解三角形复习课作业解答

合集下载

高考数学一轮复习第三章三角函数解三角形课时作业21同角三角函数的基本关系与诱导公式课件理新人教A版

高考数学一轮复习第三章三角函数解三角形课时作业21同角三角函数的基本关系与诱导公式课件理新人教A版

12.已知11+ -ttaannxx=3+2 2,则 sinx(sinx-3cosx)的值为________。
解析 由11+ -ttaannxx=3+2 2得 tanx= 22,所以 sinx(sinx-3cosx)=sin2x -3sinxcosx=sins2ixn-2x+3sicnoxsc2oxsx=tanta2xn-2x+3ta1nx=13- 2。
C.35
D.45
解析 sinα=45,cosα=35,sinα-2 0217π=-cosα=-35。故选 B。 答案 B
4.若 cosπ2-α= 32,则 cos(π-2α)=(
)
A.29
B.59
C.-29
D.-59
解析 由 cosπ2-α= 32,得 sinα= 32。所以 cos(π-2α)=-cos2α= -(1-2sin2α)=2sin2α-1=2×29-1=-59。故选 D。
解析 原式=cosα sin2αco+s2cαos2α+sinα· sin2αsi+n2cαos2α=cosα|co1sα|+ sinα|si1nα|,因为 α 是第二象限角,所以 sinα>0,cosα<0,所以 cosα|co1sα|+ sinα|si1nα|=-1+1=0,即原式等于 0。
答案 0
答案 A
7.已知
α∈23π,2π,且满足
cosα+2
0217π=35,则
sinα+cosα=(
)
A.-75
B.-15
C.15
D.75
解析 因为 cosα+2 0217π=cosα+1 008π+π2=-sinα=35,且 α∈ 23π,2π,所以 sinα=-35,cosα= 1-sin2α=45,则 sinα+cosα=-35+45= 15。故选 C。

2020版高考数学一轮复习第3章三角函数、解三角形3.5两角和与差的正弦、余弦与正切公式课后作业理

2020版高考数学一轮复习第3章三角函数、解三角形3.5两角和与差的正弦、余弦与正切公式课后作业理

3.5 两角和与差的正弦、余弦与正切公式[重点保分 两级优选练]A 级一、选择题1.计算sin43°cos13°+sin47°cos103°的结果等于( ) A.12 B.33 C.22 D.32 答案 A解析 原式=sin43°cos13°-cos43°sin13°=sin(43°-13°)=sin30°=12.故选A.2.sin47°-sin17°cos30°cos17°=( )A .-32 B .-12 C.12 D.32答案 C解析 sin47°=sin(30°+17°)=sin30°cos17°+cos30°·sin17°, ∴原式=sin30°cos17°cos17°=sin30°=12.故选C.3.已知过点(0,1)的直线l :x tan α-y -3tan β=0的斜率为2,则tan(α+β)=( ) A .-73 B.73 C.57 D .1答案 D解析 由题意知tan α=2,tan β=-13.∴tan(α+β)=tan α+tan β1-tan αtan β=2-131-2×⎝ ⎛⎭⎪⎫-13=1.故选D.4.(2017·云南一检)cos π9·c os 2π9·cos ⎝ ⎛⎭⎪⎫-23π9=( )A .-18B .-116 C.116 D.18答案 A解析 cos π9·cos 2π9·cos ⎝ ⎛⎭⎪⎫-23π9 =cos20°·cos40°·cos100°=-cos20°·cos40°·cos80°=-sin20°·cos20°·cos40°·cos80°sin20°=-12sin40°·cos40°·cos80°sin20°=-14sin80°·cos80°sin20°=-18sin160°sin20°=-18sin20°sin20°=-18.故选A.5.(2017·衡水中学二调)3cos10°-1sin170°=( )A .4B .2C .-2D .-4 答案 D 解析 3cos10°-1sin170°=3cos10°-1sin10°=3sin10°-cos10°sin10°cos10°=2sin 10°-30°12sin20°=-2sin 20°12sin20°=-4.故选D.6.若0<α<π2,-π2<β<0,cos ⎝ ⎛⎭⎪⎫π4+α=13,cos ⎝⎛ π4-⎭⎪⎫β2=33,则cos ⎝⎛⎭⎪⎫α+β2=( )A.33 B .-33 C.539 D .-69答案 C解析 cos ⎝ ⎛⎭⎪⎫α+β2=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫π4+α-⎝ ⎛⎭⎪⎫π4-β2=cos ⎝ ⎛⎭⎪⎫π4+αcos ⎝ ⎛⎭⎪⎫π4-β2+sin ⎝ ⎛⎭⎪⎫π4+αsin ⎝ ⎛⎭⎪⎫π4-β2,由0<α<π2,得π4<α+π4<3π4,则sin ⎝ ⎛⎭⎪⎫π4+α=223. 由-π2<β<0,得π4<π4-β2<π2,则sin ⎝ ⎛⎭⎪⎫π4-β2=63,代入上式,得cos ⎝⎛⎭⎪⎫α+β2=539,故选C.7.(2018·长春模拟)已知tan(α+β)=-1,tan(α-β)=12,则sin2αsin2β的值为( )A.13 B .-13 C .3 D .-3 答案 A 解析 sin2αsin2β=sin[α+β+α-β]sin[α+β-α-β]=sin α+βcos α-β+cos α+βsin α-βsin α+βcos α-β-cos α+βsin α-β=tan α+β+tan α-βtan α+β-tan α-β=13.故选A.8.(2017·山西八校联考)若将函数f (x )=sin(2x +φ)+3cos(2x +φ)(0<φ<π)的图象向左平移π4个单位长度,平移后的图象关于点⎝ ⎛⎭⎪⎫π2,0对称,则函数g (x )=cos(x +φ)在⎣⎢⎡⎦⎥⎤-π2,π6上的最小值是( )A .-12B .-32 C.22 D.12答案 D解析 ∵f (x )=sin(2x +φ)+3cos(2x +φ)=2sin ( 2x +φ+π3 ),∴将函数f (x )的图象向左平移π4个单位长度后,得到函数解析式为y =2sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x +π4+φ+π3=2cos ⎝ ⎛⎭⎪⎫2x +φ+π3的图象.∵该图象关于点⎝ ⎛⎭⎪⎫π2,0对称,对称中心在函数图象上,∴2cos ⎝ ⎛⎭⎪⎫2×π2+φ+π3=2cos ⎝ ⎛⎭⎪⎫π+φ+π3=0,解得π+φ+π3=k π+π2,k ∈Z ,即φ=k π-5π6,k ∈Z . ∵0<φ<π,∴φ=π6,∴g (x )=cos ⎝ ⎛⎭⎪⎫x +π6,∵x ∈⎣⎢⎡⎦⎥⎤-π2,π6,∴x +π6∈⎣⎢⎡⎦⎥⎤-π3,π3,∴cos ⎝⎛⎭⎪⎫x +π6∈⎣⎢⎡⎦⎥⎤12,1,则函数g (x )=cos(x +φ)在⎣⎢⎡⎦⎥⎤-π2,π6上的最小值是12.故选D.9.(2018·兰州检测)在斜三角形ABC 中,sin A =-2cos B ·cos C ,且tan B tan C =1-2,则角A 的值为( )A.π4B.π3C.π2D.3π4 答案 A解析 由题意知,-2cos B cos C =sin A =sin(B +C )=sin B cos C +cos B sin C ,等式-2cos B cos C =sin B cos C +cos B sin C 两边同除以cos B cos C ,得tan B +tan C =-2,又tan(B +C )=tan B +tan C 1-tan B tan C =-1=-tan A ,即tan A =1,所以A =π4.故选A.10.(2018·河北模拟)已知θ∈⎝ ⎛⎭⎪⎫0,π4,且sin θ-cos θ=-144,则2cos 2θ-1cos ⎝ ⎛⎭⎪⎫π4+θ等于( )A.23B.43C.34D.32 答案 D解析 由sin θ-cos θ=-144,得sin ⎝ ⎛⎭⎪⎫π4-θ=74,∵θ∈⎝ ⎛⎭⎪⎫0,π4,∴π4-θ∈⎝⎛⎭⎪⎫0,π4,∴cos ⎝ ⎛⎭⎪⎫π4-θ=34,∴2cos 2θ-1cos ⎝ ⎛⎭⎪⎫π4+θ=cos2θsin ⎝ ⎛⎭⎪⎫π4-θ=sin ⎝ ⎛⎭⎪⎫π2-2θsin ⎝ ⎛⎭⎪⎫π4-θ=sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫π4-θsin ⎝ ⎛⎭⎪⎫π4-θ=2cos ⎝ ⎛⎭⎪⎫π4-θ=32.故选D.二、填空题11.已知cos(α+β)cos(α-β)=13,则cos 2α-sin 2β=________.答案 13解析 ∵(cos αcos β-sin αsin β)(cos αcos β+sin αsin β)=13,∴cos 2αcos 2β-sin 2αsin 2β=13.∴cos 2α(1-sin 2β)-(1-cos 2α)sin 2β=13.∴cos 2α-sin 2β=13.12.