2.2.2双曲线的简单几何性质
2.2.2(二)双曲线的简单几何性质(二)
2.2.2(二)
跟踪训练 3 设 A、B 分别是双曲线xa22-yb22=1(a,b>0)的左、
右顶点,双曲线的实轴长为 4 3,焦点到渐近线的距离为 3.
(1)求此双曲线的方程;
(2)已知直线 y= 33x-2 与双曲线的右支交于 D、E 两点,
本 讲 栏
且在双曲线的右支上存在点 C,使得O→D+O→E=mO→C,求
练一练·当堂检测、目标达成落实处
2.2.2(二)
2.已知双曲线xa22-by22=1 (a>0,b>0)的左、右焦点分别为 F1、
F2,过 F2 的直线交双曲线右支于 A,B 两点.若△ABF1
是以 B 为顶点的等腰三角形,且△AF1F2,△BF1F2 的面
本 讲
积之比 S△AF1F2∶S△BF1F2=2∶1,则双曲线的离心率
本
讲
A.(x-5)2+y2=36
B.(x+5)2+y2=36
栏 目
C.(x-5)2+y2=9
D.(x+5)2+y2=9
开 关
解析 由双曲线ax22-y92=1(a>0)得渐近线方程为 y=±3ax,即
3x±ay=0,∴a=4,
∴c2=a2+9=25,∴右焦点为(5,0). 又∵b2=9,∴虚轴长 2b=6. ∴所求圆的方程为(x-5)2+y2=36.
2.2.2(二)
题型一 直线与双曲线的位置关系
例 1 已知直线 y=kx-1 与双曲线 x2-y2=1 有且仅有一个
公共点,k 为何值?
本 讲 栏
解 由yx=2-kyx2-=11, ⇒(1-k2)x2+2kx-2=0.
目 开
当 1-k2≠0 时,即 k≠±1 时,
关 ∵直线和双曲线只有一个交点,
选修1-1课件2.2.2 双曲线的简单几何性质
b b 2 2 解得y1 25 12 481 12 12 b 5 2 2 y2 13 12 b. 12 12 又塔高为 米, 所以y2 y1 55.即 55 5b b 481 55. 12 12 解得 : b 24.5(米).所以双曲线的 方程为 x y 1. 2 2 12 24.5
2
2
2 ; 渐近
线方程x y; 准线方程y 2 .
练习题:
1.求下列双曲线的实轴和虚轴的 长、顶点和焦点坐标、离心率、 渐近线方程和准线方程:
x y 4 1 49 25
2
2
y x 4 方程化为 1, 于是a 5, b 7, 25 49 c 25 49 74 , 2a 10, 2b 14; 顶 点坐标0, 5 , 0,5 ; 焦点坐标 0, 74 ,
叫做等轴双曲线 .
x
双曲线虚轴的变化对双曲线的影响:
性质4—渐近线
y B2
N x ,Y Q M(x,y)
b
A1
o a A2
x
b y x a
B1
b y x a
在第一象限内 双曲线方程化为 , b 2 2 y x a x a a 设M x , y 是双曲线上的任意一 b 点, N x ,Y 是直线y x上与M a b 有相同横坐标的点则Y x . , a
1 x
2
8 y 32
2
x y 1方程化为 1, 于是a 4 2 , 32 4 b 2, c 32 4 6, 2a 8 2 , 2b 4; 顶点坐标 4 2 ,0 , 4 2 ,0 ; 焦点坐 3 标6,0 , 6,0 ; e 2 ; 渐近线方程 4 2 16 y x; 准线方程x . 4 3
高中数学2.2双曲线2.2.2双曲线的简单几何性质第2课时双曲线几何性质的应用学案含解析新人教A版选修1_1
第2课时 双曲线几何性质的应用学习目标 1.了解直线与双曲线的位置关系.2.了解与直线、双曲线有关的弦长、中点等问题.知识点一 直线与双曲线的位置关系思考 直线与圆(椭圆)有且只有一个公共点,则直线与圆(椭圆)相切,那么,直线与双曲线相切,能用这个方法判断吗? 答案 不能.梳理 设直线l :y =kx +m (m ≠0),①双曲线C :x 2a 2-y 2b2=1(a >0,b >0),②把①代入②得(b 2-a 2k 2)x 2-2a 2mkx -a 2m 2-a 2b 2=0.(1)当b 2-a 2k 2=0,即k =±b a时,直线l 与双曲线C 的渐近线平行,直线与双曲线相交于一点.(2)当b 2-a 2k 2≠0,即k ≠±b a时,Δ=(-2a 2mk )2-4(b 2-a 2k 2)(-a 2m 2-a 2b 2). Δ>0⇒直线与双曲线有两个公共点,此时称直线与双曲线相交; Δ=0⇒直线与双曲线有一个公共点,此时称直线与双曲线相切; Δ<0⇒直线与双曲线没有公共点,此时称直线与双曲线相离. 知识点二 弦长公式若斜率为k (k ≠0)的直线与双曲线相交于A (x 1,y 1),B (x 2,y 2)两点,则|AB |=+k2x 1+x 22-4x 1x 2]=⎝ ⎛⎭⎪⎫1+1k 2y 1+y 22-4y 1y 2].1.若直线与双曲线交于一点,则直线与双曲线相切.( × ) 2.直线l :y =x 与双曲线C :2x 2-y 2=2有两个公共点.( √ )类型一 直线与双曲线的位置关系例1 已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为233,且过点(6,1).(1)求双曲线C 的方程;(2)若直线l :y =kx +2与双曲线C 恒有两个不同的交点A ,B ,求k 的取值范围. 考点 直线与双曲线的位置关系 题点 直线与双曲线的位置关系 解 (1)由e =233,可得c 2a 2=43,所以a 2=3b 2,故双曲线方程可化为x 23b 2-y 2b2=1.将点P (6,1)代入双曲线C 的方程, 解得b 2=1,所以双曲线C 的方程为x 23-y 2=1.(2)联立直线与双曲线方程,⎩⎨⎧y =kx +2,x 2-3y 2-3=0,消去y ,得(1-3k 2)x 2-62kx -9=0.由题意得,⎩⎪⎨⎪⎧Δ=72k 2--3k2-,1-3k 2≠0,解得-1<k <1且k ≠±33. 所以k 的取值范围为⎝⎛⎭⎪⎫-1,-33∪⎝ ⎛⎭⎪⎫-33,33∪⎝ ⎛⎭⎪⎫33,1. 反思与感悟 (1)解决直线与双曲线的公共点问题,不仅要考虑判别式,更要注意二次项系数为0时,直线与渐近线平行的特殊情况.(2)双曲线与直线只有一个公共点的题目,应分两种情况讨论:双曲线与直线相切或直线与双曲线的渐近线平行.(3)注意对直线l 的斜率是否存在进行讨论.跟踪训练1 已知双曲线x 2-y 24=1,过点P (1,1)的直线l 与双曲线只有一个公共点,求直线l 的斜率k .考点 直线与双曲线的位置关系 题点 直线与双曲线的位置关系 解 当直线l 的斜率不存在时, 直线l :x =1与双曲线相切,符合题意. 当直线l 的斜率存在时,设l 的方程为y =k (x -1)+1, 代入双曲线方程,得(4-k 2)x 2-(2k -2k 2)x -k 2+2k -5=0. 当4-k 2=0时,k =±2,直线l 与双曲线的渐近线平行,l 与双曲线只有一个公共点; 当4-k 2≠0时,令Δ=0,得k =52.综上,k =52或k =±2或k 不存在.类型二 弦长公式及中点弦问题 例2 双曲线的方程是x 24-y 2=1.(1)直线l 的倾斜角为π4,被双曲线截得的弦长为8311,求直线l 的方程;(2)过点P (3,1)作直线l ′,使其被双曲线截得的弦恰被P 点平分,求直线l ′的方程. 考点 直线与双曲线的位置关系 题点 弦长及弦中点问题解 (1)设直线l 的方程为y =x +m ,代入双曲线方程,得3x 2+8mx +4(m 2+1)=0, Δ=(8m )2-4×3×4(m 2+1)=16(m 2-3)>0, ∴m 2>3.设直线l 与双曲线交于A (x 1,y 1),B (x 2,y 2)两点, 则x 1+x 2=-83m ,x 1x 2=m 2+3.由弦长公式|AB |=1+k 2|x 1-x 2|,得 2×⎝ ⎛⎭⎪⎫-83m 2-m 2+3=8311, ∴42×m 2-33=8311,即m =±5,满足m 2>3,∴直线l 的方程为y =x ±5.(2)设直线l ′与双曲线交于A ′(x 3,y 3),B ′(x 4,y 4)两点, 点P (3,1)为A ′B ′的中点,则x 3+x 4=6,y 3+y 4=2. 由x 23-4y 23=4,x 24-4y 24=4,两式相减得(x 3+x 4)(x 3-x 4)-4(y 3+y 4)(y 3-y 4)=0, ∴y 3-y 4x 3-x 4=34,∴l ′的方程为y -1=34(x -3),即3x -4y -5=0.把此方程代入双曲线方程,整理得5y 2-10y +114=0,满足Δ>0,∴所求直线l ′的方程为3x -4y -5=0.反思与感悟 (1)使用弦长公式时,一般可以利用根与系数的关系,解决此类问题,一定不要忽略直线与双曲线相交这个条件,得到的k 要保证满足相交,即验证Δ>0.(2)与弦中点有关的问题主要用点差法.跟踪训练2 设双曲线的顶点是椭圆x 23+y 24=1的焦点,该双曲线又与直线15x -3y +6=0交于A ,B 两点,且OA ⊥OB (O 为坐标原点). (1)求此双曲线的方程; (2)求|AB |.考点 直线与双曲线的位置关系 题点 弦长及弦中点问题解 (1)已知椭圆的焦点为(0,±1), 即是双曲线的顶点,因此设双曲线方程为y 2-mx 2=1(m >0),① 又直线15x -3y =-6,②A (x 1,y 1),B (x 2,y 2)是方程①②组成的方程组的两个解.由⎩⎨⎧y 2-mx 2=1,15x -3y =-6,得⎝ ⎛⎭⎪⎫53-m x 2+4153x +3=0, 当m =53时,显然不满足题意.当m ≠53时,则⎩⎪⎨⎪⎧x 1+x 2=-415353-m ,x 1x 2=353-m ,又OA ⊥OB ,∴OA →·OB →=0,∴x 1x 2+y 1y 2=0,∴x 1x 2+y 1y 2=83x 1x 2+2153(x 1+x 2)+4=0,∴83×353-m +2153×⎝ ⎛⎭⎪⎪⎫-415353-m +4=0,∴m =13,经验证,此时Δ>0.∴双曲线的方程为y 2-x 23=1.(2)∵⎩⎪⎨⎪⎧x 1+x 2=-15,x 1x 2=94,∴|AB |=1+k 2×x 1+x 22-4x 1x 2=1+⎝⎛⎭⎪⎫1532×-152-4×94=4.类型三 由直线与双曲线相交求参数的取值范围(值)例3 已知中心在坐标原点的双曲线C 的右焦点为(2,0),右顶点为(3,0). (1)求双曲线C 的方程;(2)若直线l :y =kx +2与双曲线C 恒有两个不同的交点A ,B ,且OA →·OB →>2(其中O 为原点),求k 的取值范围.