【步步高】(江苏专用)2017版高考数学一轮复习 第二章 函数概念与基本初等函数I 2.8 函数与方程课件 理

合集下载

【步步高】2017版高考数学一轮复习 第二章 函数概念与基本初等函数I 2.3 函数的奇偶性与周期性课件 理

【步步高】2017版高考数学一轮复习 第二章 函数概念与基本初等函数I 2.3 函数的奇偶性与周期性课件 理

跟踪训练2
解析答案
题型三
函数性质的综合应用
命题点1 函数奇偶性的应用
例3 (1) 已知 f(x) 是奇函数, g(x) 是偶函数,且 f( - 1) + g(1) = 2 , f(1) + g(-1)=4,则g(1)=__.
解析答案
1 (2)(2015· 课标全国Ⅰ)若函数 f(x)=xln(x+ a+x2)为偶函数,则 a=__. 解析 f(x)为偶函数,
当x<0时,-x>0,f(x)=x2+x,
∴f(-x)=-(-x)2-x=-x2-x
=-(x2+x)=-f(x).
∴对于x∈(-∞,0)∪(0,+∞),
均有f(-x)=-f(x).
∴函数为奇函数.
思维升华 解析答案
跟踪训练1
(1)设函数 f(x),g(x) 的定义域都为 R,且f(x) 是奇函数, g(x)是 ③ 填序号) 偶函数,则下列结论中正确的是____.( ①f(x)g(x)是偶函数; ②|f(x)|g(x)是奇函数; ③f(x)|g(x)|是奇函数;
解析 ∵f(x)是定义在R上的周期为3的偶函数, ∴f(5)=f(5-6)=f(-1)=f(1),
2a-3 ∵f(1)<1,f(5)= , a+1
2a-3 a-4 ∴ <1,即 <0, a+1 a+1
解得-1<a<4.
解析答案
(2)已知定义在R上的奇函数f(x)满足f(x-4)=-f(x),且在区间[0,2]上是增 函数,则f(-25),f(11),f(80)的大小关系是__________________.
1
2
3
4
5
解析答案
返回
题型分类 深度剖析

(江苏专用)高考数学一轮复习 第二章 函数概念与基本初等函数(Ⅰ)第5课 函数的单调性与最值教师用书

(江苏专用)高考数学一轮复习 第二章 函数概念与基本初等函数(Ⅰ)第5课 函数的单调性与最值教师用书

第5课函数的单调性与最值[最新考纲]内容要求A B C函数的单调性√函数的最值√1.函数的单调性(1)单调函数的定义增函数减函数定义一般地,设函数y=f(x)的定义域为A,区间I⊆A,如果对于区间I内的任意两个值x1,x2当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间I上是增函数当x1<x2时,都有f(x1)>f(x2),那么就说函数f(x)在区间I上是减函数图象描述自左向右看图象是上升的自左向右看图象是下降的(2)单调区间的定义如果函数y=f(x)在区间I上是增函数或减函数,那么就说函数y=f(x)在区间I上具有单调性,区间I叫作y=f(x)的单调区间.2.函数的最值前提设函数y=f(x)的定义域为I,如果存在实数M满足条件①对于任意的x∈I,都有f(x)≤M;②存在x0∈I,使得f(x0)=M①对于任意的x∈I,都有f(x)≥M;②存在x0∈I,使得f(x0)=M结论M是y=f(x)的最大值M是y=f(x)的最小值1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)对于函数f (x ),x ∈D ,若对任意x 1,x 2∈D ,x 1≠x 2且(x 1-x 2)[f (x 1)-f (x 2)]>0,则函数f (x )在区间D 上是增函数.( )(2)函数y =1x的单调递减区间是(-∞,0)∪(0,+∞).( )(3)函数y =|x |是R 上的增函数.( ) (4)所有的单调函数都有最值.( ) [答案] (1)√ (2)× (3)× (4)×2.(2016·高考改编)下列函数中,在区间(-1,1)上为减函数的是________.(填序号) ①y =11-x ;②y =cos x ; ③y =ln(x +1); ④y =2-x.④ [①中,y =11-x 在(-∞,1)和(1,+∞)上为增函数,故y =11-x 在(-1,1)上为增函数;②中,y =cos x 在(-1,1)上先增后减;③中,y =ln(x +1)在(-1,+∞)上为增函数,故y =ln(x +1)在(-1,1)上为增函数;④中,y =2-x =⎝ ⎛⎭⎪⎫12x 在R 上为减函数,故y =2-x在(-1,1)上是减函数.]3.(教材改编)已知函数f (x )=2x -1,x ∈[2,6],则f (x )的最大值为________,最小值为________.2 25 [可判断函数f (x )=2x -1在[2,6]上为减函数,所以f (x )max =f (2)=2,f (x )min =f (6)=25.]4.设函数f (x )=x 2-2x ,x ∈[-2,a ],若函数的最小值为g (a ),则g (a )=________.⎩⎪⎨⎪⎧a 2-2a ,-2<a <1-1,a ≥1 [∵f (x )=x 2-2x =(x -1)2-1,∴当a ≥1时,函数在[-2,1]上递减,在[-1,a ]上递增,g (a )=-1.当-2<a <1时,函数在[-2,a ]上递减,∴g (a )=a 2-2a ,综上可知,g (a )=⎩⎪⎨⎪⎧a 2-2a ,-2<a <1,-1,a ≥1.]5.(教材改编)已知函数f (x )=x 2-2ax -3在区间[1,2]上具有单调性,则实数a 的取值X 围为________.(-∞,1]∪[2,+∞) [∵f (x )=x 2-2ax -3=(x -a )2-a 2-3, ∴f (x )关于x =a 对称.要使y =f (x )在区间[1,2]上具有单调性, 只需a ≥2或a ≤1.]函数单调性的判断(1)函数f (x )=log 2(x 2-1)的单调递减区间为________. (2)试讨论函数f (x )=x +k x(k >0)的单调性.(1)(-∞,-1) [由x 2-1>0得x >1或x <-1,即函数f (x )的定义域为(-∞,-1)∪(1,+∞).令t =x 2-1,因为y =log 2t 在t ∈(0,+∞)上为增函数,t =x 2-1在x ∈(-∞,-1)上是减函数,所以函数f (x )=log 2(x 2-1)的单调递减区间为(-∞,-1).](2)法一:由解析式可知,函数的定义域是(-∞,0)∪(0,+∞).在(0,+∞)内任取x 1,x 2,令0<x 1<x 2,那么f (x 2)-f (x 1)=⎝ ⎛⎭⎪⎫x 2+k x 2-⎝ ⎛⎭⎪⎫x 1+k x 1=(x 2-x 1)+k ⎝ ⎛⎭⎪⎫1x 2-1x 1=(x 2-x 1)x 1x 2-kx 1x 2.因为0<x 1<x 2,所以x 2-x 1>0,x 1x 2>0. 故当x 1,x 2∈(k ,+∞)时,f (x 1)<f (x 2), 即函数在(k ,+∞)上单调递增. 当x 1,x 2∈(0,k )时,f (x 1)>f (x 2), 即函数在(0,k )上单调递减.考虑到函数f (x )=x +k x(k >0)是奇函数,在关于原点对称的区间上具有相同的单调性,故在(-∞,-k )上单调递增,在(-k ,0)上单调递减.综上,函数f (x )在(-∞,-k )和(k ,+∞)上单调递增,在(-k ,0)和(0,k )上单调递减.法二:f ′(x )=1-k x2.令f ′(x )>0得x 2>k ,即x ∈(-∞,-k )或x ∈(k ,+∞),故函数的单调增区间为(-∞,-k )和(k ,+∞).令f ′(x )<0得x 2<k ,即x ∈(-k ,0)或x ∈(0,k ),故函数的单调减区间为(-k ,0)和(0,k ).故函数f (x )在(-∞,-k )和(k ,+∞)上单调递增,在(-k ,0)和(0,k )上单调递减.[规律方法] 1.利用定义判断或证明函数的单调性时,作差后应注意差式的分解变形要彻底.2.利用导数法证明函数的单调性时,求导运算及导函数符号判断要准确.易错警示:求函数的单调区间,应先求定义域,在定义域内求单调区间,如本题(1). [变式训练1] 讨论函数f (x )=axx 2-1(a >0)在x ∈(-1,1)上的单调性.【导学号:62172024】[解] 设-1<x 1<x 2<1, 则f (x 1)-f (x 2)=ax 1x 21-1-ax 2x 22-1=ax 1x 22-ax 1-ax 2x 21+ax 2x 21-1x 22-1=a x 2-x 1x 1x 2+1x 21-1x 22-1.∵-1<x 1<x 2<1,a >0,∴x 2-x 1>0,x 1x 2+1>0,(x 21-1)(x 22-1)>0. ∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2), 故函数f (x )在(-1,1)上为减函数.利用函数的单调性求最值已知f (x )=x 2+2x +ax,x ∈[1,+∞),且a ≤1.(1)当a =12时,求函数f (x )的最小值;(2)若对任意x ∈[1,+∞),f (x )>0恒成立,试某某数a 的取值X 围.[思路点拨] (1)先判断函数f (x )在[1,+∞)上的单调性,再求最小值;(2)根据f (x )min>0求a 的X 围,而求f (x )min 应对a 分类讨论.[解] (1)当a =12时,f (x )=x +12x +2,f ′(x )=1-12x 2>0,x ∈[1,+∞),即f (x )在[1,+∞)上是增函数,∴f (x )min =f (1)=1+12×1+2=72.(2)f (x )=x +ax+2,x ∈[1,+∞).法一:①当a ≤0时,f (x )在[1,+∞)内为增函数.f (x )min =f (1)=a +3.要使f (x )>0在x ∈[1,+∞)上恒成立,只需a +3>0, ∴-3<a ≤0.②当0<a ≤1时,f (x )在[1,+∞)内为增函数,f (x )min =f (1)=a +3,∴a +3>0,a >-3,∴0<a ≤1.综上所述,f (x )在[1,+∞)上恒大于零时,a 的取值X 围是(-3,1]. 法二:f (x )=x +a x+2>0,∵x ≥1,∴x 2+2x +a >0,∴a >-(x 2+2x ),而-(x 2+2x )在x =1时取得最大值-3,∴-3<a ≤1,即a 的取值X 围为(-3,1].[规律方法] 利用函数的单调性求最值是求函数最值的重要方法,若函数f (x )在闭区间[a ,b ]上是增函数,则f (x )在[a ,b ]上的最大值为f (b ),最小值为f (a ).请思考,若函数f (x )在闭区间[a ,b ]上是减函数呢? [变式训练2] (2016·高考)函数f (x )=xx -1(x ≥2)的最大值为________.2 [法一:∵f ′(x )=-1x -12,∴x ≥2时,f ′(x )<0恒成立,∴f (x )在[2,+∞)上单调递减,∴f (x )在[2,+∞)上的最大值为f (2)=2. 法二:∵f (x )=xx -1=x -1+1x -1=1+1x -1, ∴f (x )的图象是将y =1x的图象向右平移1个单位,再向上平移1个单位得到的.∵y =1x在[2,+∞)上单调递减,∴f (x )在[2,+∞)上单调递减,故f (x )在[2,+∞)上的最大值为f (2)=2.法三:由题意可得f (x )=1+1x -1. ∵x ≥2,∴x -1≥1,∴0<1x -1≤1, ∴1<1+1x -1≤2,即1<x x -1≤2. 故f (x )在[2,+∞)上的最大值为2.]函数单调性的应用☞角度1 比较大小设a =0.60.6,b =0.61.5,c =1.50.6,则a ,b ,c 的大小关系是________.【导学号:62172025】b <a <c [因为函数y =0.6x 是减函数,0<0.6<1.5,所以1>0.60.6>0.61.5,即b <a <1.因为函数y =x 0.6在(0,+∞)上是增函数,1<1.5,所以1.50.6>10.6=1,即c >1.综上,b <a <c .]☞角度2 解不等式已知函数f (x )是定义在区间[0,+∞)上的函数,且在该区间上单调递增,则不等式f (2x -1)<f ⎝ ⎛⎭⎪⎫13的x 的解集是________. ⎣⎢⎡⎭⎪⎫12,23 [由题意知⎩⎪⎨⎪⎧2x -1≥0,2x -1<13,即⎩⎪⎨⎪⎧x ≥12,x <23,所以12≤x <23.]☞角度3 求参数的取值X 围(1)如果函数f (x )=ax 2+2x -3在区间(-∞,4)上是单调递增的,则实数a的取值X 围是________.(2)已知函数f (x )=⎩⎪⎨⎪⎧a -2x -1,x ≤1,log a x ,x >1,若f (x )在(-∞,+∞)上单调递增,则实数a 的取值X 围为________.(1)⎣⎢⎡⎦⎥⎤-14,0 (2)(2,3] [(1)当a =0时,f (x )=2x -3,在定义域R 上是单调递增的,故在(-∞,4)上单调递增;当a ≠0时,二次函数f (x )的对称轴为x =-1a,因为f (x )在(-∞,4)上单调递增, 所以a <0,且-1a ≥4,解得-14≤a <0.综上所述,实数a 的取值X 围是⎣⎢⎡⎦⎥⎤-14,0.(2)要使函数f (x )在R 上单调递增,则有⎩⎪⎨⎪⎧a >1,a -2>0,f 1≤0,即⎩⎪⎨⎪⎧a >1,a >2,a -2-1≤0,解得2<a≤3,即实数a的取值X围是(2,3].][规律方法] 1.比较大小.比较函数值的大小,应将自变量转化到同一个单调区间内,然后利用函数的单调性解决.2.解不等式.在求解与抽象函数有关的不等式时,往往是利用函数的单调性将“f”符号脱掉,使其转化为具体的不等式求解.此时应特别注意函数的定义域.3.利用单调性求参数.视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数.易错警示:(1)若函数在区间[a,b]上单调,则该函数在此区间的任意子区间上也是单调的;(2)分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值.[思想与方法]1.判断函数单调性的四种方法(1)定义法:取值、作差、变形、定号、下结论.(2)复合法:同增异减,即内外函数的单调性相同时为增函数,不同时为减函数.(3)图象法:如果f(x)是以图象形式给出的,或者f(x)的图象易作出,可由图象的直观性判断函数单调性.(4)导数法:利用导函数的正负判断函数单调性. 2.求函数最值的常用方法(1)单调性法:先确定函数的单调性,再由单调性求最值.(2)图象法:先作出函数的图象,再观察其最高点、最低点,求出最值.(3)换元法:对比较复杂的函数可通过换元转化为熟悉的函数,再用相应的方法求最值. [易错与防X]1.易混淆两个概念:“函数的单调区间”和“函数在某区间上单调”,前者指函数具备单调性的“最大”的区间,后者是前者“最大”区间的子集.2.分段函数单调性不仅要考虑各段的单调性,还要注意衔接点.3.函数在两个不同的区间上单调性相同,要分开写,用“,”隔开,不能用“∪”连结.课时分层训练(五) A 组 基础达标 (建议用时:30分钟)一、填空题1.函数y =(2k +1)x +b 在R 上是减函数,则k 的取值X 围是________.【导学号:62172026】⎝ ⎛⎭⎪⎫-∞,-12 [由题意知2k +1<0,得k <-12.] 2.给定函数:①y =x ;②y =log 12(x +1);③y =|x -1|;④y =2x +1,其中在区间(0,1)上单调递减的函数序号是________.②③ [①y =x 在区间(0,1)上单调递增;②y =log 12(x +1)在区间(0,1)上单调递减;③y =|x -1|=⎩⎪⎨⎪⎧x -1,x ≥1,1-x ,x <1,在区间(0,1)上单调递减;④y =2x +1在区间(0,1)上单调递增.]3.已知函数f (x )=|x +a |在(-∞,-1)上是单调函数,则a 的取值X 围是________. 【导学号:62172027】(-∞,1] [函数f (x )=⎩⎪⎨⎪⎧x +a ,x ≥-a ,-x -a ,x <-a ,即函数f (x )在(-∞,-a )上是减函数,在[-a ,+∞)上是增函数,要使函数f (x )在(-∞,-1)上单调递减,则-a ≥-1,即a ≤1.]4.函数f (x )=2xx +1在[1,2]上的最大值和最小值分别是________.43,1 [f (x )=2x x +1=2x +1-2x +1=2-2x +1在[1,2]上是增函数,∴f (x )max =f (2)=43,f (x )min =f (1)=1.]5.设函数f (x )=ln(1+|x |)-11+x 2,则使得f (x )>f (2x -1)成立的x 的取值X 围为________.⎝ ⎛⎭⎪⎫13,1 [由已知得函数f (x )为偶函数,所以f (x )=f (|x |), 由f (x )>f (2x -1),可得f (|x |)>f (|2x -1|). 当x >0时,f (x )=ln(1+x )-11+x 2,因为y =ln(1+x )与y =-11+x2在(0,+∞)上都单调递增,所以函数f (x )在(0,+∞)上单调递增.由f (|x |)>f (|2x -1|),可得|x |>|2x -1|,两边平方可得x 2>(2x -1)2,整理得3x 2-4x +1<0,解得13<x <1.所以符合题意的x 的取值X 围为⎝ ⎛⎭⎪⎫13,1.] 6.函数f (x )=-(x -3)|x |的递增区间是________.⎣⎢⎡⎦⎥⎤0,32 [f (x )=-(x -3)|x |=⎩⎪⎨⎪⎧-x 2+3x ,x >0,x 2-3x ,x ≤0.作出该函数的图象,观察图象知递增区间为⎣⎢⎡⎦⎥⎤0,32.]7.函数f (x )=⎩⎪⎨⎪⎧log 12x ,x ≥1,2x ,x <1的值域为________.(-∞,2) [当x ≥1时,f (x )=log 12x ≤log 121=0.当x <1时,f (x )=2x∈(0,2), ∴f (x )的值域为(-∞,2).]8.已知函数f (x )=⎩⎪⎨⎪⎧a -2x ,x ≥2,⎝ ⎛⎭⎪⎫12x-1,x <2,满足对任意的实数x 1≠x 2,都有f x 1-f x 2x 1-x 2<0成立,则实数a 的取值X 围为________.⎝ ⎛⎦⎥⎤-∞,138 [由f x 1-f x 2x 1-x 2<0可知f (x )在R 上是减函数,故⎩⎪⎨⎪⎧a -2<0,⎝ ⎛⎭⎪⎫122-1≥2a -2,解得a ≤138.]9.已知函数y =f (x )的图象关于x =1对称,且在(1,+∞)上单调递增,设a =f ⎝ ⎛⎭⎪⎫-12,b =f (2),c =f (3),则a ,b ,c 的大小关系为________. 【导学号:62172028】b <a <c [∵y =f (x )的图象关于x =1对称,∴f ⎝ ⎛⎭⎪⎫-12=f ⎝ ⎛⎭⎪⎫52. 又2<52<3,且f (x )在(1,+∞)上单调递增,∴f (2)<f ⎝ ⎛⎭⎪⎫52<f (3), ∴f (2)<f ⎝ ⎛⎭⎪⎫-12<f (3), 即b <a <c .]10.f (x )是定义在(0,+∞)上的单调增函数,满足f (xy )=f (x )+f (y ),f (3)=1,则不等式f (x )+f (x -8)≤2的解集为________.(8,9] [因为2=1+1=f (3)+f (3)=f (9),由f (x )+f (x -8)≤2可得f [x (x -8)]≤f (9),f (x )是定义在(0,+∞)上的增函数,所以有⎩⎪⎨⎪⎧x >0,x -8>0,x x -8≤9,解得8<x ≤9.]二、解答题11.(2017·某某模拟)已知函数f (x )=1a -1x(a >0,x >0),(1)求证:f (x )在(0,+∞)上是增函数;(2)若f (x )在⎣⎢⎡⎦⎥⎤12,2上的值域是⎣⎢⎡⎦⎥⎤12,2,求a 的值. [解] (1)证明:任取x 1>x 2>0,则f (x 1)-f (x 2)=1a -1x 1-1a +1x 2=x 1-x 2x 1x 2,∵x 1>x 2>0,∴x 1-x 2>0,x 1x 2>0,∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2),∴f (x )在(0,+∞)上是增函数.(2)由(1)可知f (x )在⎣⎢⎡⎦⎥⎤12,2上为增函数,∴f ⎝ ⎛⎭⎪⎫12=1a -2=12,f (2)=1a -12=2,解得a =25.12.已知f (x )=xx -a (x ≠a ). (1)若a =-2,试证f (x )在(-∞,-2)上单调递增;(2)若a >0且f (x )在(1,+∞)上单调递减,求a 的取值X 围.【导学号:62172029】[解] (1)证明:设x 1<x 2<-2,则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2 =2x 1-x 2x 1+2x 2+2. ∵(x 1+2)(x 2+2)>0,x 1-x 2<0,∴f (x 1)<f (x 2),∴f (x )在(-∞,-2)内单调递增.(2)f (x )=xx -a =x -a +a x -a =1+a x -a , 当a >0时,f (x )在(-∞,a ),(a ,+∞)上是减函数,又f (x )在(1,+∞)内单调递减,∴0<a ≤1,故实数a 的取值X 围是(0,1].B 组 能力提升(建议用时:15分钟)1.定义新运算⊕:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2,则函数f (x )=(1⊕x )x -(2⊕x ),x ∈[-2,2]的最大值等于________.6 [由已知得当-2≤x ≤1时,f (x )=x -2,当1<x ≤2时,f (x )=x 3-2. ∵f (x )=x -2,f (x )=x 3-2在定义域内都为增函数,∴f (x )的最大值为f (2)=23-2=6.]2.(2017·某某模拟)已知函数y =log 12(x 2-ax +a )在区间(-∞,2]上是增函数,则实数a 的取值X 围是________.[22,22+2) [设y =log 12t ,t =x 2-ax +a . 因为y =log 12t 在(0,+∞)上是单调减函数,要想满足题意,则t =x 2-ax +a 在(-∞,2]上为单调减函数,且t min >0,故需⎩⎪⎨⎪⎧ a 2≥2,22-2a +a >0,解得22≤a <2+2 2.] 3.规定符号“*”表示一种两个正实数之间的运算,即a *b =ab +a +b ,a ,b 是正实数,已知1*k =3,求函数f (x )=k *x 的值域.[解] 由题意知1]k )+1+k =3,解得k =1或k =-2(舍去),所以f (x )=k *x =1]x )+x +1=⎝⎛⎭⎪⎫x +122+34,因为x >0,所以f (x )>1,即f (x )的值域是(1,+∞).4.已知定义在区间(0,+∞)上的函数f (x )满足f ⎝ ⎛⎭⎪⎫x 1x 2=f (x 1)-f (x 2),且当x >1时,f (x )<0.(1)求f (1)的值;(2)证明:f (x )为单调递减函数;(3)若f (3)=-1,求f (x )在[2,9]上的最小值.[解] (1)令x 1=x 2>0,代入得f (1)=f (x 1)-f (x 1)=0,故f (1)=0.(2)证明:任取x 1,x 2∈(0,+∞),且x 1>x 2,则x 1x 2>1,当x >1时,f (x )<0,∴f ⎝ ⎛⎭⎪⎫x 1x 2<0,即f (x 1)-f (x 2)<0,因此f (x 1)<f (x 2),∴函数f (x )在区间(0,+∞)上是单调递减函数.(3)∵f (x )在(0,+∞)上是单调递减函数,∴f (x )在[2,9]上的最小值为f (9). 由f ⎝ ⎛⎭⎪⎫x 1x 2=f (x 1)-f (x 2),得f ⎝ ⎛⎭⎪⎫93=f (9)-f (3), 而f (3)=-1,∴f (9)=-2.∴f (x )在[2,9]上的最小值为-2.。

