排列组合例题

合集下载

排列组合典型例题总结

排列组合典型例题总结

例1. 3名男生,4名女生,按照不同的要求排队,求下面不同的排队方案的方法种数。

(1)选5名同学排成一行;(2)全体站成一排,其中甲只能在中间或两端;(3)全体站成一排,其中甲、乙必须在两端;(4)全体站成一排,其中甲不在最左端,乙不在最右端;(5)全体站成一排,男女各站在一起;(6)全体站成一排,男生必须排在一起;(7)全体站成一排,男生不能排在一起;(8)全体站成一排,男、女生各不相邻;(9)全体站成一排,甲、乙两人必须相邻,且甲、乙都不与丙相邻;(10)全体站成一排,甲、乙中间必须有2人;(11)全体站成一排,甲必须在乙的右边;(12)全体站成一排,甲、乙、丙三人自左向右的顺序不变;(13)排成前后两排,前排3人,后排4人。

【组合问题】例2. 课外活动小组共13人,其中男生8人,女生5人,并且男、女生各指定一名队长。

现从中选5人主持某项活动,依下列条件各有多少种选法?(1)只有一名女生当选;(2)两队长都当选;(3)至少有一名队长当选;(4)至多有两名女生当选;(5)既要有队长、又要有女生当选。

【分组分配问题】例3.按以下要求分配6本不同的书,各有几种分法?(1)分成三份,一份1本,一份2本,一份3本;(2)平均分成三份,每份2本;(3)分成三份,一份4本,另两份每份2本;(4)甲、乙、丙三人一人得一本,一人得两本,一人得三本;(5)平均分给甲、乙、丙三人,每人得2本;(6)甲、乙、丙三人中一人得4本,另两人每人得一本;(7)甲得1本,乙得2本,丙得3本;(8)甲得1本,乙得1本,丙得4本。

例4. 6个工厂组建一公司,共需要10名工人,每厂至少一人,至多3人,那么这10名工人在6个工厂分布情形有多少种?变式.……每厂至少一人,……?【练习】1.(1)6名运动员分配到四所学校去作体育表演,每校至少一人,有多少种分配方法?(2)分别从四所学校,选拔6名运动员,每校至少一人,有多少种不同选法?2. 若6本书放到四个不同的盒子中,每个盒子至少一本,有多少种不同的放法?3. 某中学要把9台型号相同的电脑送给三所希望小学,每所小学至少得两台,不同送法的种数为_______.(用数字作答)4. 某校安排5个班到4个工厂进行社会实践,每个班去一个工厂,每个工厂至少安排一个班,不同的安排方法共有________种.(用数字作答)5. 高中二年级8个班,组织一个12人年级学生分会,每班至少一人,名额分配有________种. (用数字作答)6. 5项不同的工程,由三个工程队全部包下来,每队至少承包一项工程,则不同的承包方案有________种. (用数字作答)7.(10湖北)现安排甲、乙、丙、丁、戊5名同学参加上海世博会志愿者服务活动,每人从事翻译、导游、礼仪、司机四项工作之一,每项工作至少有一人参加。

排列组合典型例题

排列组合典型例题

排列组合典型例题 Prepared on 22 November 2020典型例题一例1 用0到9这10 个数字.可组成多少个没有重复数字的四位偶数解法1:当个位数上排“0”时,千位,百位,十位上可以从余下的九个数字中任选3个来排列,故有39A 个;当个位上在“2、4、6、8”中任选一个来排,则千位上从余下的八个非零数字中任选一个,百位,十位上再从余下的八个数字中任选两个来排,按乘法原理有281814A A A ⋅⋅(个).∴ 没有重复数字的四位偶数有2296179250428181439=+=⋅⋅+A A A A 个. 典型例题二例2 三个女生和五个男生排成一排(1)如果女生必须全排在一起,可有多少种不同的排法(2)如果女生必须全分开,可有多少种不同的排法(3)如果两端都不能排女生,可有多少种不同的排法(4)如果两端不能都排女生,可有多少种不同的排法解:(1)(捆绑法)因为三个女生必须排在一起,所以可以先把她们看成一个整体,这样同五个男生合一起共有六个元素,然成一排有66A 种不同排法.对于其中的每一种排法,三个女生之间又都有33A 对种不同的排法,因此共有43203366=⋅A A 种不同的排法. (2)(插空法)要保证女生全分开,可先把五个男生排好,每两个相邻的男生之间留出一个空档.这样共有4个空档,加上两边两个男生外侧的两个位置,共有六个位置,再把三个女生插入这六个位置中,只要保证每个位置至多插入一个女生,就能保证任意两个女生都不相邻.由于五个男生排成一排有55A 种不同排法,对于其中任意一种排法,从上述六个位置中选出三个来让三个女生插入都有36A 种方法,因此共有144003655=⋅A A 种不同的排法. (3)解法1:(位置分析法)因为两端不能排女生,所以两端只能挑选5个男生中的2个,有25A 种不同的排法,对于其中的任意一种排法,其余六位都有66A 种排法,所以共有144006625=⋅A A 种不同的排法.(4)解法1:因为只要求两端不都排女生,所以如果首位排了男生,则未位就不再受条件限制了,这样可有7715A A ⋅种不同的排法;如果首位排女生,有13A 种排法,这时末位就只能排男生,有15A 种排法,首末两端任意排定一种情况后,其余6位都有66A 种不同的排法,这样可有661513A A A ⋅⋅种不同排法.因此共有360006615137715=⋅⋅+⋅A A A A A 种不同的排法. 解法2:3个女生和5个男生排成一排有88A 种排法,从中扣去两端都是女生排法6623A A ⋅种,就能得到两端不都是女生的排法种数.因此共有36000662388=⋅-A A A 种不同的排法. 典型例题三例3 排一张有5个歌唱节目和4个舞蹈节目的演出节目单。

排列组合例题

排列组合例题

排列组合例题【例1】9名同学站成两排照相,前排4人,后排5人,共有多少种站法?分析如果问题是9名同学站成一排照相,则是9个元素的全排列的问题,有A99种方案。

而问题中9个人要分成两排,可以看成9个人排成一排后,左边4个人站在前排,右边5个人站在后排,所以实质上,还是9个人站9个位置的全排列问题.解:由全排列公式,共有A99==9×8×7×6×5×4×3×2×1=362880种不同的排法.【例2】5个人并排站成一排,其中甲必须站在中间有多少种不同的站法?分析由于甲必须站在中间,那么问题实质上就是剩下的四个人去站其余四个位置的问题,是一个全排列问题,且n=4.解:由全排列公式,共有A44=24种不同的站法.【例3】5个男生和3个女生排成一排,3个女生必须排在一起,有多少种不同排法?A.240 B.320 C.450 D.480正确答案【B】解析:采用捆绑法,把3个女生视为一个元素,与5个男生进行排列,共有A66=6x5x4x3x2种,然后3个女生内部再进行排列,有A33=6种,两次是分步完成的,应采用乘法,所以排法共有:A66 ×A33 =320(种)。

【例4】6名同学坐成一排,其中甲,乙必须坐在一起的不同坐法是________种.(答案:240)A44×A51×2=240【例5】从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四项不同的工作,若其中甲、乙两名志愿者都不能从事翻译工作,则不同的选派方案共有()(A)280种(B)240种(C)180种(D)96种正确答案:【B】解析:由于甲、乙两名志愿者都不能从事翻译工作,所以翻译工作就是“特殊”位置,因此翻译工作从剩下的四名志愿者中任选一人有C41=4种不同的选法,再从其余的5人中任选3人从事导游、导购、保洁三项不同的工作有A53=10种不同的选法,所以不同的选派方案共有C41×A53=240种,所以选B。

排列组合典型例题大全

排列组合典型例题大全

排列组合典型例题大全【例1】5男4女站成一排,分别指出满足下列条件的排法种数(1) 甲站正中间的排法有种,甲不站在正中间的排法有种.(2) 甲、乙相邻的排法有种,甲乙丙三人在一起的排法有种.(3) 甲站在乙前的排法有种,甲站在乙前,乙站在丙前(不要求一定相邻)的排法有种,丙在甲乙之间(不要求一定相邻)的排法有种.(4) 甲乙不站两头的排法有种,甲不站排头,乙不站排尾的排法种有种.(5) 5名男生站在一起,4名女生站在一起的排法有种.(6) 女生互不相邻的排法有种,男女相间的排法有种.(7) 甲与乙、丙都不相邻的排法有种。