考点 直线与双曲线的位置关系 题点 直线与双曲线的位置关系解 (1)设双曲线方程为x 2a 2-y 2b2=1(a >0,b >0),由已知得a =3,c =2,所以b =1.故所求双曲线方程为x 23-y 2=1.(2)将y =kx +2代入x 23-y 2=1,可得(1-3k 2)x 2-62kx -9=0. 由直线l 与双曲线交于不同的两点,得⎩⎨⎧1-3k 2≠0,Δ=-62k2+-3k2=-k2,故k 2≠13且k 2<1.设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=62k 1-3k 2,x 1x 2=-91-3k 2,由OA →·OB →>2,得x 1x 2+y 1y 2>2. 又因为y 1y 2=(kx 1+2)(kx 2+2)=k 2x 1x 2+2k (x 1+x 2)+2=-9k 21-3k 2+12k21-3k2+2=3k 21-3k2+2. 所以-91-3k 2+3k 21-3k 2+2>2,所以3k 2-91-3k 2>0.又因为k 2≠13且k 2<1,所以13<k 2<1.所以k 的取值范围是⎩⎨⎧⎭⎬⎫k ⎪⎪⎪-1<k <-33或33<k <1. 反思与感悟 当与直线有关时,常常联立直线与双曲线的方程,消元后利用一元二次方程的判别式、根与系数的关系构造相关数量关系式求解. 跟踪训练3 已知双曲线C :x 2-y 2=1及直线l :y =kx -1. (1)若l 与C 有两个不同的交点,求实数k 的取值范围;(2)若l 与C 交于A ,B 两点,O 是坐标原点,且△AOB 的面积为2,求实数k 的值. 考点 直线与双曲线的位置关系题点 直线与双曲线相交弦长与三角形面积 解 (1)双曲线C 与直线l 有两个不同的交点,则方程组⎩⎪⎨⎪⎧x 2-y 2=1,y =kx -1有两个不同的实数根,整理得(1-k 2)x 2+2kx -2=0,∴⎩⎪⎨⎪⎧1-k 2≠0,Δ=4k 2+-k2,解得-2<k <2且k ≠±1.∴当双曲线C 与直线l 有两个不同的交点时,k 的取值范围是(-2,-1)∪(-1,1)∪(1,2).(2)设交点A (x 1,y 1),B (x 2,y 2), 直线l 与y 轴交于点D (0,-1).由(1)知,C 与l 联立的方程为(1-k 2)x 2+2kx -2=0, ∴⎩⎪⎨⎪⎧x 1+x 2=-2k1-k 2,x 1x 2=-21-k 2.当A ,B 在双曲线上的一支上且|x 1|>|x 2|时,S △OAB =S △OAD -S △OBD=12(|x 1|-|x 2|) =12|x 1-x 2|; 当A ,B 在双曲线的两支上且x 1>x 2时,S △OAB =S △ODA +S △OBD=12(|x 1|+|x 2|) =12|x 1-x 2|. ∴S △OAB =12|x 1-x 2|=2,∴(x 1-x 2)2=(22)2, 即⎝⎛⎭⎪⎫-2k 1-k 22+81-k 2=8,解得k =0或k =±62. 又∵-2<k <2且k ≠±1, ∴当k =0或k =±62时,△AOB 的面积为 2.1.若直线y =kx 与双曲线4x 2-y 2=16相交,则实数k 的取值范围是( ) A .-2<k <2B .-1<k <1C .0<k <2D .-2<k <0考点 直线与双曲线的位置关系 题点 直线与双曲线的位置关系 答案 A解析 易知k ≠±2,将y =kx 代入4x 2-y 2=16得关于x 的一元二次方程(4-k 2)x 2-16=0,由Δ>0可得-2<k <2.2.“直线与双曲线有唯一交点”是“直线与双曲线相切”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件考点 直线与双曲线的位置关系 题点 直线与双曲线的位置关系 答案 B3.直线y =x -1被双曲线2x 2-y 2=3所截得的弦的中点坐标是( ) A .(1,2) B .(-2,-1) C .(-1,-2)D .(2,1)考点 直线与双曲线的位置关系 题点 直线与双曲线的位置关系 答案 C解析 将y =x -1代入2x 2-y 2=3,得x 2+2x -4=0,由此可得弦的中点的横坐标为x 1+x 22=-22=-1,将x =-1代入直线方程y =x -1得y =-2,故选C. 4.过点A (3,-1)且被A 点平分的双曲线x 24-y 2=1的弦所在的直线方程是________.考点 直线与双曲线的位置关系 题点 直线与双曲线的其他问题 答案 3x +4y -5=0解析 易知所求直线的斜率存在,设为k ,设该直线的方程为y +1=k (x -3),代入x 24-y 2=1,消去y 得关于x 的一元二次方程(1-4k 2)x 2+(24k 2+8k )x -36k 2-24k -8=0, ∴-24k 2+8k 1-4k 2=6,∴k =-34,此时Δ>0,符合题意,∴所求直线方程为3x +4y -5=0.5.过双曲线x 2-y 22=1的右焦点F 作直线l 交双曲线于A ,B 两点,若|AB |=4,则满足条件的直线l 有________条.考点 直线与双曲线的位置关系题点 直线与双曲线相交弦长与三角形面积 答案 3解析 当直线l 交双曲线于左右两支时,因为2a =2,而|AB |=4,故可有两条.若直线l 交双曲线于同支,当直线l 垂直于x 轴时,|AB |=4,故只有一条,所以满足条件的直线有3条.双曲线的综合问题常涉及其离心率、渐近线、范围等,与向量、三角函数、不等式等知识交汇考查综合运用数学知识的能力.(1)当与向量知识结合时,注意运用向量的坐标运算,将向量间的关系,转化为点的坐标问题,再根据根与系数的关系,将所求问题与条件建立关系求解.(2)当与直线有关时,常常联立直线与双曲线的方程,消元后利用一元二次方程的判别式、根与系数的关系构造相关关系求解.一、选择题1.双曲线C 与椭圆x 29+y 24=1有相同的焦距,一条渐近线的方程为x -2y =0,则双曲线C 的标准方程为( ) A.x 24-y 2=1 B.x 24-y 2=1或y 2-x 24=1 C .x 2-y 24=1或y 2-x 24=1D .y 2-x 24=1 考点 双曲线性质的应用题点 双曲线与椭圆结合的有关问题 答案 B2.设直线l 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,l 与C 交于A ,B 两点,|AB |为C 的实轴长的2倍,则C 的离心率为( ) A.2B.3C .2D .3 考点 双曲线的几何性质 题点 求双曲线的离心率答案 B解析 设双曲线的标准方程为x 2a 2-y 2b2=1(a >0,b >0).∵直线l 过双曲线的焦点且与对称轴垂直, ∴直线l 的方程为x =c 或x =-c ,代入x 2a 2-y 2b 2=1,得y 2=b 2⎝ ⎛⎭⎪⎫c 2a 2-1=b 4a 2, ∴y =±b 2a ,故|AB |=2b 2a .依题意2b2a=4a ,∴b 2a 2=2,∴c 2-a 2a2=e 2-1=2,∴e = 3. 3.双曲线y 2b 2-x 2a 2=1(a >b >0)的一条渐近线与椭圆x 2a 2+y 2b2=1交于点M ,N ,则|MN |等于( )A .a +b B.2aC.a 2+b 2 D.a 2-b 2考点 双曲线性质的应用题点 双曲线与椭圆结合的有关问题 答案 C解析 双曲线y 2b 2-x 2a 2=1的一条渐近线方程为y =ba x ,由⎩⎪⎨⎪⎧y =ba x ,x 2a 2+y 2b 2=1,得x =±22a . 所以|MN |=1+b 2a 2|x 2-x 1|=a 2+b 2a 2·2a=a 2+b 24.已知F 1,F 2分别为双曲线C :x 2-y 2=2的左、右焦点,点P 在C 上,|PF 1|=2|PF 2|,则cos∠F 1PF 2等于( ) A.14B.35C.34D.45 考点 双曲线的定义 题点 双曲线的焦点三角形 答案 C解析 由双曲线定义知,|PF 1|-|PF 2|=22, 又|PF 1|=2|PF 2|,∴|PF 2|=22,|PF 1|=4 2.|F 1F 2|=2c =2 a 2+b 2=4.∴cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1|·|PF 2|=32+8-162×22×42=2416×2=34. 5.已知双曲线方程为x 2-y 24=1,过P (1,0)的直线l 与双曲线只有一个公共点,则l 的条数为( )A .4B .3C .2D .1 考点 直线与双曲线的位置关系题点 直线与双曲线的位置关系答案 B解析 由双曲线x 2-y 24=1的渐近线方程为y =±2x ,点P (1,0)是双曲线的右顶点,则直线x =1与双曲线只有一个公共点,过点P (1,0)且平行于渐近线y =±2x 时,直线l 与双曲线只有一个公共点,有2条,故满足题意的直线共3条. 6.已知双曲线E :x 2a 2-y 2b2=1(a >0,b >0)的右焦点为F (3,0),过点F 的直线交双曲线于A ,B 两点,若AB 的中点坐标为N (-12,-15),则E 的方程为( )A.x 23-y 26=1 B.x 26-y 23=1 C.x 24-y 25=1 D.x 25-y 24=1 考点 直线与双曲线的位置关系题点 弦长及弦中点问题答案 C解析 设A (x 1,y 1),B (x 2,y 2), 则x 21a 2-y 21b 2=1,x 22a 2-y 22b2=1, 两式相减可得x 1+x 2x 1-x 2a 2=y 1+y 2y 1-y 2b 2.∵线段AB 的中点坐标为N (-12,-15), ∴-x 1-x 2a 2=-y 1-y 2b 2. ∴y 1-y 2x 1-x 2=4b 25a 2.∵直线的斜率为-15-12-3=1, ∴4b 25a 2=1. ∵右焦点为F (3,0),∴a 2+b 2=9,解得a 2=4,b 2=5,∴E 的方程为x 24-y 25=1. 7.已知M (x 0,y 0)是双曲线C :x 22-y 2=1上的一点,F 1,F 2是C 的两个焦点.若MF 1→·MF 2→<0,则y 0的取值范围是( )A.⎝ ⎛⎭⎪⎫-33,33B.⎝ ⎛⎭⎪⎫-36,36 C.