高考数学二轮复习 专题整合 52 圆锥曲线的基本问题 理
高考圆锥曲线知识点、题型全总结
圆锥曲线全总结及全题型解析1.圆锥曲线的两定义:第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F ,F 的距离的和等于常,且此常数一定要大于,当常数等时,轨迹是线段 F F ,当常数小时,无轨迹;双曲线中,与两定点F ,F 的距离的差的绝对值等于常数,且此常数一定要小于F |,定义中的“绝对值”与<|F F|不可忽视。
若=|F F|,则轨迹是以F,F为端点的两条射线,若﹥|F F |,则轨迹不存在。
若去掉定义中的绝对值则轨迹仅表示双曲线的一支。
2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程):(1)椭圆:焦点在轴上时(),焦点在轴上时=1()。
方程表示椭圆的充要条件是什么?(A B C≠0,且A,B,C同号,A≠B)。
(2)双曲线:焦点在轴上=1,焦点在轴上=1()。
方表示双曲线的充要条件是什么?(ABC≠0,且A,B 异号)。
(3)抛物线:开口向右时,开口向左,开口向上时,开口向下时。
3.圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断):(1)椭圆:由, 分母的大小决定,焦点在分母大的坐标轴上。
(2)双曲线:由, 项系数的正负决定,焦点在系数为正的坐标轴上;(3)抛物线:焦点在一次项的坐标轴上,一次项的符号决定开口方向。
提醒:在椭圆中,最大,在双曲线中,最大。
4.圆锥曲线的几何性质:(1)椭圆(以()为例):①范围:;②焦点:两个焦点;③对称性:两条对称轴,一个对称中心(0,0),四个顶点,其中长轴长为,短轴长为;④准线:两条准线;⑤离心率:,椭圆,越小,椭圆越圆;越大,椭圆越扁。
(2)双曲线(以()为例):①范围:或;②焦点:两个焦点;③对称性:两条对称轴,一个对称中心(0,0),两个顶点,其中实轴长为2 ,虚轴长为,特别地,当实轴和虚轴的长相等时,称为等轴双曲线,其方程可设为;④准线:两条准线;⑤离心率:,双曲线,等轴双曲线在椭圆外, 越小,开口越小, 越大,开口越大;⑥两条渐近线。
高中数学圆锥曲线知识点梳理+例题解析
x0 x a2
y0 y b2
1.
7.
x2
椭圆
a2
y2 b2
1
(a>b>0)的左右焦点分别为 F1,F 2,点 P 为椭圆上任意一点 F1PF2
,则椭圆的焦点角形的面积
S 为 F1PF2
b2
tan 2
.
-4-
8.
椭圆 x2 y2 a2 b2
1(a>b>0)的焦半径公式 | MF1 | a ex0 , | MF2 | a ex0 ( F1(c, 0)
x0
中心 顶点 对称轴
原点 O(0,0)
(a,0), (─a,0), (0,b) , (0,─b)
x 轴,y 轴; 长轴长 2a,短轴长 2b
原点 O(0,0)
(a,0), (─a,0) x 轴,y 轴;
实轴长 2a, 虚轴长 2b.
(0,0) x轴
焦点
F1(c,0), F2(─c,0)
F1(c,0), F2(─c,0)
e=1
a
a
-2-
【备注 1】双曲线:
⑶等轴双曲线:双曲线 x 2 y 2 a 2 称为等轴双曲线,其渐近线方程为 y x ,离心率 e 2 .
⑷共轭双曲线:以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线,叫做已知双曲线的共轭双曲线. x 2 y 2 与 a2 b2
x 2 y 2 互为共轭双曲线,它们具有共同的渐近线: x 2 y 2 0 .
e 的点的轨迹.(e>1)
与定点和直线的距离相等的点的 轨迹.
-1-
轨迹条件
点集: ({M||MF1+|MF2|=2a,|F
届数学二轮复习第二部分专题篇素养提升文理专题五解析几何第3讲圆锥曲线的综合应用学案含解析
第3讲圆锥曲线的综合应用JIE TI CE LUE MING FANG XIANG解题策略·明方向⊙︱考情分析︱1.圆锥曲线中的定点与定值、最值与范围问题是高考必考的问题之一,主要以解答题形式考查,往往作为试卷的压轴题之一.2.以椭圆或抛物线为背景,尤其是与条件或结论相关存在性开放问题.对考生的代数恒等变形能力、计算能力有较高的要求,并突出数学思想方法考查.⊙︱真题分布︱(理科)年份卷别题号考查角度分值202 0Ⅰ卷20椭圆的简单性质及方程思想、定点问题12Ⅱ卷19椭圆离心率的求解,利用抛物线的定义求抛物线和椭圆的标准方程12Ⅲ20椭圆标准方程和求三角形12(文科)Ⅲ卷21椭圆标准方程和求三角形面积问题,椭圆的离心率定义和数形结合求三角形面积,12201 9Ⅰ卷21直线与圆的位置关系,定值问题12Ⅱ卷20椭圆的定义及其几何性质、参数的范围12Ⅲ卷21直线与抛物线的位置关系、定点问题12201 8Ⅰ卷20直线的方程,直线与抛物线的位置关系、证明问题12Ⅱ卷20直线的方程,直线与抛物线的位置关系、圆的方程12Ⅲ卷20直线与椭圆的位置关系、证明问题12KAO DIAN FEN LEI XI ZHONG DIAN考点分类·析重点考点一圆锥曲线中的最值、范围问题错误!错误!错误!错误!典例1(2020·青海省玉树州高三联考)已知直线l:x-y+1=0与焦点为F的抛物线C:y2=2px(p〉0)相切.(1)求抛物线C的方程;(2)过点F的直线m与抛物线C交于A,B两点,求A,B两点到直线l的距离之和的最小值.【解析】(1)将l:x-y+1=0与抛物线C:y2=2px联立得:y2-2py+2p=0,∵l与C相切,∴Δ=4p2-8p=0,解得:p=2,∴抛物线C的方程为:y2=4x。
(2)由题意知,直线m斜率不为0,可设直线m方程为:x =ty+1,联立{y2=4x,x=ty+1得:y2-4ty-4=0.设A(x1,y1),B(x2,y2),则y1+y2=4t,∴x1+x2=ty1+1+ty2+1=4t2+2,∴线段AB中点M(2t2+1,2t).设A,B,M到直线l距离分别为d A,d B,d M,则d A+d B=2d M=2·错误!=2错误!错误!=2错误!错误!,∵(t-错误!)2+错误!≥错误!,∴当t=错误!时,错误!min=错误!,∴A,B两点到直线l的距离之和的最小值为:22×错误!=错误!。
高三圆锥曲线复习(基础和大题含问题详解)
考纲要求(1)圆锥曲线①了解圆锥曲线的实际背景,了解圆锥曲线在刻画现实世界和解决实际问题中的作用;②掌握椭圆、抛物线的定义、几何图形、标准方程及简单性质;③了解双曲线的定义、几何图形和标准方程,知道它的简单几何性质;④了解圆锥曲线的简单应用;⑤理解数形结合的思想。
(2)曲线与方程了解方程的曲线与曲线的方程的对应关系。
基本知识回顾(1)椭圆①椭圆的定义设F1,F2是定点(称焦点),P为动点,则满足|PF1|+|PF2|=2a (其中a为定值,且2a>|F1F2|)的动点P的轨迹称为椭圆,符号表示:|PF1|+|PF2|=2a(2a>| F1F2|)。
②椭圆的标准方程和几何性质例题例1:椭圆22192x y +=的焦点为12,F F ,点P 在椭圆上,若1||4PF =,则2||PF = ;12F PF ∠的大小为 。
变式1:已知12F 、F 是椭圆的两个焦点,p 为椭圆C 上的一点,且→→⊥21PF PF 。
