或力矩的增量与相应的位移或角位移的增量之比。

结构或构件抵抗弹性变形的能力,用产生单位应变所需的力或力矩来量度。

、含水率纤维材料及其制品的含水重量与干燥重量的差数对其含水重量的百分率、土体中水的质量与土颗粒质量之比,以百分率表示、抗污性生物对某种污染物所具有的忍受能力、耐酸碱性指对酸液或碱水浸泡的耐力、耐擦洗性、保温绝热性二、高分子材料的简写塑料:聚乙烯(PE)、聚丙烯(PP)、聚氯乙烯(PVC)、丙烯腈-丁二烯-苯乙烯共聚物(ABS)、聚酰胺(PA)、聚碳酸酯(PC)、聚对苯二甲酸乙二酯(PET)、聚四氟乙烯(PTFE)、聚苯乙烯(PS )橡胶:天然橡胶(NR)、丁苯橡胶(SBR)、顺丁橡胶(BR)、异戊橡胶(IR)、氯丁橡胶(CR)、丁晴橡胶(NBR)、丁基橡胶(IIR)、乙丙橡胶(EPR)、纤维:聚酯纤维(PET)、聚酰胺纤维(PA尼龙)、聚丙烯腈纤维(PAN腈纶)、聚丙烯纤维(PP丙纶)、聚乙烯醇纤维(PV A尼纶或维尼)、三、判断题四、简答题组成成分塑料:以单体组成的高聚物为主体,外加填充剂、增塑剂、稳定剂、增色剂、润滑剂、固化剂橡胶:生胶、混炼时加料塑练胶、防腐剂、填充剂、增塑剂、硫化剂纤维:天然纤维和化学纤维成型方法塑料的成型方法:1、挤出成型2、注射成型3、压制成型4、压延成型5、吹塑成型橡胶的成型方法:1、塑练2、混炼3、压延4、5、成型6、硫化纤维的成型方法:1、熔融纺丝法2、溶液纺丝法(湿法纺丝、干法纺丝)性能优异的高分子材料的特点高分子材料的鉴别塑料:1表观鉴别法2燃烧鉴别法3密度鉴别法4熔点鉴别法5显色试剂鉴别法橡胶:1形态鉴别法2燃烧鉴别法3玻璃化转变温度鉴别法4脆化鉴别法纤维:1用显微镜鉴别纤维品种2用燃烧法鉴别纤维品种高分子材料的老化高分子及其制品在长期储存和使用过程中性能随时间逐渐劣化的现象称为老化。

高分子化学知识要点

高分子化学知识要点

高分子化学知识要点一、高分子的基本概念高分子化合物,简称高分子,是指那些由众多原子或原子团主要以共价键结合而成的相对分子质量在一万以上的化合物。

生活中常见的高分子材料有塑料、橡胶、纤维等。

高分子与小分子化合物相比,具有独特的性能。

例如,高分子材料通常具有较好的韧性、弹性和机械强度。

这是因为高分子的长链结构能够有效地分散和承受外力。

高分子的相对分子质量是一个重要的参数。

它不是一个确定的值,而是具有一定的分布范围。

这是由于聚合反应过程中的随机性导致的。

相对分子质量的大小和分布会显著影响高分子材料的性能。

二、高分子化合物的分类高分子化合物的分类方法有多种。

按照来源,可分为天然高分子和合成高分子。

天然高分子如纤维素、蛋白质等,是自然界中原本就存在的;合成高分子则是通过人工化学反应合成的,如聚乙烯、聚苯乙烯等。

根据高分子主链的结构,又可分为碳链高分子、杂链高分子和元素有机高分子。

碳链高分子的主链全部由碳原子组成,像聚乙烯、聚丙烯就属于此类;杂链高分子的主链除了碳原子,还含有氧、氮、硫等杂原子,如聚酯、聚酰胺;元素有机高分子的主链中不含碳原子,而是由硅、磷、铝等元素组成,不过侧基一般是有机基团。