⎝ ⎛⎭⎪⎫-223,223 D.⎝ ⎛⎭⎪⎫-233,233 考点 双曲线的几何性质题点 双曲线范围的应用答案 A解析 由题意知a 2=2,b 2=1, 所以c 2=3,不妨设F 1(-3,0),F 2(3,0),所以MF 1→=(-3-x 0,-y 0),MF 2→=(3-x 0,-y 0),所以MF 1→·MF 2→=x 20-3+y 20=3y 20-1<0,所以-33<y 0<33. 8.如图,已知F 1,F 2是双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,过F 1的直线l 与双曲线的左、右两支分别交于点B ,A ,若△ABF 2为等边三角形,则双曲线的离心率为( ) A.7B .4 C.233 D. 3考点 双曲线的几何性质题点 求双曲线的离心率答案 A解析 因为△ABF 2为等边三角形,不妨设|AB |=|BF 2|=|AF 2|=m ,A 为双曲线上一点,|F 1A |-|F 2A |=|F 1A |-|AB |=|F 1B |=2a ,B 为双曲线上一点,则|BF 2|-|BF 1|=2a ,|BF 2|=4a ,|F 1F 2|=2c ,由∠ABF 2=60°,得∠F 1BF 2=120°,在△F 1BF 2中,由用余弦定理,得4c 2=4a 2+16a 2-2·2a ·4a ·cos120°,得c 2=7a 2,则e 2=7,即e =7.二、填空题 9.双曲线x 2a 2-y 29=1的离心率e =54,则其两条渐近线方程为________. 考点 双曲线性质的应用题点 以离心率或渐近线为条件的简单问题答案 y =±34x 解析 双曲线x 2a 2-y 29=1,∴b =3, 又双曲线的离心率e =c a =1+b 2a 2=1+9a 2=54, 解得a =4, ∴双曲线的两条渐近线方程为y =±b a x =±34x .10.双曲线x 29-y 216=1的右顶点为A ,右焦点为F ,过点F 平行于双曲线的一条渐近线的直线与双曲线交于点B ,则△AFB 的面积为________.考点 双曲线的定义题点 双曲线的焦点三角形答案 3215 解析 双曲线右顶点A (3,0),右焦点F (5,0),双曲线一条渐近线的斜率是43,则直线FB 的方程是y =43(x -5),与双曲线方程联立解得点B 的纵坐标为-3215,故△AFB 的面积为12×|AF ||y B |=12×2×3215=3215. 11.若双曲线x 2a 2-y 2b2=1(a >0,b >0)与直线y =2x 无交点,则离心率e 的取值范围是________. 考点 双曲线的几何性质题点 求双曲线离心率的取值范围答案 (1,5]解析 由题意可得,双曲线的渐近线的斜率ba≤2,所以e =1+⎝ ⎛⎭⎪⎫b a 2≤ 5. 又e >1,则离心率e 的取值范围是(1,5].12.过P (8,3)作双曲线9x 2-16y 2=144的弦AB ,且P 为弦AB 的中点,那么直线AB 的方程为________.考点 直线与双曲线的位置关系题点 弦长及弦中点问题答案 3x -2y -18=0解析 设A (x 1,y 1),B (x 2,y 2),由P (8,3)为弦AB 的中点,可得x 1+x 2=16,y 1+y 2=6,又9x 21-16y 21=144,9x 22-16y 22=144,两式相减,可得9(x 1+x 2)(x 1-x 2)-16(y 1+y 2)(y 1-y 2)=0,即为9(x 1-x 2)-6(y 1-y 2)=0,可得k AB =y1-y 2x 1-x 2=32,则直线AB 的方程为y -3=32(x -8),即3x -2y -18=0.三、解答题13.已知双曲线的渐近线方程为y =±2x ,且双曲线过点(-3,42).(1)求双曲线的方程;(2)若直线4x -y -6=0与双曲线相交于A ,B 两点,求|AB |的值.考点 直线与双曲线的位置关系题点 直线与双曲线的位置关系解 (1)双曲线的渐近线方程为y =±2x ,则设双曲线的方程为x 2-y24=λ(λ≠0),把(-3,42)代入方程,得9-324=λ,解得λ=1,∴双曲线的方程为x 2-y 24=1.(2)设A (x 1,y 1),B (x 2,y 2),则⎩⎪⎨⎪⎧4x -y -6=0,x 2-y24=1,整理得3x 2-12x +10=0,由根与系数的关系,得x 1+x 2=4,x 1x 2=103, 由弦长公式可知|AB |=+k 2x 1+x 22-4x 1x 2] =+⎝ ⎛⎭⎪⎫42-4×103=21023, ∴|AB |的值为21023. 四、探究与拓展 14.过双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右焦点F 作一条与其渐近线平行的直线l ,交C 于点P .若点P 的横坐标为2a ,求双曲线C 的离心率. 考点 双曲线的几何性质题点 求双曲线的离心率解 如图所示,不妨设与渐近线平行的直线l 的斜率为b a , 又直线l 过右焦点F (c,0),则直线l 的方程为y =b a(x -c ).因为点P 的横坐标为2a ,代入双曲线方程得4a 2a 2-y 2b2=1, 化简得y =-3b 或y =3b (点P 在x 轴下方,故舍去), 故点P 的坐标为(2a ,-3b ),代入直线方程得-3b =b a (2a -c ),化简可得离心率e =c a =2+ 3.15.直线y =ax +1与双曲线3x 2-y 2=1相交于A ,B 两点.(1)求线段AB 的长;(2)当a 为何值时,以AB 为直径的圆经过坐标原点? 考点 直线与双曲线的位置关系题点 弦长及弦中点问题解 由⎩⎪⎨⎪⎧ y =ax +1,3x 2-y 2=1,消去y , 得(3-a 2)x 2-2ax -2=0.由题意可得3-a 2≠0,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2a3-a 2,x 1x 2=-23-a 2.(1)|AB |=x 1-x 22+y 1-y 22=+a 2x 1+x 22-4x 1x 2] =+a 2⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫2a 3-a 22+83-a 2=2+a 2-a 2|3-a 2|.(2)由题意知,OA ⊥OB ,则OA →·OB →=0.即x 1x 2+y 1y 2=0,∴x 1x 2+(ax 1+1)(ax 2+1)=0,即(1+a 2)x 1x 2+a (x 1+x 2)+1=0,∴(1+a 2)·-23-a 2+a ·2a3-a 2+1=0,解得a =±1.经检验当a =±1时,以AB 为直径的圆经过坐标原点.。
2.2.2双曲线的简单几何性质
b y=±- ax
a y=±- bx
半轴长
离心率 a,b,c的关系
半实轴长为a, 半虚轴长为b. c e a c2=b2+a2
例3 求双曲线9y2–16x2=144的实半轴长和虚半轴长、焦点坐标、 离心率及渐进线方程.
例4 双曲线型冷却塔的外形,是双曲线的一部分绕其虚轴旋 转所成的曲面,它的最小半径为12m,上口半径为13m,下口 半径为25m,高为55m,试选择适当的坐标系,求出此双曲线 的方程。
4.渐近线:
b 0 ,即y=±- ax
y
B2 A1
O
当a=b时,双曲线叫做等轴双曲线。 5.离心率: 双曲线的焦距与实轴长的比 称为双曲线的离心率,
c 用e表示,即 e a
a
B1
A2
b
x
[1]离心率的取值范围:e>1
[2]离心率对双曲线形状的影响:
渐近线与双曲 线永不相交
e越大,c就越大,从而b就越大,双曲线就开口越阔。
(3)焦点为(0, 6),(0, -6),且过点(0, 4)
2.2.2 椭圆的简单几何性质
x y - 2 =1 2 a b
1.范围: 两直线x=±a的外侧 2.对称性:
A1
O
2
2
y
B2
a
B1
A2
b
x
双曲线是轴对称图形,也是中心对称图形。坐 标轴是它的对称轴,坐标原点是它的对称中心。 双曲线的对称中心叫双曲线的中心。 3.顶点: A1(-a,0),A2(a,0)叫做双曲线的顶点。 线段A1A2叫做双曲线的实轴,ห้องสมุดไป่ตู้B1B2 叫做双曲线 的虚轴。它们的长分别为2a和2b。
F(±c,0)
课件10:2.2.2 双曲线的简单几何性质
半虚轴长:_b_
顶点 性
A1(-a,0),A2(a,0)
质 离心率 e=_ac__∈_(_1_,__+__∞_)_
b
渐近线 y=± a x
A1(0,-a), A2(0,a)
a y=± bx
想一想
1.试用 a,b 表示双曲线的离心率,离心率的大小与开口
有关系吗? 提示:e=ac=
a2+a2 b2=
解:将 9y2-4x2=-36 变形为x92-y42=1,即3x22-2y22=1,
所以 a=3,b=2,c= 13,因此顶点坐标为(-3,0),(3,
0),焦点坐标为(- 13,0),( 13,0).
实轴长是 2a=6,虚轴长是 2b=4, 离心率 e=ac= 313, 渐近线方程为 y=±bax=±23x.
题型三 求双曲线的离心率 例 3 已知 F1,F2 是双曲线ax22-by22=1(a>0,b>0)的两 个焦点,PQ 是经过 F1 且垂直于 x 轴的双曲线的弦, 如果∠PF2Q=90°,求双曲线的离心率.
解:设 F1(c,0),将 x=c 代入双曲线的方程得ca22-by22=1, 则 y=±ba2. 由|PF2|=|QF2|,∠PF2Q=90°, 知|PF1|=|F1F2|, ∴ba2=2c,∴b2=2ac,
∴c2-2ac-a2=0,∴ca2-2×ac-1=0. 即 e2-2e-1=0. ∴e=1+ 2或 e=1- 2(舍去). 所以所求双曲线的离心率为 1+ 2.
名师点评 (1)求双曲线的离心率的常见方法:一是依 据条件求出 a,c,算 e=ac;二是依据条件提供的信息建 立关于参数 a,b,c 的等式,进而转化为关于离心率 e 的方程,再解出 e 的值. (2)求离心率的范围时,常结合已知条件构建关于 a,b, c 的不等关系.
【精品课件】选修2-2 2.2.2双曲线的简单几何性质
B2
a
则 | MQ || MN | .
当x逐渐增大时,| MN | 逐渐减小, x无
F1 A1 O
QN M
A2 F2 x
限增大,| MN | 无限接近于零,| MQ |
B1
也 无 限 接 近 于 零.