若12PF F ∆的面积为9,则b = 。
例2:若点P 到点F (4,0)的距离比它到定直线x +5=0的距离小1,则P 点的轨迹方程是( )A .y 2=16-xB .y 2=32-xC .y 2=16xD .y 2=32x变式2:动圆与定圆A :(x +2)2+y 2=1外切,且与直线 ∶x =1相切,则动圆圆心P 的轨迹是( )A .直线B .椭圆C .双曲线D .抛物线变式3:抛物线的顶点在原点,焦点在y 轴上,其上的点)3,(-m P 到焦点的距离为5,则抛物线方程为( ) A .y x 82=B .y x 42=C .y x 42-=D . y x 82-=变式4:在抛物线y 2=2x 上有一点P ,若 P 到焦点F 与到点A (3,2)的距离之和最小,则点P 的坐标是 。
课后作业1.已知椭圆162x +92y =1, F 1、F 2分别为它的左右焦点,CD 为过F 1的弦,则△F 2CD 的周长是( )A .10B .12C .16D .不能确定2.设P 为双曲线22112y x -=上的一点,12F F ,是该双曲线的两个焦点,若12||:||3:2PF PF =,则12PF F △的面积为( )A .B .12C .D .243.已知直线1:4360l x y -+=和直线2:1l x =-,抛物线24y x =上一动点P 到直线1l 和直线2l 的距离之和的最小值是( )A .2B .3C .115 D .3716答案:例题例1、2,120°解:∵229,3a b ==,∴c ==∴12F F =又1124,26PF PF PF a =+==,∴22PF =,又由余弦定理,得(22212241cos 2242F PF +-∠==-⨯⨯,∴12120F PF ︒∠=,故应填2,120°。
高考二轮复习圆锥曲线专题(共88张PPT)
xR=m+2
m2+3
3
.
所以||PPQR||=xxQR=22
11++mm3322-+11=1+2
2 1+m32-1.
基础知识
题型分类 第18页,共88页。 思想方法
练出高分
题型分类·深度剖析
此时 1+m32>1,且 1+m32≠2,
所以 1<1+ 2
1+2 m32-1<3,且
1+ 2
1+2 m32-1≠53,
【例 2】 已知椭圆 C 经过点 A1,32, 两个焦点为(-1,0)、(1,0). (1)求椭圆 C 的方程;
思维启迪
解析
探究提高
可设直线 AE 的斜率来计算直线 EF 的斜率,通过推理计算消参.
(2)E、F 是椭圆 C 上的两个动点,
如果直线 AE 的斜率与 AF 的斜率
互为相反数,证明直线 EF 的斜率
圆锥曲线中的探索性问题
难圆点锥正 曲本线P中1的(疑x函点1数清,思源想y1),P2(x2,y2),则所得弦长|P1P2|
圆锥曲线中的探索性问题
1+k |x -x | = 圆数直锥学线曲 和线圆R 中锥A(的曲文探线)索问性题问解题法的2一般1规律
2
圆锥曲线中的范围、最值问题
1 圆锥曲线中的范围、最值问题
p y0.
2.“点差法”的常见题型
求中点弦方程、求(过 定点、平行弦)弦中点 轨迹、垂直平分线问 题.必须提醒的是 “点差法”具有不等 价性,即要考虑判别 式 Δ>0 是否成立.
基础知识
题型分类 第6页,共88页。 思想方法
练出高分
基础知识·自主学习
基础自测
题号
1 2 3 4
答案
新教材适用2024版高考数学二轮总复习第1篇专题5解析几何第2讲圆锥曲线的方程和性质核心考点1圆锥曲
第2讲 圆锥曲线的方程和性质高频考点高考预测椭圆、双曲线、抛物线的定义、标准方程 重点考查椭圆的离心率、双曲线的离心率、渐近线问题;抛物线定义和性质的应用,常与三角、平面向量、圆相结合,以选择填空为主.椭圆、双曲线、抛物线的几何性质直线和椭圆、抛物线、双曲线的位置关系1. (2023·全国新高考Ⅰ卷)设椭圆C 1:x2a 2+y 2=1(a >1),C 2:x24+y 2=1的离心率分别为e 1,e 2.若e 2=3e 1,则a =( A )A.233B . 2C . 3D . 6【解析】 由椭圆C 2:x 24+y 2=1可得a 2=2,b 2=1,∴c 2=4-1=3,∴椭圆C 2的离心率为e 2=32,∵e 2=3e 1,∴e 1=12,∴c 1a 1=12,∴a 21=4c 21=4(a 21-b 21)=4(a 21-1),∴a =233或a =-233(舍去).故选A.2. (2023·全国新高考Ⅱ卷)已知椭圆C :x 23+y 2=1的左焦点和右焦点分别为F 1和F 2,直线y =x +m 与C 交于点A ,B 两点,若△F 1AB 面积是△F 2AB 面积的两倍,则m =( C )A.23 B .23C .-23D .-23【解析】 记直线y =x +m 与x 轴交于M (-m,0),椭圆C :x 23+y 2=1的左,右焦点分别为F 1(-2,0),F 2(2,0),由△F 1AB 面积是△F 2AB 的2倍,可得|F 1M |=2|F 2M |,∴|-2-x M |=2|2-x M |,解得x M =23或x M =32,∴-m =23或-m =32,∴m =-23或m =-32,联立⎩⎪⎨⎪⎧x 23+y 2=1y =x +m可得,4x 2+6mx +3m 2-3=0,∵直线y =x +m 与C 相交,所以Δ>0,解得m 2<4,∴m =-32不符合题意,故m =-23.故选C. 3. (多选)(2023·全国新高考Ⅱ卷)设O 为坐标原点,直线y =-3(x -1)过抛物线C :y 2=2px (p >0)的焦点,且与C 交于M ,N 两点,l 为C 的准线,则( AC )A .p =2B .|MN |=83C .以MN 为直径的圆与l 相切D .△OMN 为等腰三角形【解析】 直线y =-3(x -1)过抛物线C :y 2=2px (p >0)的焦点,可得p2=1,所以p=2,所以A 正确;抛物线方程为:y 2=4x ,与C 交于M ,N 两点,直线方程代入抛物线方程可得:3x 2-10x +3=0,x M +x N =103,所以|MN |=x M +x N +p =163,所以B 不正确;M ,N 的中点的横坐标为53,中点到抛物线的准线的距离为:1+53=83,所以以MN 为直径的圆与l 相切,所以C 正确;3x 2-10x +3=0,不妨可得x M =3,x N =13,y M =-23,y N =233,|OM |=9+12=21,|ON |=19+129=133,|MN |=163,所以△OMN 不是等腰三角形,所以D 不正确.故选AC.4. (2022·全国甲卷)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为13,A 1,A 2分别为C 的左、右顶点,B 为C 的上顶点.若BA 1→·BA 2→=-1,则C 的方程为( B )A.x 218+y 216=1 B .x 29+y 28=1C.x 23+y 22=1 D .x 22+y 2=1【解析】 因为离心率e =ca =1-b 2a 2=13,解得b 2a 2=89,b 2=89a 2,A 1,A 2分别为C 的左、右顶点,则A 1(-a,0),A 2(a,0),B 为上顶点,所以B (0,b ).