已知α,β∈(0,π),且tan(α-β)=12,tan β=-17,则2α-β的值为________.答案 -3π4解析 ∵tan α=tan[(α-β)+β]=tan α-β+tan β1-tan α-βtan β=12-171+12×17=13>0,又α∈(0,π),∴0<α<π2.又∵tan2α=2tan α1-tan 2α=2×131-⎝ ⎛⎭⎪⎫132=34>0, ∴0<2α<π2,∴tan(2α-β)=tan2α-tan β1+tan2αtan β=34+171-34×17=1.∵tan β=-17<0,∴π2<β<π,-π<2α-β<0,∴2α-β=-3π4.13.(2017·江苏模拟)已知α、β为三角形的两个内角,cos α=17,sin(α+β)=5314,则β=________.答案π3解析 因为0<α<π,cos α=17,所以sin α=1-cos 2α=437,故π3<α<π2,又因为0<α+β<π,sin(α+β)=5314<32,所以0<α+β<π3或2π3<α+β<π.由π3<α<π2,知2π3<α+β<π, 所以cos(α+β)=-1-sin2α+β=-1114,所以cos β=cos[(α+β)-α]=cos(α+β)cos α+sin(α+β)sin α=12,又0<β<π,所以β=π3.14.已知sin α=12+cos α,且α∈⎝⎛⎭⎪⎫0,π2,则cos2αsin ⎝⎛⎭⎪⎫α-π4的值为________. 答案 -142解析 ∵sin α=12+cos α,∴sin α-cos α=12,∴(sin α-cos α)2=1-2sin αcos α=14,∴2sin αcos α=34,∵α∈⎝⎛⎭⎪⎫0,π2,∴sin α+cos α=sin 2α+cos 2α+2sin αcos α = 1+34=72, ∴cos2αsin ⎝ ⎛⎭⎪⎫α-π4=cos α+sin αcos α-sin α22sin α-cos α =-2(sin α+cos α)=-142. B 级三、解答题15.(2017·合肥质检)已知a =(sin x ,3cos x ),b =(cos x ,-cos x ),函数f (x )=a ·b +32. (1)求函数y =f (x )图象的对称轴方程;(2)若方程f (x )=13在(0,π)上的解为x 1,x 2,求cos(x 1-x 2)的值.解 (1)f (x )=a ·b +32=(sin x ,3cos x )·(cos x ,-cos x )+32=sin x ·cos x -3cos 2x +32=12sin2x -32cos2x =sin ⎝⎛⎭⎪⎫2x -π3.令2x -π3=k π+π2(k ∈Z ),得x =5π12+k π2(k ∈Z ),即函数y =f (x )图象的对称轴方程为x =5π12+k π2(k ∈Z ).(2)由条件知sin ⎝ ⎛⎭⎪⎫2x 1-π3=sin ⎝⎛⎭⎪⎫2x 2-π3=13>0,设x 1<x 2,则0<x 1<5π12<x 2<2π3,易知(x 1,f (x 1))与(x 2,f (x 2))关于直线x =5π12对称,则x 1+x 2=5π6, ∴cos(x 1-x 2)=cos ⎣⎢⎡⎦⎥⎤x 1-⎝ ⎛⎭⎪⎫5π6-x 1=cos ⎝ ⎛⎭⎪⎫2x 1-5π6=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫2x 1-π3-π2=sin ⎝⎛⎭⎪⎫2x 1-π3=13.16.(2017·黄冈质检)已知函数f (x )=2cos 2x -sin ⎝ ⎛⎭⎪⎫2x -7π6.(1)求函数f (x )的最大值,并写出f (x )取最大值时x 的取值集合;(2)已知△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若f (A )=32,b +c =2.求实数a的取值范围.解 (1)f (x )=2cos 2x -sin ⎝ ⎛⎭⎪⎫2x -7π6=(1+cos2x )-⎝ ⎛⎭⎪⎫sin2x cos 7π6-cos2x sin 7π6 =1+32sin2x +12cos2x =1+sin ⎝⎛⎭⎪⎫2x +π6.∴函数f (x )的最大值为2.当且仅当sin ⎝⎛⎭⎪⎫2x +π6=1,即2x +π6=2k π+π2(k ∈Z ),即x =k π+π6,k ∈Z 时取到.∴函数f (x )的最大值为2时x 的取值集合为x ⎪⎪⎪⎭⎬⎫x =k π+π6,k ∈Z . (2)由题意,f (A )=sin ⎝ ⎛⎭⎪⎫2A +π6+1=32,化简得sin ⎝⎛⎭⎪⎫2A +π6=12.∵A ∈(0,π),∴2A +π6∈⎝ ⎛⎭⎪⎫π6,13π6,∴2A +π6=5π6,∴A =π3.在△ABC 中,根据余弦定理,得a 2=b 2+c 2-2bc cos π3=(b +c )2-3bc .由b +c =2,知bc ≤⎝⎛⎭⎪⎫b +c 22=1,即a 2≥1.∴当且仅当b =c =1时,取等号.又由b +c >a 得a <2.所以a 的取值范围是[1,2).17.(2017·青岛诊断)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且a sin B +3a cos B =3c .(1)求角A 的大小;(2)已知函数f (x )=λcos 2⎝ ⎛⎭⎪⎫ωx +A 2-3(λ>0,ω>0)的最大值为2,将y =f (x )的图象的纵坐标不变,横坐标伸长到原来的32倍后便得到函数y =g (x )的图象,若函数y =g (x )的最小正周期为π.当x ∈⎣⎢⎡⎦⎥⎤0,π2时,求函数f (x )的值域.解 (1)∵a sin B +3a cos B =3c , ∴sin A sin B +3sin A cos B =3sin C . ∵C =π-(A +B ),∴sin A sin B +3sin A cos B =3sin(A +B ) =3(sin A cos B +cos A sin B ). 即sin A sin B =3cos A sin B .∵sin B ≠0,∴tan A =3,∵0<A <π,∴A =π3.(2)由A =π3,得f (x )=λcos 2⎝ ⎛⎭⎪⎫ωx +π6-3=λ·1+cos ⎝ ⎛⎭⎪⎫2ωx +π32-3=λ2cos ⎝⎛⎭⎪⎫2ωx +π3+λ2-3,∴λ-3=2,λ=5.∴f (x )=5cos 2⎝ ⎛⎭⎪⎫ωx +π6-3=52cos ⎝ ⎛⎭⎪⎫2ωx +π3-12,从而g (x )=52cos ⎝ ⎛⎭⎪⎫43ωx +π3-12,∴2π43ω=π,得ω=32, ∴f (x )=52cos ⎝⎛⎭⎪⎫3x +π3-12.当x ∈⎣⎢⎡⎦⎥⎤0,π2时,π3≤3x +π3≤11π6,∴-1≤cos ⎝ ⎛⎭⎪⎫3x +π3≤32,从而-3≤f (x )≤53-24,∴f (x )的值域为⎣⎢⎡⎦⎥⎤-3,53-24.18.(2017·江西南昌三校模拟)已知函数f (x )=sin ⎝⎛⎭⎪⎫5π6-2x -2sin ⎝ ⎛⎭⎪⎫x -π4cos ⎝⎛⎭⎪⎫x +3π4.(1)求函数f (x )的最小正周期和单调递增区间; (2)若x ∈⎣⎢⎡⎦⎥⎤π12,π3,且F (x )=-4λf (x )-cos ⎝ ⎛⎭⎪⎫4x -π3的最小值是-32,求实数λ的值. 解 (1)∵f (x )=sin ⎝ ⎛⎭⎪⎫5π6-2x -2sin ⎝ ⎛⎭⎪⎫x -π4cos ⎝ ⎛⎭⎪⎫x +3π4=12cos2x +32sin2x +(sin x-cos x )(sin x +cos x )=12cos2x +32sin2x +sin 2x -cos 2x =12cos2x +32sin2x -cos2x =sin ⎝⎛⎭⎪⎫2x -π6.∴函数f (x )的最小正周期T =2π2=π.由2k π-π2≤2x -π6≤2k π+π2得k π-π6≤x ≤k π+π3(k ∈Z ),∴函数f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-π6,k π+π3(k ∈Z ).(2)F (x )=-4λf (x )-cos ⎝ ⎛⎭⎪⎫4x -π3 =-4λsin ⎝ ⎛⎭⎪⎫2x -π6-⎣⎢⎡⎦⎥⎤1-2sin 2⎝ ⎛⎭⎪⎫2x -π6=2sin 2⎝ ⎛⎭⎪⎫2x -π6-4λsin ⎝ ⎛⎭⎪⎫2x -π6-1 =2⎣⎢⎡⎦⎥⎤sin ⎝ ⎛⎭⎪⎫2x -π6-λ2-1-2λ2.∵x ∈⎣⎢⎡⎦⎥⎤π12,π3,∴0≤2x -π6≤π2, ∴0≤sin ⎝⎛⎭⎪⎫2x -π6≤1. ①当λ<0时,当且仅当sin ⎝ ⎛⎭⎪⎫2x -π6=0时,F (x )取得最小值,最小值为-1,这与已知不相符;②当0≤λ≤1时,当且仅当sin ⎝ ⎛⎭⎪⎫2x -π6=λ时,F (x )取得最小值,最小值为-1-2λ2,由已知得-1-2λ2=-32,解得λ=-12(舍)或λ=12;③当λ>1时,当且仅当sin ⎝ ⎛⎭⎪⎫2x -π6=1时,F (x )取得最小值,最小值为1-4λ,由已知得1-4λ=-32,解得λ=58,这与λ>1矛盾.综上所述,λ=12.。