即双曲线在第一象限的部分从射线
ON的下方逐渐接近于射线ON .
选修2-2 圆锥曲线与方程 2.2.2 双曲线的简单几何性质
a
则Y b x . a
选修2-2 圆锥曲线与方程 2.2.2 双曲线的简单几何性质
第二章
情境引入
新知导学
关键能力
所以| MN | Y y b x x2 a2
分子有理化
a
b x x2 a2 x x2 a2
ab
a
x x2 a2
.
x x2 a2
y
设 | MQ | 是点M到直线y b x的距离,
新知导学
关键能力
-6-
3.顶点
y
B2
左顶点:A1(-a,0)
F1 A1 O A2 F2 x 右顶点:A2(a,0)
B1
线段A1 A2称为实轴
实轴长为2a,实半轴长为a
线段B1B2称为虚轴
虚轴长为2b,虚半轴长为b
选修2-2 圆锥曲线与方程 2.2.2 双曲线的简单几何性质
第二章
情境引入
新知导学
关键能力
关关键键能能力力
为什么 y
b a
x
是双曲线
x2 a2
y2 b2
1的渐近线?
y
如
图1,
先
取
双
曲
线x 2 a2
y2 b2
1
高中数学第二章2.2双曲线2.2.2双曲线的简单几何性质讲义(含解析)新人教A版选修1_1
2.2.2 双曲线的简单几何性质预习课本P49~53,思考并完成以下问题1.双曲线有哪些几何性质?2.双曲线的顶点、实轴、虚轴分别是什么?3.双曲线的渐近线、等轴双曲线的定义分别是什么?[新知初探]1.双曲线的几何性质标准方程x2a2-y2b2=1(a>0,b>0)y2a2-x2b2=1(a>0,b>0)性质图形焦点F1(-c,0),F2(c,0)F1(0,-c),F2(0,c)焦距|F1F2|=2c性质范围x≤-a或x≥a,y∈R y≤-a或y≥a,x∈R 对称性对称轴:坐标轴;对称中心:原点顶点A1(-a,0),A2(a,0)A1(0,-a),A2(0,a) 轴实轴:线段A1A2,长:2a;2.等轴双曲线实轴和虚轴等长的双曲线叫等轴双曲线,它的渐近线是y =±x ,离心率为e = 2. [点睛] 对双曲线的简单几何性质的几点认识 (1)双曲线的焦点决定双曲线的位置;(2)双曲线的离心率和渐近线刻画了双曲线的开口大小,离心率越大,双曲线的开口越大,反之亦然.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”) (1)双曲线x 22-y 24=1的焦点在y 轴上( )(2)双曲线的离心率越大,双曲线的开口越开阔( ) (3)以y =±2x 为渐近线的双曲线有2条( ) 答案:(1)× (2)√ (3)×2.双曲线x 216-y 2=1的顶点坐标是( )A .(4,0),(0,1)B .(-4,0),(4,0)C .(0,1),(0,-1)D .(-4,0),(0,-1)答案:B3.中心在原点,实轴长为10,虚轴长为6的双曲线的标准方程是( ) A.x 225-y 29=1 B.x 225-y 29=1或y 225-x 29=1 C.x 2100-y 236=1 D.x 2100-y 236=1或y 2100-x 236=1 答案:B4.(2017·全国卷Ⅲ)双曲线x 2a 2-y 29=1(a >0)的一条渐近线方程为y =35x ,则a =________.答案:5双曲线的几何性质[典例] 22虚轴长、离心率和渐近线方程.[解] 双曲线的方程化为标准形式是x 29-y 24=1,∴a 2=9,b 2=4,∴a =3,b =2,c =13. 又双曲线的焦点在x 轴上, ∴顶点坐标为(-3,0),(3,0), 焦点坐标为(-13,0),(13,0), 实轴长2a =6,虚轴长2b =4, 离心率e =ca =133,渐近线方程为y =±23x .由双曲线的方程研究几何性质的解题步骤(1)把双曲线方程化为标准形式是解决本题的关键; (2)由标准方程确定焦点位置,确定a ,b 的值;(3)由c 2=a 2+b 2求出c 值,从而写出双曲线的几何性质. [注意] 求性质时一定要注意焦点的位置. 1.已知双曲线x 29-y 216=1与y 216-x 29=1,下列说法正确的是( )A .两个双曲线有公共顶点B .两个双曲线有公共焦点C .两个双曲线有公共渐近线D .两个双曲线的离心率相等解析:选C 双曲线x 29-y 216=1的焦点和顶点都在x 轴上,而双曲线y 216-x 29=1的焦点和顶点都在y 轴上,因此可排除选项A 、B ;双曲线x 29-y 216=1的离心率e 1=9+169=53,而双曲线y 216-x 29=1的离心率e 2=16+916=54,因此可排除选项D ;易得C 正确. 2.(2017·北京高考)若双曲线x 2-y 2m=1的离心率为3,则实数m =________.解析:由双曲线的标准方程可知a 2=1,b 2=m , 所以e =1+b 2a2=1+m =3,解得m =2. 答案:2由双曲线的几何性质求标准方程[典例] (1)(2017·天津高考)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的左焦点为F ,离心率为 2.若经过F 和P (0,4)两点的直线平行于双曲线的一条渐近线,则双曲线的方程为( )A.x 24-y 24=1B.x 28-y 28=1C.x 24-y 28=1 D.x 28-y 24=1(2)过点(2,-2)且与x 22-y 2=1有相同渐近线的双曲线的标准方程为________.[解析] (1)由e =2知,双曲线为等轴双曲线, 则其渐近线方程为y =±x ,故由P (0,4),知左焦点F 的坐标为(-4,0), 所以c =4,则a 2=b 2=c 22=8.故双曲线的方程为x 28-y 28=1.(2)法一:当焦点在x 轴上时,由于b a =22. 故可设方程为x 22b 2-y 2b2=1,代入点(2,-2)得b 2=-2(舍去); 当焦点在y 轴上时,可知a b =22,故可设方程为y 2a 2-x 22a2=1,代入点(2,-2)得a 2=2. 所以所求双曲线方程为y 22-x 24=1.法二:因为所求双曲线与已知双曲线x 22-y 2=1有相同的渐近线,故可设双曲线方程为x 22-y 2=λ(λ≠0),代入点(2,-2)得λ=-2,所以所求双曲线的方程为x 22-y 2=-2,即y 22-x 24=1. [答案] (1)B (2)y 22-x 24=1求双曲线的标准方程的方法与技巧(1)一般情况下,求双曲线的标准方程关键是确定a ,b 的值和焦点所在的坐标轴,若给出双曲线的顶点坐标或焦点坐标,则焦点所在的坐标轴易得.再结合c 2=a 2+b 2及e =c a列关于a ,b 的方程(组),解方程(组)可得标准方程.(2)如果已知双曲线的渐近线方程为y =±b a x ,那么此双曲线方程可设为x 2a 2-y 2b 2=λ(λ≠0).求适合下列条件的双曲线的标准方程: (1)虚轴长为12,离心率为54;(2)焦点在x 轴上,离心率为2,且过点(-5,3); (3)顶点间距离为6,渐近线方程为y =±32x .解:(1)设双曲线的标准方程为x 2a 2-y 2b 2=1或y 2a 2-x 2b 2=1(a >0,b >0).由题意知2b =12,c a =54且c 2=a 2+b 2,∴b =6,c =10,a =8,∴双曲线的标准方程为x 264-y 236=1或y 264-x 236=1.(2)∵e =ca=2,∴c =2a ,b 2=c 2-a 2=a 2. 又∵焦点在x 轴上,∴设双曲线的标准方程为x 2a 2-y 2a2=1(a >0).把点(-5,3)代入方程,解得a 2=16. ∴双曲线的标准方程为x 216-y 216=1.(3)设以y =±32x 为渐近线的双曲线方程为x 24-y 29=λ(λ≠0), 当λ>0时,a 2=4λ,∴2a =24λ=6⇒λ=94.当λ<0时,a 2=-9λ,∴2a =2-9λ=6⇒λ=-1. ∴双曲线的标准方程为x 29-4y 281=1或y 29-x 24=1.双曲线的离心率[典例] 过双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右焦点作一条与其渐近线平行的直线,交C 于点P .若点P 的横坐标为2a ,则C 的离心率为________.[解析] 如图所示,不妨设与渐近线平行的直线l 的斜率为b a,又直线l 过右焦点F (c,0),则直线l 的方程为y =b a(x -c ).因为点P 的横坐标为2a ,代入双曲线方程得4a2a 2-y 2b2=1,化简得y =-3b 或y =3b (点P 在x 轴下方,故舍去),故点P 的坐标为(2a ,-3b ),代入直线方程得-3b =ba(2a -c ),化简可得离心率e =c a=2+ 3.[答案] 2+ 3求双曲线离心率的两种方法(1)直接法:若已知a ,c 可直接利用e =c a求解,若已知a ,b ,可利用e = 1+⎝ ⎛⎭⎪⎫b a2求解.(2)方程法:若无法求出a ,b ,c 的具体值,但根据条件可确定a ,b ,c 之间的关系,可通过b 2=c 2-a 2,将关系式转化为关于a ,c 的齐次方程,借助于e =c a,转化为关于e 的n 次方程求解.[活学活用]1.如果双曲线x 2a 2-y 2b2=1右支上总存在到双曲线的中心与右焦点距离相等的两个相异点,则双曲线离心率的取值范围是________.解析:如图,因为AO =AF ,F (c,0),所以x A =c 2,因为A 在右支上且不在顶点处,所以c 2>a ,所以e =ca >2.答案:(2,+∞)2.设F 1,F 2是双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的两个焦点,P 是C 上一点,若|PF 1|+|PF 2|=6a ,且△PF 1F 2的最小内角为30°,则C 的离心率为________.解析:不妨设|PF 1|>|PF 2|,则|PF 1|-|PF 2|=2a ,又|PF 1|+|PF 2|=6a ,得|PF 1|=4a ,|PF 2|=2a ,|F 1F 2|=2c ,则在△PF 1F 2中,∠PF 1F 2=30°,由余弦定理得(2a )2=(4a )2+(2c )2-2×(4a )×(2c )×cos 30°,整理得(e -3)2=0,所以e = 3.答案: 3层级一 学业水平达标1.双曲线2x 2-y 2=8的实轴长是( ) A .2 B .2 2 C .4D .4 2解析:选C 双曲线方程可变形为x 24-y 28=1,所以a 2=4,a =2,从而2a =4,故选C.2.已知双曲线的实轴和虚轴等长,且过点(5,3),则双曲线方程为( ) A.x 225-y 225=1 B.x 29-y 29=1C.y 216-x 216=1 D.x 216-y 216=1解析:选D 由题意知,所求双曲线是等轴双曲线,设其方程为x 2-y 2=λ(λ≠0),将点(5,3)代入方程,可得λ=52-32=16,所以双曲线方程为x 2-y 2=16,即x 216-y 216=1.3.