2018-2019银川市小学毕业数学总复习小升初模拟训练试卷10-11(共2套)附详细试题答案

合集下载

银川市重点小学小升初数学毕业考试试卷(II卷) 含答案

银川市重点小学小升初数学毕业考试试卷(II卷) 含答案

银川市重点小学小升初数学毕业考试试卷(II卷)含答案班级:_________ 姓名:_________ 学号:_________试卷说明:1、测试时间90分钟,测试题满分100分。

2、答题前,请用黑色或蓝色钢笔、圆珠笔在密封区内写上学校、班别、姓名等内容。

3、答题时,请用黑色或蓝色钢笔、圆珠笔作答。

一、填空题(将正确答案填入空中,每题2分,共计16分)1、把周长为12.56厘米的圆平均分成两个半圆,每个半圆的周长是()厘米。

2、按规律填数:315,330,(),360,375.3、甲数的2/5是乙数的5/6,乙数是12,甲数是()。

4、甲乙两数的和是28,甲与乙的比是3:4,乙数是(),甲乙两数的差是()。

5、下图是甲、乙、丙三个人单独完成某项工程所需天数统计图。

请看图填空。

①甲、乙合作这项工程,()天可以完成。

②先由甲做3天,剩下的工程由丙做还需要()天完成。

6、九亿五千零六万七千八百六十写作(),改写成用万作单位的数是()万,四舍五入到亿位约是()亿。

7、(3.4平方米=()平方分米 1500千克=()吨)。

8、一个三角形的三个内角度数比是1:2:3.这是一个()三角形。

二、选择题(只有一个正确答案,每题1.5分,共计12分)1、两根同样长的电线,第一根用去3/4米,第二根用去3/4,两根电线剩下的部分相比()。

A、第一根的长B、第二根的长C、一样长D、不确定2、一个三角形至少有()个锐角。

A、1B、2C、33、男工人数的25%等于女工人数的30%,那么男工人数和女工人数相比()A、男工人数多B、女工人数多C、一样多D、无法比较4、在下列各数中,去掉“0”而大小不变的是()。

A、2.00B、200C、0.055、一支钢笔的原价10元,先提价20%,再打八折出售,现价是()。

A.12B.10C.9.66、把5克盐溶解在100克水中,盐和盐水重量的比是()。

A、 1:20B、20:21C、1:217、下列图形中对称轴条数最少的是()。

宁夏银川市小升初数学试卷

宁夏银川市小升初数学试卷

宁夏银川市小升初数学试卷姓名:________ 班级:________ 成绩:________亲爱的同学,经过一段时间的学习,你们一定学到不少知识,今天就让我们大显身手吧!一、认真填写员。

(共24分) (共12题;共24分)1. (2分)一个数的亿位和百万位上都是4,万位上是3,千位上是5,其余各个数位上都是0,这个数写作________,读作________,它是一个________位数,四舍五入至万位是________,四舍五入至亿位________.2. (1分)铅笔每枝a元,本子每本b元,小明买了2枝铅笔和8本本子,一共付了________元.(省略乘号)3. (2分) (2019五下·潮安月考) 16和24的最大公因数是________,最小公倍数是________。

15和45的最大公因数是________,最小公倍数是________。

4. (2分)大圆的半径和小圆的直径相等,大圆周长与小圆周长的比是________,小圆面积与大圆面积的比是________5. (2分)m∶n=a.当a一定时,m和n成________比例;当n一定时,m和a成________比例;当m一定时,n和a________比例.6. (2分)将自然数1、2、3、4……按箭头所指方向顺序排列,依次在2、3、5、7、10等数的位置处拐弯,如果2算作第一次拐弯处,那么第45次拐弯处的数是________。

7. (2分) (2019四上·临海期末) 一个梯形的上底是3厘米,下底是5厘米,如果将上底延长________厘米,下底不变,则变成一个平行四边形。

如果将上底缩短3厘米,下底不变,则变成一个________形。

8. (4分)(2018·永川) 在横线上填上合适的数或单位名称。

(不重复使用)5 50 500 -1 分米厘米(1)一间教室的占地面积大约是________平方米。

(2)小区的地下停车场在________层。

2018-2019银川市小学毕业数学总复习小升初模拟训练试卷(2)附详细试题答案

2018-2019银川市小学毕业数学总复习小升初模拟训练试卷(2)附详细试题答案

小升初数学综合模拟试卷2一、填空题:1.用简便方法计算:2.某工厂,三月比二月产量高20%,二月比一月产量高20%,则三月比一月高______%.3.算式:(121+122+…+170)-(41+42+…+98)的结果是______(填奇数或偶数).4.两个桶里共盛水40斤,若把第一桶里的水倒7斤到第2个桶里,两个桶里的水就一样多,则第一桶有______斤水.5.20名乒乓球运动员参加单打比赛,两两配对进行淘汰赛,要决出冠军,一共要比赛______场.6.一个六位数的各位数字都不相同,最左一位数字是3,且它能被11整除,这样的六位数中最小的是______.7.一个周长为20厘米的大圆内有许多小圆,这些小圆的圆心都在大圆的一个直径上.则小圆的周长之和为______厘米.8.某次数学竞赛,试题共有10道,每做对一题得8分,每做错一题倒扣5分.小宇最终得41分,他做对______题.9.在下面16个6之间添上+、-、×、÷(),使下面的算式成立:6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6=1997二、解答题:1.如图中,三角形的个数有多少?2.某次大会安排代表住宿,若每间2人,则有12人没有床位;若每间3人,则多出2个空床位.问宿舍共有几间?代表共有几人?3.现有10吨货物,分装在若干箱内,每箱不超过一吨,现调来若干货车,每车至多装3吨,问至少派出几辆车才能保证一次运走?4.在九个连续的自然数中,至多有多少个质数?答案一、填空题:1.(1/5)2.(44)[1×(1+20%)×(1+20%)-1]÷1×100%=44%3.(偶数)在121+122+…+170中共有奇数(170+1-121)÷2=25(个),所以121+122+…+170是25个奇数之和再加上一些偶数,其和为奇数,同理可求出在41+42+…+98中共有奇数29个,其和为奇数,所以奇数减奇数,其差为偶数.4.(27)(40+7×2)÷2=27(斤)5.(19)淘汰赛每赛一场就要淘汰运动员一名,而且只能淘汰一名.即淘汰掉多少名运动员就恰好进行了多少场比赛.即20名运动员要赛19场.6.(301246)设这六位数是301240+a(a是个一位数),则301240+a=27385×11+(5+a),这个数能被11整除,易知a=6.7.(20)每个小圆的半径未知,但所有小圆直径加起来正好是大圆的直径。