备考2023年中考数学一轮复习-解直角三角形的应用﹣坡度坡角问题-解答题专训及答案

备考2023年中考数学一轮复习-解直角三角形的应用﹣坡度坡角问题-解答题专训及答案

备考2023年中考数学一轮复习-解直角三角形的应用﹣坡度坡角问题-解答题专训及答案解直角三角形的应用﹣坡度坡角问题解答题专训1、(2018徐州.中考真卷) 如图,一座堤坝的横截面是梯形,根据图中给出的数据,求坝高和坝底宽(精确到0.1m)参考数据: 1.414, 1.7322、(2019绍兴.中考模拟) 如图,一座山的一段斜坡BD的长度为600米,且这段斜坡的坡度i=1:3(沿斜坡从B到D时,其升高的高度与水平前进的距离之比).已知在地面B处测得山顶A的仰角为33°,在斜坡D处测得山顶A的仰角为45°.求山顶A到地面BC的高度AC是多少米?(结果用含非特殊角的三角函数和根式表示即可)3、(2011金华.中考真卷) 生活经验表明,靠墙摆放的梯子,当50°≤α≤70°时(α为梯子与地面所成的角),能够使人安全攀爬.现在有一长为6米的梯子AB,试求能够使人安全攀爬时,梯子的顶端能达到的最大高度AC.(结果保留两个有效数字,sin70°≈0.94,sin50°≈0.77,cos70°≈0.34,cos50°≈0.64)4、(2019宁津.中考模拟) 数学活动课,老师和同学一起去测量校内某处的大树AB 的高度,如图,老师测得大树前斜坡DE的坡度i=1:4,一学生站在离斜坡顶端E的水平距离DF为8m处的D点,测得大树顶端A的仰角为30°,已知BE=2m,此学生身高CD=1.7m,求大树的高度AB的值.(结果保留根号)5、(2019十堰.中考真卷) 如图,拦水坝的横断面为梯形,坝高,坡角,,求的长.6、(2017娄底.中考模拟) 如图,某小区楼房附近有一个斜坡,小张发现楼房在水平地面与斜坡处形成的投影中,在斜坡上的影子长CD=6m,坡角到楼房的距离CB=8m.在D点处观察点A的仰角为60°,已知坡角为30°,你能求出楼房AB 的高度吗?7、(2017娄底.中考真卷) 数学“综合与实践”课中,老师带领同学们来到娄底市郊区,测算如图所示的仙女峰的高度,李红盛同学利用已学的数学知识设计了一个实践方案,并实施了如下操作:先在水平地面A处测得山顶B的仰角∠BAC为38.7°,再由A沿水平方向前进377米到达山脚C处,测得山坡BC的坡度为1:0.6,请你求出仙女峰的高度(参考数据:tan38.7°≈0.8)8、(2016深圳.中考模拟) 2013年9月23日强台风“天兔”登录深圳,伴随着就是狂风暴雨.梧桐山山坡上有一棵与水平面垂直的大树,台风过后,大树被刮倾斜后折断倒在山坡上,树的顶部恰好接触到坡面(如图所示).已知山坡的坡角∠AEF=23°,量得树干的倾斜角为∠BAC=38°,大树被折断部分和坡面所成的角∠ADC=60°,AD=3m.(1)求∠DAC的度数;(2)求这棵大树折断前的高度.(结果保留根号)9、(2016泸州.中考真卷) 如图,为了测量出楼房AC的高度,从距离楼底C处60米的点D(点D与楼底C在同一水平面上)出发,沿斜面坡度为i=1:的斜坡DB前进30米到达点B,在点B处测得楼顶A的仰角为53°,求楼房AC的高度(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈ ,计算结果用根号表示,不取近似值).10、(2017贵州.中考模拟) 为缓解“停车难”的问题,某单位拟造地下停车库,建筑设计师提供了该地下停车库的设计示意图如图所示,已知该坡道的水平距离AB的长为9m,坡面AD与AB的夹角∠BAD=18°,石柱BC=0.5m,按规定,地下停车库坡道上方BC处要张贴限高标志,以便告知停车人车辆能否安全驶入.请你帮设计师计算一下CE的高度,以便张贴限高标志,结果精确到0.1m.(参考数值:sin72°≈0.95,cos72°≈0.31,tan72°≈3.08,sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)11、(2016贵阳.中考真卷) “蘑菇石”是我省著名自然保护区梵净山的标志,小明从山脚B点先乘坐缆车到达观景平台DE观景,然后再沿着坡脚为29°的斜坡由E点步行到达“蘑菇石”A点,“蘑菇石”A点到水平面BC的垂直距离为1790m.如图,DE∥BC,BD=1700m,∠DBC=80°,求斜坡AE的长度.(结果精确到0.1m)12、(2020启东.中考模拟) 如图,兰兰站在河岸上的G点,看见河里有一只小船沿垂直于岸边的方向划过来,此时,测得小船C的俯角是∠FDC=30°,若兰兰的眼睛与地面的距离是1.5米,BG=1米,BG平行于AC所在的直线,迎水坡的坡度i=4:3,坡高BE=8米,求小船C到岸边的距离CA的长.(参考数据:≈1.7,结果保留一位小数)13、(2020湘潭.中考真卷) 为了学生的安全,某校决定把一段如图所示的步梯路段进行改造.已知四边形为矩形,,其坡度为,将步梯改造为斜坡,其坡度为,求斜坡的长度.(结果精确到,参考数据:,)14、(2020河南.中考模拟) 如图,是垂直于水平面的一座大楼,离大楼30米(米)远的地方有一段斜坡(坡度为),且坡长米.某时刻,在太阳光的照射下,大楼的影子落在了水平面、斜坡、以及坡顶上的水平面处(均在同一个平面内).若米,且此时太阳光与水平面所夹锐角为(),试求出大楼的高.(参考数据:)15、(2021静安.中考模拟) 如图,一处地铁出入口的无障碍通道是转折的斜坡,沿着坡度相同的斜坡BC、CD共走7米可到出入口,出入口点D距离地面的高DA 为0.8米,求无障碍通道斜坡的坡度与坡角(角度精确到1',其他近似数取四个有效数字).解直角三角形的应用﹣坡度坡角问题解答题答案1.答案:2.答案:3.答案:4.答案:5.答案:6.答案:7.答案:8.答案:9.答案:10.答案:11.答案:12.答案:13.答案:14.答案:15.答案:。

八年级数学上学期《三角形》全章复习与巩固—知识讲解(提高)——含课后作业与答案

八年级数学上学期《三角形》全章复习与巩固—知识讲解(提高)——含课后作业与答案

《三角形》全章复习与巩固(提高)知识讲解1.认识三角形并能用符号语言正确表示三角形,理解并会应用三角形三边之间的关系.2.理解三角形的高、中线、角平分线的概念,通过作三角形的三条高、中线、角平分线,提高学生的基本作图能力,并能运用图形解决问题.3.能够运用三角形内角和定理及三角形的外角性质进行相关的计算,证明问题.4.通过观察和实地操作知道三角形具有稳定性,知道四边形没有稳定性,了解稳定性与没有稳定性在生产、生活中的广泛应用.5.了解多边形、多边形的对角线、正多边形以及镶嵌等有关的概念;掌握多边形内角和及外角和,并能灵活运用公式解决有关问题,体验并掌握探索、归纳图形性质的推理方法,进一步培养说理和进行简单推理的能力.【知识网络】【要点梳理】要点一、三角形的有关概念和性质1.三角形三边的关系:定理:三角形任意两边之和大于第三边;三角形任意两边的之差小于第三边.要点诠释:(1)理论依据:两点之间线段最短.(2)三边关系的应用:判断三条线段能否组成三角形,若两条较短的线段长之和大于最长线段的长,则这三条线段可以组成三角形;反之,则不能组成三角形.当已知三角形两边长,可求第三边长的取值范围.2.三角形按“边”分类:⎧⎪⎧⎨⎨⎪⎩⎩不等边三角形三角形 底边和腰不相等的等腰三角形等腰三角形 等边三角形 3.三角形的重要线段:(1)三角形的高从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线,简称三角形的高.要点诠释:三角形的三条高所在的直线相交于一点的位置情况有三种:锐角三角形交点在三角形内;直角三角形交点在直角顶点;钝角三角形交点在三角形外.(2)三角形的中线三角形的一个顶点与它的对边中点的连线叫三角形的中线,要点诠释:一个三角形有三条中线,它们交于三角形内一点,叫做三角形的重心.中线把三角形分成面积相等的两个三角形.(3)三角形的角平分线三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.要点诠释:一个三角形有三条角平分线,它们交于三角形内一点,这一点叫做三角形的内心.要点二、三角形的稳定性如果三角形的三边固定,那么三角形的形状大小就完全固定了,这个性质叫做三角形的稳定性.要点诠释:(1)三角形的形状固定是指三角形的三个内角不会改变,大小固定指三条边长不改变.(2)三角形的稳定性在生产和生活中很有用.例如,房屋的人字梁具有三角形的结构,它就坚固而稳定;在栅栏门上斜着钉一条(或两条)木板,构成一个三角形,就可以使栅栏门不变形.大桥钢架、输电线支架都采用三角形结构,也是这个道理.(3)四边形没有稳定性,也就是说,四边形的四条边长确定后,不能确定它的形状,它的各个角的大小可以改变.四边形的不稳定性也有广泛应用,如活动挂架,伸缩尺.有时我们又要克服四边形的不稳定性,如在窗框未安好之前,先在窗框上斜着钉一根木板,使它不变形.要点三、三角形的内角和与外角和1.三角形内角和定理:三角形的内角和为180°.推论:1.直角三角形的两个锐角互余2.有两个角互余的三角形是直角三角形2.三角形外角性质:(1)三角形的一个外角等于与它不相邻的两个内角的和.(2)三角形的一个外角大于任意一个与它不相邻的内角.3.三角形的外角和:三角形的外角和等于360°.要点四、多边形及有关概念1. 多边形的定义:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.要点诠释:多边形通常还以边数命名,多边形有n条边就叫做n边形.三角形、四边形都属于多边形,其中三角形是边数最少的多边形.2.正多边形:各个角都相等、各个边都相等的多边形叫做正多边形.如正三角形、正方形、正五边形等.要点诠释:各角相等、各边也相等是正多边形的必备条件,二者缺一不可. 如四条边都相等的四边形不一定是正方形,四个角都相等的四边形也不一定是正方形,只有满足四边都相等且四个角也都相等的四边形才是正方形.3.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.要点诠释:(1)从n边形一个顶点可以引(n-3)条对角线,将多边形分成(n-2)个三角形;(2)n边形共有(3)2n n-条对角线.要点五、多边形的内角和及外角和公式1.内角和公式:n边形的内角和为(n-2)·180°(n≥3,n是正整数) .要点诠释:(1)一般把多边形问题转化为三角形问题来解决;(2)内角和定理的应用:①已知多边形的边数,求其内角和;②已知多边形内角和,求其边数.2.多边形外角和:n边形的外角和恒等于360°,它与边数的多少无关.要点诠释:(1)外角和公式的应用:①已知外角度数,求正多边形边数;②已知正多边形边数,求外角度数.(2)多边形的边数与内角和、外角和的关系:①n边形的内角和等于(n-2)·180°(n≥3,n是正整数),可见多边形内角和与边数n有关,每增加1条边,内角和增加180°.要点六、镶嵌的概念和特征1.定义:用一些不重叠摆放的多边形把平面的一部分完全覆盖,通常把这类问题叫做用多边形覆盖平面(或平面镶嵌).这里的多边形可以形状相同,也可以形状不相同.要点诠释:(1)拼接在同一点的各个角的和恰好等于360°;相邻的多边形有公共边.(2)用正多边形实现镶嵌的条件:边长相等;顶点公用;在一个顶点处各正多边形的内角之和为360°.(3)只用一种正多边形镶嵌地面,当围绕一点拼在一起的几个正多边形的内角加在一起恰好组成一个周角360°时,就能铺成一个平面图形.事实上,只有正三角形、正方形、正六边形的地砖可以用.【典型例题】类型一、三角形的三边关系1.(2016•长沙模拟)一个三角形的三边长分别是3,2a-1,6,则整数a的值可能是( ).A.2,3 B.3,4 C.2,3,4 D.3,4,5【思路点拨】直接利用三角形三边关系,得出a的取值范围.【答案】B【解析】解:∵一个三角形的三条边长分别为3,2a-1,6,∴21 219 aa-⎧⎨-⎩>3<解得:2<a<5,则整数a的值可能是3,4,故选B.【总结升华】主要考察了三角形三边关系,正确得出a的取值范围是解题关键. 举一反三:【变式】(2014秋•孝感月考)已知a、b、c是三角形三边长,试化简:|b+c-a|+|b-c-a|+|c-a-b|﹣|a-b+c|.【答案】解:∵a、b、c是三角形三边长,∴b+c-a>0,b-c-a<0,c-a-b<0,a-b+c>0,∴|b+c-a|+|b-c-a|+|c-a-b|-|a-b+c|,=b+c-a-b+c+a-c+a+b-a+b-c=2b.2.如图,O是△ABC内一点,连接OB和OC.(1)你能说明OB+OC<AB+AC的理由吗?(2)若AB=5,AC=6,BC=7,你能写出OB+OC的取值范围吗?【答案与解析】解:(1)如图,延长BO交AC于点E,根据三角形的三边关系可以得到,在△ABE中,AB+AE>BE;在△EOC中,OE+EC>OC,两不等式相加,得AB+AE+OE+EC>BE+OC.由图可知,AE+EC=AC,BE=OB+OE.所以AB+AC+OE>OB+OC+OE,即OB+OC<AB+AC.(2)因为OB+OC>BC,所以OB+OC>7.又因为OB+OC<AB+AC,所以OB+OC<11,所以7<OB+OC<11.【总结升华】充分利用三角形三边关系的性质进行解题.【高清课堂:与三角形有关的线段例1】类型二、三角形中的重要线段3.在△ABC中,AB=AC,AC边上的中线BD把△ABC的周长分为12cm和15cm两部分,求三角形的各边长.【思路点拨】因为中线BD的端点D是AC边的中点,所以AD=CD,造成两部分不等的原因是BC边与AB、AC边不等,故应分类讨论.【答案与解析】解:如图(1),设AB=x,AD=CD=12 x.(1)若AB+AD=12,即1122x x+=,所以x=8,即AB=AC=8,则CD=4.故BC=15-4=11.此时AB+AC>BC,所以三边长为8,8,11.(2)如图(2),若AB+AD=15,即1152x x+=,所以x=10.即AB=AC=10,则CD=5.故BC=12-5=7.显然此时三角形存在,所以三边长为10,10,7.综上所述此三角形的三边长分别为8,8,11或10,10,7.【总结升华】BD把△ABC的周长分为12cm和15cm两部分,哪部分是12cm,哪部分是15cm,问题中没有交代,因此,必须进行分类讨论.【高清课堂:与三角形有关的线段例5、】举一反三:【变式】有一块三角形优良品种试验田,现引进四个品种进行对比试验,需将这块土地分成面积相等的四块,请你制定出两种以上的方案供选择.【答案】解:方案1:如图(1),在BC上取D、E、F,使BD=ED=EF=FC,连接AE、AD、AF.方案2:如图(2),分别取AB、BC、CA的中点D、E、F,连接DE、EF、DF.方案3:如图(3),取AB中点D,连接AD,再取AD的中点E,连接BE、CE.方案4:如图(4),在 AB取点 D,使DC=2BD,连接AD,再取AD的三等分点E、F,连接CE、CF.类型三、与三角形有关的角4.(2015春•石家庄期末)已知△ABC中,AE平分∠BAC(1)如图1,若AD⊥BC于点D,∠B=72°,∠C=36°,求∠DAE的度数;(2)如图2,P为AE上一个动点(P不与A、E重合,PF⊥BC于点F,若∠B>∠C,则∠EP F=是否成立,并说明理由.【思路点拨】(1)利用三角形内角和定理和已知条件直接计算即可;(2)成立,首先求出∠1的度数,进而得到∠3的度数,再根据∠EPF=180°﹣∠2﹣∠3计算即可.【答案与解析】证明:(1)如图1,∵∠B=72°,∠C=36°,∴∠A=180°﹣∠B﹣∠C=72°;又∵AE平分∠BAC,∴∠1==36°,∴∠3=∠1+∠C=72°,又∵AD⊥BC于D,∴∠2=90°,∴∠DAE=180°﹣∠2﹣∠3=18°.(2)成立.如图2,∵AE平分∠BAC,∴∠1===90°﹣,∴∠3=∠1+∠C=90°﹣+,又∵PF⊥BC于F,∴∠2=90°,∴∠EPF=180°﹣∠2﹣∠3=.【总结升华】本题考查了三角形的内角以及角平分线的性质,准确识别图形是解题的关键.举一反三:【高清课堂:与三角形有关的角练习(3)】【变式】如图,AC⊥BC,CD⊥AB,图中有对互余的角?有对相等的锐角?【答案】3,2.类型四、三角形的稳定性5. 如图是一种流行的衣帽架,它是用木条(四长四短)构成的几个连续的菱形(四条边都相等),每一个顶点处都有一个挂钩(连在轴上),不仅美观,而且实用,你知道它能收缩的原因和固定方法吗?【答案与解析】解:这种衣帽架能收缩是利用四边形的不稳定性,可以根据需要改变挂钩间的距离。