(2017·全国卷Ⅱ)若a >1,则双曲线x 2a2-y 2=1的离心率的取值范围是( )A .(2,+∞)B .(2,2)C .(1,2)D .(1,2)解析:选C 由题意得双曲线的离心率e =a 2+1a .即e 2=a 2+1a 2=1+1a2.∵a >1,∴0<1a2<1,∴1<1+1a2<2,∴1<e < 2.4.若一双曲线与椭圆4x 2+y 2=64有公共的焦点,且它们的离心率互为倒数,则该双曲线的方程为( )A .y 2-3x 2=36 B .x 2-3y 2=36 C .3y 2-x 2=36D .3x 2-y 2=36解析:选A 椭圆4x 2+y 2=64可变形为x 216+y 264=1,a 2=64,c 2=64-16=48,∴焦点为(0,43),(0,-43),离心率e =32, 则双曲线的焦点在y 轴上,c ′=43,e ′=23, 从而a ′=6,b ′2=12,故所求双曲线的方程为y 2-3x 2=36.5.已知双曲线x 2a2-y 2=1(a >0)的实轴长、虚轴长、焦距长成等差数列,则双曲线的渐近线方程为( )A .y =±35xB .y =±53xC .y =±34xD .y =±43x解析:选D 由双曲线方程为x 2a2-y 2=1,知b 2=1,c 2=a 2+1,∴2b =2,2c =2a 2+1.∵实轴长、虚轴长、焦距长成等差数列,∴2a +2c =4b =4,∴2a +2a 2+1=4,解得a =34.∴双曲线的渐近线方程为y =±43x .6.已知点(2,3)在双曲线C :x 2a 2-y 2b2=1(a >0,b >0)上,C 的焦距为4,则它的离心率为________.解析:由题意知4a 2-9b2=1,c 2=a 2+b 2=4,解得a =1,所以e =c a=2. 答案:27.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一个焦点为F (25,0),且离心率为e =52,则双曲线的标准方程为________.解析:由焦点坐标,知c =25,由e =c a =52,可得a =4,所以b =c 2-a 2=2,则双曲线的标准方程为x 216-y 24=1. 答案:x 216-y 24=18.已知双曲线过点(4,3),且渐近线方程为y =±12x ,则该双曲线的标准方程为________.解析:法一:∵双曲线的渐近线方程为y =±12x ,∴可设双曲线的方程为x 2-4y 2=λ(λ≠0). ∵双曲线过点(4,3),∴λ=16-4×(3)2=4, ∴双曲线的标准方程为x 24-y 2=1.法二:∵渐近线y =12x 过点(4,2),而3<2,∴点(4,3)在渐近线y =12x 的下方,在y =-12x 的上方(如图).∴双曲线的焦点在x 轴上, 故可设双曲线方程为x 2a 2-y 2b 2=1(a >0,b >0). 由已知条件可得⎩⎪⎨⎪⎧b a =12,16a 2-3b 2=1,解得⎩⎪⎨⎪⎧a 2=4,b 2=1,∴双曲线的标准方程为x 24-y 2=1. 答案:x 24-y 2=19.求满足下列条件的双曲线的标准方程.(1)与双曲线y 24-x 23=1具有相同的渐近线,且过点M (3,-2);(2)过点(2,0),与双曲线y 264-x 216=1离心率相等;(3)与椭圆x 225+y 216=1有公共焦点,离心率为32.解:(1)设所求双曲线方程为y 24-x 23=λ(λ≠0).由点M (3,-2)在双曲线上得44-93=λ,得λ=-2.故所求双曲线的标准方程为x 26-y 28=1.(2)当所求双曲线的焦点在x 轴上时, 可设其方程为x 264-y 216=λ(λ>0),将点(2,0)的坐标代入方程得λ=116,故所求双曲线的标准方程为x 24-y 2=1;当所求双曲线的焦点在y 轴上时, 可设其方程为y 264-x 216=λ(λ>0),将点(2,0)的坐标代入方程得λ=-14<0(舍去).综上可知,所求双曲线的标准方程为x 24-y 2=1.(3)法一:由椭圆方程可得焦点坐标为(-3,0),(3,0),即c =3且焦点在x 轴上.设双曲线的标准方程为x 2a 2-y 2b 2=1(a >0,b >0).因为e =c a =32,所以a =2,则b 2=c 2-a 2=5,故所求双曲线的标准方程为x 24-y 25=1.法二:因为椭圆焦点在x 轴上,所以可设双曲线的标准方程为x 225-λ-y 2λ-16=1(16<λ<25).因为e =32,所以λ-1625-λ=94-1,解得λ=21.故所求双曲线的标准方程为x 24-y 25=1.10.设双曲线x 2a 2-y 2b2=1(0<a <b )的半焦距为c ,直线l 过(a,0),(0,b )两点,已知原点到直线l 的距离为34c ,求双曲线的离心率. 解:直线l 的方程为x a +yb=1,即bx +ay -ab =0. 于是有|b ·0+a ·0-ab |a 2+b 2=34c ,所以ab =34c 2,两边平方,得a 2b 2=316c 4. 又b 2=c 2-a 2,所以16a 2(c 2-a 2)=3c 4, 两边同时除以a 4,得3e 4-16e 2+16=0, 解得e 2=4或e 2=43.又b >a ,所以e 2=a 2+b 2a 2=1+b 2a2>2,则e =2.于是双曲线的离心率为2.层级二 应试能力达标1.若双曲线与椭圆x 216+y 264=1有相同的焦点,它的一条渐近线方程为y =-x ,则双曲线的方程为( )A .y 2-x 2=96 B .y 2-x 2=160 C .y 2-x 2=80D .y 2-x 2=24解析:选D 设双曲线方程为x 2-y 2=λ(λ≠0),因为双曲线与椭圆有相同的焦点,且焦点为(0,±43),所以λ<0,且-2λ=(43)2,得λ=-24.故选D.2.若中心在原点,焦点在x 轴上的双曲线的一条渐近线经过点(4,-2),则它的离心率为( )A. 6B. 5C.62D.52解析:选D 设双曲线的标准方程为x 2a 2-y 2b2=1(a >0,b >0).由题意,知过点(4,-2)的渐近线方程为y =-b a x ,所以-2=-b a×4,即a =2b .设b =k (k >0),则a =2k ,c =5k ,所以e =c a =5k 2k =52.故选D. 3.已知双曲线E 的中心为原点,F (3,0)是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为N (-12,-15),则E 的方程为( )A.x 23-y 26=1B.x 24-y 25=1C.x 26-y 23=1 D.x 25-y 24=1解析:选B 设双曲线的标准方程为x 2a 2-y 2b2=1(a >0,b >0),由题意知c =3,a 2+b 2=9,设A (x 1,y 1),B (x 2,y 2)则有⎩⎪⎨⎪⎧x 21a 2-y 21b2=1,x 22a 2-y22b 2=1,两式作差得y 1-y 2x 1-x 2=b 2x 1+x 2a 2y 1+y 2=-12b 2-15a 2=4b25a2,又AB 的斜率是-15-0-12-3=1,所以4b 2=5a 2,代入a 2+b 2=9得a 2=4,b 2=5, 所以双曲线标准方程是x 24-y 25=1.4.已知A ,B 为双曲线E 的左,右顶点,点M 在E 上,△ABM 为等腰三角形,且顶角为120°,则E 的离心率为( )A. 5 B .2 C. 3D. 2解析:选D 不妨取点M 在第一象限,如图所示,设双曲线方程为x 2a 2-y 2b2=1(a >0,b >0),则|BM |=|AB |=2a ,∠MBx =180°-120°=60°,∴M 点的坐标为()2a ,3a .∵M 点在双曲线上,∴4a 2a 2-3a2b2=1,a =b ,∴c =2a ,e =c a= 2.故选D.5.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的右焦点为F ,若过点F 且倾斜角为60°的直线l与双曲线的右支有且只有一个交点,则此双曲线的离心率e 的取值范围是________________________________________________________________________.解析:由题意,知b a ≥3,则b 2a 2≥3,所以c 2-a 2≥3a 2,即c 2≥4a 2,所以e 2=c 2a2≥4,所以e ≥2.答案:[2,+∞)6.双曲线x 29-y 216=1的右顶点为A ,右焦点为F ,过点F 平行于双曲线的一条渐近线的直线与双曲线交于点B ,则△AFB 的面积为________.解析:双曲线x 29-y 216=1的右顶点A (3,0),右焦点F (5,0),渐近线方程为y =±43x .不妨设直线FB 的方程为y =43(x -5),代入双曲线方程整理,得x 2-(x -5)2=9,解得x =175,y =-3215,所以B ⎝ ⎛⎭⎪⎫175,-3215.所以S △AFB =12|AF ||y B |=12(c -a )·|y B |=12×(5-3)×3215=3215. 答案:32157.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的一个焦点是F 2(2,0),离心率e =2.(1)求双曲线C 的方程;(2)若斜率为1的直线l 与双曲线C 交于两个不同的点M ,N ,线段MN 的垂直平分线与两坐标轴围成的三角形的面积为4,求直线l 的方程.解:(1)由已知得c =2,e =2,所以a =1,b = 3.所以所求的双曲线方程为x 2-y 23=1.(2)设直线l 的方程为y =x +m ,点M (x 1,y 1),N (x 2,y 2).联立⎩⎪⎨⎪⎧y =x +m ,x 2-y 23=1,整理得2x 2-2mx -m 2-3=0.(*)设MN 的中点为(x 0,y 0),则x 0=x 1+x 22=m2,y 0=x 0+m =3m2,所以线段MN 垂直平分线的方程为y -3m 2=-⎝ ⎛⎭⎪⎫x -m 2,即x +y -2m =0,与坐标轴的交点分别为(0,2m ),(2m,0),可得12|2m |·|2m |=4,得m 2=2,m =±2,此时(*)的判别式Δ>0,故直线l 的方程为y =x ± 2.8.已知双曲线C :x 2-y 2=1及直线l :y =kx -1.(1)若直线l 与双曲线C 有两个不同的交点,求实数k 的取值范围;(2)若直线l 与双曲线C 交于A ,B 两点,O 为坐标原点,且△AOB 的面积是2,求实数k 的值.解:(1)由⎩⎪⎨⎪⎧y =kx -1,x 2-y 2=1消去y ,得(1-k 2)x 2+2kx -2=0.①由直线l 与双曲线C 有两个不同的交点,得⎩⎪⎨⎪⎧1-k 2≠0,Δ=4k 2+81-k2>0,解得-2<k <2且k ≠±1.即k 的取值范围为(-2,-1)∪(-1,1)∪(1,2).(2)设A (x 1,y 1),B (x 2,y 2),由方程①,得x 1+x 2=-2k 1-k 2,x 1x 2=-21-k 2.因为直线l :y =kx -1恒过定点D (0,-1),则当x 1x 2<0时,S △AOB =S △OAD +S △OBD =12|x 1-x 2|=2;当x 1x 2>0时,S △AOB =|S △OAD -S △OBD |=12|x 1-x 2|= 2.综上可知,|x 1-x 2|=22,所以(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=(22)2,即⎝⎛⎭⎪⎫-2k 1-k 22+81-k 2=8,解得k =0或k =±62.由(1),可知-2<k <2且k ≠±1,故k =0或k =±62都符合题意.。