所以BA 1→=(-a ,-b ),BA 2→=(a ,-b ),因为BA 1→·BA 2→=-1,所以-a 2+b 2=-1,将b 2=89a 2代入,解得a 2=9,b 2=8,故椭圆的方程为x 29+y 28=1.故选B.5. (2022·全国乙卷)设F 为抛物线C :y 2=4x 的焦点,点A 在C 上,点B (3,0),若|AF |=|BF |,则|AB |=( B )A .2B .2 2C .3D .3 2【解析】 由题意得,F (1,0),则|AF |=|BF |=2,即点A 到准线x =-1的距离为2,所以点A 的横坐标为-1+2=1,不妨设点A 在x 轴上方,代入得,A (1,2),所以|AB |=3-12+0-22=2 2.故选B.6. (2022·全国甲卷)椭圆C :x 2a 2+y 2b2=1(a >b >0)的左顶点为A ,点P ,Q 均在C 上,且关于y 轴对称.若直线AP ,AQ 的斜率之积为14,则C 的离心率为( A )A.32B .22C .12D .13【解析】 A (-a,0),设P (x 1,y 1),则Q (-x 1,y 1),则k AP =y 1x 1+a ,k AQ =y 1-x 1+a,故k AP ·k AQ =y 1x 1+a ·y 1-x 1+a =y 21-x 21+a 2=14,又x 21a 2+y 21b 2=1,则y 21=b 2a 2-x 21a2,所以b 2a 2-x 21a2-x 21+a2=14,即b 2a 2=14,所以椭圆C 的离心率e =ca=1-b 2a 2=32.故选A.7. (2022·全国甲卷)若双曲线y 2-x 2m2=1(m >0)的渐近线与圆x 2+y 2-4y +3=0相切,则m =33. 【解析】 双曲线y 2-x 2m 2=1(m >0)的渐近线为y =±xm,即x ±my =0,不妨取x +my =0,圆x 2+y 2-4y +3=0,即x 2+(y -2)2=1,所以圆心为(0,2),半径r =1,依题意圆心(0,2)到渐近线x +my =0的距离d =|2m |1+m2=1,解得m =33或m =-33(舍去). 8. (2021·全国新高考Ⅱ卷)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的离心率为2,则该双曲线的渐近线方程为 y =±3x .【解析】 因为双曲线x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2,所以e =c 2a 2=a 2+b 2a 2=2,所以b 2a 2=3,所以该双曲线的渐近线方程为y =±bax =±3x .故答案为y =±3x .9. (2022·全国新高考Ⅰ卷)已知椭圆C :x 2a 2+y 2b2=1(a >b >0),C 的上顶点为A ,两个焦点为F 1,F 2,离心率为12.过F 1且垂直于AF 2的直线与C 交于D ,E 两点,|DE |=6,则△ADE的周长是_13__.【解析】 ∵椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,∴不妨可设椭圆C :x 24c 2+y 23c2=1,a =2c ,∵C 的上顶点为A ,两个焦点为F 1,F 2,∴△AF 1F 2为等边三角形,∵过F 1且垂直于AF 2的直线与C 交于D ,E 两点,∴k DE =tan 30°=33,由等腰三角形的性质可得,|AD |=|DF 2|,|AE |=|EF 2|,设直线DE 的方程为y =33(x +c ),D (x 1,y 1),E (x 2,y 2),将其与椭圆C 联立化简可得,13x 2+8cx -32c 2=0,由韦达定理可得,x 1+x 2=-8c 13,x 1x 2=-32c213,|DE |=k 2+1|x 1-x 2|=x 1+x 22-4x 1x 2=13+1·⎝ ⎛⎭⎪⎫-8c 132+128c 213=4813c =6,解得c =138,由椭圆的定义可得,△ADE 的周长等价于|DE |+|DF 2|+|EF 2|=4a =8c =8×138=13.10. (2023·全国新高考Ⅰ卷)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2.点A 在C 上,点B 在y 轴上,F 1A →⊥F 1B →,F 2A →=-23F 2B →,则C 的离心率为 355.【解析】 方法一:如图,设F 1(-c,0),F 2(c,0),B (0,n ),设A (x ,y ),则F 2A →=(x -c ,y ),F 2B →=(-c ,n ),又F 2A →=-23F 2B →,则⎩⎪⎨⎪⎧x -c =23c ,y =-23n ,可得A ⎝ ⎛⎭⎪⎫53c ,-23n ,又F 1A →⊥F 1B →,且F 1A →=⎝ ⎛⎭⎪⎫83c ,-23n ,F 1B →=(c ,n ),则F 1A →·F 1B →=83c 2-23n 2=0,化简得n 2=4c 2.又点A在C 上,则259c 2a 2-49n 2b 2=1,整理可得25c 29a 2-4n 29b 2=1,代入n 2=4c 2,可得25c 2a 2-16c 2b 2=9,即25e2-16e 2e 2-1=9,解得e 2=95或15(舍去),故e =355.方法二:由F 2A →=-23F 2B →,得|F 2A →||F 2B →|=23,设|F 2A →|=2t ,|F 2B →|=3t ,由对称性可得|F 1B →|=3t ,则|AF 1→|=2t +2a ,|AB →|=5t ,设∠F 1AF 2=θ,则sin θ=3t 5t =35,所以cos θ=45=2t +2a 5t ,解得t =a ,所以|AF 1→|=2t +2a =4a ,|AF 2→|=2a ,在△AF 1F 2中,由余弦定理可得cos θ=16a 2+4a 2-4c 216a 2=45,即5c 2=9a 2,则e =355.核心考点1 圆锥曲线的定义及标准方程核心知识· 精归纳1.圆锥曲线的定义(1)椭圆:|MF 1|+|MF 2|=2a (2a >|F 1F 2|); (2)双曲线:|MF 1|-|MF 2|=2a (2a <|F 1F 2|); (3)抛物线:|MF |=d (d 为M 点到准线的距离). 2.圆锥曲线的标准方程(1)椭圆:x 2a 2+y 2b 2=1(a >b >0)(焦点在x 轴上)或y 2a 2+x 2b 2=1(a >b >0)(焦点在y 轴上);(2)双曲线:x 2a 2-y 2b 2=1(a >0,b >0)(焦点在x 轴上)或y 2a 2-x 2b2=1(a >0,b >0)(焦点在y轴上);(3)抛物线:y 2=2px (p >0);y 2=-2px (p >0);x 2=2py (p >0);x 2=-2py (p >0).