排列组合知识点总结+典型例题及答案解析
排列组合知识点总结+典型例题及答案解析
排列组合知识点总结+典型例题及答案解析一.基本原理1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。
2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。
注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。
二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一.m n mn A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从1.公式:1.()()()()!!121m n n m n n n n A m n -=+---=……2.规定:0!1=(1)!(1)!,(1)!(1)!n n n n n n =⨯-+⨯=+ (2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ⨯=+-⨯=+⨯-=+-; (3)111111(1)!(1)!(1)!(1)!!(1)!n n n n n n n n n +-+==-=-+++++ 三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。
1. 公式: ()()()C A A n n n m m n m n m nmn m mm ==--+=-11……!!!! 10=n C 规定:组合数性质:.2 n n n n n m n m n m n m n n m n C C C C C C C C 21011=+++=+=+--……,, ①;②;③;④11112111212211r r r r r r r rr r r rr r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-+++++=++++=+++=注:若12m m 1212m =m m +m n n n C C ==则或四.处理排列组合应用题 1.①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。
高中排列组合知识点汇总及典型例题(全)
一.基本原理1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。
2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。
注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。
二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一.m n mn A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从1.公式:1.()()()()!!121m n n m n n n n A mn -=+---=……2.规定:0!1=(1)!(1)!,(1)!(1)!n n n n n n =⨯-+⨯=+ (2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ⨯=+-⨯=+⨯-=+-;(3)111111(1)!(1)!(1)!(1)!!(1)!n n n n n n n n n +-+==-=-+++++ 三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。
1. 公式: ()()()C A A n n n m m n m n m nm nm mm ==--+=-11……!!!! 10=nC 规定:组合数性质:.2 nn n n n m n m n m n m n n mnC C C C C C C C 21011=+++=+=+--……,,①;②;③;④11112111212211r r r r r r r rr r r rr r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-+++++=++++=+++=注:若12mm 1212m =m m +m n n n C C ==则或四.处理排列组合应用题 1.①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。
高中排列组合知识点汇总及典型例题(全)
一.基本原理1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。
2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。
注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。
二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一.m n mn A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从 1.公式:1.()()()()!!121m n n m n n n n A m n -=+---=……2. 规定:0!1=(1)!(1)!,(1)!(1)!n n n n n n =⨯-+⨯=+ (2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ⨯=+-⨯=+⨯-=+-; (3)111111(1)!(1)!(1)!(1)!!(1)!n n n n n n n n n +-+==-=-+++++三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。
1. 公式: ()()()C A A n n n m m n m n m nmn m mm ==--+=-11……!!!! 10=n C 规定:组合数性质:.2 n n n nn m n m n m n m n n m n C C C C C C C C 21011=+++=+=+--……,, ①;②;③;④11112111212211r r r r r r r r r r r rr r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-+++++=++++=+++=L L L注:若12m m 1212m =m m +m n n n C C ==则或四.处理排列组合应用题 1.①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。
(完整版)排列组合知识点总结+典型例题及答案解析
g a o o 2. ! ①;②;③;④[解析] 因为10÷8的余数为2,故可以肯定一步一个台阶的有6步,一步两个台阶的有2 28步,那么共有C=28种走法.6.某公司招聘来8名员工,平均分配给下属的甲、乙两个部门,其中两名英语翻译人员不能分在同一个部门,另外三名电脑编程人员也不能全分在同一个部门,则不同的分配方案共有( )A.24种B.36种 C.38种D.108种[解析] 本题考查排列组合的综合应用,据题意可先将两名翻译人员分到两个部门,共有213种方法,第二步将3名电脑编程人员分成两组,一组1人另一组2人,共有C种分法,然132后再分到两部门去共有C A种方法,第三步只需将其他3人分成两组,一组1人另一组213人即可,由于是每个部门各4人,故分组后两人所去的部门就已确定,故第三步共有C种13213方法,由分步乘法计数原理共有2C A C=36(种).7.已知集合A={5},B={1,2},C={1,3,4},从这三个集合中各取一个元素构成空间直角坐标系中点的坐标,则确定的不同点的个数为( )A.33 B.34 C.35 D.36123[解析] ①所得空间直角坐标系中的点的坐标中不含1的有C·A=12个;1233②所得空间直角坐标系中的点的坐标中含有1个1的有C·A+A=18个;13③所得空间直角坐标系中的点的坐标中含有2个1的有C=3个.故共有符合条件的点的个数为12+18+3=33个,故选A.8.由1、2、3、4、5、6组成没有重复数字且1、3都不与5相邻的六位偶数的个数是( ) A.72 B.96 C.108 D.144213223[解析] 分两类:若1与3相邻,有A·C A A=72(个),若1与3不相邻有forsos的卡片放入同一封信有种方法;其他四封信放入两个信封,每个信封两个有种方法,共有种,故选。
排列组合总结(含答案)
1.(站队模型)4男3女站成一排:①女生相邻;5353A A ⋅②女生不相邻;4345A A ⋅③女生从高到低排;47A④甲不在排头,乙不在排尾;解析:当甲在排尾时有66A ;当甲不在排尾时有115555A A A ⋅⋅2.(组数模型)由0到9这10个数字组成没有重复数字的四位数: ①奇数;末位有112588A A A②偶数;解析:末位为0,有39A ;末位不为0,有112488A A A ⋅⋅③被5整除的数;解析:末位为0,有49A ;末位为5,有1288A A ⋅④比3257大的数; 解析:首位为4到9时有396A ;首位为3时281749A ⎧⎪⎧⎨⎪⎨⎪⎪⎩⎩百位为到时有6十位为6到9时有4A 百位为2时十位为5时有2 ⑤被3整除的三位数.12333311123322111333332A A A C C C A C C C A ⎧⋅+⎪⎧⋅⋅⋅⎨⎪⎨⎪⋅⋅⋅⎪⎩⎩都从一个集合中选时有含0时有各选一个时有不含0时有3.(分组分配问题)6个不同的小球:①放入三个不同的盒子;解析:63②放入三个不同的盒子,每盒不空;解析:4363321363132226426222:A C C C A C C C ⎧⎪⋅⋅⋅⎨⎪=++⋅⋅⎩6=4+1+1:有C 6=3+2+1:有有③分三组(堆),每组至少一个;解析:41162122321631222642336222:C C A C C C C C C A ⎧⋅⋅⎪⎪⎪⋅⋅⎨⎪⋅⋅⎪=++⎪⎩C 6=4+1+1:有6=3+2+1:有有4.6个相同的小球:①放入三个不同的盒子;解析:相当于分名额,盒子可空:插板法:28C ②放入三个不同的盒子,每盒不空;25C ③恰有一个空盒.解析:相当于两个盒子不空:1253C C ⋅5.6名同学报名三科竞赛:①每人限报一科;63②每科限报一人;366.(选派问题)5男3女:①选2人开会;28C②选正副班长,至少1女;2285A A - ③选4人开会,至多2男;解析:即至少2女,22313535C C C C ⋅+⋅④选4人跑4×100接力,至少2女.解析:()2231435354C C C C A ⋅+⋅⋅。