2018-2019银川小学毕业数学总复习小升初模拟训练试卷(50)附详细试题答案

2018-2019银川小学毕业数学总复习小升初模拟训练试卷(50)附详细试题答案

小升初数学试卷50一、用心思考,认真填写1、我国香港特别行政区的面积是十一亿零四百万平方米,写作________平方米,改写成用“亿”作单位的数是________亿平方米.2、________:20=0.6=________=________%=________折.3、m=n+1(m、n为非零0自然数),m和n的最大公因数是________,m和n的最小公倍数是________.4、如果小明向南走80米,记作+80米,那么小华从同一地点向北走50米,记作________米,这时他们两人相距________米.5、在一个比例中,两个外项的积是8,一个内项是,另一个内项是________.6、把线段比例改写成数值比例尺是________,从图上量得A、B两地的距离是5.5厘米,A、B两地的实际距离是________千米.7、一根圆柱形的木料长4米,把它锯成3段,表面积增加了12平方分米,这根木料的体积是________立方分米.如果锯成3段用了3分钟,那么把它锯成6段要用________分钟.8、一个长方形的周长是72厘米,长和宽的比是2:1,这个长方形的面积是________平方厘米.9、仔细观察如表中两种量x和y的变化情况.用一个含x、y的式子表示它们之间的关系是________,x和y是成________比例关系的量.10、图中,平行四边形的面积是分成3个三角形,图中甲、乙、丙三个三角形的面积比是________.二、仔细推敲,认真辨析11、某车间今年比去年产量增加了25%,则去年就比今年产量减少了20%________(判断对错).12、2100年全年有365天________.13、要反映某厂今年前五个月产值增减变化情况,适合选择条形统计图________(判断对错).14、把3块饼平均分给4个小朋友,每人分得块________.(判断对错)15、某种奖券的中奖率为1%,买100张不一定能中奖________(判断对错).三、反复比较,慎重选择16、圆的直径一定,圆的周长和圆周率()A、成正比例B、成反比例C、不成比例17、一个角是60°,画在1:3的图上,应画()A、20°B、60°C、180°D、无法确定18、爸爸骑摩托车送小雅去看电影,看完电影后,小雅步行回家,下面()图表示了小雅的情况.A、B、C、D、19、下面各比,能与0.4:组成比例的是()A、3:4B、4:3C、:D、0.2:0.320、同时掷2枚硬币,2枚硬币都是正面朝上的可能性是()A、B、C、D、四、认真审题,细心计算21、直接写出计算结果.﹣=________22、计算下面各题,能简便的用简便方法计算.560÷16÷56 ﹣÷611×()×7[ ﹣()]× .23、求下面未知数x的值50%x﹣0.2x=15;x =12;6:30=x:0.5.24、如图的直角三角形中的空白部分是正方形,正方形的一个顶点将这个直角三角形的斜边分成二部分,求阴影部分的面积.(单位:厘米)五、观察思考,动手操作25、根据要求答题:(1)如图中长方形的A点在(________ ,________ )处(2)①将原来的长方形绕C点顺时针旋转90°,画出旋转后的图形.②将原来的长方形按1:2缩小,并将缩小后的图形画在方格内.26、探索规律.六、灵活运用,解决问题27、果园里有桃树500棵,杏树比桃树的2倍少250棵,杏树有多少棵?28、修路队修一条长600米的路,第一天修了全长的20%,第二天再修多少米就正好修完全长的一半?29、甲乙两车同时从相距120千米的A、B两地相对开出,小时相遇,甲车每小时行100千米,乙车每小时行多少千米?30、一个圆锥形小麦堆,把这堆小麦装进圆柱形粮屯正好装满,粮屯的底面直径是4米,高3米,这个圆锥形小麦堆的体积是多少立方米?31、某校六年级有甲、乙两个班,甲班学生人数是乙班的.如果从乙班调3人到甲班,甲班人数是乙班的.甲、乙两班原来各有学生多少人?答案解析部分一、用心思考,认真填写1、【答案】1104000000;11.04【考点】整数的读法和写法,整数的改写和近似数【解析】【解答】解:(1)十一亿零四百万:在十亿位上写1,在亿位数上写1,在百万位数上写4,剩下的数位上都写0,故写作:1104000000;(2)1104000000=11.04亿.故答案为:1104000000,11.04.【分析】(1)整数的写法:整数的写法是从高位写起,一级一级地往下写,哪个数位上有几个单位就在那个数位上写几,一个单位也没有时用“0”来占位;(2)把一个数改写成用“亿”作单位的数,从个位数到亿位,在亿位的右下角点上小数点,末尾的零去掉,再添上一个“亿”字.2、【答案】12;25;60;六【考点】比与分数、除法的关系【解析】【解答】解:12:20=0.6==60%=六折.故答案为:12,25,60,六.【分析】把0.6化成分数并化简是,根据分数的基本性质分子、分母都乘5就是;根据比与分数的关系=3:5,再根据比的基本性质比的前、后项都乘4就是12:20;把0.6的小数点向右移动两位添上百分号就是60%;根据折扣的意义60%就是六折.3、【答案】1;mn【考点】求几个数的最大公因数的方法,求几个数的最小公倍数的方法【解析】【解答】解:如果m=n+1(m、n为非零0自然数),m和n互质,所以m和n的最大公因数是1,最小公倍数是mn.故答案为:1,mn.【分析】如果a+1=b(a和b都是不为0的自然数),则说明这两个数是相邻的自然数,如5、6,那么这两个数互质,那么a和b的最大公因数是1,最小公倍数是它们的积;据此解答.4、【答案】﹣50;130【考点】负数的意义及其应用【解析】【解答】解:如果小明向南走80米,记作+80米,那么小华从同一地点向北走50米,记作﹣50米,这时他们两人相距80+50=130米;故答案为:﹣50,130.