202新数学复习第三章三角函数解三角形3.4三角函数的图象与性质学案含解析

202新数学复习第三章三角函数解三角形3.4三角函数的图象与性质学案含解析

第四节三角函数的图象与性质课标要求考情分析1。

能画出y=sin x,y=cos x,y=tanx的图象,了解三角函数的周期性.2.理解正弦函数、余弦函数在[0,2π]上的性质(如单调性、最大值和最小值、图象与x轴的交点等),理解正切函数在错误!内的单调性.以考查三角函数的图象和性质为主,题目涉及三角函数的图象及应用、图象的对称性、单调性、周期性、最值、零点.考查三角函数性质时,常与三角恒等变换结合,加强数形结合思想、函数与方程思想的应用意识.题型既有选择题和填空题,又有解答题,中档难度.知识点一用五点法作正弦函数和余弦函数的简图1.正弦函数y=sin x,x∈[0,2π]的图象中,五个关键点是:(0,0),错误!,(π,0),错误!,(2π,0).2.余弦函数y=cos x,x∈[0,2π]的图象中,五个关键点是:(0,1),错误!,(π,-1),错误!,(2π,1).知识点二正弦、余弦、正切函数的图象与性质下表中k∈Z1.对称与周期(1)正弦曲线、余弦曲线相邻两对称中心、相邻两对称轴之间的距离是半个周期,相邻的对称中心与对称轴之间的距离是错误!个周期.(2)正切曲线相邻两对称中心之间的距离是半个周期.2.要注意求函数y=A sin(ωx+φ)的单调区间时A和ω的符号,尽量化成ω>0的情况,避免出现增减区间的混淆.3.对于y=tan x不能认为其在定义域上为增函数,而是在每个区间错误!(k∈Z)内为增函数.1.思考辨析判断下列结论正误(在括号内打“√”或“×”)(1)正切函数y=tan x在定义域内是增函数.(×)(2)已知y=k sin x+1,x∈R,则y的最大值为k+1。

(×) (3)y=sin|x|是偶函数.(√)(4)由sin错误!=sin错误!知,错误!是正弦函数y=sin x(x∈R)的一个周期.(×)解析:根据三角函数的图象与性质知(1)(2)(4)是错误的,(3)是正确的.2.小题热身(1)函数y=tan3x的定义域为(D)A。

九年级数学中考复习第一轮复习基础训练三角函数(一)三角函数与解直角三角形 课时作业同步练习含答案解析

九年级数学中考复习第一轮复习基础训练三角函数(一)三角函数与解直角三角形 课时作业同步练习含答案解析

微专题8 三角函数(一)三角函数与解直角三角形考点1锐角三角函数的定义1.如图,在Rt △ABC 中,∠C =90°,AB =10,AC =8,则 sin A 等于( ) A.35 B.45 C.34 D.432.如图,边长为1的小正方形网格中, ⊙O 的圆心在格点上,cos ∠AED = .3.如图,在△ABC 中,CA=CB =4, cos C =14,则sinB 的值为 . 考点2 特殊角的三角函数值4.(1) sin 30°= ; cos 60°= ;tan 45"= ;(2)3sin 60"—2cos 30°—tan 60°= .5.在△ABC 中,∠A ,∠B 为锐角,若|sinA 一22|+(32-cosB )2=0,则∠C = 度. 考点3 解直角三角形及其实际应用6.如图,在△ABC 中,∠B =30°,AC=2,cosC =35.则AB 边的长为 .7.如图,某地修建高速公路,要从B 地向C 地修一座隧道(B,C 在同一水平面上),为了测量B ,C 两地之间的距离,某工程队员乘坐热气球从C 地出发垂直上升100m 到达A 处,在A 处观察B 地的俯角为30°,则B,C 两地间的距离为 m .8.如图,一艘船由A 港沿北偏东65°方向航行302km 至B 港,然后再沿北偏西40°方向航行至C 港,C 港在A 港北偏东20°方向,则A,C 两港之间的距离为 km.DOB AECAC ABCB第1题图第2题图第3题图30°30°B CC A CAB AB 第6题图 第7题图 第8题图9.如图,小明在一块平地上测山高,先在B处测得山顶A的仰角为30°,然后向山脚直行100米到达C处,再测得山顶A的仰角为45°,求山高AD.10.某地的一座人行天桥如图所示,天桥高为6米,坡面BC的坡度为1:1,为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面的坡度为1.(1)求新坡面的坡角α的度数;(2)原天桥底部正前方8米处(PB的长)的文化墙PM是否需要拆除?请说明理由. :C BC微专题8 三角函数(一)三角函数与解直角三角形考点精练精练1锐角三角函数的定义1.如图,在Rt △ABC 中,∠C =90°,AB =10,AC =8,则 sin A 等于( A ) A.35 B.45 C.34 D.432.如图,边长为1的小正方形网格中, ⊙O 的圆心在格点上,cos ∠AED =255. 3.如图,在△ABC 中,CA=CB =4, cos C =14,则sinB 的值为104.精练2 特殊角的三角函数值4.(1) sin 30°=12; cos 60°=12;tan 45"= 1 ;(2)3sin 60"—2cos 30°—tan 60°= 32 .5.在△ABC 中,∠A ,∠B 为锐角,若|sinA 一22|+(32-cosB )2=0,则∠C =105度. 精练3 解直角三角形及其实际应用6.如图,在△ABC 中,∠B =30°,AC=2,cosC =35.则AB 边的长为165.DOB AECAC ABCB第1题图第2题图第3题图30°30°BC CACABAB第6题图第7题图第8题图7.如图,某地修建高速公路,要从B地向C地修一座隧道(B,C在同一水平面上),为了测量B,C两地之间的距离,某工程队员乘坐热气球从C地出发垂直上升100m到达A处,在A处观察B地的俯角为30°,则B,C两地间的距离为.8.如图,一艘船由A港沿北偏东65°方向航行至B港,然后再沿北偏西40°方向航行至C港,C港在A港北偏东20°方向,则A,C两港之间的距离为(30+km.9.如图,小明在一块平地上测山高,先在B处测得山顶A的仰角为30°,然后向山脚直行100米到达C处,再测得山顶A的仰角为45°,求山高AD.解:设AD=x米,则BDx米.CD=AD=xx-x=100.解得:x=50.答:山高为(50)米.10.某地的一座人行天桥如图所示,天桥高为6米,坡面BC的坡度为1:1,为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面的坡度为1.(1)求新坡面的坡角α的度数;(2)原天桥底部正前方8米处(PB的长)的文化墙PM是否需要拆除?请说明理由. 解:(1)30°:(2)过点C作CD⊥AB于点D.则BD=CD=6.AD∴AB=AD-BD一6<8∴文化培PM不需要拆除.C B。