高考数学一轮复习考点与题型总结:第二章 函数的概念与基本初等函数

高考数学一轮复习考点与题型总结:第二章 函数的概念与基本初等函数

精品基础教育教学资料,仅供参考,需要可下载使用!第二章函数的概念与基本初等函数Ⅰ第一节函数及其表示一、基础知识1.函数与映射的概念2.函数的有关概念(1)函数的定义域、值域:在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.求函数定义域的策略(1)确定函数的定义域常从解析式本身有意义,或从实际出发.(2)如果函数y=f(x)是用表格给出,则表格中x的集合即为定义域.(3)如果函数y=f(x)是用图象给出,则图象在x轴上的投影所覆盖的x的集合即为定义域.(2)函数的三要素:定义域、值域和对应关系.(3)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据.两函数值域与对应关系相同时,两函数不一定相同.(4)函数的表示法:表示函数的常用方法有:解析法、图象法、列表法.3.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.关于分段函数的3个注意(1)分段函数虽然由几个部分构成,但它表示同一个函数.(2)分段函数的定义域是各段定义域的并集,值域是各段值域的并集.(3)各段函数的定义域不可以相交.考点一函数的定义域[典例] (1)(2019·长春质检)函数y =ln (1-x )x +1+1x 的定义域是( )A .[-1,0)∪(0,1)B .[-1,0)∪(0,1]C .(-1,0)∪(0,1]D .(-1,0)∪(0,1)(2)已知函数f (x )的定义域为(-1,0),则函数f (2x +1)的定义域为( ) A .(-1,1) B.⎝⎛⎭⎫-1,-12 C .(-1,0)D.⎝⎛⎭⎫12,1[解析] (1)由题意得⎩⎪⎨⎪⎧1-x >0,x +1>0,x ≠0,解得-1<x <0或0<x <1.所以原函数的定义域为(-1,0)∪(0,1).(2)令u =2x +1,由f (x )的定义域为(-1,0),可知-1<u <0,即-1<2x +1<0, 得-1<x <-12.[答案] (1)D (2)B [解题技法]1.使函数解析式有意义的一般准则 (1)分式中的分母不为0; (2)偶次根式的被开方数非负; (3)y =x 0要求x ≠0;(4)对数式中的真数大于0,底数大于0且不等于1; (5)正切函数y =tan x ,x ≠k π+π2(k ∈Z);(6)实际问题中除考虑函数解析式有意义外,还应考虑实际问题本身的要求. 2.抽象函数的定义域问题(1)若已知函数f (x )的定义域为[a ,b ],其复合函数f (g (x ))的定义域由不等式a ≤g (x )≤b 求出;(2)若已知函数f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]上的值域.[题组训练]1.函数f (x )=1ln (x +1)+4-x 2的定义域为( )A .[-2,0)∪(0,2]B .(-1,0)∪(0,2]C .[-2,2]D .(-1,2]解析:选B 由⎩⎪⎨⎪⎧x +1>0,ln (x +1)≠0,4-x 2≥0,得-1<x ≤2,且x ≠0.2.若函数y =f (x )的定义域是[1,2 019],则函数g (x )=f (x +1)x -1的定义域是________________.解析:因为y =f (x )的定义域是[1,2 019],所以若g (x )有意义,应满足⎩⎪⎨⎪⎧1≤x +1≤2 019,x -1≠0,所以0≤x ≤2 018,且x ≠1.因此g (x )的定义域是{x |0≤x ≤2 018,且x ≠1}. 答案:{x |0≤x ≤2 018,且x ≠1}考点二 求函数的解析式[典例] (1)已知二次函数f (2x +1)=4x 2-6x +5,求f (x ); (2)已知函数f (x )满足f (-x )+2f (x )=2x ,求f (x ). [解] (1)法一:待定系数法因为f (x )是二次函数,所以设f (x )=ax 2+bx +c (a ≠0),则f (2x +1)=a (2x +1)2+b (2x +1)+c =4ax 2+(4a +2b )x +a +b +c .因为f (2x +1)=4x 2-6x +5, 所以⎩⎪⎨⎪⎧4a =4,4a +2b =-6,a +b +c =5,解得⎩⎪⎨⎪⎧a =1,b =-5,c =9,所以f (x )=x 2-5x +9(x ∈R). 法二:换元法令2x +1=t (t ∈R),则x =t -12,所以f (t )=4⎝⎛⎭⎫t -122-6·t -12+5=t 2-5t +9(t ∈R),所以f (x )=x 2-5x +9(x ∈R). 法三:配凑法因为f (2x +1)=4x 2-6x +5=(2x +1)2-10x +4=(2x +1)2-5(2x +1)+9, 所以f (x )=x 2-5x +9(x ∈R).(2)解方程组法由f (-x )+2f (x )=2x , ① 得f (x )+2f (-x )=2-x ,② ①×2-②,得3f (x )=2x +1-2-x . 即f (x )=2x +1-2-x3.故f (x )的解析式是f (x )=2x +1-2-x3(x ∈R).[解题技法] 求函数解析式的4种方法及适用条件 (1)待定系数法先设出含有待定系数的解析式,再利用恒等式的性质,或将已知条件代入,建立方程(组),通过解方程(组)求出相应的待定系数.(2)换元法对于形如y =f (g (x ))的函数解析式,令t =g (x ),从中求出x =φ(t ),然后代入表达式求出f (t ),再将t 换成x ,得到f (x )的解析式,要注意新元的取值范围.(3)配凑法由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的解析式.(4)解方程组法已知关于f (x )与f ⎝⎛⎭⎫1x 或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f (x ).[提醒] 由于函数的解析式相同,定义域不同,则为不相同的函数,因此求函数的解析式时,如果定义域不是R ,一定要注明函数的定义域.[题组训练]1.[口诀第2句]已知f (x )是二次函数,且f (0)=0,f (x +1)=f (x )+x +1,则f (x )=________________.解析:设f (x )=ax 2+bx +c (a ≠0), 由f (0)=0,知c =0,f (x )=ax 2+bx . 又由f (x +1)=f (x )+x +1,得a (x +1)2+b (x +1)=ax 2+bx +x +1, 即ax 2+(2a +b )x +a +b =ax 2+(b +1)x +1,所以⎩⎪⎨⎪⎧2a +b =b +1,a +b =1,解得a =b =12.所以f (x )=12x 2+12x (x ∈R).答案:12x 2+12x (x ∈R)2.[口诀第3句]已知f ⎝⎛⎭⎫2x +1=lg x ,则f (x )=________________.解析:令2x +1=t ,得x =2t -1,则f (t )=lg 2t -1,又x >0,所以t >1,故f (x )的解析式是f (x )=lg2x -1(x >1). 答案:lg2x -1(x >1) 3.[口诀第4句]已知f (x )满足2f (x )+f ⎝⎛⎭⎫1x =3x ,则f (x )=________. 解析:∵2f (x )+f ⎝⎛⎭⎫1x =3x ,①把①中的x 换成1x ,得2f ⎝⎛⎭⎫1x +f (x )=3x.② 联立①②可得⎩⎨⎧2f (x )+f ⎝⎛⎭⎫1x =3x ,2f ⎝⎛⎭⎫1x +f (x )=3x,解此方程组可得f (x )=2x -1x(x ≠0).答案:2x -1x (x ≠0)考点三 分段函数考法(一) 求函数值[典例] (2019·石家庄模拟)已知f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,a x +b ,x ≤0(0<a <1),且f (-2)=5,f (-1)=3,则f (f (-3))=( )A .-2B .2C .3D .-3[解析] 由题意得,f (-2)=a -2+b =5,① f (-1)=a -1+b =3,②联立①②,结合0<a <1,得a =12,b =1,所以f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,⎝⎛⎭⎫12x +1,x ≤0,则f (-3)=⎝⎛⎭⎫12-3+1=9,f (f (-3))=f (9)=log 39=2. [答案] B[解题技法] 求分段函数的函数值的策略(1)求分段函数的函数值时,要先确定要求值的自变量属于哪一区间,然后代入该区间对应的解析式求值;(2)当出现f (f (a ))的形式时,应从内到外依次求值;(3)当自变量的值所在区间不确定时,要分类讨论,分类标准应参照分段函数不同段的端点.考法(二) 求参数或自变量的值(或范围)[典例] (2018·全国卷Ⅰ)设函数f (x )=⎩⎪⎨⎪⎧2-x ,x ≤0,1,x >0,则满足f (x +1)<f (2x )的x 的取值范围是( )A .(-∞,-1]B .(0,+∞)C .(-1,0)D .(-∞,0)[解析] 法一:分类讨论法①当⎩⎪⎨⎪⎧x +1≤0,2x ≤0,即x ≤-1时,f (x +1)<f (2x ),即为2-(x +1)<2-2x,即-(x +1)<-2x ,解得x <1. 因此不等式的解集为(-∞,-1].②当⎩⎪⎨⎪⎧x +1≤0,2x >0时,不等式组无解.③当⎩⎪⎨⎪⎧x +1>0,2x ≤0,即-1<x ≤0时,f (x +1)<f (2x ),即为1<2-2x,解得x <0.因此不等式的解集为(-1,0).④当⎩⎪⎨⎪⎧x +1>0,2x >0,即x >0时,f (x +1)=1,f (2x )=1,不合题意.综上,不等式f (x +1)<f (2x )的解集为(-∞,0). 法二:数形结合法∵f (x )=⎩⎪⎨⎪⎧2-x ,x ≤0,1,x >0,∴函数f (x )的图象如图所示. 结合图象知,要使f (x +1)<f (2x ), 则需⎩⎪⎨⎪⎧x +1<0,2x <0,2x <x +1或⎩⎪⎨⎪⎧x +1≥0,2x <0,∴x <0,故选D. [答案] D[解题技法]已知函数值(或范围)求自变量的值(或范围)的方法(1)根据每一段的解析式分别求解,但要注意检验所求自变量的值(或范围)是否符合相应段的自变量的取值范围,最后将各段的结果合起来(求并集)即可;(2)如果分段函数的图象易得,也可以画出函数图象后结合图象求解.[题组训练]1.设f (x )=⎩⎨⎧x ,0<x <1,2(x -1),x ≥1,若f (a )=f (a +1),则f ⎝⎛⎭⎫1a =( ) A .2 B .4 C .6D .8解析:选C 当0<a <1时,a +1>1,f (a )=a ,f (a +1)=2(a +1-1)=2a , ∵f (a )=f (a +1),∴a =2a , 解得a =14或a =0(舍去).∴f ⎝⎛⎭⎫1a =f (4)=2×(4-1)=6.当a ≥1时,a +1≥2,f (a )=2(a -1),f (a +1)=2(a +1-1)=2a , ∵f (a )=f (a +1),∴2(a -1)=2a ,无解. 综上,f ⎝⎛⎭⎫1a =6.2.已知函数f (x )=⎩⎪⎨⎪⎧2x ,x ≤1,f (x -1),x >1,则f (f (3))=________.解析:由题意,得f (3)=f (2)=f (1)=21=2,∴f (f (3))=f (2)=2. 答案:23.(2017·全国卷Ⅲ)设函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,2x ,x >0,则满足f (x )+f ⎝⎛⎭⎫x -12>1的x 的取值范围是________.解析:由题意知,可对不等式分x ≤0,0<x ≤12,x >12讨论.①当x ≤0时,原不等式为x +1+x +12>1,解得x >-14,故-14<x ≤0.②当0<x ≤12时,原不等式为2x +x +12>1,显然成立.③当x >12时,原不等式为2x +2x -12>1,显然成立.综上可知,所求x 的取值范围是⎝⎛⎭⎫-14,+∞. 答案:⎝⎛⎭⎫-14,+∞ 4.设函数f (x )=⎩⎪⎨⎪⎧⎝⎛⎭⎫12x -7,x <0,x ,x ≥0,若f (a )<1,则实数a 的取值范围是____________.解析:若a <0,则f (a )<1⇔⎝⎛⎭⎫12a-7<1⇔⎝⎛⎭⎫12a <8,解得a >-3,故-3<a <0; 若a ≥0,则f (a )<1⇔a <1,解得a <1,故0≤a <1. 综上可得-3<a <1. 答案:(-3,1)[课时跟踪检测]1.下列所给图象是函数图象的个数为( )A .1B .2C .3D .4解析:选B ①中当x >0时,每一个x 的值对应两个不同的y 值,因此不是函数图象;②中当x =x 0时,y 的值有两个,因此不是函数图象;③④中每一个x 的值对应唯一的y 值,因此是函数图象.故选B.2.函数f (x )=2x -1+1x -2的定义域为( ) A .[0,2)B .(2,+∞)C .[0,2)∪(2,+∞)D .(-∞,2)∪(2,+∞)解析:选C 由题意得⎩⎪⎨⎪⎧2x -1≥0,x -2≠0,解得x ≥0,且x ≠2.3.已知f ⎝⎛⎭⎫12x -1=2x -5,且f (a )=6,则a 等于( ) A.74 B .-74C.43D .-43解析:选A 令t =12x -1,则x =2t +2,f (t )=2(2t +2)-5=4t -1,则4a -1=6,解得a =74.4.(2019·贵阳检测)下列函数中,同一个函数的定义域与值域相同的是( ) A .y =x -1 B .y =ln x C .y =13x -1D .y =x +1x -1解析:选D 对于A ,定义域为[1,+∞),值域为[0,+∞),不满足题意;对于B ,定义域为(0,+∞),值域为R ,不满足题意;对于C ,定义域为(-∞,0)∪(0,+∞),值域为(-∞,-1)∪(0,+∞),不满足题意;对于D ,y =x +1x -1=1+2x -1,定义域为(-∞,1)∪(1,+∞),值域也是(-∞,1)∪(1,+∞).5.(2018·福建期末)已知函数f (x )=⎩⎪⎨⎪⎧log 2x +a ,x >0,4x -2-1,x ≤0.若f (a )=3,则f (a -2)=( )A .-1516B .3C .-6364或3D .-1516或3解析:选A 当a >0时,若f (a )=3,则log 2a +a =3,解得a =2(满足a >0);当a ≤0时,若f (a )=3,则4a -2-1=3,解得a =3,不满足a ≤0,所以舍去.于是,可得a =2.故f (a -2)=f (0)=4-2-1=-1516.6.已知函数y =f (2x -1)的定义域是[0,1],则函数f (2x +1)log 2(x +1)的定义域是( )A .[1,2]B .(-1,1] C.⎣⎡⎦⎤-12,0 D .(-1,0)解析:选D 由f (2x -1)的定义域是[0,1], 得0≤x ≤1,故-1≤2x -1≤1, ∴f (x )的定义域是[-1,1], ∴要使函数f (2x +1)log 2(x +1)有意义,需满足⎩⎪⎨⎪⎧-1≤2x +1≤1,x +1>0,x +1≠1,解得-1<x <0.7.下列函数中,不满足f (2 018x )=2 018f (x )的是( ) A .f (x )=|x | B .f (x )=x -|x | C .f (x )=x +2D .f (x )=-2x解析:选C 若f (x )=|x |,则f (2 018x )=|2 018x |=2 018|x |=2 018f (x );若f (x )=x -|x |,则f (2 018x )=2 018x -|2 018x |=2 018(x -|x |)=2 018f (x );若f (x )=x +2,则f (2 018x )=2 018x +2,而2 018f (x )=2 018x +2 018×2,故f (x )=x +2不满足f (2 018x )=2 018f (x );若f (x )=-2x ,则f (2 018x )=-2×2 018x =2 018×(-2x )=2 018f (x ).故选C.8.已知具有性质:f ⎝⎛⎭⎫1x =-f (x )的函数,我们称为满足“倒负”变换的函数,下列函数: ①f (x )=x -1x ;②f (x )=x +1x ;③f (x )=⎩⎪⎨⎪⎧x ,0<x <1,0,x =1,-1x ,x >1.其中满足“倒负”变换的函数是( ) A .①② B .①③ C .②③D .①解析:选B 对于①,f (x )=x -1x ,f ⎝⎛⎭⎫1x =1x-x =-f (x ),满足题意;对于②,f ⎝⎛⎭⎫1x =1x +x =f (x ),不满足题意;对于③,f ⎝⎛⎭⎫1x =⎩⎪⎨⎪⎧1x ,0<1x<1,0,1x =1,-x ,1x >1,即f ⎝⎛⎭⎫1x =⎩⎪⎨⎪⎧1x,x >1,0,x =1,-x ,0<x <1,故f ⎝⎛⎭⎫1x =-f (x ),满足题意.综上可知,满足“倒负”变换的函数是①③.9.(2019·青岛模拟)函数y =ln ⎝⎛⎭⎫1+1x +1-x 2的定义域为________. 解析:由⎩⎪⎨⎪⎧1+1x >0,1-x 2≥0⇒⎩⎪⎨⎪⎧x <-1或x >0,-1≤x ≤1⇒0<x ≤1.所以该函数的定义域为(0,1]. 答案:(0,1]10.(2019·益阳、湘潭调研)若函数f (x )=⎩⎨⎧lg (1-x ),x <0,-2x ,x ≥0,则f (f (-9))=________.解析:∵函数f (x )=⎩⎨⎧lg (1-x ),x <0,-2x ,x ≥0,∴f (-9)=lg 10=1,∴f (f (-9))=f (1)=-2.答案:-211.(2018·张掖一诊)已知函数f (x )=⎩⎪⎨⎪⎧2x ,x >0,x +1,x ≤0,若f (a )+f (1)=0,则实数a 的值等于________.解析:∵f (1)=2,且f (1)+f (a )=0,∴f (a )=-2<0,故a ≤0. 依题知a +1=-2,解得a =-3. 答案:-312.已知f (x )=⎩⎪⎨⎪⎧12x +1,x ≤0,-(x -1)2,x >0,使f (x )≥-1成立的x 的取值范围是________.解析:由题意知⎩⎪⎨⎪⎧x ≤0,12x +1≥-1或⎩⎪⎨⎪⎧x >0,-(x -1)2≥-1, 解得-4≤x ≤0或0<x ≤2, 故所求x 的取值范围是[-4,2]. 答案:[-4,2]13.设函数f (x )=⎩⎪⎨⎪⎧ax +b ,x <0,2x ,x ≥0,且f (-2)=3,f (-1)=f (1).(1)求函数f (x )的解析式;(2)在如图所示的直角坐标系中画出f (x )的图象.解:(1)由f (-2)=3,f (-1)=f (1),得⎩⎪⎨⎪⎧-2a +b =3,-a +b =2,解得⎩⎪⎨⎪⎧ a =-1,b =1,所以f (x )=⎩⎪⎨⎪⎧-x +1,x <0,2x ,x ≥0.(2)函数f (x )的图象如图所示.第二节函数的单调性与最值一、基础知识1.增函数、减函数定义:设函数f(x)的定义域为I:(1)增函数:如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间D上是增函数.(2)减函数:如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2,当x1<x2时,都有f(x1)>f(x2),那么就说函数f(x)在区间D上是减函数.增(减)函数定义中的x1,x2的三个特征一是任意性;二是有大小,即x1<x2(x1>x2);三是同属于一个单调区间,三者缺一不可.2.单调性、单调区间若函数y=f(x)在区间D上是增函数或减函数,则称函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做函数y=f(x)的单调区间.有关单调区间的两个防范(1)单调区间只能用区间表示,不能用不等式表示.(2)有多个单调区间应分别写,不能用符号“∪”连接,也不能用“或”连接,只能用“逗号”或“和”连接.3.函数的最值设函数y=f(x)的定义域为I,如果存在实数M满足:(1)对于任意的x∈I,都有f(x)≤M或f(x)≥M.(2)存在x0∈I,使得f(x0)=M.那么,我们称M是函数y=f(x)的最大值或最小值.函数最值存在的两条结论(1)闭区间上的连续函数一定存在最大值和最小值.当函数在闭区间上单调时最值一定在端点取到.(2)开区间上的“单峰”函数一定存在最大(小)值.二、常用结论在公共定义域内:(1)函数f(x)单调递增,g(x)单调递增,则f(x)+g(x)是增函数;(2)函数f (x )单调递减,g (x )单调递减,则f (x )+g (x )是减函数; (3)函数f (x )单调递增,g (x )单调递减,则f (x )-g (x )是增函数; (4)函数f (x )单调递减,g (x )单调递增,则f (x )-g (x )是减函数;(5)若k >0,则kf (x )与f (x )单调性相同;若k <0,则kf (x )与f (x )单调性相反; (6)函数y =f (x )(f (x )>0)在公共定义域内与y =-f (x ),y =1f (x )的单调性相反;(7)复合函数y =f [g (x )]的单调性与y =f (u )和u =g (x )的单调性有关.简记:“同增异减”.考点一 确定函数的单调性(区间))[典例] (1)求函数f (x )=-x 2+2|x |+1的单调区间. (2)试讨论函数f (x )=ax x -1(a ≠0)在(-1,1)上的单调性.[解] (1)易知f (x )=⎩⎪⎨⎪⎧-x 2+2x +1,x ≥0,-x 2-2x +1,x <0=⎩⎪⎨⎪⎧-(x -1)2+2,x ≥0,-(x +1)2+2,x <0. 画出函数图象如图所示,可知单调递增区间为(-∞,-1]和[0,1],单调递减区间为[-1,0]和[1,+∞).(2)法一:定义法 设-1<x 1<x 2<1, f (x )=a ⎝⎛⎭⎪⎫x -1+1x -1=a ⎝⎛⎭⎫1+1x -1,则f (x 1)-f (x 2)=a ⎝⎛⎭⎫1+1x 1-1-a ⎝⎛⎭⎫1+1x 2-1=a (x 2-x 1)(x 1-1)(x 2-1).由于-1<x 1<x 2<1,所以x 2-x 1>0,x 1-1<0,x 2-1<0, 故当a >0时,f (x 1)-f (x 2)>0,即f (x 1)>f (x 2), 函数f (x )在(-1,1)上单调递减;当a <0时,f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 函数f (x )在(-1,1)上单调递增. 法二:导数法f ′(x )=(ax )′(x -1)-ax (x -1)′(x -1)2=a (x -1)-ax (x -1)2=-a(x -1)2. 当a >0时,f ′(x )<0,函数f (x )在(-1,1)上单调递减; 当a <0时,f ′(x )>0,函数f (x )在(-1,1)上单调递增.[解题技法] 判断函数单调性和求单调区间的方法(1)定义法:一般步骤为设元―→作差―→变形―→判断符号―→得出结论.(2)图象法:如果f (x )是以图象形式给出的,或者f (x )的图象易作出,则可由图象的上升或下降确定单调性.(3)导数法:先求导数,利用导数值的正负确定函数的单调性及区间.(4)性质法:对于由基本初等函数的和、差构成的函数,根据各初等函数的增减性及复合函数单调性性质进行判断;复合函数单调性,可用同增异减来确定.[题组训练]1.下列函数中,满足“∀x 1,x 2∈(0,+∞)且x 1≠x 2,(x 1-x 2)·[f (x 1)-f (x 2)]<0”的是( ) A .f (x )=2x B .f (x )=|x -1| C .f (x )=1x-xD .f (x )=ln(x +1)解析:选C 由(x 1-x 2)·[f (x 1)-f (x 2)]<0可知,f (x )在(0,+∞)上是减函数,A 、D 选项中,f (x )为增函数;B 中,f (x )=|x -1|在(0,+∞)上不单调;对于f (x )=1x -x ,因为y =1x 与y=-x 在(0,+∞)上单调递减,因此f (x )在(0,+∞)上是减函数.2.函数f (x )=log 12(x 2-4)的单调递增区间是( )A .(0,+∞)B .(-∞,0)C .(2,+∞)D .(-∞,-2)解析:选D 令t =x 2-4,则y =log 12t .因为y =log 12t 在定义域上是减函数,所以求原函数的单调递增区间,即求函数t =x 2-4的单调递减区间,结合函数的定义域,可知所求区间为(-∞,-2).3.判断函数f (x )=x +ax (a >0)在(0,+∞)上的单调性.解:设x 1,x 2是任意两个正数,且x 1<x 2,则f (x 1)-f (x 2)=⎝⎛⎭⎫x 1+a x 1-⎝⎛⎭⎫x 2+a x 2=x 1-x 2x 1x 2(x 1x 2-a ). 当0<x 1<x 2≤a 时,0<x 1x 2<a ,x 1-x 2<0,所以f (x 1)-f (x 2)>0,即f (x 1)>f (x 2), 所以函数f (x )在(0,a ]上是减函数; 当a ≤x 1<x 2时,x 1x 2>a ,x 1-x 2<0, 所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 所以函数f (x )在[a ,+∞)上是增函数.综上可知,函数f (x )=x +ax (a >0)在(0,a ]上是减函数,在[a ,+∞)上是增函数.考点二 求函数的值域(最值))[典例] (1)(2019•深圳调研)函数y =|x +1|+|x -2|的值域为________.(2)若函数f (x )=-ax+b (a >0)在⎣⎡⎦⎤12,2上的值域为⎣⎡⎦⎤12,2,则a =________,b =________. (3)函数f (x )=⎩⎪⎨⎪⎧-x 2-4x ,x ≤0,sin x ,x >0的最大值为________.[解析] (1)图象法函数y =⎩⎪⎨⎪⎧-2x +1,x ≤-1,3,-1<x <2,2x -1,x ≥2.作出函数的图象如图所示.根据图象可知,函数y =|x +1|+|x -2|的值域为[3,+∞). (2)单调性法∵f (x )=-ax +b (a >0)在⎣⎡⎦⎤12,2上是增函数, ∴f (x )min =f ⎝⎛⎭⎫12=12,f (x )max =f (2)=2.即⎩⎨⎧-2a +b =12,-a2+b =2,解得a =1,b =52.(3)当x ≤0时,f (x )=-x 2-4x =-(x +2)2+4,而-2∈(-∞,0],此时f (x )在x =-2处取得最大值,且f (-2)=4;当x >0时,f (x )=sin x ,此时f (x )在区间(0,+∞)上的最大值为1.综上所述,函数f (x )的最大值为4.[答案] (1)[3,+∞) (2)1 52 (3)4[提醒] (1)求函数的最值时,应先确定函数的定义域.(2)求分段函数的最值时,应先求出每一段上的最值,再选取其中最大的作为分段函数的最大值,最小的作为分段函数的最小值.[题组训练]1.函数f (x )=x 2+4x 的值域为________.解析:当x >0时,f (x )=x +4x ≥4,当且仅当x =2时取等号; 当x <0时,-x +⎝⎛⎭⎫-4x ≥4, 即f (x )=x +4x ≤-4,当且仅当x =-2取等号,所以函数f (x )的值域为(-∞,-4]∪[4,+∞). 答案:(-∞,-4]∪[4,+∞)2.