【分析】此题主要用正负数来表示具有意义相反的两种量:向南走记为正,则向北走就记为负,直接得出结论即可.5、【答案】18【考点】比例的意义和基本性质【解析】【解答】解:8÷=18;答:另一个内项是18.故答案为:18.【分析】由“在一个比例里,两个外项的积是8”,根据比例的性质“两外项的积等于两内项的积”,可知两个内项的积也是8;再根据“其中一个内项是”,进而用两内项的积8除以一个内项即得另一个内项的数值.6、【答案】1:5000000;275【考点】比例尺,图上距离与实际距离的换算(比例尺的应用)【解析】【解答】解:(1)由线段比例尺知道图上的1厘米表示的实际距离是50千米,数值比例尺是:1厘米:50千米,=1厘米:5000000厘米,=1:5000000,(2)因为,图上的1厘米表示的实际距离是50千米,所以,A、B两地的实际距离是:5.5×50=275(千米).故答案为:1:5000000,275.【分析】(1)根据数值比例尺的意义作答,即图上距离与实际距离的比;(2)从线段比例尺知道图上的1厘米表示的实际距离是50千米,由此得出A、B两地的实际距离.7、【答案】12;7.5【考点】简单的立方体切拼问题,圆柱的侧面积、表面积和体积【解析】【解答】解:(1)12÷(2×2)×4,=12÷4×4,=12(立方分米);(2)3÷(3﹣1)×(6﹣1),=3÷2×5,=1.5×5,=7.5(分钟);答:这根木料的体积是12立方分米.如果锯成3段用了3分钟,那么把它锯成6段要用7.5分钟.故答案为:12;7.5.【分析】(1)锯成3段,就增加了12平方分米,也就是增加了2×2=4个圆柱的底面积,由此可以求得这个圆柱的底面积解决问题;(2)锯成3段,实际锯了3﹣1=2次,由此可以求得锯一次用时:3÷2=1.5分钟,则锯成6段需要锯6﹣1=5次,由此即可解决问题.8、【答案】288【考点】长方形的周长,长方形、正方形的面积【解析】【解答】解:2+1=3(份)长是:72÷2×=36×=24(厘米)宽是:72÷2×=36×=12(厘米)面积:24×12=288(平方厘米)答:这个长方形的面积是288平方厘米.故答案为:288.【分析】首先根据长方形的周长公式:c=(a+b)×2,求出长与宽的和,已知长与宽的比是2:1,根据按比例分配的方法分别求出长、宽,然后根据长方形的面积公式:s=ab,把数据代入公式进行解答.9、【答案】xy=180;反【考点】辨识成正比例的量与成反比例的量【解析】【解答】解:因为:6×30=12×15=18×10=24×7.5=180,是乘积一定,用含x、y的式子表示它们之间的关系是xy=180,x和y是成反比例;故答案为:xy=180,反.【分析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.10、【答案】5:2:3【考点】三角形面积与底的正比关系【解析】【解答】解:因为甲、乙、丙三个三角形的高相等,即平行四边形的高,设为h,又因为甲的底是平行四边形的边,即乙和丙的底的和:2+3=5,所以甲的面积=5h÷2=h,乙的面积=2h÷2=h,丙的面积=3h÷2=h,所以:甲:乙:丙=h:h:h=5:2:3.答;甲、乙、丙三个三角形的面积比是5:2:3.故答案填5:2:3.【分析】由图知:平行四边形的面积是分成3个三角形,图中三个三角形的高都相等,都是平行四边形的高,设为h,甲的底是平行四边形的边,即乙和丙的底的和,根据三角形的面积公式是:底×高÷2,能分别表示出甲、乙、丙3个三角形的面积,从而算出它们面积的比.二、仔细推敲,认真辨析11、【答案】正确【考点】百分数的实际应用【解析】【解答】解:25%÷(1+25%)=25%÷125%=20%,答:去年就比今年产量减少了20%.故答案为:正确.【分析】根据“今年比去年产量增加了25%”把去年的产量看作单位“1”,即今年是去年的(1+25%);要求去年产量比今年减少百分之几,用去年产量比今年少的产量除以今年的产量即可.12、【答案】正确【考点】年、月、日及其关系、单位换算与计算,平年、闰年的判断方法【解析】【解答】解:2100÷400=5…2,不能整除,所以2100年不是闫年是平年,全年有365天.故答案为:正确.【分析】闫年的判断方法是:一般年份的除以4,整百年份、整千整百年份除以400,如果能整除,这一年是闫年.2100是整百年份,要除以400来判断.平年全年有365天,闫年全年有366天.13、【答案】错误【考点】统计图的选择【解析】【解答】解:根据统计图的特点可知:要反映某厂今年前五个月产值增减变化情况,适合选择折线统计图.故答案为:错误.【分析】条形统计图能很容易看出数量的多少;折线统计图不仅容易看出数量的多少,而且能反映数量的增减变化情况;扇形统计图能反映部分与整体的关系;由此根据情况选择即可.14、【答案】错误【考点】分数的意义、读写及分类【解析】【解答】解:3÷4=(块),答:把3块饼平均分给4个小朋友,每人分得块;故答案为:错误.【分析】把3块饼平均分给4个小朋友,求每人分得的块数,平均分的是具体的数量3块,求的是具体的数量;用除法计算.15、【答案】正确【考点】简单事件发生的可能性求解【解析】【解答】解:由分析知:某种奖券的中奖率为1%,买100张不一定能中奖;√故答案为:正确.【分析】一种彩票的中奖率是1%,属于不确定事件,可能中奖,也可能不中奖,买了100张彩票只能说明比买1张的中奖的可能性大.三、反复比较,慎重选择16、【答案】C【考点】辨识成正比例的量与成反比例的量【解析】【解答】解:因为圆的周长C=πd,在此题中圆的直径一定,圆周率也是一定的,所以周长也是一定的,即三个量都是一定的,不存在变量问题,所以圆的周长和圆周率不成比例;故选:C.