经典排列组合问题100题配超详细解析
排列组合典型例题(带详细答案)
例1 用0到9这10 个数字.可组成多少个没有重复数字的四位偶数例2三个女生和五个男生排成一排(1)如果女生必须全排在一起,可有多少种不同的排法(2)如果女生必须全分开,可有多少种不同的排法(3)如果两端都不能排女生,可有多少种不同的排法(4)如果两端不能都排女生,可有多少种不同的排法例3 排一张有5个歌唱节目和4个舞蹈节目的演出节目单。
(1)任何两个舞蹈节目不相邻的排法有多少种(2)歌唱节目与舞蹈节目间隔排列的方法有多少种例4某一天的课程表要排入政治、语文、数学、物理、体育、美术共六节课,如果第一节不排体育,最后一节不排数学,那么共有多少种不同的排课程表的方法.例 5 现有3辆公交车、3位司机和3位售票员,每辆车上需配1位司机和1位售票员.问车辆、司机、售票员搭配方案一共有多少种例6下是表是高考第一批录取的一份志愿表.如果有4所重点院校,每所院校有3个专业是你较为满意的选择.若表格填满且规定学校没有重复,同一学校的专业也没有重复的话,你将有多少种不同的填表方法例7 7名同学排队照相.(1)若分成两排照,前排3人,后排4人,有多少种不同的排法(2)若排成两排照,前排3人,后排4人,但其中甲必须在前排,乙必须在后排,有多少种不同的排法(3)若排成一排照,甲、乙、丙三人必须相邻,有多少种不同的排法 (4)若排成一排照,7人中有4名男生,3名女生,女生不能相邻,有多少种不面的排法例8计算下列各题:(1) 215A ; (2) 66A ; (3) 1111------⋅n n m n mn m n A A A ;例9 f e d c b a ,,,,,六人排一列纵队,限定a 要排在b 的前面(a 与b 可以相邻,也可以不相邻),求共有几种排法.例10 八个人分两排坐,每排四人,限定甲必须坐在前排,乙、丙必须坐在同一排,共有多少种安排办法例11 计划在某画廊展出10幅不同的画,其中1幅水彩画、4幅油画、5幅国画,排成一行陈列,要求同一品种的画必须连在一起,并且不彩画不放在两端,那么不同陈列方式有例12 由数字5,4,3,2,1,0组成没有重复数字的六位数,其中个位数字小于十位数的个数共有( ).例13 用5,4,3,2,1,这五个数字,组成没有重复数字的三位数,其中偶数共有( ).例14 用543210、、、、、共六个数字,组成无重复数字的自然数,(1)可以组成多少个无重复数字的3位偶数(2)可以组成多少个无重复数字且被3整除的三位数1、解法1:当个位数上排“0”时,千位,百位,十位上可以从余下的九个数字中任选3个来排列,故有39A 个;当个位上在“2、4、6、8”中任选一个来排,则千位上从余下的八个非零数字中任选一个,百位,十位上再从余下的八个数字中任选两个来排,按乘法原理有281814A A A ⋅⋅(个).∴ 没有重复数字的四位偶数有2296179250428181439=+=⋅⋅+A A A A2、解:(1)(捆绑法)因为三个女生必须排在一起,所以可以先把她们看成一个整体,这样同五个男生合一起共有六个元素,然成一排有66A 种不同排法.对于其中的每一种排法,三个女生之间又都有33A 对种不同的排法,因此共有43203366=⋅A A 种不同的排法.(2)(插空法)要保证女生全分开,可先把五个男生排好,每两个相邻的男生之间留出一个空档.这样共有4个空档,加上两边两个男生外侧的两个位置,共有六个位置,再把三个女生插入这六个位置中,只要保证每个位置至多插入一个女生,就能保证任意两个女生都不相邻.由于五个男生排成一排有55A 种不同排法,对于其中任意一种排法,从上述六个位置中选出三个来让三个女生插入都有36A 种方法,因此共有144003655=⋅A A 种不同的排法.(3)解法1:(位置分析法)因为两端不能排女生,所以两端只能挑选5个男生中的2个,有25A 种不同的排法,对于其中的任意一种排法,其余六位都有66A 种排法,所以共有144006625=⋅A A 种不同的排法. (4)3个女生和5个男生排成一排有88A 种排法,从中扣去两端都是女生排法6623A A ⋅种,就能得到两端不都是女生的排法种数.因此共有36000662388=⋅-A A A 种不同的排法.3、解:(1)先排歌唱节目有55A 种,歌唱节目之间以及两端共有6个位子,从中选4个放入舞蹈节目,共有46A 中方法,所以任两个舞蹈节目不相邻排法有:55A 46A =43200.(2)先排舞蹈节目有44A 中方法,在舞蹈节目之间以及两端共有5个空位,恰好供5个歌唱节目放入。
高中数学_排列组合100题(附解答)
高中数学_排列组合100题一、填充题1. (1)设{}3,8A =﹐{}8,36B x =+﹐若A B =﹐则x =____________﹒(2)设{}2|320A x x x =-+=﹐{}1,B a =﹐若A B =﹐则a =____________﹒2. (1)822x x ⎛⎫-⎪⎝⎭展开式中10x 项的系数为____________﹒ (2)52123x x ⎛⎫- ⎪⎝⎭展开式中3x 项的系数为____________﹒ (3)53212x x ⎛⎫+ ⎪⎝⎭展开式中常数项为____________﹒ 3. (1)()82x y z +-展开式中332x y z 项的系数为____________﹒(2)()532x y z -+展开式中﹐2.3x y 项的系数为____________﹒4. 四对夫妇围一圆桌而坐﹐夫妇相对而坐的方法有___________种﹒5. {}{}1,21,2,3,4,5,A ⊂⊂且A 有4个元素﹐则这种集合A 有____________个﹒6. 从2000到3000的所有自然数中﹐为3的倍数或5的倍数者共有____________个﹒7. 从1至10的十个正整数中任取3个相异数﹐其中均不相邻的整数取法有____________种﹒8. 某女生有上衣5件﹑裙子4件﹑外套2件﹐请问她外出时共有____________种上衣﹑裙子﹑外套的搭配法﹒(注意:外套可穿也可不穿﹒) 9. 已知数列n a 定义为1132n n a a a n +=⎧⎨=+⎩﹐n 为正整数﹐求100a =____________﹒ 10. 设A ﹑B ﹑T 均为集合﹐{},,,A a b c d =﹐{},,,,=B c d e f g ﹐则满足T A ⊂或T B ⊂的集合T 共有____________个﹒11. 李先生与其太太有一天邀请邻家四对夫妇围坐一圆桌聊天﹐试求下列各情形之排列数:(1)男女间隔而坐且夫妇相邻____________﹒(2)每对夫妇相对而坐____________﹒12. 体育课后﹐阿珍将4个相同排球﹐5个相同篮球装入三个不同的箱子﹐每箱至少有1颗球﹐则方法有____________种﹒13. 如图﹐由A 沿棱到G 取快捷方式(最短路径)﹐则有____________种不同走法﹒14. 0﹑1﹑1﹑2﹑2﹑2﹑2七个数字全取排成七位数﹐有____________种方法﹒1013⎛⎫16. 有一数列n a 满足11a =且1213n n a a +=+﹐n 为正整数﹐求()13n n a ∞=-=∑____________﹒ 17. 设{}2,4,1A a =+﹐{}24,2,23B a a a =----﹐已知A B ⋂{}2,5=﹐则()()A B A B ⋃-⋂=____________﹒18. 把1~4四个自然数排成一行﹐若要求除最左边的位置外﹐每个位置的数字比其左边的所有数字都大或都小﹐则共有____________种排法﹒(例如:2314及3421均为符合要求的排列) 19. 从1到1000的自然数中﹐(1)是5的倍数或7的倍数者共有____________个﹒(2)不是5的倍数也不是7的倍数者共有____________个﹒(3)是5的倍数但不是7的倍数者共有____________个﹒20. 如图﹐从A 走到B 走快捷方式﹐可以有____________种走法﹒21. 1到1000的正整数中﹐不能被2﹑3﹑4﹑5﹑6之一整除者有____________个﹒22. 将100元钞票换成50元﹑10元﹑5元﹑1元的硬币﹐则(1)50元硬币至少要1个的换法有____________种﹒(2)不含1元硬币的换法有____________种﹒23. 求()21x -除1001x +的余式为____________﹒24. 在()8x y z ++的展开式中﹐同类项系数合并整理后﹐(1)共有____________个不同类项﹒(2)其中323x y z 的系数为____________﹒25. 小明与小美玩猜数字游戏﹐小明写一个五位数﹐由小美来猜;小美第一次猜75168﹐小明说五个数字都对﹐但只有万位数字对﹐其他数字所在的位数全不对﹐则小美最多再猜____________次才能猜对﹒26. 若{}|,,110000S x x x x =≤≤為正整數為正整數﹐{}|12,,110000T x x k k x ==≤≤為正整數﹐则()n S T -=____________﹒27. 小于10000之自然数中﹐6的倍数所成集合为A ﹐9的倍数所成集合为B ﹐12的倍数所成集合为C ﹐则(1)()n A B ⋂=____________﹒ (2)()n A B C ⋂⋂=____________﹒ (3)()n A B C ⎡⋂⋃⎤=⎣⎦____________﹒(4)()n A B C ⎡⋂⋃⎤=⎣⎦____________﹒28. 1到300的自然数中﹐是2或3的倍数但非5的倍数有____________个﹒29. ()10222x x -+除以()31x -所得的余式为____________﹒ 30.如圖﹐以五色塗入各區﹐每區一色且相鄰區不得同色﹐則有____________種不同的塗法﹒(圖固定不得旋轉)(1)由A 取捷徑到B 的走法有____________種﹒(2)由A 走到B ﹐走向可以↑﹑→或↓﹐但不可以←﹐且不可重複走﹐則走法有____________種﹒32. 求()()23311x x ++++……()2031x ++展开式中12x 项系数为____________﹒ 33. ()1001k k x =-∑展开式中5x 的系数为____________﹒34. 展开()200.990.abcd =……﹐则a b c ++=____________﹒35. 建中高二教室楼梯一层有11个阶梯﹐学生上楼时若限定每步只可跨一阶或二阶﹐则上楼的走法有____________种﹒36. 利用二项式定理求12323n n n n n C C C nC +++⋅⋅⋅⋅⋅⋅+和为____________﹒37. 四对夫妇Aa ﹑Bb ﹑Cc ﹑Dd 围一圆桌而坐﹐若Aa 要相对且Bb 要相邻的坐法有____________种﹒38. 许多白色及黑色的磁砖﹐白色的磁砖为正方形﹐边长为1单位;黑色为长方形﹐其长为2单位﹐宽为1单位﹔则贴满一个长7单位﹐宽1单位的长方形墙壁﹐共有____________种方法﹒39.如圖,有三組平行線,每組各有三條直線,則(1)可決定____________個三角形.(2)可決定____________個梯形.(一組對邊平行,另一組對邊不平行).40. 小功家住在一栋7楼的电梯公寓﹐今天小功回家时有5人同时和小功一起进入1楼电梯欲往上﹐假设每人按下自己想要到的楼层(可相同或不同)﹐请问电梯有____________种停靠方式﹒(假设这期间电梯只会由下而上依次停靠这6人所按的楼层)41. 设202020201232023......20,S C C C C =+⋅+⋅++⋅则S 为____________位数﹒(设log20.3010=)42. 4面不同色的旗子﹐若任取一面或数面悬挂在旗杆上来表示讯号﹐如果考虑上下的次序﹐则可作成____________种不同的讯号﹒43.如圖的棋盤式街道﹐甲走捷徑從A 至B ﹐則 (1)走法有____________種﹒(2)若不得經過C 且不經過D 的走法有____________種﹒44.圖中的每一格皆是正方形﹐邊長均為1個單位﹐試問由圖中線段(1)共可決定____________個矩形﹒(2)可決定____________個正方形﹒45. 有红﹑白﹑黄三种大小一样的正立方体积木各20个﹐从中取出7个积木﹐相同颜色堆在一起﹐一一重迭堆高﹐共有____________种堆法﹒47. A ﹑B ﹑C ﹑D ﹑E 五对夫妇围成一圆桌而坐(座位无编号)﹐A 夫妇相对且B 夫妇相邻的情形有____________种﹒48. 如图﹐取快捷方式而走﹐由A 不经P ﹑Q 至B 有____________种方法﹒49. 将pallmall 的字母全取排成一列﹐相同字母不相邻的排法有____________种﹒50. 二个中国人﹑二个日本人﹑二个美国人排成一列﹐同国籍不相邻有____________种排法﹒二、计算题1. 设数列n a 满足14a =且132k n a a +=+﹐n 为自然数﹐试求(1)2a ﹐3a ﹐4a ﹐5a ﹒(2)推测n a 之值(以n 表示)﹒(3)401k k a =∑﹒2. 某校从8名教师中选派4名教师分别去4个城市研习﹐每地一人﹒其中甲和乙不能同时被选派﹐甲和丙只能同时被选派或同时不被选派﹐问共有几种选派方法?3. 试求()632x y -的展开式﹒4. 试求()421x -的展开式﹒6. 下列各图形﹐自A 到A 的一笔划﹐方法各有多少种﹖ (1) (2) (3)7. 如图﹐至少包含A 或B 两点之一的矩形共有几个?8. 设()n x y +展开式中依x 降序排列的第6项为112﹐第7项为7﹐第8项为14﹐试求x ﹑y 及n 之值﹒(但x ﹑y 都是正数)9. 红﹑白﹑绿﹑黑四色大小相同的球各4颗共16颗球﹐任取四颗﹐则(1)四球恰为红﹑白二色的情形有几种?(2)四球恰具两种颜色的情形有几种?10. 一楼梯共10级﹐某人上楼每步可走一级或两级﹐要8步走完这10级楼梯﹐共有多少种走法?11. 设{}1,2,3,4,5,6,7,8,9,10U =为一基集(宇集)﹐则{}1,2,4,5,8A =﹐{}1,2,5,7,9B =﹐求(1)A B ⋃(2)A B ⋂ (3)A B - (4)B A - (5)'A (6)'B (7)()'⋃A B (8)''⋂A B (9)()'A B ⋂ (10)''A B ⋃﹒12. 若()1922381211x x a x a x x -+=+++⋅⋅⋅⋅⋅⋅+﹐求1a 和2a 的值﹒13. 某一场舞会将4位男生与4位女生配成4对﹐每一对皆含一位男生与一位女生﹐试问总共有几种配对法﹖(1)43C ﹒ (2)44P ﹒ (3)44﹒ (4)44H ﹒ (5)4﹒14. 如图﹐A A →一笔划的方法数有几种﹖ (1)(2)16. 求()70.998之近似值﹒(至小数点后第6位)17. 设()1012220211x x ax bx cx +-=+++⋅⋅⋅⋅⋅⋅+﹐求a ﹑b ﹑c 之值﹒18. (1)试证明下列等式成立:()1012121.12311n n n n n n C C C C n n ++++⋅⋅⋅⋅⋅⋅+=-++ (2)设n 为自然数﹐且满足12031,2311n n n nn C C C C n n +++⋅⋅⋅⋅⋅⋅+=++则n 之值为何?19. 王老师改段考考卷﹐她希望成绩是0﹑4﹑5﹑6﹑7﹑8﹑9所组成的2位数﹐则(1)不小于60分的数有几个﹖(2)有几个3的倍数﹖(3)改完考卷后发现由小到大排列的第12个数正是全班的平均成绩﹐请问班上的平均成绩是几分﹖20. 某日有七堂课﹐其中有两堂是数学﹐有两堂是国文﹐另外是英文﹑生物﹑体育各一堂﹒若数学要连两堂上课﹐国文也要连两堂上课﹐但同科目的课程不跨上﹑下午(即第四五节课不算连堂)﹐若第四﹑五堂课也不排体育﹐则该日之课程有几种可能的排法﹖21. ()10122320211,x x ax bx cx x +-=++++⋅⋅⋅⋅⋅⋅+求a ﹑b ﹑c ﹒22. 已知{}{}{}0,,1,2,1,1,2=∅A ﹐下列何者为真﹖(A)∅∈A (B)∅⊂A (C)0A ∈ (D)0A ⊂ (E){}1,2A ∈ (F){}1,2A ⊂ (G){}∅⊂A ﹒23.設有A ﹑B ﹑C ﹑D ﹑E 五個市鎮﹐其通道如圖所示﹐今某人自A 地到E 地﹐同一市鎮不得經過兩次或兩次以上﹐且不必走過每一市鎮﹐求有幾種不同路線可走﹖24. 设数列n a 的首项15a =且满足递归关系式()123n n a a n +=+-﹐n 为正整数﹐试求(1)2a ﹐3a ﹐4a ﹐5a ﹒(2)一般项n a (以n 表示)﹒(3)20a ﹒25. 方程式10x y z ++=有多少组非负整数解?26. 用0﹑1﹑2﹑3﹑4﹑5作成大于230的三位数奇数﹐数字可重复使用(1)可作成多少个﹖ (2)其总和若干﹖27. 求5678192023451617C C C C C C ++++++的值﹒28. 