另外,还可以根据用途将高分子分为塑料、橡胶、纤维、涂料、胶粘剂等。

不同类型的高分子在性能和应用方面有着很大的差异。

三、高分子的合成方法高分子的合成方法主要包括加聚反应和缩聚反应。

加聚反应是指由不饱和单体通过加成反应相互结合形成高分子的过程。

在这个过程中,没有小分子副产物生成。

例如,乙烯在引发剂的作用下发生加聚反应生成聚乙烯。

缩聚反应则是由具有两个或两个以上官能团的单体,通过官能团之间的缩合反应逐步形成高分子,同时会产生小分子副产物,如水、醇、氨等。

聚酯的合成就是一个典型的缩聚反应。

此外,还有开环聚合、逐步加成聚合等合成方法。

开环聚合是指环状单体通过开环形成线性高分子的反应;逐步加成聚合则是通过逐步的加成反应形成高分子。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

UP定义不饱和聚酯是由二元酸(饱和二元酸和不饱和二元酸)同二元醇,经过缩聚反应而成的一种线型聚合物,通常以该化合物在烯烃类活性单体(如苯乙烯)中的溶液形式出现。

1.力学性能:分子量--分子量增大,树脂强度硬度、抗弯强度增大。

不饱和键的数目--越多,交联密度越大、刚度增大、耐磨性提高。

聚酯分子链结构规整性—越规整,树脂分子排布越有序,有利于提高拉伸强度。

2.耐化学药品性:增加不饱和二元酸的量;提高分子的有序性3.电性能:脂肪烃的比例增多——电性能提高。

提高缩聚反应程度——减少未反应的羧基含量可提高电性能。

4.UP的广泛应用领域:(1)用量最大的热固性树脂(2)玻纤增强UP(聚酯玻璃钢)比强度高于铝合金①通过手糊成型或喷涂成型制造各类型的船体.②通过袋压成型法制造船体、安全帽、机器外罩等. ③采用真空袋压法生产飞机部件、雷达罩.④采用整体模压成型法生产卫生洁具.(2)非玻纤增强UP:浇注UP:可制成人造玛瑙、等装饰性材料;人造大理石;墙面和地面装饰砖。

柔性UP,常用滑石粉、木粉等做填料,制造仿木家具。

作为涂层材料PA1.聚酰胺(俗称尼龙)是指分子主链上含有酰胺基团(-NHCO-)的高分子化合物。

2.聚酰胺的前30年是作为合成纤维材料,尼龙(Nylon)的俗称就是来自与此。

尼龙的最早发明商——美国杜邦公司曾宣传:尼龙比蜘蛛丝还细、比钢铁还强。

3.脂肪族聚酰胺是线形高分子材料,由亚甲基链段和极性基团(酰胺基)有规律交替链接而成。

4.聚酰胺中的氢键结构对其聚集态结构和最终的性能起到了决定性的作用5.脂肪族PA微观结构与性能的关系——氢键的重要作用、酰胺基团的密度、亚甲基的奇偶性?PA中的酰胺和亚甲基链段有规律交替排布——链较规整、酰胺基团间的氢键强作用——PA分子间作用力较强、PA分子上交替出现的亚甲基链段提供了较大的分子活动能力,从而导致PA容易结晶;结晶的熔点基本随酰胺基团的密度提高而增大;但也受亚甲基链段中亚甲基数是奇数还是偶数影响(亚甲基是偶数时结晶性更好)6. PA的吸水率很大:基本随酰胺基团的密度增大而增大。

吸水率:PA6>PA66>PA610>PA1010>PA11>PA12脂肪族聚酰胺是结晶度较高的半结晶性高分子材料。

结晶度一般在~30%。

影响尼龙吸水率的主要因素是什么?为什么尼龙吸水后、力学性能会发生显著的变化因素:弯曲强度,拉伸强度和缺口冲击强度。

H 原子能和另一个酰胺基团上的给电子羰基结合形成很强的H 键,而使结晶度增大,可是吸水后,由于链段中的部分羰基将要与胺基中的H 脱离而与水分子形成H 键,加之分子量下降,都会使结晶度下降,从而弯曲强度,拉伸强度下降,但缺口冲击强度它表征的是材料的韧性,材料的结晶度越低,无定形部分含量越高,材料的冲击韧性就越好,所以出现PA66缺口冲击强度随材料吸水率增大而增大。