【分析】判断圆的周长和圆周率之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.17、【答案】B【考点】角的概念及其分类,图形的放大与缩小【解析】【解答】解:根据分析可得:一个角是60°,画在1:3的图上,还应当画60°.故选:B.【分析】根据角的大小与两边张口的大小有关,张口越大,角越大;张口越小,角越小,和两边的长短无关,更和图形的放大与缩小无关,据此即可作出选择.18、【答案】C【考点】从统计图表中获取信息【解析】【解答】解:爸爸骑摩托车送小雅去看电影,看完电影后,小雅步行回家,图C表示了小雅的情况;故选:C.【分析】根据“爸爸骑摩托车送小雅去看电影,看完电影后,小雅步行回家”,可知骑摩托车的速度快,坡度大,位置有变化;步行回家的速度慢,坡度小,位置也有变化;看电影的位置不变.据此进行选择.19、【答案】D【考点】比例的意义和基本性质【解析】【解答】解:0.4:=0.4:0.6,=2:3,0.2:0.3=2:3;故应选:D.【分析】求出0.4:的比再进行选择即可.20、【答案】C【考点】简单事件发生的可能性求解【解析】【解答】解:任意抛掷两枚硬币,出现的结果有:正正,正反,反正,反反,所以任意抛掷两枚硬币,两枚都是正面朝上的可能性:1÷4=故选:C.【分析】任意抛掷两枚硬币,出现的结果有:正正,正反,反正,反反,然后根据求可能性的方法:求一个数是另一个数的几分之几,用除法列式解答即可.四、认真审题,细心计算21、【答案】11①0.09②18③0.0015④400⑤⑥⑦12a2【考点】分数的四则混合运算,小数四则混合运算【解析】【分析】根据小数、分数四则运算的法则及混合运算的运算顺序计算即可.22、【答案】解:①560÷16÷5=560÷(16×5)=560÷80=7;②6 ÷﹣÷6=7﹣=;③11×()×7=11××7+×7×11=14+11=25;④[﹣()]×=[ ﹣]×=×=.【考点】运算定律与简便运算【解析】【分析】根据除法的性质简算;23、【答案】解:①50%x﹣0.2x=150.3x=150.3x÷0.3=15÷0.3x=50;② x÷=12x=12×x=8x=32;③6:30=x:0.530x=6×0.530x÷30=3÷30x=0.1.【考点】方程的解和解方程【解析】【分析】(1)先化简方程,再根据等式的性质,两边同时除以0.3求解;(2)根据等式的性质,两边同时乘以,再两边同时除以求解;(3)根据比例的性质,化成30x=6×0.5,再根据等式的性质,方程两边同时除以30求解.24、【答案】解:如图:三角形AFE绕点E逆时针旋转90°,与三角形EDC组成一个直角三角形,两直角边分别是6厘米、8厘米,其面积是:×6×8=24(平方厘米);答:阴影部分的面积是24平方厘米.【考点】组合图形的面积【解析】【分析】如图,由于BDEF是正方形,因此EF=ED,∠DEF=90°,三角形AFE绕点E逆时针旋转90°,与三角形EDC组成一个直角三角形,直角边分别是6厘米、8厘米,由此即可求出阴影部分的面积.五、观察思考,动手操作25、【答案】(1)2;5(2)①下图红色部分:②下图绿色部分:【考点】作旋转一定角度后的图形,图形的放大与缩小,数对与位置【解析】【解答】解:(1)如图中长方形的A点在(2,5)处.【分析】(1)根据用数对表示点的位置的方法,第一个数字表示列数,第二个数字表示行数,即可用数对表示出点A的位置.(2)根据旋转的特征,长方形绕点C顺时针旋转90°后,点C的位置不动,其余各部分均绕此点按相同方向旋转相同的度数即可画出旋转后的图形.(3)根据图形放大与缩小的意义,把这个长方形的各边缩小到原来的,即可得到按1:2缩小后的图形.26、【答案】解:根据分析:第五个正方体:6+(5﹣1)×4=22第六个正方体:6+(6﹣1)×4=26有62个正方形时:6+(N﹣1)×4=624N=62﹣2N=15第N个正方体:6+(N﹣1)×4如图:探索规律.【考点】数与形结合的规律【解析】【分析】通过分析可知:每增加一个正方体,正方形的个数增加4个,10=6+4,14=6+2×4,18=6+3×4,所以N个正方体的正方形的个数是6+(N﹣1)×4,据此解答即可.六、灵活运用,解决问题27、【答案】解:500×2﹣250=1000﹣250=750(棵)答:杏树有750棵【考点】整数的乘法及应用【解析】【分析】首先根据求一个数的几倍是多少,用乘法求出桃树棵数的2倍,再根据求比一个数少几用减法解答.28、【答案】解:600×(50%﹣20%)=600×30%=180(米)答:第二天再修180米就正好修完全长的一半【考点】百分数的实际应用【解析】【分析】把全长看作单位“1”,则第二天再修50%﹣20%时正好修完全长的一半,已知全长600米,运用乘法即可求出第二天再修多少米.29、【答案】解:(120﹣100× )÷=(120﹣)÷= ×=80(千米)答:乙车每小时行80千米【考点】简单的行程问题【解析】【分析】先根据路程=速度×时间,求出甲车小时行驶的路程,再求出乙车行驶的路程,最后根据速度=路程÷时间即可解答.30、【答案】解:3.14×(4÷2)2×3=3.14×12=37.68(立方米),答:这个圆锥形小麦堆的体积是137.68立方米【考点】关于圆锥的应用题【解析】【分析】根据题干,此题就是求底面直径为4米,高为3米的圆柱的体积,利用圆柱的体积=底面积×高,代入数据计算即可.31、【答案】解:﹣= = ;3 =108(人),108× =45(人),108﹣45=63(人);答:甲班原有人数45人,乙班原有人数63人.【考点】分数除法应用题【解析】【分析】设甲、乙两班学生数的和为单位“1”,原来:甲班人数就是全部人数的,调整后:甲班就是就是全部人数,从乙班调到甲班3人就是甲班增加的人数,它对应的分数就是,用除法求出单位“1”.再求单位“1”的就是甲班的人数,进而求出乙班的人数.。