排列与组合题目及解析
排列与组合题目及解析排列与组合是数学中的一个重要概念,用于描述事物的排列顺序和组合方式。
它在解决实际问题和推理推断中起到非常关键的作用。
本文将介绍排列与组合的基本概念,以及几个常见的排列与组合题目,并给出详细的解析。
一、排列与组合的基本概念排列是指从一组元素中任取若干个元素按一定的顺序排列的方式,常用P表示。
而组合则是指从一组元素中任取若干个元素不考虑顺序的方式,常用C表示。
1.1 排列的计算公式若从n个不同元素中任取m(m≤n)个元素进行排列,排列的总数可用以下公式表示:P(n, m) = n! / (n-m)!其中"!"表示阶乘运算,表示连乘。
n!表示从1到n的所有正整数相乘。
1.2 组合的计算公式若从n个不同元素中任取m(m≤n)个元素进行组合,组合的总数可用以下公式表示:C(n, m) = n! / (m! * (n-m)!)二、常见的2.1 例题一:某班共有10名学生,其中5名男生和5名女生,从中选取3名学生作为代表,问有多少种选择方式?解析:根据题意可知,从5名男生中选取1名男生,从5名女生中选取2名女生,然后进行排列。
其中,男生之间没有顺序关系,女生之间也没有顺序关系。
所以,选择方式的总数可以表示为C(5,1) *C(5,2)。
带入计算公式可得:C(5,1) * C(5,2) = 5! / (1! * (5-1)!) * 5! / (2! * (5-2)!) = 5 * 10 = 50所以,选择方式的总数为50种。
2.2 例题二:某队共有12名队员,包括4名门将和8名场上队员。
现需从中选取7名队员作为比赛首发人员,其中至少包括1名门将,问有多少种选法?解析:根据题意可知,首发人员中至少包括1名门将,那么有两种情况:选取1名门将和6名场上队员,或选取2名门将和5名场上队员。
第一种情况:选取1名门将和6名场上队员。
门将有4人可选,场上队员有8人可选,所以选择方式的总数可以表示为C(4,1) * C(8,6)。
排列组合12种题型归纳(解析版)
第30讲 排列组合12类【题型一】 人坐座位模型1:捆绑与插空【典例分析】1.有四男生,三女生站一排,其中只有俩个女生相邻:2.有四男生,4女生站一排,女生若相邻,则最多2个女生相邻:解答(1):先捆绑俩女生,再排列捆绑女生,然后排列四个男生,两个“女生”插孔即可,22423245C A A A(2)分类讨论24422422243445224542451; (2); (3)2C A A A A A C A A A ()都不相邻:A 两队各自相邻:一对两人相邻:!【方法技巧】人坐座位模型:特征:1.一人一位;2、有顺序;3、座位可能空;4、人是否都来坐,来的是谁;5、必要时,座位拆迁,剩余座位随人排列。
主要典型题:1.捆绑法;2.插空法;3.染色。
出现两个实践重叠,必要时候,可以使用容斥原理来等价处理:容斥原理()n A B ⋃=()()()n A n B n A B +-⋂【变式演练】1.在某班进行的歌唱比赛中,共有5位选手参加,其中3位女生,2位男生.如果2位男生不能连着出场,且女生甲不能排在第一个,那么出场顺序的排法种数为 A .30 B .36 C .60 D .72【答案】C【分析】记事件:A 2位男生连着出场,事件:B 女生甲排在第一个,利用容斥原理可知所求出场顺序的排法种数为()()()()5555A n A B A n A n B n A B ⎡⎤-⋃=-+-⋂⎣⎦,再利用排列组合可求出答案.【详解】记事件:A 2位男生连着出场,即将2位男生捆绑,与其他3位女生形成4个元素,所以,事件A 的排法种数为()242448n A A A ==,记事件:B 女生甲排在第一个,即将甲排在第一个,其他四个任意排列,所以,事件B 的排法种数为()4424n B A ==,事件:A B ⋂女生甲排在第一位,且2位男生连着,那么只需考虑其他四个人,将2位男生与其他2个女生形成三个元素,所以,事件A B 的排法种数为232312A A =种,因此,出场顺序的排法种数()()()()5555A n A B A n A n B n A B ⎡⎤-⋃=-+-⋂⎣⎦()12048241260=-+-=种,故选C .2.某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是()A.144B.120C.72D.48【答案】B【分析】先求出只有3个歌舞类节目不相邻的方法,然后求出3个歌舞类节目不相邻且2个小品类节目相邻的排法,相减可得.【详解】先考虑只有3个歌舞类节目不相邻,排法有3334144A A=种,再考虑3个歌舞类节目不相邻,2个小品类节目相邻的排法有:22322324A A A=,因此同类节目不相邻的排法种数是14424120-=.故选:B.3.2021年4月15日,是第六个全民国家安全教育日,教育厅组织宣讲团到某市的六个不同高校进行国家安全知识的宣讲,时间顺序要求是:高校甲必须排在第二或第三个,且高校甲宣讲结束后需立即到高校丁宣讲,高校乙、高校丙的宣讲顺序不能相邻,则不同的宣讲顺序共有()A.28种B.32种C.36种D.44种【答案】B【分析】由题意,对高校甲排在第二或第三个进行分类讨论,接着考虑乙和丙的排法,最后考虑其他两所高校的排法,综合利用分类和分步计数原理进行分析即可.【详解】根据题意:分成以下两种情况进行分类讨论高校甲排在第二个时,高校丁必排在第三个,当乙或丙排在第一个时共有132312C A=种排法,当乙或丙不排在第一个时,乙和丙只能排在第四个和第六个,此时共有22224A A=种排法,所以高校甲排在第二个时共有16种排法;高校甲排在第三个时,高校丁必排在第四个,乙或丙只能一个排在第一二个,一个排在第五六个,则共有1112 222216C C C A=种排法;综上:共有32种排法满足题意.故选:B.【题型二】人坐座位模型2:染色(平面)【典例分析】如图为我国数学家赵爽(约3世纪初)在为《周髀算经》作注时验证勾股定理的示意图,现在提供5种颜色给其中5个小区涂色,规定每个区域只能涂一种颜色,相邻区域颜色不同,则A、C区域颜色不相同的概率是A.1/7 b.2/7 c.3/7 D.4/7 答案:D55315232553555351235125122404==4207;(2)4----+++2A C C A C C C C C ----⨯⨯涂色法:(1)用了几种颜色;(2)尽量先图相邻多的“三角形”:本题先把ABE 作为“三角形”1、用了5色:A 、用了4色:(1)先涂ABE:A 用第色:(3)D 用第4种:(相同)3、用了3色:同先涂ABE:A 结束。
排列组合知识点归纳总结高考题
排列组合知识点归纳总结高考题编号一:排列组合基础知识在高考数学中,排列组合是一个重要的考点。
掌握排列组合知识对于解决相关题目至关重要。
本文将对排列组合的基础知识进行归纳总结,并配以高考题进行实例分析。
1. 排列排列是从若干个元素中取出一部分元素,按照一定的顺序进行排列,形成不同的序列。
排列有两种情况:有重复元素的排列和无重复元素的排列。
1.1 有重复元素的排列当从 n 个元素中取出 r 个进行排列时(r ≤ n),若这些元素中有重复元素,则排列的总数为 P(n;r) = n! / (n1! × n2! × ... × nr!),其中 ni 表示第 i 个元素的个数。
【例题1】:某班上有 10 名学生,其中 5 名男生和 5 名女生,现要从这 10 人中选出 3 人组成一支足球队。
求不同的组队方案数。
解:由于男生和女生分别占一定数量,该问题属于有重复元素的排列。
根据公式可知,解法为 P(5;3) = 5! / (2! × 3!) = 10 种。
1.2 无重复元素的排列当从 n 个不同元素中取出 r 个进行排列时(r ≤ n),排列的总数为P(n;r) = n! / (n-r)!。
【例题2】:有 9 个不同的球队参加一场篮球比赛。
其中第一名和第二名分别获得冠军和亚军。
请问这 9 支球队的比赛有多少种可能的结果?解:由于每个球队的位置是不同的,问题属于无重复元素的排列。
根据公式可知,解法为 P(9;2) = 9! / 7! = 72 种。
2. 组合组合是从若干个元素中取出一部分元素,不考虑顺序,形成不同的组合。
同样地,组合也有两种情况:有重复元素的组合和无重复元素的组合。
2.1 有重复元素的组合当从 n 个元素中取出 r 个进行组合时(r ≤ n),若这些元素中有重复元素,则组合的总数为 C(n;r) = (n+r-1)! / (r! × (n-1)!)。
高中排列组合知识点汇总及典型例题(全)
一.基来源根底理之五兆芳芳创作1.加法原理:做一件事有n 类办法,则完成这件事的办法数等于各类办法数相加.2.乘法原理:做一件事分n 步完成,则完成这件事的办法数等于各步办法数相乘. 注:做一件事时,元素或位置允许重复使用,求办法数时经常使用基来源根底理求解.二.排列:从n 个不合元素中,任取m (m≤n )个元素,依照一定的顺序排成一.m n m n A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从1.公式:1.()()()()!!121m n n m n n n n A m n -=+---=……2.规定:0!1=(1)!(1)!,(1)!(1)!n n n n n n =⨯-+⨯=+(2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ⨯=+-⨯=+⨯-=+-;(3)111111(1)!(1)!(1)!(1)!!(1)!n n n n n n n n n +-+==-=-+++++ 三.组合:从n 个不合元素中任取m (m≤n )个元素并组成一组,叫做从n 个不合的m 元素中任取 m 个元素的组合数,记作 Cn .1. 公式: ()()()C A A n n n m m n m n m n m n m mm ==--+=-11……!!!!10=n C 规定: ①;②;③;④若12m m 1212m =m m +m n n n C C ==则或四.处理排列组合应用题 1.①明确要完成的是一件什么事(审题) ②有序仍是无序 ③分步仍是分类.2.解排列、组合题的根本战略(1)两种思路:①直接法;②直接法:对有限制条件的问题,先从总体考虑,再把不合适条件的所有情况去掉.这是解决排列组合应用题时一种经常使用的解题办法.(2)分类处理:当问题总体欠好解决时,常分红若干类,再由分类计数原理得出结论.注意:分类不重复不遗漏.即:每两类的交集为空集,所有各类的并集为全集.(3)分步处理:与分类处理类似,某些问题总体欠好解决时,经常分红若干步,再由分步计数原理解决.在处理排列组合问题时,经常既要分类,又要分步.其原则是先分类,后分步.(4)两种途径:①元素阐发法;②位置阐发法.3.排列应用题:(1)穷举法(列举法):将所有满足题设条件的排列与组合逐一列举出来; (2)、特殊元素优先考虑、特殊位置优先考虑;(3).