(8) 甲乙之间有且只有4人的排法有种.【例2】从5名男生和4名女生中选出4人去参加辩论比赛(1)如果4人中男生和女生各选2人,有种选法;(2)如果男生中的甲与女生中的乙必须在内,有种选法;(3)如果男生中的甲与女生中的乙至少要有1人在内,有种选法;(4)如果4人中必须既有男生又有女生,有种选法【例3】男运动员6名,女运动员4名,其中男女队长各1人,从中选5人外出比赛,分别求出下列情形有多少种选派方法?(以数字作答)(1)男3名,女2名;(2)队长至少有1人参加;(3)至少1名女运动员;(4)既要有队长,又要有女运动员.【例4】10双互不相同的鞋子混装在一只口袋中,从中任意取出4只,试求各有多少种情况出现如下结果试求各有多少种情况出现如下结果. .(1)4只鞋子没有成双的;(2)4只鞋子恰成两双;(3)4只鞋子中有2只成双,另2只不成双只不成双. .【例5】某出版社的11名工人中,有5人只会排版,人只会排版,44人只会印刷,还有2人既会排版又会印刷现从这11人中选出4人排版、人排版、44人印刷,有几种不同的选法?【例6】有6本不同的书本不同的书. .(1)分给甲、乙、丙三人,如果每人得2本有多少种方法?(2)分给甲、乙、丙三人,如果甲得1本,乙得2本,丙得3本,有多少种分法?(3)分给甲、乙、丙三人,如果1人得1本,本,11人得2本,一人得3本,有多少种分法?(4)分成三堆,其中一堆1本,一堆2本,一堆3本,有多少种分法?(5)平均分成三堆,有多少种分法?(6)分成四堆,其中2堆各1本,本,22堆各2本,有多少种分法?(7)分给4人,其中2人各1本,本,22人各2本,有多少种分法?【例7】有4个不同的球,四个不同的盒子,把球全部放入盒子内个不同的球,四个不同的盒子,把球全部放入盒子内. .(1)(1)共有多少种放法?共有多少种放法?共有多少种放法? (2) (2) (2)四个盒都不空的放法有多少种?四个盒都不空的放法有多少种?(3)(3)恰有一个盒子内放恰有一个盒子内放2个球,有多少种放法?个球,有多少种放法? (4) (4) (4)恰有两个盒子不放球,有多少种放法?恰有两个盒子不放球,有多少种放法?恰有两个盒子不放球,有多少种放法?(5)(5)若盒子编号为若盒子编号为1、2、3、4,则甲球所放盒的编号总小于乙球所放盒的编号的放法有多少种?,则甲球所放盒的编号总小于乙球所放盒的编号的放法有多少种?【例8】(1)12个相同的小球放入编号为1,2,3,4的盒子中,问每个盒子中至少有一个小球的不同放法有多少种?法有多少种?(2)12个相同的小球放入编号为1,2,3,4的盒子中,每盒可空,问不同的放法有多少种?的盒子中,每盒可空,问不同的放法有多少种?(3)12个相同的小球放入编号为1,2,3,4的盒子中,要求每个盒子中的小球数不小于其编号数,问不同的放法有多少种?问不同的放法有多少种?【例9】如图,某区有7条南北向街道,条南北向街道,55条东西向街道条东西向街道. .A B(1)图中共有多少个矩形?)图中共有多少个矩形? ((2)从A 点走向B 点最短的走法有多少种?点最短的走法有多少种?【例1010】用】用0,1,2,3,4这五个数字,可以组成多少个满足下列条件的没有重复数字的数?这五个数字,可以组成多少个满足下列条件的没有重复数字的数? ((1)能被3整除;整除; ((2)比21034大的偶数;大的偶数;((3)左起第二、四位是奇数的偶数)左起第二、四位是奇数的偶数. .【例11】 将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有方格的标号与所填数字均不相同的填法有【练习】【练习】1.现有编号为1,2,3,4,5的五个球和编号为1,2,3,4,5的五个盒子,将这五个球放入5个盒子内. (1)(1)若只有一个盒子空着,共有多少种投放方法?若只有一个盒子空着,共有多少种投放方法?若只有一个盒子空着,共有多少种投放方法?(2)(2)若没有一个盒子空着,但球的编号与盒子编号不全相同,有多少种投放方法?若没有一个盒子空着,但球的编号与盒子编号不全相同,有多少种投放方法?若没有一个盒子空着,但球的编号与盒子编号不全相同,有多少种投放方法?(3)若每个盒子内投放一球,并且至少有两个球的编号与盒子编号是相同的,有多少种投放方法?2.2.三个人坐在一排八个座位上,若每个人的两边都要有空位,则不同的坐法种数为三个人坐在一排八个座位上,若每个人的两边都要有空位,则不同的坐法种数为三个人坐在一排八个座位上,若每个人的两边都要有空位,则不同的坐法种数为 。

(完整word版)排列组合典型例题

(完整word版)排列组合典型例题

典型例题一例1 用0到9这10 个数字.可组成多少个没有重复数字的四位偶数?分析:这一问题的限制条件是:①没有重复数字;②数字“0”不能排在千位数上;③个位数字只能是0、2、4、6、8、,从限制条件入手,可划分如下:如果从个位数入手,四位偶数可分为:个位数是“0”的四位偶做,个位数是 2、4、6、8的四位偶数(这是因为零不能放在千位数上).由此解法一与二.如果从千位数入手.四位偶数可分为:千位数是1、3、5、7、9和千位数是2、4、6、8两类,由此得解法三.如果四位数划分为四位奇数和四位偶数两类,先求出四位个数的个数,用排除法,得解法四.解法1:当个位数上排“0”时,千位,百位,十位上可以从余下的九个数字中任选3个来排列,故有39A 个;当个位上在“2、4、6、8"中任选一个来排,则千位上从余下的八个非零数字中任选一个,百位,十位上再从余下的八个数字中任选两个来排,按乘法原理有281814A A A ⋅⋅(个). ∴ 没有重复数字的四位偶数有2296179250428181439=+=⋅⋅+A A A A 个.解法2:当个位数上排“0”时,同解一有39A 个;当个位数上排2、4、6、8中之一时,千位,百位,十位上可从余下9个数字中任选3个的排列数中减去千位数是“0”排列数得:)(283914A A A -⋅个∴ 没有重复数字的四位偶数有22961792504)(28391439=+=-⋅+A A A A 个.解法3:千位数上从1、3、5、7、9中任选一个,个位数上从0、2、4、6、8中任选一个,百位,十位上从余下的八个数字中任选两个作排列有281515A A A ⋅⋅个干位上从2、4、6、8中任选一个,个位数上从余下的四个偶数中任意选一个(包括0在内),百位,十位从余下的八个数字中任意选两个作排列,有281414A A A ⋅⋅个∴ 没有重复数字的四位偶数有2296281414281515=⋅⋅+⋅⋅A A A A A A 个.解法4:将没有重复数字的四位数字划分为两类:四位奇数和四位偶数.没有重复数字的四位数有39410A A -个. 其中四位奇数有)(283915A A A -个∴ 没有重复数字的四位偶数有28393939283915394105510)(A A A A A A A A A +--⨯=---283954A A +=2828536A A += 2841A =2296=个说明:这是典型的简单具有限制条件的排列问题,上述四种解法是基本、常见的解法、要认真体会每种解法的实质,掌握其解答方法,以期灵活运用.典型例题二例2 三个女生和五个男生排成一排(1)如果女生必须全排在一起,可有多少种不同的排法? (2)如果女生必须全分开,可有多少种不同的排法? (3)如果两端都不能排女生,可有多少种不同的排法? (4)如果两端不能都排女生,可有多少种不同的排法?解:(1)(捆绑法)因为三个女生必须排在一起,所以可以先把她们看成一个整体,这样同五个男生合一起共有六个元素,然成一排有66A 种不同排法.对于其中的每一种排法,三个女生之间又都有33A 对种不同的排法,因此共有43203366=⋅A A 种不同的排法.(2)(插空法)要保证女生全分开,可先把五个男生排好,每两个相邻的男生之间留出一个空档.这样共有4个空档,加上两边两个男生外侧的两个位置,共有六个位置,再把三个女生插入这六个位置中,只要保证每个位置至多插入一个女生,就能保证任意两个女生都不相邻.由于五个男生排成一排有55A 种不同排法,对于其中任意一种排法,从上述六个位置中选出三个来让三个女生插入都有36A 种方法,因此共有144003655=⋅A A 种不同的排法.(3)解法1:(位置分析法)因为两端不能排女生,所以两端只能挑选5个男生中的2个,有25A 种不同的排法,对于其中的任意一种排法,其余六位都有66A 种排法,所以共有144006625=⋅A A 种不同的排法. 解法2:(间接法)3个女生和5个男生排成一排共有88A 种不同的排法,从中扣除女生排在首位的7713A A ⋅种排法和女生排在末位的7713A A ⋅种排法,但这样两端都是女生的排法在扣除女生排在首位的情况时被扣去一次,在扣除女生排在未位的情况时又被扣去一次,所以还需加一次回来,由于两端都是女生有6623A A ⋅种不同的排法,所以共有1440026623771388=+-A A A A A 种不同的排法.解法3:(元素分析法)从中间6个位置中挑选出3个来让3个女生排入,有36A 种不同的排法,对于其中的任意一种排活,其余5个位置又都有55A 种不同的排法,所以共有144005536=⋅A A 种不同的排法,(4)解法1:因为只要求两端不都排女生,所以如果首位排了男生,则未位就不再受条件限制了,这样可有7715A A ⋅种不同的排法;如果首位排女生,有13A 种排法,这时末位就只能排男生,有15A 种排法,首末两端任意排定一种情况后,其余6位都有66A 种不同的排法,这样可有661513A A A ⋅⋅种不同排法.因此共有360006615137715=⋅⋅+⋅A A A A A 种不同的排法.解法2:3个女生和5个男生排成一排有88A 种排法,从中扣去两端都是女生排法6623A A ⋅种,就能得到两端不都是女生的排法种数.因此共有36000662388=⋅-A A A 种不同的排法.说明:解决排列、组合(下面将学到,由于规律相同,顺便提及,以下遇到也同样处理)应用问题最常用也是最基本的方法是位置分析法和元素分析法.若以位置为主,需先满足特殊位置的要求,再处理其它位置,有两个以上约束条件,往往是考虑一个约束条件的同时要兼顾其它条件.若以元素为主,需先满足特殊元素要求再处理其它的元素.间接法有的也称做排除法或排异法,有时用这种方法解决问题来得简单、明快. 捆绑法、插入法对于有的问题确是适用的好方法,要认真搞清在什么条件下使用.典型例题三例3 排一张有5个歌唱节目和4个舞蹈节目的演出节目单. (1)任何两个舞蹈节目不相邻的排法有多少种?(2)歌唱节目与舞蹈节目间隔排列的方法有多少种?解:(1)先排歌唱节目有55A 种,歌唱节目之间以及两端共有6个位子,从中选4个放入舞蹈节目,共有46A 中方法,所以任两个舞蹈节目不相邻排法有:55A 46A =43200.(2)先排舞蹈节目有44A 中方法,在舞蹈节目之间以及两端共有5个空位,恰好供5个歌唱节目放入。