2018-2019银川市小学毕业数学总复习小升初模拟训练试卷9-10(共2套)附详细试题答案

2018-2019银川市小学毕业数学总复习小升初模拟训练试卷9-10(共2套)附详细试题答案

小升初数学综合模拟试卷9一、填空题:1.在下面的四个算式中,最大的得数是______:(1)1994×1999+1999,(2)1995×1998+1998,(3)1996×1997+1997,(4)1997×1996+1996.2.今有1000千克苹果,刚入库时测得含水量为96%;一个月后,测得含水量为95%,则这批苹果的总重量损失了______.3.填写下面的等式:4.任意调换五位数54321的各个数位上的数字位置,所得的五位数中的质数共有______.5.下面式子中每一个中文字代表1~9中的一个数码,不同的文字代表不同的数码:则被乘数为______.6.如图,每个小方格的面积是1cm2,那么△ABC的面积是______cm2.7.如图,A1,A2,A3,A4是线段AA5上的分点,则图中以A,A1,A2,A3,A4,A5这六个点为端点的线段共有______条.8.10点15分时,时针和分针的夹角是______.9.一房间中有红、黄、蓝三种灯,当房间中所有灯都关闭时,拉一次开关,红灯亮;第二次拉开关,红黄灯都亮;第三次拉开关,红黄蓝三灯都亮;第四次拉开关,三灯全关闭,现在从1~100编号的同学走过该房间,并将开关拉若干次,他们拉开关的方式为:编号为奇数者,他拉的次数就是他的号数;编号为偶数者,其编号可以写成2r·p(其中p为正奇数,r为正整数),就拉p次,当100人都走过房间后,房间中灯的情况为______.10.老师带99名同学种树100棵,老师先种一棵,然后对同学们说:“男生每人种两棵,女生每两人合种一棵。

”说完把99棵树苗分给了大家,正好按要求把树苗分完,则99名学生中男生为______名.二、解答题:1.如图,某公园的外轮廓是四边形ABCD,被对角线AC、BD分成四个部分.△AOB的面积是2平方千米,△COD的面积是3平方千米,公园陆地面积为6.92平方千米,那么人工湖的面积是______平方千米.2.汽车往返于甲、乙两地之间,上行速度为每小时30千米,下行速度为每小时60千米,求往返的平均速度.3.已知一个数是1个2,2个3,3个5,2个7的连乘积,试求这个数的最大的两位数因数.4.某轮船公司较长时间以来,每天中午有一只轮船从哈佛开往纽约,并且在每天的同一时间也有一只轮船从纽约开往哈佛,轮船在途中所花的时间,来去都是七昼夜,问今天中午从哈佛开出的轮船,在整个航运途中,将会遇到几只同一公司的轮船从对面开来?答案一、填空题:1.(3988009)由乘法分配律,四个算式分别简化成:1995×1999,1996×1998,1997×1997,1996×1998,由“和相等的两个数,相差越小积越大”,所以1997×1997最大,为3988009.2.(200千克)苹果含水96%.所以苹果肉重1000×(1-96%)=40千克,一个月后,测得含水量为95%,即肉重占1-95%=5%,所以苹果重为40÷(1-95%)3.(1)26,26或14,182.(2)46、46.4.(0个)因为5+4+3+2+1=15,是3的倍数.所以任意调换54321各位数字所得的五位数均能被3整除,为合数,因此共有0个质数.5.142857或285714易知“数”只能是1或2或3,经过分析试证可知排除3,并得到两个答案.6.(8.5)2.5-6=8.5(cm2)7.(15条)以A为左端点的线段共5条,以A1为端点的线段共4条;以A2为左端点的线段共3条;以A3为左端点的线段共2条;以A4为左端点的线段共1条,总计5+4+3+2+1=15(条).8.(142°30′)10点15′时,时针从0点开始转过的角度是30°×10.25=307.5°,从而时针与钟表盘12所在的位置之间的夹角为360°-307.5°=52°30′,此时时针与分针之间的夹角为90°+52°30′=142°30′.9.(都不亮)奇数和为1+3+5+…+99=2500,编号为2P者有2×1,2×3,2×5,…,2×49,他们拉开关次数为1+3+5+…+49=625;编号为22p者有22×1,22×3,22×5,…,22×25,拉开关次数为1+3+5+……+25=169;同理可得编号23·p者拉36次;24·p者9次,25·p与26·p分别有25·1,25·3,26拉开关次数1+3+1=5次.总计2500+625+169+36+9+5=3344=4×836.所以最后三灯全关闭.10.(33)把问题简化:3人种3棵(指1男生2个女生),则99名分成33组,每组1男2女,所以共有男生:99÷(2+1)=33(名).二、解答题:1.(0.58)由△BOC与△DOC等高h1,△BOA与△DOA等高h2,利用面积公式:2.(40千米/小时)设两地距离为a,则总距离为2a.3.(98)由已知数=2×3×3×5×5×5×7×7.所以它的两位数的因数有很多个.因此我们可从两位数中最大数找起.99=9×11=3×3×11,而11不是原数因数,所以99不符合;98=2×49=2×7×7,因为2、7都是原数的因数,所以98符合要求.4.(15只)利用图解法代表今天中午从哈佛开往纽约的轮船的带箭头的线段.与另一簇代表从纽约开往哈佛的轮船行驶路线的15条平行线相交.其中一只是在出发时遇到,一只到达时遇到,剩下的13只则在海上相遇.小升初数学综合模拟试卷10一、填空题:1.29×12+29×13+29×25+29×10=______.2.2,4,10,10四个数,用四则运算来组成一个算式,使结果等于24.______.______页.4.如图所示为一个棱长6厘米的正方体,从正方体的底面向内挖去一个最大的圆锥体,则剩下的体积是原正方体的百分之______(保留一位小数).5.某校五年级(共3个班)的学生排队,每排3人、5人或7人,最后一排都只有2人.这个学校五年级有______名学生.6.掷两粒骰子,出现点数和为7、为8的可能性大的是______.7.老妇提篮卖蛋.第一次卖了全部的一半又半个,第二次卖了余下的一半又半个,第三次卖了第二次余下的一半又半个,第四次卖了第三次余下的一半又半个.这时,全部鸡蛋都卖完了.老妇篮中原有鸡蛋______个.8.一组自行车运动员在一条不宽的道路上作赛前训练,他们以每小时35千米的速度向前行驶.突然运动员甲离开小组,以每小时45千米的速度向前行驶10千米,然后转回来,以同样的速度行驶,重新和小组汇合,运动员甲从离开小组到重新和小组汇合这段时间是______.9.一对成熟的兔子每月繁殖一对小兔子,而每对小兔子一个月后就变成一对成熟的兔子.那么,从一对刚出生的兔子开始,一年后可变成______对兔子.10.有一个10级的楼梯,某人每次能登上1级或2级,现在他要从地面登上第10级,有______种不同的方式.二、解答题:1.甲、乙二人步行的速度相等,骑自行车的速度也相等,他们都要由A处到B处.甲计划骑自行车和步行所经过的路程相等;乙计划骑自行车和步行的时间相等.谁先到达目的地?共有多少个?3.某商店同时出售两件商品,售价都是600元,一件是正品,可赚20%;另一件是处理品,要赔20%,以这两件商品而言,是赚,还是赔?4.有一路电车起点站和终点站分别是甲站和乙站.每隔5分钟有一辆电车从甲站出发开往乙站,全程要走15分钟.有一个人从乙站出发沿电车路线骑车前往甲站.他出发时,恰有一辆电车到达乙站.在路上遇到了10辆迎面开来的电车.当到达甲站时,恰又有一辆电车从甲站开出,问他从乙站到甲站用了多少分钟?答案一、填空题:1.(1740)29×(12+13+25+10)=29×60=17402.(2+4÷10)×103.(200页)4.(73.8%)(cm3),剩下体积占正方体的:(216-56.52)÷216≈0.738≈73.5.(107)3×5×7+2=105+2=1076.(7的可能性大)出现和等于7的情况有6种:1与6,2与5.3与4,4与3,5与2,6与1;出现和为8的情况5种:2和6,3与5,4与4,5与3,6与2.7.(15)从图上看出,在这段时间内,运动员甲和运动员队分别以每小时45千米9.(233)从第二个月起,每个月兔子的对数都等于相邻的前两个月的兔子对数的和.即1,1,2,3,5,8,13,21,34,55,89,144,233,…所以,从一对新生兔开始,一年后就变成了233对兔子.10.(89种)用递推法.他要到第10级只能从第9级或第8级直接登上。