学案3:2.2.2 双曲线的简单几何性质
2.2.2 双曲线的简单几何性质【学一学———基础知识结论】 1.双曲线的几何性质2.等轴双曲线(1)实轴和虚轴等长的双曲线叫等轴双曲线,它的渐近线是y=x ±,离心率 . (2)渐近线是双曲线特有的性质,两方程密切联系,把双曲线的标准方程2222=1(a>0,b>0)x y a b -,右边的常数1换成0,就是渐近线方程,反之由渐近线方程ax by=0±变为2222a x b y =λ-,再结合其他条件求得λ,就能求的双曲线方程.【学一学———方法规律技巧】1.双曲线离心率值(或范围)的求法双曲线的基本量a,b,c中,知道任意两个量的关系,结合222c b a=+,则三个量的关系都知道,而e=ca,故确定双曲线的离心率值(范围),关键在根据双曲线定义、平面几何知识、数形结合、方程思想等寻求关于a,b,c的等量关系或者不等关系.例1.已知F1,F2是双曲线x2a2-y2b2=1(a>b>0)的两焦点,PQ是经过F1且垂直于x轴的双曲线的弦,如果∠PF2Q=90°,求双曲线的离心率.2.根据双曲线标准方程研究几何性质由双曲线的方程,求双曲线的相关性质的步骤为:先将双曲线方程化为标准形式22221 x ya b-=(或22221y xa b-=),再根据它确定a,b的值(注意分母分别为a2,b2,而不是a,b),进而求出c;再对照双曲线的几何性质得到相应的答案.画近似图形,要先画双曲线的两条渐近线(即以2a,2b为两条邻边的矩形的对角线所在直线)和两个顶点,然后根据双曲线的变化趋势,就可画出双曲线的近似图形.例2.求双曲线144x2-25y2=-3 600的实轴长和虚轴长,焦点坐标,顶点坐标,离心率,渐近线方程.变式训练2双曲线y 2-2x 2=-8的焦点坐标是 ,顶点坐标是 ,离心率等于 ,渐近线方程是 . 试一试1.中心在坐标原点,离心率为53的双曲线的焦点在y 轴上,则它的渐近线方程为( )A .y =±54xB .y =±45xC .y =±43xD .y =±34x2.设F 1和F 2为双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两个焦点,若F 1,F 2,P (0,2b )是正三角形的三个顶点,则双曲线的离心率为( )A.32 B .2 C.52 D .3 3.已知双曲线方程为x 2-y 24=1,过P (1,0)的直线l 与双曲线只有一个公共点,则l 的条数为( )A .4条B .3条C .2条D .1条4.若双曲线的渐近线方程为y =±3x ,它的一个焦点是(10,0),则双曲线的方程是______________. 课后作业1.若实数k 满足0<k <5,则曲线x 216-y 25-k =1与曲线x 216-k -y 25=1的( )A .实半轴长相等B .虚半轴长相等C .离心率相等D .焦距相等2.设a ,b 是关于t 的方程t 2cos θ+t sin θ=0的两个不等实根,则过A (a ,a 2),B (b ,b 2)两点的直线与双曲线x 2cos 2θ-y 2sin 2θ=1的公共点的个数为( )A .0个B .1个C .2个D .3个3.若双曲线x 24-y 2m =1的渐近线方程为y =±32x ,则双曲线的焦点坐标是__________.4.已知双曲线x 2a 2-y 2b 2=1的离心率为2,焦点与椭圆x 225+y 29=1的焦点相同,那么双曲线的焦点坐标为__________,渐近线方程为__________.5.双曲线与椭圆有共同的焦点F 1(0,-5),F 2(0,5),点P (3,4)是双曲线的渐近线与椭圆的一个交点,试求双曲线方程与椭圆的方程.6.P (x 0,y 0)(x 0≠±a )是双曲线E :x 2a 2-y 2b 2=1(a >0,b >0)上一点,M ,N 分别是双曲线E 的左、右顶点,直线PM ,PN 的斜率之积为15.(1)求双曲线的离心率;(2)过双曲线E 的右焦点且斜率为1的直线交双曲线于A ,B 两点,O 为坐标原点,C 为双曲线上一点,满足OC →=λOA →+OB →,求λ的值.答 案例1 【答案】解:设F 1(c ,0),将x =c 代入双曲线x 2a 2-y 2b 2=1,那么y =±b 2a .由|PF 2|=|QF 2|,∠PF 2Q =90°,知|PF 1|=|F 1F 2|, ∴b 2a=2c ,∴b 2=2ac . ∴c 2-2ac -a 2=0,∴⎝⎛⎭⎫c a 2-2×ca-1=0. 即有e 2-2e -1=0,解得e =1+2(舍去e =1-2). ∴所求双曲线的离心率e =1+ 2.【方法总结】离心率是圆锥曲线的重要几何性质,这类问题一般有两类:一类是根据一定的条件求离心率,另一类是根据一定的条件求离心率的取值范围,无论哪类问题,其难点都是如何建立关于a 、b 、c 的关系式(等式或不等式)并且最后把b 用a 、c 来表达,转化为e 的关系式.例2 【答案】解:把双曲线方程化成标准方程为y 2144−x 225=1, 则a 2=144,b 2=25,∴c 2=a 2+b 2=169.∴a=12,b=5,c=13.由此可知,该双曲线的实轴长2a=24,虚轴长2b=10,焦点坐标为(0,-13),(0,13),顶点坐标为(0,-12),(0,12),离心率e=1312,渐近线方程为y=±125x.变式训练2【答案】解:双曲线方程化为x 24−y 28=1,所以a=2,b=2√2,焦点在x 轴上,c=√4+8=2√3.故焦点坐标是(-2√3,0),(2√3,0),顶点坐标是(-2,0),(2,0),离心率 e=ca =√3,渐近线方程是y=±√2x.【答案】(-2√3,0),(2√3,0) (-2,0),(2,0) √3 y=±√2x试一试1.【解析】依题意,得e =c a =53.设a =3k ,c =5k ,则b 2=c 2-a 2=25k 2-9k 2=16k 2,则b =4k .又双曲线焦点在y 轴上,∴其渐近线方程为y =±34x .【答案】D 2.【答案】B3.【解析】过P 与渐近线平行的直线与双曲线只有一个公共点,另外x =1与双曲线只有一个公共点,∴l 的条数是3. 【答案】B4.【解析】由渐近线方程知b a =3,又c =10,a 2+b 2=c 2⇒a 2+9a 2=10⇒a 2=1,b 2=9. 【答案】x 2-y 29=1 课后作业1.【解析】∵0<k <5,∴5-k >0,16-k >0.对于双曲线:x 216-y 25-k =1,其焦距是25-k +16=221-k ;对于双曲线:x 216-k -y 25=1,其焦距是216-k +5=221-k .故焦距相等.【答案】D2.【解析】由方程t 2cos θ+t sin θ=0,解得t 1=0,t 2=-tan θ,不妨设点A (0,0),B (-tanθ,tan 2θ),则过这两点的直线方程为y =-x tan θ,该直线恰是双曲线x 2cos 2θ-y 2sin 2θ=1的一条渐近线,所以该直线与双曲线无公共点.故选A. 【答案】A3.【解析】由渐近线方程为y =±m 2x =±32x ,得m =3,c =7,且焦点在x 轴上. 【答案】(±7,0)4.【解析】椭圆的焦点坐标为(4,0),(-4,0),故c =4,且满足c a =2,故a =2,b =c 2-a 2=23,所以双曲线的渐近线方程为y =±ba x =±3x .【答案】(4,0),(-4,0) y =±3x5.【答案】解:由共同的焦点F 1(0,-5),F 2(0,5), 可设椭圆方程为y 2a 2+x 2a 2-25=1(a 2>25);双曲线方程为y 2b 2-x 225-b2=1(0<b 2<25), 点P (3,4)在椭圆上,所以16a 2+9a 2-25=1,得a 2=40,双曲线过点P (3,4)的渐近线为y =b25-b 2x , 即4=b25-b2×3,b 2=16, 所以椭圆方程为y 240+x 215=1,双曲线方程为y 216-x 29=1.6.【答案】解:(1)由点P 在双曲线x 2a 2-y 2b 2=1上,有x 20a 2-y 20b 2=1,由题意又有y 0x 0-a ·y 0x 0+a =15,可得a 2=5b 2,c 2=a 2+b 2=6b 2, 则e =c a =305.(2)联立方程得⎩⎪⎨⎪⎧x 2-5y 2=5b 2,y =x -c ,得4x 2-10cx +35b 2=0,设A (x 1,y 1),B (x 2,y 2),则⎩⎨⎧x 1+x 2=5c 2,x 1x 2=35b24.设OC →=(x 3,y 3),由OC →=λOA →+OB →得⎩⎪⎨⎪⎧x 3=λx 1+x 2,y 3=λy 1+y 2.又C 为双曲线E 上一点,即x 23-5y 23=5b 2,有(λx 1+x 2)2-5(λy 1+y 2)2=5b 2, 化简得:λ2(x 21-5y 21)+(x 22-5y 22)+2λ(x 1x 2-5y 1y 2)=5b 2,又A (x 1,y 1),B (x 2,y 2)在双曲线E 上,所以x 21-5y 21=5b 2,x 22-5y 22=5b 2.又x 1x 2-5y 1y 2=x 1x 2-5(x 1-c )(x 2-c )=-4x 1x 2+5c (x 1+x 2)-5c 2=10b 2, 得:λ2+4λ=0,解出λ=0或λ=-4.。
2.2.2 双曲线的简单几何性质
2.双曲线的渐近线 (1)求法:令常数项为零,因式分解即得. (2)用法:①由渐近线方程得到ba或ab的值;②利用渐近线方程设出 双曲线的方程. (3)双曲线的焦点到其渐近线的距离为 b(虚半轴的长). (4)等轴双曲线的渐近线方程为 y=±x.