多维题组· 明技法角度1:椭圆的定义及标准方程1. (2023·浙江二模)已知F 是椭圆C :x 24+y 23=1的左焦点,点M 在C 上,N 在⊙P :x2+(y -3)2=2x 上,则|MF |-|MN |的最大值是( A )A .2B .10-1 C.13-1D .13+1【解析】 由⊙P :x 2+(y -3)2=2x ,可得(x -1)2+(y -3)2=1,可得圆⊙P 的圆心坐标为P (1,3),半径r =1,由椭圆C :x 24+y 23=1,可得a =2,设椭圆的右焦点为F 1,根据椭圆的定义可得|MF |=2a -|MF 1|,所以|MF |-|MN |=2a -(|MF 1|+|MN |),又由|MN |min =|MP |-r ,如图所示,当点P ,M ,N ,F 1四点共线时,即为P ,N ′,M ′,F 1时,|MF 1|+|MN |取得最小值,最小值为(|MF 1|+|MN |)min =(|MF 1|+|MP |-r )=|PF 1|-r =3-1=2,所以(|MF |-|MN |)max =2×2-2=2.故选A.2.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,离心率为33,过F 2的直线l 交C 于A ,B 两点.若△AF 1B 的周长为43,则椭圆C 的方程为( A )A.x 23+y 22=1B .x 23+y 2=1C.x 212+y 28=1 D .x 212+y 24=1 【解析】 由题意及椭圆的定义知4a =43,则a =3,又c a=c3=33,所以c =1,所以b 2=2,所以椭圆C 的方程为x 23+y 22=1.故选A.角度2:双曲线的定义及标准方程3.设双曲线C :x 28-y 2m =1的左、右焦点分别为F 1,F 2,过F 1的直线与双曲线C 交于M ,N 两点,其中M 在左支上,N 在右支上.若∠F 2MN =∠F 2NM ,则|MN |=( C )A .8B .4C .8 2D .4 2【解析】 由∠F 2MN =∠F 2NM 可知,|F 2M |=|F 2N |,由双曲线定义可知,|MF 2|-|MF 1|=42,|NF 1|-|NF 2|=42,两式相加得,|NF 1|-|MF 1|=|MN |=8 2.故选C.4. (多选)已知双曲线的渐近线方程为y =±22x ,实轴长为4,则该双曲线的标准方程为( AB )A.x 24-y 22=1 B .y 24-x 28=1C.x 24-y 28=1 D .y 24-x 22=1【解析】 由题意,设双曲线方程为x 22m -y 2m=1(m ≠0),又2a =4,∴a 2=4,当m >0时,2m =4,则m =2;当m <0时,-m =4,则m =-4.故所求双曲线的标准方程为x 24-y 22=1或y 24-x 28=1.故选AB.角度3:抛物线的定义及标准方程5. (2023·新乡三模)已知抛物线C :y 2=2px (p >0)的焦点为F ,C 上一点M (x 0,x 0)(x 0≠0)满足|MF |=5,则p =( D )A .5B .4C .3D .2【解析】 依题意得x 20=2px 0,因为x 0≠0,所以x 0=2p .由|MF |=x 0+p2=5,解得p =2.故选D.6.已知抛物线x 2=2py (p >0)的焦点为F ,点P 为抛物线上的动点,点M 为其准线上的动点,若△FPM 为边长是4的等边三角形,则此抛物线的方程为_x 2=4y __.【解析】 △FPM 为等边三角形,则|PM |=|PF |,由抛物线的定义得PM 垂直于抛物线的准线,设P ⎝ ⎛⎭⎪⎫m ,m 22p ,则点M ⎝ ⎛⎭⎪⎫m ,-p 2.因为焦点F ⎝ ⎛⎭⎪⎫0,p 2,△FPM 是等边三角形,所以⎩⎪⎨⎪⎧m 22p +p2=4,⎝ ⎛⎭⎪⎫p 2+p 22+m 2=4,解得⎩⎪⎨⎪⎧m 2=12,p =2,因此抛物线方程为x 2=4y .方法技巧· 精提炼1.求解圆锥曲线标准方程的方法(1)定型:就是指定类型,也就是确定圆锥曲线的焦点位置,从而设出标准方程. (2)计算:即利用待定系数法求出方程中的a 2,b 2和p .另外,当焦点位置无法确定时,抛物线常设为y 2=2ax 或x 2=2ay (a ≠0),椭圆常设为mx 2+ny 2=1(m >0,n >0,且m ≠n ),双曲线常设为mx 2-ny 2=1(mn >0).2.焦点三角形的面积公式(1)在椭圆x 2a 2+y 2b 2=1(a >b >0)中两焦点F 1,F 2;点P 为椭圆上的一点,则△PF 1F 2的面积S △PF 1F 2=b 2·tan θ2,其中θ=∠F 1PF 2.(2)双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两个焦点为F 1,F 2,点P 为双曲线上的一点,则△PF 1F 2的面积S △PF 1F 2=b 2tanθ2,其中θ=∠F 1PF 2.(3)设AB 是过抛物线y 2=2px (p >0)焦点F 的弦(即焦点弦),焦点弦端点与顶点构成的三角形面积:S △AOB =p 22sin α=12|AB ||d |=12|OF |·|y 1-y 2|.加固训练· 促提高1. (2023·未央区模拟)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,M为C 上一点,若MF 1的中点为(0,1),且△MF 1F 2的周长为8+42,则C 的标准方程为( A )A.x 216+y 28=1 B .x 28+y 24=1C.x 216+y 24=1 D .x 232+y 216=1 【解析】 ∵M 1F 的中点为B (0,1),∴OB 是△MF 1F 2的中位线,则MF 2=2OB =2,且△MF 1F 2为直角三角形,∵△MF 1F 2的周长为2a +2c =8+42,∴a +c =4+22①,∵MF 2=2,∴MF 1=2a -2,∵(MF 1)2-(MF 2)2=4c 2,∴(2a -2)2-4=4c 2,即(a -1)2-1=c 2②,由①②得,a =4,c =22,b 2=16-8=8,∴C 的标准方程为x 216+y 28=1.故选A.2.已知F 是双曲线x 24-y 212=1的左焦点,A (1,4),P 是双曲线右支上的一动点,则|PF |+|PA |的最小值为_9__.【解析】 因为F 是双曲线x 24-y 212=1的左焦点,所以F (-4,0),设其右焦点为H (4,0),则由双曲线的定义可得|PF |+|PA |=2a +|PH |+|PA |≥2a +|AH |=4+4-12+0-42=4+5=9.。
高考数学二轮复习名师知识点总结:圆锥曲线中的热点问题
:
x2 a2+
y2 b2=
1
经过点
(0,
3) ,离心率为
1,直线 2
l 经过椭圆
C 的右焦点
F
交椭圆于 A、B 两点,点 A、F 、 B 在直线 x=4 上的射影依次为 D 、K 、 E.
(1)求椭圆 C 的方程;
(2)若直线
l交
y 轴于点
M
,且
→ MA
=λA→F
,
M→B
=
μB→F
,当直线
l 的倾斜角变化时,探求
①当 a≠ 0 时,用 Δ判定,方法同上. ②当 a= 0 时,直线与抛物线的对称轴平行,只有一个交点.
2. 有关弦长问题 有关弦长问题, 应注意运用弦长公式及根与系数的关系, “设而不求”; 有关焦点弦长 问题,要重视圆锥曲线定义的运用,以简化运算. (1)斜率为 k 的直线与圆锥曲线交于两点 P1(x1,y1),P2(x2,y2 ),则所得弦长 |P1P2|= 1+ k2
3. 弦的中点问题
------ 珍贵文档 ! 值得收藏! ------
------ 精品文档 ! 值得拥有! ------
有关弦的中点问题,应灵活运用“点差法”,“设而不求法”来简化运算.