2018-2019银川小学毕业数学总复习小升初模拟训练试卷(24)附详细试题答案

2018-2019银川小学毕业数学总复习小升初模拟训练试卷(24)附详细试题答案

小升初数学综合模拟试卷24一、填空题:2.将1、2、3、4、5、6、8、9这八个数组成两个四位数,使这两个数的差最小,这个差是______.3.如图,将它折成一个正方体,相交于同一顶点的三个面上的数之和最大是______.4.将1至9这九个数分别填在下面九个方框中,使等式成立:5.如图,平行四边形ABCD的一边AB=8厘米,AB上的高等于3厘米,四边形EFOG的面积等于2平方厘米,则阴影部分的面积与平行四边形的面积之比是______.6.200个连续自然数的和是32300,取出其中所有的第偶数个数(第2个,第4个,……,第200个),将它们相加,则和是______.7.某人从甲地到乙地,如果每分钟走75米,迟到8分,如果每分钟走80米,迟到6分,他应以每分钟走______米的速度走才能准时到达.8.快慢两列火车的长分别是200米、300米,它们相向而行.坐在慢车上的人见快车通过此人窗口的时间是8秒,则坐在快车上的人见慢车通过此人窗口所用的时间是______秒.9.至少有一个数字是0,且能被4整除的四位数有______个.10.如图,九个小正方形内各有一个一位数,并且每行、每列及两条对角线上的三个整数的和相等,那么x=______.二、解答题:2.甲、乙、丙三人,甲每五天去李老师家,乙每四天去李老师家,丙每六天去李老师家。