202新数学复习第三章三角函数解三角形23三角函数的图象与性质含解析

202新数学复习第三章三角函数解三角形23三角函数的图象与性质含解析

课时作业23 三角函数的图象与性质一、选择题1.函数y=错误!的定义域为(C)A.错误!,k∈ZB.错误!,k∈ZC.错误!,k∈ZD.错误!,k∈Z解析:要使函数y=错误!有意义,则1-tan错误!≥0,故tan错误!≤1,故kπ-错误!<x-错误!≤kπ+错误!,k∈Z,解得x∈错误!,k∈Z,故选C.2.已知f(x)=sin错误!-1,则f(x)的最小正周期是(A)A.2π B.πC.3π D.4π解析:函数f(x)的最小正周期T=错误!=2π。

故选A.3.下列函数中,最小正周期为π且图象关于直线x=π6对称的是(B)A.y=sin错误!B.y=sin错误!C.y=cos错误!D.y=cos错误!解析:由函数的最小正周期为π,得错误!=π,∴ω=2,故选项A,C错误;当x=错误!时,sin错误!=sin错误!=1,满足题意,故选项B正确;当x=错误!时,cos错误!=cos错误!=0,不满足题意,故选项D错误.4.函数f(x)=sin错误!+sin错误!的最大值是(C)A.2 B.错误!C.错误!D.2错误!解析:sin错误!+cos错误!=错误!=错误!=错误!=错误!,所以f(x)=sin错误!+sin错误!=sin错误!+cos错误!=sin x cos错误!+cos x sin错误!+cos错误!cos x+sin x sin错误!=(sin x+cos x)错误!=错误!×错误! sin错误!≤错误!×错误!=错误!,故选C.5.(2019·全国卷Ⅱ)下列函数中,以错误!为周期且在区间错误!单调递增的是(A)A.f(x)=|cos2x| B.f(x)=|sin2x|C.f(x)=cos|x| D.f(x)=sin|x|解析:A中,函数f(x)=|cos2x|的周期为错误!,当x∈错误!时,2x∈错误!,函数f(x)单调递增,故A正确;B中,函数f(x)=|sin2x|的周期为错误!,当x∈错误!时,2x∈错误!,函数f(x)单调递减,故B不正确;C中,函数f(x)=cos|x|=cos x的周期为2π,故C 不正确;D中,f(x)=sin|x|=错误!由正弦函数图象知,在x≥0和x〈0时,f(x)均以2π为周期,但在整个定义域上f(x)不是周期函数,故D不正确.故选A.6.(2019·天津卷)已知函数f(x)=A sin(ωx+φ)(A>0,ω>0,|φ|〈π)是奇函数,将y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为g(x).若g(x)的最小正周期为2π,且g错误!=错误!,则f错误!=(C)A.-2 B.-错误!C.错误!D.2解析:由f(x)为奇函数可得φ=kπ(k∈Z),又|φ|〈π,所以φ=0,所以g(x)=A sin错误!ωx。

202新数学复习第三章三角函数解三角形3.3.两角和与差的三角公式学案含解析

202新数学复习第三章三角函数解三角形3.3.两角和与差的三角公式学案含解析

第三节简单的三角恒等变换课标要求考情分析1.会用向量的数量积推导出两角差的余弦公式.2.能利用两角差的余弦公式推导出两角差的正弦、正切公式.3.能利用两角差的余弦公式推导出两角和的正弦、余弦、正切公式,推导出二倍角的正弦、余弦、正切公式,了解它们的内在联系.1。

利用两角和与差的正弦、余弦、正切公式及二倍角公式进行化简、求值是高考考查的热点,本部分内容常与三角函数的性质、向量、解三角形的知识相结合命题.2.命题形式多种多样,既有选择题、填空题,也有综合性的解答题.知识点一基本公式1.两角和与差的正弦、余弦、正切公式C(α-β):cos(α-β)=cosαcosβ+sinαsinβ.C(α+β):cos(α+β)=cosαcosβ-sinαsinβ。

S(α+β):sin(α+β)=sinαcosβ+cosαsinβ.S(α-β):sin(α-β)=sinαcosβ-cosαsinβ。

T(α+β):tan(α+β)=错误!(α,β,α+β≠错误!+kπ,k∈Z).T(α-β):tan(α-β)=错误!(α,β,α-β≠错误!+kπ,k∈Z).2.二倍角的正弦、余弦、正切公式S2α:sin2α=2sinαcosα.C2α:cos2α=cos2α-sin2α=2cos2α-1=1-2sin2α。

T2α:tan2α=2tanα1-tanα错误!知识点二三角公式的变形技巧1.降幂公式:cos2α=错误!,sin2α=错误!。

2.升幂公式:1+cos2α=2cos2α,1-cos2α=2sin2α。

3.公式变形:tanα±tanβ=tan(α±β)(1∓tanαtanβ).4.辅助角公式:a sin x+b cos x=a2+b2sin(x+φ)错误!知识点三三角恒等变换1.重视三角函数的“三变”:“三变”是指“变角、变名、变式".(1)变角:对角的分拆要尽可能化成同角、特殊角;(2)变名:尽可能减少函数名称;(3)变式:对式子变形一般要尽可能有理化、整式化、降低次数等.2.在解决求值、化简、证明问题时,一般是观察角、函数名、所求(或所证明)问题的整体形式中的差异,再选择适当的三角公式恒等变形.1.思考辨析判断下列结论正误(在括号内打“√”或“×")(1)存在实数α,β,使等式sin(α+β)=sinα+sinβ成立.(√)(2)在锐角△ABC中,sin A sin B和cos A cos B大小不确定.(×)(3)公式tan(α+β)=tanα+tanβ1-tanαtanβ可以变形为tanα+tanβ=tan(α+β)(1-tanαtanβ),且对任意角α,β都成立.(×)(4)公式a sin x+b cos x=错误!sin(x+φ)中φ的取值与a,b的值无关.(×)解析:根据正弦、余弦和正切的和角、差角公式知(2)(3)(4)是错误的,(1)是正确的.2.小题热身(1)(2019·全国卷Ⅰ)tan255°=(D)A.-2-错误!B.-2+错误!C.2-错误!D.2+错误!(2)若sinα=错误!,则cos2α=(B)A.错误!B.错误!C.-错误!D.-错误!(3)sin347°cos148°+sin77°·cos58°=错误!.(4)已知tan(α-错误!)=错误!,则tanα=错误!。

解三角形复习资料(上课)

解三角形复习资料(上课)

解三角形专题复习解三角形基本知识一、正弦定理:1.正弦定理:R CcB b A a 2sin sin sin ===(其中R 是三角形外接圆的半径) 2.变形:①C B A c b a sin :sin :sin ::=②角化边 C R c B R b A R a sin 2sin 2sin 2===③边化角 RcC R b B R a A 2sin 2sin 2sin === 如:△ABC 中,①B b A a cos cos =②B a A b cos cos =3.三角形内角平分线定理:如图△ABC 中,AD 是A ∠4.△ABC 中,已知锐角A ,边b ,则 ①A b a sin <时,a 无解;②A b a sin =或b a ≥时,a 有一个解; ③b a A b <<sin 时,a 有两个解。

二、三角形面积 1.B ac A bc C ab S ABC sin 21sin 21sin 21===∆ 2. r c b a S ABC)(21++=∆,其中r 是三角形内切圆半径. 注:由面积公式求角时注意解的个数三、余弦定理1.余弦定理:)cos 1(2)(cos 22222A bc c b A bc c b a +-+=-+= )cos 1(2)(cos 22222B ac c a B ac c a b +-+=-+= )cos 1(2)(cos 22222C ab b a C ab b a c +-+=-+= 注:后面的变形常与韦达定理结合使用。

2.变形:bc a c b A 2cos 222-+= ac b c a B 2cos 222-+= abc b a C 2cos 222-+=注意整体代入,如:21cos 222=⇒=-+B ac b c a3.三角形中线:△ABC 中, D 是BC 的中点,则222221BC AC AB AD -+= 4.三角形的形状①若222c b a >+时,角C 是锐角 ②若222c b a =+时,角C 是直角③若222c b a <+时,角C 是钝角如:锐角三角形的三边为x ,2,1,求x 的取值范围; 钝角三角形的三边为x ,2,1,求x 的取值范围; 5.应用①用余弦定理求角时只有一个解 ②已知32,2,60===O b a A ,求边c课后作业一、选择题1.在ABC ∆中,6=a , 30=B ,120=C ,则ABC ∆的面积是( )A .9B .18C .39D .3182.在ABC ∆中,若bBa A cos sin =,则B 的值为( ) A . 30 B . 45 C . 60 D .903.在ABC ∆中,若B a b sin 2=,则这个三角形中角A 的值是( )A . 30或 60B . 45或 60C . 60或 120D .30或 150 4.在ABC ∆中,根据下列条件解三角形,其中有两个解的是( )A .10=b , 45=A , 70=CB .60=a ,48=c ,60=BC .7=a ,5=b , 80=AD .14=a ,16=b ,45=A5.已知三角形的两边长分别为4,5,它们夹角的余弦是方程02322=-+x x 的根,则第三边长是( )A .20B .21C .22D .61 6.在ABC ∆中,如果bc a c b c b a 3))((=-+++,那么角A 等于( )A .30 B .60 C .120 D .1507.在ABC ∆中,若60=A ,16=b ,此三角形面积3220=S ,则a 的值是( )A .620B .75C .51D .49 8.在△ABC 中,AB=3,BC=13,AC=4,则边AC 上的高为( )A .223B .233 C .23 D .339.在ABC ∆中,若12+=+c b , 45=C ,30=B ,则( )A .2,1==c bB .1,2==c bC .221,22+==c bD .22,221=+=c b 10.如果满足60=∠ABC ,12=AC ,k BC =的△ABC 恰有一个,那么k 的取值范围是( )A .38=kB .120≤<kC .12≥kD .120≤<k 或38=k11.在ABC ∆中,若6:2:1::=c b a ,则最大角的余弦值等于_________________.12.在ABC ∆中,5=a , 105=B ,15=C ,则此三角形的最大边的长为_________. 13.在ABC ∆中,已知3=b ,33=c ,30=B ,则=a __________________. 14.在ABC ∆中,12=+b a , 60=A ,45=B ,则=a _________,=b _________.15、已知△ABC 中,22(sin 2A -sin 2C )=(a -b )sin B ,△ABC 外接圆半径为2. (1)求∠C ; (2)若2=b ,求△ABC 的面积.17、在△ABC 中,角A ,B ,C 所对的边分别为c b a ,,,已知22sin 2sin 22c A b B a =+。