妈妈桌球俱乐部拟购买8把桌球拍以供忘记携带球拍的会员使用﹐若球拍分为刀板﹐直拍与大陆拍3类﹐试问俱乐部有多少种不同的购买方式?29. 设直线方程式0ax by +=中的,a b 是取自集合{}3,2,1,0,2,4,6---中两个不同的元素﹐且该直线的斜率为正值﹐试问共可表出几条相异的直线﹖30. 下列各图﹐由A 到B 的一笔划﹐方法各有多少种﹖31. 以五种不同的颜色﹐涂入下列各图(图形不能转动)﹐同色不相邻﹐颜色可重复使用﹐则涂法各有多少种﹖ (1) (2)32. 平面上有n 个圆﹐其中任三个圆均不共点﹐此n 个圆最多可将平面分割成n a 个区域﹐则(1)求1a ﹐2a ﹐3a ﹐4a ﹒(2)写出n a 的递归关系式﹒(3)求第n 项n a (以n 表示)﹒33. 于下列各图中﹐以五色涂入各区﹐每区一色但相邻不得同色﹐则各有几种不同的涂法﹖(各图固定﹐不得旋转) (1) (2) (3)34. 车商将3辆不同的休旅车及3辆不同的跑车排成一列展示﹒求下列各种排列方法:(1)休旅车及跑车相间排列﹒ (2)休旅车及跑车各自排在一起﹒35. 从6本不同的英文书与5本不同的中文书中﹐选取2本英文书与3本中文书排在书架上﹐共有几种排法?36. 将9本不同的书依下列情形分配﹐方法各有几种?(1)分给甲﹐乙﹐丙3人﹐每人各得3本﹒(2)分装入3个相同的袋子﹐每袋装3本﹒(3)分装入3个相同的袋子﹐其中一袋装5本﹐另两袋各装2本﹒37. 学校举办象棋及围棋比赛﹐已知某班级有42位同学参赛﹐其中有34位同学参加围棋比赛﹐而两种棋赛都参加的同学有15人﹒试问此班有多少位同学参加象棋比赛?38. 求()321x x ++的展开式中2x 的系数﹒39. 求()322x x -+的展开式中4x 的系数﹒41. 自甲地到乙地有电车路线1条﹐公交车路线3条﹐自乙地到丙地有电车路线2条﹐公交车路线2条﹒今小明自甲地经乙地再到丙地﹐若甲地到乙地与乙地到丙地两次选择的路线中﹐电车与公交车路线各选一次﹐则有几种不同的路线安排?42. 某班举行数学测验﹐测验题分A﹐B﹐C三题﹒结果答对A题者有15人﹐答对B题者有19人﹐答对C题者有20人﹐其中A﹐B两题都答对者有10人﹐B﹐C两题都答对者有12人﹐C﹐A两题都答对者有8人﹐三题都答对者有3人﹒试问A﹐B﹐C三题中至少答对一题者有多少人?43. 在1到600的正整数中﹐是4﹐5和6中某一个数的倍数者共有几个?44.用黑白兩種顏色的正方形地磚依照如右的規律拼圖形:a是第n圖需用到的白色地磚塊數﹒設n(1)寫下數列n a的遞迴關係式﹒(2)求一般項n a﹒(3)拼第95圖需用到幾塊白色地磚﹒45. 欲将8位转学生分发到甲﹐乙﹐丙﹐丁四班﹒(1)若平均每班安排2人﹐共有几种分法?(2)若甲乙两班各安排3人﹐丙丁两班各安排1人﹐共有几种分法?46. 求满足12320003000n n n n n C C C C <++++<的正整数n ﹒47. (1)方程式9x y z ++=有多少组非负整数解﹖(2)方程式9x y z ++=有多少组正整数解﹖48. 旅行社安排两天一夜的渡假行程﹐其中往返渡假地点的交通工具有飞机﹑火车及汽车3种选择﹐而住宿有套房与小木屋2种选择﹒试问全部渡假行程﹐交通工具与住宿共有几种安排法﹖49. 老师想从10位干部中选出3人分别担任班会主席﹑司仪及纪录﹒试问有几种选法﹖50. 如果某人周末时﹐都从上网﹑打牌﹑游泳﹑慢跑与打篮球等5种活动选一种作休闲﹐那么这个月4个周末共有多少种不同的休闲安排呢﹖答 案一、填充题 (65格 每格0分 共0分)1. (1)1-;(2)22. (1)112;(2)0;(3)403. (1)4480;(2)90-4. 485. 36. 4687. 568. 609. 9903 10. 44 11.(1)48;(2)384 12. 228 13. 6 14. 90 15. 12- 16. 6 17. {}4,4- 18. 8 19. (1)314;(2)686;(3)172 20. 35 21. 266 22. (1)37;(2)18 23. 10098x - 24. (1)45;(2)560 25. 9 26. 84 27. (1)555;(2)277;(3)1111;(4)1111 28. 160 29. 2102011x x -+ 30. 780 31. (1)26;(2)120 32. 20349 33. 462- 34. 16 35. 144 36. 12n n -⋅ 37. 192 38. 2139. (1)27;(2)81 40. 63 41. 8 42. 64 43. (1)56;(2)20 44. (1)369;(2)76 45. 129 46. 3756 47. 8640 48. 80 49. 54 50. 240二、计算题 (75小题 每小题0分 共0分)1. (1)2112a =﹐37a =﹐4172a =﹐510a =;(2)3522n +;(3)1330 2. 600 3. 见解析 4. 见解析 5. 18 6. (1)48;(2)48;(3)96 7. 150 8. 4x =﹐12y =﹐8n = 9. (1)3;(2)18 10. 28 11. 见解析 12. 1219,190a a =-= 13. (2) 14. (1)32;(2)64 15. 27 16. 0.986084 17. 101,4949,a b ==1c =- 18. (1)见解析;(2)4 19. (1)28;(2)14;(3)5720. 52 21. 101,4949,a b ==156550c = 22. (A)(B)(C)(E)(F)(G) 23. 76 24. (1)24a =﹐35a =﹐48a =﹐513a =;(2)248n n -+;(3)328 25. 66 26. (1)63;(2)25299 27. 5980 28. 45 29. 13 30. (1)72;(2)864 31. (1)420;(2)3660 32. (1)12a =﹐24a =﹐38a =﹐414a =;(2)12n n a a n +=+⨯;(3)22n n -+ 33. (1)260;(2)3380;(3)43940 34. (1)72;(2)72 35. 1800036. (1)1680;(2)280;(3)378 37. 23 38. 6 39. 9 40. 20 41. 8 42. 27 43. 280 44.(1)15,2n n a a n -=+≥;(2)53n +;(3)478 45. (1)2520;(2)1120 46. 11 47. (1)55;(2)28 48. 18 49. 720 50. 625 解 析一、填充题 (65格 每格0分 共0分)1. (1)3631x x +=⇒=-﹒(2)()()2320120x x x x -+=⇒--=1,2x ⇒=﹐∴2a =﹒2. (1)设第1r +项为10x 项﹐则()()882816222rr r r r r r C x C x x x ---⎛⎫-=- ⎪⎝⎭ 163102r r ⇒-=⇒=﹐∴10x 项之系数为()2822112C -=﹒(2)设第1r +项为3x 项﹐则()55255102112233r rr r r r r r C x C x x x ----⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭ 710333r r ⇒-=⇒=(不合)﹐∴3x 项之系数为0﹒ (3)设第1r +项为常数项﹐则()5535515322122rr r r r r r C x C x x x ----⎛⎫= ⎪⎝⎭3. (1)()()()()332238!22144803!3!2!x y z -⇒⨯⨯-=﹒ (2)()()()()2303223235!321031902!3!x y z x y x y -=⨯-=-﹐∴系数为90-﹒ 4. 所求为1161412148⨯⨯⨯⨯⨯⨯⨯=﹒[另解]34!2484⨯=﹒ 5. {}1,2,3,4﹐{}1,2,3,5﹐{}1,2,4,5﹐共3个﹒6. 2000~3000中3的倍数有3000200033433⎡⎤⎡⎤-=⎢⎥⎢⎥⎣⎦⎣⎦个﹐ 2000~3000中5的倍数有30002000120155⎡⎤⎡⎤-+=⎢⎥⎢⎥⎣⎦⎣⎦个﹐ 2000~3000中15的倍数有30002000671515⎡⎤⎡⎤-=⎢⎥⎢⎥⎣⎦⎣⎦个﹐ ∴所求为33420167468+-=﹒ 7. 83563!P =﹒ 8. ()542160⨯⨯+=﹒9. ∵12n n a a n +=+﹐∴2121a a =+⨯3222a a =+⨯()1)21n n a a n -+=+⨯-()()21121213232n n n a a n n n -⋅=+⎡++⋅⋅⋅⋅⋅⋅+-⎤=+⨯=-+⎣⎦﹐ ∴210010010039903a =-+=﹒10. ∵T A T B ⊂⋃⊂﹐∴T 的个数为4522221632444+-=+-=﹒ 11. (1)5!2485⨯=﹒ (2)A a B b C c D d E e1181614121384⨯⨯⨯⨯⨯⨯⨯⨯⨯=﹒[另解]55!1238452⨯⨯=﹒ 12. 全部-(恰有一空箱)-(恰有二空箱)()67564545323228C C C C =⨯-⨯--=﹒13. 3216⨯⨯=﹒14. 任意排0-在首位7!6!5675610515904!2!4!2!22⨯⨯⨯=-=-=-=﹒ 15. 展开后各实数项和为2468108642101010101002468113131313222222222C C i C i C i C i ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+-+-+-+- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭10010101322C i ⎛⎫⎛⎫+- ⎪ ⎪ ⎪⎝⎭⎝⎭512110242=-=-﹒ [另解]原式()()10cos 60sin 60i =⎡-︒+-︒⎤⎣⎦()()cos 600sin 600i =-︒+-︒1322i =-+﹐ ∴实数项和为12-﹒ 16. ∵1213n n a a +=+⋅⋅⋅⋅⋅⋅ ∴1213n n a a -=+⋅⋅⋅⋅⋅⋅ -()1123n n n n a a a a +-⇒-=- 而11a =﹐2125133a a =+=﹐2123a a -=﹐ 表示数列1n n a a +-为首项23﹐公比23的等比数列﹐ ()()()121321n n n a a a a a a a a -=+-+-+⋅⋅⋅⋅⋅⋅+-111221332211213223313n n n ---⎡⎤⎛⎫-⎢⎥ ⎪⎡⎤⎝⎭⎢⎥⎛⎫⎛⎫⎣⎦=+=+-=-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦-﹐ ∴()111223262313n n n n a -∞∞==⎛⎫-=== ⎪⎝⎭-∑∑﹒17. ∵{}2,5A B ⋂=﹐∴154a a +=⇒=﹐∴{}2,4,5A =﹐{}4,2,5B =-﹐{}4,2,4,5A B ⋃=-﹐2134 32412314 34212341 4321共8种﹒19. 设1到1000的自然数所成的集合为基集U ﹐1到1000的自然數中﹐5的倍數者所成的集合為A ﹐ 而7的倍數者所成的集合為B ﹐ 則A B ⋂表示35的倍數者所成的集合﹐(1)即求()()()()n A B n A n B n A B ⋃=+-⋂100010001000200142283145735⎡⎤⎡⎤⎡⎤=+-=+-=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦﹒(2)即求()()()()1000314686⎡⎤'''⋂=⋃=-⋃=-=⎢⎥⎣⎦n A B n A B n U n A B ﹒ (3)即求()()()20028172n A B n A n A B -=-⋂=-=﹒20. 7!354!3!=﹒ 21. 若一整数不能被2整除﹐则必不能被4﹑6整除﹐故本题即求1到1000正整数中﹐不能被2﹑3﹑5之一整除者的个数﹒设1到1000之正整数中﹐可被2﹑3﹑5整除者之集合分别为A ﹑B ﹑C ﹐则()10005002n A ⎡⎤==⎢⎥⎣⎦﹐()10003333n B ⎡⎤==⎢⎥⎣⎦﹐()10002005n C ⎡⎤==⎢⎥⎣⎦﹐ ()10001666n A B ⎡⎤⋂==⎢⎥⎣⎦﹐()100010010n A C ⎡⎤⋂==⎢⎥⎣⎦﹐()10006615n B C ⎡⎤⋂==⎢⎥⎣⎦﹐ ()10003330n A B C ⎡⎤⋂⋂==⎢⎥⎣⎦﹐ ()()()()()()()()n A B C n A n B n C n A B n A C n B C n A B C ⋃⋃=++-⋂-⋂-⋂+⋂⋂ 5003332001661006633734=++---+=﹐故所求为()()'''10001000734266n A B C n A B C ⋂⋂=-⋃⋃=-=(个)﹒22. (1)①一个50⇒设10元x 个﹐5元y 个﹐1元z 个﹐则10550x y z ++=﹐x 0 1 2 3 4 5y 0~10 0~8 0~6 0~4 0~2 0z 50~0 40~0 30~0 20~0 10~0 0∴所求为36137+=种﹒(2)设50元x 个﹐10元y 个﹐5元z 个﹐则50105100x y z ++= 10220x y z ⇒++=﹐x0 1 2 y 0~100~5 0 z 20~0 10~0 0共116118++=种﹒23. ()()()1002100100100121111111x x C x C x +=⎡+-⎤+=+-+-+⎣⎦……()10010010011C x +-+﹐∴1001x +除以()21x -的余式为()11001110098x x +-+=-﹒24. (1)3101088245H C C ===﹒ (2)8!560.3!2!3!= 25. 先考虑5不在千位﹐1不在百位﹐6不在十位﹐8不在个位的方法﹐ 14!43!62!41!10!9⨯-⨯+⨯-⨯+⨯=﹐∴最多再猜9次﹒26. {}{}2222|,1100001,2,3,,100,=≤≤=為正整數S x x x ∴()100n S =﹐{}|12,,110000T x x k k x ==≤≤為正整數﹐ 令()222212232336x k k ==⨯⨯=⨯⨯=﹐ 则()()(){}22261,62,,616,⋂=⨯⨯⨯S T ∴()16n S T ⋂=﹐故()1001684n S T -=-=﹒27. (1)所求为999955518⎡⎤=⎢⎥⎣⎦﹒ (2)所求为999927736⎡⎤=⎢⎥⎣⎦﹒ (3)()()()()n A B C n A B n C n A B C ⎡⋂⋃⎤=⋂+-⎡⋂⋂⎤⎣⎦⎣⎦5558332771111=+-=﹒(4)()()()n A B C n A B A C ⎡⋂⋃⎤=⎡⋂⋃⋂⎤⎣⎦⎣⎦()()()()n A B n A C n A B A C =⋂+⋂-⎡⋂⋂⋂⎤⎣⎦ ()555833n A B C =+-⋂⋂5558332771111=+-=﹒28.()()()()()()236151030n n n n n n +---+15010050203010160=+---+=﹒29. ()()1010222211x x x ⎡⎤-+=-+⎣⎦ ()()10922101010911C x C x ⎡⎤⎡⎤=-+-+⎣⎦⎣⎦……()()22210101021011C x C x C ⎡⎤+-+-+⎣⎦ 故余式为()()210102210110211102011C x C x x x x -+=-++=-+﹒ 30.①B ﹑D 同﹐54143240,A B D C E⨯⨯⨯⨯= ②B ﹑D 異﹐ 54333540,A B D C E⨯⨯⨯⨯=由①②可得﹐共有240540780+=种﹒31.(1)走捷徑等於是走向只許向右與向上兩種﹒如圖﹐ 由A 開始朝任何方向走都有1種走法﹐走至交叉 點P 後﹐將會合箭頭的方法數全部加起來﹐即為走到該點的走法數(累加法)﹒如圖﹐走法有26種﹒(2)走向可以↑﹑→或↓﹐但不可以←又不可重複走﹒如圖﹐由P 出發﹐依所規定的走法﹐走到隔鄰的鉛垂路線上立即停止﹐再決定走向﹒如此相鄰的兩鉛垂路線間的走法數相乘﹐即為所求的走法數﹒∴走法有120種﹒32. ()()23311x x ++++……()()()()()()203321332033311111111x x x x x x x ⎡⎤++-+-+⎢⎥⎣⎦++==+-﹐ 所求即分子()2131x +展开式中15x 项系数 ∴所求为21521201918172034954321C ⨯⨯⨯⨯==⨯⨯⨯⨯﹒ 33. ()()()()1001201111k k x x x x =-=-+-+-+∑……()101x +- ()()()11111111111x x x x⎡⎤----⎣⎦==--﹐ 展开式中5x 系数即为()1111x --展开式中6x 系数﹐∴所求为()61161462C --=-﹒()()()2320202012310.010.010.01C C C =+-+-+-+……()2020200.01C +-10.20.0190.00114=-+-+……0.81786≈﹐ ∴81716a b c ++=++=﹒35. 