若x ∈⎣⎡⎦⎤-π6,2π3,则函数y =4sin 2x -12sin x -1的最大值为________,最小值为________.解析:令t =sin x ,因为x ∈⎣⎡⎦⎤-π6,2π3, 所以t ∈⎣⎡⎦⎤-12,1,y =f (t )=4t 2-12t -1, 因为该二次函数的图象开口向上,且对称轴为t =32,所以当t ∈⎣⎡⎦⎤-12,1时,函数f (t )单调递减,所以当t =-12时,y max =6;当t =1时,y min =-9. 答案:6 -93.已知f (x )=x 2+2x +ax ,x ∈[1,+∞),且a ≤1.若对任意x ∈[1,+∞),f (x )>0恒成立,则实数a 的取值范围是________.解析:对任意x ∈[1,+∞),f (x )>0恒成立等价于x 2+2x +a >0在x ∈[1,+∞)上恒成立,即a >-x 2-2x 在x ∈[1,+∞)上恒成立.又函数y =-x 2-2x 在[1,+∞)上单调递减, ∴(-x 2-2x )max =-3,故a >-3,又∵a ≤1,∴-3<a ≤1. 答案:(-3,1]考点三 函数单调性的应用考法(一) 比较函数值的大小[典例] 设偶函数f (x )的定义域为R ,当x ∈[0,+∞)时,f (x )是增函数,则f (-2),f (π),f (-3)的大小关系是( )A .f (π)>f (-3)>f (-2)B .f (π)>f (-2)>f (-3)C .f (π)<f (-3)<f (-2)D .f (π)<f (-2)<f (-3)[解析] 因为f (x )是偶函数,所以f (-3)=f (3),f (-2)=f (2). 又因为函数f (x )在[0,+∞)上是增函数. 所以f (π)>f (3)>f (2),即f (π)>f (-3)>f (-2). [答案] A[解题技法] 比较函数值大小的解题思路比较函数值的大小时,若自变量的值不在同一个单调区间内,要利用其函数性质,转化到同一个单调区间内进行比较,对于选择题、填空题能数形结合的尽量用图象法求解.考法(二) 解函数不等式[典例] 设函数f (x )=⎩⎪⎨⎪⎧2x ,x <2,x 2,x ≥2.若f (a +1)≥f (2a -1),则实数a 的取值范围是( )A .(-∞,1]B .(-∞,2]C .[2,6]D .[2,+∞)[解析] 易知函数f (x )在定义域(-∞,+∞)上是增函数,∵f (a +1)≥f (2a -1), ∴a +1≥2a -1,解得a ≤2.故实数a 的取值范围是(-∞,2]. [答案] B[解题技法] 求解含“f ”的函数不等式的解题思路先利用函数的相关性质将不等式转化为f (g (x ))>f (h (x ))的形式,再根据函数的单调性去掉“f ”,得到一般的不等式g (x )>h (x )(或g (x )<h (x )).考法(三) 利用单调性求参数的范围(或值)[典例] (2019•南京调研)已知函数f (x )=x -a x +a2在(1,+∞)上是增函数,则实数a 的取值范围是________.[解析] 设1<x 1<x 2,∴x 1x 2>1. ∵函数f (x )在(1,+∞)上是增函数, ∴f (x 1)-f (x 2)=x 1-a x 1+a2-⎝⎛⎭⎫x 2-a x 2+a 2 =(x 1-x 2)⎝⎛⎭⎫1+a x 1x 2<0.∵x 1-x 2<0,∴1+ax 1x 2>0,即a >-x 1x 2.∵1<x 1<x 2,x 1x 2>1,∴-x 1x 2<-1,∴a ≥-1. ∴a 的取值范围是[-1,+∞). [答案] [-1,+∞)[解题技法]利用单调性求参数的范围(或值)的方法(1)视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数;(2)需注意若函数在区间[a ,b ]上是单调的,则该函数在此区间的任意子集上也是单调的.[题组训练]1.已知函数f (x )的图象向左平移1个单位后关于y 轴对称,当x 2>x 1>1时,[f (x 2)-f (x 1)]·(x 2-x 1)<0恒成立,设a =f ⎝⎛⎭⎫-12,b =f (2),c =f (3),则a ,b ,c 的大小关系为( ) A .c >a >b B .c >b >a C .a >c >bD .b >a >c解析:选D 由于函数f (x )的图象向左平移1个单位后得到的图象关于y 轴对称,故函数y =f (x )的图象关于直线x =1对称,所以a =f ⎝⎛⎭⎫-12=f ⎝⎛⎭⎫52.当x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,等价于函数f (x )在(1,+∞)上单调递减,所以b >a >c .2.已知函数f (x )=⎩⎪⎨⎪⎧ax 2-x -14,x ≤1,log a x -1,x >1是R 上的单调函数,则实数a 的取值范围是( )A.⎣⎡⎭⎫14,12 B.⎣⎡⎦⎤14,12 C.⎝⎛⎦⎤0,12 D.⎣⎡⎭⎫12,1解析:选B 由对数函数的定义可得a >0,且a ≠1.又函数f (x )在R 上单调,而二次函数y =ax 2-x -14的图象开口向上,所以函数f (x )在R 上单调递减,故有⎩⎪⎨⎪⎧0<a <1,12a≥1,a ×12-1-14≥log a1-1,即⎩⎪⎨⎪⎧0<a <1,0<a ≤12,a ≥14.所以a ∈⎣⎡⎦⎤14,12.[课时跟踪检测]A 级1.下列四个函数中,在x ∈(0,+∞)上为增函数的是( ) A .f (x )=3-x B .f (x )=x 2-3x C .f (x )=-1x +1D .f (x )=-|x |解析:选C 当x >0时,f (x )=3-x 为减函数;当x ∈⎝⎛⎭⎫0,32时,f (x )=x 2-3x 为减函数,当x ∈⎝⎛⎭⎫32,+∞时,f (x )=x 2-3x 为增函数;当x ∈(0,+∞)时,f (x )=-1x +1为增函数;当x ∈(0,+∞)时,f (x )=-|x |为减函数.2.若函数f (x )=ax +1在R 上单调递减,则函数g (x )=a (x 2-4x +3)的单调递增区间是( )A .(2,+∞)B .(-∞,2)C .(4,+∞)D .(-∞,4)解析:选B 因为f (x )=ax +1在R 上单调递减,所以a <0. 而g (x )=a (x 2-4x +3)=a (x -2)2-a .因为a <0,所以g (x )在(-∞,2)上单调递增.3.已知函数f (x )是定义在区间[0,+∞)上的函数,且在该区间上单调递增,则满足f (2x -1)<f ⎝⎛⎭⎫13的x 的取值范围是( )A.⎝⎛⎭⎫13,23 B.⎣⎡⎭⎫13,23 C.⎝⎛⎭⎫12,23D.⎣⎡⎭⎫12,23解析:选D 因为函数f (x )是定义在区间[0,+∞)上的增函数,满足f (2x -1)<f ⎝⎛⎭⎫13. 所以0≤2x -1<13,解得12≤x <23.4.(2019·菏泽模拟)定义新运算⊕:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2,则函数f (x )=(1⊕x )x -(2⊕x ),x ∈[-2,2]的最大值等于( )A .-1B .1C .6D .12解析:选C 由题意知当-2≤x ≤1时,f (x )=x -2,当1<x ≤2时,f (x )=x 3-2,又f (x )=x -2,f (x )=x 3-2在相应的定义域内都为增函数,且f (1)=-1,f (2)=6,∴f (x )的最大值为6.5.已知函数f (x )是R 上的增函数,A (0,-3),B (3,1)是其图象上的两点,那么不等式-3<f (x +1)<1的解集的补集是(全集为R)( )A .(-1,2)B .(1,4)C .(-∞,-1)∪[4,+∞)D .(-∞,-1]∪[2,+∞)解析:选D 由函数f (x )是R 上的增函数,A (0,-3),B (3,1)是其图象上的两点,知不等式-3<f (x +1)<1即为f (0)<f (x +1)<f (3),所以0<x +1<3,所以-1<x <2,故不等式-3<f (x +1)<1的解集的补集是(-∞,-1]∪[2,+∞).6.已知函数f (x )=⎩⎪⎨⎪⎧-x 2-ax -5,x ≤1,a x ,x >1是R 上的增函数,则实数a 的取值范围是( )A .[-3,0)B .(-∞,-2]C .[-3,-2]D .(-∞,0)解析:选C 若f (x )是R 上的增函数,则应满足⎩⎪⎨⎪⎧-a2≥1,a <0,-12-a ×1-5≤a 1,解得-3≤a ≤-2.7.已知函数f (x )=x 2-2x -3,则该函数的单调递增区间为________.解析:设t =x 2-2x -3,由t ≥0,即x 2-2x -3≥0,解得x ≤-1或x ≥3,所以函数f (x )的定义域为(-∞,-1]∪[3,+∞).因为函数t =x 2-2x -3的图象的对称轴为x =1,所以函数t =x 2-2x -3在(-∞,-1]上单调递减,在[3,+∞)上单调递增,所以函数f (x )的单调递增区间为[3,+∞).答案:[3,+∞)8.函数f (x )=⎩⎪⎨⎪⎧1x ,x ≥1,-x 2+2,x <1的最大值为________.解析:当x ≥1时,函数f (x )=1x 为减函数,所以f (x )在x =1处取得最大值,为f (1)=1;当x <1时,易知函数f (x )=-x 2+2在x =0处取得最大值,为f (0)=2.故函数f (x )的最大值为2.答案:29.若函数f (x )=1x 在区间[2,a ]上的最大值与最小值的和为34,则a =________.解析:由f (x )=1x 的图象知,f (x )=1x 在(0,+∞)上是减函数,∵[2,a ]⊆(0,+∞),∴f (x )=1x 在[2,a ]上也是减函数,∴f (x )max =f (2)=12,f (x )min =f (a )=1a ,∴12+1a =34,∴a =4. 答案:410.(2019·甘肃会宁联考)若f (x )=x +a -1x +2在区间(-2,+∞)上是增函数,则实数a 的取值范围是________.解析:f (x )=x +a -1x +2=x +2+a -3x +2=1+a -3x +2,要使函数在区间(-2,+∞)上是增函数,需使a -3<0,解得a <3.答案:(-∞,3)11.已知函数f (x )=1a -1x (a >0,x >0).(1)求证:f (x )在(0,+∞)上是增函数;(2)若f (x )在⎣⎡⎦⎤12,2上的值域是⎣⎡⎦⎤12,2,求a 的值. 解:(1)证明:任取x 1>x 2>0, 则f (x 1)-f (x 2)=1a -1x 1-1a +1x 2=x 1-x 2x 1x 2,∵x 1>x 2>0,∴x 1-x 2>0,x 1x 2>0, ∴f (x 1)-f (x 2)>0, 即f (x 1)>f (x 2),∴f (x )在(0,+∞)上是增函数.(2)由(1)可知,f (x )在⎣⎡⎦⎤12,2上是增函数, ∴f ⎝⎛⎭⎫12=1a -2=12,f (2)=1a -12=2, 解得a =25.12.已知f (x )=xx -a(x ≠a ).(1)若a =-2,试证f (x )在(-∞,-2)内单调递增;(2)若a >0且f (x )在(1,+∞)内单调递减,求a 的取值范围. 解:(1)证明:当a =-2时,f (x )=xx +2.任取x 1,x 2∈(-∞,-2),且x 1<x 2, 则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2=2(x 1-x 2)(x 1+2)(x 2+2). 因为(x 1+2)(x 2+2)>0,x 1-x 2<0, 所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 所以f (x )在(-∞,-2)内单调递增. (2)任取x 1,x 2∈(1,+∞),且x 1<x 2, 则f (x 1)-f (x 2)=x 1x 1-a -x 2x 2-a =a (x 2-x 1)(x 1-a )(x 2-a ). 因为a >0,x 2-x 1>0,又由题意知f (x 1)-f (x 2)>0, 所以(x 1-a )(x 2-a )>0恒成立,所以a ≤1. 所以0<a ≤1.所以a 的取值范围为(0,1].B 级1.若f (x )=-x 2+4mx 与g (x )=2mx +1在区间[2,4]上都是减函数,则m 的取值范围是( )A .(-∞,0)∪(0,1]B .(-1,0)∪(0,1]C .(0,+∞)D .(0,1]解析:选D 函数f (x )=-x 2+4mx 的图象开口向下,且以直线x =2m 为对称轴,若在区间[2,4]上是减函数,则2m ≤2,解得m ≤1;g (x )=2m x +1的图象由y =2mx 的图象向左平移一个单位长度得到,若在区间[2,4]上是减函数,则2m >0,解得m >0.综上可得,m 的取值范围是(0,1].2.已知函数f (x )=ln x +x ,若f (a 2-a )>f (a +3),则正数a 的取值范围是________. 解析:因为f (x )=ln x +x 在(0,+∞)上是增函数,所以⎩⎪⎨⎪⎧a 2-a >a +3,a 2-a >0,a +3>0,解得-3<a <-1或a >3.又a >0,所以a >3. 答案:(3,+∞)3.已知定义在R 上的函数f (x )满足:①f (x +y )=f (x )+f (y )+1,②当x >0时,f (x )>-1. (1)求f (0)的值,并证明f (x )在R 上是单调增函数; (2)若f (1)=1,解关于x 的不等式f (x 2+2x )+f (1-x )>4. 解:(1)令x =y =0,得f (0)=-1.在R 上任取x 1>x 2,则x 1-x 2>0,f (x 1-x 2)>-1. 又f (x 1)=f [(x 1-x 2)+x 2]=f (x 1-x 2)+f (x 2)+1>f (x 2), 所以函数f (x )在R 上是单调增函数. (2)由f (1)=1,得f (2)=3,f (3)=5.由f (x 2+2x )+f (1-x )>4得f (x 2+x +1)>f (3), 又函数f (x )在R 上是增函数,故x 2+x +1>3, 解得x <-2或x >1,故原不等式的解集为{x |x <-2或x >1}.第三节 函数的奇偶性与周期性一、基础知1.函数的奇偶性函数的定义域关于原点对称是函数具有奇偶性的前提条件.若f (x )≠0,则奇(偶)函数定义的等价形式如下:(1)f (-x )=f (x )⇔f (-x )-f (x )=0⇔f (-x )f (x )=1⇔f (x )为偶函数;(2)f (-x )=-f (x )⇔f (-x )+f (x )=0⇔f (-x )f (x )=-1⇔f (x )为奇函数.2.函数的周期性 (1)周期函数对于函数f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有f (x +T )=f (x ),那么就称函数f (x )为周期函数,称T 为这个函数的周期.周期函数定义的实质存在一个非零常数T ,使f (x +T )=f (x )为恒等式,即自变量x 每增加一个T 后,函数值就会重复出现一次.(2)最小正周期如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期.二、常用结论1.函数奇偶性常用结论(1)如果函数f (x )是奇函数且在x =0处有定义,则一定有f (0)=0;如果函数f (x )是偶函数,那么f (x )=f (|x |).(2)奇函数在两个对称的区间上具有相同的单调性;偶函数在两个对称的区间上具有相反的单调性.(3)在公共定义域内有:奇±奇=奇,偶±偶=偶,奇×奇=偶,偶×偶=偶,奇×偶=奇.2.函数周期性常用结论 对f (x )定义域内任一自变量x : (1)若f (x +a )=-f (x ),则T =2a (a >0). (2)若f (x +a )=1f (x ),则T =2a (a >0). (3)若f (x +a )=-1f (x ),则T =2a (a >0).3.函数图象的对称性(1)若函数y =f (x +a )是偶函数,即f (a -x )=f (a +x ),则函数y =f (x )的图象关于直线x =a 对称.(2)若对于R 上的任意x 都有f (2a -x )=f (x )或f (-x )=f (2a +x ),则y =f (x )的图象关于直线x =a 对称.(3)若函数y =f (x +b )是奇函数,即f (-x +b )+f (x +b )=0,则函数y =f (x )关于点(b,0)中心对称.考点一 函数奇偶性的判断[典例] 判断下列函数的奇偶性: (1)f (x )=36-x 2|x +3|-3;(2)f (x )=1-x 2+x 2-1; (3)f (x )=log 2(1-x 2)|x -2|-2;(4)f (x )=⎩⎪⎨⎪⎧x 2+x ,x <0,x 2-x ,x >0.[解] (1)由f (x )=36-x 2|x +3|-3,可知⎩⎪⎨⎪⎧ 36-x 2≥0,|x +3|-3≠0⇒⎩⎪⎨⎪⎧-6≤x ≤6,x ≠0且x ≠-6,故函数f (x )的定义域为(-6,0)∪(0,6],定义域不关于原点对称,故f (x )为非奇非偶函数.(2)由⎩⎪⎨⎪⎧1-x 2≥0,x 2-1≥0⇒x 2=1⇒x =±1,故函数f (x )的定义域为{-1,1},关于原点对称,且f (x )=0,所以f (-x )=f (x )=-f (x ),所以函数f (x )既是奇函数又是偶函数.(3)由⎩⎪⎨⎪⎧1-x 2>0,|x -2|-2≠0⇒-1<x <0或0<x <1,定义域关于原点对称.此时f (x )=log 2(1-x 2)|x -2|-2=log 2(1-x 2)2-x -2=-log 2(1-x 2)x ,故有f (-x )=-log 2[1-(-x )2]-x =log 2(1-x 2)x =-f (x ),所以函数f (x )为奇函数. (4)法一:图象法画出函数f (x )=⎩⎪⎨⎪⎧x 2+x ,x <0,x 2-x ,x >0的图象如图所示,图象关于y 轴对称,故f (x )为偶函数.法二:定义法易知函数f (x )的定义域为(-∞,0)∪(0,+∞),关于原点对称,当x >0时,f (x )=x 2-x ,则当x <0时,-x >0,故f (-x )=x 2+x =f (x );当x <0时,f (x )=x 2+x ,则当x >0时,-x <0,故f (-x )=x 2-x =f (x ),故原函数是偶函数.法三:f (x )还可以写成f (x )=x 2-|x |(x ≠0),故f (x )为偶函数.[题组训练]1.(2018·福建期末)下列函数为偶函数的是( ) A .y =tan ⎝⎛⎭⎫x +π4 B .y =x 2+e |x | C .y =x cos xD .y =ln|x |-sin x解析:选B 对于选项A ,易知y =tan ⎝⎛⎭⎫x +π4为非奇非偶函数;对于选项B ,设f (x )=x 2+e |x |,则f (-x )=(-x )2+e |-x |=x 2+e |x |=f (x ),所以y =x 2+e |x |为偶函数;对于选项C ,设f (x )=x cos x ,则f (-x )=-x cos(-x )=-x cos x =-f (x ),所以y =x cos x 为奇函数;对于选项D ,设f (x )=ln|x |-sin x ,则f (2)=ln 2-sin 2,f (-2)=ln 2-sin(-2)=ln 2+sin 2≠f (2),所以y =ln|x |-sin x 为非奇非偶函数,故选B.2.设函数f (x )=e x -e -x2,则下列结论错误的是( )A .|f (x )|是偶函数B .-f (x )是奇函数C .f (x )|f (x )|是奇函数D .f (|x |)f (x )是偶函数解析:选D ∵f (x )=e x -e -x2,则f (-x )=e -x -e x2=-f (x ).∴f (x )是奇函数. ∵f (|-x |)=f (|x |),∴f (|x |)是偶函数,∴f (|x |)f (x )是奇函数.考点二 函数奇偶性的应用[典例] (1)(2019·福建三明模拟)函数y =f (x )是R 上的奇函数,当x <0时,f (x )=2x ,则当x >0时,f (x )=( )A .-2xB .2-x C .-2-xD .2x(2)(2018·贵阳摸底考试)已知函数f (x )=a -2e x +1(a ∈R)是奇函数,则函数f (x )的值域为( )A .(-1,1)B .(-2,2)C .(-3,3)D .(-4,4)[解析] (1)当x >0时,-x <0,∵x <0时,f (x )=2x ,∴当x >0时,f (-x )=2-x .∵f (x )是R 上的奇函数,∴当x >0时,f (x )=-f (-x )=-2-x .(2)法一:由f (x )是奇函数知f (-x )=-f (x ),所以a -2e -x+1=-a +2e x +1,得2a =2e x+1+2e -x +1,所以a =1e x +1+e x e x +1=1,所以f (x )=1-2e x +1.因为e x +1>1,所以0<1e x +1<1,-1<1-2e x +1<1,所以函数f (x )的值域为(-1,1).法二:函数f (x )的定义域为R ,且函数f (x )是奇函数,所以f (0)=a -1=0,即a =1,所以f (x )=1-2e x +1.因为e x +1>1,所以0<1e x +1<1,-1<1-2e x +1<1,所以函数f (x )的值域为(-1,1).[答案] (1)C (2)A[解题技法]应用函数奇偶性可解决的四类问题及解题方法(1)求函数值将待求值利用奇偶性转化为已知区间上的函数值求解.(2)求解析式先将待求区间上的自变量转化到已知区间上,再利用奇偶性求解,或充分利用奇偶性构造关于f (x )的方程(组),从而得到f (x )的解析式.(3)求函数解析式中参数的值利用待定系数法求解,根据f (x )±f (-x )=0得到关于待求参数的恒等式,由系数的对等性得参数的值或方程(组),进而得出参数的值.(4)画函数图象和判断单调性利用奇偶性可画出另一对称区间上的图象及判断另一区间上的单调性.[题组训练]1.(2019·贵阳检测)若函数f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=log 2(x +2)-1,则f (-6)=( )A .2B .4C .-2D .-4解析:选C 根据题意得f (-6)=-f (6)=1-log 2(6+2)=1-3=-2.2.已知函数f (x )为奇函数,当x >0时,f (x )=x 2-x ,则当x <0时,函数f (x )的最大值为________.解析:法一:当x <0时,-x >0,所以f (-x )=x 2+x .又因为函数f (x )为奇函数,所以f (x )=-f (-x )=-x 2-x =-⎝⎛⎭⎫x +122+14,所以当x <0时,函数f (x )的最大值为14. 法二:当x >0时,f (x )=x 2-x =⎝⎛⎭⎫x -122-14,最小值为-14,因为函数f (x )为奇函数,所以当x <0时,函数f (x )的最大值为14.答案:143.(2018·合肥八中模拟)若函数f (x )=x ln(x +a +x 2)为偶函数,则a =________. 解析:∵f (x )=x ln(x +a +x 2)为偶函数,∴f (-x )=f (x ),即-x ln(a +x 2-x )=x ln(x +a +x 2),从而ln[(a +x 2)2-x 2]=0,即ln a =0,故a =1.答案:1考点三 函数的周期性[典例] (1)(2018·开封期末)已知定义在R 上的函数f (x )满足f (x )=-f (x +2),当x ∈(0,2]时,f (x )=2x +log 2x ,则f (2 019)=( )A .5 B.12C .2D .-2(2)(2018·江苏高考)函数f (x )满足f (x +4)=f (x )(x ∈R),且在区间(-2,2]上,f (x )=⎩⎨⎧cos πx2,0<x ≤2,⎪⎪⎪⎪x +12,-2<x ≤0,则f (f (15))的值为________.[解析] (1)由f (x )=-f (x +2),得f (x +4)=f (x ),所以函数f (x )是周期为4的周期函数,所以f (2 019)=f (504×4+3)=f (3)=f (1+2)=-f (1)=-(2+0)=-2.(2)由函数f (x )满足f (x +4)=f (x )(x ∈R), 可知函数f (x )的周期是4, 所以f (15)=f (-1)=⎪⎪⎪⎪-1+12=12, 所以f (f (15))=f ⎝⎛⎭⎫12=cos π4=22. [答案] (1)D (2)22[题组训练]1.(2019·山西八校联考)已知f (x )是定义在R 上的函数,且满足f (x +2)=-1f (x ),当2≤x ≤3时,f (x )=x ,则f ⎝⎛⎭⎫-112=________. 解析:∵f (x +2)=-1f (x ),∴f (x +4)=f (x ), ∴f ⎝⎛⎭⎫-112=f ⎝⎛⎭⎫52,又2≤x ≤3时,f (x )=x , ∴f ⎝⎛⎭⎫52=52,∴f ⎝⎛⎭⎫-112=52. 答案:522.(2019·哈尔滨六中期中)设f (x )是定义在R 上的周期为3的函数,当x ∈[-2,1)时,f (x )=⎩⎪⎨⎪⎧4x 2-2,-2≤x ≤0,x ,0<x <1,则f ⎝⎛⎭⎫f ⎝⎛⎭⎫214=________. 解析:由题意可得f ⎝⎛⎭⎫214=f ⎝⎛⎭⎫6-34=f ⎝⎛⎭⎫-34=4×⎝⎛⎭⎫-342-2=14,f ⎝⎛⎭⎫14=14.答案:14[课时跟踪检测]A 级1.下列函数为奇函数的是( ) A .f (x )=x 3+1 B .f (x )=ln 1-x1+xC .f (x )=e xD .f (x )=x sin x解析:选B 对于A ,f (-x )=-x 3+1≠-f (x ),所以其不是奇函数;对于B ,f (-x )=ln 1+x 1-x=-ln1-x 1+x=-f (x ),所以其是奇函数;对于C ,f (-x )=e -x ≠-f (x ),所以其不是奇函数;对于D ,f (-x )=-x sin(-x )=x sin x =f (x ),所以其不是奇函数.故选B.2.(2019·南昌联考)函数f (x )=9x +13x 的图象( )A .关于x 轴对称B .关于y 轴对称C .关于坐标原点对称D .关于直线y =x 对称解析:选B 因为f (x )=9x +13x =3x +3-x ,易知f (x )为偶函数,所以函数f (x )的图象关于y轴对称.3.设函数f (x )是定义在R 上的奇函数,且f (x )=⎩⎪⎨⎪⎧log 2(x +1),x ≥0,g (x ),x <0,则f (-7)=( )A .3B .-3C .2D .-2解析:选B 因为函数f (x )是定义在R 上的奇函数,且f (x )=⎩⎪⎨⎪⎧log 2(x +1),x ≥0,g (x ),x <0,所以f (-7)=-f (7)=-log 2(7+1)=-3.4.若定义在R 上的偶函数f (x )和奇函数g (x )满足f (x )+g (x )=e x ,则g (x )=( ) A .e x -e -x B.12(e x +e -x )C.12(e -x -e x ) D.12(e x -e -x )解析:选D 因为f (x )+g (x )=e x ,所以f (-x )+g (-x )=f (x )-g (x )=e -x , 所以g (x )=12(e x -e -x ).。

【步步高】(江苏专用)2017版高考数学一轮复习 第二章 函数概念与基本初等函数I 2.6 对数与对数函数 理.