相邻问题:捆邦法:对于某些元素要求相邻的排列问题,先将相邻接的元素“捆绑”起来,看作一“大”元素与其余元素排列,然后再对相邻元素内部进行排列.(4)、全不相邻问题,插空法:某些元素不克不及相邻或某些元素要在某特殊位置时可采取插空法.即先安插好没有限制条件的元素,然后再将不相邻接元素在已排好的元素之间及两端的空隙之间拔出.(5)、顺序一定,除法处理.先排后除或先定后插解法一:对于某几个元素按一定的顺序排列问题,可先把这几个元素与其他元素一同进行全排列,然后用总的排列数除于这几个元素的全排列数.即先全排,再除以定序元素的全排列.解法二:在总位置中选出定序元素的位置不介入排列,先对其他元素进行排列,剩余的几个位置放定序的元素,若定序元素要求从左到右或从右到左排列,则只有1种排法;若不要求,则有2种排法;(6)“小团体”排列问题——采取先整体后局部战略对于某些排列问题中的某些元素要求组成“小团体”时,可先将“小团体”看作一个元素与其余元素排列,最后再进行“小团体”内部的排列.(7)分排问题用“直排法”把元素排成几排的问题,可归结为一排考虑,再分段处理.(8).数字问题(组成无重单数字的整数)①能被2整除的数的特征:末位数是偶数;不克不及被2整除的数的特征:末位数是奇数.②能被3整除的数的特征:列位数字之和是3的倍数;③能被9整除的数的特征:列位数字之和是9的倍数④能被4整除的数的特征:末两位是4的倍数. ⑤能被5整除的数的特征:末位数是0或5.⑥能被25整除的数的特征:末两位数是25,50,75. ⑦能被6整除的数的特征:列位数字之和是3的倍数的偶数.4.组合应用题:(1).“至少”“至多”问题用直接排除法或分类法: (2).“含”与“不含” 用直接排除法或分类法:3.分组问题:均匀分组:分步取,得组合数相乘,再除以组数的阶乘.即除法处理.非均匀分组:分步取,得组合数相乘.即组合处理.混杂分组:分步取,得组合数相乘,再除以均匀分组的组数的阶乘.4.分派问题:定额分派:(指定到具体位置)即固定位置固定人数,分步取,得组合数相乘.随机分派:(不指定到具体位置)即不固定位置但固定人数,先分组再排列,先组合分堆后排,注意平均分堆除以均匀分组组数的阶乘.5.隔板法:不成分辩的球即相同元素分组问题例1.电视台连续播放6个告白,其中含4个不合的商业告白和2个不合的公益告白,要求首尾必须播放公益告白,则共有种不合的播放方法(结果用数值暗示).例3.6人排成一行,甲不排在最左端,乙不排在最右端,共有多少种排法?例.有4个男生,3个女生,高矮互不相等,现将他们排成一行,要求从左到右,女生从矮到高排列,有多少种排法?1.从4台甲型和5台乙型电视机中任取3台,其中至少要甲型和乙型电视机各一台,则不合的取法共有2.从5名男生和4名女生中选出4人去介入辩论角逐(1)如果4人中男生和女生各选2人,有种选法;(2)如果男生中的甲与女生中的乙必须在内,有种选法;(3)如果男生中的甲与女生中的乙至少要有1人在内,有种选法;(4)如果4人中必须既有男生又有女生,有种选法1.6团体分乘两辆不合的汽车,每辆车最多坐4人,则不合的乘车办法数为() A.40B.50C.60D.702.有6个座位连成一排,现有3人就坐,则恰有两个空座位相邻的不合坐法有() A.36种B.48种C.72种D.96种3.只用1,2,3三个数字组成一个四位数,规则这三个数必须同时使用,且同一数字不克不及相邻出现,这样的四位数有()A.6个B.9个C.18个D.36个4.男女学生共有8人,从男生中选取2人,从女生中选取1人,共有30种不合的选法,其中女生有()A.2人或3人B.3人或4人C.3人D.4人5.某幢楼从二楼到三楼的楼梯共10级,上楼可以一步上一级,也可以一步上两级,若规则从二楼到三楼用8步走完,则办法有()A.45种B.36种C.28种D.25种6.某公司招聘来8名员工,平均分派给下属的甲、乙两个部分,其中两名英语翻译人员不克不及分在同一个部分,另外三名电脑编程人员也不克不及全分在同一个部分,则不合的分派计划共有()A.24种B.36种C.38种D.108种7.已知荟萃A={5},B={1,2},C={1,3,4},从这三个荟萃中各取一个元素组成空间直角坐标系中点的坐标,则确定的不合点的个数为()8.由1、2、3、4、5、6组成没有重单数字且1、3都不与5相邻的六位偶数的个数是()A.72 B.96 C.108 D.1449.如果在一周内(周一至周日)安插三所学校的学生不雅赏某展览馆,每天最多只安插一所学校,要求甲学校连续不雅赏两天,其余学校均只不雅赏一天,那么不合的安插办法有()A.50种B.60种C.120种D.210种10.安插7位任务人员在5月1日到5月7日值班,每人值班一天,其中甲、乙二人都不克不及安插在5月1日和2日,不合的安插办法共有________种.(用数字作答)11.今有2个红球、3个黄球、4个白球,同色球不加以区分,将这9个球排成一列有________种不合的排法.(用数字作答)12.将6位志愿者分红4组,其中两个组各2人,另两个组各1人,分赴世博会的四个不合场馆办事,不合的分派计划有________种(用数字作答).14. 将标号为1,2,3,4,5,6的6张卡片放入3个不合的信封中.若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不合的办法共有(A)12种(B)18种(C)36种(D)54种15. 某单位安插7位员工在10月1日至7日值班,每天1人,每人值班1天,若7位员工中的甲、乙排在相邻两天,丙不排在10月1日,丁不排在10月7日,则不合的安插计划共有A. 504种B. 960种C. 1008种D. 1108种解析:分两类:甲乙排1、2号或6、7号 共有4414222A A A ⨯种办法甲乙排中间,丙排7号或不排7号,共有)(43313134422A A A A A +种办法故共有1008种不合的排法排列组合 二项式定理1,分类计数原理 完成一件事有几类办法,各类办法相互独立每类办法又有多种不合的办法(每一种都可以独立的完成这个事情)分步计数原理 完成一件事,需要分几个步调,每一步的完成有多种不合的办法 2,排列排列定义:从n 个不合元素中,任取m (m≤n )个元素(被取出的元素各不相同),3,组合组合定义 从n 个不合元素中,任取m (m≤n )个元素并成一组,叫做从n 个不合元素中取出m 个元素的一个组合组合数 从n 个不合元素中,任取m (m≤n )个元素的所有组合个数 m n C m n C =!!()!n m n m - 性质 m nC =n m n C -11m m m n n n C C C -+=+ 排列组合题型总结一. 直接法1 .特殊元素法例1用1,2,3,4,5,6这6个数字组成无重复的四位数,试求满足下列条件的四位数各有多少个(1)数字1不排在个位和千位(2)数字1不在个位,数字6不在千位.Eg 有五张卡片,它的正背面辨别写0与1,2与3,4与5,6与7,8与9,将它们任意三张并排放在一起组成三位数,共可组成多少个不合的三位数? Eg 三个女生和五个男生排成一排(1) 女生必须全排在一起 有多少种排法( 捆绑法)(2) 女生必须全分隔 (插空法 须排的元素必须相邻)(3) 两端不克不及排女生(4) 两端不克不及全排女生(5) 如果三个女生占前排,五个男生站后排,有多少种不合的排法二. 插空法 当需排元素中有不克不及相邻的元素时,宜用插空法.例3 在一个含有8个节目的节目单中,临时拔出两个歌颂节目,且保持原节目顺序,有多少中拔出办法?捆绑法 当需排元素中有必须相邻的元素时,宜用捆绑法.1.四个不合的小球全部放入三个不合的盒子中,若使每个盒子不空,则不合的放法有种,2,某市植物园要在30天内接待20所学校的学生不雅赏,但每天只能安插一所学校,其中有一所学校人数较多,要安插连续不雅赏2天,其余只不雅赏一天,则植物园30天内不合的安插办法有(1928129A C )(注意连续不雅赏2天,即需把30天种的连续两天捆绑看成一天作为一个整体来选有129C 其余的就是19所学校选28天进行排列)三. 阁板法 名额分派或相同物品的分派问题,适宜采阁板用法例5 某校准备组建一个由12人组成篮球队,这12团体由8个班的学生组成,每班至少一人,名额分派计划共种 .五 平均分推问题eg 6本不合的书按一下方法处理,各有几种分发?(1)平均分红三堆,(2)平均分给甲乙丙三人(3)一堆一本,一堆两本,一对三本(4)甲得一本,乙得两本,丙得三本(一种分组对应一种计划)(5)一人的一本,一人的两本,一人的三本。
高中排列组合知识点汇总及典型例题(全)
高中排列组合知识点汇总及典型例题(全)一、基本原理1.加法原理:如果做一件事有n类办法,则完成这件事的方法数等于各类方法数相加。
2.乘法原理:如果做一件事分n步完成,则完成这件事的方法数等于各步方法数相乘。
注:当做一件事时,元素或位置允许重复使用时,常用基本原理求解。
二、排列从n个不同元素中任取m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列,所有排列的个数记为An公式:Anm=n(n-1)(n-2)…(n-m+1)=n!/(n-m)!规定:0!=1性质:1.n!=n×(n-1)。
(n+1)×n!=(n+1)!2.n×n!=[(n+1)-1]×n!=(n+1)×n!-n!=(n+1)!-n!3.n(n+1)/2-1=n(n-1)/2三、组合从n个不同元素中任取m(m≤n)个元素并组成一组,叫做从n个不同的m元素中任取m个元素的组合数,记作C nm。
公式:Cnm=n!/m!(n-m)! 性质:1.若Cn1=m,则Cnm=Cnm-1+Cn-1m-1规定:Cn1=Cnn=12.Cn0+Cn1+。
+C nn=2^n3.Crr+1+Crr+2+。
+C rn=Cr+1n4.CnC1nCnn=2^n四、处理排列组合应用题1.明确要完成的是一件什么事(审题);2.确定有序还是无序,分步还是分类;3.解排列、组合题的基本策略:1)直接法;2)间接法:对有限制条件的问题,先从总体考虑,再把不符合条件的所有情况去掉。
3)分类处理:当问题总体不好解决时,常分成若干类,再由分类计数原理得出结论。
注意:分类不重复不遗漏。
即:每两类的交集为空集,所有各类的并集为全集。
3.排列应用题:一种解法是穷举法,即将所有满足题设条件的排列和组合逐一列举出来。
另一种解法是特殊元素和特殊位置优先考虑。
对于相邻问题,可以使用捆绑法,将相邻的元素看作一“大”元素与其余元素排列,然后再对相邻元素内部进行排列。
《排列组合》知识点总结+典型例题+练习(含答案)