高中数学排列组合典型题大全含答案

高中数学排列组合典型题大全含答案

排列组合典型题大全一.可重复的排列求幂法:重复排列问题要区分两类元素:一类可以重复,另一类不能重复,把不能重复的元素看作“客”,能重复的元素看作“店”,则通过“住店法”可顺利解题,在这类问题使用住店处理的策略中,关键是在正确判断哪个底数,哪个是指数【例1】(1)有4名学生报名参加数学、物理、化学竞赛,每人限报一科,有多少种不同的报名方法?(2)有4名学生参加争夺数学、物理、化学竞赛冠军,有多少种不同的结果?(3)将3封不同的信投入4个不同的邮筒,则有多少种不同投法?【解析】:(1)43(2)34(3)34【例2】把6名实习生分配到7个车间实习共有多少种不同方法?【解析】:完成此事共分6步,第一步;将第一名实习生分配到车间有7种不同方案,第二步:将第二名实习生分配到车间也有7种不同方案,依次类推,由分步计数原理知共有67种不同方案.【例3】8名同学争夺3项冠军,获得冠军的可能性有()A 、38 B、83 C、38A D 、38C 【解析】:冠军不能重复,但同一个学生可获得多项冠军,把8名学生看作8家“店”,3项冠军看作3个“客”,他们都可能住进任意一家“店”,每个“客”有8种可能,因此共有38种不同的结果。

所以选A1、4封信投到3个信箱当中,有多少种投法?2、4个人争夺3项冠军,要求冠军不能并列,每个人可以夺得多项冠军也可以空手而还,问最后有多少种情况?3、4个同学参加3项不同的比赛(1)每位同学必须参加一项比赛,有多少种不同的结果?(2)每项竞赛只许一名同学参加,有多少种不同的结果?4、5名学生报名参加4项比赛,每人限报1项,报名方法的种数有多少?又他们争夺这4项比赛的冠军,获得冠军的可能性有多少?5、甲乙丙分10瓶汽水的方法有多少种?6、(全国II 文)5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共(A)10种(B) 20种(C) 25种(D) 32种7、5位同学报名参加并负责两个课外活动小组,每个兴趣小组只能有一个人来负责,负责人可以兼职,则不同的负责方法有多少种?8、4名不同科目的实习教师被分配到3个班级,不同的分法有多少种?思考:4名不同科目的实习教师被分配到3个班级,每班至少一个人的不同的分法有多少种?二.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.【例1】,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有【解析】:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A种例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。

排列组合 例题 含解析

排列组合 例题 含解析

排列与组合习题1.6个人分乘两辆不同的汽车,每辆车最多坐4人,则不同的乘车方法数为() A.40B.50C.60D.70[解析]先分组再排列,一组2人一组4人有C26=15种不同的分法;两组各3人共有C36A22=10种不同的分法,所以乘车方法数为25×2=50,故选 B.2.有6个座位连成一排,现有3人就坐,则恰有两个空座位相邻的不同坐法有()A.36种B.48种C.72种D.96种[解析]恰有两个空座位相邻,相当于两个空位与第三个空位不相邻,先排三个人,然后插空,从而共A33A24=72种排法,故选 C.3.只用1,2,3三个数字组成一个四位数,规定这三个数必须同时使用,且同一数字不能相邻出现,这样的四位数有()A.6个B.9个C.18个D.36个[解析]注意题中条件的要求,一是三个数字必须全部使用,二是相同的数字不能相邻,选四个数字共有C13=3(种)选法,即1231,1232,1233,而每种选择有A22×C23=6(种)排法,所以共有3×6=18(种)情况,即这样的四位数有18个.4.男女学生共有8人,从男生中选取2人,从女生中选取1人,共有30种不同的选法,其中女生有() A.2人或3人B.3人或4人C.3人D.4人[解析]设男生有n人,则女生有(8-n)人,由题意可得C2n C18-n=30,解得n=5或n=6,代入验证,可知女生为2人或3人.5.某幢楼从二楼到三楼的楼梯共10级,上楼可以一步上一级,也可以一步上两级,若规定从二楼到三楼用8步走完,则方法有()A.45种B.36种C.28种D.25种[解析]因为10÷8的余数为2,故可以肯定一步一个台阶的有6步,一步两个台阶的有2步,那么共有C28=28种走法.6.某公司招聘来8名员工,平均分配给下属的甲、乙两个部门,其中两名英语翻译人员不能分在同一个部门,另外三名电脑编程人员也不能全分在同一个部门,则不同的分配方案共有()A.24种B.36种C.38种D.108种[解析]本题考查排列组合的综合应用,据题意可先将两名翻译人员分到两个部门,共有2种方法,第二步将3名电脑编程人员分成两组,一组1人另一组2人,共有C13种分法,然后再分到两部门去共有C13A22种方法,第三步只需将其他3人分成两组,一组1人另一组2人即可,由于是每个部门各4人,故分组后两人所去的部门就已确定,故第三步共有C13种方法,由分步乘法计数原理共有2C13A22C13=36(种).7.已知集合A={5},B={1,2},C={1,3,4},从这三个集合中各取一个元素构成空间直角坐标系中点的坐标,则确定的不同点的个数为()A.33 B.34 C.35 D.36[解析]①所得空间直角坐标系中的点的坐标中不含1的有C12·A33=12个;②所得空间直角坐标系中的点的坐标中含有1个1的有C12·A33+A33=18个;③所得空间直角坐标系中的点的坐标中含有2个1的有C13=3个.故共有符合条件的点的个数为12+18+3=33个,故选 A.8.由1、2、3、4、5、6组成没有重复数字且1、3都不与5相邻的六位偶数的个数是() A.72 B.96 C.108 D.144[解析]分两类:若1与3相邻,有A22·C13A22A23=72(个),若1与3不相邻有A33·A33=36(个)故共有72+36=108个.9.如果在一周内(周一至周日)安排三所学校的学生参观某展览馆,每天最多只安排一所学校,要求甲学校连续参观两天,其余学校均只参观一天,那么不同的安排方法有()A.50种B.60种C.120种D.210种[解析]先安排甲学校的参观时间,一周内两天连排的方法一共有6种:(1,2)、(2,3)、(3,4)、(4,5)、(5,6)、(6,7),甲任选一种为C16,然后在剩下的5天中任选2天有序地安排其余两所学校参观,安排方法有A25种,按照分步乘法计数原理可知共有不同的安排方法C16·A25=120种,故选 C.10.安排7位工作人员在5月1日到5月7日值班,每人值班一天,其中甲、乙二人都不能安排在5月1日和2日,不同的安排方法共有________种.(用数字作答)[解析]先安排甲、乙两人在后5天值班,有A25=20(种)排法,其余5人再进行排列,有A55=120(种)排法,所以共有20×120=2400(种)安排方法.11.今有2个红球、3个黄球、4个白球,同色球不加以区分,将这9个球排成一列有________种不同的排法.(用数字作答)[解析]由题意可知,因同色球不加以区分,实际上是一个组合问题,共有C49·C25·C33=1260(种)排法.12.将6位志愿者分成4组,其中两个组各2人,另两个组各1人,分赴世博会的四个不同场馆服务,不同的分配方案有________种(用数字作答).[解析]先将6名志愿者分为4组,共有C26C24A22种分法,再将4组人员分到4个不同场馆去,共有A44种分法,故所有分配方案有:C26·C24A22·A44=1 080种.13.要在如图所示的花圃中的5个区域中种入4种颜色不同的花,要求相邻区域不同色,有________种不同的种法(用数字作答).[解析]5有4种种法,1有3种种法,4有2种种法.若1、3同色,2有2种种法,若1、3不同色,2有1种种法,∴有4×3×2×(1×2+1×1)=72种.14. 将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中.若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的方法共有(A)12种(B)18种(C)36种(D)54种【解析】标号1,2的卡片放入同一封信有种方法;其他四封信放入两个信封,每个信封两个有种方法,共有种,故选 B.15. 某单位安排7位员工在10月1日至7日值班,每天1人,每人值班1天,若7位员工中的甲、乙排在相邻两天,丙不排在10月1日,丁不排在10月7日,则不同的安排方案共有A.504种B.960种C.1008种D.1108种解析:分两类:甲乙排1、2号或6、7号共有4414222AA A 种方法甲乙排中间,丙排7号或不排7号,共有)(43313134422A A A AA 种方法故共有1008种不同的排法16. 由1、2、3、4、5、6组成没有重复数字且1、3都不与5相邻的六位偶数的个数是(A )72(B )96(C )108(D )144解析:先选一个偶数字排个位,有3种选法①若5在十位或十万位,则1、3有三个位置可排,32232A A=24个②若5排在百位、千位或万位,则1、3只有两个位置可排,共32222A A=12个算上个位偶数字的排法,共计3(24+12)=108个答案:C17. 在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息,若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为A.10B.11C.12D.1518. 现安排甲、乙、丙、丁、戌5名同学参加上海世博会志愿者服务活动,每人从事翻译、导游、礼仪、司机四项工作之一,每项工作至少有一人参加。