考点一 圆锥曲线的弦长及中点问题
例1
已知椭圆
G
:
x2 a2+
y2 b2=
1(
a>
b
>0)
的离心率为
36,右焦点 (2
ax2+ bx+ c= 0(或 ay2
+ by+c= 0).
①若 a≠ 0,当 Δ>0 时,直线与双曲线相交;当 Δ= 0 时,直线与双曲线相切;当 Δ<0
【南方凤凰台】2022届高考数学(江苏专用)二轮复习 专题五 解析几何 第2讲 圆锥曲线 (理科)
第2讲 圆锥曲线【自主学习】第2讲 圆锥曲线(本讲对应同学用书第47~50页)自主学习 回归教材1. (选修2-1 P32练习3改编)已知椭圆的焦点分别为F 1(-2,0),F 2(2,0),且经过点P 53-22⎛⎫ ⎪⎝⎭,,则椭圆的标准方程为 .【答案】210x +26y=1【解析】设椭圆方程为22x a +22yb =1,由题意得2222259144-4⎧+=⎪⎨⎪=⎩a b a b ,,解得a 2=10,b 2=6,所以所求方程为210x +26y =1.2. (选修2-1 P47练习2改编)若双曲线的虚轴长为12,离心率为54,则双曲线的标准方程为 .【答案】264x -236y =1或264y -236x =1【解析】由b =6,c a =54,结合a 2+b 2=c 2,解得a =8,c =10,由于对称轴不确定,所以双曲线标准方程为264x -236y =1或264y -236x =1.3. (选修2-1 P51例2改编)经过点P(-2,-4)的抛物线标准方程为 . 【答案】y 2=-8x 或x 2=-y【解析】由于点P(-2,-4)在第三象限,所以满足条件的抛物线方程有两种情形.y 2=-2p 1x 或x 2=-2p 2y ,分别代入点P 的坐标,解得p 1=4,p 2=12,所以抛物线的标准方程为y 2=-8x 或x 2=-y .4. (选修2-1 P57练习5改编)已知抛物线y 2=4x 上一点M 到焦点的距离为3,则点M 到y 轴的距离为 . 【答案】2【解析】抛物线y 2=4x 的准线方程为x =-1,点M 到焦点的距离为3,说明到准线的距离为3,所以点M 到y 轴的距离为2.5. (选修2-1 P58练习8改编)设P(x ,y )是椭圆22x a +22y b =1(a >b >0)上一点,F 1,F 2为椭圆的两个焦点,则PF 1·PF 2的最大值为 . 【答案】a 2【解析】由于PF 1·PF 2=PF 1·(2a -PF 1)=-P 21F +2a PF 1=-(PF 1-a )2+a 2,由于a -c ≤PF 1≤a +c ,所以当PF 1=a时,PF 1·PF 2有最大值a 2.【要点导学】要点导学 各个击破求圆锥曲线的标准方程例1 (2021·扬州中学)在平面直角坐标系x O y 中,已知椭圆C :22x a +22y b =1(a >b >0)的离心率为32,以原点为圆心、椭圆C 的短半轴长为半径的圆与直线x -y +2=0相切.(1) 求椭圆C 的标准方程;(2) 已知点P(0,1),Q(0,2),设M ,N 是椭圆C 上关于y 轴对称的不同两点,直线PM 与QN 相交于点T ,求证:点T 在椭圆C 上.【分析】(1) 利用直线与圆相切求出b 的值,然后利用离心率可求出a 的值,从而求出椭圆方程.(2) 解出两直线的交点,验证满足椭圆方程即可.【解答】(1) 由题意知椭圆C 的短半轴长为圆心到切线的距离,即b =22=2.由于离心率e =ca =32,所以b a =21-⎛⎫ ⎪⎝⎭c a =12,所以a =22, 所以椭圆C 的标准方程为28x +22y =1.(2) 由题意可设M ,N 两点的坐标分别为(x 0,y 0),(-x 0,y 0),则直线PM 的方程为y =00-1y x x +1, ① 直线QN 的方程为y =00-2-y x x +2. ②设点T 的坐标为(x ,y ).联立①②解得x 0=2-3x y ,y 0=3-42-3y y .由于208x +202y =1,所以2182-3⎛⎫ ⎪⎝⎭x y +213-422-3⎛⎫ ⎪⎝⎭y y =1, 整理得28x +2(3-4)2y =(2y -3)2, 所以28x +292y -12y +8=4y 2-12y +9,即28x +22y =1,所以点T 的坐标满足椭圆C 的方程,即点T 在椭圆C 上.【点评】求椭圆标准方程的基本方法是待定系数法,具体过程是先定形,再定量,即首先确定焦点所在位置,然后再依据条件建立关于a ,b 的方程组.假如焦点位置不确定,要考虑是否有两解,有时为了解题便利,也可把椭圆方程设为mx 2+ny 2=1(m >0,n >0,m ≠n )的形式.变式 已知中心在坐标原点O 的椭圆C 经过点A(2,3),且点F(2,0)为其右焦点. (1) 求椭圆C 的方程;(2) 已知动点P 到定点2,0)的距离与点P 到定直线l :x 222,求动点P 的轨迹C'的方程.【分析】本题主要考查椭圆的定义和椭圆的标准方程等基础学问,以及利用直接法和待定系数法求椭圆方程的基本方法.【解答】(1) 依题意,可设椭圆C 的方程为22x a +22y b =1(a >b >0),且可知左焦点为F'(-2,0),从而有22'358=⎧⎨=+=+=⎩c a AF AF ,, 解得24.=⎧⎨=⎩c a ,又a 2=b 2+c 2,所以b 2=12, 故椭圆C 的方程为216x +212y =1.(2) 设点P(x ,y )22(-2)|-22|+x y x 22,整理,得24x +22y =1,所以动点P 的轨迹C'的方程为24x +22y =1.【点评】本题第一问已知焦点即知道了c,再利用椭圆定义先求得2a的值,从而利用椭圆中a,b,c的关系,求得b的值,从而得椭圆方程.本题还可以利用待定系数法设椭圆方程为22xa+22-4ya=1,代入已知点求解,明显没有利用定义来得简洁.求离心率的值或范围例2 (2021·苏州调研)如图,A,B是椭圆C:22xa+22yb=1(a>b>0)的左、右顶点,M是椭圆上异于A,B的任意一点,直线l是椭圆C的右准线. (例2)(1) 若椭圆C的离心率为12,直线l:x=4,求椭圆C的方程;(2) 设直线AM交l于点P,以MP为直径的圆交MB于点Q,若直线PQ恰好经过原点,求椭圆C的离心率.【分析】(1) 依据离心率和准线公式列出方程组进行求解.(2) 若用斜率参数,设直线AM的方程为y=k(x+a),然后解得M,P的坐标求解,则运算量较大;若用点参数,设点M的坐标,然后通过求得点P的坐标求解,则运算量较小,然后,通过A,M,P三点共线,求出点P的坐标,再利用相互垂直的直线的斜率之积为-1建立a,b,c的方程进行求解.【解答】(1) 由题意得2222124⎧=⎪⎪⎪=⎨⎪=+⎪⎪⎩caaca b c,,,23=⎧⎪⎨=⎪⎩ab,解得,所以椭圆C的方程为24x+23y=1.(2) 设M(x,y),P2⎛⎫⎪⎝⎭ayc,.由A,M,P三点共线得+yx a=2+yaac,所以y0=2⎛⎫+⎪⎝⎭+ay acx a.由于点M在椭圆上,所以y2=2222(-)b a xa.