解直角三角形及其应用复习课

解直角三角形及其应用复习课

E MM
600
150
A
B
C
15
2、星期天,小强去水库大坝玩,他站在大坝上的A处看到一
棵大树的影子刚好落在坝底的B处(点A与大树及其影子
在同一平面内),此时太阳光线与地面成600角,在A处测
得树顶D的俯角为 1.如50图所示,已知AB与地面的夹角为 ,
AB6为008米.请你帮助小强计算一下这棵大树的高度(结果精
9.如图25-4,直线y=- 3 x+ 3 与坐标轴交于A、B两点,求 AB的长和∠OAB的大小.
图25-4 解: 直线与坐标轴的交点分别为A(1,0),B(0, 3 ),则OA=1, OB= 3 ,由勾股定理,AB= OA2+OB2 = 12+ 32 =2, tan∠OAB=OOAB= 13= 3.所以∠OAB=60°.
B 间的距离为(C )
A.150 3 米 B.180 3 米 C.200 3 米 D.220 3 米
图(3)
[解析]由题意得∠A=30°,∠B=60°,AD=taCnDA=150 3,
BD=
CD tanB
=50
3 ,则AB=AD+BD=150
3 +50
3=
200 3.
·新课标
7、热气球的探测器显示,从热气球看一栋高楼顶部的仰角为 30°,看这栋高楼底部的俯 角为60°,热气球与高楼的水平距 离为120m,这栋高楼有多高(结果精确到0.1m)
分析:我们知道,在视线与水平线所
仰角
成的角中视线在水平线上方的是仰角,
B
视线在水平线下方的是俯角,因此,
在图中,a=30°,β=60°
αD

Rt△ABC中,a =30°,AD=120,
所以利用解直角三角形的知识求出

解三角形知识点总结及典型例题

解三角形知识点总结及典型例题

课前复习两角和与差的正弦、余弦、正切公式1两角和与差的正弦公式,sin(α+β)=sinαcosβ+cosαsinβ,sin(α-β)=sinαcosβ-cosαsinβ.2两角和与差的余弦公式,cos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcos+sinαsinβ3两角和、差的正切公式tan(α+β)=,tan tan 1tan tan βαβα-+ (()()tan tan tan 1tan tan αβαβαβ-=-+); tan(α-β)=.tan tan 1tan tan βαβα+-(()()tan tan tan 1tan tan αβαβαβ+=+-). 简单的三角恒等变换二倍角的正弦、余弦和正切公式:⑴sin22sin cos ααα=.222)cos (sin cos sin 2cos sin 2sin 1ααααααα±=±+=±⇒⑵2222cos2cos sin 2cos 112sin ααααα=-=-=-⇒升幂公式2sin 2cos 1,2cos 2cos 122αααα=-=+ ⇒降幂公式2cos 21cos 2αα+=,21cos 2sin 2αα-= ⑶22tan tan 21tan ααα=- 默写上述公式,检查上次的作业 课本上的!解三角形知识点总结及典型例题2+=(A x c恒成立,所以其图像与x轴没有交点。

中,分别根据下列条件解三角形,其中有两解的是=30A;︒B;=30︒S=ABC题型4 判断三角形形状5] 在【解析】把已知等式都化为角的等式或都化为边的等式。

中考专题复习解直角三角形(含答案)

中考专题复习解直角三角形(含答案)

中考专题复习解直⾓三⾓形(含答案)中考数学专题解直⾓三⾓形第⼀节锐⾓三⾓函数1、勾股定理:直⾓三⾓形两直⾓边、的平⽅和等于斜边的平⽅。

2、如下图,在Rt△ABC中,∠C为直⾓,则∠A的锐⾓三⾓函数为(∠A可换成∠B):定义表达式取值范围关系正弦(∠A为锐⾓)余弦(∠A为锐⾓)正切(∠A为锐⾓)(倒数)余切(∠A为锐⾓)3、任意锐⾓的正弦值等于它的余⾓的余弦值;任意锐⾓的余弦值等于它的余⾓的正弦值。

4、任意锐⾓的正切值等于它的余⾓的余切值;任意锐⾓的余切值等于它的余⾓的正切值。

5、30°、45°、60°特殊⾓的三⾓函数值(重要)三⾓函数30°45°60°116、正弦、余弦的增减性:当0°≤≤90°时,sin随的增⼤⽽增⼤,cos随的增⼤⽽减⼩。

7、正切、余切的增减性:当0°<<90°时,tan随的增⼤⽽增⼤,cot随的增⼤⽽减⼩。

第⼆节解⾓直⾓三⾓形1、解直⾓三⾓形的定义:已知边和⾓(两个,其中必有⼀条边)→求所有未知的边和⾓。

依据:①边的关系:;②⾓的关系:∠A+∠B=90°;③边⾓关系:(见前⾯三⾓函数的定义)。

2、应⽤举例:(1)仰⾓:视线在⽔平线上⽅的⾓;俯⾓:视线在⽔平线下⽅的⾓。

(2)坡⾯的铅直⾼度和⽔平宽度的⽐叫做坡度(坡⽐)。

⽤字母表⽰,即。

坡度⼀般写成的形式,如等。

把坡⾯与⽔平⾯的夹⾓记作(叫做坡⾓),那么。

【重点考点例析】考点⼀:锐⾓三⾓函数的概念例1 如图所⽰,△ABC的顶点是正⽅形⽹格的格点,则sinA的值为()A.12B.55C.1010D.255对应训练1.在平⾯直⾓坐标系中,已知点A(2,1)和点B(3,0),则sin∠AOB的值等于()A.55B.52C.32D.12考点⼆:特殊⾓的三⾓函数值例2 计算:cos245°+tan30°?sin60°=.对应训练(2012?南昌)计算:sin30°+cos30°?tan60°.考点三:化斜三⾓形为直⾓三⾓形例3 如图,在△ABC中,∠A=30°,∠B=45°,AC=23,求AB的长.对应训练3.如图,在Rt △ABC中,∠BAC=90°,点D在BC边上,且△ABD是等边三⾓形.若AB=2,求△ABC 的周长.(结果保留根号)考点四:解直⾓三⾓形的应⽤例4 黄岩岛是我国南海上的⼀个岛屿,其平⾯图如图甲所⽰,⼩明据此构造出该岛的⼀个数学模型如图⼄所⽰,其中∠B=∠D=90°,AB=BC=15千⽶,CD=32千⽶,请据此解答如下问题:(1)求该岛的周长和⾯积;(结果保留整数,参考数据2≈1.414,3≈1.73 ,6≈2.45)(2)求∠ACD的余弦值.对应训练6.超速⾏驶是引发交通事故的主要原因之⼀.上周末,⼩明和三位同学尝试⽤⾃⼰所学的知识检测车速.如图,观测点设在A 处,离益阳⼤道的距离(AC)为30⽶.这时,⼀辆⼩轿车由西向东匀速⾏驶,测得此车从B处⾏驶到C处所⽤的时间为8秒,∠BAC=75°.(1)求B、C两点的距离;(2)请判断此车是否超过了益阳⼤道60千⽶/⼩时的限制速度?(计算时距离精确到1⽶,参考数据:sin75°≈0.9659,cos75°≈0.2588,tan75°≈3.732,3≈1.732,60千⽶/⼩时≈16.7⽶/秒)【聚焦中考】1.如图,在8×4的矩形⽹格中,每格⼩正⽅形的边长都是1,若△ABC的三个顶点在图中相应的格点上,则tan∠ACB的值为()A.13B.12C.22D.32.把△ABC三边的长度都扩⼤为原来的3倍,则锐⾓A的正弦函数值()A.不变B.缩⼩为原来的13C.扩⼤为原来的3倍D.不能确定3.计算:tan45°+ 2cos45°= .4.在△ABC中,若∠A、∠B满⾜|cosA- 12|+(sinB-22)2=0,则∠C= .5.校车安全是近⼏年社会关注的重⼤问题,安全隐患主要是超速和超载.某中学数学活动⼩组设计了如下检测公路上⾏驶的汽车速度的实验:先在公路旁边选取⼀点C,再在笔直的车道l上确定点D,使CD与l垂直,测得CD的长等于21⽶,在l上点D的同侧取点A、B,使∠CAD=30°,∠CBD=60°.(1)求AB的长(精确到0.1⽶,参考数据:3=1.73,2=1.41);(2)已知本路段对校车限速为40千⽶/⼩时,若测得某辆校车从A到B⽤时2秒,这辆校车是否超速?说明理由.6.如图,某校教学楼AB的后⾯有⼀建筑物CD,当光线与地⾯的夹⾓是22°时,教学楼在建筑物的墙上留下⾼2⽶的影⼦CE;⽽当光线与地⾯夹⾓是45°时,教学楼顶A在地⾯上的影⼦F与墙⾓C有13⽶的距离(B、F、C在⼀条直线上)(1)求教学楼AB的⾼度;(2)学校要在A、E之间挂⼀些彩旗,请你求出A、E之间的距离(结果保留整数).(参考数据:sin22°≈38,cos22°≈1516,tan22°≈25)【备考真题过关】⼀、选择题1.如图,在Rt△ABC中,∠C=90°,AC=4,AB=5,则sinB的值是()A.23B.35C.34D.452.如图,在Rt△ABC中,CD是斜边AB上的中线,已知CD=5,AC=6,则tanB的值是()A.45B.35C.34D.433.如图,在Rt △ABC中,∠C=90°,AB=6,cosB= 23,则BC的长为()A.4 B.25C.181313D.1213134.2cos60°的值等于()A.1 B.2C.3D.25.如图,在Rt△ABC中,∠C=90°,AB=2BC,则sinB的值为()A.12B.22C.32D.16.如图,在Rt△ABO中,斜边AB=1.若OC∥BA,∠AOC=36°,则C( )A.点B到AO的距离为sin54°B.点B到AO的距离为tan36°C.点A到OC的距离为sin36°sin54°D.点A到OC的距离为cos36°sin54°.7.在“测量旗杆的⾼度”的数学课题学习中,某学习⼩组测得太阳光线与⽔平⾯的夹⾓为27°,此时旗杆在⽔平地⾯上的影⼦的长度为24⽶,则旗杆的⾼度约为()A.24⽶B.20⽶C.16⽶D.12⽶8.如图,某⽔库堤坝横断⾯迎⽔坡AB的坡⽐是1:3,堤坝⾼BC=50m,则应⽔坡⾯AB的长度是()A.100m B.1003m C.150m D.503m1.如图,为测量某物体AB的⾼度,在D点测得A点的仰⾓为30°,朝物体AB⽅向前进20⽶,到达点C,再次测得点A的仰⾓为60°,则物体AB的⾼度为()A.10⽶B.10⽶C.20⽶D.⽶2.⼩明想测量⼀棵树的⾼度,他发现树的影⼦恰好落在地⾯和⼀斜坡上,如图,此时测得地⾯上的影长为8⽶,坡⾯上的影长为4⽶.已知斜坡的坡⾓为30°,同⼀时刻,⼀根长为1⽶、垂直于地⾯放置的标杆在地⾯上的影长为2⽶,则树的⾼度为()A.(6+)⽶B.12⽶C.(4﹣2)⽶D.10⽶3.如图,从热⽓球C处测得地⾯A、B两点的俯⾓分别是30°、45°,如果此时热⽓球C处的⾼度CD为100⽶,点A、D、B在同⼀直线上,则AB两点的距离是()A.200⽶B.200⽶C.220⽶D.100()⽶⼆、填空题9.在△ABC中∠C=90°,AB=5,BC=4,则tanA= .10.tan60°= .11.若∠a=60°,则∠a的余⾓为,cosa的值为.12.如图,为测量旗杆AB的⾼度,在与B距离为8⽶的C处测得旗杆顶端A的仰⾓为56°,那么旗杆的⾼度约是⽶(结果保留整数).(参考数据:sin56°≈0.829,cos56°≈0.559,tan56°≈1.483)三、解答题13.如图,定义:在直⾓三⾓形ABC中,锐⾓α的邻边与对边的⽐叫做⾓α的余切,记作ctanα,即ctanα== ACBC,根据上述⾓的余切定义,解下列问题:(1)ctan30°= ;(2)如图,已知tanA=34,其中∠A为锐⾓,试求ctanA的值.14.⼀副直⾓三⾓板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,∠E=30°,∠A=45°,AC=122,试求CD的长.15.为促进我市经济的快速发展,加快道路建设,某⾼速公路建设⼯程中需修隧道AB,如图,在⼭外⼀点C测得BC距离为200m,∠CAB=54°,∠CBA=30°,求隧道AB的长.(参考数据:sin54°≈0.81,cos54°≈0.59,tan54°≈1.38,3≈1.73,精确到个位)16.如图,某⾼速公路建设中需要确定隧道AB的长度.已知在离地⾯1500m,⾼度C处的飞机,测量⼈员测PABQ24.5°49°41°北东南西得正前⽅A 、B 两点处的俯⾓分别为60°和45°,求隧道AB 的长.17.如图,⾃来⽔⼚A 和村庄B 在⼩河l 的两侧,现要在A ,B 间铺设⼀知输⽔管道.为了搞好⼯程预算,需测算出A ,B 间的距离.⼀⼩船在点P 处测得A 在正北⽅向,B 位于南偏东24.5°⽅向,前⾏1200m ,到达点Q 处,测得A 位于北偏东49°⽅向,B 位于南偏西41°⽅向.(1)线段BQ 与PQ 是否相等?请说明理由;(2)求A ,B 间的距离.(参考数据cos41°=0.75)练习作业:1. 已知在Rt △ABC 中,∠C =90°,根据表中的数据求其它元素的值:a b c ∠A ∠B 12 30° 4 45° 260°5 35 4 28 CD=3,AD=12,求证:AD ⊥BD .3.计算ooo5sin 302cos60tan 45-- oo o o2cos 45tan 30sin 45tan 60-+?4.如图所⽰,已知:在△ABC中,∠A=60°,∠B=45°,AB=443,?求△ABC的⾯积(结果可保留根号).例5.已知:如图所⽰,在△ABC中,AD是边BC上的⾼,E?为边AC?的中点,BC=14,AD=12,sinB=45,求:(1)线段DC的长;(2)tan∠EDC的值.例6.如图,在△ABC中,∠BAC=120°,AB=10,AC=5,求sinB?sinC的值.。