设一步一阶走x 次﹐一步二阶走y 次﹐则211x y +=﹐x 1 3 5 7 9 11 y543216!7!8!9!10!15!3!4!5!3!7!2!9!⇒+++++144=﹒ 36. 令12323n n n n n S C C C nC =+++⋅⋅⋅⋅⋅⋅+⋅⋅⋅⋅⋅⋅ 则()0111n n n n S nC n C C -=+-+⋅⋅⋅⋅⋅⋅+⋅⋅⋅⋅⋅⋅+()0122n n n nn S n C C C n ⇒=++⋅⋅⋅⋅⋅⋅+=⋅﹐∴12n S n -=⋅﹒ 37.()1142!4!192.⨯⨯⨯⨯=選位A aBb38. 设白色x 块﹐黑色y 块﹐则27x y +=﹐y0 1 2 3 x7531⇒6!5!4!116104215!2!3!3!+++=+++=﹒ 39. (1)33311127C C C =﹒ (2)33333333321121121181C C C C C C C C C ++=﹒40. 62163-=41. 20202020123202320S C C C C =+++⋅⋅⋅⋅⋅⋅+⋅⋅⋅⋅⋅⋅ 20202001192019S C C C =++⋅⋅⋅⋅⋅⋅+⋅⋅⋅⋅⋅⋅()202020200120220202S C C C +⇒=++⋅⋅⋅⋅⋅⋅+=⨯﹐∴20102S =⨯﹐∵20log 220log 2200.3010 6.02==⨯=﹐∴202为7位数﹐∴S 为8位数﹒ 42. ①选一面4⇒﹐ ②选二面4312⇒⨯=﹐ ③选三面43224⇒⨯⨯=﹐ ④选四面⇒432124⨯⨯⨯=﹐由①②③④可得﹐共可作成412242464+++=种﹒ 43. (1)8!565!3!=﹒ (2)所求=全部()n C D -⋃()()()56A C B A D B A C D B =-⎡→→+→→-→→→⎤⎣⎦3!5!4!4!3!4!5612!3!2!3!2!2!2!2!2!⎛⎫=-⨯+⨯-⨯⨯ ⎪⎝⎭()5630241820=-+-=﹒44. (1)含中空:3342111172,C C C C ⨯⨯⨯= 左 上 右 下不含中空:37934792334342222222222222223C C C C C C C C C C C C C C +++----左 上 右 下 左上 右上 左下 右下 631081263691836297=+++----= ∴所求为72297369.+=(2)含中空:边长为31⇒﹐边长为44⇒﹐边长为56⇒﹐边长为63⇒﹐∴共14个﹐ 不含中空:()()()()625128176352418523122362,⨯+⨯+⨯+⨯+⨯+⨯+⨯+--⨯+⨯--=左 上 右 下 左上 右上 左下 右下 ∴所求为146276+=个﹒ 45. ①只用一色:3种﹐②只用二色:()()()()()()6,1,5,2,4,3,3,42,5,1,6 ∴()322!636,C ⋅⨯=上下色交換③用三色:红+白+黄=7 1 1 1 剩4∴36443!690,⨯=⨯=H C 紅白黃排列∴共33690129++=种﹒46. 444333222111234234234234146410H H H H H H H H H H H H ⨯⨯⨯-⨯⨯⨯+⨯⨯⨯-⨯⨯⨯+⨯700049006604103756=-⨯+⨯-⨯+=﹒ 47. 6A a Bb →→→坐法其他人坐法1162!6!8640⨯⨯⨯⨯=﹒48. ()A B A P B A Q B A P Q B →-→→+→→-→→→ 10!4!6!5!5!4!5!16!4!2!2!4!2!3!2!3!2!2!2!3!2!⎛⎫⇒-⨯+⨯-⨯⨯ ⎪⎝⎭()210901006080=-+-=﹒ 49. aa 不相邻且llll 不相邻﹐可先排pmaa ﹐再安插llll ﹐ ①aa 排在一起时:pm aa 排法有3!6=种﹐再安插4个l :p m a a △△△△△方法有434C =种﹒↑ l②aa 不排在一起时:p m △△△排法有322!6C ⨯=种﹐ 再安排4个l :p a m a △△△△△方法有545C =种﹒ 由①②可知﹐排法有646554⨯+⨯=种﹒ [另解]llll 不相邻llll -不相邻且aa 相邻54444!3!606542!4!4!P P =⨯-⨯=-=﹒ 50. 6!35!2!34!2!2!13!2!2!2!240-⨯⨯+⨯⨯⨯-⨯⨯⨯⨯=﹒二、计算题 (75小题 每小题0分 共0分)1. ∵132n n a a +=+﹐∴132n n a a +-=﹐ 表示n a 为首项4﹐公差32的等差数列﹐(1)2133114222a a =+=+=﹐ 3231137222a a =+=+=﹐ 4333177222a a =+=+=﹐ 54317310222a a =+=+=﹒ (2)()()1335141222n a a n d n n =+-=+-⨯=+﹒ (3)()401240134024401213302k k a a a a =⎡⎤⨯+-⨯⎢⎥⎣⎦=++⋅⋅⋅⋅⋅⋅+==∑﹒ 2. 从8名教师中选出4名教师去4个城市研习的方式可分为甲去和甲不去两种情形: (1)若是甲去研习﹐则丙也会去﹐而乙不去﹐因此需从剩下的5名教师中选出2人去参加研习﹐故选法有52C 种﹒ (2)若是甲不去研习﹐则丙也不会去﹐而乙可去也可不去﹐因此需从剩下的6名教师中选出4名教师去参加研习﹐故选法有64C 种﹒综合这两种情形﹐从8名教师中选派4名教师的选法共有562425C C +=种﹒而选出4名教师后﹐分别安排到4个城市去研习﹐则安排的方式有4!种﹐ 因此总共有254!600⨯=种选派方法﹒3. ()()()()()()()()()()6651423324666660123432332323232x y C x C x y C x y C x y C x y -=+-+-+-+-()()()566656322C x y C y +-+-6542332456729291648604320216057664.x x y x y x y x y xy y =-+-+-+4. ()()()()()()()()()44312213444444012342122121211x C x C x C x C x C -=+-+-+-+-43216322481x x x x =-+-+﹒5. SENSE 的5个字母中取3种字母﹐其中任取3个字母可能取出「三个字母皆不相同」或「两个字母同另一不同」两种情形:(1)选出三个字母皆不相同的选法有331C =种﹐排列的方法有3!种﹐ 因此排法有333!6C ⨯=种﹒(2)选出两个字母同另一不同的选法有2211C C ⨯种﹐排列的方法有3!2!1!种﹐ 因此排法有22113!122!1!C C ⨯⨯=种﹒ 综合这两种情形﹐共有18种排法﹒6. (1)先走任一瓣都可以﹐故将3瓣视为3条路任意排列﹐方法3!种﹐又每一瓣走法有2种(两个方向)﹐故所求为323!⨯48=种﹒(2)323!48⨯=﹒ (3)423!96⨯=﹒7. ()()()()n A B n A n B n A B ⋃=+-⋂253343422332111111111111C C C C C C C C C C C C =⨯⨯⨯+⨯⨯⨯-⨯⨯⨯909636150.=+-=8. 555112n n C x y -=⋅⋅⋅⋅⋅⋅ 6667n n C x y -=⋅⋅⋅⋅⋅⋅77714n n C x y -=⋅⋅⋅⋅⋅⋅6165xn y⇒⋅=⋅⋅⋅⋅⋅⋅- 7286xn y⇒⋅=⋅⋅⋅⋅⋅⋅- ()()66167528n n -⇒=-﹐∴8n =﹐ 代入⇒8x y =﹐由⇒()877184C y y =8812y ⎛⎫⇒= ⎪⎝⎭﹐即得12y =±﹐4x =±﹐∴14,,82x y n ===(取正值)﹒9. (1)红+白=41 1 剩223223H C ⇒==﹒[另解] 红 白1322313.⇒共種 (2)利用第(1)题的结果42318C ⇒⨯=﹒10. 用8步走完10级楼梯﹐假设一级走了x 步﹐两级走了y 步﹐ 可列得8210x y x y +=⎧⎨+=⎩解得6x =﹐2y =﹐因此用这样的走法共有8!286!2!=(种)﹒ 11.(1){}1,2,4,5,7,8,9A B ⋃=﹒ (2){}1,2,5A B ⋂=﹒ (3){}4,8A B -=﹒(4){}7,9B A -=﹒(5){}3,6,7,9,10'=-=A U A ﹒ (6){}3,4,6,8,10'=-=B U B ﹒(7)(){}3,6,10'⋃=A B ﹒(8){}3,6,10''⋂=A B ﹒(9)(){}3,4,6,7,8,9,10'⋂=A B ﹒(10){}3,4,6,7,8,9,10''⋃=A B ﹒12. ()()()()191919182219192011111x x x x C x C x x ⎡⎤-+=-+=-+-+⋅⋅⋅⋅⋅⋅⎣⎦﹐∴()1919101119,a C C =-=-1919192021190.a C C C =+=13. 可看作第一位男生有4位女生舞伴可选择﹐第二位男生有3位女生舞伴可选择﹐以此类推得舞会配对方法数共有44432124P =⨯⨯⨯=种﹒故选(2)﹒ 14. (1)5232=﹒(2)①先往右42232⨯=﹐ ②先往左42232⨯=﹐ 共有323264+=﹒ 15.如图﹐共有27种方法﹒16. ()()()()()77237777712370.99810.00210.0020.0020.0020.002C C C C =-=-⨯+⨯-⨯+⋅⋅⋅⋅⋅⋅-⨯10.0140.0000840.0000002800.9860837200.986084.≈-+-=≈ 17. ()()1011012211x x x x ⎡⎤+-=+-⎣⎦()()()()()21011011009910121012101212101111x C x x C x x C x =+-+++-⋅⋅⋅⋅⋅⋅+- ()10111c =-=-﹐∵()1011x +展开式中才有x 项﹐∴1011101,a C == ∵()1011x +及()100101211C x x -+展开式中均有2x 项﹐∴101101214949.b C C =-=18. (1)∵()()()()()()111!!11!1!1!1!1n n k k n C n C k n k k k n n k k n +++===+-+⋅+⋅-++﹐∴左式()()1111121011121.111nn n n n n k n k C C C C k n n +++++==⨯=++⋅⋅⋅⋅⋅⋅+=-+++∑ (2)承(1)知﹐()1113121213111n n n n ++-=⇒-=++﹐得4n =﹒ 19. (1)□□:4728⨯=﹒ ↓ 6﹑7﹑8﹑9(2)45﹑48﹑54﹑57﹑60﹑66﹑69﹑75﹑78﹑84﹑87﹑90﹑96﹑99﹐共14个﹒ (3)4□7⇒个﹐ 5□7⇒个﹐∴1459a =﹐1358a =﹐1257a =﹐∴平均为57分﹒ 20.上午 下午 1 2 3 4 5 6 7數 數 國 國 ╳ 體 體 2228⇒⨯⨯= 數 數 體 ╳ 國 國 體 2228⇒⨯⨯= 數 數 體 ╳ ╳ 國 國 2124⇒⨯⨯= 體 數 數 ╳ 國 國 體 2228⇒⨯⨯= 體 數 數 ╳ ╳ 國 國 2124⇒⨯⨯= 體 體 數 數 國 國 體 23212⇒⨯⨯= 體 體數數╳ 國國2228⇒⨯⨯=∴共有8848412852++++++=種﹒21. ()()()()1011012211x xx x+-=++-()()()()()()21011011009910121012101212101111x C x x C x x C x =+++-++-+⋅⋅⋅⋅⋅⋅+- ()()()1011002411011x x x x f x =+-++⋅﹐其中()f x 为一多项式﹐∴x 项的系数1011101,a C == 2x 项的系数10121014949,b C =-=3x 项的系数10110031101156550.c C C =-⨯=23.∴共有441212218396676+++++++++=种走法﹒ 24. (1)∵()123n n a a n +=+-且15a =﹐ ∴()21213514a a =+⨯-=-=﹐ ()32223415a a =+⨯-=+=﹐ ()43233538a a =+⨯-=+=﹐ ()542438513a a =+⨯-=+=﹒ (2)∵()123n n a a n +=+-﹐ ∴()21213a a =+⨯- ()32223a a =+⨯-()()121223)213n n n n a a n a a n ---=+⎡⨯--⎤⎣⎦+=+⎡⨯--⎤⎣⎦()()()2112121315233482n n n a a n n n n n -⋅=+⨯⎡++⋅⋅⋅⋅⋅⋅+-⎤--=+⨯-+=-+⎣⎦﹒(3)20a =2204208328-⨯+=﹒25. x ﹐y ﹐z 的非负整数解共有331011212101010266H C C C +-====(组)﹒26. (1)3﹑4﹑5 1﹑3﹑5 →有363⨯⨯个 2 4﹑5 1﹑3﹑5 →有123⨯⨯个 2 3 1﹑3﹑5 →有113⨯⨯个∴共有()()36323363⨯⨯+⨯+=个大于230的三位数奇数﹒(2)①个位数字为1者有()()()36121121⨯+⨯+⨯=个﹐为3﹑5者也各有21个﹐ 故个位数字的和为()21135189⨯++=﹒②十位数字为1﹑2者各有339⨯=个﹐为3者有()33312⨯+=个﹐为4﹑5者各有 ()331312⨯+⨯=个﹐故十位数字和为()()()9121231245171⨯++⨯+⨯+=﹒③百位数字为3﹑4﹑5者各有6318⨯=个﹐为2者有()()23139⨯+⨯=个﹐故百位数字和为()()1834592234⨯++⨯⨯=﹒由①②③可知﹐总和为()()1891711023410025299+⨯+⨯=﹒27. 由于515C =且565622125C C C C =-=-﹐于是利用帕斯卡尔定理111n n n m m m C C C ---=+﹐得原式()66781920234516175C C C C C C =++++++-778192034516175C C C C C =+++++-8819204516175C C C C =++++-21175C =- 5980=﹒28. 设桌球俱乐部拟购买刀板﹐直拍与大陆拍各1x ﹐2x ﹐3x 把﹐ 根据题意得1238x x x ++=﹒其非负整数解有33811010888245H C C C +-====(组)﹐故共有45种不同的购买方式﹒29. 直线0ax by +=是恒过原点﹐且斜率为a b -的直线﹒因为斜率ab-为正值﹐所以,a b 必须异号﹐且,a b 皆不等于0﹒我们以a 的正负情形讨论如下﹕(1)当0a >时﹐a 有3种选法﹐而此时0b <亦有3种选法﹐ 因此有339⨯=种选法﹒(2)当0a <时﹐a 有3种选法﹐而此时0b >亦有3种选法﹐ 因此有339⨯=种选法﹒ 但是①当()()()(),2,1,4,2,6,3a b =---时﹐均表示同一条直线20x y -=﹒ ②当()()()(),3,6,2,4,1,2a b =---时﹐均表示同一条直线20x y -+=﹒ ③当()(),2,2a b =-﹐()2,2-时﹐均表示同一条直线0x y -=﹒ 因此需扣除重复计算的2215++=条直线﹒ 故共可表出99513+-=条相异的直线﹒ 30.(1)從A 走到P 後 ﹐方法有2種﹐完成A 到P 的各路線﹐方法有3!種﹐ 完成P 到B 的各路線﹐方法有3!種﹐ ∴共有()223!3!23!⨯⨯=⨯72=種﹒(2)A 到P 後 ﹐方法2種﹐P 到Q 後 ﹐方法2種﹐∴共有()32223!3!3!23!⨯⨯⨯⨯=⨯864=種﹒ABA Q P B31. (1)B ﹑D 同色﹐A BD C E →→→ 5433180⨯⨯⨯=﹐ B ﹑D 异色﹐A B D C E →→→→54322240⨯⨯⨯⨯=﹐ ∴共有180240420+=种涂法﹒(2)B ﹑D ﹑F 同色﹐A BDF C E G →→→→ 54333540⨯⨯⨯⨯=﹐ B ﹑D ﹑F 异色﹐A B D F C E G →→→→→→ 5432222960⨯⨯⨯⨯⨯⨯=﹐ B ﹑D 同色﹐F 异色﹐A BD F C E G →→→→→ 543322720⨯⨯⨯⨯⨯=﹐同理B ﹑F 同色﹐D 异色;D ﹑F 同色﹐B 异色涂法也各有720种﹐ ∴共有54096072033660++⨯=种﹒ 32.