PC1. 聚碳酸酯的定义 :分子主链中含有碳酸酯基的聚合物统称为聚碳酸酯,可看作二羟基化合物与碳酸的缩聚产物。

是用量第二大的工程塑料。

2.PC、PS、PE易应力开裂的原因: 双酚A结构来分析,Pc与溶剂接触时,拉伸成力大于一定数值便会出现银纹和破坏,这一临界拉伸应力值与溶剂的成分和试样的受热历史均有关。

二甲苯含量的提高会导致PC发生环境应力及拉伸强度,断裂伸长率的降低。

玻璃化转变温度以下的热处理可以使PC得拉伸屈服应力和拉伸断裂应力稍微提高,但对改善材料的耐环境应力开裂性是不利的。

分子链比较刚硬,分子间有较强的作用力:PC很难结晶、是无定形高分子材料:是硬而韧的高聚物:其抗拉、抗弯、抗压强度和硬度较高。

PC是热塑性塑料中抗冲击强度非常高的塑料。

PC的原纤维增强骨架间存在着大量的微孔隙:微孔隙本身的变形也吸收冲击能量;原纤维结构易滑移-吸收冲击能量3.<一> 改性:PC的缺点:4.制品残余内应力大、不耐溶剂、高温易水解;不耐磨损。

5. 1. 纤维增强PC:玻璃纤维、碳纤维等 2. PC合金PTFE1.F原子完全对称排列,PTFE是非极性聚合物:结晶度高,是大量结晶区和少量无定形区并存的聚合物。

2.通过螺旋形构象形成的F原子“筒状外壳”严密的屏蔽了分子骨架碳原子。

PTFE的分子量高,且几乎无支链3.请从分子结构角度分析PTFE为什么具有耐高低温、耐腐蚀和不黏附的特点?为什么各项力学性能很低PTFE是非极性聚合物-→PTFE分子间或与其它分子间的物理吸引作用力很小。

PTFE螺旋形构象链的刚性很强,难弯曲→PTFE大分子间的缠结难发生,以上原因导致(1)极低的摩擦系数和良好的自润滑性(2)耐磨损性能不好(3)力学性能不高(拉伸强度、弯曲强度、刚性、硬度、耐疲劳)(4)受载荷容易发生蠕变现象,“冷流性”(5)C—F键的键能高(487kJ/mol, C—C键的键能为387kJ/mol),具有极高的化学稳定性。

(6)PTFE的线膨胀系数较大;而且还随着温度的提高而有明显的增大→PTFE具有优异的耐热性和耐寒性C—F具有极高的化学稳定性和F原子“筒状外壳”严密的屏蔽了分子骨架碳原子→耐强酸、强碱、强氧化剂和盐类,大部分的有机溶剂。

只有F元素和熔融的碱金属才对PTFE有腐蚀作用和对光和臭氧的作用稳定,具有优良的耐候性PTFE的表面自由能很低,几乎和所有的材料都无法黏附。

4.变现象研究 PTFE膨胀节在拉伸载荷和压缩载荷作用下表现出蠕变现象,或称为冷流性。

5.各种含氟塑料改善PTFE缺陷的分子结构设计理念PTFE的加工性差通过降低PTFE的分子结构规整性,降低分子链的刚性,提高熔体流动性。

6.查阅文献回答:具有不黏附性的PTFE如何和其他材料黏合在一起表面处理方法:(1)化学处理方法,主要是通过腐蚀液与PTFE膜表面发生化学反应,扯掉表皮上部分氟原子(2)高温熔融法7. 密度是树脂材料中最大的。

第四章橡胶和弹性体材料复习要点1. 聚酯型TPU具有更好的力学强度和耐磨性、耐非极性溶剂性;聚醚型TPU具有更好的弹性、低温性能、热稳定性、耐水性和耐生物降解性。