期末复习:解三角形

期末复习:解三角形

高三期末复习:解三角形一、知识点梳理: 1、正弦定理:在△ABC 中,R CcB b A a 2sin sin sin === 注:①R 表示△ABC 外接圆的半径 ②正弦定理可以变形成各种形式来使用 2、余弦定理:在△ABC 中,A bc c b a cos 2222-+=B ac c a b cos 2222-+=C ab b a c cos 2222-+=也可以写成第二种形式:bc a c b A 2cos 222-+=,ac b c a B 2cos 222-+=,abc b a C 2cos 222-+=3、疑点:解三角形问题解决过程中,注意:① 角的联系:π=++C B A ② 角的范围:),0(,,π∈C B A ③ 边角的关系与转换,如:sin sin A B a b A B >⇔>⇔>△ABC 的面积公式,B ac A bc C ab S sin 21sin 21sin 21=== 二、诊断练习:1、判定下列三角形的形状(1)在△ABC 中,已知38,4,3===c b a ,请判断△ABC 的形状。

(2)在△ABC 中,已知C B A 222sin sin sin <+,请判断△ABC 的形状。

(3)在△ABC 中,已知bc a A ==2,21cos ,请判断△ABC 的形状。

(4)在△ABC 中,已知C B bc B c C b cos cos 2sin sin 2222=+,请判断△ABC 的形状。

(5)在三角形ABC 中,sinA=sin sin sin cosB+cosCB CA +=,判断三角形的形状2、在△ABC 中,已知030,4,5===A b a ,则△ABC 的面积__________;3、在△ABC 中, a=12,A=060,要使三角形有两解,则对应b 的取值范围为__________;4、在△ABC 中,若△ABC 的面积为S ,且22)(2c b a S -+=,则tanC 的值__________; 5、在△ABC 中,已知87cos ,6,0222===--A a c bc b ,则△ABC 的面积__________; 三、典型例题1、设ABC △的内角A B C ,,所对的边长分别为a b c ,,,且3cos cos 5a Bb Ac -=.(Ⅰ)求BAtan tan 的值; (Ⅱ)求tan()A B -的最大值.2、在ABC △中,内角A B C ,,对边的边长分别是a b c ,,,已知2c =,3C π=.(Ⅰ)若ABC △a b ,;(Ⅱ)若sin sin()2sin 2C B A A +-=,求ABC △的面积.3、设ABC △的内角A B C ,,所对的边长分别为a b c ,,,且cos 3a B =,sin 4b A =. (Ⅰ)求边长a ;(Ⅱ)若ABC △的面积10S =,求ABC △的周长l .4、在一个特定时段内,以点E 为中心的7海里以内海域被设为警戒水域.点E 正北55海里处有一个雷达观测站A.某时刻测得一艘匀速直线行驶的船只位于点A 北偏东45且与点A 相距海里的位置B ,经过40分钟又测得该船已行驶到点A 北偏东45+θ(其中sin θ=26,090θ<< )且与点A 相距海里的位置C .(I )求该船的行驶速度(单位:海里/小时);(II )若该船不改变航行方向继续行驶.判断它是否会进入警戒水域,并说明理由.四、课后练习:1、等腰三角形顶角的正弦值为2524,则底角的余弦值为__________; 2、在ΔABC 中,若2cosBsinA =sinC ,则ΔABC 的形状一定是__________三角形;3、在ABC ∆中,已知C BA sin 2tan =+,给出以下四个论断,其中正确的是__________; ①1cot tan =⋅B A②2sin sin 0≤+<B A③1cos sin 22=+B A④C B A 222sin cos cos =+4、在直角三角形ABC 中,A 、B 为锐角,则sinAsinB 的取值范围是__________;5、在ΔABC 中,sinA ︰sinB ︰sinC =2︰3︰4,则cos C =__________;6、给出下列四个命题,则正确的命题为__________;⑴ 若sin2A=sin2B ,则△ABC 是等腰三角形 ⑵ 若sinA=cosB ,则△ABC 是直角三角形 ⑶ 若cosA·cosB·cosC <0, 则△ABC 是钝角三角形 ⑷ 若cos(A -B)cos(B -C)cos(C -A) = 1, 则△ABC 是等边三角形7、已知△ABC 中,135cos ,54sin ==B C ,则A cos =__________; 8、在ABC ∆中,D 为BC 中点,45,30,BAD CAD ∠=︒∠=︒2=AB ,则AD =__________;9、已知△ABC 中,AB 边上的高与AB 边的长相等,则2AC BC AB BC AC BC AC++⋅的最大值为__________; 10、在△ABC 中,求证:2222112cos 2cos ba b B a A -=-11、设锐角三角形ABC 的内角A B C ,,的对边分别为a b c ,,,2sin a b A =. (1)求B 的大小; (2)求cos sin A C +的取值范围.12、在ABC △中,5cos 13B =-,4cos 5C =. (Ⅰ)求sin A 的值;(Ⅱ)设ABC △的面积332ABC S =△,求BC 的长.13、如图,某住宅小区的平面图呈扇形AOC .小区的两个出入口设置在点A 及点C 处,小区里有两条笔直的小路AD DC ,,且拐弯处的转角为120 .已知某人从C 沿CD 走到D 用了10分钟,从D 沿DA 走到A 用了6分钟.若此人步行的速度为每分钟50米,求该扇形的 半径OA 的长(精确到1米).。

解直角三角形(复习课)

解直角三角形(复习课)
2 2
AC
例2、在直角三角形ABC中,∠C=90o,∠A=60o两直角 边的 和为14,求这两条直角边的长。
A
解:依题意画图 1,设AC x,则BC 3x.
AC BC 14
C
图1
B
x 3x 14
解得 x 7 3 7, 3x 21 7 3
两条直角边分别长 7 3 7, 21 7 3。
第六章 解直角三角形 (复习课)
教学目标:
1、增强对本章的基本概念 和关系式的记忆和理解。
2、能熟练地运用本章知识解
决有关问题。 3、加深对本章的解题方法和解题
思路的体会。
一、知识结构框图:
锐角三角函 数的值
锐角三角函数
同角锐角三 角函数之间 的关系
解直角 三角形
应 用
互为余角的 锐角三角函 数之间的关 系
三、例题讲解:
例1、已知 Rt ABC
12 中,∠C=Rt∠,sinA= 13 ,
求角A的
其它锐角三角函数值。 解:Rt ቤተ መጻሕፍቲ ባይዱABC 中,C Rt , 12 BC sin A 13 AB 设BC 12 t , AB 13t. 由勾股定理,得
AB BC 5t, AC 5t 5 cos A , AB 13t 13 BC 12 t 12 tgA , AC 5t 5 AC 5t ctgA 。 BC 12 t
2 2 2 2 2
2
思考题:在山顶上处D有一铁塔,在塔顶B处测得地面上一 点A的俯角α=60o,在塔底D测得点A的俯角β=45o, 已知塔高BD=30米,求山高CD。(广东省1990中 考试题) B α D β C A