(1)12a = 24a = 38a = 414a =1n = 2n = 3n = 4n =(2)12a =﹐212a a =+﹐3222a a =+⨯﹐4323a a =+⨯﹐∴12n n a a n +=+⨯﹒ (3)∵12n n a a n +=+⨯且12a =﹐ ∴2121a a =+⨯ 3222a a =+⨯()1222n n a a n --=+⨯- ()1)21n n a a n -+=+⨯-()()21121212222n n n a a n n n -⨯=+⨯⎡++⋅⋅⋅⋅⋅⋅+-⎤=+⨯=-+⎣⎦∴22n a n n =-+﹒ 33. (1)①A ﹑C 同色﹐541480,A B C D ⨯⨯⨯=②A ﹑C 异色﹐5433180,A B C D ⨯⨯⨯=由①②可得﹐共有80180260+=种﹒(2)由(1)可知[]541433⨯⨯⨯+⨯﹐推得[]25414333380⨯⨯⨯+⨯=﹒ (3)[]354143343940⨯⨯⨯+⨯=﹒34.(1)休旅車及跑車相間排列的情形﹐可分為兩種情形﹐如圖所示:3輛休旅車排成一列共有3!6=種方法﹐同樣地﹐3輛跑車排成一列共有3!6=種方法﹐ 因此根據乘法原理﹐共有26672⋅⋅=種排法﹒ (2)因為休旅車及跑車要各自排在一起﹐如圖所示:所以可以將3輛休旅車看成「1」輛﹐3輛跑車看 成「1」輛﹐變成2輛的排列問題﹐有2!2=種方法﹒又3輛休旅車之間有3!6=種排列方法﹐3輛跑車之間有3!6=種排列方法﹒故共有2!3!3!26672⋅⋅=⋅⋅=種排法﹒35. 选出2本英文书3本中文书的方法有6523150C C ⋅=(种)﹐将此5本书作直线排列﹐有5!种排法﹐故所求排法为65235!18000C C ⋅⋅=(种)﹒36.(1)從9本中取出3本給甲﹐取法有93C 種;再從其餘的6本取出3本給乙﹐取法有63C 種;剩下的3本給丙﹐即33C 種﹒因此﹐全部分配方式共有9633331680C C C ⋅⋅=(種)﹒(2)先假設袋子上依序標示有甲﹐乙﹐丙的記號﹐則有963333C C C ⋅⋅種分 法﹐但事實上袋子是相同的﹐因 此每3!種只能算1種﹐如圖所示﹒故分配方式共有96333316802803!6C C C ⋅⋅==(種)﹒ (3)仿上述作法﹐先假設袋子依序有甲﹐乙﹐丙的記號﹐甲得5本﹐乙丙各得 2本的分法有942522C C C ⋅⋅種﹒因袋子是無記號的﹐所以如圖的2!種其實是同1種﹒故分配方式共有9425223782!C C C ⋅⋅=(種)﹒37.設集合A 表示參加象棋比賽的同學﹐ 集合B 表示參加圍棋比賽的同學﹐ 集合A B ⋃表示參加棋藝活動的同學﹐集合A B ⋂表示參加兩種棋藝活動的同學﹒由題意知()34n B =﹐()42n A B ⋃=﹐()15n A B ⋂=﹒ 利用()()()()n A B n A n B n A B ⋃=+-⋂﹐得()423415n A =+-﹐即()23n A =﹒ 故這個班級中共有23位同學參加象棋比賽﹒38. 因为()()()332211x x x x ++=++﹐所以利用二项式定理将乘积展开﹐得 ()()()()()3321232320111A x x C x C x x ++=++部分+()()()1233232311B C x x C x +++部分﹒ 由于上式中A 部分的各项次数均超过2次﹐因此全部展开式中2x 的系数﹐就是B 部分的展开式中的2x 系数﹒ 又B 部分的展开式为()()223243232133137631x x x x x x x x x x ++++++=++++﹐故全部展开式中2x 的系数为6﹒39. 因为()()()332222x x x x -+=-+﹐所以利用二项式定理将乘积展开得()()()()()()()()()()332100123232323232012322222A B x x C x x C x x C x x C x x -+=-+-+-+-部分部分上述()()322x x -+展开式中B 部分各项次数低于4次﹐因此要计算展开式中4x 的系数只要计算A 部分各项展开式即可﹐又A 部分展开式为()()()()320132320122C x x C x x -+- ()()654343233322x x x x x x x =-+-+-+⨯6543239136x x x x x =-+-+故4x 的系数为9﹒40. 将240作质因子分解﹐得411240235=⨯⨯﹒因为240的正因子必为235a b c ⨯⨯的形式﹐其中{}0,1,2,3,4a ∈﹐{}0,1b ∈﹐{}0,1c ∈﹐所以a 有5种选择﹐b 有2种选择﹐c 有2种选择﹒利用乘法原理﹐得240的正因子个数有52220⨯⨯=个﹒41. 依题意图示如下:其中实线表电车路线﹐虚线表公交车路线﹒ 因为电车与公交车路线各选一次﹐所以路线安排可分成以下二类:(1)先电车再公交车:利用乘法原理﹐得有122⨯=种路线﹒(2)先公交车再电车:利用乘法原理﹐得有326⨯=种路线﹒由加法原理得知﹐共有268+=种路线安排﹒42. 设A ﹐B ﹐C 分别表示答对A ﹐B ﹐C 题的人组成的集合﹒由题意知()15n A =﹐()19n B =﹐()20n C =﹐()10n A B ⋂=﹐()12n B C ⋂=﹐()8n C A ⋂=﹐()3n A B C ⋂⋂=﹒利用排容原理﹐得()()()()()()()n A B C n A n B n C n A B n B C n C A ⋃⋃=++-⋂-⋂-⋂()n A B C +⋂⋂151920101283=++---+27=﹒故三题中至少答对一题者有27人﹒43.設集合A ﹐B ﹐C 分別表示從1到600的自然數當中的4﹐5,6倍數所形成的集合﹐即()150n A =﹐()120n B =﹐()100n C =﹐()30n A B ⋂=﹐()20n B C ⋂=﹐()50n C A ⋂=﹐()10n A B C ⋂⋂=利用排容原理()()()()()()()n A B C n A n B n C n A B n B C n C A ⋃⋃=++-⋂-⋂-⋂()n A B C +⋂⋂﹐得()15012010030205010280n A B C ⋃⋃=++---+=﹒故1到600的自然數中﹐是4﹐5﹐6中某一個數的倍數﹐共有280個﹒44. (1)n a 代表「第n 个图需用到白色地砖的块数」﹐我们可以发现图形每次均增加1个黑色地砖与5个白色地砖﹐因此15n n a a -=+﹐2n ≥﹒(2)而上述这些图形中﹐白色地砖的个数可视为一个首项为8﹐公差为5的等差数列﹐故()81553n a n n =+-⨯=+﹒(3)拼第95图所需用到白色地砖数955953478a =⨯+=﹒45. (1)先将这8位转学生分成四堆﹐每堆2人﹐再将这四堆分发到甲﹐乙﹐丙﹐丁四班﹐故总共有86428642222222224!25204!C C C C C C C C ⋅⋅⋅⨯=⋅⋅⋅=种分法﹒ (2)先将这8位转学生分成四堆﹐两堆3人﹐两堆1人﹐再将3人的两堆分发到甲乙两班﹐1人的两堆分发到丙丁两班﹐故总共有85218521331133112!2!11202!2!C C C C C C C C ⋅⋅⋅⨯⨯=⋅⋅⋅=⋅种分法﹒ 46. 因为01232n n n n n n n C C C C C +++++=﹐ 所以1230221n n n nn n n n C C C C C ++++=-=-﹒即原式可改写为2000213000n <-<﹐即200123001n <<﹐得11n =﹒ 47. (1)3119911!559!2!H C ===组﹒ (2)338936628H H C -===组﹒48. 因为去程有3个交通工具可以选择﹐住宿则有2个方式可供选择﹐而回程亦有3个交通工具可以选择﹒因此由乘法原理得共有32318⨯⨯=种安排法﹒ 49. 10310!10987207!P ==⨯⨯=种选法﹒ 50. 由题意知每个周末都有5种休闲活动可以选择﹒利用乘法原理﹐得4个周末共有5555625⨯⨯⨯=种休闲安排﹒。
(完整版)经典排列组合问题100题配超详细解析
1.n N ∈且55n <,则乘积(55)(56)(69)n n n ---等于A .5569nn A --B .1555n A -C .1569n A -D .1469n A -【答案】C【解析】根据排列数的定义可知,(55)(56)(69)n n n ---中最大的数为69-n,最小的数为55—n ,那么可知下标的值为69—n ,共有69—n-(55—n )+1=15个数,因此选择C2.某公司新招聘8名员工,平均分配给下属的甲、乙两个部门,其中两名英语翻译人员不能分在同一部门,另外三名电脑编程人员也不能全分在同一部门,则不同的分配方案共有( ) A. 24种 B. 36种 C 。
38种 D 。
108种 【答案】B【解析】因为平均分配给下属的甲、乙两个部门,其中两名英语翻译人员不能分在同一部门,另外三名电脑编程人员也不能全分在同一部门,那么特殊元素优先考虑,分步来完成可知所有的分配方案有36种,选B3.n ∈N *,则(20-n )(21—n )……(100-n)等于( )A .80100n A - B .nn A --20100 C .81100n A -D .8120n A -【答案】C【解析】因为根据排列数公式可知n ∈N *,则(20-n )(21—n)……(100—n)等于81100n A -,选C4.从0,4,6中选两个数字,从3.5。
7中选两个数字,组成无重复数字的四位数。
其中偶数的个数为 ( ) A 。
56 B. 96 C. 36 D 。
360 【答案】B【解析】因为首先确定末尾数为偶数,那么要分为两种情况来解,第一种,末尾是0,那么其余的有A 35=60,第二种情况是末尾是4,或者6,首位从4个人选一个,其余的再选2个排列即可 433⨯⨯,共有96种5.从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四项不同的工作,若其中甲、乙两名志愿者不能从事翻译工作,则选派方案共有 ( )A. 280种B. 240种 C 。
排列组合题目精选(解析版)
排列组合题目精选(解析版)1. A ,B ,C ,D ,E 五人并排站成一排,如果A ,B 必须相邻且B 在A 的右边,则不同的排法种数有 A . 60种 B . 48种 C . 36种 D . 24种 解析:选D 。
A 、B 相邻且顺序一定,可把A 、B 捆绑看成一个整体与其他三人全排列,一共有24A 44=种方法。
2. 七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是 A . 1440种B . 3600种C . 4820种D . 4800种解析:选B 。
7个人全排列,有77A 种方法,其中甲乙相邻时,甲乙交换位置,有22A 种方法,再与其他5人全排列,有6622A A 种方法。
则甲乙不相邻的排法种数为3600A A A 662277=-。
3. 将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有 A . 6种B . 9种C . 11种D . 23种解析:选B 。
先填数字1,有3种方法。
填数字2,有两种情况。
①填入方格1,有1种方法,剩下的3和4只有1种方法;②不填入1,有1种方法,剩下两个数字可以全排列。
有22A 种方法。
故由计数原理,一共有9)A 1(322=+种填法。
4. 将四封信投入5个信箱,共有多少种方法? 解析:分以下4种情况: (1)只投1个,有15C 种方法;(2)投2个,有25A 种投信方法。
分两种情况:①分为1+3式,有14C 种分法;②分为2+2式,有2224A C 种方法; (3)投3个,有221224A C C 种分法,35A 种投法; (4)投4个,有45A 种投法。
由计数原理,一共有625A A A C C )A C C (A C 45352212242224142515=++++种投信方法。
5. 12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有 种。
解析:填34650。
(完整版)排列组合练习试题和答案解析
A.9种B.12种C.15种D.18种
5.将7只相同的小球全部放入4个不同盒子,每盒至少1球的方法有多少种?
6.某中学从高中7个班中选出12名学生组成校代表队,参加市中学数学应用题竞赛活动,使代表中每班至少有1人参加的选法有多少种?
A.1:14 B.1:28 C.1:140 D.1:336
十、插空
1.要排一个有6个歌唱节目和4个舞蹈节目的演出节目单,任何两个舞蹈节目都不相邻,有多少种不同排法?
2、4名男生和4名女生站成一排,若要求男女相间,则不同的排法数有()
A.2880 B.1152 C.48 D.144
3.要排一个有5个歌唱节目和3个舞蹈节目的演出节目单,如果舞蹈节目不相邻,则有多少种不同排法?
(2)奇约数中步不含有2的因数,因此75600的每个奇约数都可以写成 的形式,同上奇约数的个数为4×3×2=24个.
3. 2名医生和4名护士被分配到两所学校为学生体检,每校分配1名医生和2名护士,不同分配方法有多少种?
4.有四位同学参加三项不同的比赛,
(1)每位同学必须参加一项竞赛,有多少种不同的结果?
十一、隔板法
1.不定方程 的正整数解的组数是,非负整数解的组数是。
2.某运输公司有7个车队,每个车队的车多于4辆,现从这7个车队中抽出10辆车,且每个车队至少抽一辆组成运输队,则不同的抽法有
A.84种B.120种C.63种D.301种
3.要从7所学校选出10人参加素质教育研讨班,每所学校至少参加1人,则这10个名额共有种分配方法。
(1)可以组成多少个数字不重复的三位数?
排列组合典型题大全包括答案
排列组合典型题大全一.可重复的排列求幂法:重复排列问题要区分两类元素:一类可以重复,另一类不能重复,把不能重复的元素看作“客〞,能重复的元素看作“店〞,那么通过“住店法〞可顺利解题,在这类问题使用住店处理的策略中,关键是在正确判断哪个底数,哪个是指数【例 1】〔1〕有4名学生报名参加数学、物理、化学竞赛,每人限报一科,有多少种不同的报名方法?(2〕有 4 名学生参加争夺数学、物理、化学竞赛冠军,有多少种不同的结果?(3〕将 3 封不同的信投入 4 个不同的邮筒,那么有多少种不同投法?【解析】:〔1〕34〔 2〕43〔 3〕43【例2】把 6 名实习生分配到7 个车间实习共有多少种不同方法?【解析】:完成此事共分 6 步,第一步;将第一名实习生分配到车间有7 种不同方案,第二步:将第二名实习生分配到车间也有7 种不同方案,依次类推,由分步计数原理知共有76 种不同方案.【例3】 8 名同学争夺 3 项冠军,获得冠军的可能性有〔〕A、83 B、38 C、A8 3 D、3C8【解析】:冠军不能重复,但同一个学生可获得多项冠军,把8 名学生看作8 家“店〞,3 项冠军看作 3 个“客〞,他们都可能住进任意一家“店〞,每个“客〞有8 种可能,因此共有83种不同的结果。
所以选 A1、 4 封信投到 3 个信箱当中,有多少种投法?2、 4 个人争夺 3 项冠军,要求冠军不能并列,每个人可以夺得多项冠军也可以空手而还,问最后有多少种情况?3、 4 个同学参加 3 项不同的比赛(1〕每位同学必须参加一项比赛,有多少种不同的结果?(2〕每项竞赛只许一名同学参加,有多少种不同的结果?4、 5 名学生报名参加 4 项比赛,每人限报 1 项,报名方法的种数有多少?又他们争夺这 4 项比赛的冠军,获得冠军的可能性有多少?5、甲乙丙分10 瓶汽水的方法有多少种?6、〔全国 II文〕5位同学报名参加两个课外活动小组, 每位同学限报其中的一个小组, 那么不同的报名方法共(A)10 种(B) 20 种(C) 25 种(D) 32种7、 5 位同学报名参加并负责两个课外活动小组,每个兴趣小组只能有一个人来负责,负责人可以兼职,那么不同的负责方法有多少种?8、 4 名不同科目的实习教师被分配到 3 个班级,不同的分法有多少种?思考: 4 名不同科目的实习教师被分配到 3 个班级,每班至少一个人的不同的分法有多少种?二.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列 .【例 1】A, B,C , D , E五人并排站成一排,如果A, B 必须相邻且B在A的右边,那么不同的排法种数有【解析】:把 A, B 视为一人,且B固定在A的右边,那么此题相当于4 人的全排列, A44 24 种例 2. 7 人站成一排 , 其中甲乙相邻且丙丁相邻 , 共有多少种不同的排法 .解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。
排列组合典型题大全含答案.