排列组合典型例题大全

排列组合典型例题大全

排列组合典型例题大全【例1】5男4女站成一排,分别指出满足下列条件的排法种数(1) 甲站正中间的排法有种,甲不站在正中间的排法有种.(2) 甲、乙相邻的排法有种,甲乙丙三人在一起的排法有种.(3) 甲站在乙前的排法有种,甲站在乙前,乙站在丙前(不要求一定相邻)的排法有种,丙在甲乙之间(不要求一定相邻)的排法有种.(4) 甲乙不站两头的排法有种,甲不站排头,乙不站排尾的排法种有种.(5) 5名男生站在一起,4名女生站在一起的排法有种.(6) 女生互不相邻的排法有种,男女相间的排法有种.(7) 甲与乙、丙都不相邻的排法有种。

(8) 甲乙之间有且只有4人的排法有种.【例2】从5名男生和4名女生中选出4人去参加辩论比赛(1)如果4人中男生和女生各选2人,有种选法;(2)如果男生中的甲与女生中的乙必须在内,有种选法;(3)如果男生中的甲与女生中的乙至少要有1人在内,有种选法;(4)如果4人中必须既有男生又有女生,有种选法【例3】男运动员6名,女运动员4名,其中男女队长各1人,从中选5人外出比赛,分别求出下列情形有多少种选派方法?(以数字作答)(1)男3名,女2名;(2)队长至少有1人参加;(3)至少1名女运动员;(4)既要有队长,又要有女运动员.【例4】10双互不相同的鞋子混装在一只口袋中,从中任意取出4只,试求各有多少种情况出现如下结果.(1)4只鞋子没有成双的;(2)4只鞋子恰成两双;(3)4只鞋子中有2只成双,另2只不成双.【例5】某出版社的11名工人中,有5人只会排版,4人只会印刷,还有2人既会排版又会印刷.现从这11人中选出4人排版、4人印刷,有几种不同的选法?【例6】有6本不同的书.(1)分给甲、乙、丙三人,如果每人得2本有多少种方法?(2)分给甲、乙、丙三人,如果甲得1本,乙得2本,丙得3本,有多少种分法?(3)分给甲、乙、丙三人,如果1人得1本,1人得2本,一人得3本,有多少种分法?(4)分成三堆,其中一堆1本,一堆2本,一堆3本,有多少种分法?(5)平均分成三堆,有多少种分法?(6)分成四堆,其中2堆各1本,2堆各2本,有多少种分法?(7)分给4人,其中2人各1本,2人各2本,有多少种分法?【例7】有4个不同的球,四个不同的盒子,把球全部放入盒子内.(1)共有多少种放法? (2)四个盒都不空的放法有多少种?(3)恰有一个盒子内放2个球,有多少种放法? (4)恰有两个盒子不放球,有多少种放法?(5)若盒子编号为1、2、3、4,则甲球所放盒的编号总小于乙球所放盒的编号的放法有多少种?【例8】(1)12个相同的小球放入编号为1,2,3,4的盒子中,问每个盒子中至少有一个小球的不同放法有多少种?(2)12个相同的小球放入编号为1,2,3,4的盒子中,每盒可空,问不同的放法有多少种?(3)12个相同的小球放入编号为1,2,3,4的盒子中,要求每个盒子中的小球数不小于其编号数,问不同的放法有多少种?【例9】如图,某区有7条南北向街道,5条东西向街道.(1)图中共有多少个矩形? (2)从A 点走向B 点最短的走法有多少种?【例10】用0,1,2,3,4这五个数字,可以组成多少个满足下列条件的没有重复数字的数?(1)能被3整除; (2)比21034大的偶数;(3)左起第二、四位是奇数的偶数.【例11】 将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有【练习】1.现有编号为1,2,3,4,5的五个球和编号为1,2,3,4,5的五个盒子,将这五个球放入5个盒子内.(1)若只有一个盒子空着,共有多少种投放方法?(2)若没有一个盒子空着,但球的编号与盒子编号不全相同,有多少种投放方法?(3)若每个盒子内投放一球,并且至少有两个球的编号与盒子编号是相同的,有多少种投放方法? 2.三个人坐在一排八个座位上,若每个人的两边都要有空位,则不同的坐法种数为 。

排列组合例题

排列组合例题
排列组合例题
【例 1】 9 名同学站成两排照相,前排 4 人,后排 5 人,共有多少种站法? 分析 如果问题是 9 名同学站成一排照相,则是 9 个元素的全排列的问题,有 A99 种方
案。而问题中 9 个人要分成两排,可以看成 9 个人排成一排后,左边 4 个人站在前排,右 边 5 个人站在后排,所以实质上,还是 9 个人站 9 个位置的全排列问题. 解:由全排列公式,共有 A99==9×8×7×6×5×4×3×2×1=362880 种不同的排法.
2 个点,就可以画出一条线段;在 10 个点中取 3 个点,就可以画出一个三角形;在 10 个 点中取 4 个点,就可以画出一个四边形,三个问题都是组合问题.
解:由组合数公式. ①C102=45 个直线段 ②C103=120 个三角形 ③C104=210 个四边形
【例 12】 用 0,1,2,3,4 这 5 个数字,组成没有重复数字的三位数,其中偶数共有________个.(答案:30
从右图中 11 个交点中任取 3 个点,可画出多少个三角形?
解:组合总数为 C113=165, 其中三点共线不能构成的三角形有 6C33=6,四点共线不能构成的三角形有 2C43=8,
∴165-(6+8)=151 个
【例 25】
1 名老师和 4 名获奖学生排成一排照像留念,若老师不排在两端,则共有不同的

排法
种.
解:先考虑特殊元素(老师)的排法,因老师不排在两端,故可在中间三个位置
上任选一个位置,有 3 种,而其余学生的排法有 A44=24 种,所以共有 3×24=72 种不 同的排法.
【例 26】
乒乓球队的 10 名队员中有 3 名主力队员,派 5 名队员参加比赛,3 名主力队员要