三人在1997年元旦去了李老师家,下一次三人在李老师家相聚是几月几日?3.编号为1至7的7个盘子,每盘都放有玻璃球,共放有80个,其中第1号盘里放有18个,并且编号相邻的三个盘里的玻璃球数的和相等,问第6个盘中玻璃球最多可能是多少个?已知他骑车每小时行8千米,乘车每小时行16千米,则此人从家到单位的距离是多少千米?答案一、填空题:2.137要使差最小,被减数与减数应该尽量接近.被减数的千位与减数千位的差是1,它们的末三位数,被减数应该最小,是123,减数应该最大,是986,这样得到被减数是5123,减数是4986,差等于137.3.相交于同一顶点三个面上的数之和是13.6+3+4=134.73把4234分解质因数,然后进行计算和调整,有:4234=2×29×73=58×73=29×146所以最大的两位数是73.5.1∶3因为O是AC、BD的中点,所以S△AEF+S△BGE=S△AOB-S四边形EFOG=6-2=4(平方厘米)S阴影=S平ABCD-(S△AEF+S△BGE)=12-4=8(平方厘米)S阴影∶S平ABCD=8∶24=1∶36.16200连续自然数相邻两数之差是1,所以第2个数比第1个数大1,第4个数比第3个数大1,…,第200个数比第199个数大1,100个取出的数比没取出的100个数总共多100,因此所有的第偶数个数之和是(32300+100)÷2=162007.100设从甲地出发准时到达乙地需x分,则75×(x+8)=80×(x+6)80x-75x=600-480x=24甲、乙两地距离是:80×(24+6)=2400(米)从甲地准时到达乙地这人的速度是每分走:2400÷24=100(米)8.坐在慢车上的人见快车通过此人窗口时,两列火车共行了200米,用了8秒,得到两列火车的速度和是200÷8=(25米/秒),坐在快车上的人见慢车通过此人窗口时,两列火车共行了300米,所用时间是:300÷25=12(秒).9.792个一个数能被4整除的特征是末两位数能被4整除.末两位数应是00、04、08、12、16、20、 (92)96,共25个,其中含有数字0的有7个(00、 04、 08、 20、 40、 60、 80),其余 18个末两位都不含有数字0.一个四位数的末两位含有数字0,那么它的千位可以是1至9的任意一个,百位是0至9的任意一个,这个四位数的前两位数字共9×10=90个,则末两位含有数字0且能被4整除的四位数共有:90×7=630(个)如果末两位不含有数字0,那么要求四位数的百位是0,千位是1至9的任意一个,共有9个,则末两位不含数字0,前两位含有数字0,且能被4整除的四位数共有:9×18=162(个)所以至少有一个数字0,且能被4整除的四位数有 630+162=792(个).10. x=5如图所示,a+x+f=9+x+1,有a+f=10;同理d+x+c=9+x+1得d+c=10;所以 a+f+d+c=20又 a+9+d=9+x+1,得a+d=x+1;c+1+f=9+x+1,得c+f==x+9,则 a+d+c+f=2x+10.所以 2x+10=20,x=5.二、解答题:1.厂里现有工人120名所以厂里现有工人120名.2.3月1日[5,4,6]=60,60-(31+28)=1所以下一次三人在李老师家相聚是3月1日.3.第6个盘中的玻璃球最多是12个.由于相邻三个盘中的玻璃球相等,有编号为1、4、7的盘中玻璃球均相等,等于18个,于是2、3盘中的玻璃球数的和与5、6盘中的玻璃球数的和相等,所以5、6盘中玻璃球数之和是:(80-18×3)÷2=13(个)要使第6盘中的玻璃球数最多,第5盘至少是1个(每盘都有玻璃球),所以第6盘最多可能是12个.4.此人家到单位的距离是78千米.设此人家到单位的距离是s千米,他从单位回家用了t小时,则13t=12t+6t=6S=13×6=78(千米)所以此人家到单位的距离是78千米.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小升初数学综合模拟试卷10一、填空题:1.29×12+29×13+29×25+29×10=______.2.2,4,10,10四个数,用四则运算来组成一个算式,使结果等于24.______.______页.4.如图所示为一个棱长6厘米的正方体,从正方体的底面向内挖去一个最大的圆锥体,则剩下的体积是原正方体的百分之______(保留一位小数).5.某校五年级(共3个班)的学生排队,每排3人、5人或7人,最后一排都只有2人.这个学校五年级有______名学生.6.掷两粒骰子,出现点数和为7、为8的可能性大的是______.7.老妇提篮卖蛋.第一次卖了全部的一半又半个,第二次卖了余下的一半又半个,第三次卖了第二次余下的一半又半个,第四次卖了第三次余下的一半又半个.这时,全部鸡蛋都卖完了.老妇篮中原有鸡蛋______个.8.一组自行车运动员在一条不宽的道路上作赛前训练,他们以每小时35千米的速度向前行驶.突然运动员甲离开小组,以每小时45千米的速度向前行驶10千米,然后转回来,以同样的速度行驶,重新和小组汇合,运动员甲从离开小组到重新和小组汇合这段时间是______.9.一对成熟的兔子每月繁殖一对小兔子,而每对小兔子一个月后就变成一对成熟的兔子.那么,从一对刚出生的兔子开始,一年后可变成______对兔子.10.有一个10级的楼梯,某人每次能登上1级或2级,现在他要从地面登上第10级,有______种不同的方式.二、解答题:1.甲、乙二人步行的速度相等,骑自行车的速度也相等,他们都要由A处到B处.甲计划骑自行车和步行所经过的路程相等;乙计划骑自行车和步行的时间相等.谁先到达目的地?共有多少个?3.某商店同时出售两件商品,售价都是600元,一件是正品,可赚20%;另一件是处理品,要赔20%,以这两件商品而言,是赚,还是赔?4.有一路电车起点站和终点站分别是甲站和乙站.每隔5分钟有一辆电车从甲站出发开往乙站,全程要走15分钟.有一个人从乙站出发沿电车路线骑车前往甲站.他出发时,恰有一辆电车到达乙站.在路上遇到了10辆迎面开来的电车.当到达甲站时,恰又有一辆电车从甲站开出,问他从乙站到甲站用了多少分钟?答案一、填空题:1.(1740)29×(12+13+25+10)=29×60=17402.(2+4÷10)×103.(200页)4.(73.8%)(cm3),剩下体积占正方体的:(216-56.52)÷216≈0.738≈73.5.(107)3×5×7+2=105+2=1076.(7的可能性大)出现和等于7的情况有6种:1与6,2与5.3与4,4与3,5与2,6与1;出现和为8的情况5种:2和6,3与5,4与4,5与3,6与2.7.(15)从图上看出,在这段时间内,运动员甲和运动员队分别以每小时45千米9.(233)从第二个月起,每个月兔子的对数都等于相邻的前两个月的兔子对数的和.即1,1,2,3,5,8,13,21,34,55,89,144,233,…所以,从一对新生兔开始,一年后就变成了233对兔子.10.(89种)用递推法.他要到第10级只能从第9级或第8级直接登上。