【步步高】(江苏专用)2017版高考数学一轮复习 第二章 函数概念与基本初等函数I 2.6 对数与对数函数 理.

【步步高】(江苏专用)2017版高考数学一轮复习 第二章 函数概念与基本初等函数I 2.6 对数与对数函数 理1.对数的概念一般地,如果a (a >0,a ≠1)的b 次幂等于N ,即a b=N ,那么就称b 是以a 为底N 的对数,记作log a N =b ,N 叫做真数. 2.对数的性质与运算法则 (1)对数的运算法则如果a >0且a ≠1,M >0,N >0,那么 ①log a (MN )=log a M +log a N ; ②log a MN=log a M -log a N ; ③log a M n=n log a M (n ∈R );④log m n a M =n mlog a M (m ,n ∈R ,且m ≠0). (2)对数的性质 ①log a Na=__N __;②log a a N=__N __(a >0且a ≠1).(3)对数的重要公式①换底公式:log b N =log a Nlog a b (a ,b 均大于零且不等于1);②log a b =1log b a ,推广log a b ·log b c ·log c d =log a d .3.对数函数的图象与性质a >1 0<a <1图象性质(1)定义域:(0,+∞)(2)值域:R(3)过定点(1,0),即x=1时,y=0(4)当x>1时,y>0当0<x<1时,y<0(5)当x>1时,y<0当0<x<1时,y>0(6)在(0,+∞)上是增函数(7)在(0,+∞)上是减函数4.指数函数y=a x与对数函数y=log a x互为反函数,它们的图象关于直线__y=x__对称.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)若MN>0,则log a(MN)=log a M+log a N.( ×)(2)log a x·log a y=log a(x+y).( ×)(3)函数y=log2x及13log=3y x都是对数函数.( ×)(4)对数函数y=log a x(a>0,且a≠1)在(0,+∞)上是增函数.( ×)(5)函数y=ln1+x1-x与y=ln(1+x)-ln(1-x)的定义域相同.( √)(6)对数函数y=log a x(a>0且a≠1)的图象过定点(1,0),且过点(a,1),⎝⎛⎭⎪⎫1a,-1,函数图象只在第一、四象限.( √)1.(2015·湖南改编)设函数f(x)=ln(1+x)-ln(1-x),则有关f(x)的性质判断正确的是________.(填序号)①奇函数,且在(0,1)上是增函数;②奇函数,且在(0,1)上是减函数;③偶函数,且在(0,1)上是增函数;④偶函数,且在(0,1)上是减函数.答案①解析易知函数定义域为(-1,1),f(-x)=ln(1-x)-ln(1+x)=-f(x),故函数f(x)为奇函数,又f(x)=ln1+x1-x=ln⎝⎛⎭⎪⎫-1-2x-1,由复合函数单调性判断方法知,f(x)在(0,1)上是增函数.2.已知1213113log log232=,=,=,a b c则a,b,c的大小关系为________.答案a>b>c解析131131,0log log2log log3023322===1,==-,a b c><<<故a>b>c.3.函数f(x)=lg(|x|-1)的大致图象是________.(填图象序号)答案②解析由函数f(x)=lg(|x|-1)的定义域为(-∞,-1)∪(1,+∞),值域为R.又当x>1时,函数单调递增,所以只有②正确.4.(2015·浙江)若a=log43,则2a+2-a=________.答案4 33解析23loglog3log3log3222222244--+=+=+a a=3+33=4 33.5.(教材改编)若log a34<1(a>0,且a≠1),则实数a的取值范围是________________.答案⎝⎛⎭⎪⎫0,34∪(1,+∞)解析当0<a<1时,log a34<log a a=1,∴0<a<34;当a>1时,log a34<log a a=1,∴a>1.∴实数a的取值范围是⎝⎛⎭⎪⎫0,34∪(1,+∞).题型一对数式的运算例1 (1)设2a =5b=m ,且1a +1b=2,则m =________.(2)lg 5+lg 20的值是________. 答案 (1)10 (2)1解析 (1)∵2a =5b=m ,∴a =log 2m ,b =log 5m , ∴1a +1b =1log 2m +1log 5m =log m 2+log m 5=log m 10=2. ∴m =10.(2)原式=lg 100=lg 10=1.思维升华 在对数运算中,要熟练掌握对数的定义,灵活使用对数的运算性质、换底公式和对数恒等式对式子进行恒等变形,多个对数式要尽量先化成同底的形式再进行运算.(1)计算:1-log 632+log 62·log 618log 64=________.(2)已知log a 2=m ,log a 3=n ,则a 2m +n=________.答案 (1)1 (2)12 解析 (1)原式 =1-2log 63+log 632+log 663·log 66×3log 64=1-2log 63+log 632+1-log 631+log 63log 64=1-2log 63+log 632+1-log 632log 64=21-log 632log 62=log 66-log 63log 62=log 62log 62=1.(2)∵log a 2=m ,log a 3=n ,∴a m=2,a n=3, ∴a2m +n=(a m )2·a n =22×3=12.题型二 对数函数的图象及应用例2 (1)函数y =2log 4(1-x )的图象大致是________.(填序号)(2)当0<x ≤12时,4x<log a x ,则a 的取值范围是____________.答案 (1)③ (2)(22,1) 解析 (1)函数y =2log 4(1-x )的定义域为(-∞,1),排除①、②; 又函数y =2log 4(1-x )在定义域内单调递减,排除④.故③正确. (2)构造函数f (x )=4x和g (x )=log a x ,当a >1时不满足条件,当0<a <1时,画出两个函数在⎝ ⎛⎦⎥⎤0,12上的图象,可知f ⎝ ⎛⎭⎪⎫12<g ⎝ ⎛⎭⎪⎫12, 即2<log a 12,则a >22,所以a 的取值范围为⎝ ⎛⎭⎪⎫22,1. 思维升华 应用对数型函数的图象可求解的问题(1)对一些可通过平移、对称变换作出其图象的对数型函数,在求解其单调性(单调区间)、值域(最值)、零点时,常利用数形结合思想.(2)一些对数型方程、不等式问题常转化为相应的函数图象问题,利用数形结合法求解.(1)已知lg a +lg b =0,则函数f (x )=a x与函数g (x )=-log b x 的图象可能是________.(2)设方程10x=|lg(-x )|的两个根分别为x 1,x 2,则________. ①x 1x 2<0 ②x 1x 2=1 ③x 1x 2>1④0<x 1x 2<1答案 (1)② (2)④解析 (1)∵lg a +lg b =0,∴ab =1,∵g (x )=-log b x 的定义域是(0,+∞),故排除①. 若a >1,则0<b <1,此时f (x )=a x是增函数,g (x )=-log b x 是增函数,②符合,排除④.若0<a <1,则b >1,g (x )=-log b x 是减函数,排除③,故填②. (2)构造函数y =10x与y =|lg(-x )|, 并作出它们的图象,如图所示.因为x 1,x 2是10x=|lg(-x )|的两个根,则两个函数图象交点的横坐标分别为x 1,x 2,不妨设x 2<-1,-1<x 1<0,则0lg()111=--,x x 0lg()221=-,x x 因此()00lg 21121-1=,x x x x 因为000211-1,x x <所以lg(x 1x 2)<0,即0<x 1x 2<1,④正确. 题型三 对数函数的性质及应用 命题点1 比较对数值的大小例3 设a =log 36,b =log 510,c =log 714,则a ,b ,c 的大小关系为__________. 答案 a >b >c解析 由对数运算法则得a =log 36=1+log 32,b =1+log 52,c =1+log 72,由对数函数图象得log 32>log 52>log 72,所以a >b >c . 命题点2 解对数不等式例4 若log a (a 2+1)<log a 2a <0,则a 的取值范围是__________. 答案 (12,1)解析 由题意得a >0,故必有a 2+1>2a , 又log a (a 2+1)<log a 2a <0,所以0<a <1, 同时2a >1,所以a >12.综上,a ∈(12,1).命题点3 和对数函数有关的复合函数 例5 已知函数f (x )=log a (3-ax ).(1)当x ∈[0,2]时,函数f (x )恒有意义,求实数a 的取值范围;(2)是否存在这样的实数a ,使得函数f (x )在区间[1,2]上为减函数,并且最大值为1?如果存在,试求出a 的值;如果不存在,请说明理由. 解 (1)∵a >0且a ≠1,设t (x )=3-ax , 则t (x )=3-ax 为减函数,x ∈[0,2]时,t (x )的最小值为3-2a ,当x ∈[0,2]时,f (x )恒有意义, 即x ∈[0,2]时,3-ax >0恒成立. ∴3-2a >0.∴a <32.又a >0且a ≠1,∴a ∈(0,1)∪⎝ ⎛⎭⎪⎫1,32. (2)t (x )=3-ax ,∵a >0,∴函数t (x )为减函数. ∵f (x )在区间[1,2]上为减函数,∴y =log a t 为增函数,∴a >1,x ∈[1,2]时,t (x )最小值为3-2a ,f (x )最大值为f (1)=log a (3-a ),∴⎩⎪⎨⎪⎧3-2a >0,log a 3-a=1,即⎩⎪⎨⎪⎧a <32,a =32.故不存在这样的实数a ,使得函数f (x )在区间[1,2]上为减函数,并且最大值为1. 思维升华 在解决与对数函数相关的比较大小或解不等式问题时,要优先考虑利用对数函数的单调性来求解.在利用单调性时,一定要明确底数a 的取值对函数增减性的影响,及真数必须为正的限制条件.(1)设a =log 32,b =log 52,c =log 23,则a ,b ,c 的大小关系为____________.(2)若f (x )=lg(x 2-2ax +1+a )在区间(-∞,1]上递减,则a 的取值范围为__________. (3)设函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,12log ()0-,,x x <若f (a )>f (-a ),则实数a 的取值范围是__________.答案 (1)c >a >b (2)[1,2) (3)(-1,0)∪(1,+∞) 解析 (1)∵3<2<3,1<2<5,3>2, ∴log 33<log 32<log 33,log 51<log 52<log 55,log 23>log 22, ∴12<a <1,0<b <12,c >1,∴c >a >b . (2)令函数g (x )=x 2-2ax +1+a =(x -a )2+1+a -a 2,对称轴为x =a ,要使函数在(-∞,1]上递减,则有⎩⎪⎨⎪⎧g 1>0,a ≥1,即⎩⎪⎨⎪⎧2-a >0,a ≥1,解得1≤a <2,即a ∈[1,2).(3)由题意可得⎩⎪⎨⎪⎧a >0,212log log a a >或⎩⎪⎨⎪⎧a <0,12log ()log ()2--,a a >解得a >1或-1<a <0.2.比较指数式、对数式的大小典例 (1)设a =0.50.5,b =0.30.5,c =log 0.30.2,则a ,b ,c 的大小关系是__________. (2)设a =log 2π,12log =,b π c =π-2,则a ,b ,c 的大小关系为____________.(3)已知log 3.4log 3.6log 0.3155()5243=,=,=,a b c 则a ,b ,c 大小关系为__________.思维点拨 (1)可根据幂函数y =x 0.5的单调性或比商法确定a ,b 的大小关系,然后利用中间值比较a ,c 大小.(2)a ,b 均为对数式,可化为同底,再利用中间变量和c 比较.(3)化为同底的指数式.解析 (1)根据幂函数y =x 0.5的单调性, 可得0.30.5<0.50.5<10.5=1,即b <a <1;根据对数函数y =log 0.3x 的单调性,可得log 0.30.2>log 0.30.3=1,即c >1. 所以b <a <c .(2)∵a =log 2π>log 22=1,b =log 12π=log 21π<log 21=0,0<c =1π2<1,∴b <c <a .(3)33310log log 0.3log 0.331()55.5-===c 方法一 在同一坐标系中分别作出函数y =log 2x ,y =log 3x ,y =log 4x 的图象,如图所示. 由图象知:log 23.4>log 3103>log 43.6.方法二 ∵log 3103>log 33=1,且103<3.4,∴log 3103<log 33.4<log 23.4.∵log 43.6<log 44=1,log 3103>1,∴log 43.6<log 3103.∴log 23.4>log 3103>log 43.6.由于y =5x为增函数,32410log log 3.4log 3.63555.∴>>即324log 0.3log 3.4log 3.615()55,>>故a >c >b . 答案 (1)b <a <c (2)a >c >b (3)a >c >b温馨提醒 (1)比较指数式和对数式的大小,可以利用函数的单调性,引入中间量;有时也可用数形结合的方法.(2)解题时要根据实际情况来构造相应的函数,利用函数单调性进行比较,如果指数相同,而底数不同则构造幂函数,若底数相同而指数不同则构造指数函数,若引入中间量,一般选0或1.[方法与技巧]1.对数值取正、负值的规律当a >1且b >1或0<a <1且0<b <1时,log a b >0; 当a >1且0<b <1或0<a <1且b >1时,log a b <0. 2.对数函数的定义域及单调性在对数式中,真数必须是大于0的,所以对数函数y =log a x 的定义域应为(0,+∞).对数函数的单调性和a 的值有关,因而,在研究对数函数的单调性时,要按0<a <1和a >1进行分类讨论.3.比较幂、对数大小有两种常用方法:(1)数形结合;(2)找中间量结合函数单调性. 4.多个对数函数图象比较底数大小的问题,可通过比较图象与直线y =1交点的横坐标进行判定. [失误与防范]1.在运算性质log a M α=αlog a M 中,要特别注意条件,在无M >0的条件下应为log a M α=αlog a |M |(α∈N *,且α为偶数).2.解决与对数函数有关的问题时需注意两点:(1)务必先研究函数的定义域;(2)注意对数底数的取值范围.A 组 专项基础训练 (时间:40分钟)1.若函数y =log a x (a >0,且a ≠1)的图象如图所示,则下列函数图象正确的是________(填序号).答案 ②解析 由题图可知y =log a x 的图象过点(3,1), ∴log a 3=1,即a =3.①中,y =3-x=(13)x 在R 上为减函数,错误;②中,y =x 3符合;③中,y =(-x )3=-x 3在R 上为减函数,错误; ④中,y =log 3(-x )在(-∞,0)上为减函数,错误.2.已知x =ln π,y =log 52,12=e ,z -则x ,y ,z 的大小关系为____________. 答案 y <z <x解析 ∵x =ln π>ln e,∴x >1. ∵y =log 52<log 55,∴0<y <12.∵z =12e-=1e>14=12,∴12<z <1.综上可得,y <z <x .3.若函数f (x )=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫12x x ≥4,f x +1 x <4,则f (log 23)=________.答案124解析 ∵1<log 23<log 24=2,∴3+log 23∈(4,5), ∴f (log 23)=f (log 23+1)=f (log 23+2)=f (log 23+3)=f (log 224)22log 24log 24122-==⎛⎫ ⎪⎝⎭ 21log 2412.24== 4.设f (x )=lg ⎝⎛⎭⎪⎫21-x +a 是奇函数,则使f (x )<0的x 的取值范围是__________. 答案 (-1,0) 解析 由f (x )是奇函数可得a =-1,∴f (x )=lg 1+x 1-x,定义域为(-1,1). 由f (x )<0,可得0<1+x 1-x<1,∴-1<x <0. 5.定义在R 上的函数f (x )满足f (-x )=-f (x ),f (x -2)=f (x +2),且x ∈(-1,0)时,f (x )=2x +15,则f (log 220)=________. 答案 -1解析 由f (x -2)=f (x +2),得f (x )=f (x +4),因为4<log 220<5,所以f (log 220)=f (log 220-4)=-f (4-log 220)=-f (log 245)=24log 51(2) 1.5-+=- 6.函数f (x )=log 2x(2x )的最小值为________.答案 -14 解析 显然x >0,∴f (x )=log 2x ·log(2x )=12log 2x ·log 2(4x 2)=12log 2x ·(log 24+2log 2x )=log 2x +(log 2x )2=⎝⎛⎭⎪⎫log 2x +122-14≥-14.当且仅当x =22时,有f (x )min =-14. 7.设函数f (x )满足f (x )=1+f (12)log 2x ,则f (2)=_____________________________. 答案 32解析 由已知得f (12)=1-f (12)·log 22,则f (12)=12,则f (x )=1+12·log 2x ,故f (2)=1+12·log 22=32. 8.(2015·福建)若函数f (x )=⎩⎪⎨⎪⎧ -x +6,x ≤2,3+log a x ,x >2(a >0,且a ≠1)的值域是[4,+∞),则实数a 的取值范围是_________________________. 答案 (1,2] 解析 由题意f (x )的图象如右图,则⎩⎪⎨⎪⎧ a >1,3+log a 2≥4,∴1<a≤2. 9.已知函数212log ()=-+y x ax a 在区间(-∞,2)上是增函数,求a 的取值范围.解 函数212log ()=-+y x ax a 是由函数12log =y t 和t =x 2-ax +a 复合而成.因为函数12log =y t 在区间(0,+∞)上单调递减,而函数t =x 2-ax +a 在区间(-∞,a2)上单调递减,又因为函数212log ()=-+y x ax a 在区间(-∞,2)上是增函数,所以⎩⎪⎨⎪⎧ 2≤a2,22-2a +a ≥0,解得⎩⎨⎧ a ≥22,a ≤22+1,即22≤a ≤2(2+1).10.设f (x )=log a (1+x )+log a (3-x )(a >0,a ≠1),且f (1)=2.(1)求a 的值及f (x )的定义域;(2)求f (x )在区间[0,32]上的最大值.解 (1)∵f (1)=2,∴log a 4=2(a >0,a ≠1),∴a =2.由⎩⎪⎨⎪⎧ 1+x >0,3-x >0,得x ∈(-1,3), ∴函数f (x )的定义域为(-1,3).(2)f (x )=log 2(1+x )+log 2(3-x )=log 2(1+x )(3-x )=log 2[-(x -1)2+4],∴当x ∈(-1,1]时,f (x )是增函数;当x ∈(1,3)时,f (x )是减函数,故函数f (x )在[0,32]上的最大值是f (1)=log 24=2.B 组 专项能力提升(时间:20分钟)11.(2015·陕西改编)设f (x )=ln x,0<a <b ,若p =f (ab ),q =f ⎝ ⎛⎭⎪⎫a +b 2,r =12(f (a )+f (b )),则p 、q 、r 的大小关系是____________.答案 p =r <q解析 ∵0<a <b ,∴a +b 2>ab ,又∵f (x )=ln x 在(0,+∞)上为增函数,∴f ⎝ ⎛⎭⎪⎫a +b 2>f (ab ),即q >p . 又r =12(f (a )+f (b ))=12(ln a +ln b )=ln ab =p , 故p =r <q .12.设函数f (x )定义在实数集上,f (2-x )=f (x ),且当x ≥1时,f (x )=ln x ,则f ⎝ ⎛⎭⎪⎫13,f ⎝ ⎛⎭⎪⎫12,f (2)的大小关系是______________.答案 f (12)<f (13)<f (2) 解析 由f (2-x )=f (x )知f (x )的图象关于直线x =2-x +x 2=1对称,又当x ≥1时,f (x )=ln x ,所以离对称轴x =1距离大的x 的函数值大,∵|2-1|>|13-1|>|12-1|, ∴f (12)<f (13)<f (2). 13.函数f (x )=|log 3x |在区间[a ,b ]上的值域为[0,1],则b -a 的最小值为________.答案 23解析 由题意可知求b -a 的最小值即求区间[a ,b ]的长度的最小值,当f (x )=0时x =1,当f (x )=1时x =3或13,所以区间[a ,b ]的最短长度为1-13=23,所以b -a 的最小值为23. 14.已知函数f (x )=ln x1-x ,若f (a )+f (b )=0,且0<a <b <1,则ab 的取值范围是________. 答案 ⎝ ⎛⎭⎪⎫0,14 解析 由题意可知ln a 1-a +ln b1-b =0,即ln ⎝ ⎛⎭⎪⎫a 1-a ×b 1-b =0,从而a 1-a ×b 1-b =1,化简得a +b =1,故ab =a (1-a )=-a 2+a =-⎝ ⎛⎭⎪⎫a -122+14, 又0<a <b <1,∴0<a <12,故0<-⎝ ⎛⎭⎪⎫a -122+14<14. 15.设x ∈[2,8]时,函数f (x )=12log a (ax )·log a (a 2x )(a >0,且a ≠1)的最大值是1,最小值是-18,求a 的值. 解 由题意知f (x )=12(log a x +1)(log a x +2) =12(log 2a x +3log a x +2)=12(log a x +32)2-18. 当f (x )取最小值-18时,log a x =-32. 又∵x ∈[2,8],∴a ∈(0,1).∵f (x )是关于log a x 的二次函数,∴函数f (x )的最大值必在x =2或x =8时取得.若12(log a 2+32)2-18=1,则a =132,- 此时f (x )取得最小值时,1332(2)=x --=2∉[2,8],舍去.若12(log a 8+32)2-18=1,则a =12,此时f (x )取得最小值时,[]321()2,82==,x - 符合题意,∴a =12.。

(江苏专版)高考数学一轮复习第二章函数的概念与基本初等函数Ⅰ第五节指数与指数函数实用课件文

(江苏专版)高考数学一轮复习第二章函数的概念与基本初等函数Ⅰ第五节指数与指数函数实用课件文

答案:-1967
第十页,共45页。
39
2. a 2 a-3÷ 3 a-73 a13=________.
解析:原式=(a
9 2
a
3 2
)
1 3
÷(a
7 3
a
13 3
)
1 2
=(a3)
1 3
÷(a2)
1 2
=a÷a=1.
答案:1
4
1
3. 4b
a 3 -8a 3 b
2 3
+23
ab+a
2 3
÷a
2 3
3
1.指数函数的图象
函数
y=ax(a>0,且 a≠1)
0<a<1
a>1
图象
在 x 轴_上__方_,过定点_(0_,_1_)
图象
特征 当 x 逐渐增大时,图象逐渐 当 x 逐渐增大时,图象
下___降_
逐渐_上__升_
第十五页,共45页。
2.指数函数图象画法的三个关键点 画指数函数 y=ax(a>0,且 a≠1)的图象,应抓住三个关键 点:(1,a),(0,1),-1,1a. 3.指数函数的图象与底数大小的比较 如图是指数函数(1)y=ax,(2)y=bx,(3)y=cx,(4)y=dx 的图 象,底数 a,b,c,d 与 1 之间的大小关系为 c>d>1>a>b.
2
1
2
又因为 a=2 3 =4 3 ,c=25 3 =5 3 ,
2
由函数 y=x 3 在(0,+∞)上为增函数知,a<c.
综上得 b<a<c. [答案] c>a>b
第二十九页,共45页。
[方法技巧] 比较指数式大小的方法
比较两个指数式大小时,尽量化同底或同指. (1)当底数相同,指数不同时,构造同一指数函数,然后利 用指数函数性质比较大小. (2)当指数相同,底数不同时,构造两个指数函数,利用图 象比较大小. (3)当底数不同,指数也不同时,常借助 1,0 等中间量进行 比较.