排列组合基本例题

排列组合基本例题

排列问题一、无约束条件的排列问题1从9人中选派2人参加某一活动,有多少种不同选法?2 10个人走进只有6把椅子的屋子,若每把椅子必须且只须坐一个人,问有多少种不同的排法?3 某信号兵用红、黄、蓝3面旗从上到下挂在竖直的旗杆上表示信号,每次可以挂1面、2面或3面,并且不同的顺序表示不同的信号,则一共可以表示多少种不同的信号?二、有约束条件的排列问题(Ⅰ)数字排列问题1 用0到9这十个数字可以组成多少个无重复数字的四位数?2 用0,1,2,3,4,5这六个数字,(1)可以组成多少个数字不重复的三位数?(2)可以组成多少个数字允许重复的三位数?(3)可以组成多少个数字不允许重复的三位数的奇数?(4)可以组成多少个数字不重复的小于1000的自然数?(5)可以组成多少个大于3000,小于5421的数字不重复的四位数?(Ⅱ)相邻问题——捆绑法1 A,B,C,D,E五人并排站在一起,若A、B必须相邻(且B在A的右边),则有多少种不同的排法?2 有8本不同的书,其中科技书3本,文艺书2本,其它书3本,将这些书排在书架上,则科技书连在一起,文艺书也连在一起的不同排法有多少种?(Ⅲ)不相邻问题——插空法1、7名师生站成一排表演节目,其中老师1人,男生4人,女生2人,问4名男生互不相邻有多少种不同的站法?2要排一个有6个歌唱节目和4个舞蹈节目的演出节目单,任何两个舞蹈节目都不相邻,有多少种不同排法?3、4名男生和4名女生站成一排,若要求男女相间,则不同的排法数有多少种?(Ⅳ)定序问题缩倍法1、有5个节目的节目单中要插入2个新节目,保证原有节目的顺序不变的排法有多少种?2、由数字0、1、2、3、4组成的五位数,使个位数字比百位数字小,则可以组成多少个五位数?3、有4个男生,3个女生,高矮互不相等,现将他们排成一排,要求从左到右女生从高到矮的排列,则有多少种不同的排法(Ⅴ)分排问题1、6个不同的元素排成前后两排,第一排3个元素,第二排3个元素,则不同的排法有多少种?2、7个人坐两排座位,第一排坐3个人,第二排坐4个人,求不同的排法有多少种?3、3名男生,4名女生,按照不同的要求排队,求不同的排队数?(1)全体站成一排,其中甲只能站中间(中间或两端);(2)全体站成一排,甲、乙必须在两端;(3)全体站成一排,其中甲不在最左端,乙不在最右端;(4)全体站成一排,男、女各站在一起;(5)全体站成一排,男生必须站在一起;(6)全体站成一排,男生不能排在一起;(7)全体站成一排,男、女各不相邻;(8)全体站成一排,甲、乙中间必须有2人;(9)全体站成一排,甲必须在乙的前面;(10)全体站成一排,甲、乙、丙三人自左向右的顺序不变;(11)站成前后两排,前排4人,后排3人。

排列组合的13种方法题,,

排列组合的13种方法题,,

排列组合常用十三种解题方法方法一:捆绑法例题:甲、乙、丙、丁、卯五人并排成一排,如果甲、乙必须相邻且甲在乙的右边,那么不同的排法有多少种?方法二:插空法例题:甲、乙、丙、丁、卯五人并排成一排,如果甲、乙必须不相邻,那么不同的排法有多少种?例题:晚会原定的5个节目已排成节目单,开演前又加了2个节目,若将这2个节目插入原节目单中,则不同的插法有种。

方法三:隔板法例题:小明有10块糖,他每天可以吃1块到10块不等,现在要求小明3天把10块糖吃完,问小明一共有多少种不同的吃糖方法?例题:将10个保送生预选指标分配给某重点中学高三年级六个班,每班至少一名,共有多少种分配方案?方法四:定位问题优先法例题:一个老师和四名学生排成一排,老师不在两端,且老师不能跟其中某个学生相邻,则不同的排法有种例题:2位男生和3位女生共5位同学站成一排.若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数为方法五:多排问题单排法例题:共有8个人分别站前后2排,每排4人,其中要求某2人站前排,某1人站在后排,则共有__ 种排法。

例题:现有12人排成3行,每行4人,其中小明不站第二行,小红只站第一行,小白不站第三行,问一共有多少种不同的站队方法?方法六:乱坐问题分步法例题:将数字1,2,3,4,填入标号为1,2,3,4的四个方格,每格填一个数,则每个方格的标号与所填数字均不相同的填法有种。

例题:将标有1,2,3,4,5编号的五个小球分别填入标号为1,2,3,4,5的五个箱子,每个箱子放一个球,则每个箱子的标号与放小球标号均不相同的填法有种。

方法七:多元问题罗列法例题:由0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数字的共有个。

例题:用数字0,1,2,3组成数字可以重复的四位数, 其中有且只有一个数字出现两次的四位数的个数为?方法八:至少问题间接法 例题:有9名男生与4名女生共13人,现在要求从所有学生中任选 5人参加知识竞赛,问选择的5人中至少有1名女生的选择情况有多 少种? 例题:甲、乙两人从4门课程中各选修 2门,则甲、乙所选的课程中至少有 1 门不相同的选法共有 种 方法九:条件问题排除法 例题:正六边形中心和顶点共7个点,以其中任意3个点为顶点 的三角形共有 个。

排列组合典型例题(带详细答案)

排列组合典型例题(带详细答案)

例1 用0到9这10 个数字.可组成多少个没有重复数字的四位偶数例2三个女生和五个男生排成一排(1)如果女生必须全排在一起,可有多少种不同的排法(2)如果女生必须全分开,可有多少种不同的排法(3)如果两端都不能排女生,可有多少种不同的排法(4)如果两端不能都排女生,可有多少种不同的排法例3 排一张有5个歌唱节目和4个舞蹈节目的演出节目单。

(1)任何两个舞蹈节目不相邻的排法有多少种(2)歌唱节目与舞蹈节目间隔排列的方法有多少种例4某一天的课程表要排入政治、语文、数学、物理、体育、美术共六节课,如果第一节不排体育,最后一节不排数学,那么共有多少种不同的排课程表的方法.例5现有3辆公交车、3位司机和3位售票员,每辆车上需配1位司机和1位售票员.问车辆、司机、售票员搭配方案一共有多少种例6下是表是高考第一批录取的一份志愿表.如果有4所重点院校,每所院校有3个专业是你较为满意的选择.若表格填满且规定学校没有重复,同一学校的专业也没有重复的话,你将有多少种不同的填表方法例77名同学排队照相.(1)若分成两排照,前排3人,后排4人,有多少种不同的排法(2)若排成两排照,前排3人,后排4人,但其中甲必须在前排,乙必须在后排,有多少种不同的排法(3)若排成一排照,甲、乙、丙三人必须相邻,有多少种不同的排法(4)若排成一排照,7人中有4名男生,3名女生,女生不能相邻,有多少种不面的排法例8计算下列各题:(1) 215A ; (2) 66A ; (3) 1111------⋅n n m n mn m n A A A ;例9 f e d c b a ,,,,,六人排一列纵队,限定a 要排在b 的前面(a 与b 可以相邻,也可以不相邻),求共有几种排法.例10 八个人分两排坐,每排四人,限定甲必须坐在前排,乙、丙必须坐在同一排,共有多少种安排办法例11 计划在某画廊展出10幅不同的画,其中1幅水彩画、4幅油画、5幅国画,排成一行陈列,要求同一品种的画必须连在一起,并且不彩画不放在两端,那么不同陈列方式有例12 由数字5,4,3,2,1,0组成没有重复数字的六位数,其中个位数字小于十位数的个数共有( ).例13 用5,4,3,2,1,这五个数字,组成没有重复数字的三位数,其中偶数共有( ).例14 用543210、、、、、共六个数字,组成无重复数字的自然数,(1)可以组成多少个无重复数字的3位偶数(2)可以组成多少个无重复数字且被3整除的三位数1、解法1:当个位数上排“0”时,千位,百位,十位上可以从余下的九个数字中任选3个来排列,故有39A 个;当个位上在“2、4、6、8”中任选一个来排,则千位上从余下的八个非零数字中任选一个,百位,十位上再从余下的八个数字中任选两个来排,按乘法原理有281814A A A ⋅⋅(个).∴ 没有重复数字的四位偶数有2296179250428181439=+=⋅⋅+A A A A2、解:(1)(捆绑法)因为三个女生必须排在一起,所以可以先把她们看成一个整体,这样同五个男生合一起共有六个元素,然成一排有66A 种不同排法.对于其中的每一种排法,三个女生之间又都有33A 对种不同的排法,因此共有43203366=⋅A A 种不同的排法.(2)(插空法)要保证女生全分开,可先把五个男生排好,每两个相邻的男生之间留出一个空档.这样共有4个空档,加上两边两个男生外侧的两个位置,共有六个位置,再把三个女生插入这六个位置中,只要保证每个位置至多插入一个女生,就能保证任意两个女生都不相邻.由于五个男生排成一排有55A 种不同排法,对于其中任意一种排法,从上述六个位置中选出三个来让三个女生插入都有36A 种方法,因此共有144003655=⋅A A 种不同的排法.(3)解法1:(位置分析法)因为两端不能排女生,所以两端只能挑选5个男生中的2个,有25A 种不同的排法,对于其中的任意一种排法,其余六位都有66A 种排法,所以共有144006625=⋅A A 种不同的排法.(4)3个女生和5个男生排成一排有88A 种排法,从中扣去两端都是女生排法6623A A ⋅种,就能得到两端不都是女生的排法种数.因此共有36000662388=⋅-A A A 种不同的排法.3、解:(1)先排歌唱节目有55A 种,歌唱节目之间以及两端共有6个位子,从中选4个放入舞蹈节目,共有46A 中方法,所以任两个舞蹈节目不相邻排法有:55A 46A =43200.(2)先排舞蹈节目有44A 中方法,在舞蹈节目之间以及两端共有5个空位,恰好供5个歌唱节目放入。