排列组合考纲要求1.了解排列的意义,理解排列数公式,并能用它们解决一些简单的实际问题.2.了解组合的意义,理解组合数公式,并能用它们解决一些简单的实际问题.3. 了解组合数性质. 知识点一:排列1.排列的定义:从n 个不同元素中,任取m (m ≤n )个不同的元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.若m <n ,这样的排列叫选排列;若m =n ,这样的排列叫全排列.2.排列数公式:从n 个不同元素中取出m (m ≤n )个不同的元素的所有排列的个数,从n 个不同元素中取出m 元素的排列数,记作mn P .(1) P m n =n (n -1)(n -2) … (n -m +1); (2) ==!P n n n n (n -1)(n -2) … 3×2×1; (3) P m n =()!!n n m -; 规定:0!=1.知识点二:解决排列问题的基本方法.1. 优限法:即先排特殊的元素,或者特殊的位置.2.捆绑法:相邻问题,把相邻的元素看成一个整体,然后再参与其他元素的排列. 3.插空法:对元素互不相邻的排列问题,常常采用插空法,首先考虑不受限制的元素的排列,再将不相邻的元素插在前面元素排列的空位中.4. 排除法:即从正面难以考虑时可以考虑它的对立面,用全部结果数减去对立事件的方法数.5.枚举法:即将所有排列按照一定的规律,一一列举出来的方法. 知识点三:组合1.组合的定义:从n 个不同元素中,任取m (m ≤n )个不同的元素,组成一组,叫做从n 个不同元素中取出m 个元素的一个组合.2.组合数公式:从n 个不同元素中取出m (m ≤n )个不同的元素的所有组合的个数,从n个不同元素中取出m 元素的组合数,记作mn C .(1)()()()121P C P !mm nnmn n n n n m m ---+==;(2)()!C !!mn n m n m =-(n ,*N ∈m ,且m ≤n ).3. 组合数性质:(1) C =C m n mn n-; (2) 111C +C C m m m n n n +++=.知识点四:解组合问题的方法1.分类讨论:即分析题中的限定条件将所给元素按性质适当分类,并侧重其中一类,相应各类分类讨论,分类时要做到不重不漏.2.等价转化:即把所求问题转化为与之等价的组合问题去解决.3.排除法.4.枚举法.知识点五:计数需注意问题1.排列为有序问题,组合为无序问题,两者都是不重复问题.2.排列包括两个要素,一个是不同的元素,另一个是确定的顺序. 即排列可分成两步,第一步取出元素,第二步排列顺序.3.组合只有一个要素,就是取出元素即可,与元素的排列顺序无关.4.要注意区分分类和分步计数原理,排列和组合,元素允许重复是直接用计数原理,而元素不允许重复的是排列和组合问题. 题型一 排列定义例1 五个同学站一排照相,共多少种排法?分析:把5个元素放在5个位置上,相当于5的全排列,也共有120P 55=种排法. 解答:N =120P 55=种排法题型二 排列数公式例2 设x N *∈,10x <,(20)(21)(30)().x x x --⋅⋅⋅-=A. 1020P x -B. 1120P x -C. 1030P x -D. 1130P x -分析:排列数公式 P m n =n (n -1)(n -2)…(n -m +1)的特点: (1)等号右边最大的数是n ; (2)等号右边最小的数是n -m +1; (3)共有m 个连续自然数相乘. 解答:30n x =-,(30)(20)111m x x =---+=,∴ (20)(21)(30)x x x --⋅⋅⋅-=1130P x -题型三 解决排列应用题 例3 用1、2、3、4、5、6个数. (1)可以组成多少个五位数?(2)可以组成多少个没有重复数字的五位数? (3)可以组成多少个1和2相邻的六位数? (4)可以组成多少个1和2不相邻的六位数?分析:先考虑是用分类分步还是用排列组合,就是要观察一下数字是否允许重复,数字允许重复用分类分步计数原理,数字不允许重复用排列组合,数字相邻用捆绑法,数字不相邻用插空法.解答:(1)数字可以重复,所以用分步计数原理,每个数位上都有6个数字可选,因此共有5666666⨯⨯⨯⨯=个.(2)数字不可以重复,还有顺序,所以用排列,共720P 56==N 个.(3)1和2相邻,用捆绑法,先排1和2共22P 种,与余下的4个元素共有55P 种,则共有240P P 5522=个.(4)1和2不相邻,插空法,先排余下的4个元素44P 种,,再从5个空中挑选2个即25P 种,则共有480P P 2544=个.题型四 组合定义及组合数公式例4 从8名男生2名女生中任选5人, (1)共有多少种不同的选法? (2)恰好有一名女生的不同选法? 分析:选取元素干同一件事就组合问题.解答:(1)所有不同选法数就从10人中任选5人的组合数即252C 510=种.(2)从2名女生中任选1人的选法有12C 种,从8名男生中选出4人的选法有48C 种,由分步计数原理,恰有一名女生的选法有140C C 4812=种.题型五 组合数公式例5 (1)已知321818C C -=x x 则x =____. (2)=+97999899C C _____.分析:灵活运用组合数性质.解答:(1)根据题意得 23x x =-或(23)18x x +-=则3x =或7x =.(2)4950299100C C C C 21009810097999899=⨯===+. 题型六 解组合应用题例6 从8件不同的服装快递,2件不同的食品快递中任选5件. (1)至少有一件食品快递的不同选法总数? (2)最多有一件食品快递的不同选法总数?分析:解决带有限制条件的组合应用题要根据题意正确地分类或分步,巧妙运用直接法或间接法.解答:(1)法一(直接法)分两类情况求解,第一类恰有一件食品快递选法有4812C C 种,第二类恰有两件食品快递选法有3822C C 种,由分类计数原理得至少有一件食品快递的不同选法共有196C C C C 38224812=+种.法二(排除法)从10件快递中任选5件选法总数减去选出的5件全为服装快递的总数即至少有一件为食品快递的不同选法有55108196C C -=种.(2) 最多有一件食品快递可分为以下两类,第一类选出的五件快递中恰有一件食品快递有1428C C 种选法,第二类选出的五件快递中恰有0件食品快递,有0528C C 种选法,由分类计数原理知最多有一件食品快递的选法有14052828196C C C C +=种.一、选择题1.设*x N ∈,10x <,则(10)(11)(17)x x x --⋅⋅⋅-用排列数符号表示为( ).A.x x --1017PB.817P x -C. 717P x -D. 810P x -2.从4人中任选2人担任正副班长,结果共有( )种.A. 4B. 6C. 12D. 243.将5本不同的笔记本分配给4个三好学生(每个学生只能拥有一本笔记本),则所有的分法种数为( ).A. 5!B. 20C. 54D. 454.5名学生报考4所不同的学校(每名学生只能报考一所学校),则所有的报考方法有( )种.A. 5!B. 20C. 54D. 455.将6名优秀教师分配到4个班级,要求每个班有1名教师,则不同的分法种数有( )种.A. 46PB. 46C. 46CD. 646.为抗击郑州水患,某医院派3名医生和6名护士支援郑州,他们被分配到郑州的三所医院,每个医院分配1名医生和2名护士,共有( )种不同的分配方法.A. 24122613P P P P +B. 221124122613P P P P P P ++ C. 121212362412C C C C C C ⋅⋅⋅⋅⋅ D. 121212362412C C C C C C ⋅+⋅+⋅7.从4名男生和5名女生中任取3人,其中男生至多有一人,则不同的取法共有( )种 . A. 30 B. 50 C. 70 D. 808.某小组有男生7人,女生3人,选出3人中有1名男生,2名女生的不同选法有( )种.A. 310CB. 310PC. 1273C C ⋅D. 2173C C ⋅9.10件产品中有2件次品,任取3件至少有1件次品的不同抽法为( )种.A. 1229C C ⋅ B. 312828C C C +⋅ C. 33108C C - D. 12122928C C C C ⋅-⋅10.式子(1)(2)(15)16!x x x x ++⋅⋅⋅+(x N *∈,1x >)可表示为( ).A. 1615P +xB. 1615x C +C. 16x CD. 17x C妙记巧学,归纳感悟 二、判断题:1. 34567⨯⨯⨯⨯等于37P .( )2. 从甲、乙、丙、丁中任选两人做正、副班长,共有12种.( )3. 6个座位,3个人去坐,每人坐一个座位,则共36C 种.( ) 4. 6个点最多可确定26C 条直线.( ) 5. 6个点最多可确定26C 条有向线段.( ) 6. 某铁路有十个站点,共需准备210P 种车票.( )7. 某铁路有十个站点,有210P 种不同票价(同样的两个站点的票价相同).( ) 8. 某组学生约定,假期每两人互通一封信,共计12封,这个小组学生有5人.( ) 9. 把语文、数学、英语、美术、历史这五门课排在一天的五节课中,数学必须比美术先上的排法总数为44C 种.( )10.从3、5、7、9中任选两个,可以组成12个不同的分数值.( ) 妙记巧学,归纳感悟 三、填空题1.若57n n C C =,则n =_______..2.若56P 2=n ,则n =_______.3.从数字0、1、2、3、4、5中任选3个数,可组成______个无重复数字的三位偶数.4.将4本同样的书分给5名同学,每名同学至多分一本,而且书必须分完则不同的分法总数有______种.5.2名教师和5名学生中选3人去旅游,教师不能不去,也不能全去,则共有______种选法. 妙记巧学,归纳感悟 四、解答1.将5名学生排成一排照相,其中3名男生,2名女生,则以下情况各有多少种不同的排法?(1)甲乙必须相邻; (2)甲乙互不相邻; (3)甲乙必须站两端; (4)甲乙不在两端; (5)男女相间.2. 将6本不同的书,在下列情况下有多少种分法? (1)分成相等的三份; (2)平均分给甲乙丙三位同学;(3)分成三份,一份一本,一份两本,一份三本; (4)甲分一本,乙分两本,丙分三本;(5)如果一人分一本,一人分两本,一人分三本,分给甲乙丙. 高考链接1.(2018)某年级有四个班,每班组成一个篮球队,每队分别同其他三个队比赛一场,共需要比赛( )场.A. 4B. 6C. 5D. 7 2. 某段铁路共有9个车站,共需准备( )种不同的车票. A. 36 B. 42 C.64 D. 723. 甲袋中装有6个小球,乙袋中装有4个小球,所有小球颜色各不相同,现从甲袋中取两个小球,乙袋中取一个小球,则取出三个小球的不同取法共有( )种. A. 30 B. 60 C.120 D. 3604. 某学校举行元旦曲艺晚会,有5个小品节目,3个相声节目,要求相声节目不能相邻,则不同的出场顺序有______种. 