又MP为直径,所以OP⊥BM,所以kOP·kBM=22()⎛⎫+⎪⎝⎭+acy aca x a·-yx a=222()(-)+y a ca x a=23()-+b a ca=223(-)()-+a c a ca=-1,所以c2+ac-a2=0.所以e2+e-1=0,又0<e<1,解得e=5-1.【点评】本题有两个地方值得留意.一是第(2)问简洁错误利用第(1)问得到的椭圆方程,第(2)问没有了第(1)问的条件,所以不行用第(1)问的结论.二是没有合理选择参数,造成运算错误.如“以MP为直径的圆交MB于点Q,若直线PQ恰好过原点”反映的数量关系即为kOP·kBM=-1,若写出圆的方程求解就繁琐了.变式1 (2021·苏北四市期末)已知椭圆22xa+22yb=1(a>b>0),点A,B1,B2,F依次为其左顶点、下顶点、上顶点和右焦点,若直线AB2与直线B1F的交点恰在椭圆的右准线上,则椭圆的离心率为.【答案】1 2(变式1)【解答】如图,A(-a,0),B1(0,-b),B2(0,b),F(c,0),设点M2⎛⎫⎪⎝⎭Mayc,.由2ABk=kAM,得b a=2+Myaac,所以yM=b1⎛⎫+⎪⎝⎭ac.由1FBk=kFM,得bc=2-Myacc,所以yM=2-⎛⎫⎪⎝⎭b acc c.从而b1⎛⎫+⎪⎝⎭ac=2-⎛⎫⎪⎝⎭b acc c,整理得2e2+e-1=0,解得e=12.变式2 (2021·泰州期末)若双曲线22xa-22yb=1的右焦点到渐近线的距离是其到左顶点距离的一半,则双曲线的离心率e= .【答案】53【解答】由双曲线的性质“焦点到渐近线的距离等于b”,得b=2+a c,所以a2+22+⎛⎫⎪⎝⎭a c=c2,整理得3c2-2ac-5a2=0,所以3e2-2e-5=0,解得e=53.直线与圆锥曲线问题例3 (2021·南京调研)给定椭圆C:22xa+22yb=1(a>b>0),称圆C1:x2+y2=a2+b2为椭圆C的“伴随圆”.已知椭圆C的离心率为32,且经过点(0,1).(1) 求实数a,b的值;(2) 若过点P(0,m)(m>0)的直线l与椭圆C有且只有一个公共点,且l被椭圆C的伴随圆C1所截得的弦长为2,求实数m的值.【分析】(1) 由两个条件可得出两个方程,进而可求出实数a,b的值.(2) 由题意设出直线l 的方程为y=kx+m,由直线与椭圆只有一个公共点可得关于k,m的一个方程,再由直线被圆所截得的弦长,又可得到关于k,m的一个方程,这样可以解出k,m的值.【解答】(1) 记椭圆C的半焦距为c.由题意得b=1,ca=3,a2=c2+b2,解得a=2,b=1.(2) 由(1)知,椭圆C的方程为24x+y2=1,圆C1的方程为x2+y2=5.明显直线l的斜率存在,设直线l的方程为y=kx+m,即kx-y+m=0.由于直线l与椭圆C有且只有一个公共点,所以方程组2214=+⎧⎪⎨+=⎪⎩y kx mxy,(*)有且只有一组解.由(*)得(1+4k 2)x 2+8kmx +4m 2-4=0, 从而Δ=(8km )2-4(1+4k 2)(4m 2-4)=0, 化简,得m 2=1+4k 2. ①由于直线l 被圆x 2+y 2=5所截得的弦长为22, 所以圆心到直线l 的距离d =5-2=3.即2||1+m k =3. ② 由①②解得k 2=2,m 2=9. 由于m >0,所以m =3.变式 (2021·泰州二模)如图,在平面直角坐标系x O y 中,椭圆E :22x a +22y b =1(a >b >0)的左顶点为A ,与x 轴平行的直线与椭圆E 交于B ,C 两点,过B ,C 两点且分别与直线AB ,AC 垂直的直线相交于点D.已知椭圆E 的离心率为53,右焦点到右准线的距离为455.(变式)(1) 求椭圆E 的标准方程;(2) 求证:点D 在一条定直线上运动,并求出该直线的方程; (3) 求△BCD面积的最大值.【解答】(1) 由题意得ca =253a c ,-c =55,解得a =3,c 5b 22-a c ,所以椭圆E 的标准方程为29x +24y =1.(2) 设B(x 0,y 0),C(-x 0,y 0).明显直线AB ,AC ,BD ,CD 的斜率都存在,设为k 1,k 2,k 3,k 4,则k 1=003+y x ,k 2=00-3+y x ,k 3=-003+x y ,k 4=00-3x y ,所以直线BD ,CD 的方程为y =-003+x y ·(x -x 0)+y 0,y =00-3x y (x +x 0)+y 0, 消去y ,得-003+x y (x -x 0)+y 0=00-3x y ·(x +x 0)+y 0,化简得x =3,所以点D 在定直线x =3上运动.(3) 由(2)得点D 的纵坐标为y D =00-3x y ·(3+x 0)+y 0=200-9x y +y 0. 又209x +204y =1,所以20x -9=-2094y ,则y D =2009-4y y +y 0=-54y 0,所以点D 到直线BC 的距离h =|y D -y 0|=005--4y y =94|y 0|.将y =y 0代入29x +24y =1,得x 201-4y 所以S △BCD =12BC·h=12201-4y 94|y 0| 20271-24y ·12|y 0|≤272·22001-442+y y =274,当且仅当1-204y =204y ,即y 02y 02时,△BCD面积取最大值为274.1. (2021·苏锡常镇宿一调)双曲线x2-22y=1的离心率为.【答案】3【解析】由标准方程可得a2=1,b2=2,所以c2=3,所以e=ca =3.2. (2021·苏锡常镇二调)已知双曲线22xa-22yb=1(a,b>0)的离心率等于2,它的焦点到渐近线的距离等于1,则该双曲线的方程为. 【答案】3x2-y2=1【解析】由题意得,双曲线的渐近线方程为y=±ba x,故焦点到渐近线的距离为d=22||+bca b=|b|=1,即b2=1.又由于ca=2,故c2=a2+b2=4a2,所以a2=13,故所求双曲线的方程为3x2-y2=1.3. (2021·南京、盐城、徐州二模)在平面直角坐标系x O y中,已知抛物线C:x2=4y的焦点为F,定点A(22,0),若射线FA与抛物线C相交于点M,与抛物线C的准线相交于点N,则FM∶MN=.【答案】13【解析】方法一:由题意得F(0,1),所以直线AF的方程为22x+1y=1,将它与抛物线的方程联立,解得2-2212.2⎧=⎧=⎪⎪⎨⎨==⎪⎩⎪⎩xxyy,,或依题意知交点在第一象限,故取M122⎛⎫⎪⎝⎭,.准线方程为y=-1,故易求得点N(42,-1),所以由三角形相像性质得FMMN=11-21-(-1)2=13.(第3题)方法二:如图,设点M到准线的距离为MB,则依据条件得FMMB=1.又由于F(0,1),所以直线FA的斜率为k=1-22=-24,从而sin∠ANB=218=13,即MBMN=13,所以FMMN=13.4. (2021·扬州期末)如图,A,B,C是椭圆M:22xa+22yb=1(a>b>0)上的三点,其中点A是椭圆的右顶点,BC过椭圆M的中心,且满足AC⊥BC,BC=2AC.