高考排列组合典型例题

高考排列组合典型例题

排列组合典型例题例1 用0到9这10 个数字.可组成多少个没有重复数字的四位偶数?分析:这一问题的限制条件是:①没有重复数字;②数字“0”不能排在千位数上;③个位数字只能是0、2、4、6、8、,从限制条件入手,可划分如下:如果从个位数入手,四位偶数可分为:个位数是“0”的四位偶做,个位数是2、4、6、8的四位偶数〔这是因为零不能放在千位数上〕.由此解法一与二.如果从千位数入手.四位偶数可分为:千位数是1、3、5、7、9和千位数是2、4、6、8两类,由此得解法三.如果四位数划分为四位奇数和四位偶数两类,先求出四位个数的个数,用排除法,得解法四.解法1:当个位数上排“0”时,千位,百位,十位上可以从余下的九个数字中任选3个来排列,故有39A 个;当个位上在“2、4、6、8”中任选一个来排,那么千位上从余下的八个非零数字中任选一个,百位,十位上再从余下的八个数字中任选两个来排,按乘法原理有281814A A A ⋅⋅〔个〕. ∴ 没有重复数字的四位偶数有2296179250428181439=+=⋅⋅+A A A A 个.解法2:当个位数上排“0”时,同解一有39A 个;当个位数上排2、4、6、8中之一时,千位,百位,十位上可从余下9个数字中任选3个的排列数中减去千位数是“0”排列数得:)(283914A A A -⋅个∴ 没有重复数字的四位偶数有22961792504)(28391439=+=-⋅+A A A A 个.解法3:千位数上从1、3、5、7、9中任选一个,个位数上从0、2、4、6、8中任选一个,百位,十位上从余下的八个数字中任选两个作排列有281515A A A ⋅⋅个干位上从2、4、6、8中任选一个,个位数上从余下的四个偶数中任意选一个〔包括0在〕,百位,十位从余下的八个数字中任意选两个作排列,有281414A A A ⋅⋅个∴ 没有重复数字的四位偶数有2296281414281515=⋅⋅+⋅⋅A A A A A A 个.解法4:将没有重复数字的四位数字划分为两类:四位奇数和四位偶数.没有重复数字的四位数有39410A A -个. 其中四位奇数有)(283915A A A -个∴ 没有重复数字的四位偶数有28393939283915394105510)(A A A A A A A A A +--⨯=---283954A A +=2828536A A +=2841A =2296=个说明:这是典型的简单具有限制条件的排列问题,上述四种解法是根本、常见的解法、要认真体会每种解法的实质,掌握其解答方法,以期灵活运用.典型例题二例2 三个女生和五个男生排成一排〔1〕如果女生必须全排在一起,可有多少种不同的排法?〔2〕如果女生必须全分开,可有多少种不同的排法?〔3〕如果两端都不能排女生,可有多少种不同的排法?〔4〕如果两端不能都排女生,可有多少种不同的排法?解:〔1〕〔捆绑法〕因为三个女生必须排在一起,所以可以先把她们看成一个整体,这样同五个男生合一起共有六个元素,然成一排有66A 种不同排法.对于其中的每一种排法,三个女生之间又都有33A 对种不同的排法,因此共有43203366=⋅A A 种不同的排法.〔2〕〔插空法〕要保证女生全分开,可先把五个男生排好,每两个相邻的男生之间留出一个空档.这样共有4个空档,加上两边两个男生外侧的两个位置,共有六个位置,再把三个女生插入这六个位置中,只要保证每个位置至多插入一个女生,就能保证任意两个女生都不相邻.由于五个男生排成一排有55A 种不同排法,对于其中任意一种排法,从上述六个位置中选出三个来让三个女生插入都有36A 种方法,因此共有144003655=⋅A A 种不同的排法.〔3〕解法1:〔位置分析法〕因为两端不能排女生,所以两端只能挑选5个男生中的2个,有25A 种不同的排法,对于其中的任意一种排法,其余六位都有66A 种排法,所以共有144006625=⋅A A 种不同的排法.解法2:〔间接法〕3个女生和5个男生排成一排共有88A 种不同的排法,从中扣除女生排在首位的7713A A ⋅种排法和女生排在末位的7713A A ⋅种排法,但这样两端都是女生的排法在扣除女生排在首位的情况时被扣去一次,在扣除女生排在未位的情况时又被扣去一次,所以还需加一次回来,由于两端都是女生有6623A A ⋅种不同的排法,所以共有1440026623771388=+-A A A A A 种不同的排法.解法3:〔元素分析法〕从中间6个位置中挑选出3个来让3个女生排入,有36A 种不同的排法,对于其中的任意一种排活,其余5个位置又都有55A 种不同的排法,所以共有144005536=⋅A A 种不同的排法,〔4〕解法1:因为只要求两端不都排女生,所以如果首位排了男生,那么未位就不再受条件限制了,这样可有7715A A ⋅种不同的排法;如果首位排女生,有13A 种排法,这时末位就只能排男生,有15A 种排法,首末两端任意排定一种情况后,其余6位都有66A 种不同的排法,这样可有661513A A A ⋅⋅种不同排法.因此共有360006615137715=⋅⋅+⋅A A A A A 种不同的排法.解法2:3个女生和5个男生排成一排有88A 种排法,从中扣去两端都是女生排法6623A A ⋅种,就能得到两端不都是女生的排法种数.因此共有36000662388=⋅-A A A 种不同的排法.说明:解决排列、组合〔下面将学到,由于规律一样,顺便提及,以下遇到也同样处理〕应用问题最常用也是最根本的方法是位置分析法和元素分析法.假设以位置为主,需先满足特殊位置的要求,再处理其它位置,有两个以上约束条件,往往是考虑一个约束条件的同时要兼顾其它条件.假设以元素为主,需先满足特殊元素要求再处理其它的元素.间接法有的也称做排除法或排异法,有时用这种方法解决问题来得简单、明快. 捆绑法、插入法对于有的问题确是适用的好方法,要认真搞清在什么条件下使用.典型例题三例3 排一有5个歌唱节目和4个舞蹈节目的演出节目单。

排列组合典型例题(带详细答案)

排列组合典型例题(带详细答案)

例1 用0到9这10 个数字.可组成多少个没有重复数字的四位偶数?例2三个女生和五个男生排成一排(1)如果女生必须全排在一起,可有多少种不同的排法?(2)如果女生必须全分开,可有多少种不同的排法?(3)如果两端都不能排女生,可有多少种不同的排法?(4)如果两端不能都排女生,可有多少种不同的排法?例3 排一张有5个歌唱节目和4个舞蹈节目的演出节目单。