(江苏专用)2017版高考数学一轮复习 第二章 函数概念与基本初等函数I 2.8 函数与方程 文

(江苏专用)2017版高考数学一轮复习 第二章 函数概念与基本初等函数I 2.8 函数与方程 文

【步步高】(江苏专用)2017版高考数学一轮复习第二章函数概念与基本初等函数I 2.8 函数与方程文1.函数的零点(1)函数零点的定义对于函数y=f(x)(x∈D),把使函数y=f(x)的值为0的实数x叫做函数y=f(x)(x∈D)的零点.(2)几个等价关系方程f(x)=0有实数根⇔函数y=f(x)的图象与x轴有交点⇔函数y=f(x)有零点.(3)函数零点的判定(零点存在性定理)如果函数y=f(x)在区间[a,b]上的图象是一条不间断的曲线,且f(a)·f(b)<0,那么,函数y=f(x)在区间(a,b)上有零点,即存在c∈(a,b),使得f(c)=0,这个__c__也就是方程f(x)=0的根.2.二分法对于在区间[a,b]上连续不断且f(a)·f(b)<0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.3.二次函数y=ax2+bx+c (a>0)的图象与零点的关系判断下面结论是否正确(请在括号中打“√”或“×”)(1)函数的零点就是函数的图象与x轴的交点.( ×)(2)函数y=f(x)在区间(a,b)内有零点(函数图象连续不断),则f(a)·f(b)<0.( ×)(3)只要函数有零点,我们就可以用二分法求出零点的近似值.( ×)(4)二次函数y =ax 2+bx +c (a ≠0)在b 2-4ac <0时没有零点.( √ )(5)若函数f (x )在(a ,b )上单调且f (a )·f (b )<0,则函数f (x )在[a ,b ]上有且只有一个零点.( √ )1.(教材改编)函数f (x )=e x+3x 的零点个数是________. 答案 1解析 ∵f (-1)=1e -3<0,f (0)=1>0,∴f (x )在(-1,0)内有零点,又f (x )为增函数,∴函数f (x )有且只有一个零点.2.若x 1,x 2是方程2x=(12)11x -+的两个实根,则x 1+x 2=________.答案 -1解析 ∵2x=(12)11x -+,∴2x=211x -,∴x =1x-1即x 2+x -1=0,∴x 1+x 2=-1.3.函数f (x )=2x|log 0.5 x |-1的零点个数为________. 答案 2解析 由f (x )=0得|log 0.5x |=⎝ ⎛⎭⎪⎫12x,作出函数y =|log 0.5x |和y =⎝ ⎛⎭⎪⎫12x的图象,由图象知两函数图象有2个交点, 故函数f (x )有2个零点.4.(2015·天津)已知函数f (x )=⎩⎪⎨⎪⎧2-|x |,x ≤2,x -2,x >2,函数g (x )=3-f (2-x ),则函数y=f (x )-g (x )的零点个数为________. 答案 2解析 当x >2时,g (x )=x -1,f (x )=(x -2)2; 当0≤x ≤2时,g (x )=3-x ,f (x )=2-x ; 当x <0时,g (x )=3-x 2,f (x )=2+x .由于函数y =f (x )-g (x )的零点个数就是方程f (x )-g (x )=0的根的个数.x >2时,方程f (x )-g (x )=0可化为x 2-5x +5=0,其根为x =5+52或x =5-52(舍去); 当0≤x ≤2时,方程f (x )-g (x )=0可化为2-x =3-x ,无解;当x <0时,方程f (x )-g (x )=0可化为x 2+x -1=0,其根为x =-1-52或x =-1+52(舍去).所以函数y =f (x )-g (x )的零点个数为2.5.函数f (x )=ax +1-2a 在区间(-1,1)上存在一个零点,则实数a 的取值范围是________.答案 ⎝ ⎛⎭⎪⎫13,1解析 ∵函数f (x )的图象为直线,由题意可得f (-1)f (1)<0,∴(-3a +1)·(1-a )<0,解得13<a <1,∴实数a 的取值范围是⎝ ⎛⎭⎪⎫13,1.题型一 函数零点的确定 命题点1 函数零点所在的区间例1 (2015·长沙四月调研)已知函数f (x )=ln x -⎝ ⎛⎭⎪⎫12x -2的零点为x 0,则x 0所在的区间是(k ,k +1) (k ∈Z ),则k =________. 答案 2解析 ∵f (x )=ln x -⎝ ⎛⎭⎪⎫12x -2在(0,+∞)是增函数,又f (1)=ln 1-⎝ ⎛⎭⎪⎫12-1=ln 1-2<0,f (2)=ln 2-⎝ ⎛⎭⎪⎫120<0,f (3)=ln 3-⎝ ⎛⎭⎪⎫121>0,∴x 0∈(2,3).命题点2 函数零点个数的判断例2 (1)函数f (x )=⎩⎪⎨⎪⎧x 2-2,x ≤0,2x -6+ln x ,x >0的零点个数是________.(2)若定义在R 上的偶函数f (x )满足f (x +2)=f (x ),且当x ∈[0,1]时,f (x )=x ,则函数y =f (x )-log 3|x |的零点个数是________. 答案 (1)2 (2)4解析 (1)当x ≤0时,令x 2-2=0,解得x =-2(正根舍去),所以在(-∞,0]上有一个零点.当x >0时,f ′(x )=2+1x>0恒成立,所以f (x )在(0,+∞)上是增函数.又因为f (2)=-2+ln 2<0,f (3)=ln 3>0,所以f (x )在(0,+∞)上有一个零点,综上,函数f (x )的零点个数为2.(2)由题意知,f (x )是周期为2的偶函数.在同一坐标系内作出函数y =f (x )及y =log 3|x |的图象,如图:观察图象可以发现它们有4个交点, 即函数y =f (x )-log 3|x |有4个零点. 命题点3 求函数的零点例3 已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2-3x ,则函数g (x )=f (x )-x +3的零点的集合为______________. 答案 {-2-7,1,3}解析 当x ≥0时,f (x )=x 2-3x ,令g (x )=x 2-3x -x +3=0,得x 1=3,x 2=1. 当x <0时,-x >0,∴f (-x )=(-x )2-3(-x ), ∴-f (x )=x 2+3x ,∴f (x )=-x 2-3x . 令g (x )=-x 2-3x -x +3=0, 得x 3=-2-7,x 4=-2+7>0(舍),∴函数g (x )=f (x )-x +3的零点的集合是{-2-7,1,3}.思维升华 (1)确定函数零点所在区间,可利用零点存在性定理或数形结合法.(2)判断函数零点个数的方法:①解方程法;②零点存在性定理、结合函数的性质;③数形结合法:转化为两个函数图象的交点个数.(1)已知函数f (x )=6x-log 2x ,在下列区间中,包含f (x )零点的区间是________.①(0,1) ②(1,2) ③(2,4)④(4,+∞)(2)函数f (x )=x 12-⎝ ⎛⎭⎪⎫12x的零点个数为________.答案 (1)③ (2)1解析 (1)因为f (1)=6-log 21=6>0,f (2)=3-log 22=2>0,f (4)=32-log 24=-12<0,所以函数f (x )的零点所在区间为(2,4).(2)方法一 令f (x )=0,得x 12=⎝ ⎛⎭⎪⎫12x ,在平面直角坐标系中分别画出函数y =x 12与y =⎝ ⎛⎭⎪⎫12x的图象,可得交点只有一个,所以零点只有一个. 方法二 ∵f (0)=-1,f (1)=12,∴f (0)f (1)<0,故函数f (x )在(0,1)至少存在一个零点, 又f (x )显然为增函数,∴f (x )零点个数为1. 题型二 函数零点的应用例4 若关于x 的方程22x+2xa +a +1=0有实根,求实数a 的取值范围. 解 方法一 (换元法)设t =2x (t >0),则原方程可变为t 2+at +a +1=0,(*) 原方程有实根,即方程(*)有正根. 令f (t )=t 2+at +a +1.①若方程(*)有两个正实根t 1,t 2, 则⎩⎪⎨⎪⎧Δ=a 2-a +,t 1+t 2=-a >0,t 1·t 2=a +1>0,解得-1<a ≤2-22;②若方程(*)有一个正实根和一个负实根(负实根不合题意,舍去),则f (0)=a +1<0,解得a <-1;③若方程(*)有一个正实根和一个零根,则f (0)=0且-a2>0,解得a =-1.综上,a 的取值范围是(-∞,2-2 2 ]. 方法二 (分离变量法)由方程,解得a =-22x+12x +1,设t =2x(t >0),则a =-t 2+1t +1=-⎝ ⎛⎭⎪⎫t +2t +1-1=2-⎣⎢⎡⎦⎥⎤t ++2t +1,其中t +1>1,由基本不等式,得(t +1)+2t +1≥22,当且仅当t =2-1时取等号,故a ≤2-2 2. 思维升华 对于“a =f (x )有解”型问题,可以通过求函数y =f (x )的值域来解决,解的个数可化为函数y =f (x )的图象和直线y =a 交点的个数.(1)函数f (x )=2x-2x-a 的一个零点在区间(1,2)内,则实数a 的取值范围是________.(2)已知函数f (x )=⎩⎪⎨⎪⎧|2x-1|,x <2,3x -1,x ≥2,若方程f (x )-a =0有三个不同的实数根,则实数a 的取值范围是__________.答案 (1)(0,3) (2)(0,1)解析 (1)因为函数f (x )=2x -2x -a 在区间(1,2)上单调递增,又函数f (x )=2x-2x-a 的一个零点在区间(1,2)内,则有f (1)·f (2)<0,所以(-a )(4-1-a )<0,即a (a -3)<0.所以0<a <3.(2)画出函数f (x )的图象如图所示,观察图象可知,若方程f (x )-a =0有三个不同的实数根,则函数y =f (x )的图象与直线y =a 有3个不同的交点,此时需满足0<a <1. 题型三 二次函数的零点问题例5 已知f (x )=x 2+(a 2-1)x +(a -2)的一个零点比1大,一个零点比1小,求实数a 的取值范围.解 方法一 设方程x 2+(a 2-1)x +(a -2)=0的两根分别为x 1,x 2(x 1<x 2),则(x 1-1)(x 2-1)<0,∴x 1x 2-(x 1+x 2)+1<0,由根与系数的关系,得(a -2)+(a 2-1)+1<0,即a 2+a -2<0,∴-2<a <1. 方法二 函数图象大致如图, 则有f (1)<0,即1+(a 2-1)+a -2<0, ∴-2<a <1.故实数a 的取值范围是(-2,1).思维升华解决与二次函数有关的零点问题:(1)可利用一元二次方程的求根公式;(2)可用一元二次方程的判别式及根与系数之间的关系;(3)利用二次函数的图象列不等式组.若关于x的方程x2+ax-4=0在区间[2,4]上有实数根,则实数a的取值范围是________.答案[-3,0]解析如果方程有实数根,注意到两个根之积为-4<0,可知两根必定一正一负,因此在[2,4]上有且只有一个实数根,设f(x)=x2+ax-4,则必有f(2)f(4)≤0,所以2a(12+4a)≤0,即a∈[-3,0].3.忽视定义域导致零点个数错误典例定义在R上的奇函数f(x)满足:当x>0时,f(x)=2 016x+log2 016x,则在R上函数f(x)的零点个数为_____________________________.易错分析得出当x>0时的零点个数后,容易忽略条件:定义在R上的奇函数,导致漏掉x<0时和x=0时的情况.x.作出函数y 解析当x>0时,由f(x)=2 016x+log2 016x=0得2 016x=-log2 016x=log12016x的图象,可知它们只有一个交点,所以当x>0时函数只有一个=2 016x与函数y=log12016零点.由于函数为奇函数,所以当x<0时,也有一个零点.又当x=0时y=0,所以共有三个零点.答案 3温馨提醒(1)讨论x>0时函数的零点个数也可利用零点存在性定理结合函数单调性确定.(2)函数的定义域是讨论函数其他性质的基础,要给予充分重视.[方法与技巧]1.函数零点的判定常用的方法有(1)零点存在性定理;(2)数形结合:函数y=f(x)-g(x)的零点,就是函数y=f(x)和y=g(x)图象交点的横坐标.(3)解方程.2.二次函数的零点可利用求根公式、判别式、根与系数的关系或结合函数图象列不等式(组).3.利用函数零点求参数范围的常用方法:直接法、分离参数法、数形结合法.[失误与防范]1.函数零点存在性定理是零点存在的一个充分条件,而不是必要条件;判断零点个数还要根据函数的单调性、对称性或结合函数图象.2.判断零点个数要注意函数的定义域,不要漏解;画图时要尽量准确.A 组 专项基础训练 (时间:40分钟)1.已知函数f (x )=⎩⎪⎨⎪⎧2x-1,x ≥0,-x 2-2x ,x <0,若函数y =f (x )-m 有3个零点,则实数m 的取值范围是________. 答案 (0,1)解析 画出函数f (x )=⎩⎪⎨⎪⎧2x-1,x ≥0,-x 2-2x ,x <0的图象,由图象可知,若函数y =f (x )-m 有3个零点,则0<m <1,因此m 的取值范围是(0,1).2.已知函数f (x )=ln x -x +2有一个零点所在的区间为(k ,k +1) (k ∈N *),则k 的值为___________________________________. 答案 3解析 由题意知,当x >1时,f (x )单调递减,因为f (3)=ln 3-1>0,f (4)=ln 4-2<0,所以该函数的零点在区间(3,4)内,所以k =3.3.已知函数f (x )=⎩⎪⎨⎪⎧2x-1, x ≤1,1+log 2x , x >1,则函数f (x )的零点为________.答案 0解析 当x ≤1时,由f (x )=2x-1=0,解得x =0;当x >1时,由f (x )=1+log 2x =0,解得x =12,又因为x >1,所以此时方程无解. 综上函数f (x )的零点只有0.4.方程|x 2-2x |=a 2+1(a >0)的解的个数是________. 答案 2解析 (数形结合法)∵a >0,∴a 2+1>1.而y =|x 2-2x |的图象如图,∴y =|x 2-2x |的图象与y =a 2+1的图象总有两个交点.5.已知函数f (x )=⎩⎪⎨⎪⎧e x+a ,x ≤0,2x -1,x >0(a ∈R ),若函数f (x )在R 上有两个零点,则a 的取值范围是__________. 答案 [-1,0)解析 当x >0时,f (x )=2x -1.令f (x )=0,解得x =12;当x ≤0时,f (x )=e x+a ,此时函数f (x )=e x +a 在(-∞,0]上有且仅有一个零点,等价转化为方程e x=-a 在(-∞,0]上有且仅有一个实根,而函数y =e x在(-∞,0]上的值域为(0,1],所以0<-a ≤1,解得-1≤a <0.6.已知函数f (x )=x 2+x +a (a <0)在区间(0,1)上有零点,则a 的取值范围为________. 答案 (-2,0)解析 ∵-a =x 2+x 在(0,1)上有解, 又y =x 2+x =(x +12)2-14,∴函数y =x 2+x ,x ∈(0,1)的值域为(0,2), ∴0<-a <2,∴-2<a <0.7.若函数f (x )=x 2+ax +b 的两个零点是-2和3,则不等式af (-2x )>0的解集是________________. 答案 {x |-32<x <1}解析 ∵f (x )=x 2+ax +b 的两个零点是-2,3. ∴-2,3是方程x 2+ax +b =0的两根,由根与系数的关系知⎩⎪⎨⎪⎧-2+3=-a ,-2×3=b .∴⎩⎪⎨⎪⎧a =-1,b =-6,∴f (x )=x 2-x -6. ∵不等式af (-2x )>0,即-(4x 2+2x -6)>0⇔2x 2+x -3<0, 解集为{x |-32<x <1}.8.已知函数f (x )=⎩⎪⎨⎪⎧2x-1,x >0,-x 2-2x ,x ≤0,若函数g (x )=f (x )-m 有3个零点,则实数m 的取值范围是________. 答案 (0,1) 解析 画出f (x )=⎩⎪⎨⎪⎧2x-1,x >0,-x 2-2x ,x ≤0的图象,如图.由于函数g (x )=f (x )-m 有3个零点, 结合图象得:0<m <1,即m ∈(0,1).9.设函数f (x )=⎪⎪⎪⎪⎪⎪1-1x (x >0).(1)作出函数f (x )的图象;(2)当0<a <b ,且f (a )=f (b )时,求1a +1b的值;(3)若方程f (x )=m 有两个不相等的正根,求m 的取值范围. 解 (1)如图所示.(2)∵f (x )=⎪⎪⎪⎪⎪⎪1-1x =⎩⎪⎨⎪⎧1x -1,x ,1],1-1x ,x,+,故f (x )在(0,1]上是减函数,而在(1,+∞)上是增函数. 由0<a <b 且f (a )=f (b ),得0<a <1<b ,且1a -1=1-1b,∴1a +1b=2.(3)由函数f (x )的图象可知,当0<m <1时,方程f (x )=m 有两个不相等的正根. 10.关于x 的二次方程x 2+(m -1)x +1=0在区间[0,2]上有解,求实数m 的取值范围. 解 方法一 设f (x )=x 2+(m -1)x +1,x ∈[0,2], ①若f (x )=0在区间[0,2]上有一解, ∵f (0)=1>0,则应有f (2)<0, 又∵f (2)=22+(m -1)×2+1, ∴m <-32.②若f (x )=0在区间[0,2]上有两解,则 ⎩⎪⎨⎪⎧Δ≥0,0<-m -12<2,f ,∴⎩⎪⎨⎪⎧ m -2-4≥0,-3<m <1,4+m -+1≥0. ∴⎩⎪⎨⎪⎧ m ≥3或m ≤-1,-3<m <1,m ≥-32.∴-32≤m ≤-1. 由①②可知m 的取值范围是(-∞,-1].方法二 显然x =0不是方程x 2+(m -1)x +1=0的解,0<x ≤2时,方程可变形为1-m =x +1x, 又∵y =x +1x在(0,1]上单调递减,[1,2]上单调递增, ∴y =x +1x在(0,2]的取值范围是[2,+∞), ∴1-m ≥2,∴m ≤-1,故m 的取值范围是(-∞,-1].B 组 专项能力提升(时间:15分钟)11.已知函数f (x )=⎩⎪⎨⎪⎧ 1,x ≤0,1x,x >0,则使方程x +f (x )=m 有解的实数m 的取值范围是____________.答案 (-∞,1]∪[2,+∞)解析 当x ≤0时,x +f (x )=m ,即x +1=m ,解得m ≤1;当x >0时,x +f (x )=m ,即x +1x=m ,解得m ≥2.即实数m 的取值范围是(-∞,1]∪[2,+∞).12.函数f (x )=3x -7+ln x 的零点位于区间(n ,n +1)(n ∈N )内,则n =________. 答案 2解析 由于ln 2<ln e =1,所以f (2)<0,f (3)=2+ln 3,由于ln 3>1,所以f (3)>0,所以函数f (x )的零点位于区间(2,3)内,故n =2.13.已知0<a <1,k ≠0,函数f (x )=⎩⎪⎨⎪⎧ a x , x ≥0,kx +1, x <0,若函数g (x )=f (x )-k 有两个零点,则实数k 的取值范围是________.答案 (0,1)解析 函数g (x )=f (x )-k 有两个零点,即f (x )-k =0有两个解,即y=f (x )与y =k 的图象有两个交点.分k >0和k <0作出函数f (x )的图象.当0<k <1时,函数y =f (x )与y =k 的图象有两个交点;当k =1时,有一个交点;当k >1或k <0时,没有交点,故当0<k <1时满足题意.14.(2015·湖南)若函数f (x )=|2x-2|-b 有两个零点,则实数b 的取值范围是________. 答案 (0,2)解析 由f (x )=|2x -2|-b =0,得|2x -2|=b .在同一平面直角坐标系中画出y =|2x -2|与y =b 的图象,如图所示.则当0<b <2时,两函数图象有两个交点,从而函数f (x )=|2x -2|-b 有两个零点.15.已知x ∈R ,符号[x ]表示不超过x 的最大整数,若函数f (x )=[x ]x-a (x ≠0)有且仅有3个零点,则a 的取值范围是________.答案 ⎝ ⎛⎦⎥⎤34,45 解析 当0<x <1时,f (x )=[x ]x-a =-a , 当1≤x <2时,f (x )=[x ]x-a =1x -a , 当2≤x <3时,f (x )=[x ]x -a =2x -a ,….f (x )=[x ]x -a 的图象是把y =[x ]x 的图象进行纵向平移而得到的,画出y =[x ]x的图象,通过数形结合可知a ∈(34,45].。

2017版新步步高高考数学大一轮复习讲义课件:第2章 函数概念与基本初等函数 I 2.2

2017版新步步高高考数学大一轮复习讲义课件:第2章 函数概念与基本初等函数 I 2.2
解析答案 第三十一页,编辑于星期六:三点 十一分。
(2)若对任意x∈[1,+∞),f(x)>0恒成立,试求实数a的取值范围. 解 f(x)=x+ax+2,x∈[1,+∞). ①当a≤0时,f(x)在[1,+∞)内为增函数.
最小值为f(1)=a+3.
要使f(x)>0在x∈[1,+∞)上恒成立,只需a+3>0,即a>-3, 所以-3<a≤0. ②当0<a≤1时,f(x)在[1,+∞)上为增函数,f(x)min=f(1)=a+3. 所以a+3>0,a>-3,所以0<a≤1. 综上所述,f(x)在[1,+∞)上恒大于零时,a的取值范围是(-3,1].
思第四维十页升,华编辑于星期六:三解点 十析一答分。案
跟踪训练3
(1)f(x)是定义在(0,+∞)上的单调增函数,满足f(xy)=f(x)+f(y),f(3)=
1,当f(x)+f(x-8)≤2时,x的取值范围是( ) B
A.(8,+∞)
B.(8,9]
C.[8,9]
D.(0,8)
解析 2=1+1=f(3)+f(3)=f(9),由f(x)+f(x-8)≤2,
B.f(x1)<0,f(x2)>0
C.f(x1)>0,f(x2)<0
D.f(x1)>0,f(x2)>0
解析 ∵函数 f(x)=log2x+1-1 x在(1,+∞)上为增函数,且 f(2)=0,
∴当x1∈(1,2)时,f(x1)<f(2)=0, 当x2∈(2,+∞)时,f(x2)>f(2)=0,即f(x1)<0,f(x2)>0.
由图象可知函数在(-∞,a]和[a,+∞)上都具有单调性, 因此要使函数f(x)在区间[1,2]上具有单调性, 只需a≤1或a≥2, 从而a∈(-∞,1]∪[2,+∞).