于是先求出登到第9级或第8级各有多少种方式,再把这两个数相加就行.以下,依次类推,故有34+55=89(种).二、解答题:1.(乙先到)骑自行车的速度比步行的速度快,因此,骑自行车用一半的时间所走的路程超过全程的一半.2.(3535个)n的值只能在0,1,2,3,4,5这六个数中选取(n不能等于6,3.(赔了)正品赚了600÷(1+20%)×20%=100(元)处理品赔了600÷(1-20%)×20%=150(元)总计:150-100=50(元),即赔了.4.(40分)骑车人一共看见12辆电车.因每隔5分钟有一辆电车开出,而全程需15分,所以骑车人从乙站出发时,他将要看到的第4辆车正从甲站开出.到达甲站时,第12辆车正从甲站开出.所以,骑车人从乙站到甲站所用时间就是从第4辆电车从甲开出到第12辆电车由甲开出之间的时间.即(12-4)×5=40(分).小升初数学综合模拟试卷11一、填空题:2.下面三个数的平均数是170,则圆圈内的数字分别是:○;○9;○26.于3,至少要选______个数.4.图中△AOB的面积为15cm2,线段OB的长度为OD的3倍,则梯形ABCD的面积为______.5.有一桶高级饮料,小华一人可饮14天,若和小芳同饮则可用10天,若小芳独自一人饮,可用______天.6.在1至301的所有奇数中,数字3共出现_______次.7.某工厂计划生产26500个零件,前5天平均每天生产2180个零件,由于技术革新每天比原来多生产420个零件,完成这批零件一共需要_______天.8.铁路与公路平行.公路上有一个人在行走,速度是每小时4千米,一列火车追上并超过这个人用了6秒.公路上还有一辆汽车与火车同向行驶,速度是每小时67千米,火车追上并超过这辆汽车用了48秒,则火车速度为______,长度为______.9.A、B、C、D4个数,每次去掉一个数,将其余3个数求平均数,这样计算了4次,得到下面4个数:23,26,30,33,A、B、C、D4个数的平均数是______.10.一个圆的周长为1.26米,两只蚂蚁从一条直径的两端同时出发沿圆周相向爬行.这两只蚂蚁每秒分别爬行5.5厘米和3.5厘米.它们每爬行1秒,3秒,5秒,………(连续奇数),就调头爬行.那么,它们相遇时,已爬行的时间是______秒.二、解答题:1.小红见到一位白发苍苍的老爷爷,她问老爷爷有多大年岁?老爷爷说:把我的年龄加上10用4除,减去15后用10乘,结果正好是100岁.请问这位老爷爷有多大年龄?数最小是几?3.下图中8个顶点处标注数字a,b,c,d,e,f,g,h,其f+g+h)的值.4.底边长为6厘米,高为9厘米的等腰三角形20个,迭放如下图:每两个等腰三角形有等距离的间隔,底边迭合在一起的长度是44厘米.回答下列问题:(1)两个三角形的间隔距离;(2)三个三角形重迭(两次)部分的面积之和;(3)只有两个三角形重迭(一次)部分的面积之和;(4)迭到一起的总面积.答案一、填空题:2.(5,7,4)由总数量÷总份数=平均数,可知这三个数之和170×3=510.这样,一位数是5.两位数的十位数是7.三位数的百位数是4.3.(11个)要使所选的个数尽可能的少,就要尽量选用大数,而所给的数是从大到说明答案该是11.而S△CDO=15cm2,在△BCD中,因OB=3OD,S△BCO=S△CDO×3=3×15=45cm2,所以梯形ABCD面积=15+5+15+45=80cm2.5.(35天)6.(46)①“3”在个位时,必定是奇数且每十个数中出现一个.1×〔(301-1)÷10〕=30(个);②“3”在十位上时,个位数只能是1,3,5,7,9,这个数是奇数.每100个数共有五个.5×[(301-1)÷100]=15(个);③“3”在百位上,只有300与301两个数,其中301是奇数.因此,在1~301所有奇数中,数字“3”出现30+15+1=46(次).7.(11天)(26500-2180×5)÷(2180+420)+5=(26500-10900)÷2600+5=11(天)8.(76千米/时,120米)把火车与人的速度差分成8段,火车与汽车速度差也就是1段.可得每段表示的是(67-4)÷(8-1)=9(千米/时).火车的速度是67+9=76(千米/时),9×1000÷3600=2.5(米/秒),2.5×48=120(米).9.(28)10. (49)由相向行程问题,若它们一直保持相向爬行,直至相遇所需时间是间是1秒,第二轮有效前进时间是5-3=2(秒)…….由上表可知实际耗时为1+8+16+24=49(秒),相遇有效时间为1+2×3=7秒.因此,它们相遇时爬行的时间是49秒.二、解答题:1.(90岁)2.小公倍数;N是28,56,20的最大公约数.因此,符合条件的最小分数:3.(0)由已知条件得:3a=b+d+e,3b=a+c+f,3c=b+d+g,3d=a+c+h,把这四式相加得3(a+b+c+d)=2(a+b+c+d)+(e+f+g+h).所以(a+b+c+d)=e+f+g+h,即原式值为0.4.(1)2厘米从图中可看出,有(20-1=)19个间隔,每个间隔距离是(44-6)÷19=2(厘米).(2)观察三个三角形的迭合.画横行的两个三角形重迭,画井线是三个三角形重迭部分,它是与原来的三角形一般模样,但底边是原来三角形底×2=3(cm2).每三个连着的三角形重迭产生这样的一个小三角形,每增加一个大三角形,就多产生个一个三次重迭的三角形,而且与前一个不重迭.因此这样的小三角形共有20-2=18(个),面积之和是3×18=54(cm2).(3)(120cm2)每两个连着的三角形重迭部分,也是原来的三角形一般模样的三角形,每增加一个大三角形就产生一个小三角形.共产生20-1=19(个),面积19×12=228(cm2).所求面积228-54×2=120(cm2)(4)(312cm2)20个三角形面积之和,减去重迭部分,其中120cm2重迭一次,54cm2重迭两次.。

相关文档
最新文档