(1)任何两个舞蹈节目不相邻的排法有多少种?(2)歌唱节目与舞蹈节目间隔排列的方法有多少种?例4某一天的课程表要排入政治、语文、数学、物理、体育、美术共六节课,如果第一节不排体育,最后一节不排数学,那么共有多少种不同的排课程表的方法.例5现有3辆公交车、3位司机和3位售票员,每辆车上需配1位司机和1位售票员.问车辆、司机、售票员搭配方案一共有多少种?例6下是表是高考第一批录取的一份志愿表.如果有4所重点院校,每所院校有3个专业是你较为满意的选择.若表格填满且规定学校没有重复,同一学校的专业也没有重复的话,你将有多少种不同的填表方法?学校专业1 1 22 1 23 1 2例77名同学排队照相.(1)若分成两排照,前排3人,后排4人,有多少种不同的排法?(2)若排成两排照,前排3人,后排4人,但其中甲必须在前排,乙必须在后排,有多少种不同的排法?(3)若排成一排照,甲、乙、丙三人必须相邻,有多少种不同的排法?(4)若排成一排照,7人中有4名男生,3名女生,女生不能相邻,有多少种不面的排法?例8计算下列各题:(1) 215A ; (2) 66A ; (3) 1111------⋅n n m n mn m n A A A ;例9 f e d c b a ,,,,,六人排一列纵队,限定a 要排在b 的前面(a 与b 可以相邻,也可以不相邻),求共有几种排法.例10 八个人分两排坐,每排四人,限定甲必须坐在前排,乙、丙必须坐在同一排,共有多少种安排办法?例11 计划在某画廊展出10幅不同的画,其中1幅水彩画、4幅油画、5幅国画,排成一行陈列,要求同一品种的画必须连在一起,并且不彩画不放在两端,那么不同陈列方式有例12 由数字5,4,3,2,1,0组成没有重复数字的六位数,其中个位数字小于十位数的个数共有( ).例13 用5,4,3,2,1,这五个数字,组成没有重复数字的三位数,其中偶数共有( ).例14 用543210、、、、、共六个数字,组成无重复数字的自然数,(1)可以组成多少个无重复数字的3位偶数?(2)可以组成多少个无重复数字且被3整除的三位数?1、解法1:当个位数上排“0”时,千位,百位,十位上可以从余下的九个数字中任选3个来排列,故有39A 个;当个位上在“2、4、6、8”中任选一个来排,则千位上从余下的八个非零数字中任选一个,百位,十位上再从余下的八个数字中任选两个来排,按乘法原理有281814A A A ⋅⋅(个).∴ 没有重复数字的四位偶数有2296179250428181439=+=⋅⋅+A A A A2、解:(1)(捆绑法)因为三个女生必须排在一起,所以可以先把她们看成一个整体,这样同五个男生合一起共有六个元素,然成一排有66A 种不同排法.对于其中的每一种排法,三个女生之间又都有33A 对种不同的排法,因此共有43203366=⋅A A 种不同的排法.(2)(插空法)要保证女生全分开,可先把五个男生排好,每两个相邻的男生之间留出一个空档.这样共有4个空档,加上两边两个男生外侧的两个位置,共有六个位置,再把三个女生插入这六个位置中,只要保证每个位置至多插入一个女生,就能保证任意两个女生都不相邻.由于五个男生排成一排有55A 种不同排法,对于其中任意一种排法,从上述六个位置中选出三个来让三个女生插入都有36A 种方法,因此共有144003655=⋅A A 种不同的排法.(3)解法1:(位置分析法)因为两端不能排女生,所以两端只能挑选5个男生中的2个,有25A 种不同的排法,对于其中的任意一种排法,其余六位都有66A 种排法,所以共有144006625=⋅A A 种不同的排法.(4)3个女生和5个男生排成一排有88A 种排法,从中扣去两端都是女生排法6623A A ⋅种,就能得到两端不都是女生的排法种数.因此共有36000662388=⋅-A A A 种不同的排法.3、解:(1)先排歌唱节目有55A 种,歌唱节目之间以及两端共有6个位子,从中选4个放入舞蹈节目,共有46A 中方法,所以任两个舞蹈节目不相邻排法有:55A 46A =43200.(2)先排舞蹈节目有44A 中方法,在舞蹈节目之间以及两端共有5个空位,恰好供5个歌唱节目放入。

排列组合例题

排列组合例题

分配问题例1 (1)8名大学生分配给9个工厂, 每个单位只接受1名, 有多少种分配方法(2)9名大学生分配给8个工作单位, 每个单位只接受1名,例2 (1)将6封信投入个不同的邮箱, 有多少种不同的投法(2)把3名学生分配给5个不同的班级, 有多少种不同的分配方法(3)将6本不同的教学参考书借给3位教师, 有多少种不同的借法(4)8名体操运动员决赛, 争夺6个体操单项冠军, 有多少种不同的结果(不设并列冠军) 有多少种分配方法类型一:特殊优先法例一:一名老师和四名学生排成一排照相留念, 若老师不排在两端, 有多少种排法例二:某班有七人可以参加4*100接力赛, 其中甲不能跑第一棒和最后一棒, 问有多少种排法类型二:合理分类准确分步例3:用0、1`、2、3、4、5六个数字,(1)能组成多少个无重复数字的四位偶数(2)能组成多少个无重复数字且能被5整除的五位数例4:某天某班的课程表要排入数学、语文、英语、物理、化学、体育六门课程, 第一节不排体育, 第六节不排数学, 一共有多少种不同的排法组合型的例五:一个小组有10名同学, 其中4女6男, 现从中选出3名代表, 其中至少有一名女生的选法有多少种分析:分类和间接法均可例6:有11名外语翻译人员, 其中有5名会英语, 4名会日语, 另外两名英日语都精通, 从中选出8人, 组成两个翻译小组, 其中4人翻译英语, 另4人翻译日语, 问有多少种不同的选派方式三、选排问题先选后排例7:有5个男生和3个女生, 从中选出5个担任5门学科代表, 求符合下列条件的选法数(1)有女生但人数少于男生(2)某女生一定担任语文课代表(3)某男生必须在内, 但不担任数学科代表(4)某女生一定要担任语文科代表, 某男生必须担任课代表, 但是不担任数学科代表例8:在7名运动员中选4名组成接力队参加4*100接力赛, 那么甲已两人都不跑中间两棒的安排方法有多少种解法一:由于甲已不能跑中间两棒, 故先从除甲已外的5人中选2人跑中间两棒, 共有种, 然后从剩余的3人及甲已共5人中选2人跑第一和第四棒, 有种解法二:按甲已在不在接力队可分为几下三类第一类:甲已都不在接力队, 从除甲已之外的5人中选4人安排有种第二类:甲已两人仅有1人在对内, 从甲已两人选一个有, 该人从第1、4两棒, 选一棒, 有种, 其余无限制第三类:甲已都在队内, 先从除甲已外的五人中选2人跑中间两棒有种, 对甲已来说有种四、相邻问题捆绑法例9:从单词“equation”中选5个不同的字母排成一排, 含有“qu”(其中“qu”项连接且顺序不变)的不同排法有多少种五、不相邻问题和相间问题例10:5个男生3个女生, 排成一排, 要求女生不相邻且不排两头, 共有几种排法评注(1)插入时必须分清谁插谁的问题, 要先排无限制条件的元素, 在插入必须间隔的元素(2)数清可插的位置数(3)插入时是以组合形式还是以排列形式插入要把握准例11:马路上有编号1、2、3、…10的10盏路灯, 现要关掉其中的三盏, 但不能同时关掉相邻的2盏或3盏, 也不能关两端的路灯, 则满足要求的关灯方法有几种分析:由于问题中有7盏亮3盏暗, 又两端不可暗, 问题等价于在7盏开着的路灯的6个间隔中, 选出3个间隔插入3只关掉的灯, 所以关灯的方法有相间问题相间问题区别于不相邻问题的一个显著特征是问题双方的元素个数只能相等或相差一个, 解决方法是具体分类例12(1)4男3女排成一排, 男女生必须相间而排有多少种排法(2)4男例13:8人排成一排其中甲已丙3人中, 有两个相邻, 但这3个不同时相邻排列, 求满足条件的所有不同排法种数4女排成一排, 男女生必须相间而排有多少种排法直接插入法:即先排除甲已丙外的5人, 有种排法, 在从甲已丙3个中选2人合并为一元素, 和余下的1个插入6个空中, 有种插排法, 故总排法种数位间接法:先将8个全排列, 减去三人两两都不相邻的和三人同时相邻的正难则反间接法对于某些排列组合问题的正面情况较复杂而其反面情况却较简单时, 可先考虑无限制条件的排列, 再减去其反面情况的总数, 一般含有至多至少型的问题, 采用间接法例15从正方体的6个面中选取3个面, 其中有2个不相邻的选法共有多少种例16 4个不同的红球和6个不同的白球放入袋中, 先从袋中取出4个球:(1)若取出的红球个数不少于白球个数, 则有多少种不同的取法(2)取出一个红球记2分, 取出一个白球记1分, 若取出4球的总分不低于5分, 则有多少种不同的取法定序均分问题对于某些元素的顺序固定的排列问题, 可先全排, 再除以定序元素的全排, 或现在总位置中选出定序元素的位置而不参加排列, 然后崔其他元素进行全排列例17 5人站成一排, 如果甲必须占在已的左边, 则不同的排法有解法一:5人不加限制的排法有种, 甲在已的左边和甲在已的右边的排法是相等的, 所以甲必须在左边的排法数为种多少种解法二:先从5人中选2个位置给甲已, 有种, 然后从其余3个位置排另外3人有种, 所以不同排法种数为比照上题做下面的题练一练a a a ab b b排成一排有多少种排法两种方法都试验一下平均分组问题1)平均分组问题:一般来说, km个不同的元素分成k组, 每组m个, 则不同的分法有(2)部分均分问题;先将不均分的部分直接取出, 如下例中第三问…其于部分在平均分组(3)不均分问题:由于各组均不相等, 因此按各组数直接组合即可, 如下例中的第一问例18 按以下要求分配6本不同的书, 各有几种方法(1)分成1本、2本、3本(2)平均分成三组, 每组2本(3)分成三组, 一组4本, 另外两组各1本不同元素分配的先分组后分配法(未完待续)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