解直角三角形(复习课)

解直角三角形(复习课)

例3一段河坝的横断面为等腰三角形ABCD,试根据下图
中的数据求出坡角α和坝底宽AD。(单位是米,结果保
留根号)
解:过C作CFAD于F AB CD,BC // AD,i 1: 3, A
B 4
C
i 1: 3
6
α
EF
D
CF BE 6,EF BC 4,
AE FD 3CF 6 3.
例2、在直角三角形ABC中,∠C=90o,∠A=60o两直角
边的 和为14,求这两条直角边的长。 A
解:依题意画图1,设AC x,则BC 3x.
AC BC 14
C 图1 B
x 3x 14
解得 x 7 3 7, 3x 21 7 3
两条直角边分别长 7 3 7, 21 7 3。
cos A AC 5t 5 , AB 13t 13
tgA BC 12t 12, AC 5t 5
ctgA AC 5t 。 BC 12t
; 财务管理培训/html/hometopfenlei/topduanqipeixun/duanqipeixun4/

赴成吉思汗陵。第二天早上,成陵的主殿上野鸽子翻飞环绕,它们喜欢这里,老祖宗也喜欢它们。主殿穹隆高大,色调是蓝白这样的纯色,蒙古人喜欢的两种色彩。后来,我从远近很多角度看成陵的主殿,它安详,和山势草木土地天空和谐一体,肃穆,但没有凌驾天地的威势。从陵园往 下面看,河床边上有一排餐饮的蒙古包,门口拴马。天低荒漠,平林如织。此时心情如同唱歌的心情,不是唱“草原上升起不落的太阳”,而如“四季”—— 春天来了,风儿到处吹,土地苏醒过来。本想留在春营地,可是路途太远,我们催马投入故乡怀抱。 民歌有意思,留在春营地和 路途太远有什么关系呢?让不矛盾的矛

解三角形知识点总结及典型例题

解三角形知识点总结及典型例题

两角和与差的正弦、余弦、正切公式 1两角和与差的正弦公式,sin( a + B )=sin a cos B +cos a sin B,sin( -a )=sin a cco $ a sin B ・2两角和与差的余弦公式,cos( a + B )=cos a -^os B sin B cos(诩)=cos a cos+sin a sin B3两角和、差的正切公式⑶ tan22ta n 1 tan 2默写上述公式,检查上次的作业 课本上的 !解三角形知识点总结及典型例题一、知识点复习1、正弦定理及其变形(1 a 2RsinA,b 2Rsin B,c 2RsinC (边化角公式)(2) si nA —,si nB — ,si nC —(角化边公式)2R2R2R/、a sin A a sin Ab sin B(3) a:b: c sinA:sinB:sin C (4) — ---- ,一 ---- ,- ---课前复习⑴ sin22sin cos .1 si n22 2sincos 2 sin cos(sincos )22⑵ cos2 cos.2sin 22cos1 1 2si n 2升幕公式1 cosc 22cos —,1 cos2sin 2—2 2cos 2 1 . 2 1 cos2降幕公式cos 2sin2 2简单的三角恒等变换二倍角的正弦、余弦和正切公式: tan tantan( a +=B1 tan tan(tan ta n tan 1 tan tan );tan( -B )=tan tan. ( tan1 tan tantan tan tan tan ).a b c sin A sin B sin C2R (R 为三角形外接圆半径)b sin Bc sin C c sin C2、正弦定理适用情况: (1) 已知两角及任一边(2) 已知两边和一边的对角(需要判断三角形解的情况) 已知a , b 和A ,求B 时的解的情况: 如果si nA si nB ,则B 有唯一解;如果si nA si nB 1,贝U B 有两解; 如果sin B 1,贝U B 有唯一解;如果si nB 1,则B 无解. 3、余弦定理及其推论4、 余弦定理适用情况:(1)已知两边及夹角;(2)已知三边.5、 常用的三角形面积公式6、三角形中常用结论二、典型例题 题型1边角互化2 ,2 2贝 U cosC = a---- —2ab因为0 C ,所以C(b 2 c 2 a 2)x c 2,则函数f(x)的图象与x 轴()2ab 22 c b 2 2 a 2a 2c2 c b 22bccosA2accosB2abcosC ■ 2 2 2A b c a cosA ------ 2bc s ^^\ c 2 b 2 co --_____z2ac … a b c cosC---------------- 2ab(1)S ABC (2 ) S ABC1 1底高 21 —absi nC 21 1bcsi nA easin B (两边夹一角) 2(1) a b c, ba,a b(即两边之和大于第三边,两边之差小于第三边) (2) 在 ABC 中, (3) 在厶 ABC 中,.A B Csin -------- cos , cos2 2BB CA B 2 b si nA si n B(即大边对大角,大角对大边),所以 sin (A B) si nC ; cos( A B) cosC ; tan(A B) tanC . .C sin —.2[例1 ]在ABC 中,若 【解析】由正弦定理可得sin A: sin B: sinC 3:5:7, a: b :c 3:5:7,,令 a 、b 、 则角C 的度数为c 依次为3、5、7,32 52 7 = 1 2 3 5 2 ABC 的三边,f(x) b 2x 2A 、有两个交点B 、有一个交点C 、没有交点D 、至少有一个交点【解析】由余弦定理得 b 2c 2a 22bccosA ,所以f(x) b 2x 2 2bccos Agx c 2 = (bx ccos A)2 c 2 c 2 cos 2 A ,因为 cos 2 A 1,所以 c 2 c 2 cos 2 A 0,因止匕 f(x) 0恒成立,所以其图像与 x 轴没有交点。

数学一轮复习第三章三角函数解三角形第7讲解三角形应用举例学案含解析

数学一轮复习第三章三角函数解三角形第7讲解三角形应用举例学案含解析

第7讲解三角形应用举例[考纲解读]1。

能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.(重点)2.利用正、余弦定理解决实际问题,主要考查根据实际问题建立三角函数模型,将实际问题转化为数学问题.(难点)[考向预测]从近三年高考情况来看,本讲是高考中的一个考查内容.预计2021年会强化对应用问题的考查.以与三角形有关的应用问题为主要命题方向,结合正、余弦定理求解平面几何中的基本量,实际背景中求距离、高度、角度等均可作为命题角度.试题可以为客观题也可以是解答题,难度以中档为主。

1.仰角和俯角在视线和水平线所成的角中,视线在水平线错误!上方的角叫仰角,在水平线错误!下方的角叫俯角(如图①).2.方位角从指北方向顺时针转到目标方向线的水平角,如B点的方位角为α(如图②).3.方向角相对于某一正方向的水平角.(1)北偏东α,即由指北方向顺时针旋转α到达目标方向(如图③).(2)北偏西α,即由指北方向逆时针旋转α到达目标方向.(3)南偏西等其他方向角类似.4.坡角与坡度(1)坡角:坡面与水平面所成的二面角的度数(如图④,角θ为坡角).(2)坡度:坡面的铅直高度与水平长度之比(如图④,i为坡度).坡度又称为坡比.1.概念辨析(1)东北方向就是北偏东45°的方向.()(2)从A处望B处的仰角为α,从B处望A处的俯角为β,则α,β的关系为α+β=180°.()(3)方位角与方向角其实质是一样的,均是确定观察点与目标点之间的位置关系.()(4)方位角大小的范围是[0,2π),方向角大小的范围一般是错误!。

()答案(1)√(2)×(3)√(4)√2.小题热身(1)在某测量中,设A在B的南偏东34°27′,则B在A的() A.北偏西34°27′ B.北偏东55°33′C.北偏西55°33′ D.南偏西34°27′答案A解析由方向角的概念知,B在A的北偏西34°27′。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解三角形复习课作业解答
1、的内角的对边分别为,已知, , ,
则的面积为( )
A. B. C. D.
2、在高的山顶上,测得山下一塔顶与塔底的俯角分别为,则塔高为( )
A. B. C. D.
3、在中且的面积为,则的长为( )
A. B. C. D.2
解(略)B
4、如图,从气球A上测得正前方的河流的两岸的俯角分别为,此时气球的高是,则河流的宽度等于( )
A. B. C. D.
法2,由已知得:DC=ADtan600=60√3 DB=ADtan150=60(2-√3)
所以:BC=DC-DB=120(√3−1)
5、在中,角、、的对边分别为、、,
若,则角的值为( )
A. B. C. 或 D. 或
6、钝角三角形的面积是, , ,则( )
A.5
B.
C.2
D.1
解(略)B
7、已知中, ,那么角A等于( )
A.135°
B.90°
C.45°
D.30°
8、在中,若,则一定是( )
A.等腰三角形
B.直角三角形
C.等腰直角三角形
D.等腰或直角三角形
9、在中, ,则此三角形一定是( )
A.直角三角形
B.等边三角形
C.等腰直角三角形
D.钝角三角形
10、设的内角所对的边分别为,若,则的形状为( )
A.直角三角形
B.锐角三角形
C.钝角三角形
D.不确定
由正弦定理得:sinBcosC+cosBsinC=sin2A,sin(B+C)=sin2A,即:sinA=1,A=900法2:由射影定理得:a=asinA,所以,sinA=1,则A=900
11、在锐角三角形, ,则的取值范围是( ).
A. B. C. D.不确定由已知得:1<a<3, 由余弦定理知:当a是最大边时, 1+4>a2,则a<√5
当2是最大边时,1+a2>4,则a>√3,所以
12、在中, .
1.求的大小;
2.求的最大值.
13、在锐角中, 分别为角所对的边,且.
1.确定角C的大小;
2.若,且的面积为,求的值.
14、设的内角所对的边分别为 , 已知 .
1.求的周长;
2.求的值.
15、设锐角的内角的对边分别为已知 . 1.求B的大小;
2.若, ,求b的值.
16、的内角所对的边分别为.
1.若成等差数列,证明: ;
2.若成等比数列,且,求的值.
17、的内角所对的边分别为.向量与平行.
1.求角;
2.若, ,求的面积。

相关文档
最新文档