高考数学 专题2 函数概念与基本初等函数 16 函数中的易错题 文

高考数学 专题2 函数概念与基本初等函数 16 函数中的易错题 文

【步步高】(江苏专用)2017版高考数学专题2 函数概念与基本初等函数 16 函数中的易错题文1.若f(x),则f(x)的定义域为________.2.函数y=e| ln x|-|x-1|的图象大致是________.3.(2015·湖北浠水实验高中期中)设f (x )=1-(x -a )(x -b )(a <b ),m ,n 为y =f (x )的两个零点,且m <n ,则a ,b ,m ,n 的大小关系是________.4.(2015·广东汕头澄海凤翔中学段考)已知函数f (x )=⎩⎪⎨⎪⎧ax 2+1,x ≥0,a -2e x,x <0是R 上的单调函数,则实数a 的取值范围是________.5.设函数f (x )=log a x (a >0且a ≠1).若f (x 1x 2…x 2 013)=8,则f (x 21)+f (x 22)+…+f (x 22 013)=________.6.(2015·湖南娄底高中名校联考)对于函数f (x ),使f (x )≤n 成立的所有常数n 中,我们把n 的最小值G 叫做函数f (x )的上确界.则函数f (x )=122,0,1log (),02x x x x -⎧≥⎪⎨-<⎪⎩的上确界是________.7.(2015·青海西宁第四高级中学月考)已知函数f (x )=⎩⎪⎨⎪⎧-x 2+x ,x ≤1,log 0.5x ,x >1.若对于任意x ∈R ,不等式f (x )≤t 24-t +1恒成立,则实数t 的取值范围是________.8.定义在R 上的函数f (x )既是奇函数,又是周期函数,T 是它的一个正周期,若将该函数在区间[-T ,T ]上的零点个数记为n ,则n =________.9.已知y =f (x )在(0,2)上是增函数,y =f (x +2)是偶函数,则f (1),f (52),f (72)的大小关系是____________.(用“<”连接)10.若关于x 的方程22x-2xa +a +1=0有两个不同的正实根,则实数a 的取值范围为________.11.(2015·四川成都新都一中月考)已知函数f (x )=⎩⎪⎨⎪⎧x -2,x >0,-x 2+bx +c ,x ≤0满足f (0)=1,且有f (0)+2f (-1)=0,那么函数g (x )=f (x )+x 的零点有________个.12.定义在R 上的偶函数f (x )满足f (x +1)=-f (x )且f (x )在[-1,0]上是增函数,给出下列四个命题: ①f (x )是周期函数;②f (x )的图象关于直线x =1对称; ③f (x )在[1,2]上是减函数; ④f (2)=f (0).其中正确命题的序号是________.(请把正确命题的序号全部写出来)13.设偶函数f (x )的定义域为R ,当x ∈[0,+∞)时,f (x )是增函数,则f (-2),f (π),f (-3)的大小关系是________.14.已知f (x )=|log a |x -1||(a >0,a ≠1),若x 1<x 2<x 3<x 4,且f (x 1)=f (x 2)=f (x 3)=f (x 4),则1x 1+1x 2+1x 3+1x 4=________.答案解析1.⎝ ⎛⎭⎪⎫-12,0 2.④ 3.m <a <b <n 4.(2,3] 5.16 6.17.(-∞,1]∪[3,+∞) 8.5 9.f (72)<f (1)<f (52)10.(2+22,+∞) 11.2 12.①②④13.f (π)>f (-3)>f (-2)解析∵f(x)是偶函数,∴f(-2)=f(2),f(-3)=f(3),又∵f(x)在[0,+∞)上是增函数,∴f(2)<f(3)<f(π),即f(π)>f(-3)>f(-2).14.2解析如图所示,f(x1)=f(x2)=f(x3)=f(x4),即|log a|x1-1||=|log a|x2-1||=|log a|x3-1||=|log a|x4-1||,因为x1<0,0<x2<1,所以1-x1>1,0<1-x2<1,所以log a|x1-1|+log a|x2-1|=0,即log a(1-x1)+log a(1-x2)=0,即(1-x1)(1-x2)=1,x1x2-(x1+x2)=0,所以1x1+1x2=1.同理可得1x3+1x4=1,所以1x1+1x2+1x3+1x4=2.。

【步步高】2017版高考数学一轮复习 第二章 函数概念与基本初等函数I 2.6 对数与对数函数课件 理

【步步高】2017版高考数学一轮复习 第二章 函数概念与基本初等函数I 2.6 对数与对数函数课件 理

解得1≤a<2,即a∈[1,2).
解析答案
log2x, x>0, (3)设函数 f(x)= 若 f(a)>f(-a),则实数 a 的取值范围 log 1 (-x),x 0,
(-1,0)∪(1,+∞) 是__________________.
2
解析
a>0, a<0, 由题意可得 或 log 2 a log 1 a log 1 (-a ) log 2 (-a ),
解析答案
题型二
对数函数的图象及应用
③ 填序号) 例2 (1)函数y=2log4(1-x)的图象大致是___.(
解析 函数y=2log4(1-x)的定义域为(-∞,1),排除①、②; 又函数y=2log4(1-x)在定义域内单调递减,排除④. 故③正确.
解析答案
2 1 ( 2 ,1) x (2)当 0<x≤ 时,4 <logax,则 a 的取值范围是________. 2
1-2log63+log632+1-log632 = log 4
6
21-log63 log66-log63 log62 = 2log 2 = = = 1. log 2 log 2
6 6 6
解析答案
12 (2)已知loga2=m,loga3=n,则a2m+n=___.
解析 ∵loga2=m,loga3=n, ∴am=2,an=3, ∴a2m+n=(am)2· an=22×3=12.
1
2
3
4
5
解析答案
解析
易知函数定义域为(-1,1),f(-x)=ln(1-x)-ln(1+x)=-f(x),
故函数f(x)为奇函数,
1+x 2 又 f(x)=ln =ln-1-x-1, 1-x

高考数学 专题2 函数概念与基本初等函数 9 函数性质的

高考数学 专题2 函数概念与基本初等函数 9 函数性质的

【步步高】(江苏专用)2017版高考数学 专题2 函数概念与基本初等函数 9 函数性质的应用 理①y =x +1;②y =-x 3;③y =1x;④y =x |x |.2.(2015·黄冈调研)定义在R 上的函数f (x )满足f (-x )+f (x )=0,f (x )=f (x +4),且x ∈(-2,0)时,f (x )=2x+15,则f (log 220)=________.3.已知函数f (x )=⎩⎪⎨⎪⎧x 2+1,x >0,cos x ,x ≤0,则下列结论正确的是________.①f (x )是偶函数;②f (x )是增函数;③f (x )是周期函数;④f (x )的值域为[-1,+∞). 4.若f (x )和g (x )都是奇函数,且F (x )=f (x )+g (x )+2在(0,+∞)上有最大值8,则在(-∞,0)上F (x )有最______值,为________. 5.设x >y >1,0<a <1,则下列关系正确的是________. ①x -a>y -a;②ax <ay ;③a x <a y;④log a x >log a y .6.若定义运算a ⊙b =⎩⎪⎨⎪⎧b ,a ≥b ,a ,a <b ,则函数f (x )=x ⊙(2-x )的值域为________.7.(2015·四川成都七中零诊)对于函数f (x ),若存在常数a ≠0,使得x 取定义域内的每一个值,都有f (x )=f (2a -x ),则称f (x )为准偶函数,下列函数中是准偶函数的是________. ①f (x )=cos(x +1);②f (x )=x ;③f (x )=tan x ;④f (x )=x 3.8.(2015·安徽庐江部分示范高中第三次联考)定义域为R 的函数f (x )满足f (x +1)=2f (x ),且当x ∈[0,1]时,f (x )=x 2-x ,则当x ∈[-1,0)时,f (x )的最小值为________. 9.已知函数y =f (x )是定义在R 上的奇函数,当x <0,f (x )=x +2,那么不等式2f (x )-1<0的解集是________________.10.(2015·广州综合测试一)已知幂函数f (x )=x -m 2-2m +3(m ∈Z )为偶函数,且在区间(0,+∞)上是单调增函数,则f (2)的值为________.11.定义在R 上的函数f (x )满足f (x +32)+f (x )=0,且函数y =f (x -34)为奇函数,给出下列命题:①函数f (x )的最小正周期是32;②函数y =f (x )的图象关于点(-34,0)对称;③函数y =f (x )的图象关于y 轴对称. 其中真命题的个数是________.12.已知偶函数f (x )在区间[0,+∞)上单调递增,则满足f (2x )<f ⎝ ⎛⎭⎪⎫13的x 的取值范围是________.13.已知定义在R 上的偶函数y =f (x )满足:f (x +4)=f (x )+f (2),且当x ∈[0,2]时,y =f (x )单调递减,给出以下四个命题:①f (2)=0;②直线x =-4为函数y =f (x )图象的一条对称轴; ③函数y =f (x )在[8,10]上单调递增;④若关于x 的方程f (x )=m 在[-6,-2]上的两根分别为x 1,x 2,则x 1+x 2=-8. 其中所有正确命题的序号为________.14.(2015·湖北武汉部分学校毕业生2月调研)已知函数f (x )=a log 2|x |+1(a ≠0),定义函数F (x )=⎩⎪⎨⎪⎧f x ,x >0,-fx ,x <0,给出下列命题:①F (x )=|f (x )|; ②函数F (x )是奇函数;③当a >0时,若x 1x 2<0,x 1+x 2>0,则F (x 1)+F (x 2)>0成立; ④当a <0时,函数y =F (x 2-2x -3)存在最大值,不存在最小值. 其中所有正确命题的序号是________.答案解析1.④解析 易知y =x |x |为奇函数,图象如下:从图知y =x |x |为增函数. 2.-1解析 ∵f (-x )+f (x )=0,即f (-x )=-f (x ), ∴定义在R 上的函数f (x )是奇函数. ∵4=log 216<log 220<log 232=5,∴f (log 220)=f (log 220-4)=f (log 254)=-f (-log 254)=-f (log 245),∵-2<log 245<0,∴f (log 245)=2log 245+15=1,∴f (log 220)=-1. 3.④解析 因为f (π)=π2+1,f (-π)=-1,所以f (-π)≠f (π),所以函数f (x )不是偶函数,排除A ;因为函数f (x )在(-2π,-π)上单调递减,排除B ;函数f (x )在(0,+∞)上单调递增,所以函数f (x )不是周期函数,排除C ;因为x >0时,f (x )>1,x ≤0时,-1≤f (x )≤1,所以函数f (x )的值域为[-1,+∞). 4.-4解析 由题意知f (x )+g (x )在(0,+∞)上有最大值6,因为f (x )和g (x )都是奇函数,所以f (-x )+g (-x )=-f (x )-g (x )=-[f (x )+g (x )], 即f (x )+g (x )也是奇函数,所以f (x )+g (x )在(-∞,0)上有最小值-6,所以F (x )=f (x )+g (x )+2在(-∞,0)上有最小值-4. 5.③解析 对于①,-a <0,幂函数f (x )=x -a在(0,+∞)上是减函数,所以x -a<y -a,故①不正确;对于②,x >y >1,又a >0,利用不等式的性质得ax >ay ,故②不正确;易知③正确;对于④,因为0<a <1,所以函数f (x )=log a x 在(1,+∞)上是减函数,又x >y >1,所以log a x <log a y ,故④不正确. 6.(-∞,1]解析 由题意知x ⊙(2-x )表示x 与2-x 两者中的较小者,借助y =x 与y =2-x 的图象,不难得出f (x )的值域为(-∞,1]. 7.①解析 对于函数f (x ),若存在常数a ≠0,使得x 取定义域内的每一个值,都有f (x )=f (2a -x ),则称f (x )为准偶函数,∴函数的对称轴是直线x =a ,a ≠0,②③④中,函数没有对称轴;函数f (x )=cos(x +1),有对称轴,且x =0不是对称轴,①正确. 8.-18解析 当x ∈[-1,0)时,x +1∈[0,1). ∵f (x +1)=2f (x ),∴f (x )=12f (x +1)=12[(x +1)2-(x +1)]=12(x 2+x ),其图象的对称轴为直线x =-12,∴f (x )min =f (-12)=-18.9.{x |x <-32或0≤x <52}解析 由题意知,函数y =f (x )的定义域是R ,当x <0时,f (x )=x +2,则当x >0时,-x <0,所以f (-x )=-x +2,又函数y =f (x )为定义在R 上的奇函数,所以f (x )=-f (-x )=x -2,即f (x )=⎩⎪⎨⎪⎧x +2,x <0,0,x =0,x -2,x >0,因此不等式2f (x )-1<0等价于⎩⎪⎨⎪⎧x <0,x +2<12或⎩⎪⎨⎪⎧x =0,0<12或⎩⎪⎨⎪⎧x >0,x -2<12.解得x <-32或0≤x <52.10.16解析 因为幂函数f (x )在区间(0,+∞)上是单调增函数,所以-m 2-2m +3>0,解得-3<m <1,因为m ∈Z ,所以m =-2或m =-1或m =0.因为幂函数f (x )为偶函数,所以-m 2-2m +3是偶数,当m =-2时,-m 2-2m +3=3,不符合,舍去;当m =-1时,-m 2-2m +3=4;当m =0时,-m 2-2m +3=3,不符合,舍去.所以f (x )=x 4,故f (2)=24=16. 11.2解析 由题意可得f (x +3)=-f (x +32)=f (x ),则函数f (x )是周期函数,且其最小正周期为3,故①错误;由y =f (x -34)是奇函数,可知其图象关于原点(0,0)对称,又函数y =f(x -34)的图象向左平移34个单位长度可得函数y =f (x )的图象,则函数f (x )的图象关于点(-34,0)对称,故②正确;由②知,对于任意的x ∈R ,都有f (-34-x )=-f (-34+x ),用34+x 代换x ,可得f (-32-x )+f (x )=0,所以f (-32-x )=-f (x )=f (x +32)对于任意的x ∈R都成立,令t =32+x ,得f (-t )=f (t ),则函数f (x )是偶函数,其图象关于y 轴对称,故③正确.综上可知,真命题的个数是2.12.⎝ ⎛⎭⎪⎫-16,16 解析 偶函数满足f (x )=f (|x |),根据这个结论,有f (2x )<f ⎝ ⎛⎭⎪⎫13⇔f (|2x |)<f ⎝ ⎛⎭⎪⎫13, 进而转化为不等式|2x |<13,解这个不等式即得x 的取值范围是⎝ ⎛⎭⎪⎫-16,16.13.①②④解析 对于①,∵f (x +4)=f (x )+f (2),∴当x =-2时,f (-2+4)=f (-2)+f (2),∴f (-2)=0,又f (x )是偶函数,∴f (2)=0,∴①正确;对于②,∵f (x +4)=f (x )+f (2),f (2)=0,∴f (x +4)=f (x ),∴函数y =f (x )的周期T =4,又直线x =0是函数y =f (x )图象的对称轴,∴直线x =-4也为函数y =f (x )图象的一条对称轴,∴②正确;对于③,∵函数f (x )的周期是4,∴y =f (x )在[8,10]上的单调性与[0,2]上的单调性相同,∴y =f (x )在[8,10]上单调递减,∴③错误;对于④,∵直线x =-4是函数y =f (x )图象的对称轴,∴x 1+x 22=-4,x 1+x 2=-8,∴④正确.14.②③解析 ①因为|f (x )|=⎩⎪⎨⎪⎧f x ,|x |≥2-1a,-f x ,0<|x |<2-1a,而F (x )=⎩⎪⎨⎪⎧f x,x >0,-f x ,x <0,这两个函数的定义域不同,不是同一函数,即F (x )=|f (x )|不成立,①错误.②当x >0时,F (x )=f (x )=a log 2|x |+1,-x <0,F (-x )=-f (-x )=-(a log 2|-x |+1)=-(a log 2|x |+1)=-F (x );当x <0时,F (x )=-f (x )=-(a log 2|x |+1),-x >0,F (-x )=f (-x )=a log 2|-x |+1=a log 2|x |+1=-F (x ).所以函数F (x )是奇函数,②正确.③当a >0时,F (x )=f (x )=a log 2|x |+1在(0,+∞)上是单调增函数.若x 1x 2<0,x 1+x 2>0,不妨设x 1>0,则x 2<0,x 1>-x 2>0,所以F (x 1)>F (-x 2)>0,又因为函数F (x )是奇函数,-F (x 2)=F (-x 2),所以F (x 1)+F (x 2)>0,③正确.④函数y =F (x 2-2x -3)=⎩⎪⎨⎪⎧a log 2x 2-2x -3+1,x >3或x <-1,-a log 2-x 2+2x +3-1,-1<x <3,当x >3或x <-1时,因为a <0,所以y =F (x 2-2x -3)既没最大值,也没最小值,即函数y =F (x 2-2x -3)的值域为(-∞,+∞),故④错误.综上知,答案为②③.。

2017版大一轮复习题组训练第二章函数与基本初等函数题组13 含解析

2017版大一轮复习题组训练第二章函数与基本初等函数题组13 含解析

题组层级快练(十三)1.函数f(x)=x -4x 的零点个数是( )A .0B .1C .2D .无数个答案 C解析 令f(x)=0,解x -4x=0,即x 2-4=0,且x ≠0,则x =±2.2.(2016·湖南株洲质检一)设数列{a n }是等比数列,函数y =x 2-x -2的两个零点是a 2,a 3,则a 1a 4=( ) A .2 B .1 C .-1 D .-2 答案 D解析 因为函数y =x 2-x -2的两个零点是a 2,a 3,所以a 2a 3=-2,由等比数列性质可知a 1a 4=a 2a 3=-2.故选D.3.(2016·东北师大附中)函数f(x)=lnx -x -a 有两个不同的零点,则实数a 的取值范围是( )A .(-∞,-1]B .(-∞,-1)C .[-1,+∞)D .(-1,+∞) 答案 B解析 函数f(x)=lnx -x -a 的零点,即关于x 的方程lnx -x -a =0的实根,将方程lnx -x -a =0化为方程lnx =x +a ,令y 1=lnx ,y 2=x +a ,由导数知识可知,直线y 2=x +a 与曲线y 1=lnx 相切时有a =-1,若关于x 的方程lnx -x -a =0有两个不同的实根,则实数a 的取值范围是(-∞,-1).故选B.4.(2016·沧州七校联考)给定方程(12)x +sinx -1=0,有下列四个命题:p 1:该方程没有小于0的实数解; p 2:该方程有有限个实数解;p 3:该方程在(-∞,0)内有且只有一个实数解; p 4:若x 0是该方程的实数解,则x 0>-1. 其中的真命题是( )A .p 1,p 3B .p 2,p 3C .p 1,p 4D .p 3,p 4答案 D解析 由(12)x +sinx -1=0,得sinx =1-(12)x ,令f(x)=sinx ,g(x)=1-(12)x ,在同一坐标系中画出两函数的图像如图,由图像知:p 1错,p 3,p 4对,而由于g(x)=1-(12)x 递增,小于1,且以直线y =1为渐近线,f(x)=sinx 在-1到1之间振荡,故在区间(0,+∞)上,两者的图像有无穷多个交点,所以p 2错,故选D.5.函数f(x)=⎩⎪⎨⎪⎧lnx -x 2+2x (x>0),2x +1 (x ≤0)的零点个数为( )A .0B .1C .2D .3答案 D解析 依题意,在考虑x>0时可以画出y =lnx 与y =x 2-2x 的图像,可知两个函数的图像有两个交点,当x ≤0时,函数f(x)=2x +1与x 轴只有一个交点,所以函数f(x)有3个零点.故选D.6.函数f(x)=x -cosx 在[0,+∞)内( ) A .没有零点 B .有且仅有一个零点 C .有且仅有两个零点 D .有无穷多个零点答案 B解析 原函数f(x)=x -cosx 可理解为幂函数x 12与余弦函数的差,其中幂函数在区间[0,+∞)上单调递增、余弦函数的最大值为1,在同一坐标系内构建两个函数的图像,注意到余弦从左到右的第2个最高点是x =2π,且2π>1=cos2π,不难发现交点仅有一个.正确选项为B.7.(2016·东城区期末)已知x 0是函数f(x)=2x +11-x 的一个零点.若x 1∈(1,x 0),x 2∈(x 0,+∞),则( ) A .f(x 1)<0,f(x 2)<0 B .f(x 1)<0,f(x 2)>0 C .f(x 1)>0,f(x 2)<0 D .f(x 1)>0,f(x 2)>0答案 B解析 设g(x)=11-x ,由于函数g(x)=11-x =-1x -1在(1,+∞)上单调递增,函数h(x)=2x在(1,+∞)上单调递增,故函数f(x)=h(x)+g(x)在(1,+∞)上单调递增,所以函数f(x)在(1,+∞)上只有唯一的零点x 0,且在(1,x 0)上f(x 1)<0,在(x 0,+∞)上f(x 2)>0,故选B. 8.(2016·湖北襄阳一中期中)已知a 是函数f(x)=2x -log 12x 的零点.若0<x 0<a ,则f(x 0)的值满足( ) A .f(x 0)<0 B .f(x 0)=0C .f(x 0)>0D .f(x 0)的符号不确定答案 A解析 因为函数f(x)=2x -log 12x 在(0,+∞)上是增函数,a 是函数f(x)=2x -log 12x 的零点,即f(a)=0,所以当0<x 0<a 时,f(x 0)<f(a)=0.故选A.9.已知函数f(x)=e x +x ,g(x)=lnx +x ,h(x)=lnx -1的零点依次为a ,b ,c ,则( ) A .a<b<c B .c<b<a C .c<a<b D .b<a<c答案 A解析 ∵e a =-a ,∴a<0.∵lnb =-b ,且b>0,∴0<b<1.∵lnc =1,∴c =e>1,故选A. 10. (2016·郑州质检)函数f(x)=lnx -1x -1的零点的个数是( ) A .0 B .1 C .2 D .3 答案 C 解析 y =1x -1与y =lnx 的图像有两个交点. 11.若函数f(x)=xlnx -a 有两个零点,则实数a 的取值范围为( ) A .[0,1e )B .(0,1e )C .(0,1e ]D .(-1e,0)答案 D解析 令g(x)=xlnx ,h(x)=a ,则问题可转化成函数g(x)与h(x)的图像有两个交点.g ′(x)=lnx +1,令g ′(x)<0,即lnx<-1,可解得0<x<1e ;令g ′(x)>0,即lnx>-1,可解得x>1e ,所以,当0<x<1e 时,函数g(x)单调递减;当x>1e 时,函数g(x)单调递增,由此可知当x =1e 时,g(x)min =-1e .在同一坐标系中作出函数g(x)和h(x)的简图如图所示,据图可得-1e<a<0.12.若函数f(x)=2x -2x -a 的一个零点在区间(1,2)内,则实数a 的取值范围是( )A .(1,3)B .(1,2)C .(0,3)D .(0,2)答案 C解析 由条件可知f(1)f(2)<0,即(2-2-a)(4-1-a)<0,即a(a -3)<0,解之得0<a<3. 13.函数f(x)=log 2x +x -4的零点所在的区间是( ) A .(12,1)B .(1,2)C .(2,3)D .(3,4) 答案 C解析 因为f(2)=log 22+2-4=-1<0,f(3)=log 23-1>0,所以f(2)·f(3)<0,故函数f(x)的零点所在的一个区间为(2,3),选C.14.若函数y =f(x)(x ∈R )满足f(x +2)=f(x)且x ∈[-1,1]时,f(x)=1-x 2,函数g(x)=⎩⎪⎨⎪⎧lgx ,x>0,-1x ,x<0,则函数h(x)=f(x)-g(x)在区间[-5,5]内的零点的个数为( ) A .7 B .8 C .9 D .10 答案 B解析 当x ∈[-1,1]时,y =f(x)的图像是一段开口向下的抛物线,y =f(x)的最大值为1.∵f(x +2)=f(x),∴f(x)是以2为周期的周期函数.f(x)和g(x)在[-5,5]内的图像如图所示,有8个交点,所以函数h(x)有8个零点.15.(2016·郑州质检)设函数f(x)=e x +2x -4,g(x)=lnx +2x 2-5,若实数a ,b 分别是f(x),g(x)的零点,则( ) A .g(a)<0<f(b)B .f(b)<0<g(a)C .0<g(a)<f(b)D .f(b)<g(a)<0答案 A解析 依题意,f(0)=-3<0,f(1)=e -2>0,且函数f(x)是增函数,因此函数f(x)的零点在区间(0,1)内,即0<a<1.g(1)=-3<0,g(2)=ln2+3>0,函数g(x)的零点在区间(1,2)内,即1<b<2,于是有f(b)>f(1)>0.又函数g(x)在(0,1)内是增函数,因此有g(a)<g(1)<0,g(a)<0<f(b),选A. 16.函数y =11-x的图像与函数y =2sin πx(-2≤x ≤4)的图像所有交点的横坐标之和等于 ( )A .2B .4C .6D .8答案 D解析 如图,两个函数图像都关于点(1,0)成中心对称,两个图像在[-2,4]上共8个公共点,每两个对应交点横坐标之和为2,故所有交点的横坐标之和为8.17.(2016·东营模拟)已知[x]表示不超过实数x 的最大整数,如[1.8]=1,[-1.2]=-2.x 0是函数f(x)=lnx -2x 的零点,则[x 0]等于________.答案 21.(2016·衡水调研卷)方程|x 2-2x|=a 2+1(a>0)的解的个数是( ) A .1 B .2 C .3 D .4答案 B解析 (数形结合法) ∵a>0,∴a 2+1>1. 而y =|x 2-2x|的图像如图,∴y =|x 2-2x|的图像与y =a 2+1的图像总有两个交点.2.(2016·成都新都区测试)函数f(x)=10x +x -7与g(x)=lgx +x -7的零点分别为x 1和x 2,则x 1+x 2=________. 答案 7解析 x 1和x 2分别对应方程10x =7-x 和方程lgx =7-x 的根,令f(x)=10x ,g(x)=lgx ,y =7-x ,画图如下:其中x 1是函数f(x)=10x 与y =7-x 图像的交点的横坐标,x 2是函数g(x)=lgx 与y =7-x 的图像的交点的横坐标,由于函数f(x)=10x 与g(x)=lgx 的图像关于y =x 对称,直线y =7-x 也关于y =x 对称,且直线y =7-x 与它们都只有一个交点,故这两个交点关于y =x 对称.又因为两个交点的中点是y =7-x 与y =x 的交点,即(72,72),所以x 1+x 2=7.3.设函数f(x)=⎩⎪⎨⎪⎧2x ,x ≤0,log 2x ,x>0,函数y =f[f(x)]-1的零点个数为________.答案 2解析 当x ≤0时,y =f[f(x)]-1=f(2x )-1=log 22x -1=x -1,令x -1=0,则x =1,表明此时y =f[f(x)]-1无零点.当x>0时,分两种情况:①当x>1时,log 2x>0,y =f[f(x)]-1=f(log 2x)-1=log 2(log 2x)-1,令log 2(log 2x)-1=0,即log 2(log 2x)=1,log 2x =2,解得x =4;②当0<x ≤1时,log 2x ≤0,y =f[f(x)]-1=f(log 2x)-1=2log 2x -1=x -1,令x -1=0,解得x =1,因此函数y =f[f(x)]-1的零点个数为2.4.已知f(x)是R 上最小正周期为2的周期函数,且当0≤x<2时,f(x)=x 3-x ,则函数y =f(x)的图像在区间[0,6]上与x 轴的交点的个数为________. 答案 7解析 当0≤x<2时,令f(x)=x 3-x =0, 得x =0或x =1,∵f(x +2)=f(x), ∴y =f(x)在[0,6)上有6个零点. 又f(6)=f(3×2)=f(0)=0,∴f(x)在[0,6]上与x 轴的交点个数为7.5.判断函数f(x)=4x +x 2-23x 3在区间[-1,1]上零点的个数,并说明理由.答案 有一个零点解析 ∵f(-1)=-4+1+23=-73<0,f(1)=4+1-23=133>0,∴f(x)在区间[-1,1]上有零点. 又f ′(x)=4+2x -2x 2=92-2(x -12)2,当-1≤x ≤1时,0≤f ′(x)≤92,∴f(x)在[-1,1]上是单调递增函数. ∴f(x)在[-1,1]上有且只有一个零点.。