(第4题)(1) 求椭圆M的离心率;(2) 若y轴被△ABC的外接圆所截得的弦长为9,求椭圆M的方程.【解答】(1) 由于BC过椭圆M的中心,所以BC=2OC=2OB.又由于AC⊥BC,BC=2AC,所以△OAC是以角C 为直角的等腰直角三角形,则A(a ,0),C -22⎛⎫ ⎪⎝⎭a a ,,B -22⎛⎫ ⎪⎝⎭a a ,, 所以222⎛⎫ ⎪⎝⎭a a +22-2⎛⎫⎪⎝⎭a b =1,则a 2=3b 2, 所以c 2=2b 2,e =63, 所以椭圆M 的离心率为63.(2) △ABC的外接圆圆心为AB 的中点P 44⎛⎫ ⎪⎝⎭a a ,,半径为104a ,则△ABC的外接圆为2-4⎛⎫ ⎪⎝⎭a x +2-4⎛⎫ ⎪⎝⎭a y =58a 2.令x =0,得y =a 或y =-2a, 所以a --2⎛⎫ ⎪⎝⎭a =9,解得a =6.所以所求椭圆M 的方程为236x +212y =1.【融会贯穿】完善提高 融会贯穿典例 如图,在平面直角坐标系x O y 中,已知A ,B ,C 是椭圆22x a +22y b =1(a >b >0)上不同的三点,且A32322⎛⎫ ⎪ ⎪⎝⎭,,B(-3,-3),点C 在第三象限,线段BC 的中点在直线OA 上.(典例)(1) 求椭圆的标准方程; (2) 求点C 的坐标;(3) 设动点P(异于点A ,B ,C)在椭圆上,且直线PB ,PC 分别交直线OA 于点M ,N ,求证:OM ·ON 为定值,并求该定值.【思维引导】【规范解答】(1) 由已知,得222218912991⎧+=⎪⎪⎨⎪+=⎪⎩a b a b ,,解得2227272⎧=⎪⎨=⎪⎩a b ,,…………………………………………………………………………2分所以椭圆的标准方程为227x+2272y=1……………………………………………………3分(2) 设点C(m,n)(m<0,n<0),则BC的中点为-3-322⎛⎫ ⎪⎝⎭m n,.由已知可得直线OA的方程为x-2y=0,从而m=2n-3. ①又由于点C在椭圆上,所以m2+2n2=27. ②由①②,解得n=3(舍去)或n=-1,从而m=-5 ……………………………………5分所以点C的坐标为(-5,-1)…………………………………………………………6分(3) 设P(x0,y0),M(2y1,y1),N(2y2,y2).由于P,B,M三点共线,所以11323++yy=33++yx,整理得y1=00003(-)-2-3y xx y………………8分由于P,C,N三点共线,所以22125++yy=15++yx,整理得y2=00005--23+y xx y……………10分由于点P在椭圆上,所以2x+22y=27,即2x=27-22y,从而y1y2=2200002200003(5-6)4-4-9++x y x yx y x y=200020003(3-627)2-418++y x yy x y=3×32=92,……………………………………………………………14分所以OM·ON=5y1y2=452,…………………………………………………………15分所以OM·ON为定值,且定值为452………………………………………………16分【精要点评】此题考查了椭圆的一些性质,结合了动点问题和向量,运用解析法可以解决这道题目,本身难度并不高,计算量也不是很大.论证椭圆性质问题往往接受如下的命题思路:由于椭圆可以由圆经过仿射变换得到,依据仿射变换前后长度比值不变原理,所以圆中的结论在椭圆中同样成立.如图,在圆O中,B,C为圆上的两个定点,BC中点为Q,直线QO交圆O于点A,且P(异于A,B,C)为圆O上的动点,BP,CP分别交直线QO于N,M两点. 依据△ONP∽△OPM,明显有OM·ON=OA2为定值.变式如图,已知P(x1,y1),Q(x2,y2)为椭圆C:22xa+22yb=1(a>b>0)上的任意两点,直线PQ 与x轴交于点M,点R与点P关于x轴对称,直线QR与x轴交于点N.(变式)(1) 试用x1,x2,y1,y2表示点M和点N的横坐标;(2) 求证:OM·ON为定值.【解答】(1) 由题知直线PQ:(y2-y1)(x-x1)-(x2-x1)(y-y1)=0,即(y2-y1)x-(x2-x1)y-(x1y2-x2y1)=0.令y=0,则xM=122121--x y x yy y.又R(x1,-y1),所以直线QR:(y2+y1)(x-x1)-(x2-x1)(y+y1)=0,即(y2+y1)x-(x2-x1)y-(x1y2+x2y1)=0,令y=0,则xN=122121++x y x yy y.(2) 由(1)可得OM ·ON=122121--x y x yy y·122121++x y x yy y=222212212221--x y x yy y=22222212212222211--1--⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭y ya y a yb by y=a2,为定值.温馨提示:趁热打铁,事半功倍.请老师布置同学们完成《配套检测与评估》中的练习第29-30页.【课后检测】第2讲圆锥曲线一、填空题1. (2021·常州期末)已知双曲线ax2-4y2=1的离心率为3,那么实数a的值为.2. (2021·苏州调查)已知双曲线2xm-25y=1的右焦点与抛物线y2=12x的焦点相同,则此双曲线的渐近线方程为.3. (2022·苏中三市、连云港、淮安二调)若在平面直角坐标系x O y中,双曲线C的离心率为2,且过点(1,2),则双曲线C的标准方程为.4. 若抛物线x=1m y2的准线与双曲线212x-24y=1的右准线重合,则实数m的值是.5. (2022·辽宁卷)已知椭圆C:29x+24y=1,点M与椭圆C的焦点不重合.若点M关于椭圆C的焦点的对称点分别为点A,B,线段MN的中点在椭圆C上,则AN+BN= .6. 如图,已知A,B,C是椭圆22xa+22yb=1(a>b>0)上的三点,其中点A的坐标为(23,0),BC过椭圆的中心,且AC·BC=0,|BC|=2|AC|,那么椭圆的标准方程为.(第6题)7. (2021·盐城中学)设椭圆22xm+22yn=1(m>0,n>0)的右焦点与抛物线y2=8x的焦点相同,离心率为12,则此椭圆的短轴长为.8. (2021·丹阳中学)设A,B分别是椭圆22xa+22yb=1(a>b>0)的左、右顶点,点P是椭圆C上且异于A,B的一点,若直线AP与BP的斜率之积为-13,则椭圆C的离心率为.二、解答题9. (2022·南京、淮安三模)已知椭圆C:22xa+22yb=1(a>b>0)过点P(-1,-1),c为椭圆的半焦距,且c2b.过点P作两条相互垂直的直线l1,l2与椭圆C分别交于另两点M,N.(1) 求椭圆C的方程;(2) 若直线l1的斜率为-1,求△PMN的面积.10. (2021·赣榆中学)如图,椭圆长轴端点为A,B,O为椭圆中心,F 为椭圆的右焦点,且AF ·FB=1,|OF|=1.(1) 求椭圆的标准方程.