积石成山10件产品中有2件次品任取3件,至多有一件次品的不同取法总数为( )种.A. 312828C C C +B. 1229C C C. 33108C C - D. 12122928C C C C -2. 从4名男生和5名女生中任取3人,其中至少有男生,女生各一名,则不同的取法有( )种.A. 140B. 84C. 70D. 353. 某医疗小队有护士7人,医生3人,任选3人的不同选法有( ).A. 310CB. 310PC. 1273C C ⋅D. 2173C C ⋅4. 将4名优秀教师分配到3个班级,每个班至少分到一名教师,则不同的分配方案有( )种.A. 72B. 36C. 18D. 125. 5个人站成一排照相,甲不站排头,乙不站排尾的排法总数有( )种. A. 36 B. 78 C. 60 D. 486. 5个人站成一排照相,甲站中间的排法总数有( )种. A .24 B. 36 C. 60 D. 487. 5个人站成2排照相,第一排2人,第二排3人则不同的排法总数有( )种. A. 48 B. 78 C. 60 D. 1208. 从1、2、3、4中任选2个,再从5、6、7、8、9中任选2个可组成无重复的四位数的个数是( )个.A .720 B. 2880 C. 1440 D .1449. 某工作小组有9名工人,3名优秀工人,各抽5人参加比赛,要求优秀工人都参加不同的选法共有( )种.A. 12B.15C. 30D. 36 10. 式子(1)(2)(15)1!x x x x x ++⋅⋅⋅+-()(x N *∈,1x >)可表示为( ).A. 1615P +xB. 1615x C +C.16x C D .17x C排列组合答案一、选择题二、判断题三、填空题1.12 解析:根据组合数性质1得5712n =+=2.8 解析:2(1)56n P n n =-= 8n ∴=3. 52 解析:分两类,第一类个位是零则有2520P =个;第二类,个位不是零,则有11124432P P P =个,所以共有20+32=52个.4.5 解析:只需在五人中选四人得到书即可,书相同无需排序,则有455C =种. 5.20 解析:老师不能不去,也不能全去,则只能去一人即122520C C =种.妙记巧学,归纳感悟:答案全,结果简. 四、解答题1.解:(1)把甲乙捆绑在一起有22P 种,与余下的3名学生共有44P 种,则甲乙必须相邻,有242448P P =种排法.(2)先把余下的3名学生排好有33P 种,再从形成的4个空中任选两个甲乙来排有24P 种,则甲乙不相邻有323472P P =种排法.(3)甲乙必须站两端,先排甲乙有22P 种,再把余下的3名学生排在余下的3个位置有33P 种,则甲乙必须站两端有323212P P =种排法.(4)先从3个位置中选2个甲乙来排有23P 种,再把余下的3名学生排在余下的3个位置有33P 种,则甲乙不在两端有233336P P =种. (5)男女相间则有323212P P =种排法.2. 解:(1)平均分堆问题.有2226423315C C C P =种方法. (2)平均分配问题,每人均分得2本.甲先取两本26C 种,乙再取两本24C 种,丙最后取两本22C 种,由分步计数原理得222642C C C =90种方法.(3)不平均分堆问题,第一份16C 种,第二份25C 种,第三份33C 种,则共有123653C C C =60种方法.(4)不平均分配问题,甲先选一本16C 种,乙再选两本25C 种,丙最后选三本33C 种,则共有123653C C C =60种方法.(5)不平均分配问题,且没有指定对象,先分三份123653C C C 种,再把这三份分给甲乙丙三人有33P 种,则共有种12336533360C C C P =方法.妙记巧学,归纳感悟: 排列组合来相遇,先组后排无争议. 高考链接1.B2.D3.B4.2400 解析:相声节目不相邻,则用插空法先排5个小品节目共有55P 种,五个小品节目共形成六个空选三个空插入相声节目有36P 种,则共有53562400P P =种.积石成山。
排列组合知识点总结+典型例题及答案解析
排列组合知识点总结+典型例题及答案解析一.基本原理1.加法原理:做一件事有n 类方法,则完成这件事的方法数等于各类方法数相加。
2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。
注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。
二.排列:从n 个不同元素中,任取m 〔m ≤n 〕个元素,按照一定的顺序排成一.m n mn A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从1.公式:1.()()()()!!121m n n m n n n n A m n -=+---=……2.规定:0!1=(1)!(1)!,(1)!(1)!n n n n n n =⨯-+⨯=+ (2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ⨯=+-⨯=+⨯-=+-; (3)111111(1)!(1)!(1)!(1)!!(1)!n n n n n n n n n +-+==-=-+++++ 三.组合:从n 个不同元素中任取m 〔m ≤n 〕个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。
1. 公式: ()()()C A A n n n m m n m n m nmn m mm ==--+=-11……!!!! 10=n C 规定:组合数性质:.2 n n n n n m n m n m n m n n m n C C C C C C C C 21011=+++=+=+--……,, ①;②;③;④11112111212211r r r r r r r rr r r rr r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-+++++=++++=+++=注:假设12m m 1212m =m m +m n n n C C ==则或四.处理排列组合应用题 1.①明确要完成的是一件什么事〔审题〕 ②有序还是无序 ③分步还是分类。
高中排列组合知识点汇总及典型例题(全)
安排在 5 月 1 日和 2 日,不同的安排方法共有________种.(用数字作答)
[解析] 先安排甲、乙两人在后 5 天值班,有 A25=20(种)排法,其余 5 人再进行排列,有 A55 =120(种)排法,所以共有 20×120=2400(种)安排方法.
11.今有 2 个红球、3 个黄球、4 个白球,同色球不加以区分,将这 9 个球排成一列有________
Cr n1
Cnr
C r1 r 1
Cr r 1
Cr r2
Cnr1
Cnr
C r1 r2
Cr r2
Cnr1
Cnr
C r1 n1
若
C m1 n
C m2 n
则m1
=m
2或m1
+m
2
n
例 1.电视台连续播放 6 个广告,其中含 4 个不同的商业广告和 2 个不同的公益广告,要求
2.从 5 名男生和 4 名女生中选出 4 人去参加辩论比赛 (1)如果 4 人中男生和女生各选 2 人,
有 种选法; (2)如果男生中的甲与女生中的乙必须在内,有 种选法; (3)如果男
生中的甲与女生中的乙至少要有 1 人在内,有 种选法; (4)如果 4 人中必须既有男生又有
女生,有
种选法
分析:本题考查利用种数公式解答与组合相关的问题.由于选出的人没有地位的差异,所以是
中标号为 1,2 的卡片放入同一信封,则不同的方法共有
(A)12 种
(B)18 种
(C)36 种
(D)54 种
【解析】标号 1,2 的卡片放入同一封信有 种方法;其他四封信放入两个信封,每个信封两
最新排列组合知识点汇总及典型例题(全)
一.基本原理1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。
2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。
注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。
二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一.m n mn A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从1.公式:1.()()()()!!121m n n m n n n n A mn -=+---=……2.规定:0!1=(1)!(1)!,(1)!(1)!n n n n n n =⨯-+⨯=+ (2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ⨯=+-⨯=+⨯-=+-;(3)111111(1)!(1)!(1)!(1)!!(1)!n n n n n n n n n +-+==-=-+++++ 三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。
1. 公式: ()()()C A A n n n m m n m n m nm nm mm ==--+=-11……!!!! 10=nC 规定:组合数性质:.2 nn n n n m n m n m n m n n mnC C C C C C C C 21011=+++=+=+--……,,①;②;③;④11112111212211r r r r r r r rr r r rr r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-+++++=++++=+++=注:若12mm 1212m =m m +m n n n C C ==则或四.处理排列组合应用题 1.①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。
排列组合主要题型及解答方法
一、相邻问题捆绑法例1 6名同学排成一排,其中甲、乙两人必须排在一起的不同排法有( )种A。
720 B。
360 C. 240 D。
120解:因甲、乙两人要排在一起,故将甲、乙两人捆在一起视作一人,与其余四人进行全排列有种排法;甲、乙两人之间有种排法。
由分步计数原理可知,共有=240种不同排法,选C。
评注:从上述解法可以看出,所谓“捆绑法”,就是在解决对于某几个元素相邻的问题时,可整体考虑将相邻元素视作一个“大"元素。
二、相离问题插空法例2 要排一张有6个歌唱节目和4个舞蹈节目的演出节目单,任何两个舞蹈节目不得相邻,有多少不同的排法?(只要求写出式子,不必计算)解:先将6个歌唱节目排好,其不同的排法为种;这6个歌唱节目的空隙及两端共7个位置中再排4个舞蹈节目,有种排法.由分步计数原理可知,任何两个舞蹈节目不得相邻的排法为种.评注:从解题过程可以看出,不相邻问题是要求某些元素不能相邻,由其它元素将它们隔开。