◎已知双曲线方程为 x2-y2=1,双曲线的左支上一点 P(a,b)到 直线 y=x 的距离是 2,求 a+b 的值.
解析: OA=a,OB=b,AB=c, 在△OAB 中,有12ab=12·43c·c= 83c2, 又 a2+b2=c2,∴a2(c2-a2)=136c4,即 e2-1=136e4, ∴3e4-16e2+16=0,解得 e=2 或 e=233, ∵0<a<b,∴a2<c2-a2, ∴e> 2,∴e=233应舍去,∴e=2.
解析: 由双曲线方程 mx2+y2=1,知 m<0, 则双曲线方程可化为 y2--x2m1 =1, 则 a2=1,a=1,又虚轴长是实轴长的 2 倍, ∴b=2,∴-m1 =b2=4, ∴m=-14.
答案: -14
4.求满足下列条件的双曲线的标准方程: (1)焦点是(-4,0),(4,0),过点(2,0); (2)离心率为54,半虚轴长为 2.
• 2.2.2 双曲线的简单几何性质
• 第1课时 双曲线的简单几何性质
• 1.掌握双曲线的简单几何性质. • 2.了解双曲线的渐近性及渐近线的概念.
• 1.本节的重点是双曲线的几何性质的理解和应用,难点是渐近 线的理解和应用.
• 2.双曲线的几何性质是考查的重点,其中离心率、渐近线是考 查的热点.
[规范作答] 设 F1(c,0),将 x=c 代入双曲线的方程得 ac22-by22=1,那么 y=±ba2,3 分 由|PF2|=|QF2|,∠PF2Q=90°,知|PF1|=|F1F2|, ∴ba2=2c,∴b2=2ac.6 分 ∴c2-2ac-a2=0,∴ac2-2×ac-1=0.8 分 即 e2-2e-1=0,∴e=1+ 2或 e=1- 2(舍去).10 分 所以所求双曲线的离心率为 1+ 2.12 分
2.2.2双曲线的几何性质
例4.直线y kx与双曲线 4x2 y2 16
不可能( B )
y
A. 相交
B. B. 只有一个交点 C.C. 相离
x o
D.D. 有两个公共点
第28页,共40页。
例5. 过双曲线 x2 y2 1的右焦点F, 做直
3
线l与双曲线的两支都相交, 则直线l的倾斜
角α的取值范围是____________________ y
形 F1(-c,0) B1 F2(c,0)
..
y
A2 F2
B2
B1
O
A1 F1
F2(0,c) x
F1(0,-c)
方程
范围
对称性 关于x轴、y轴、原点对称
顶点
A1(-a,0), A2(a,0)
关于x轴、y轴、原点对称 A1(0,-a), A2(0,a)
离心率
渐进线
ybx a
第9页,共40页。
ya x b
4
25 16
相离
第23页,共40页。
练习:判断下列直线和双曲线x2-y2=4的位置关系.
1. y 1 x 3 2
相交 两个交点 △>0
2. y 13 x 3 2
3. y x 3
相切 一个交点 △=0
相交 一个交点 无△
第24页,共40页。
例2.过点(0, 3)作直线l, 如果它与双曲线
b B2
A1
A2
o a
x
ybx a
B1
y b x a
第7页,共40页。
直线y b x叫做双曲线的渐进线. a
x2 y2 1的渐进线为:y 3 x
2
x2 y2 1的渐进线为:y x
2.2.2双曲线的简单几何性质
1. 双曲线的标准方程:
y F1
O
2 2
y
F2 x c2=a2+b2 O F2 x
F1
y x x y 2 1 (a>0,b>0) 2 1(a>0,b>0) 2 2 a b a b 焦点在x轴上,焦点 焦点在y轴上,焦点 是F1(-c, 0)、F2(c, 0). 是F1(0, -c)、F2(0, c).
由此可知,双曲线的离心率越大,它 的开口就越阔.
x y 1 、 1 的离心率为: 4 3 7
e 2
2
2
x y 2、 1 的离心率为: 2 2
2
2
e 2
例题讲解
例1. 求双曲线9y2-16x2=144的实半
轴长和虚半轴长、焦点坐标、离心率、 渐近线方程.
例题讲解
例2. 求中心在原点,对称轴 为坐标轴,
经过点P (1, 3)且离心率为 2 的双曲 线标准方程 .
例题讲解
变式:求与椭圆
x2 y2 1有公共 49 24
5 e 4
焦点,且离心率
的双曲线方程
小 结
. .
A2 B2
图形
. .
F1
A1 A2
O
y
B2
y
F2
B1
F2
x
F2(0,c) x F1(0,-c)
F1(-c,0) 方程 范围
课后作业
课时作业
2
2
新课讲授
1.范围 双曲线上点 (x, y)都满足
∴
x2 y2 1 2 0 2 a b
x 1, 即 x2≥a2, 2 a
F1
2
y F2 O a x
2.2.2双曲线的简单几何性质(含答案)
D.y=± 4 x
3.双曲线与椭圆 4x2+y2=1 有相同的焦点,它的一条渐近线方程为 y= 2x,则双曲
线的方程为( )
A.2x2-4y2=1
B.2x2-4y2=2
C.2y2-4x2=1
D.2y2-4x2=3
x2 y2
4.设双曲线a2-b2=1(a>0,b>0)的虚轴长为 2,焦距为 2 3,则双曲线的渐近线方程
2.2.2 双曲线的简单几何性质
课时目标 1.掌握双曲线的简单几何性质.2.了解双曲线的渐近性及渐近线的概念.3.掌 握直线与双曲线的位置关系.
1.双曲线的几何性质 标准方程
x2 y2
a2-b2=1 (a>0,b>0)
y2 x2
a2-b2=1 (a>0,b>0)
图形
焦点
焦距
范围
性 对称性
质 顶点
轴长
2 ,又由渐近线方程为 y= 2x,得b= 2,即 a2=2b2,
( )3
1
1
又由 2 2=a2+b2,得 a2=2,b2=4,又由于焦点在 y 轴上,因此双曲线的方程为
2y2-4x2=1.故选 C.] 4.C [由题意知,2b=2,2c=2 3,则 b=1,c= 3,a= 2;双曲线的渐近线方程为
x2 y2
9.与双曲线 9 -16=1 有共同的渐近线,并且经过点(-3,2 3)的双曲线方程为 __________.
三、解答题
10.根据下列条件,求双曲线的标准方程.
( ) 15 ,3 (1)经过点 4 ,且一条渐近线为 4x+3y=0;
π
(2)P(0,6)与两个焦点连线互相垂直,与两个顶点连线的夹角为3.
y2 11.设双曲线 x2- 2 =1 上两点 A、B,AB 中点 M(1,2),求直线 AB 的方程.
20-21版:2.2.2 双曲线的简单几何性质(创新设计)
顶点坐标
A1(-a,0),A2(a,0) A1(0,-a),A2(0,a)
_____________________________________________________ __________________________________________________
性
质 实轴和虚轴 线段A1A2叫做双曲线的实轴;线段B1B2叫做双曲线 的虚轴
12
课前预习
课堂互动
课堂反馈
【训练2】 根据条件,求双曲线的标准方程. (1)与双曲线x92-1y62 =1 有共同渐近线,且过点(-3,2 3); (2)与双曲线1x62 -y42=1 有公共焦点,且过点(3 2,2). 解 (1)设所求双曲线方程为x92-1y62 =λ(λ≠0),
由题意可知(-93)2-(2163)2=λ,解得 λ=14. ∴所求双曲线的标准方程为x92-y42=1.
【迁移】 在例 3 中若直线 l 的方程为 y=kx,并且直线 l 与双曲线x32-y22=1 的两支
各有一个交点,求实数 k 的取值范围. 解 由x32-y22=1,得(2-3k2)x2-6=0,设直线与双曲线的交点坐标分别为(x1,y1),
y=kx
2-3k2≠0, (x2,y2),由题意知Δx1=x2=24-(22--633kk22<)0>,0,解得- 36<k< 36,即实数 k 的取值范围
9
课前预习
课堂互动
课堂反馈
@《创新设计》
(2)方法一 ∵双曲线的渐近线方程为 y=±12x,
若焦点在 x 轴上,设所求双曲线的标准方程为ax22-by22=1(a>0,b>0),则ba=12.①
∵A(2,-3)在双曲线上,∴a42-b92=1.②
课件12:2.2.2 双曲线的简单几何性质
2
− 2 =(
−
2
=1共渐近线的双曲线方程可设为
2
≠ 0).
巩固训练
2
(1)求与椭圆
49
+
2
=1有相同焦点,且以
24
4
y=± x为渐近线的双曲线的方程.
3
2
(2)求与双曲线
3
的双曲线方程.
−
2
=1有共同渐近线,且过点(-1,2)
4
2
解:(1)椭圆
49
+
2
=1的焦点是F1(-5,0),F2(5,0).
(2)若已知a,b,可直接利用e= 1 +
2
( )
得解.
(3)若得到的是关于a,c的齐次方程pc2+q·
ac+r·a2=0(p,q,
r为常数,且p≠0),则转化为关于e的方程pe2+q·e+r=0求解.
巩固训练
2 2
已知双曲线 + =1的离心率e∈(1,2),则
4
m的取值范围是
(
)
−
2
2
= 1(a>0,b>0),若矩形ABCD
的四个顶点在E上,AB,CD的中点为E的两个焦点,且
2|AB|=3|BC|,则E的离心率是________.
【解析】(1)由题意知圆心(1,2 2)在双曲线的渐近线
y= x上,则2
e= =3.
【答案】B
2= ,所以b2=8a2,即c2-a2=8a2,所以
2
3
=1的离心率e=2,渐近线方程为y=± x.
原创3:2.2.2 双曲线的简单几何性质
题目类型一、由双曲线的方程研究几何性质
例 1、 求双曲线 25y2-4x2+100=0 的实半轴长、虚半 轴长、焦点坐标、顶点坐标、离心率、渐近线方程.
【思路探究】
【自主解答】 双曲线的方程 25y2-4x2+100=0 可化为 2x52 -y42=1.
【思路探究】 将直线与双曲线方程联立用判别式 Δ 判 断方程组解的个数,并注意对二次项系数的讨论.
【自主解答】 把 y=ax+1 代入 3x2-y2=1, 整理得(3-a2)x2-2ax-2=0. (1)∵直线与双曲线有两个公共点, ∴判别式 Δ=4a2+8(3-a2)=24-4a2>0, 且 3-a2≠0,得- 6<a< 6,且 a≠± 3. 故当- 6<a< 6,且 a≠± 3时,直线与双曲线有两个 公共点.