排列组合例题一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为三.不相邻问题插空策略例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种?练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为四.定序问题倍缩空位插入策略例4.7人排队,其中甲乙丙3人顺序一定共有多少不同的排法练习题:10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少排法?五.重排问题求幂策略例5.把6名实习生分配到7个车间实习,共有多少种不同的分法练习题:1.某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为2. 某8层大楼一楼电梯上来8名乘客人,他们到各自的一层下电梯,下电梯的方法?六.环排问题线排策略例6. 8人围桌而坐,共有多少种坐法? 练习题:6颗颜色不同的钻石,可穿成几种钻石圈七.多排问题直排策略例7.8人排成前后两排,每排4人,其中甲乙在前排,丙在后排,共有多少排法练习题:有两排座位,前排11个座位,后排12个座位,现安排2人就座规定前排中间的3个座位不能坐,并且这2人不左右相邻,那么不同排法的种数是八.排列组合混合问题先选后排策略例8.有5个不同的小球,装入4个不同的盒内,每盒至少装一个球,共有多少不同的装法.练习题:一个班有6名战士,其中正副班长各1人现从中选4人完成四种不同的任务,每人完成一种任务,且正副班长有且只有1人参加,则不同的选法有种九.小集团问题先整体后局部策略例9.用1,2,3,4,5组成没有重复数字的五位数其中恰有两个偶数夹1,5在两个奇数之间,这样的五位数有多少个?练习题:1.计划展出10幅不同的画,其中1幅水彩画,4幅油画,5幅国画, 排成一行陈列,要求同一品种的必须连在一起,并且水彩画不在两端,那么共有陈列方式的种数为2. 5男生和5女生站成一排照像,男生相邻,女生也相邻的排法有?种十.元素相同问题隔板策略例10.有10个运动员名额,分给7个班,每班至少一个,有多少种分配方案?练习题:1.10个相同的球装5个盒中,每盒至少一有多少装法?2 .100x y z w+++=求这个方程组的自然数解的组数十一.正难则反总体淘汰策略例11.从0,1,2,3,4,5,6,7,8,9这十个数字中取出三个数,使其和为不小于10的偶数,不同的取法有多少种?练习题:我们班里有43位同学,从中任抽5人,正、副班长、团支部书记至少有一人在内的抽法有多少种?十二.平均分组问题除法策略例12. 6本不同的书平均分成3堆,每堆2本共有多少分法?练习题:1 将13个球队分成3组,一组5个队,其它两组4个队, 有多少分法?()2.10名学生分成3组,其中一组4人, 另两组3人但正副班长不能分在同一组,有多少种不同的分组方法3.某校高二年级共有六个班级,现从外地转入4名学生,要安排到该年级的两个班级且每班安排2名,则不同的安排方案种数为______()十三. 合理分类与分步策略例13.在一次演唱会上共10名演员,其中8人能能唱歌,5人会跳舞,现要演出一个2人唱歌2人伴舞的节目,有多少选派方法练习题:1.从4名男生和3名女生中选出4人参加某个座谈会,若这4人中必须既有男生又有女生,则不同的选法共有?2. 3成人2小孩乘船游玩,1号船最多乘3人, 2号船最多乘2人,3号船只能乘1人,他们任选2只船或3只船,但小孩不能单独乘一只船, 这3人共有多少乘船方法.十四.构造模型策略例14. 马路上有编号为1,2,3,4,5,6,7,8,9的九只路灯,现要关掉其中的3盏,但不能关掉相邻的2盏或3盏,也不能关掉两端的2盏,求满足条件的关灯方法有多少种?练习题:某排共有10个座位,若4人就坐,每人左右两边都有空位,那么不同的坐法有多少种?十五.实际操作穷举策略例15.设有编号1,2,3,4,5的五个球和编号1,2,3,4,5的五个盒子,现将5个球投入这五个盒子内,要求每个盒子放一个球,并且恰好有两个球的编号与盒子的编号相同,有多少投法练习题:1.同一寝室4人,每人写一张贺年卡集中起来,然后每人各拿一张别人的贺年卡,则四张贺年卡不同的分配方式有多少种?2.给图中区域涂色,要求相邻区域不同色,现有4种可选颜色,则不同的着色方法有种十六. 分解与合成策略例16. 30030能被多少个不同的偶数整除练习:正方体的8个顶点可连成多少对异面直线十七.化归策略例17. 25人排成5×5方阵,现从中选3人,要求3人不在同一行也不在同一列,不同的选法有多少种?练习题:某城市的街区由12个全等的矩形区组成其中实线表示马路,从A走到B的最短路径有多少种?( )BA十八.数字排序问题查字典策略例18.由0,1,2,3,4,5六个数字可以组成多少个没有重复的比324105大的数?练习:用0,1,2,3,4,5这六个数字组成没有重复的四位偶数,将这些数字从小到大排列起来,第71个数是十九.树图策略例19.3人相互传球,由甲开始发球,并作为第一次传球,经过5次传求后,球仍回到甲的手中,则不同的传球方式有______练习: 分别编有1,2,3,4,5号码的人与椅,其中i号人不坐i号椅(54321,,,,i )的不同坐法有多少种?二十.复杂分类问题表格策略例20.有红、黄、兰色的球各5只,分别标有A、B、C、D、E五个字母,现从中取5只,要求各字母均有且三色齐备,则共有多少种不同的取法二十一:住店法策略解决“允许重复排列问题”要注意区分两类元素:一类元素可以重复,另一类不能重复,把不能重复的元素看作“客”,能重复的元素看作“店”,再利用乘法原理直接求解.例21.七名学生争夺五项冠军,每项冠军只能由一人获得,获得冠军的可能的种数有 .54321排列组合答案一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置.先排末位共有13C然后排首位共有14C最后排其它位置共有34A由分步计数原理得113434288C C A=二.相邻元素捆绑策略例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。

由分步计数原理可得共有522522480A A A=种不同的排法枪连在一起的情形的不同种数为 20三.不相邻问题插空策略例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种?解:分两步进行第一步排2个相声和3个独唱共有55A种,第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种46A不同的方法,由分步计数原理,节目的不同顺序共有5456A A种且两个新节目不相邻,那么不同插法的种数为 30四.定序问题倍缩空位插入策略例4.7人排队,其中甲乙丙3人顺序一定共有多少不同的排法解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素之间的全排列数,则共有不同排法种数是:7373/A A(空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有47A种方法,其余的三个位置甲乙丙共有 1种坐法,则共有47A种方法。

思考:可以先让甲乙丙就坐吗?(插入法)先排甲乙丙三个人,共有1种排法,再把其余4四人依次插入共有方法练习题:10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少排法?510C五.重排问题求幂策略例5.把6名实习生分配到7个车间实习,共有多少种不同的分法解:完成此事共分六步:把第一名实习生分配到车间有 7 种分法.把第二名实习生分配到车间也有7种分依此类推,由分步计数原理共有67种不同的排法练习题:2.某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为 422. 某8层大楼一楼电梯上来8名乘客人,他们到各自的一层下电梯,下电梯的方法87六.环排问题线排策略例6. 8人围桌而坐,共有多少种坐法?解:围桌而坐与坐成一排的不同点在于,坐成圆形没有首尾之分,所以固定一人44A并从此位置把圆形展成直线其余7人共有(8-1)!种排法即7!A B C D E AEHGF练习题:6颗颜色不同的钻石,可穿成几种钻石圈 120七.多排问题直排策略例7.8人排成前后两排,每排4人,其中甲乙在前排,丙在后排,共有多少排法解:8人排前后两排,相当于8人坐8把椅子,可以把椅子排成一排.个特殊元素有24A种,再排后4个位置上的特殊元素丙有14A种,其余的5人在5个位置上任意排列有5A种,则共有215445A A A种前 排练习题:有两排座位,前排11个座位,后排12个座位,现安排2人就座规定前排中间的3个座位不能坐,并且这2人不左右相邻,那么不同排法的种数是 346八.排列组合混合问题先选后排策略例8.有5个不同的小球,装入4个不同的盒内,每盒至少装一个球,共有多少不同的装法.允许重复的排列问题的特点是以元素为研究对象,元素不受位置的约束,可以逐一安排各个元素的位置,一般地n不同的元素没有限制地安排在m个位置上的排列数为nm种一般地,n个不同元素作圆形排列,共有(n-1)!种排法.如果从n个不同元素中取出m个元素作圆形排列共有1mnAn一般地,元素分成多排的排列问题,可归结为一排考虑,再分段研解:第一步从5个球中选出2个组成复合元共有25C 种方法.再把4个元素(包含一个复合元素)装入4个不同的盒内有44A 种方法,根据分步计数原理装球的方法共有2454C A有1人参加,则不同的选法有 192 种九.小集团问题先整体后局部策略例9.用1,2,3,4,5组成没有重复数字的五位数其中恰有两个偶数夹1,5在两个奇数之间,这样的五位数有多少个?解:把1,5,2,4当作一个小集团与3排队共有22A 种排法,再排小集团内部共有2222A A 种排法,由分步计数原理共有222222A A A 种排法.练习题:1.计划展出10幅不同的画,其中1幅水彩画,4幅油画,5幅国画, 排成一行陈列,要求同一 品种的必须连在一起,并且水彩画不在两端,那么共有陈列方式的种数为254254A A A2. 5男生和5女生站成一排照像,男生相邻,女生也相邻的排法有255255A A A 种十.元素相同问题隔板策略例10.有10个运动员名额,分给7个班,每班至少一个,有多少种分配方案?解:因为10个名额没有差别,把它们排成一排。

相关文档
最新文档