>排列组合典型题大全一.可重复的排列求幂法:重复排列问题要区分两类元素:一类可以重复,另一类不能重复,把不能重复的元素看作“客”,能重复的元素看作“店”,则通过“住店法”可顺利解题,在这类问题使用住店处理的策略中,关键是在正确判断哪个底数,哪个是指数【例1】(1)有4名学生报名参加数学、物理、化学竞赛,每人限报一科,有多少种不同的报名方法(2)有4名学生参加争夺数学、物理、化学竞赛冠军,有多少种不同的结果)(3)将3封不同的信投入4个不同的邮筒,则有多少种不同投法【解析】:(1)43(2)34(3)34【例2】把6名实习生分配到7个车间实习共有多少种不同方法【解析】:完成此事共分6步,第一步;将第一名实习生分配到车间有7种不同方案,第二步:将第二名实习生分配到车间也有7种不同方案,依次类推,由分步计数原理知共有67种不同方案.【例3】8名同学争夺3项冠军,获得冠军的可能性有()A、38 B、83 C、38A D、3C8【解析】:冠军不能重复,但同一个学生可获得多项冠军,把8名学生看作8家“店”,3项冠军看作3个“客”,他们都可能住进任意一家“店”,每个“客”有8种可能,因此共有38种-不同的结果。
所以选A1、4封信投到3个信箱当中,有多少种投法2、4个人争夺3项冠军,要求冠军不能并列,每个人可以夺得多项冠军也可以空手而还,问最后有多少种情况3、4个同学参加3项不同的比赛(1)每位同学必须参加一项比赛,有多少种不同的结果(2)每项竞赛只许一名同学参加,有多少种不同的结果4、5名学生报名参加4项比赛,每人限报1项,报名方法的种数有多少又他们争夺这4项比赛的冠军,获得冠军的可能性有多少5、甲乙丙分10瓶汽水的方法有多少种。
6、(全国II 文)5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共 (A)10种(B) 20种(C) 25种(D) 32种7、5位同学报名参加并负责两个课外活动小组,每个兴趣小组只能有一个人来负责,负责人可以兼职,则不同的负责方法有多少种8、4名不同科目的实习教师被分配到3个班级,不同的分法有多少种思考:4名不同科目的实习教师被分配到3个班级,每班至少一个人的不同的分法有多少种二.相邻问题捆绑法: 题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.]【例1】,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有【解析】:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A =种例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。
排列组合经典题型及解析
排列组合经典题型及解析1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.例1.,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,则不同的排法有( ) A 、60种 B 、48种 C 、36种 D 、24种解析:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A =种,答案:D .2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是( ) A 、1440种 B 、3600种 C 、4820种 D 、4800种解析:除甲乙外,其余5个排列数为55A 种,再用甲乙去插6个空位有26A 种,不同的排法种数是52563600A A =种,选B .3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法.`例3.,,,,A B C D E 五人并排站成一排,如果B 必须站在A 的右边(,A B 可以不相邻)那么不同的排法有( ) A 、24种 B 、60种 C 、90种 D 、120种解析:B 在A 的右边与B 在A 的左边排法数相同,所以题设的排法只是5个元素全排列数的一半,即551602A =种,选B .4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成.例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有( )A 、6种B 、9种C 、11种D 、23种解析:先把1填入方格中,符合条件的有3种方法,第二步把被填入方格的对应数字填入其它三个方格,又有三种方法;第三步填余下的两个数字,只有一种填法,共有3×3×1=9种填法,选B . 5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法.例5.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是( )A 、1260种B 、2025种C 、2520种D 、5040种解析:先从10人中选出2人承担甲项任务,再从剩下的8人中选1人承担乙项任务,第三步从另外的7人中选1人承担丙项任务,不同的选法共有21110872520C C C =种, … 选C .(2)12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有( ) A 、4441284C C C 种 B 、44412843C C C 种C 、4431283C C A 种D 、444128433C C C A 种答案:A .6.全员分配问题分组法:例6.(1)4名优秀学生全部保送到3所学校去,每所学校至少去一名,则不同的保送方案有多少种解析:把四名学生分成3组有24C 种方法,再把三组学生分配到三所学校有33A 种,故共有234336C A =种方法.说明:分配的元素多于对象且每一对象都有元素分配时常用先分组再分配.(2)5本不同的书,全部分给4个学生,每个学生至少一本,不同的分法种数为( )A 、480种B 、240种C 、120种D 、96种,答案:B .7.名额分配问题隔板法:例7:10个三好学生名额分到7个班级,每个班级至少一个名额,有多少种不同分配方案解析:10个名额分到7个班级,就是把10个名额看成10个相同的小球分成7堆,每堆至少一个,可以在10个小球的9个空位中插入6块木板,每一种插法对应着一种分配方案,故共有不同的分配方案为6984C =种.8.限制条件的分配问题分类法:例8.某高校从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲同学不到银川,乙不到西宁,共有多少种不同派遣方案解析:因为甲乙有限制条件,所以按照是否含有甲乙来分类,有以下四种情况:①若甲乙都不参加,则有派遣方案48A 种;②若甲参加而乙不参加,先安排甲有3种方法,然后安排其余学生有38A 方法,所以共有383A ;③若乙参加而甲不参加同理也有383A 种;④若甲乙都参加,则先安排甲乙,有7种方法,然后再安排其余8人到另外两个城市有28A 种,共有287A 方法.所以共有不同的派遣方法总数为433288883374088A A A A +++=种.9.多元问题分类法:元素多,取出的情况也多种,可按结果要求分成不相容的几类情况分别计数,最后总计. 例9(1)由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数字的共有( ) A 、210种 B 、300种 C 、464种 D 、600种 ]解析:按题意,个位数字只可能是0,1,2,3,4共5种情况,分别有55A 个,1131131131343333323333,,,A A A A A A A A A A A 个,合并总计300个,选B. (2)从1,2,3…,100这100个数中,任取两个数,使它们的乘积能被7整除,这两个数的取法(不计顺序)共有多少种解析:被取的两个数中至少有一个能被7整除时,他们的乘积就能被7整除,将这100个数组成的集合视为全集I,能被7整除的数的集合记做{}7,14,21,98A =共有14个元素,不能被7整除的数组成的集合记做{}1,2,3,4,,100A =共有86个元素;由此可知,从A 中任取2个元素的取法有214C ,从A 中任取一个,又从A 中任取一个共有111486C C ,两种情形共符合要求的取法有2111414861295C C C +=种.(3)从1,2,3,…,100这100个数中任取两个数,使其和能被4整除的取法(不计顺序)有多少种 解析:将{}1,2,3,100I =分成四个不相交的子集,能被4整除的数集{}4,8,12,100A =;能被4除余1的数集{}1,5,9,97B =,能被4除余2的数集{}2,6,,98C =,能被4除余3的数集{}3,7,11,99D =,易见这四个集合中每一个有25个元素;从A 中任取两个数符合要;从,B D 中各取一个数也符合要求;从C 中任取两个数也符合要求;此外其它取法都不符合要求;所以符合要求的取法共有211225252525C C C C ++种.10.交叉问题集合法:某些排列组合问题几部分之间有交集,可用集合中求元素个数公式()()()()n A B n A n B n A B ⋃=+-⋂例10.从6名运动员中选出4人参加4×100米接力赛,如果甲不跑第一棒,乙不跑第四棒,共有多少种不同的参赛方案解析:设全集={6人中任取4人参赛的排列},A={甲跑第一棒的排列},B={乙跑第四棒的排列},根据求集合元素个数的公式得参赛方法共有:()()()()n I n A n B n A B --+⋂43326554252A A A A =--+=种.11.定位问题优先法:某个或几个元素要排在指定位置,可先排这个或几个元素;再排其它的元素。
排列组合典型例题(带详细答案)
例1 用0到9这10 个数字.可组成多少个没有重复数字的四位偶数例2三个女生和五个男生排成一排(1)如果女生必须全排在一起,可有多少种不同的排法(2)如果女生必须全分开,可有多少种不同的排法(3)如果两端都不能排女生,可有多少种不同的排法(4)如果两端不能都排女生,可有多少种不同的排法例3 排一张有5个歌唱节目和4个舞蹈节目的演出节目单。
(1)任何两个舞蹈节目不相邻的排法有多少种(2)歌唱节目与舞蹈节目间隔排列的方法有多少种例4某一天的课程表要排入政治、语文、数学、物理、体育、美术共六节课,如果第一节不排体育,最后一节不排数学,那么共有多少种不同的排课程表的方法.例 5 现有3辆公交车、3位司机和3位售票员,每辆车上需配1位司机和1位售票员.问车辆、司机、售票员搭配方案一共有多少种例6下是表是高考第一批录取的一份志愿表.如果有4所重点院校,每所院校有3个专业是你较为满意的选择.若表格填满且规定学校没有重复,同一学校的专业也没有重复的话,你将有多少种不同的填表方法例7 7名同学排队照相.(1)若分成两排照,前排3人,后排4人,有多少种不同的排法(2)若排成两排照,前排3人,后排4人,但其中甲必须在前排,乙必须在后排,有多少种不同的排法(3)若排成一排照,甲、乙、丙三人必须相邻,有多少种不同的排法 (4)若排成一排照,7人中有4名男生,3名女生,女生不能相邻,有多少种不面的排法例8计算下列各题:(1) 215A ; (2) 66A ; (3) 1111------⋅n n m n mn m n A A A ;例9 f e d c b a ,,,,,六人排一列纵队,限定a 要排在b 的前面(a 与b 可以相邻,也可以不相邻),求共有几种排法.例10 八个人分两排坐,每排四人,限定甲必须坐在前排,乙、丙必须坐在同一排,共有多少种安排办法例11 计划在某画廊展出10幅不同的画,其中1幅水彩画、4幅油画、5幅国画,排成一行陈列,要求同一品种的画必须连在一起,并且不彩画不放在两端,那么不同陈列方式有例12 由数字5,4,3,2,1,0组成没有重复数字的六位数,其中个位数字小于十位数的个数共有( ).例13 用5,4,3,2,1,这五个数字,组成没有重复数字的三位数,其中偶数共有( ).例14 用543210、、、、、共六个数字,组成无重复数字的自然数,(1)可以组成多少个无重复数字的3位偶数(2)可以组成多少个无重复数字且被3整除的三位数1、解法1:当个位数上排“0”时,千位,百位,十位上可以从余下的九个数字中任选3个来排列,故有39A 个;当个位上在“2、4、6、8”中任选一个来排,则千位上从余下的八个非零数字中任选一个,百位,十位上再从余下的八个数字中任选两个来排,按乘法原理有281814A A A ⋅⋅(个).∴ 没有重复数字的四位偶数有2296179250428181439=+=⋅⋅+A A A A2、解:(1)(捆绑法)因为三个女生必须排在一起,所以可以先把她们看成一个整体,这样同五个男生合一起共有六个元素,然成一排有66A 种不同排法.对于其中的每一种排法,三个女生之间又都有33A 对种不同的排法,因此共有43203366=⋅A A 种不同的排法.(2)(插空法)要保证女生全分开,可先把五个男生排好,每两个相邻的男生之间留出一个空档.这样共有4个空档,加上两边两个男生外侧的两个位置,共有六个位置,再把三个女生插入这六个位置中,只要保证每个位置至多插入一个女生,就能保证任意两个女生都不相邻.由于五个男生排成一排有55A 种不同排法,对于其中任意一种排法,从上述六个位置中选出三个来让三个女生插入都有36A 种方法,因此共有144003655=⋅A A 种不同的排法.(3)解法1:(位置分析法)因为两端不能排女生,所以两端只能挑选5个男生中的2个,有25A 种不同的排法,对于其中的任意一种排法,其余六位都有66A 种排法,所以共有144006625=⋅A A 种不同的排法. (4)3个女生和5个男生排成一排有88A 种排法,从中扣去两端都是女生排法6623A A ⋅种,就能得到两端不都是女生的排法种数.因此共有36000662388=⋅-A A A 种不同的排法.3、解:(1)先排歌唱节目有55A 种,歌唱节目之间以及两端共有6个位子,从中选4个放入舞蹈节目,共有46A 中方法,所以任两个舞蹈节目不相邻排法有:55A 46A =43200.(2)先排舞蹈节目有44A 中方法,在舞蹈节目之间以及两端共有5个空位,恰好供5个歌唱节目放入。
(完整版)排列组合问题经典题型解析含答案
排列组合问题经典题型与通用方法1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.例1.,,,,A B C D E五人并排站成一排,如果,A B必须相邻且B在A的右边,则不同的排法有()A、60种B、48种C、36种D、24种2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是()A、1440种B、3600种C、4820种D、4800种3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法.例3.A,B,C,D,E五人并排站成一排,如果B必须站在A的右边(,A B可以不相邻)那么不同的排法有()A、24种 B、60种 C、90种 D、120种4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成.例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有()A、6种B、9种C、11种D、23种5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法.例5.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是()A、1260种B、2025种C、2520种D、5040种(2)12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有()A、4441284C C C种 B、44412843C C C种 C、4431283C C A种 D、444128433C C CA种6.全员分配问题分组法:例6.(1)4名优秀学生全部保送到3所学校去,每所学校至少去一名,则不同的保送方案有多少种?(2)5本不同的书,全部分给4个学生,每个学生至少一本,不同的分法种数为()A、480种 B、240种 C、120种 D、96种7.名额分配问题隔板法:例7:10个三好学生名额分到7个班级,每个班级至少一个名额,有多少种不同分配方案?8.限制条件的分配问题分类法:例8.某高校从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲同学不到银川,乙不到西宁,共有多少种不同派遣方案?9.多元问题分类法:元素多,取出的情况也多种,可按结果要求分成不相容的几类情况分别计数再相加。
排列组合典型题大全附答案解析
排列组合典型题大全一.可重复的排列求幂法:重复排列问题要区分两类元素:一类可以重复,另一类不能重复,把不能重复的元素看作“客”,能重复的元素看作“店”,则通过“住店法”可顺利解题,在这类问题使用住店处理的策略中,关键是在正确判断哪个底数,哪个是指数【例1】(1)有4名学生报名参加数学、物理、化学竞赛,每人限报一科,有多少种不同的报名方法?(2)有4名学生参加争夺数学、物理、化学竞赛冠军,有多少种不同的结果?(3)将3封不同的信投入4个不同的邮筒,则有多少种不同投法?【解析】:(1)43(2)34(3)34【例2】把6名实习生分配到7个车间实习共有多少种不同方法?【解析】:完成此事共分6步,第一步;将第一名实习生分配到车间有7种不同方案,第二步:将第二名实习生分配到车间也有7种不同方案,依次类推,由分步计数原理知共有67种不同方案.【例3】8名同学争夺3项冠军,获得冠军的可能性有()A、38 B、83 C、38A D、3C8【解析】:冠军不能重复,但同一个学生可获得多项冠军,把8名学生看作8家“店”,3项冠军看作3个“客”,他们都可能住进任意一家“店”,每个“客”有8种可能,因此共有38种不同的结果。