此类问题可以先将其它元素排好,再将所指定的不相邻的元素插入到它们的间隙及两端位置,故称插空法.三、定序问题缩倍法例3 信号兵把红旗与白旗从上到下挂在旗杆上表示信号.现有3面红旗、2面白旗,把这5面旗都挂上去,可表示不同信号的种数是________(用数字作答).解:5面旗全排列有种挂法,由于3面红旗与2面白旗的分别全排列均只能算作一次的挂法,故共有不同的信号种数是=10(种).评法:在排列问题中限制某几个元素必须保持一定顺序称为定序问题。
这类问题用缩小倍数的方法求解比较方便快捷。
四、标号排位问题分步法例4 同室4人各写一张贺年卡,先集中起来,然后每人从中拿一张别人送来的贺年卡,则四张贺年卡的分配方式有( )种A. 6种 B。
9种 C. 11种D. 23种解:此题可以看成是将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,且每个方格的标号与所填数不同的填法问题。
所以先将1填入2至4号的3个方格里有种填法;第二步把被填入方格的对应数字,填入其它3个方格,又有种填法;第三步将余下的两个数字填入余下的两格中,只有1种填法.故共有3×3×1=9种填法,而选B.评注:把元素排在指定号码的位置上称为标号排位问题.求解这类问题可先把某个元素按规定排放,第二步再排另一个元素,如此继续下去,依次即可完成。
高中排列组合知识点汇总及典型例题(全)
一.基本原理1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。
2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。
注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。
二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一.m n mn A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从1.公式:1.()()()()!!121m n n m n n n n A m n -=+---=……2. 规定:0!1=(1)!(1)!,(1)!(1)!n n n n n n =⨯-+⨯=+ (2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ⨯=+-⨯=+⨯-=+-; (3)111111(1)!(1)!(1)!(1)!!(1)!n n n n n n n n n +-+==-=-+++++三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。
1. 公式: ()()()C A A n n n m m n m n m nmn m mm ==--+=-11……!!!! 10=n C 规定:组合数性质:.2 n nn n n m n m n m n m n n m n C C C C C C C C 21011=+++=+=+--……,,①;②;③;④11112111212211r r r r r r r r r r r r r r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-+++++=++++=+++=注: 若12m m 1212m =m m +m n n n C C ==则或 四.处理排列组合应用题 1.①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。
高中排列组合知识点汇总及典型例题(全)
一.基本原理1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。
2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。
注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。
二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一.m n mn A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从1.公式:1.()()()()!!121m n n m n n n n A mn -=+---=……2.规定:0!1=(1)!(1)!,(1)!(1)!n n n n n n =⨯-+⨯=+ (2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ⨯=+-⨯=+⨯-=+-;(3)111111(1)!(1)!(1)!(1)!!(1)!n n n n n n n n n +-+==-=-+++++ 三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。
1. 公式: ()()()C A A n n n m m n m n m nm nm mm ==--+=-11……!!!! 10=nC 规定:组合数性质:.2 n nn n n m n m n m n m n n mnC C C C C C C C 21011=+++=+=+--……,, ①;②;③;④11112111212211r r r r r r r rr r r rr r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-+++++=++++=+++=注: 若12mm 1212m =m m +m n n n C C ==则或四.处理排列组合应用题 1.①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。
高中排列组合知识点汇总及典型例题(全)
一.基来历根基理之袁州冬雪创作1.加法原理:做一件事有n 类法子,则完成这件事的方法数等于各类方法数相加.2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘. 注:做一件事时,元素或位置允许重复使用,求方法数时常常使用基来历根基理求解.二.摆列:从n 个分歧元素中,任取m (m≤n)个元素,依照一定的顺序排成一.m n m n A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从1.公式:1.()()()()!!121m n n m n n n n A m n -=+---=……2.规定:0!1=(1)!(1)!,(1)!(1)!n n n n n n =⨯-+⨯=+(2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ⨯=+-⨯=+⨯-=+-;(3)111111(1)!(1)!(1)!(1)!!(1)!n n n n n n n n n +-+==-=-+++++ 三.组合:从n 个分歧元素中任取m (m≤n)个元素并组成一组,叫做从n 个分歧的m 元素中任取 m 个元素的组合数,记作 Cn .1. 公式: ()()()C A A n n n m m n m n m n m n m mm ==--+=-11……!!!!10=n C 规定: ①;②;③;④若12m m 1212m =m m +m n n n C C ==则或四.处理摆列组合应用题 1.①明白要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类.2.解摆列、组合题的基本战略(1)两种思路:①直接法;②间接法:对有限制条件的问题,先从总体思索,再把不符合条件的所有情况去掉.这是处理摆列组合应用题时一种常常使用的解题方法.(2)分类处理:当问题总体欠好处理时,常分成若干类,再由分类计数原理得出结论.注意:分类不重复不遗漏.即:每两类的交集为空集,所有各类的并集为全集.(3)分步处理:与分类处理近似,某些问题总体欠好处理时,常常分成若干步,再由分步计数原理处理.在处理摆列组合问题时,常常既要分类,又要分步.其原则是先分类,后分步.(4)两种途径:①元素分析法;②位置分析法.3.摆列应用题:(1)穷举法(罗列法):将所有知足题设条件的摆列与组合逐一罗列出来; (2)、特殊元素优先思索、特殊位置优先思索;(3).相邻问题:捆邦法:对于某些元素要求相邻的摆列问题,先将相邻接的元素“绑缚”起来,看做一“大”元素与其余元素摆列,然后再对相邻元素外部停止摆列.(4)、全不相邻问题,插空法:某些元素不克不及相邻或某些元素要在某特殊位置时可采取插空法.即先安插好没有限制条件的元素,然后再将不相邻接元素在已排好的元素之间及两头的空地之间拔出.(5)、顺序一定,除法处理.先排后除或先定后插解法一:对于某几个元素按一定的顺序摆列问题,可先把这几个元素与其他元素一同停止全摆列,然后用总的摆列数除于这几个元素的全摆列数.即先全排,再除以定序元素的全摆列.解法二:在总位置中选出定序元素的位置不参与摆列,先对其他元素停止摆列,剩余的几个位置放定序的元素,若定序元素要求从左到右或从右到左摆列,则只有1种排法;若不要求,则有2种排法;(6)“小团体”摆列问题——采取先整体后部分战略对于某些摆列问题中的某些元素要求组成“小团体”时,可先将“小团体”看做一个元素与其余元素摆列,最后再停止“小团体”外部的摆列.(7)分排问题用“直排法”把元素排成几排的问题,可归纳为一排思索,再分段处理.(8).数字问题(组成无重复数字的整数)① 能被2整除的数的特征:末位数是偶数;不克不及被2整除的数的特征:末位数是奇数.②能被3整除的数的特征:各位数字之和是3的倍数;③能被9整除的数的特征:各位数字之和是9的倍数④能被4整除的数的特征:末两位是4的倍数. ⑤能被5整除的数的特征:末位数是0或5.⑥能被25整除的数的特征:末两位数是25,50,75. ⑦能被6整除的数的特征:各位数字之和是3的倍数的偶数.4.组合应用题:(1).“至少”“至多”问题用间接解除法或分类法: (2).“含”与“不含” 用间接解除法或分类法:3.分组问题:平均分组:分步取,得组合数相乘,再除以组数的阶乘.即除法处理.非平均分组:分步取,得组合数相乘.即组合处理.混合分组:分步取,得组合数相乘,再除以平均分组的组数的阶乘.4.分配问题:定额分配:(指定到详细位置)即固定位置固定人数,分步取,得组合数相乘.随机分配:(不指定到详细位置)即不固定位置但固定人数,先分组再摆列,先组合分堆后排,注意平均分堆除以平均分组组数的阶乘.5.隔板法:不成分辨的球即相同元素分组问题例1.电视台持续播放6个广告,其中含4个分歧的商业广告和2个分歧的公益广告,要求首尾必须播放公益广告,则共有种分歧的播放方式(成果用数值暗示).