【步步高】(江苏专用)2017版高考数学一轮复习 第二章 函数概念与基本初等函数I 2.1 函数及其表示课件 理

【步步高】(江苏专用)2017版高考数学一轮复习 第二章 函数概念与基本初等函数I 2.1 函数及其表示课件 理

解析答案
命题点3 已知定义域求参数范围
例 4 若函数 f x = 2 [-1,0] ________.
解析 所以 2 即 2
x 2+2 ax-a
x 2+2 ax-a
1的定义域为 R,则 a 的取值范围为
因为函数f(x)的定义域为R,
1 ≥0对x∈R恒成立,
20 , x2+2ax-a≥0恒成立,
类型 2n fx,n∈N*
x 满足的条件 f(x)≥0
f(x)≠0
1 与[ f(x)] 0 f x logaf(x)(a>0,a≠1) logf(x)g(x) tan f(x)
f(x)>0 f(x)>0,且f(x)≠1,g(x)>0
π f(x)≠kπ+ ,k∈Z 2
答案
思考辨析
判断下面结论是否正确(请在括号中打“√”或“×”) (1)对于函数f:A→B,其值域是集合B.( × ) (2)若两个函数的定义域与值域相同,则这两个函数是相等函数.( × ) (3)映射是特殊的函数.( × ) (4)若A=R,B={x|x>0},f:x→y=|x|,其对应是从A到B的映射.( × ) (5)分段函数是由两个或几个函数组成的.( × ) (6) 若 函 数 f(x) 的 定 义 域 为 {x|1≤x<3} , 则 函 数 f(2x - 1) 的 定 义 域 为 {x|1≤x<5}.( × )
解析答案
(3) 定义在 ( - 1,1) 内的函数 f(x) 满足 2f(x) - f( - x) = lg(x + 1) ,则 f(x) =
2 1 lg( x + 1) + lg(1 - x ) ( - 1< x <1) ____________________________. 3 3

【步步高】(江苏专用)2017版高考数学一轮复习第二章函数概念与基本初等函数I2.5指数与指数函数理

【步步高】(江苏专用)2017版高考数学一轮复习第二章函数概念与基本初等函数I2.5指数与指数函数理

【步步高】(江苏专用)2017版高考数学一轮复习第二章函数概念与基本初等函数I2.5指数与指数函数理1.分数指数幂(1)规定:正数的正分数指数幂的意义是正数的负分数指数幂的意义是0的正分数指数幂等于0;0的负分数指数幂没有意义.(2)有理数指数幂的运算性质:asat=as+t,(as)t=ast,(ab)t =atbt,其中a>0,b>0,s,t∈Q.2.指数函数的图象与性质【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)=()n=a.( ×)(2)分数指数幂可以理解为个a相乘.( ×)(3) ( ×)(4)函数y=a-x是R上的增函数.( ×)(5)函数 (a>1)的值域是(0,+∞).( ×)(6)函数y=2x-1是指数函数.( ×)1.若a=(2+)-1,b=(2-)-1,则(a+1)-2+(b+1)-2的值是________.答案解析∵a=(2+)-1=2-,b=(2-)-1=2+,∴(a+1)-2+(b+1)-2=(3-)-2+(3+)-2=+=.2.函数f(x)=ax-(a>0,a≠1)的图象可能是______.(填图象序号)答案④解析函数f(x)的图象恒过(-1,0)点,只有图象④适合.3.(教材改编)已知0.2m<0.2n,则m________n(填“>”或“<”).答案>解析设f(x)=0.2x,f(x)为减函数,由已知f(m)<f(n),∴m>n.4.若函数y=(a2-1)x在(-∞,+∞)上为减函数,则实数a的取值范围是________________.答案(-,-1)∪(1,)解析由y=(a2-1)x在(-∞,+∞)上为减函数,得0<a2-1<1,∴1<a2<2,即1<a<或-<a<-1.5.函数y=8-23-x(x≥0)的值域是________.答案[0,8)解析∵x≥0,∴-x≤0,∴3-x≤3,∴0<23-x≤23=8,∴0≤8-23-x<8,∴函数y=8-23-x的值域为[0,8).题型一指数幂的运算例1 化简:(1)(2)解(1)原式==(2)原式==+10-10-20+1=-.思维升华(1)指数幂的运算首先将根式、分数指数幂统一为分数指数幂,以便利用法则计算,还应注意:①必须同底数幂相乘,指数才能相加;②运算的先后顺序.(2)当底数是负数时,先确定符号,再把底数化为正数.(3)运算结果不能同时含有根号和分数指数,也不能既有分母又含有负指数.(1) _________________________.(2)=________.答案(1)0 (2)解析(1)原式=--1=--1=--1=0.(2)原式==.题型二指数函数的图象及应用例2 (1)函数f(x)=ax-b的图象如图所示,其中a,b为常数,则下列结论正确的是________.①a>1,b<0;②a>1,b>0;③0<a<1,b>0;④0<a<1,b<0.(2)若曲线|y|=2x+1与直线y=b没有公共点,则b的取值范围是________.答案(1)④(2)[-1,1]解析(1)由f(x)=ax-b的图象可以观察出,函数f(x)=ax-b在定义域上单调递减,所以0<a<1.函数f(x)=ax-b的图象是在f(x)=ax的基础上向左平移得到的,所以b<0.(2)曲线|y|=2x+1与直线y=b的图象如图所示,由图象可知:如果|y|=2x+1与直线y=b没有公共点,则b应满足的条件是b∈[-1,1].思维升华(1)已知函数解析式判断其图象一般是取特殊点,判断所给的图象是否过这些点,若不满足则排除.(2)对于有关指数型函数的图象问题,一般是从最基本的指数函数的图象入手,通过平移、伸缩、对称变换而得到.特别地,当底数a与1的大小关系不确定时应注意分类讨论.(3)有关指数方程、不等式问题的求解,往往利用相应的指数型函数图象,数形结合求解.(1)如图,面积为8的平行四边形OABC,对角线AC⊥CO,AC与BO交于点E.某指数函数y=ax (a>0,且a≠1)经过点E,B,则a=________.(2)已知函数f(x)=|2x-1|,a<b<c且f(a)>f(c)>f(b),则下列结论中,一定成立的是________.①a<0,b<0,c<0; ②a<0,b≥0,c>0;③2-a<2c; ④2a+2c<2.答案(1) (2)④解析(1)设点E(t,at),则点B坐标为(2t,2at).因为2at=a2t,所以at=2.因为平行四边形OABC的面积=OC×AC=at×2t=4t,又平行四边形OABC的面积为8,所以4t=8,t=2,所以a2=2,a=.(2)作出函数f(x)=|2x-1|的图象,如图,∵a<b<c,且f(a)>f(c)>f(b),结合图象知0<f(a)<1,a<0,c>0,∴0<2a<1.∴f(a)=|2a-1|=1-2a<1,∴f(c)<1,∴0<c<1.∴1<2c<2,∴f(c)=|2c-1|=2c-1,又∵f(a)>f(c),∴1-2a>2c-1,∴2a+2c<2.题型三指数函数的图象和性质命题点1 比较指数式的大小例3 (1)下列各式比较大小正确的是________.①1.72.5>1.73;②0.6-1>0.62;③0.8-0.1>1.250.2; ④1.70.3>0.93.1.(2)设则a,b,c的大小关系是________.答案(1)②④(2)a>c>b解析(1)①中,∵函数y=1.7x在R上是增函数,2.5<3,∴1.72.5<1.73,错误;②中,∵y=0.6x在R上是减函数,-1<2,∴0.6-1>0.62,正确;③中,∵(0.8)-1=1.25,∴问题转化为比较1.250.1与1.250.2的大小.∵y=1.25x在R上是增函数,0.1<0.2,∴1.250.1<1.250.2,即0.8-0.1<1.250.2,错误;④中,∵1.70.3>1,0<0.93.1<1,∴1.70.3>0.93.1,正确.(2)∵y=x为减函数,∴即b<c,又==>0=1,∴a>c,故a>c>b.命题点2 解简单的指数方程或不等式例4 设函数f(x)=若f(a)<1,则实数a的取值范围是__________.答案(-3,1)解析当a<0时,不等式f(a)<1可化为a-7<1,即a<8,即a<-3,因为0<<1,所以a>-3,此时-3<a<0;当a≥0时,不等式f(a)<1可化为<1,所以0≤a<1.故a的取值范围是(-3,1).命题点3 和指数函数有关的复合函数的性质例5 设函数f(x)=kax-a-x(a>0且a≠1)是定义域为R的奇函数.(1)若f(1)>0,试求不等式f(x2+2x)+f(x-4)>0的解集;(2)若f(1)=,且g(x)=a2x+a-2x-4f(x),求g(x)在[1,+∞)上的最小值.解因为f(x)是定义域为R的奇函数,所以f(0)=0,所以k-1=0,即k=1,f(x)=ax-a-x. (1)因为f(1)>0,所以a->0,又a>0且a≠1,所以a>1.因为f′(x)=axln a+a-xln a=(ax+a-x)ln a>0,所以f(x)在R上为增函数,原不等式可化为f(x2+2x)>f(4-x),所以x2+2x>4-x,即x2+3x-4>0,所以x>1或x<-4.所以不等式的解集为{x|x>1或x<-4}.(2)因为f(1)=,所以a-=,即2a2-3a-2=0,所以a=2或a=-(舍去).所以g(x)=22x+2-2x-4(2x-2-x)=(2x-2-x)2-4(2x-2-x)+2.令t(x)=2x-2-x(x≥1),则t(x)在(1,+∞)为增函数(由(1)可知),即t(x)≥t(1)=,所以原函数为ω(t)=t2-4t+2=(t-2)2-2,所以当t=2时,ω(t)min=-2,此时x=log2(1+).即g(x)在x=log2(1+)时取得最小值-2.思维升华指数函数的性质及应用问题解题策略(1)比较大小问题.常利用指数函数的单调性及中间值(0或1)法.(2)简单的指数方程或不等式的求解问题.解决此类问题应利用指数函数的单调性,要特别注意底数a的取值范围,并在必要时进行分类讨论.(3)解决指数函数的综合问题时,要把指数函数的概念和性质同函数的其他性质(如奇偶性、周期性)相结合,同时要特别注意底数不确定时,对底数的分类讨论.(1)已知函数f(x)=2|2x-m|(m为常数),若f(x)在区间[2,+∞)上是增函数,则m的取值范围是________.(2)如果函数y=a2x+2ax-1(a>0,a≠1)在区间[-1,1]上的最大值是14,则a的值为________.答案(1)(-∞,4] (2)或3解析(1)令t=|2x-m|,则t=|2x-m|在区间[,+∞)上单调递增,在区间(-∞,]上单调递减.而y=2t为R上的增函数,所以要使函数f(x)=2|2x-m|在[2,+∞)上单调递增,则有≤2,即m≤4,所以m的取值范围是(-∞,4].(2)令ax=t,则y=a2x+2ax-1=t2+2t-1=(t+1)2-2.当a>1时,因为x∈[-1,1],所以t∈[,a],又函数y=(t+1)2-2在上单调递增,所以ymax=(a+1)2-2=14,解得a=3(负值舍去).当0<a<1时,因为x∈[-1,1],所以t∈[a,],又函数y=(t+1)2-2在[a,]上单调递增,则ymax=(+1)2-2=14,解得a=(负值舍去).综上知a=3或a=.4.换元法在和指数函数有关的复合函数中的应用典例(1)函数y=x-x+1在区间[-3,2]上的值域是________.(2)函数的单调减区间为_____________________________________.思维点拨(1)求函数值域,可利用换元法,设t=x,将原函数的值域转化为关于t的二次函数的值域.(2)根据复合函数的单调性“同增异减”进行探求.解析(1)因为x∈[-3,2],所以若令t=x,则t∈,故y=t2-t+1=2+.当t=时,ymin=;当t=8时,ymax=57.故所求函数值域为.(2)设u=-x2+2x+1,∵y=u在R上为减函数,∴函数的减区间即为函数u=-x2+2x+1的增区间.又u=-x2+2x+1的增区间为(-∞,1],∴f(x)的减区间为(-∞,1].答案(1) (2)(-∞,1]温馨提醒(1)解决和指数函数有关的复合函数的单调性或值域问题时,要熟练掌握指数函数的单调性,搞清复合函数的结构,利用换元法转化为基本初等函数的单调性或值域问题;(2)换元过程中要注意“元”的取值范围的变化.[方法与技巧]1.通过指数函数图象比较底数大小的问题,可以先通过令x=1得到底数的值,再进行比较.2.指数函数y=ax (a>0,a≠1)的性质和a的取值有关,一定要分清a>1与0<a<1.3.对与复合函数有关的问题,要弄清复合函数由哪些基本初等函数复合而成.[失误与防范]1.恒成立问题一般与函数最值有关,要与方程有解区别开来.2.复合函数的问题,一定要注意函数的定义域.3.对可化为a2x+b·ax+c=0或a2x+b·ax+c≥0(≤0)形式的方程或不等式,常借助换元法解决,但应注意换元后“新元”的范围.A组专项基础训练(时间:40分钟)1.函数f(x)=ax-2+1(a>0且a≠1)的图象经过定点的坐标为__________.答案(2,2)解析∵a0=1,∴f(2)=2,故f(x)的图象必过点(2,2).2.已知a=22.5,b=2.50,c=()2.5,则a,b,c的大小关系是__________.答案a>b>c解析a>20=1,b=1,c<()0=1,∴a>b>c.3.若函数f(x)=a|2x-4|(a>0,a≠1),满足f(1)=,则f(x)的单调递减区间是____________.答案[2,+∞)解析由f(1)=得a2=,所以a=或a=-(舍去),即f(x)=()|2x-4|.由于y=|2x-4|在(-∞,2]上递减,在[2,+∞)上递增,所以f(x)在(-∞,2]上递增,在[2,+∞)上递减.4.若关于x的方程|ax-1|=2a (a>0且a≠1)有两个不等实根,则a的取值范围是__________.答案解析方程|ax-1|=2a (a>0且a≠1)有两个实数根转化为函数y=|ax-1|与y=2a有两个交点.①当0<a<1时,如图(1),∴0<2a<1,即0<a<.②当a>1时,如图(2),而y=2a>1不符合要求.综上,0<a<.5.计算:×0+8×-=________.答案2解析原式=6.已知函数y=ax+b (b>0)的图象经过点P(1,3),如图所示,则+的最小值为______.答案解析由函数y=ax+b (b>0)的图象经过点P(1,3),得a+b=3,所以+=1,又a>1,则+==2+++≥+2=,当且仅当=,即a=,b=时取等号,所以+的最小值为.7.已知正数a满足a2-2a-3=0,函数f(x)=ax,若实数m、n满足f(m)>f(n),则m、n的大小关系为________.答案m>n解析∵a2-2a-3=0,∴a=3或a=-1(舍).函数f(x)=3x在R上递增,由f(m)>f(n),得m>n.8.已知函数f(x)=2x-,函数g(x)=则函数g(x)的最小值是________.答案0解析当x≥0时,g(x)=f(x)=2x-为单调增函数,所以g(x)≥g(0)=0;当x<0时,g(x)=f(-x)=2-x-为单调减函数,所以g(x)>g(0)=0,所以函数g(x)的最小值是0.9.已知函数(1)若a=-1,求f(x)的单调区间;(2)若f(x)有最大值3,求a的值.解(1)当a=-1时,令g(x)=-x2-4x+3,由于g(x)在(-∞,-2]上单调递增,在(-2,+∞)上单调递减,而y=t在R上单调递减,所以f(x)在(-∞,-2]上单调递减,在(-2,+∞)上单调递增,即函数f(x)的单调递增区间是(-2,+∞),单调递减区间是(-∞,-2].(2)令g(x)=ax2-4x+3,f(x)=g(x),由于f(x)有最大值3,所以g(x)应有最小值-1,因此必有解得a=1,即当f(x)有最大值3时,a的值为1.10.已知函数f(x)=ex-e-x(x∈R,且e为自然对数的底数).(1)判断函数f(x)的单调性与奇偶性;(2)是否存在实数t,使不等式f(x-t)+f(x2-t2)≥0对一切x∈R 都成立?若存在,求出t;若不存在,请说明理由.解(1)∵f(x)=ex-x,∴f′(x)=ex+x,∴f′(x)>0对任意x∈R都成立,∴f(x)在R上是增函数.∴f(x)的定义域为R,且f(-x)=e-x-ex=-f(x),∴f(x)是奇函数.(2)存在.由(1)知f(x)在R上是增函数和奇函数,则f(x-t)+f(x2-t2)≥0对一切x∈R都成立,⇔f(x2-t2)≥f(t-x)对一切x∈R都成立,⇔x2-t2≥t-x对一切x∈R都成立,⇔t2+t≤x2+x=2-对一切x∈R都成立,⇔t2+t≤(x2+x)min=-⇔t2+t+=2≤0,又2≥0,∴2=0,∴t=-.∴存在t=-,使不等式f(x-t)+f(x2-t2)≥0对一切x∈R都成立.B组专项能力提升(时间:20分钟)11.函数f(x)=a|x+1|(a>0,a≠1)的值域为[1,+∞),则f(-4)与f(1)的大小关系是____________.答案f(-4)>f(1)解析由题意知a>1,∴f(-4)=a3,f(1)=a2,由单调性知a3>a2,∴f(-4)>f(1).12.已知实数a,b满足等式a=b,下列五个关系式:①0<b<a;②a<b<0;③0<a<b;④b<a<0;⑤a=b.其中不可能成立的关系式有________个.答案2解析函数y1=x与y2=x的图象如图所示.由a=b得a<b<0或0<b<a或a=b=0.故①②⑤可能成立,③④不可能成立.13.关于x的方程x=有负数根,则实数a的取值范围为__________.答案解析由题意,得x<0,所以0<x<1,从而0<<1,解得-<a<.14.当x∈(-∞,-1]时,不等式(m2-m)·4x-2x<0恒成立,则实数m的取值范围是________.答案(-1,2)解析原不等式变形为m2-m<x,因为函数y=x在(-∞,-1]上是减函数,所以x≥-1=2,当x∈(-∞,-1]时,m2-m<x恒成立等价于m2-m<2,解得-1<m<2.15.已知定义在实数集R上的奇函数f(x)有最小正周期2,且当x∈(0,1)时,f(x)=.(1)求函数f(x)在(-1,1)上的解析式;(2)判断f(x)在(0,1)上的单调性;(3)当λ取何值时,方程f(x)=λ在(-1,1)上有实数解?解(1)∵f(x)是x∈R上的奇函数,∴f(0)=0.设x∈(-1,0),则-x∈(0,1),f(-x)===-f(x),∴f(x)=-,∴f(x)=(2)设0<x1<x2<1,f(x1)-f(x2)==,∵0<x1<x2<1,∴f(x1)-f(x2)>0,∴f(x)在(0,1)上为减函数.(3)∵f(x)在(0,1)上为减函数,∴<f(x)<,即f(x)∈.同理,f(x)在(-1,0)上时,f(x)∈.又f(0)=0,当λ∈∪,或λ=0时,方程f(x)=λ在x∈(-1,1)上有实数解.【步步高】(江苏专用)2017版高考数学一轮复习第二章函数概念与基本初等函数I2.5指数与指数函数理1.分数指数幂(1)规定:正数的正分数指数幂的意义是正数的负分数指数幂的意义是0的正分数指数幂等于0;0的负分数指数幂没有意义. (2)有理数指数幂的运算性质:asat =as +t ,(as)t =ast ,(ab)t =atbt ,其中a>0,b>0,s ,t∈Q.2.指数函数的图象与性质【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)=()n =a.( × )(2)分数指数幂可以理解为个a 相乘.( × )(3) ( ×)(4)函数y=a-x是R上的增函数.( ×)(5)函数 (a>1)的值域是(0,+∞).( ×)(6)函数y=2x-1是指数函数.( ×)1.若a=(2+)-1,b=(2-)-1,则(a+1)-2+(b+1)-2的值是________.答案解析∵a=(2+)-1=2-,b=(2-)-1=2+,∴(a+1)-2+(b+1)-2=(3-)-2+(3+)-2=+=.2.函数f(x)=ax-(a>0,a≠1)的图象可能是______.(填图象序号)答案④解析函数f(x)的图象恒过(-1,0)点,只有图象④适合.3.(教材改编)已知0.2m<0.2n,则m________n(填“>”或“<”).答案>解析设f(x)=0.2x,f(x)为减函数,由已知f(m)<f(n),∴m>n.4.若函数y=(a2-1)x在(-∞,+∞)上为减函数,则实数a的取值范围是________________.答案(-,-1)∪(1,)解析由y=(a2-1)x在(-∞,+∞)上为减函数,得0<a2-1<1,∴1<a2<2,即1<a<或-<a<-1.5.函数y=8-23-x(x≥0)的值域是________.答案[0,8)解析∵x≥0,∴-x≤0,∴3-x≤3,∴0<23-x≤23=8,∴0≤8-23-x<8,∴函数y=8-23-x的值域为[0,8).题型一指数幂的运算例1 化简:(1)(2)解(1)原式==(2)原式==+10-10-20+1=-.思维升华(1)指数幂的运算首先将根式、分数指数幂统一为分数指数幂,以便利用法则计算,还应注意:①必须同底数幂相乘,指数才能相加;②运算的先后顺序.(2)当底数是负数时,先确定符号,再把底数化为正数.(3)运算结果不能同时含有根号和分数指数,也不能既有分母又含有负指数.(1) _________________________.(2)=________.答案(1)0 (2)解析(1)原式=--1=--1=--1=0.(2)原式==.题型二指数函数的图象及应用例2 (1)函数f(x)=ax-b的图象如图所示,其中a,b为常数,则下列结论正确的是________.①a>1,b<0;②a>1,b>0;③0<a<1,b>0;④0<a<1,b<0.(2)若曲线|y|=2x+1与直线y=b没有公共点,则b的取值范围是________.答案(1)④(2)[-1,1]解析(1)由f(x)=ax-b的图象可以观察出,函数f(x)=ax-b在定义域上单调递减,所以0<a<1.函数f(x)=ax-b的图象是在f(x)=ax的基础上向左平移得到的,所以b<0.(2)曲线|y|=2x+1与直线y=b的图象如图所示,由图象可知:如果|y|=2x+1与直线y=b没有公共点,则b应满足的条件是b∈[-1,1].思维升华(1)已知函数解析式判断其图象一般是取特殊点,判断所给的图象是否过这些点,若不满足则排除.(2)对于有关指数型函数的图象问题,一般是从最基本的指数函数的图象入手,通过平移、伸缩、对称变换而得到.特别地,当底数a与1的大小关系不确定时应注意分类讨论.(3)有关指数方程、不等式问题的求解,往往利用相应的指数型函数图象,数形结合求解.(1)如图,面积为8的平行四边形OABC,对角线AC⊥CO,AC与BO交于点E.某指数函数y=ax (a>0,且a≠1)经过点E,B,则a=________.(2)已知函数f(x)=|2x-1|,a<b<c且f(a)>f(c)>f(b),则下列结论中,一定成立的是________.①a<0,b<0,c<0; ②a<0,b≥0,c>0;③2-a<2c; ④2a+2c<2.答案(1) (2)④解析(1)设点E(t,at),则点B坐标为(2t,2at).因为2at=a2t,所以at=2.因为平行四边形OABC的面积=OC×AC=at×2t=4t,又平行四边形OABC的面积为8,所以4t=8,t=2,所以a2=2,a=.(2)作出函数f(x)=|2x-1|的图象,如图,∵a<b<c,且f(a)>f(c)>f(b),结合图象知0<f(a)<1,a<0,c>0,∴0<2a<1.∴f(a)=|2a-1|=1-2a<1,∴f(c)<1,∴0<c<1.∴1<2c<2,∴f(c)=|2c-1|=2c-1,又∵f(a)>f(c),∴1-2a>2c-1,∴2a+2c<2.题型三指数函数的图象和性质命题点1 比较指数式的大小例3 (1)下列各式比较大小正确的是________.①1.72.5>1.73;②0.6-1>0.62;③0.8-0.1>1.250.2; ④1.70.3>0.93.1.(2)设则a,b,c的大小关系是________.答案(1)②④(2)a>c>b解析(1)①中,∵函数y=1.7x在R上是增函数,2.5<3,∴1.72.5<1.73,错误;②中,∵y=0.6x在R上是减函数,-1<2,∴0.6-1>0.62,正确;③中,∵(0.8)-1=1.25,∴问题转化为比较1.250.1与1.250.2的大小.∵y=1.25x在R上是增函数,0.1<0.2,∴1.250.1<1.250.2,即0.8-0.1<1.250.2,错误;④中,∵1.70.3>1,0<0.93.1<1,∴1.70.3>0.93.1,正确.(2)∵y=x为减函数,∴即b<c,又==>0=1,∴a>c,故a>c>b.命题点2 解简单的指数方程或不等式例4 设函数f(x)=若f(a)<1,则实数a的取值范围是__________.答案(-3,1)解析当a<0时,不等式f(a)<1可化为a-7<1,即a<8,即a<-3,因为0<<1,所以a>-3,此时-3<a<0;当a≥0时,不等式f(a)<1可化为<1,所以0≤a<1.故a的取值范围是(-3,1).命题点3 和指数函数有关的复合函数的性质例5 设函数f(x)=kax-a-x(a>0且a≠1)是定义域为R的奇函数.(1)若f(1)>0,试求不等式f(x2+2x)+f(x-4)>0的解集;(2)若f(1)=,且g(x)=a2x+a-2x-4f(x),求g(x)在[1,+∞)上的最小值.解因为f(x)是定义域为R的奇函数,所以f(0)=0,所以k-1=0,即k=1,f(x)=ax-a-x.(1)因为f(1)>0,所以a->0,又a>0且a≠1,所以a>1.因为f′(x)=axln a+a-xln a=(ax+a-x)ln a>0,所以f(x)在R上为增函数,原不等式可化为f(x2+2x)>f(4-x),所以x2+2x>4-x,即x2+3x-4>0,所以x>1或x<-4.所以不等式的解集为{x|x>1或x<-4}.(2)因为f(1)=,所以a-=,即2a2-3a-2=0,所以a=2或a=-(舍去).所以g(x)=22x+2-2x-4(2x-2-x)=(2x-2-x)2-4(2x-2-x)+2.令t(x)=2x-2-x(x≥1),则t(x)在(1,+∞)为增函数(由(1)可知),即t(x)≥t(1)=,所以原函数为ω(t)=t2-4t+2=(t-2)2-2,所以当t=2时,ω(t)min=-2,此时x=log2(1+).即g(x)在x=log2(1+)时取得最小值-2.思维升华指数函数的性质及应用问题解题策略(1)比较大小问题.常利用指数函数的单调性及中间值(0或1)法.(2)简单的指数方程或不等式的求解问题.解决此类问题应利用指数函数的单调性,要特别注意底数a的取值范围,并在必要时进行分类讨论.(3)解决指数函数的综合问题时,要把指数函数的概念和性质同函数的其他性质(如奇偶性、周期性)相结合,同时要特别注意底数不确定时,对底数的分类讨论.(1)已知函数f(x)=2|2x-m|(m为常数),若f(x)在区间[2,+∞)上是增函数,则m 的取值范围是________.(2)如果函数y=a2x+2ax-1(a>0,a≠1)在区间[-1,1]上的最大值是14,则a的值为________.答案(1)(-∞,4] (2)或3解析(1)令t=|2x-m|,则t=|2x-m|在区间[,+∞)上单调递增,在区间(-∞,]上单调递减.而y=2t为R上的增函数,所以要使函数f(x)=2|2x-m|在[2,+∞)上单调递增,则有≤2,即m≤4,所以m的取值范围是(-∞,4].(2)令ax=t,则y=a2x+2ax-1=t2+2t-1=(t+1)2-2.当a>1时,因为x∈[-1,1],所以t∈[,a],又函数y=(t+1)2-2在上单调递增,所以ymax=(a+1)2-2=14,解得a=3(负值舍去).当0<a<1时,因为x∈[-1,1],所以t∈[a,],又函数y=(t+1)2-2在[a,]上单调递增,则ymax=(+1)2-2=14,解得a=(负值舍去).综上知a=3或a=.4.换元法在和指数函数有关的复合函数中的应用典例(1)函数y=x-x+1在区间[-3,2]上的值域是________.(2)函数的单调减区间为_____________________________________.思维点拨(1)求函数值域,可利用换元法,设t=x,将原函数的值域转化为关于t的二次函数的值域.(2)根据复合函数的单调性“同增异减”进行探求.解析(1)因为x∈[-3,2],所以若令t=x,则t∈,故y=t2-t+1=2+.当t=时,ymin=;当t=8时,ymax=57.故所求函数值域为.(2)设u=-x2+2x+1,∵y=u在R上为减函数,∴函数的减区间即为函数u=-x2+2x+1的增区间.又u=-x2+2x+1的增区间为(-∞,1],∴f(x)的减区间为(-∞,1].答案(1) (2)(-∞,1]温馨提醒(1)解决和指数函数有关的复合函数的单调性或值域问题时,要熟练掌握指数函数的单调性,搞清复合函数的结构,利用换元法转化为基本初等函数的单调性或值域问题;(2)换元过程中要注意“元”的取值范围的变化.[方法与技巧]1.通过指数函数图象比较底数大小的问题,可以先通过令x=1得到底数的值,再进行比较.2.指数函数y=ax (a>0,a≠1)的性质和a的取值有关,一定要分清a>1与0<a<1.3.对与复合函数有关的问题,要弄清复合函数由哪些基本初等函数复合而成.[失误与防范]1.恒成立问题一般与函数最值有关,要与方程有解区别开来.2.复合函数的问题,一定要注意函数的定义域.3.对可化为a2x+b·ax+c=0或a2x+b·ax+c≥0(≤0)形式的方程或不等式,常借助换元法解决,但应注意换元后“新元”的范围.A组专项基础训练(时间:40分钟)1.函数f(x)=ax-2+1(a>0且a≠1)的图象经过定点的坐标为__________.答案(2,2)解析∵a0=1,∴f(2)=2,故f(x)的图象必过点(2,2).2.已知a=22.5,b=2.50,c=()2.5,则a,b,c的大小关系是__________.答案a>b>c解析a>20=1,b=1,c<()0=1,∴a>b>c.3.若函数f(x)=a|2x-4|(a>0,a≠1),满足f(1)=,则f(x)的单调递减区间是____________.答案[2,+∞)解析由f(1)=得a2=,所以a=或a=-(舍去),即f(x)=()|2x-4|.由于y=|2x-4|在(-∞,2]上递减,在[2,+∞)上递增,所以f(x)在(-∞,2]上递增,在[2,+∞)上递减.4.若关于x的方程|ax-1|=2a (a>0且a≠1)有两个不等实根,则a的取值范围是__________.答案解析方程|ax-1|=2a (a>0且a≠1)有两个实数根转化为函数y=|ax-1|与y=2a有两个交点.①当0<a<1时,如图(1),∴0<2a<1,即0<a<.②当a>1时,如图(2),而y=2a>1不符合要求.综上,0<a<.5.计算:×0+8×-=________.答案2解析原式=6.已知函数y=ax+b (b>0)的图象经过点P(1,3),如图所示,则+的最小值为______.答案解析由函数y=ax+b (b>0)的图象经过点P(1,3),得a+b=3,所以+=1,又a>1,则+==2+++≥+2=,当且仅当=,即a=,b=时取等号,所以+的最小值为.7.已知正数a满足a2-2a-3=0,函数f(x)=ax,若实数m、n满足f(m)>f(n),则m、n的大小关系为________.答案m>n解析∵a2-2a-3=0,∴a=3或a=-1(舍).函数f(x)=3x在R上递增,由f(m)>f(n),得m>n.8.已知函数f(x)=2x-,函数g(x)=则函数g(x)的最小值是________.答案0解析当x≥0时,g(x)=f(x)=2x-为单调增函数,所以g(x)≥g(0)=0;当x<0时,g(x)=f(-x)=2-x-为单调减函数,所以g(x)>g(0)=0,所以函数g(x)的最小值是0.9.已知函数(1)若a=-1,求f(x)的单调区间;(2)若f(x)有最大值3,求a的值.解(1)当a=-1时,令g(x)=-x2-4x+3,由于g(x)在(-∞,-2]上单调递增,在(-2,+∞)上单调递减,而y=t在R上单调递减,所以f(x)在(-∞,-2]上单调递减,在(-2,+∞)上单调递增,即函数f(x)的单调递增区间是(-2,+∞),单调递减区间是(-∞,-2].(2)令g(x)=ax2-4x+3,f(x)=g(x),由于f(x)有最大值3,所以g(x)应有最小值-1,因此必有解得a=1,即当f(x)有最大值3时,a的值为1.10.已知函数f(x)=ex-e-x(x∈R,且e为自然对数的底数).(1)判断函数f(x)的单调性与奇偶性;(2)是否存在实数t,使不等式f(x-t)+f(x2-t2)≥0对一切x∈R都成立?若存在,求出t;若不存在,请说明理由.解(1)∵f(x)=ex-x,∴f′(x)=ex+x,∴f′(x)>0对任意x∈R都成立,∴f(x)在R上是增函数.∴f(x)的定义域为R,且f(-x)=e-x-ex=-f(x),∴f(x)是奇函数.(2)存在.由(1)知f(x)在R上是增函数和奇函数,则f(x-t)+f(x2-t2)≥0对一切x∈R都成立,⇔f(x2-t2)≥f(t-x)对一切x∈R都成立,⇔x2-t2≥t-x对一切x∈R都成立,⇔t2+t≤x2+x=2-对一切x∈R都成立,⇔t2+t≤(x2+x)min=-⇔t2+t+=2≤0,又2≥0,∴2=0,∴t=-.∴存在t=-,使不等式f(x-t)+f(x2-t2)≥0对一切x∈R都成立.B组专项能力提升(时间:20分钟)11.函数f(x)=a|x+1|(a>0,a≠1)的值域为[1,+∞),则f(-4)与f(1)的大小关系是____________.答案f(-4)>f(1)解析由题意知a>1,∴f(-4)=a3,f(1)=a2,由单调性知a3>a2,∴f(-4)>f(1).12.已知实数a,b满足等式a=b,下列五个关系式:①0<b<a;②a<b<0;③0<a<b;④b<a<0;⑤a=b.其中不可能成立的关系式有________个.答案2解析函数y1=x与y2=x的图象如图所示.由a=b得a<b<0或0<b<a或a=b=0.故①②⑤可能成立,③④不可能成立.13.关于x的方程x=有负数根,则实数a的取值范围为__________.答案解析由题意,得x<0,所以0<x<1,从而0<<1,解得-<a<.14.当x∈(-∞,-1]时,不等式(m2-m)·4x-2x<0恒成立,则实数m的取值范围是________.答案(-1,2)解析原不等式变形为m2-m<x,因为函数y=x在(-∞,-1]上是减函数,所以x≥-1=2,当x∈(-∞,-1]时,m2-m<x恒成立等价于m2-m<2,解得-1<m<2.15.已知定义在实数集R上的奇函数f(x)有最小正周期2,且当x∈(0,1)时,f(x)=.(1)求函数f(x)在(-1,1)上的解析式;(2)判断f(x)在(0,1)上的单调性;(3)当λ取何值时,方程f(x)=λ在(-1,1)上有实数解?解(1)∵f(x)是x∈R上的奇函数,∴f(0)=0.设x∈(-1,0),则-x∈(0,1),f(-x)===-f(x),∴f(x)=-,∴f(x)=(2)设0<x1<x2<1,f(x1)-f(x2)==,∵0<x1<x2<1,∴f(x1)-f(x2)>0,∴f(x)在(0,1)上为减函数.(3)∵f(x)在(0,1)上为减函数,∴<f(x)<,即f(x)∈.同理,f(x)在(-1,0)上时,f(x)∈.又f(0)=0,当λ∈∪,或λ=0时,方程f(x)=λ在x∈(-1,1)上有实数解.。