所以选A1、4封信投到3个信箱当中,有多少种投法?2、4个人争夺3项冠军,要求冠军不能并列,每个人可以夺得多项冠军也可以空手而还,问最后有多少种情况?3、4个同学参加3项不同的比赛(1)每位同学必须参加一项比赛,有多少种不同的结果?(2)每项竞赛只许一名同学参加,有多少种不同的结果?4、5名学生报名参加4项比赛,每人限报1项,报名方法的种数有多少?又他们争夺这4项比赛的冠军,获得冠军的可能性有多少? 5、甲乙丙分10瓶汽水的方法有多少种?6、(全国II 文)5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共 (A)10种(B) 20种(C) 25种(D) 32种7、5位同学报名参加并负责两个课外活动小组,每个兴趣小组只能有一个人来负责,负责人可以兼职,则不同的负责方法有多少种?8、4名不同科目的实习教师被分配到3个班级,不同的分法有多少种?思考:4名不同科目的实习教师被分配到3个班级,每班至少一个人的不同的分法有多少种?二.相邻问题捆绑法: 题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.【例1】,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有【解析】:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A =种例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。
排列组合经典例题(含解析)
排列与组合习题1.6个人分乘两辆不同的汽车,每辆车最多坐4人,则不同的乘车方法数为() A.40B.50C.60D.70[解析]先分组再排列,一组2人一组4人有C26=15种不同的分法;两组各3人共有C36A22=10种不同的分法,所以乘车方法数为25×2=50,故选 B.2.有6个座位连成一排,现有3人就坐,则恰有两个空座位相邻的不同坐法有()A.36种B.48种C.72种D.96种[解析]恰有两个空座位相邻,相当于两个空位与第三个空位不相邻,先排三个人,然后插空,从而共A33A24=72种排法,故选 C.3.只用1,2,3三个数字组成一个四位数,规定这三个数必须同时使用,且同一数字不能相邻出现,这样的四位数有()A.6个B.9个C.18个D.36个[解析]注意题中条件的要求,一是三个数字必须全部使用,二是相同的数字不能相邻,选四个数字共有C13=3(种)选法,即1231,1232,1233,而每种选择有A22×C23=6(种)排法,所以共有3×6=18(种)情况,即这样的四位数有18个.4.男女学生共有8人,从男生中选取2人,从女生中选取1人,共有30种不同的选法,其中女生有() A.2人或3人B.3人或4人C.3人D.4人[解析]设男生有n人,则女生有(8-n)人,由题意可得C2n C18-n=30,解得n=5或n=6,代入验证,可知女生为2人或3人.5.某幢楼从二楼到三楼的楼梯共10级,上楼可以一步上一级,也可以一步上两级,若规定从二楼到三楼用8步走完,则方法有()A.45种B.36种C.28种D.25种[解析]因为10÷8的余数为2,故可以肯定一步一个台阶的有6步,一步两个台阶的有2步,那么共有C28=28种走法.6.某公司招聘来8名员工,平均分配给下属的甲、乙两个部门,其中两名英语翻译人员不能分在同一个部门,另外三名电脑编程人员也不能全分在同一个部门,则不同的分配方案共有()A.24种B.36种C.38种D.108种[解析]本题考查排列组合的综合应用,据题意可先将两名翻译人员分到两个部门,共有2种方法,第二步将3名电脑编程人员分成两组,一组1人另一组2人,共有C13种分法,然后再分到两部门去共有C13A22种方法,第三步只需将其他3人分成两组,一组1人另一组2人即可,由于是每个部门各4人,故分组后两人所去的部门就已确定,故第三步共有C13种方法,由分步乘法计数原理共有2C13A22C13=36(种).7.已知集合A={5},B={1,2},C={1,3,4},从这三个集合中各取一个元素构成空间直角坐标系中点的坐标,则确定的不同点的个数为()A.33 B.34 C.35 D.36[解析]①所得空间直角坐标系中的点的坐标中不含1的有C12·A33=12个;②所得空间直角坐标系中的点的坐标中含有1个1的有C12·A33+A33=18个;③所得空间直角坐标系中的点的坐标中含有2个1的有C13=3个.故共有符合条件的点的个数为12+18+3=33个,故选 A.8.由1、2、3、4、5、6组成没有重复数字且1、3都不与5相邻的六位偶数的个数是() A.72 B.96 C.108 D.144[解析]分两类:若1与3相邻,有A22·C13A22A23=72(个),若1与3不相邻有A33·A33=36(个)故共有72+36=108个.9.如果在一周内(周一至周日)安排三所学校的学生参观某展览馆,每天最多只安排一所学校,要求甲学校连续参观两天,其余学校均只参观一天,那么不同的安排方法有()A.50种B.60种C.120种D.210种[解析]先安排甲学校的参观时间,一周内两天连排的方法一共有6种:(1,2)、(2,3)、(3,4)、(4,5)、(5,6)、(6,7),甲任选一种为C16,然后在剩下的5天中任选2天有序地安排其余两所学校参观,安排方法有A25种,按照分步乘法计数原理可知共有不同的安排方法C16·A25=120种,故选 C.10.安排7位工作人员在5月1日到5月7日值班,每人值班一天,其中甲、乙二人都不能安排在5月1日和2日,不同的安排方法共有________种.(用数字作答)[解析]先安排甲、乙两人在后5天值班,有A25=20(种)排法,其余5人再进行排列,有A55=120(种)排法,所以共有20×120=2400(种)安排方法.11.今有2个红球、3个黄球、4个白球,同色球不加以区分,将这9个球排成一列有________种不同的排法.(用数字作答)[解析]由题意可知,因同色球不加以区分,实际上是一个组合问题,共有C49·C25·C33=1260(种)排法.12.将6位志愿者分成4组,其中两个组各2人,另两个组各1人,分赴世博会的四个不同场馆服务,不同的分配方案有________种(用数字作答).[解析]先将6名志愿者分为4组,共有C26C24A22种分法,再将4组人员分到4个不同场馆去,共有A44种分法,故所有分配方案有:C26·C24A22·A44=1 080种.13.要在如图所示的花圃中的5个区域中种入4种颜色不同的花,要求相邻区域不同色,有________种不同的种法(用数字作答).[解析]5有4种种法,1有3种种法,4有2种种法.若1、3同色,2有2种种法,若1、3不同色,2有1种种法,∴有4×3×2×(1×2+1×1)=72种.14. 将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中.若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的方法共有(A)12种(B)18种(C)36种(D)54种【解析】标号1,2的卡片放入同一封信有种方法;其他四封信放入两个信封,每个信封两个有种方法,共有种,故选 B.15. 某单位安排7位员工在10月1日至7日值班,每天1人,每人值班1天,若7位员工中的甲、乙排在相邻两天,丙不排在10月1日,丁不排在10月7日,则不同的安排方案共有A.504种B.960种C.1008种D.1108种解析:分两类:甲乙排1、2号或6、7号共有4414222AA A 种方法甲乙排中间,丙排7号或不排7号,共有)(43313134422A A A AA 种方法故共有1008种不同的排法16. 由1、2、3、4、5、6组成没有重复数字且1、3都不与5相邻的六位偶数的个数是(A )72(B )96(C )108(D )144w_w_w.k*s 5*u.co*m解析:先选一个偶数字排个位,有3种选法w_w_w.k*s 5*u.co*m①若5在十位或十万位,则1、3有三个位置可排,32232A A=24个②若5排在百位、千位或万位,则1、3只有两个位置可排,共32222A A=12个算上个位偶数字的排法,共计3(24+12)=108个答案:C17. 在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息,若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为A.10B.11C.12D.1518. 现安排甲、乙、丙、丁、戌5名同学参加上海世博会志愿者服务活动,每人从事翻译、导游、礼仪、司机四项工作之一,每项工作至少有一人参加。
(完整版)排列组合习题_[含详细答案解析]
圆梦教育中心排列组合专项训练1.题1 (方法对比,二星) 题面:(1)有5个插班生要分配给3所学校,每校至少分到一个,有多少种不同的分配方法?(2)有5个数学竞赛名额要分配给3所学校,每校至少分到一个名额,有多少种不同的名额分配方法? 解析:“名额无差别”——相同元素问题 (法1)每所学校各分一个名额后,还有2个名额待分配,可将名额分给2所学校、1所学校,共两类:2133C C +(种) (法2——挡板法)相邻名额间共4个空隙,插入2个挡板,共:246C =(种) 注意:“挡板法”可用于解决待分配的元素无差别,且每个位置至少分配一个元素的问题.(位置有差别,元素无差别)同类题一 题面:有10个运动员名额,分给7个班,每班至少一个,有多少种分配方案? 答案:69C 详解:因为10个名额没有差别,把它们排成一排。
相邻名额之间形成9个空隙。
在9个空档中选6个位置插个隔板,可把名额分成7份,对应地分给7个班级,每一种插板方法对应一种分法共有69C 种分法。
同类题二题面:求方程X+Y+Z=10的正整数解的个数。
答案:36. 详解:将10个球排成一排,球与球之间形成9个空隙,将两个隔板插入这些空隙中(每空至多插一块隔板),规定由隔板分成的左、中、右三部分的球数分别为x 、y 、z之值, 故解的个数为C 92=36(个)。
2.题2 (插空法,三星)题面:某展室有9个展台,现有3件展品需要展出,要求每件展品独自占用1个展台,并且3件展品所选用的展台既不在两端又不相邻,则不同的展出方法有______种;如果进一步要求3件展品所选用的展台之间间隔不超过两个展位,则不同的展出方法有____种. 答案:60,48同类题一题面:6男4女站成一排,任何2名女生都不相邻有多少种排法?答案:A 66·A 47种.详解: 任何2名女生都不相邻,则把女生插空,所以先排男生再让女生插到男生的空中,共有A 66·A 47种不同排法.同类题二 题面:有6个座位连成一排,现有3人就坐,则恰有两个空座位相邻的不同坐法有( )A .36种B .48种C .72种D .96种答案:C.详解:恰有两个空座位相邻,相当于两个空位与第三个空位不相邻,先排三个人,然后插空,从而共A 33A 24=72种排法,故选C.3.题3 (插空法,三星)题面:5个男生到一排12个座位上就座,两个之间至少隔一个空位.1]没有坐人的7个位子先摆好,[2](法1——插空)每个男生占一个位子,插入7个位子所成的8个空当中,有:58A =6720种排法.(法2)[1]5个男生先排好:55A ;[2]每个男生加上相邻的一个座位,共去掉9个位置,当作5个排好的元素,共有6个空,剩下的3个元素往里插空,每个空可以插1个、2个、3个元素,共有:3216662C C C ++种,综上:有55A (3216662C C C ++)=6720种.同类题一题面:文艺团体下基层宣传演出,准备的节目表中原有4个歌舞节目,如果保持这些节目的相对顺序不变,拟再添两个小品节目,则不同的排列方法有多少种? 答案:30。
排列组合典型例题(带详细答案)
例1用O到9这10个数字•可组成多少个没有重复数字的四位偶数?例2三个女生和五个男生排成一排(1)如果女生必须全排在一起,可有多少种不同的排法?(2)如果女生必须全分开,可有多少种不同的排法?(3)如果两端都不能排女生,可有多少种不同的排法?(4)如果两端不能都排女生,可有多少种不同的排法?例3排一张有5个歌唱节目和4个舞蹈节目的演出节目单。
(1)任何两个舞蹈节目不相邻的排法有多少种?(2)歌唱节目与舞蹈节目间隔排列的方法有多少种?例4某一天的课程表要排入政治、语文、数学、物理、体育、美术共六节课,如果第一节不排体育,最后一节不排数学,那么共有多少种不同的排课程表的方法.例5现有3辆公交车、3位司机和3位售票员,每辆车上需配1位司机和1位售票员.问车辆、司机、售票员搭配方案一共有多少种?例6下是表是高考第一批录取的一份志愿表•如果有4所重点院校,每所院校有3个专业是你较为满意的选择•若表格填满且规定学校没有重复,同一学校的专业也没有重复的话,你将有多少种不同的填表方法?例7 7名同学排队照相.(1)若分成两排照,前排3人,后排4人,有多少种不同的排法?(2)若排成两排照,前排3人,后排4人,但其中甲必须在前排,乙必须在后排,有多少种不同的排法?(3)若排成一排照,甲、乙、丙三人必须相邻,有多少种不同的排法?(4)若排成一排照,7人中有4名男生,3名女生,女生不能相邻,有多少种不面的排法?例8计算下列各题:(1) A15 ;⑵A6;例9 a,b,c,d,e,f六人排一列纵队,限定a要排在b的前面(a与b可以相邻,也可以不相邻),求共有几种排法.例10八个人分两排坐,每排四人,限定甲必须坐在前排,乙、丙必须坐在同一排,共有多少种安排办法?例11计划在某画廊展出10幅不同的画,其中1幅水彩画、4幅油画、5幅国画,排成一行陈列,要求同一品种的画必须连在一起,并且不彩画不放在两端,那么不同陈列方式有例12由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数的个数共有()•例13用1,2,3,4,5 ,这五个数字,组成没有重复数字的三位数,其中偶数共有()•例14用0、1、2、3、4、5共六个数字,组成无重复数字的自然数,(1)可以组成多少个无重复数字的3位偶数?(2)可以组成多少个无重复数字且被3整除的三位数?1、解法1当个位数上排“ O”时,千位,百位,十位上可以从余下的九个数字中任选3个来排列,故有A个;当个位上在“2、4、6、8”中任选一个来排,则千位上从余下的八个非零数字中任选一个,百位,十位上再从余下的八个数字中任选两个来排,按乘法原理有A4 A A I(个)•「•没有重复数字的四位偶数有Ag + A;.A;'A2 =504 + 1792 =22962、解:(1)(捆绑法)因为三个女生必须排在一起,所以可以先把她们看成一个整体,这样同五个男生合一起共有六个元素,然成一排有A6种不同排法•对于其中的每一种排法,三个女生之间又都有A对种不同的排法,因此共有A(6 Aa =4320种不同的排法.(2)(插空法)要保证女生全分开,可先把五个男生排好,每两个相邻的男生之间留出一个空档.这样共有4个空档,加上两边两个男生外侧的两个位置,共有六个位置,再把三个女生插入这六个位置中,只要保证每个位置至多插入一个女生,就能保证任意两个女生都不相邻•由于五个男生排成一排有A5种不同排法,对于其中任意一种排法,从上述六个位置中3 5 3选出三个来让三个女生插入都有A6种方法,因此共有A A6 = 14400种不同的排法.(3)解法1:(位置分析法)因为两端不能排女生,所以两端只能挑选5个男生中的2个,有As种不同的排法,对于其中的任意一种排法,其余六位都有Af种排法,所以共有A A=14400种不同的排法... 8 2 6(4)3个女生和5个男生排成一排有A种排法,从中扣去两端都是女生排法 A A种,就能得到两端不都是女生的排法种数•因此共有A; - A;∙A65 = 36000种不同的排法.3、解:(1)先排歌唱节目有A)种,歌唱节目之间以及两端共有6个位子,从中选4个放入舞蹈节目,共有A64中方法,所以任两个舞蹈节目不相邻排法有: A A = 43200.(2)先排舞蹈节目有A:中方法,在舞蹈节目之间以及两端共有5个空位,恰好供5个歌唱节目放入。
(完整版)排列组合练习试题和答案解析
4.8项工程,甲承包三项,乙承包一项,丙、丁各承包二项,不同的承包方案有种
5..六人住A、B、C三间房,每房最多住三人,
(1)每间住两人,有种不同的住法,
(2)一间住三人,一间住二人,一间住一人,有种不同的住宿方案。
6. 8人住ABC三个房间,每间最多住3人,有多少种不同住宿方案?
十一、隔板法
1.不定方程 的正整数解的组数是,非负整数解的组数是。
2.某运输公司有7个车队,每个车队的车多于4辆,现从这7个车队中抽出10辆车,且每个车队至少抽一辆组成运输队,则不同的抽法有
A.84种B.120种C.63种D.301种
3.要从7所学校选出10人参加素质教育研讨班,每所学校至少参加1人,则这10个名额共有种分配方法。
8.8张椅子放成一排,4人就坐,恰有连续三个空位的坐法有多少种?
9.排成一排的9个空位上,坐3人,使三处有连续二个空位,有多少种不同坐法?
10.排成一排的9个空位上,坐3人,使三处空位中有一处一个空位、有一处连续二个空位、有一处连续三个空位,有多少种不同坐法?
11.某城市修建的一条道路上有12只路灯,为了节省用电而又不影响正常的照明,可以熄灭其中三只灯,但不能熄灭两端的灯,也不能熄灭相邻的两只灯,那么熄灯的方法共有种
十二、对应的思想
1.在100名选手之间进行单循环淘汰赛(即一场比赛失败要退出比赛),最后产生一名冠军,问要举行几场?
十三、找规律
1.在1~20共20个整数中取两个数相加,使其和大于20的不同取法共有多少种?
解:分类标准一,固定小加数.小加数为1时,大加数只有20这1种取法;小加数为2时,大加数有19或20两种取法;小加数为3时,大加数为18,19或20共3种取法…小加数为10时,大加数为11,12,…,20共10种取法;小加数为11时,大加数有9种取法…小加数取19时,大加数有1种取法.由分类计数原理,得不同取法共有1+2+…+9+10+9+…+2+1=100种.