例3.6人排成一行,甲不排在最左端,乙不排在最右端,共有多少种排法?例.有4个男生,3个女生,高矮互不相等,现将他们排成一行,要求从左到右,女生从矮到高摆列,有多少种排法?1.从4台甲型和5台乙型电视机中任取3台,其中至少要甲型和乙型电视机各一台,则分歧的取法共有2.从5名男生和4名女生中选出4人去参与辩论比赛(1)如果4人中男生和女生各选2人,有种选法;(2)如果男生中的甲与女生中的乙必须在内,有种选法;(3)如果男生中的甲与女生中的乙至少要有1人在内,有种选法;(4)如果4人中必须既有男生又有女生,有种选法1.6个人分乘两辆分歧的汽车,每辆车最多坐4人,则分歧的乘车方法数为( ) A.40 B.50 C.60 D.702.有6个座位连成一排,现有3人就座,则恰有两个空座位相邻的分歧坐法有( )A.36种B.48种 C.72种D.96种3.只用1,2,3三个数字组成一个四位数,规定这三个数必须同时使用,且同一数字不克不及相邻出现,这样的四位数有( )A.6个B.9个 C.18个D.36个4.男女学生共有8人,从男生中选取2人,从女生中选取1人,共有30种分歧的选法,其中女生有( )A.2人或3人 B.3人或4人 C.3人 D.4人5.某幢楼从二楼到三楼的楼梯共10级,上楼可以一步上一级,也可以一步上两级,若规定从二楼到三楼用8步走完,则方法有( )A.45种B.36种 C.28种D.25种6.某公司招聘来8名员工,平均分配给下属的甲、乙两个部分,其中两名英语翻译人员不克不及分在同一个部分,别的三名电脑编程人员也不克不及全分在同一个部分,则分歧的分配方案共有( )A.24种B.36种 C.38种D.108种7.已知集合A={5},B={1,2},C={1,3,4},从这三个集合中各取一个元素构成空间直角坐标系中点的坐标,则确定的分歧点的个数为( )8.由1、2、3、4、5、6组成没有重复数字且1、3都不与5相邻的六位偶数的个数是( )A.72 B.96 C.108 D.1449.如果在一周内(周一至周日)安插三所学校的学生观赏某展览馆,天天最多只安插一所学校,要求甲学校持续观赏两天,其余学校均只观赏一天,那末分歧的安插方法有( )A.50种B.60种 C.120种D.210种10.安插7位工作人员在5月1日到5月7日值班,每人值班一天,其中甲、乙二人都不克不及安插在5月1日和2日,分歧的安插方法共有________种.(用数字作答)11.今有2个红球、3个黄球、4个白球,同色球不加以区分,将这9个球排成一列有________种分歧的排法.(用数字作答)12.将6位志愿者分成4组,其中两个组各2人,另两个组各1人,分赴世博会的四个分歧场馆服务,分歧的分配方案有________种(用数字作答).14. 将标号为1,2,3,4,5,6的6张卡片放入3个分歧的信封中.若每个信封放2张,其中标号为1,2的卡片放入同一信封,则分歧的方法共有(A )12种 (B )18种 (C )36种 (D )54种15. 某单位安插7位员工在10月1日至7日值班,天天1人,每人值班1天,若7位员工中的甲、乙排在相邻两天,丙不排在10月1日,丁不排在10月7日,则分歧的安插方案共有A. 504种B. 960种C. 1008种D. 1108种解析:分两类:甲乙排1、2号或6、7号 共有4414222A A A ⨯种方法甲乙排中间,丙排7号或不排7号,共有)(43313134422A A A A A +种方法故共有1008种分歧的排法摆列组合 二项式定理1,分类计数原理 完成一件事有几类方法,各类法子相互独立每类法子又有多种分歧的法子(每种都可以独立的完成这个事情)分步计数原理 完成一件事,需要分几个步调,每步的完成有多种分歧的方法 2,摆列摆列定义:从n 个分歧元素中,任取m (m≤n)个元素(被取出的元素各不相同),依照一定的顺序排成一列,叫做从n 个分歧元素中取出m 个元素的一个摆3,组合组合定义 从n 个分歧元素中,任取m (m≤n)个元素并成一组,叫做从n 个分歧元素中取出m 个元素的一个组合组合数 从n 个分歧元素中,任取m (m≤n)个元素的所有组合个数 m n C m n C =!!()!n m n m - 性质 m nC =n m n C -11m m m n n n C C C -+=+ 摆列组合题型总结一. 直接法1 .特殊元素法例1用1,2,3,4,5,6这6个数字组成无重复的四位数,试求知足下列条件的四位数各有多少个(1)数字1不排在个位和千位(2)数字1不在个位,数字6不在千位.Eg 有五张卡片,它的正反面分别写0与1,2与3,4与5,6与7,8与9,将它们任意三张并排放在一起组成三位数,共可组成多少个分歧的三位数? Eg 三个女生和五个男生排成一排(1) 女生必须全排在一起 有多少种排法( 绑缚法)(2) 女生必须全分开 (插空法 须排的元素必须相邻)(3) 两头不克不及排女生(4) 两头不克不及全排女生(5) 如果三个女生占前排,五个男生站后排,有多少种分歧的排法二. 插空法 当需排元素中有不克不及相邻的元素时,宜用插空法.例3 在一个含有8个节目标节目单中,姑且拔出两个歌唱节目,且坚持原节目顺序,有多少中拔出方法?绑缚法 当需排元素中有必须相邻的元素时,宜用绑缚法.1.四个分歧的小球全部放入三个分歧的盒子中,若使每个盒子不空,则分歧的放法有种,2,某市植物园要在30天内欢迎20所学校的学生观赏,但天天只能安插一所学校,其中有一所学校人数较多,要安插持续观赏2天,其余只观赏一天,则植物园30天内分歧的安插方法有(1928129A C )(注意持续观赏2天,即需把30天种的持续两天绑缚当作一天作为一个整体来选有129C 其余的就是19所学校选28天停止摆列)三. 阁板法 名额分配或相同物品的分配问题,适宜采阁板用法例5 某校准备组建一个由12人组成篮球队,这12个人由8个班的学生组成,每班至少一人,名额分配方案共种 .五平均分推问题eg 6本分歧的书按一下方式处理,各有几种分发?(1)平均分成三堆,(2)平均分给甲乙丙三人(3)一堆一本,一堆两本,一对三本(4)甲得一本,乙得两本,丙得三本(一种分组对应一种方案)(5)一人的一本,一人的两本,一人的三本。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
排列组合知识点总结+典型例题及答案解析一.基本原理1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。
2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。
注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。
二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一.m n mn A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从1.公式:1.()()()()!!121m n n m n n n n A m n -=+---=……2.规定:0!1=(1)!(1)!,(1)!(1)!n n n n n n =⨯-+⨯=+ (2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ⨯=+-⨯=+⨯-=+-; (3)111111(1)!(1)!(1)!(1)!!(1)!n n n n n n n n n +-+==-=-+++++ 三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。
1. 公式: ()()()C A A n n n m m n m n m nmn m mm ==--+=-11……!!!! 10=n C 规定:组合数性质:.2 n n n n n m n m n m n m n n m n C C C C C C C C 21011=+++=+=+--……,, ①;②;③;④11112111212211r r r r r r r r r r r r r r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-+++++=++++=+++=L L L 注:若12m m 1212m =m m +m n n n C C ==则或四.处理排列组合应用题 1.①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。
2.解排列、组合题的基本策略 (1)两种思路:①直接法;②间接法:对有限制条件的问题,先从总体考虑,再把不符合条件的所有情况去掉。
这是解决排列组合应用题时一种常用的解题方法。
(2)分类处理:当问题总体不好解决时,常分成若干类,再由分类计数原理得出结论。
注意:分类不重复不遗漏。
即:每两类的交集为空集,所有各类的并集为全集。
(3)分步处理:与分类处理类似,某些问题总体不好解决时,常常分成若干步,再由分步计数原理解决。
在处理排列组合问题时,常常既要分类,又要分步。
其原则是先分类,后分步。
(4)两种途径:①元素分析法;②位置分析法。
3.排列应用题:(1)穷举法(列举法):将所有满足题设条件的排列与组合逐一列举出来; (2)、特殊元素优先考虑、特殊位置优先考虑;(3).相邻问题:捆邦法:对于某些元素要求相邻的排列问题,先将相邻接的元素“捆绑”起来,看作一“大”元素与其余元素排列,然后再对相邻元素内部进行排列。
(4)、全不相邻问题,插空法:某些元素不能相邻或某些元素要在某特殊位置时可采用插空法.即先安排好没有限制条件的元素,然后再将不相邻接元素在已排好的元素之间及两端的空隙之间插入。
(5)、顺序一定,除法处理。
先排后除或先定后插解法一:对于某几个元素按一定的顺序排列问题,可先把这几个元素与其他元素一同进行全排列,然后用总的排列数除于这几个元素的全排列数。
即先全排,再除以定序元素的全排列。
解法二:在总位置中选出定序元素的位置不参加排列,先对其他元素进行排列,剩余的几个位置放定序的元素,若定序元素要求从左到右或从右到左排列,则只有1种排法;若不要求,则有2种排法;(6)“小团体”排列问题——采用先整体后局部策略对于某些排列问题中的某些元素要求组成“小团体”时,可先将“小团体”看作一个元素与其余元素排列,最后再进行“小团体”内部的排列。
(7)分排问题用“直排法”把元素排成几排的问题,可归纳为一排考虑,再分段处理。
(8).数字问题(组成无重复数字的整数)①能被2整除的数的特征:末位数是偶数;不能被2整除的数的特征:末位数是奇数。
②能被3整除的数的特征:各位数字之和是3的倍数;③能被9整除的数的特征:各位数字之和是9的倍数④能被4整除的数的特征:末两位是4的倍数。