2. 橡胶弹性的来源于高分子链的熵弹性3.请从上分析橡胶和热塑性塑料在高分子结构区别橡胶与塑料最本质的区别在于塑料发生形变时塑性变形,而橡胶是弹性变形。

塑料变形后不容易恢复原状态,而橡胶相对来说就容易得多。

塑料在成型上绝大多数成型过程完毕产品过程也就完毕;而橡胶成型过程完毕后还得需要硫化过程。

在常温下,塑料是固态,很硬,不能拉伸变形。

而橡胶硬度不高,有弹性,可拉伸变长,停止拉伸又可回复原状。

这是由于它们的分子结构不同造成的。

另一不同点是塑料可以多次回收重复使用,而橡胶则不能直接回收使用4.通用橡胶——NR、SBR、BR、 EPDM、IIR、NBR、CR特种橡胶——SiR、ACM、FKM5. 写出下列缩写中文名(NR天然橡胶),(BR聚丁二烯橡胶),(SBR丁苯橡胶) EPM(二元乙丙橡胶), EPDM (三元乙丙橡胶,CR(氯丁橡胶),NBR(丁腈橡胶)HNBR氢化丁腈;丙烯酸酯橡胶ACM、氟橡胶FR、丁基橡胶(IIR)、聚氨酯橡胶(PU)1.NR具有较优良的力学性能:NR是一种结晶性橡胶,可拉伸结晶NR纯胶硫化后强度可达25MPa;用炭黑增强后可达35MPa。

NR的撕裂强度也很高NR具有良好的耐疲劳性,滞后损失小NR具有较高的耐磨性。

2.丁苯橡胶是丁二烯和苯乙烯的共聚物:是用量最大的一种合成橡胶3.SBR随着苯乙烯含量的提高,玻璃化转变温度提高,模量(定伸强度)提高、弹性下降、加工性能变好。

4.苯环还具有分散应力提高耐磨性的作用。

5.耐热氧老化性能提高,耐寒性下降。

6.综合各种性能,普通SBR的苯乙烯含量一般为~23.5%。

7.SBR的性能特点(重点)8.存在大量的分子侧基(苯乙烯、乙烯基)分子链较僵硬——弹性和耐寒性差。

9.非结晶性橡胶,不具备自增强性,纯硫化橡胶的强度只有2~3MPa。

必须使用增强填料补强。

10.耐撕裂性能也低于NR。

11.内耗大,动态生热和滚动阻力高于NR;12.耐曲挠疲劳性低于NR13.BR: 随着乙烯基含量的增加,BR的弹性、耐寒性变差;与地面的摩擦系数增大,抗湿滑性提高,但耐磨性有所下降。

14.丁基橡胶性能特点:IIR橡胶在主链上含有少量的异戊二烯——通常100个碳原子才有一个双键。

饱和度很高。

优点(1)耐热性高(2)耐气候性优良(3)耐O3性优良——是通用橡胶的10倍以上;聚异丁烯段规整、对称性高——结晶性橡胶。

也具有拉伸诱导结晶的现象,纯胶强度高;异丁烯主链上多而密集的侧甲基,填补了分子链间的孔隙——IIR耐透气性和耐透水性优异;异丁烯主链上多而密集的侧甲基,导致分子链在相对运动时,内摩擦大、内耗高——适合用于阻尼减震材料; IIR的自黏性和互黏性差,与其它通用橡胶相容性低——通过卤化的方法提高黏结性11. NBR的性能优点:优异的耐油性能。

耐油性仅次于聚硫橡胶、氟橡胶和丙烯酸酯橡胶。

良好的耐热、耐臭氧、耐老化性能。

(与NR、SBR、BR)缺点:低温性能较差。

胶强度低。

(必须用CB、白炭黑增强)电绝缘性差。

12. CR的结构特点含有大量—Cl取代基团——阻燃性、耐烷烃油好、黏和强度高、但电绝缘性差 1、硫调节型(G)与非硫调节型(W)G型2. C—Cl与C=C的p-π共扼共扼结构改变了C=C双键的电子云分布状态,使反应活性降低:CR不能用硫磺进行硫化,CR的耐热和耐老化性比一般不饱和橡胶好得多,但低于IIR和EPM、EPDM(注:素材和资料部分来自网络,供参考。

请预览后才下载,期待你的好评与关注!)。

相关文档
最新文档