(完整版)排列组合问题经典题型解析含答案.doc
排列组合问题经典题型与通用方法1. 相邻问题捆绑法 : 题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列 .例 1.A,B,C, D, E五人并排站成一排,如果A, B必须相邻且 B 在 A 的右边,则不同的排法有()A 、 60 种B 、 48 种 C、 36 种D、 24 种2. 相离问题插空排 : 元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.例 2. 七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是( )A 、 1440 种B 、 3600 种C 、 4820 种D 、 4800 种3. 定序问题缩倍法 : 在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法 .例 3.A,B,C,D,E 五人并排站成一排, 如果 B 必须站在 A 的右边( A, B可以不相邻)那么不同的排法有 ()A 、 24 种B 、 60 种C 、 90 种 D、 120 种4. 标号排位问题分步法 : 把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成 .例 4. 将数字 1,2,3,4 填入标号为 1, 2,3,4 的四个方格里,每格填一个数,则每个方格的标号与所填 数字均不相同的填法有( ) A 、 6 种 B 、 9 种 C 、 11 种 D 、 23 种5. 有序分配问题逐分法 : 有序分配问题指把元素分成若干组,可用逐步下量分组法 . 例 5. ( 1)有甲乙丙三项任务,甲需 2 人承担,乙丙各需一人承担,从 10 人中选出 4 人承担这三项任务, 不同的选法种数是( ) A 、 1260 种 B 、 2025 种 C、 2520 种 D、 5040 种( 2) 12 名同学分别到三个不同的路口进行流量的调查,若每个路口4 人,则不同的分配方案有( )A 、 C 124C 84C 44 种B 、 3C 124C 84 C 44 种 C 、 C 124C 84 A 33 种 DC 124 C 84C 44、A 33种6. 全员分配问题分组法 :例 6. ( 1)4 名优秀学生全部保送到3 所学校去,每所学校至少去一名,则不同的保送方案有多少种?( 2)5 本不同的书,全部分给4 个学生,每个学生至少一本,不同的分法种数为()A 、 480 种B、 240 种C、120 种D、 96 种第 1 页 共 9 页7.名分配隔板法 :例 7: 10 个三好学生名分到7 个班,每个班至少一个名,有多少种不同分配方案?8. 限制条件的分配分法:例8. 某高校从某系的 10 名秀生中 4 人分到西部四城市参加中国西部开建,其中甲同学不到川,乙不到西宁,共有多少种不同派遣方案?9.多元分法:元素多,取出的情况也多种,可按果要求分成不相容的几情况分数再相加。
(完整版)排列组合问题经典题型解析含答案
排列组合问题经典题型与通用方法1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.例1.,,,,A B C D E五人并排站成一排,如果,A B必须相邻且B在A的右边,则不同的排法有()A、60种B、48种C、36种D、24种2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是()A、1440种B、3600种C、4820种D、4800种3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法.例3.A,B,C,D,E五人并排站成一排,如果B必须站在A的右边(,A B可以不相邻)那么不同的排法有()A、24种 B、60种 C、90种 D、120种4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成.例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有()A、6种B、9种C、11种D、23种5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法.例5.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是()A、1260种B、2025种C、2520种D、5040种(2)12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有()A、4441284C C C种 B、44412843C C C种 C、4431283C C A种 D、444128433C C CA种6.全员分配问题分组法:例6.(1)4名优秀学生全部保送到3所学校去,每所学校至少去一名,则不同的保送方案有多少种?(2)5本不同的书,全部分给4个学生,每个学生至少一本,不同的分法种数为()A、480种 B、240种 C、120种 D、96种7.名额分配问题隔板法:例7:10个三好学生名额分到7个班级,每个班级至少一个名额,有多少种不同分配方案?8.限制条件的分配问题分类法:例8.某高校从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲同学不到银川,乙不到西宁,共有多少种不同派遣方案?9.多元问题分类法:元素多,取出的情况也多种,可按结果要求分成不相容的几类情况分别计数再相加。
排列组合经典例题100
排列组合经典例题100题目一有10个人参加集体生日会,其中有3对夫妻。
现在需要从这10个人中任选出3个人作为组委会成员,但要求确保组委会中没有夫妻两人在里面。
解答我们可以先计算从10个人中任选3个人的总数,然后再计算夫妻两人同时在组委会中的可能数,最后用总数减去夫妻同时在组委会中的可能数,即可得到答案。
从10个人中任选3个人的总数可以用组合公式计算,即C(10, 3) = 10! / (3! * (10-3)!) = 120。
夫妻两人同时在组委会中的可能数可以用排列公式计算。
因为夫妻两人必须同时在组委会中,所以我们可以先将夫妻两人看作一个整体。
然后从9个人中任选2个人,再将夫妻两人插入到选出的2个人中间。
所以夫妻同时在组委会中的可能数为P(9, 2) = 9! / (2! * (9-2)!) = 72。
最终答案为总数减去夫妻同时在组委会中的可能数,即120 - 72 = 48。
所以从10个人中任选3个人作为组委会成员,并确保组委会中没有夫妻两人在里面的方案数为48。
题目二某小组有10名学生,他们准备进行一次出游活动。
现在需要从这10名学生中任选出5人作为代表参加活动。
同时,要求其中至少有2名男学生和2名女学生。
解答首先我们可以先计算从10名学生中任选5人的总数,即C(10, 5) = 10! / (5! * (10-5)!) = 252。
然后我们可以计算没有限制条件时,只考虑性别的情况下任选5人的方案数。
首先我们需要确定男学生和女学生的数量。
根据题目要求,其中至少有2名男学生和2名女学生,所以我们有以下几种情况:•2名男学生和3名女学生•3名男学生和2名女学生•4名男学生和1名女学生对于每种情况,我们可以计算男学生和女学生分别出现在5个位置上的方案数,并将其相乘。
首先考虑2名男学生和3名女学生的情况。
男学生可以从5名男学生中任选2人,女学生可以从5名女学生中任选3人。
所以男学生和女学生分别出现在5个位置上的方案数为C(5, 2) * C(5, 3) = 10 * 10 = 100。
史上最全地难题排列组合大全 (1)
史上最全的排列组合难题大总结一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,先排末位共有13C 然后排首位共有14C 最后排其它位置共有34A由分步计数原理得113434288C C A =练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。
由分步计数原理可得共有522522480A A A =种不同的排法练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20三.不相邻问题插空策略例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种?解:分两步进行第一步排2个相声和3个独唱共有55A 种,第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种46A 不同的方法,由分步计数原理,节目的不同顺序共有5456A A种练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 30443四.定序问题倍缩空位插入策略例4.7人排队,其中甲乙丙3人顺序一定共有多少不同的排法解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素之间的全排列数,则共有不同排法种数是:7373/A A(空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有47A 种方法,其余的三个位置甲乙丙共有1种坐法,则共有47A 种方法。
思考:可以先让甲乙丙就坐吗?(插入法)先排甲乙丙三个人,共有1种排法,再把其余4四人依次插入共有 方法练习题:10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少排法?510C五.重排问题求幂策略例5.把6名实习生分配到7个车间实习,共有多少种不同的分法解:完成此事共分六步:把第一名实习生分配到车间有 7 种分法.把第二名实习生分配到车间也有7种分依此类推,由分步计数原理共有67种不同的排法练习题:1. 某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为 422. 某8层大楼一楼电梯上来8名乘客人,他们到各自的一层下电梯,下电梯的方法87 六.环排问题线排策略例6. 8人围桌而坐,共有多少种坐法?解:围桌而坐与坐成一排的不同点在于,坐成圆形没有首尾之分,所以固定一人44A 并从此位置把圆形展成直线其余7人共有(8-1)!种排法即7!A B C D E AH G F允许重复的排列问题的特点是以元素为研究对象,元素不受位置的约束,可以逐一安排各个元素的位置,一般地n 不同的元素没有限制地安排在m 个位置上的排列数为n m 种 一般地,n 个不同元素作圆形排列,共有(n-1)!种排法.如果从n 个不同元素中取出m 个元素作圆形排列共有1mn A n练习题:6颗颜色不同的钻石,可穿成几种钻石圈 120 七.多排问题直排策略例7.8人排成前后两排,每排4人,其中甲乙在前排,丙在后排,共有多少排法解:8人排前后两排,相当于8人坐8把椅子,可以把椅子排成一排.个特殊元素有24A 种,再排后4个位置上的特殊元素丙有14A 种,其余的5人在5个位置上任意排列有55A 种,则共有215445A A A 种练习题:有两排座位,前排11个座位,后排12个座位,现安排2人就座规定前排中间的3个座位不能坐,并且这2人不左右相邻,那么不同排法的种数是 346八.排列组合混合问题先选后排策略例8.有5个不同的小球,装入4个不同的盒内,每盒至少装一个球,共有多少不同的装法.解:第一步从5个球中选出2个组成复合元共有25C 种方法.再把4个元素(包含一个复合元素)装入4个不同的盒内有44A 种方法,根据分步计数原理装球的方法共有2454C A练习题:一个班有6名战士,其中正副班长各1人现从中选4人完成四种不同的任务,每人完成一种任务,且正副班长有且只有1人参加,则不同的选法有 192 种九.小集团问题先整体后局部策略例9.用1,2,3,4,5组成没有重复数字的五位数其中恰有两个偶数夹1,5在两个奇数之间,这样的五位数有多少个?解:把1,5,2,4当作一个小集团与3排队共有22A 种排法,再排小集团内部共有2222A A 种排法,由分步计数原理共有222222A A A 种排法.练习题:1.计划展出10幅不同的画,其中1幅水彩画,4幅油画,5幅国画, 排成一行陈列,要求同一 品种的必须连在一起,并且水彩画不在两端,那么共有陈列方式的种数为254254A A A 2. 5男生和5女生站成一排照像,男生相邻,女生也相邻的排法有255255A A A 种 十.元素相同问题隔板策略例10.有10个运动员名额,分给7个班,每班至少一个,有多少种分配方案?解:因为10个名额没有差别,把它们排成一排。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.n N ∈且55n <,则乘积(55)(56)(69)n n n ---等于A .5569nn A --B .1555n A -C .1569n A -D .1469n A -【答案】C【解析】根据排列数的定义可知,(55)(56)(69)n n n ---中最大的数为69-n,最小的数为55-n ,那么可知下标的值为69-n,共有69-n-(55-n )+1=15个数,因此选择C2.某公司新招聘8名员工,平均分配给下属的甲、乙两个部门,其中两名英语翻译人员不能分在同一部门,另外三名电脑编程人员也不能全分在同一部门,则不同的分配方案共有( ) A. 24种 B. 36种 C. 38种 D. 108种 【答案】B 【解析】因为平均分配给下属的甲、乙两个部门,其中两名英语翻译人员不能分在同一部门,另外三名电脑编程人员也不能全分在同一部门,那么特殊元素优先考虑,分步来完成可知所有的分配方案有36种,选B3.n ∈N *,则(20-n )(21-n)……(100-n)等于( )A .80100n A - B .nn A --20100 C .81100n A -D .8120n A -【答案】C【解析】因为根据排列数公式可知n ∈N *,则(20-n )(21-n)……(100-n)等于81100n A -,选C4.从0,4,6中选两个数字,从3.5.7中选两个数字,组成无重复数字的四位数.其中偶数的个数为 ( )A.56B. 96C. 36D.360 【答案】B【解析】因为首先确定末尾数为偶数,那么要分为两种情况来解,第一种,末尾是0,那么其余的有A 35=60,第二种情况是末尾是4,或者6,首位从4个人选一个,其余的再选2个排列即可 433⨯⨯,共有96种5.从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四项不同的工作,若其中甲、乙两名志愿者不能从事翻译工作,则选派方案共有 ( ) A. 280种 B. 240种 C. 180种 D. 96种 【答案】B【解析】根据题意,由排列可得,从6名志愿者中选出4人分别从事四项不同工作,有46360A =种不同的情况,其中包含甲从事翻译工作有3560A =种,乙从事翻译工作的有3560A =种,若其中甲、乙两名支援者都不能从事翻译工作,则选派方案共有360-60-60=240种.6.如图,在∠AOB 的两边上分别有A 1、A 2、A 3、A 4和B 1、B 2、B 3、B 4、B 5共9个点,连结线段A i B j (1≤i ≤4,1≤j ≤5),如果其中两条线段不相交,则称之为一对“和睦线”,则图中共有( )对“和睦线”.A .60B .62C .72 D.124 【答案】A【解析】在∠AOB 的两边上分别取,(),i j A A i j <和,()p q B B p q <,可得四边形i j p qA AB B 中,恰有一对“和睦线”(i p AB 和)j q A B ,而在OA 上取两点有25C 种方法,在OB 上取两点有24C 种方法,共有10660⨯=对“和睦线”.7.在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息,若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为 ( )A .10B .11C .12D .15 【答案】B【解析】由题意知与信息0110至多有两个对应位置上的数字相同的信息包括三类:第一类:与信息0110有两个对应位置上的数字相同有C 42=6(个)第二类:与信息0110有一个对应位置上的数字相同的有C 41=4个,第三类:与信息0110没有一个对应位置上的数字相同的有C 40=1,由分类计数原理知与信息0110至多有两个对应位置数字相同的共有6+4+1=11个8.甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中至少有1门不相同的选法共有 ( )A . 6种B . 12种C . 30种D . 36种 【答案】C【解析】分有一门不相同和二门不相同两种情况,所以共有2112422430C C C C +=9.从一个不透明的口袋中摸出红球的概率为1/5,已知袋中红球有3个,则袋中共有球的个数为( ).A .5个B .8个C .10个D .15个 【答案】D【解析】由于从一个不透明的口袋中摸出红球的概率为1/5,并且袋中红球有3个,设袋中共有球的个数为n,则31,5n =所以15n =. 10.从编号为1,2,3,4的四个不同小球中取三个不同的小球放入编号为1,2,3的三个不同盒子,每个盒子放一球,则1号球不放1号盒子且3号球不放3号盒子的放法总数为A. 10 B. 12 C. 14 D. 16【答案】C【解析】解:由题意知元素的限制条件比较多,要分类解决,当选出的三个球是1、2、3或1、3、4时,以前一组为例,1号球在2号盒子里,2号和3号只有一种方法,1号球在3号盒子里,2号和3号各有两种结果,选1、2、3时共有3种结果,选1、3、4时也有3种结果,当选到1、2、4或2、3、4时,各有C21A22=4种结果,由分类和分步计数原理得到共有3+3+4+4=14种结果,故选C.11..在实验室进行的一项物理实验中,要先后实施6个程序,其中程序A只能出现在第一或最后一步,程序B和C在实施时必须相邻,则实验顺序的编排方法共有()A.34种B.48种C.96种 D.144种【答案】C【解析】解:本题是一个分步计数问题,∵由题意知程序A只能出现在第一步或最后一步,∴从第一个位置和最后一个位置选一个位置把A排列,有A21=2种结果∵程序B和C实施时必须相邻,∴把B和C看做一个元素,同除A外的3个元素排列,注意B和C之间还有一个排列,共有A44A22=48种结果.根据分步计数原理知共有2×48=96种结果,故选C.12.由两个1、两个2、一个3、一个4这六个数字组成6位数,要求相同数字不能相邻,则这样的6位数有A. 12个B. 48个C. 84个D. 96个【答案】C【解析】解:因为先排雷1,2,3,4然后将其与的元素插入进去,则根据相同数字不能相邻的原则得到满足题意的6位数有84个。