【步步高】2017版高考数学一轮复习 第二章 函数概念与基本初等函数I 2.4 二次函数与幂函数课件 理

【步步高】2017版高考数学一轮复习 第二章 函数概念与基本初等函数I 2.4 二次函数与幂函数课件 理

y=f(x)的图象过点2,
2 , 则此函数的解析式 2
1
2
3
4
5
答案
返回
题型分类 深度剖析
题型一
求二次函数的解析式
已知二次函数f(x)满足f(2)=-1,f(-1)=-1,且f(x)的最大值是8,
例1
试确定此二次函数的解析式.
思维升华
解析答案
跟踪训练1
(1)二次函数的图象过点(0,1),对称轴为x=2,最小值为-1,则它的解析 1 2 f(x)=2x -2x+1 式是________________.
解析答案
题型二
二次函数的图象与性质
命题点1 二次函数的单调性
例2 已知函数f(x)=x2+2ax+3,x∈[-4,6], (1)求实数a的取值范围,使y=f(x)在区间[-4,6]上是单调函数;
2a 解 函数 f(x)=x +2ax+3 的图象的对称轴为 x=- 2 =-a, ∴要使f(x)在[-4,6]上为单调函数,
其图象如图所示. 又∵x∈[-4,6], ∴f(|x|)在区间[-4,-1)和[0,1)上为减函数, 在区间[-1,0)和[1,6]上为增函数.
解析答案
命题点2 二次函数的最值
8 例3 已知函数f(x)=x2-2x,若x∈[-2,3],则函数f(x)的最大值为___.
解析 f(x)=(x-1)2-1, ∵-2≤x≤3(如图), ∴[f(x)]max=f(-2)=8.
解析答案
2 [ - 1 , ) (2)若(a+1) (3-2a ) , 则实数a的取值范围是________. 3
1 2 1 2
解析
易知函数 y=x
1 2 的定义域为[0,+∞),在定义域内为增函数,

(江苏专用)2017版高考数学一轮复习 第二章 函数概念与基本初等函数I 2.9 函数模型及其应用课

(江苏专用)2017版高考数学一轮复习 第二章 函数概念与基本初等函数I 2.9 函数模型及其应用课
1.若一根蜡烛长20 cm,点燃后每小时燃烧5 cm,则燃烧剩下的高度h(cm) 与燃烧时间t(小时)的函数关系用图象表示为_②___.
解析 根据题意得解析式为h=20-5t(0≤t≤4),其图象为②.
解析答案
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
2.某家具的标价为132元,若降价以九折出售(即优惠10%),仍可获利 10%(相对进货价),则该家具的进货价是_1_0_8__元. 解析 设进货价为a元, 由题意知132×(1-10%)-a=10%·a, 解得a=108.
则经历n次涨停后的价格为a(1+10%)n=a×1.1n元,
经历n次跌停后的价格为a×1.1n×(1-10%)n=a×1.1n×0.9n=a×(1.1×0.9)n
=0.99n·a<a,
故该股民这支股票略有亏损.
解析答案
命题点3 构建分段函数模型
例5 某市出租车收费标准如下:起步价为8元,起步里程为3 km(不超过3 km按起步价付费);超过3 km但不超过8 km时,超过部分按每千米2.15元 收费;超过8 km时,超过部分按每千米2.85元收费,另每次乘坐需付燃油 附加费1元.现某人乘坐一次出租车付费22.6元,则此次出租车行驶了_9_ km. 解析 设出租车行驶x km时,付费y元,
解析答案
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2345
解析答案
3.某市生产总值连续两年持续增加.第一年的增长率为p,第二年的增长率 为q,则该市这两年生产总值的年平均增长率为__p_+__1___q_+__1_-__1___. 解析 设年平均增长率为x, 则(1+x)2=(1+p)(1+q),
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

π 由于 cos(2+kπ)=0(k∈Z), π 而在2+kπ(k∈Z)的所有取值中, π 3π 5π 7π 9π 只有2, 2 , 2 , 2 , 2 满足在[0,16] 内,
故零点个数为1+5=6.
解析答案
1
x 2 -1, 3.已知函数 f(x)= 1+log2x,
2
3
4
5
6
7
f(b)<0 的函数y=f(x),通过不断地 对于在区间[a,b]上连续不断且 f(a)·
把函数 f(x) 的零点所在的区间一分为二 ,使区间的两个端点逐步逼 近 零点 ,进而得到零点近似值的方法叫做二分法.
答案
3.二次函数y=ax2+bx+c (a>0)的图象与零点的关系 Δ>0 二次函数y= ax2+bx+c (a>0)的图象 Δ=0 Δ<0
1 1 解得4<m<2.
解析答案 返回
易错警示系列
易错警示系列
3.忽视定义域导致零点个数错误
典例
定义在R上的奇函数f(x)满足:当x>0时,f(x)=2 016x+log2 016x,
则在R上函数f(x)的零点个数为________.
易错分析 得出当x>0时的零点个数后,容易忽略条件:定义在R上
解析答案
(2)若定义在 R上的偶函数 f(x)满足f(x+2) =f(x) ,且当x∈[0,1]时,f(x) =x,
4 则函数y=f(x)-log3|x|的零点个数是___.
解析 由题意知,f(x)是周期为2的偶函数. 在同一坐标系内作出函数y=f(x)及y=log3|x|的图象,如图: 观察图象可以发现它们有4个交点, 即函数y=f(x)-log3|x|有4个零点.
的奇函数,导致漏掉x<0时和x=0时的情况.
温馨提醒
易错分析
解析答案
返回
思想方法 感悟提高
方法与技巧
1.函数零点的判定常用的方法有 (1)零点存在性定理; (2)数形结合:函数y=f(x)-g(x)的零点,就是函数y=f(x)和y=g(x)图象交点 的横坐标. (3)解方程. 2.二次函数的零点可利用求根公式、判别式、根与系数的关系或结合函数图 象列不等式(组). 3.利用函数零点求参数范围的常用方法:直接法、分离参数法、数形结合法.
(0,1) 数 m 的取值范围是______.
解析
x 2 -1,x≥0, 画出函数 f(x)= 2 的图象, -x -2x,x<0
由图象可知,若函数y=f(x)-m有3个零点, 则0<m<1, 因此m的取值范围是(0,1).
解析答案
1
2
3
4
5
6
7
8
9
10
11
12
13 14 15
2.函数f(x)=xcos x2在区间[0,4]上的零点个数为6 __. 解析 由f(x)=xcos x2=0,得x=0或cos x2=0. 又x∈[0,4],所以x2∈[0,16].
11
12
13 14 15
2 4.方程|x2-2x|=a2+1(a>0)的解的个数是___.
解析 (数形结合法) ∵a>0, ∴a2+1>1. 而y=|x2-2x|的图象如图, ∴y=|x2-2x|的图象与y=a2+1的图象总有两个交点.
解析答案
1
2
3
4
5
6
7
8
9
10
11
12
13 14 15
5.偶函数f(x)满足f(x-1)=f(x+1),且当x∈[0,1]时,f(x)=-x+1,则关于 x的方程f(x)=lg(x+1)在x∈[0,9]上解的个数是9 __. 解析 依题意得f(x+2)=f(x), 所以函数f(x)是以2为周期的函数. 在平面直角坐标系中画出函数y=f(x)的 图象与y=lg(x+1)的图象(如图所示), 观察图象可知,这两个函数的图象在区间 [0,9]上的公共点共有9个, 因此,当x∈[0,9]时,方程f(x)=lg(x+1)的解的个数是9.
1
2
3
4
5
解析答案
返回
题型分类 深度剖析
题型一
函数零点的确定
1 x-2 x- 的零点为 2
命题点1 函数零点所在的区间
例 1 已知函数 f(x)=ln
2 (k∈Z),则 k=___.
x0,则 x0 所在的区间是(k,k+1)
解析
∵f(x)=ln
1 x-2 x- 在 (0 ,+ ∞ ) 是增函数, 2
作出函数 y=|log0.5x|和
故函数f(x)有2个零点.
1 x y= 的图象, 2
由图象知两函数图象有2个交点,
1
2
3
4
5
解析答案
2-|x|,x≤2, 4.(2015· 天津)已知函数 f(x)= 函数 g(x)=3-f(2-x),则 2 x-2 ,x>2,
(2)几个等价关系
方程f(x)=0有实数根⇔函数y=f(x)的图象与 x轴 有交点⇔函数y=f(x)
有 零点 .
答案
(3)函数零点的判定(零点存在性定理) 如果函数y=f(x)在区间[a,b]上的图象是一条不间断的曲线,且 a,b) 上有零点,即存在 c∈(a , f(a)· f(b)<0 ,那么,函数 y = f(x) 在区间( ______ f(c)=0,这个__ c 也就是方程f(x)=0的根. b),使得_______ 2.二分法
答案
2
考点自测
1.(教材改编)函数f(x)=ex+3x的零点个数是___. 1 1 解析 ∵f(-1)= -3<0,f(0)=1>0, e ∴f(x)在(-1,0)内有零点,
又f(x)为增函数,
∴函数f(x)有且只有一个零点.
1
2
3
4
5
解析答案
1 - +1 1 1 2.若x1,x2是方程 2 x=( ) x 的两个实根,则x1+x2=- ___. 2
与x轴的交点 零点个数
(x1,0),(x2,0) _____________
2 __
(x1,0) ______ 1 __
无交点
0 __
答案
思考辨析
判断下面结论是否正确(请在括号中打“√”或“×”)
(1)函数的零点就是函数的图象与x轴的交点.( × )
(2) 函数 y = f(x) 在区间 (a , b) 内有零点 ( 函数图象连续不断 ) ,则
解析 当 x≤0 时,令 x2-2=0,解得 x=- 2(正根舍去),
所以在(-∞,0]上有一个零点. 1 当 x>0 时,f′(x)=2+x>0 恒成立, 所以f(x)在(0,+∞)上是增函数. 又因为f(2)=-2+ln 2<0,f(3)=ln 3>0,
所以f(x)在(0,+∞)上有一个零点,
综上,函数f(x)的零点个数为2.
解析答案
命题点3 求函数的零点
例3 已知 f(x) 是定义在 R上的奇函数,当x≥0 时,f(x) =x2 -3x,则函数
g(x)=f(x)-x+3的零点的集合为______________.
思维升华
解析答案
跟踪训练1
6 ③ (1)已知函数 f(x)= -log2x,在下列区间中,包含 f(x)零点的区间是___. x ①(0,1) ③(2,4) ②(1,2) ④(4,+∞)
函数 y=f(x)-g(x)的零点个数为__.
1
2
3
4
5
解析答案
5.函数f(x)=ax+1-2a在区间(-1,1)上存在一个零点,则实数a的取值 1 , 1 3 范围是________. 解析 ∵函数f(x)的图象为直线,由题意可得
f(-1)f(1)<0,
∴(-3a+1)· (1-a)<0, 1 解得 <a<1, 3 1 ∴实数 a 的取值范围是3,1 .
1 解析 2 x=( ) 2
1 - +1 x

2 x=2
1 -1 x

1 ∴x=x-1 即 x2+x-1=0, ∴x1+x2=-1.
1
2
3
4
5
解析答案
2 3.函数f(x)=2x|log0.5 x|-1的零点个数为___.
解析
由 f(x)=0
1 x 得|log0.5x|=2 ,
例4 若关于x的方程22x+2xa+a+1=0有实根,求实数a的取值范围.
思维升华
解析答案
跟踪训练2
2 (1)函数 f(x)=2 -x-a 的一个零点在区间(1,2)内, 则实数 a 的取值范围 (0,3) 是______. 2 x 解析 因为函数 f(x)=2 - -a 在区间(1,2)上单调递增, x 2 x 又函数 f(x)=2 -x-a 的一个零点在区间(1,2)内, 则有f(1)· f(2)<0,
8
9
10
11
12
13 14 15
x≤1, x>1,
0 则函数 f(x)的零点为__.
解析 当x≤1时,由f(x)=2x-1=0,解得x=0;
当x>1时,由f(x)=1+log2x=0, 1 解得 x=2, 又因为x>1,所以此时方程无解. 综上函数f(x)的零点只有0.
解析答案
1
2
3
4
5
6
7
8
9
10
依题意,结合函数 f(x) 的图象分析可知 m 需满足 m≠2, m ≠ 2 , 即[m-2-m+2m+1]2m+1<0, f-1· f0<0, [m-2+m+2m+1][4m-2+2m+2m+1]<0, f2<0, f1· 解析
相关文档
最新文档