【变式训练】 求双曲线 16x2-9y2=-144 的实轴长、虚轴长、焦点坐 标、离心率、顶点坐标和渐近线方程.
【解】 把方程 16x2-9y2=-144 化为标准方程得4y22-3x22 =1,由此可知,实轴长 2a=8,
虚轴长 2b=6,c= a2+b2=5. 焦点坐标为(0,-5),(0,5). 离心率 e=ac=45. 顶点坐标为(0,-4),(0,4). 渐近线方程为:y=±43x.
1.通过双曲线的方程可以讨论双曲线的几何性质,由双曲线 的几何性质也可以得到双曲线的方程.
∴双曲线标准方程为y22-x42=1.
【规律方法】 1.利用待定系数法求双曲线方程应先“定形”(确定标 准方程的形式),再“定量”(求出 a,b 的值).由于双曲线的 标准方程有两种形式,因此,根据相关几何特征确定焦点的 位置是很重要的,其次,在解题过程中应熟悉 a,b,c,e 等 元素的几何意义及它们之间的联系,并注意方程思想的应用.
2.2.2双曲线的简单的几何性质
x y = 1, 2 2 m 20 m 求得m 2 = 12(30舍去)
2
2
法二: 法二:设双曲线方程为
(3 2)2 22 ∴ 16 k 4 + k = 1
x2 y2 = 1 ( 16 k > 0且4 + k > 0 ) 16 k 4 + k
x2 y2 =1 12 8
解之得k=4, , 解之得
性 质
性
x2 y2 2 =1 2 a b (a >0,b>0) y2 x2 2 =1 2 a b (a >0,b>0)
x≥ a
关于
x ≤a
y≥ a
b (± a,0) y = ± x a
c e= a
(
2 2 2
y ≤ a
a c =a +b) (0,± a ) y = ± x b
例题讲解
例1 :求双曲线
焦点 F1 ( 10 ,0 ), F2 (10 ,0 )
课堂练习
4 1,若双曲线的渐近线方程为 y = ± x, 则双曲线 , 3 的离心率为 .
2,若双曲线的离心率为2,则两条渐近线的交角 ,若双曲线的离心率为 , 为 .
例题讲解
求下列双曲线的标准方程: 例3 :求下列双曲线的标准方程:
x y 有共同渐近线, ⑴与双曲线 = 1 有共同渐近线,且过点 ( 3, 2 3) ; 9 16 x2 y2 有公共焦点, = 1 有公共焦点,且过点 (3 2 , 2) ⑵与双曲线 16 4
x2 y2 x2 y2 2,与 2 ± 2 =1共焦点的椭圆系方程是 2 + 2 2 =1, a b m m c x2 y2 =1. 双曲线系方程是 2 2 2 m c m
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.2.2双曲线的简单几何性质1.双曲线x24-y 2=1的离心率是( )A.32 B.52 C.54 D.32解析:选B.∵a 2=4,b 2=1,∴c 2=5.∴e =c a =52.2.双曲线x 24-y 212=1的焦点到渐近线的距离为( )A .2 3B .2 C. 3 D .1解析:选A.双曲线x 24-y 212=1的焦点为(4,0)、(-4,0).渐近线方程为y =±3x .由双曲线的对称性可知,任一焦点到任一渐近线的距离相等.d =|43+0|3+1=2 3. 3.(2011年抚顺市六校联考)若双曲线x 2a 2 -y 2b 2 =1(a >0,b >0)的离心率是2,则b 2+13a 的最小值为( )A.233B.33C .2D .1解析:选A.由e =2得,c a =2,从而b =3a >0,所以3a 2+13a =a +13a ≥2a ·13a=213=233,当且仅当a =13a ,即a =33时,“=”成立.故选A. 4.若双曲线x 24-y 2b 2=1(b >0)的渐近线方程为y =±12x ,则b 等于________.解析:双曲线x 24-y 2b 2=1的渐近线方程为x 24-y 2b 2=0,即y =±b2x (b >0),∴b =1.答案:1一、选择题1.下面双曲线中有相同离心率,相同渐近线的是( )A.x 23-y 2=1,x 29-y 23=1 B.x 23-y 2=1,y 2-x 23=1 C .y 2-x 23=1,x 2-y 23=1 D.x 23-y 2=1,y 23-x 29=1解析:选A.B 中渐近线相同但e 不同;C 中e 相同,渐近线不同;D 中e 不同,渐近线相同.故选A.2.若双曲线x 2a 2-y 23=1(a >0)的离心率为2,则a 等于( )A .2 B. 3 C.32D .1解析:选D.∵c =a 2+3,∴c a =a 2+3a=2,∴a =1.3.双曲线与椭圆4x 2+y 2=64有公共的焦点,它们的离心率互为倒数,则双曲线方程为( ) A .y 2-3x 2=36 B .x 2-3y 2=36 C .3y 2-x 2=36 D .3x 2-y 2=36解析:选A.椭圆4x 2+y 2=64即x 216+y 264=1,焦点为(0,±43),离心率为32,所以双曲线的焦点在y 轴上,c =43,e =23,所以a =6,b 2=12,所以双曲线方程为y 2-3x 2=36.4.(2011年高考湖南卷)设双曲线x 2a 2-y 29=1(a >0)的渐近线方程为3x ±2y =0,则a 的值为( )A .4B .3C .2D .1解析:选C.渐近线方程可化为y =±32x .∵双曲线的焦点在x 轴上,∴9a 2=⎝ ⎛⎭⎪⎫±322,解得a =±2.由题意知a >0,∴a =2.5.(2011年高考浙江卷)已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)与双曲线C 2:x 2-y 24=1有公共的焦点,C 2的一条渐近线与以C 1的长轴为直径的圆相交于A ,B 两点,若C 1恰好将线段AB 三等分,则( )A .a 2=132B .a 2=13C .b 2=12D .b 2=2解析:选C.由题意知,a 2=b 2+5,因此椭圆方程为(a 2-5)x 2+a 2y 2+5a 2-a 4=0,双曲线的一条渐近线方程为y =2x ,联立方程消去y ,得(5a 2-5)x 2+5a 2-a 4=0,∴直线截椭圆的弦长d=5×2a 4-5a 25a 2-5=23a ,解得a 2=112,b 2=12.6.(2011年高考山东卷)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的两条渐近线均和圆C :x 2+y 2-6x+5=0相切,且双曲线的右焦点为圆C 的圆心,则该双曲线的方程为( ) A.x 25-y 24=1 B.x 24-y 25=1 C.x 23-y 26=1 D.x 26-y 23=1 解析:选A.∵双曲线x 2a 2-y 2b 2=1的渐近线方程为y =±bax ,圆C 的标准方程为(x -3)2+y 2=4,∴圆心为C (3,0).又渐近线方程与圆C 相切,即直线bx -ay =0与圆C 相切,∴3b a 2+b2=2,∴5b 2=4a 2.①又∵x 2a 2-y 2b 2=1的右焦点F 2(a 2+b 2,0)为圆心C (3,0),∴a 2+b 2=9.②由①②得a 2=5,b 2=4.∴双曲线的标准方程为x 25-y 24=1.二、填空题7.若双曲线x 24-y 2m =1的渐近线方程为y =±32x ,则双曲线的焦点坐标是________.解析:由渐近线方程为y =±m 2x =±32x ,得m =3,c =7,且焦点在x 轴上.答案:(±7,0)8.已知双曲线x 2a 2-y 2b 2=1的离心率为2,焦点与椭圆x 225+y 29=1的焦点相同,那么双曲线的焦点坐标为________;渐近线方程为________.解析:∵双曲线的焦点与椭圆的焦点相同,∴c =4.∵e =ca=2,∴a =2,∴b 2=12,∴b =2 3.∵焦点在x 轴上,∴焦点坐标为(±4,0),渐近线方程为y =±bax ,即y =±3x ,化为一般式为3x ±y =0.答案:(±4,0) 3x ±y =09.(2011年高考辽宁卷)已知点(2,3)在双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)上,C 的焦距为4,则它的离心率为________.解析:由题意知4a 2-9b2=1,c 2=a 2+b 2=4得a =1,b =3,∴e =2.答案:2三、解答题10.求以椭圆x 216+y 29=1的两个顶点为焦点,以椭圆的焦点为顶点的双曲线方程,并求此双曲线的实轴长、虚轴长、离心率及渐近线方程.解:椭圆的焦点F 1(-7,0),F 2(7,0),即为双曲线的顶点.∵双曲线的顶点和焦点在同一直线上,∴双曲线的焦点应为椭圆长轴的端点A 1(-4,0),A 2(4,0),所以c =4,a =7,∴b =c 2-a 2=3,故所求双曲线的方程为x 27-y 29=1.实轴长为2a =27,虚轴长为2b =6,离心率e =c a =477,渐近线方程为y =±377x .11.求中心在原点,对称轴为坐标轴,且满足下列条件的双曲线方程:(1)双曲线C 的右焦点为(2,0),右顶点为(3,0);(2)双曲线过点(3,92),离心率e =103.解:(1)设双曲线方程为x 2a 2-y 2b 2=1(a >0,b >0).由已知得a =3,c =2,再由a 2+b 2=c 2,得b 2=1.故双曲线C 的方程为x 23-y 2=1.(2)e 2=109,得c 2a 2=109,设a 2=9k (k >0),则c 2=10k ,b 2=c 2-a 2=k .于是,设所求双曲线方程为x 29k -y 2k =1①或y 29k -x 2k=1②把(3,92)代入①,得k =-161与k >0矛盾,无解;把(3,92)代入②,得k =9,故所求双曲线方程为y 281-x 29=1.12.已知双曲线C :2x 2-y 2=2与点P (1,2).(1)求过点P (1,2)的直线l 的斜率k 的取值范围,使l 与C 只有一个交点; (2)是否存在过点P 的弦AB ,使AB 的中点为P? 解:(1)设直线l 的方程为y -2=k (x -1), 代入双曲线C 的方程,整理得(2-k 2)x 2+2(k 2-2k )x -k 2+4k -6=0(*)①当2-k 2=0,即k =±2时,直线与双曲线的渐近线平行,此时只有一个交点.②当2-k 2≠0时,令Δ=0,得k =32.此时只有一个公共点.又点(1,2)与双曲线的右顶点(1,0)在直线x =1上,而x =1为双曲线的一条切线.∴当k不存在时,直线与双曲线只有一个公共点.综上所述,当k=±2或k=32或k不存在时,l与C只有一个交点.(2)假设以P为中点的弦AB存在,设A(x1,y1),B(x2,y2),则x1,x2是方程(*)的两根,则由根与系数的关系,得2k2-2k2k2-2=1,∴k=1.∴这样的弦存在,方程为y=x+1(-1≤x≤3),即x-y+1=0(-1≤x≤3).。