⑤能被5整除的数的特征:末位数是0或5。
⑥能被25整除的数的特征:末两位数是25,50,75。
⑦能被6整除的数的特征:各位数字之和是3的倍数的偶数。
4.组合应用题:(1).“至少”“至多”问题用间接排除法或分类法: (2).“含”与“不含”用间接排除法或分类法:3.分组问题:均匀分组:分步取,得组合数相乘,再除以组数的阶乘。
即除法处理。
非均匀分组:分步取,得组合数相乘。
即组合处理。
混合分组:分步取,得组合数相乘,再除以均匀分组的组数的阶乘。
4.分配问题:定额分配:(指定到具体位置)即固定位置固定人数,分步取,得组合数相乘。
随机分配:(不指定到具体位置)即不固定位置但固定人数,先分组再排列,先组合分堆后排,注意平均分堆除以均匀分组组数的阶乘。
5.隔板法:不可分辨的球即相同元素分组问题例1.电视台连续播放6个广告,其中含4个不同的商业广告和2个不同的公益广告,要求首尾必须播放公益广告,则共有种不同的播放方式(结果用数值表示).解:分二步:首尾必须播放公益广告的有A22种;中间4个为不同的商业广告有A44种,从而应当填 A22·A44=48. 从而应填48.例人排成一行,甲不排在最左端,乙不排在最右端,共有多少种排法解一:间接法:即65546554720212024504A A A A--+=-⨯+=解二:(1)分类求解:按甲排与不排在最右端分类.(1) 甲排在最右端时,有55A种排法; (2) 甲不排在最右端(甲不排在最左端)时,则甲有14A种排法,乙有14A种排法,其他人有44A种排法,共有14A14A44A种排法,分类相加得共有55A+14A14A44A=504种排法例.有4个男生,3个女生,高矮互不相等,现将他们排成一行,要求从左到右,女生从矮到高排列,有多少种排法分析一:先在7个位置上任取4个位置排男生,有A 47种排法.剩余的3个位置排女生,因要求“从矮到高”,只有1种排法,故共有A 47·1=840种.1.从4台甲型和5台乙型电视机中任取3台,其中至少要甲型和乙型电视机各一台,则不同的取法共有解析1:逆向思考,至少各一台的反面就是分别只取一种型号,不取另一种型号的电视机,故不同的取法共有33394570C C C --=种,选.C解析2:至少要甲型和乙 型电视机各一台可分两种情况:甲型1台乙型2台;甲型2台乙型1台;故不同的取法有2112545470C C C C +=台,选C . 2.从5名男生和4名女生中选出4人去参加辩论比赛(1)如果4人中男生和女生各选2人,有 种选法; (2)如果男生中的甲与女生中的乙必须在内,有 种选法; (3)如果男生中的甲与女生中的乙至少要有1人在内,有 种选法; (4)如果4人中必须既有男生又有女生,有 种选法分析:本题考查利用种数公式解答与组合相关的问题.由于选出的人没有地位的差异,所以是组合问题.解:(1)先从男生中选2人,有25C 种选法,再从女生中选2人,有24C 种选法,所以共有2254C C =60(种);(2)除去甲、乙之外,其余2人可以从剩下的7人中任意选择,所以共有2227C C =21(种);(3)在9人选4人的选法中,把甲和乙都不在内的去掉,得到符合条件的选法数:4497C C -=91(种);直接法,则可分为3类:只含甲;只含乙;同时含甲和乙,得到符合条件的方法数131322332171727777C C C C C C C C C ++=++=91(种). (4)在9人选4人的选法中,把只有男生和只有女生的情况排除掉,得到选法总数444954C C C --=120(种).直接法:分别按照含男生1、2、3人分类,得到符合条件的选法为132231545454C C C C C C ++=120(种).1.6个人分乘两辆不同的汽车,每辆车最多坐4人,则不同的乘车方法数为( ) A .40 B .50 C .60 D .70[解析] 先分组再排列,一组2人一组4人有C 26=15种不同的分法;两组各3人共有C 36A 22=10种不同的分法,所以乘车方法数为25×2=50,故选B.2.有6个座位连成一排,现有3人就坐,则恰有两个空座位相邻的不同坐法有( ) A .36种 B .48种 C .72种 D .96种[解析] 恰有两个空座位相邻,相当于两个空位与第三个空位不相邻,先排三个人,然后插空,从而共A 33A 24=72种排法,故选C.3.只用1,2,3三个数字组成一个四位数,规定这三个数必须同时使用,且同一数字不能相邻出现,这样的四位数有( )A .6个B .9个C .18个D .36个[解析] 注意题中条件的要求,一是三个数字必须全部使用,二是相同的数字不能相邻,选四个数字共有C 13=3(种)选法,即1231,1232,1233,而每种选择有A 22×C 23=6(种)排法,所以共有3×6=18(种)情况,即这样的四位数有18个.4.男女学生共有8人,从男生中选取2人,从女生中选取1人,共有30种不同的选法,其中女生有( )A .2人或3人B .3人或4人C .3人D .4人[解析] 设男生有n 人,则女生有(8-n )人,由题意可得C 2n C 18-n =30,解得n =5或n =6,代入验证,可知女生为2人或3人.5.某幢楼从二楼到三楼的楼梯共10级,上楼可以一步上一级,也可以一步上两级,若规定从二楼到三楼用8步走完,则方法有( )A .45种B .36种C .28种D .25种[解析] 因为10÷8的余数为2,故可以肯定一步一个台阶的有6步,一步两个台阶的有2步,那么共有C28=28种走法.6.某公司招聘来8名员工,平均分配给下属的甲、乙两个部门,其中两名英语翻译人员不能分在同一个部门,另外三名电脑编程人员也不能全分在同一个部门,则不同的分配方案共有( )A.24种B.36种 C.38种D.108种[解析] 本题考查排列组合的综合应用,据题意可先将两名翻译人员分到两个部门,共有2种方法,第二步将3名电脑编程人员分成两组,一组1人另一组2人,共有C13种分法,然后再分到两部门去共有C13A22种方法,第三步只需将其他3人分成两组,一组1人另一组2人即可,由于是每个部门各4人,故分组后两人所去的部门就已确定,故第三步共有C13种方法,由分步乘法计数原理共有2C13A22C13=36(种).7.已知集合A={5},B={1,2},C={1,3,4},从这三个集合中各取一个元素构成空间直角坐标系中点的坐标,则确定的不同点的个数为( )A.33 B.34 C.35 D.36[解析] ①所得空间直角坐标系中的点的坐标中不含1的有C12·A33=12个;②所得空间直角坐标系中的点的坐标中含有1个1的有C12·A33+A33=18个;③所得空间直角坐标系中的点的坐标中含有2个1的有C13=3个.故共有符合条件的点的个数为12+18+3=33个,故选A.8.由1、2、3、4、5、6组成没有重复数字且1、3都不与5相邻的六位偶数的个数是( ) A.72 B.96 C.108 D.144[解析] 分两类:若1与3相邻,有A22·C13A22A23=72(个),若1与3不相邻有A33·A33=36(个)故共有72+36=108个.9.如果在一周内(周一至周日)安排三所学校的学生参观某展览馆,每天最多只安排一所学校,要求甲学校连续参观两天,其余学校均只参观一天,那么不同的安排方法有( ) A.50种B.60种 C.120种D.210种[解析] 先安排甲学校的参观时间,一周内两天连排的方法一共有6种:(1,2)、(2,3)、(3,4)、(4,5)、(5,6)、(6,7),甲任选一种为C16,然后在剩下的5天中任选2天有序地安排其余两所学校参观,安排方法有A25种,按照分步乘法计数原理可知共有不同的安排方法C16·A25=120种,故选C.10.安排7位工作人员在5月1日到5月7日值班,每人值班一天,其中甲、乙二人都不能安排在5月1日和2日,不同的安排方法共有________种.(用数字作答)[解析] 先安排甲、乙两人在后5天值班,有A 25=20(种)排法,其余5人再进行排列,有A 55=120(种)排法,所以共有20×120=2400(种)安排方法.11.今有2个红球、3个黄球、4个白球,同色球不加以区分,将这9个球排成一列有________种不同的排法.(用数字作答)[解析] 由题意可知,因同色球不加以区分,实际上是一个组合问题,共有C 49·C 25·C 33=1260(种)排法.12.将6位志愿者分成4组,其中两个组各2人,另两个组各1人,分赴世博会的四个不同场馆服务,不同的分配方案有________种(用数字作答).[解析] 先将6名志愿者分为4组,共有C 26C 24A 22种分法,再将4组人员分到4个不同场馆去,共有A 44种分法,故所有分配方案有:C 26·C 24A 22·A 44=1 080种. 13.要在如图所示的花圃中的5个区域中种入4种颜色不同的花,要求相邻区域不同色,有________种不同的种法(用数字作答).[解析] 5有4种种法,1有3种种法,4有2种种法.若1、3同色,2有2种种法,若1、3不同色,2有1种种法,∴有4×3×2×(1×2+1×1)=72种.14. 将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中.若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的方法共有(A )12种 (B )18种 (C )36种 (D )54种【解析】标号1,2的卡片放入同一封信有种方法;其他四封信放入两个信封,每个信封两个有种方法,共有种,故选B.15. 某单位安排7位员工在10月1日至7日值班,每天1人,每人值班1天,若7位员工中的甲、乙排在相邻两天,丙不排在10月1日,丁不排在10月7日,则不同的安排方案共有A. 504种B. 960种C. 1008种D. 1108种解析:分两类:甲乙排1、2号或6、7号 共有4414222A A A ⨯种方法 甲乙排中间,丙排7号或不排7号,共有)(43313134422A A A A A +种方法 故共有1008种不同的排法排列组合 二项式定理1,分类计数原理 完成一件事有几类方法,各类办法相互独立每类办法又有多种不同的办法(每一种都可以独立的完成这个事情)分步计数原理 完成一件事,需要分几个步骤,每一步的完成有多种不同的方法 2,排列3,组合组合定义 从n 个不同元素中,任取m (m≤n)个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合组合数 从n 个不同元素中,任取m (m≤n)个元素的所有组合个数 mn Cmn C =!!()!n m n m -性质 mn C =n mn C - 11mmm n n n C C C -+=+排列组合题型总结一. 直接法1 .特殊元素法例1用1,2,3,4,5,6这6个数字组成无重复的四位数,试求满足下列条件的四位数各有多少个 (1)数字1不排在个位和千位(2)数字1不在个位,数字6不在千位。