选C13.若把英语单词“hello”的字母顺序写错了,则可能出现的错误的种数是()A.119 B.59 C.120 D.60【答案】B【解析】解:∵五个字母进行全排列共有A55=120种结果,字母中包含2个l,∴五个字母进行全排列的结果要除以2,共有60种结果,在这60种结果里有一个是正确的,∴可能出现的错误的种数是60-1=59,故选B.方格中的9个区域,要求每行每列的三个区域都不同14.用三种不同的颜色填涂如图33色,则不同的填涂种数共有.A6.B12.C24.D48【答案】B【解析】解:先填正中间的方格,由13C 中涂法,再添第二行第一个方格有2种涂法,再涂第一行第一列有2种涂法,其它各行各列都已经确定,故共有涂法13C ×2×2=12种.15.、A ,B ,C ,D ,E 五人并排站成一排,如果B 必须站在A 的右边,(A ,B 可以不相邻)那么不同的排法有( ) A .24种 B .60种 C .90种 D .120种 【答案】B【解析】解:根据题意,使用倍分法,五人并排站成一排,有A 55种情况,而其中B 站在A 的左边与B 站在A 的右边是等可能的, 则其情况数目是相等的,则B 站在A A 55=60, 故选B .16.由数字2,3,4,5,6所组成的没有重复数字的四位数中5,6相邻的奇数共有 ( ) A .10个 B .14个 C .16个 D .18个 【答案】D【解析】解:奇数的最后一位只能是3.5;以3结尾56相邻的数有3×2×2个(把5.6看成一个数,四位数变成三位数,除去3,有两位可以 在3个数中选:2.4.56,三选二有3×2种选择,而56排列不分先后又有两种选择.)以5结尾的数有3×2个(5结尾倒数第二位为6,还剩三个数可以选,三选二有3×2种选择.)一共有3×2×3个 没有重复的四位数中5 6相邻的奇数18个;故答案为D .17.6个人排成一排,其中甲、乙不相邻的排法种数是( )A 、288B 、480C 、600D 、640 【答案】A【解析】解:因为6个人排成一排,所有的情况为66A ,那么不相邻的方法为4245A A =288,选A18.由1,2,3,4,5组成没有重复数字且1,2都不与5相邻的五位数的个数为 A .24 B .28 C . 32 D . 36 【答案】D【解析】如果5在两端,则1、2有三个位置可选,排法为2×A 32A 22=24种,如果5不在两端,则1、2只有两个位置可选,3×A 22A 22=12种,共计12+24=36种.19.有6个座位连成一排,现有3人入座,则恰有两个空位相邻的不同坐法是( )种 A .36 B .48 C .72 D .96 【答案】C【解析】323472A A .20.记者要为5名志愿者和他们帮助的2位老人拍照,要求排成一排,2位老人相邻但不排在两端,不同的排法共有( )A.1440种 B.960种 C.720种 D.480种【答案】B【解析】512542960A A A =.21.5人排成一排,其中甲必须在乙左边不同排法有( ) A 、 60 B 、63 C 、 120 D 、124 【答案】A【解析22. 从6名同学中选派4人分别参加数学、物理、化学、生物四科知识竞赛,若其中甲、乙两名同学不能参加生物竞赛,则选派方案共有( )A .240种B .280种C . 96种D .180种 【答案】D【解析】解:由题意,从6名学生中选取4名学生参加数学,物理,化学,外语竞赛,共有5×4×3×6=360种; 运用间接法先求解甲、乙两名同学能参加生物竞赛的情况180,然后总数减去即为甲、乙两名同学不能参加生物竞赛则选派方案共有180种,选D 23.如图,一环形花坛分成A 、B 、C 、D 四块,现有4种不同的花供选种,要求 在每块里种一种花,且相邻的2块种不同的花,则不同的种法总数为( )A.96B. 84C. 60D. 48 【答案】B【解析】解:分三类:种两种花有24A 种种法; 种三种花有234A 种种法; 种四种花有44A 种种法. 共有234A +24A +44A =84.故选B24.2位教师与5位学生排成一排,要求2位教师相邻但不排在两端,不同的排 法共有( )A. 480种B.720种C. 960种D.1440种 【答案】C【解析】解:因为先将老师捆绑起来有2种,然后利用确定两端有A 52种,然后进行全排列共有A 44,按照分步计数原理得到所有的排列方法共有960种25.用13个字母A ,A ,A ,C ,E ,H ,I ,I ,M ,M ,N ,T ,T作拼字游戏,若字母的排列是随机的,恰好组成“MATHEMATICIAN ”一词的概率(A(B(C(D【答案】B【解析】解:因为从13空位中选取8个空位即可,那么所有的排列就是1313A ,而恰好组成“MATHEMATICIAN ”的情况有32223222A A A A ,则利用古典概型概率可知为B 26.身穿红、黄两种颜色衣服的各有2人,现将这4人排成一行,要求穿相同颜色衣服的人不能相邻,则不同的排法共有(A )4种 (B )6种 (C )8种 (D )12种 【答案】C【解析】解:本题是一个分步计数问题,首先将两个穿红衣服的人排列,有A22=2种结果,再把两个穿黄色衣服的人排列在上面两个人形成的两个空中, 不能排在三个空的中间一个空中,避免两个穿红色衣服的人相邻, 共有2×2+2×2=8, 故选C27.4名运动员报名参加3个项目的比赛,每人限报一项,不同的报名方法有(A )43种(B )34种(C )34A 种(D )34C 种【答案】A【解析】解:因为4名运动员报名参加3个项目的比赛,每人限报一项,则每个人有3中选择,因此共有43种,选A28.将1,2,3填入33 的方格中,要求每行、每列都没有重复数字(右面是一种填法),则不同的填写方法共有( )(A )48种 (B )24种 (C )12种 (D )6种 【答案】C【解析】解:填好第一行和第一列, 其他的行和列就确定,∴33A 22A =12,故选C29.6个人排成一排,其中甲、乙、丙三人必须站在一起的排列种数为( )(A )66A(B )333A (C )3333A A (D )4433A A【答案】D【解析】解:∵6名同学排成一排,其中甲、乙、丙两人必须排在一起, ∴首先把甲和乙、丙看做一个元素,使得它与另外3个元素排列,共有4433A A故选D30.将编号为1,2,3,4,5,6的六个小球排成一列,要求1号球与2号球必须相邻,5号球与6号球不相邻,则不同的排法种数有( )A. 36B. 142C. 48D. 144 【答案】D【解析】解:根据题意,先将1号球与2号球,看作一个元素,考虑两者的顺序,有A 22=2种情况,再将1号球与2号球这个大元素与3号球、4号球进行全排列,有A33=6种情况,排好后,有4个空位,最后在4个空位中任取2个,安排5号球与6号球,有A 42=12种情况, 由分步计数原理可得,共有2×6×12=144种情况; 故选D .31.用0、1、2能组成没有重复数字的自然数个数是 ( ) A. 15 B. 11 C. 18 D. 27 【答案】B【解析】解:由题意知本题是一个分类计数问题,∵用0、1、2能组成没有重复数字的自然数,当自然数是一位数时,共有3个, 当自然数是两位数是有2×2=4个, 当自然数是3位数时有2×2=4个,∴根据分类计数原理知共有3+4+4=11个, 故选B .32.m (m+1)(m+2)﹒﹒﹒﹒(m+20)可表示为( )A m A 2); A mB 21); A mC 220)+; A mD 2120)+【答案】D 【解析】2120(20)(19)(1)(20211)(20)(19)(1)m A m m m m m m m m +=++++-+=+++.33.用0,1,2,3组成没有重复数字的四位数,其中奇数有( )A.8个B. 10个C. 18个D. 24个 【答案】A【解析】解:因为先排末尾有2种,再排首位有2种,其余的进行全排列共有2中,则利用分布乘法奇数原理可知一共有8种,选A34.某校共有7个车位,现要停放3辆不同的汽车,若要求4个空位必须都相邻,则不同 的停放方法共有(A)16种(B)18种(C)24种(D)32种【答案】C【解析】解:由题意知本题是一个分类计数问题,首先安排三辆车的位置,假设车位是从左到右一共7个,A,当三辆车都在最左边时,有车之间的一个排列33A当左边两辆,最右边一辆时,有车之间的一个排列33A,当左边一辆,最右边两辆时,有车之间的一个排列33A,当最右边三辆时,有车之间的一个排列33A=24种结果,总上可知共有不同的排列法4×33故选C35.6位好朋友在一次元旦聚会中进行礼品交换,任意两位朋友之间最多交换一次,进行交换的两位朋友互赠一份礼品,已知这6位好朋友之间共进行了13次互换,则收到4份礼品的同学人数为()A、1或4B、2或4C、2或3D、1或3【答案】B【解析】解:因为6位好朋友在一次元旦聚会中进行礼品交换,任意两位朋友之间最多交换一次,进行交换的两位朋友互赠一份礼品,已知这6位好朋友之间共进行了13次互换,则收到4份礼品的同学人数为2或4,选B36.神六航天员由翟志刚、聂海胜等六人组成,每两人为一组,若指定翟志刚、聂海胜两人一定同在一个小组,则这六人的不同分组方法有A.3种B.6种C.36种D.48种【答案】A【解析】.37.有一排7只发光二极管,每只二极管点亮时可发出红光或绿光,若每次恰有3只二极管点亮,且相邻的两只不能同时点亮,根据三只点亮的不同位置,或不同颜色来表示不同信息,则这排二极管能表示的信息种数共有()种A.10 B .48 C .60 D .80【答案】D【解析】解:先选出三个孔来:1)若任意选择三个孔,则有C73=35种选法2)若三个孔相邻,则有5种选法3)若只有二个孔相邻,相邻孔为1、2两孔时,第三孔可以选4、5、6、7,有4种选法相邻孔为2、3两孔时,第三孔可以选5、6、7,有3种选法相邻孔为3、4两孔时,第三孔可以选1、6、7,有3种选法相邻孔为4、5两孔时,第三孔可以选1、2、7,有3种选法相邻孔为5、6两孔时,第三孔可以选1、2、3,有3种选法相邻孔为6、7两孔时,第三孔可以选1、2、3、4,有4种选法 即共有4+3+3+3+3+4=20种选法∴选出三个不相邻的孔,有35-5-20=10种选法 对于已选定的三个孔,每个孔都有两种显示信号, 则这三个孔可显示的信号数为2×2×2=8种 ∴一共可以显示的信号数为8*10=80种 故选D 38.有5张音乐专辑,其中周杰伦的3张(相同), 郁可唯和曾轶可的各1张.从中选出3张送给3个同学(每人1张).不同送法的种数有( )A. 120B.60C.25D.13 【答案】D 【解析】解:因为5张音乐专辑,其中周杰伦的3张(相同), 郁可唯和曾轶可的各1张.从中选出3张送给3个同学(每人1张),那么先确定法周杰伦的一张,分情况讨论得到共有313323113++=A C A , 选D39.如图,用4种不同的颜色对图中5个区域涂色(4种颜色全部使用),要求每个区域涂一种颜色,相邻的区域不能涂相同的颜色,则不同的涂色种数有( )A .72种B .96种C .108种D .120种 【答案】B【解析】解:由题意知本题是一个分步计数问题,第一步:涂区域1,有4种方法;第二步:涂区域2,有3种方法;第三步:涂区域4,有2种方法(此前三步已经用去三种颜色);第四步:涂区域3,分两类:第一类,3与1同色,则区域5涂第四种颜色;第二类,区域3与1不同色,则涂第四种颜色,此时区域5就可以涂区域1或区域2或区域3中的任意一种颜色,有3种方法.所以,不同的涂色种数有4×3×2×(1×1+1×3)=96种. 故选B .40.由1,2,3,4组成没有重复数字的三位数的个数为( ) A. 36 B. 24 C. 12 D.6 【答案】B【解析】解:因为由1,2,3,4组成没有重复数字的三位数的个数为,有顺序,所以是排列,从4个数中选3个数的全排列即为所求,故为3424=A ,选B 41.4名毕业生到两所不同的学校实习,每名毕业生只能选择一所学校实习,且每所学校至少有一名毕业生实习,其中甲、乙两名毕业生不能在同一所学校实习,则不同安排方法有 A .12 B .10 C .8 D .6 【答案】C【解析】22228A =.42.现有4名教师参加说题比赛,共有4道备选题目,若每位选手从中有放回地随机选出一道题进行说题,其中恰有一道题没有被这4位选中的情况有( )A.288种B.144种C.72种D.36种【答案】B【解析】首先选择题目,从4道题目中选出3道,选法为34C ,而后再将获得同一道题目的2位老师选出,选法为24C ,最后将3道题目,分配给3组老师,分配方式为33A ,即满足题意的情况共有323443144C C A 种. 故选B43.现用4种不同颜色要对如图所示的四个部分进行着色,要求有公共边界的两块不能用同一种颜色,则不同的着色方法共有( )A.24种B.30种C.36种D.48种【答案】D【解析】分两种情况:一种情况是用三种颜色有3343C A ;二种情况是用四种颜色有44A .所以不同的着色方法共有48人44.火车上有10名乘客,沿途有5个车站,乘客下车的可能方式有( )A.50种B.510种C.105种 D.520种 【答案】C【解析】每名乘客有10种选法.所以乘客下车的可能方式有105种45.现有排成一排的7个座位,安排3名同学就座,如果要求剩余的4个座位连在一起,那么不同的坐法总数为( )A. 16B. 18C. 24D. 32 【答案】C【解析】解:由题意知本题是一个分类计数问题,首先安排三辆车的位置,假设车位是从左到右一共7个,当三辆车都在最左边时,有车之间的一个排列33A ,当左边两辆,最右边一辆时,有车之间的一个排列33A ,当左边一辆,最右边两辆时,有车之间的一个排列33A ,当最右边三辆时,有车之间的一个排列33A ,总上可知共有不同的排列法4×33A =24种结果, 故选C46.如图,在一花坛A ,B ,C ,D 四个区域种花,现有4种不同的花供选种,要求在每块里种1种花,且相邻的两块种不同的花,则不同的种法总数为 ( )A 、60B 、48C 、84D 、72 【答案】C【解析】解:分三类:种两种花有24A 种种法;种三种花有234A 种种法;种四种花有44A 种种法.共有24A +234A +44A =84.故选C47.有5种颜色可供使用,将一个五棱锥的各侧面涂色,五个侧面分别编有1,2,3,4,5号,而有公共边的两个面不能涂同一种颜色,则不同的涂色方法数为 ( ) A .420 B .720 C .1020 D .1620 【答案】C【解析】解:在五个侧面上顺时针或逆时针编号.分1号面、3号面同色和1号面、3号面不同色两种情况:1、3同色,1和3有5种选择,2、4各有4种、5有3种,共有5⨯4⨯4⨯3=240种; 1、3不同色,1有5种选择,2有4种,3有3种,再分4与1同,则5有4种,4不与1同,4有3种,5有3种,共有5⨯4⨯3⨯(4+3⨯3)=780种;根据分类加法原理得共有240+780=1020种. 故选C48.五位同学参加某作家的签字售书活动,则甲、乙都排在丙前面的方法有( ) A .20种 B .24种 C .40种 D .56种 【答案】C【解析】丙可排在第三,四,五位置,排法共有222242232440A A A A A ++=种49.2011年3月17日上午,日本自卫队选派了两架直升飞机对福岛第一核电站3号机组的燃料池进行了4次注水,如果直升飞机有A ,B ,C ,D 四架供选,飞行员有甲、乙、丙、丁四人供选,且一架直升飞机只安排一名飞行员,则选出两名飞行员驾驶两架直升飞机的不同方法数为A .18B .36C .72D .108 【答案】C【解析】解:因为共有4名驾驶员和4架飞机,那么要是满足两名飞行员驾驶两架直升飞机为222442C C A 种,因选C50.正六边形的中心和顶点共7个点,以其中3个点为顶点的三角形共有( )个 A .35 B.32 C. 210 D.207 【答案】B【解析】解:正六边形的中心和顶点共7个点,选3个点的共有的方法是:C 73=35 在一条直线上的三点有3个符合题意的三角形有35-3=32个故答案为B51.设m ∈N *,且m <25,则(25-m )(26-m )…(30-m )等于( )A .625m A -B .2530mm A --C .630m A - D .530m A -【答案】C【解析】解:因为设m ∈N *,且m <25,则(25-m )(26-m )…(30-m ),则表示的连续自然数的积,因此表示首项为30-m ,共有6项,则表示630m A -,选C52. 来自中国、英国、瑞典的乒乓球裁判各两名,执行北京奥运会的一号、二号和三号场地的乒乓球裁判工作,每个场地由两名来自不同国家的裁判组成,则不同的安排方案总数有 A .48种 B .64种 C .72种 D .96种 【答案】A【解析】解:每个场地由两名来自不同国家的裁判组成,只能分为:中、英;中、瑞;英、瑞.三组中,中国、英国、瑞典的乒乓球裁判各两名,本国裁判可以互换,进场地全排, 不同的安排方案总数有22232223A A A A =2×2×2×6=48种.故选A53. 安排5名歌手的演出顺序时,要求某名歌手不是第一个出场,也不是最后一个出场,不同的安排方法总数为A .60种B .72种C . 80种D .120种 【答案】B【解析】解:分两种情况:(1)不最后一个出场的歌手第一个出场,有44A 种排法 (2)不最后一个出场的歌手不第一个出场,有113333A A A 种排法 ∴根据分类计数原理共有44A +113333A A A =78,∴故共有78种不同排法, 故答案为选B54.有6名同学去参加4个运动项目,要求甲,乙两名同学不能参加同一个项目.每个项目都有人参加,每人只参加一个项目,则满足上述要求的不同安排方案是( ) A .1560 B .1382 C .1310 D .1320 【答案】D【解析】解:根据题意先对甲,乙两名同学能参加同一个项目,的情况确定出来,然后利用所求的情况减去不符合题意的即为所求。