(2) 记椭圆的上顶点为M,直线l交椭圆于P,Q两点,问:是否存在直线l,使得点F恰为△PQM的垂心?若存在,求出直线l的方程;若不存在,请说明理由.(第10题)11. 如图,椭圆C:22xa+22yb=1(a>b>0)的一个焦点为F(1,0),且过点622⎛⎫⎪⎪⎝⎭,.(1) 求椭圆C的方程;(2) 已知A,B为椭圆上的点,且直线AB垂直于x轴,直线l:x=4与x轴交于点N,直线AF与BN交于点M,求证:点M恒在椭圆C上.(第11题) 【课后检测答案】第2讲圆锥曲线1. 8 【解析】将双曲线方程ax2-4y2=1化成标准式可得21xa-214y=1,所以c2=1a+14.又由于e2=1141+aa=1+4a=3,所以a=8.2. y=±5x【解析】5+m,所以m=4.而双曲线的渐近线方程为y=5m x,即y=±52x.3. y2-x2=1 【解析】由于双曲线的离心率e2.设双曲线方程为x2-y2=m,则由点(12)在双曲线上得1-2=m=-1,故所求的双曲线方程为y2-x2=1.4. -12 【解析】212x-24y=1的右准线为x=2ac=124=3,所以抛物线y2=mx的开口向左,-4m=3,解得m=-12.5. 12 【解析】取MN的中点为G,点G在椭圆C上.设点M关于椭圆C的焦点F1的对称点为A,点M关于椭圆C的焦点F2的对称点为B,则有GF1=12AN,GF2=12BN,所以AN+BN=2(GF1+GF2)=4a=12.6. 212x +24y =1 【解析】由于|BC |=2|AC |,直线BC 过点(0,0),则|OC |=|AC |.又由于AC ·BC =0,所以∠OCA=90°,即又由于a,所以椭圆方程为212x +22y b =1,把点C 的坐标代入上式,得b 2=4,所以椭圆的方程为212x +24y =1.7.【解析】由题意可知,抛物线y 2=8x 的焦点为(2,0),所以c =2,由于离心率为12,所以a =4,所以b8. 3 【解析】由题意知A(-a ,0),B(a ,0),取P(0,b ),则k AP ·k BP =b a ×-⎛⎫ ⎪⎝⎭b a =-13,故a 2=3b 2,所以e 2=222-a b a =23,即e=.9. (1) 由条件得21a +21b =1,且c 2=2b 2,所以a 2=3b 2,解得b 2=43,a 2=4, 所以椭圆的方程为24x +234y =1. (2) 设直线l 1的方程为y +1=k (x +1),联立22-134=+⎧⎨+=⎩y kx k x y ,,消去y ,得(1+3k 2)x 2+6k (k -1)x +3(k -1)2-4=0. 由于点P 的坐标为(-1,-1),解得M 2222-36132-11313⎛⎫+++ ⎪++⎝⎭k k k k k k ,. 当k ≠0时,用-1k 代替k ,得N 2222-6-3--2333⎛⎫+ ⎪++⎝⎭k k k k k k ,.将k =-1代入,得M(-2,0),N(1,1). 由于P(-1,-1), 所以,,所以△PMN的面积为12=2.10. (1) 设椭圆方程为22x a +22y b =1(a >b >0),则c =1. 又由于AF ·FB =1, 即(a +c )(a -c )=1=a 2-c 2,所以a 2=2,故椭圆方程为22x +y 2=1.(2) 假设存在直线l 交椭圆于P ,Q 两点,且F 恰为△PQM的垂心, 则设P(x 1,y 1),Q(x 2,y 2),由于M(0,1),F(1,0),故k PQ =1, 于是可设直线l 的方程为y =x +m ,联立2222=+⎧⎨+=⎩y x m x y ,,得3x 2+4mx +2m 2-2=0. 由于MP ·FQ =0=x 1(x 2-1)+y 2(y 1-1), 又y i =x i +m (i =1,2),得x 1(x 2-1)+(x 2+m )(x 1+m -1)=0,即2x 1x 2+(x 1+x 2)(m -1)+m 2-m =0.由韦达定理得2·22-23m -43m(m -1)+m 2-m =0,解得m =-43或m =1(舍去). 经检验m =-43符合条件,所以直线l 的方程为y =x -43.11. (1) 由题意得2222212312-=⎧⎪⎪+=⎨⎪=⎪⎩c a b a b c ,,,解得a 2=4,b 2=3, 故椭圆C 的方程为24x +23y =1.(2) 由于F(1,0),N(4,0).设A(m ,n ),M(x 0,y 0),则B(m ,-n ),n ≠0,则直线AF 的方程为y =-1nm (x -1), 直线BN 的方程为y =4-nm (x -4),解得点M 的坐标为5-832-52-5⎛⎫⎪⎝⎭m n m m ,. 代入椭圆方程中,得204x +203y =25-82-54⎛⎫ ⎪⎝⎭m m +232-53⎛⎫⎪⎝⎭n m =222(5-8)124(2-5)+m n m . 由24m +23n =1,得n 2=321-4⎛⎫ ⎪⎝⎭m ,代入上式得204x +23y =1.所以点M 恒在椭圆C 上.。
新教材适用2024版高考数学二轮总复习第1篇专题5解析几何第2讲圆锥曲线的方程和性质核心考点2圆锥曲
核心考点2 圆锥曲线的几何性质核心知识· 精归纳1.椭圆、双曲线中a ,b ,c ,e 之间的关系(1)在椭圆中,a 2=b 2+c 2;离心率为e =ca=1-b 2a 2. (2)在双曲线中:c 2=a 2+b 2;离心率为e =ca=1+b 2a2. 2.双曲线的渐近线方程与焦点坐标(1)双曲线x 2a 2-y 2b 2=1(a >0,b >0)的渐近线方程为y =±ba x ,焦点坐标为F 1(-c,0)和F 2(c,0).(2)双曲线y 2a 2-x 2b 2=1(a >0,b >0)的渐近线方程为y =±abx ,焦点坐标为F 1(0,-c ,)和F 2(0,c ).3.抛物线的焦点坐标与准线方程(1)抛物线y 2=2px (p >0)的焦点F ⎝ ⎛⎭⎪⎫p 2,0,准线方程x =-p2.(2)抛物线x 2=2py (p >0)的焦点F ⎝ ⎛⎭⎪⎫0,p 2,准线方程y =-p2. 多维题组· 明技法角度1:离心率问题1. (2023·邵阳二模)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,半焦距为c .在椭圆上存在点P 使得asin ∠PF 1F 2=csin ∠PF 2F 1,则椭圆离心率的取值范围是( B )A .[2-1,1)B .(2-1,1)C .(0,2-1)D .(0,2-1]【解析】 ∵a sin ∠PF 1F 2=c sin ∠PF 2F 1,∴在△PF 1F 2中,由正弦定理知sin ∠PF 1F 2sin ∠PF 2F 1=|PF 2||PF 1|,∵asin ∠PF 1F 2=csin ∠PF 2F 1,∴|PF 2||PF 1|=a c =1e,即|PF 1|=e |PF 2|①.又∵P 在椭圆上,∴|PF 1|+|PF 2|=2a ,将①代入得|PF 2|=2a e +1∈(a -c ,a +c ),同除以a 得,1-e <2e +1<1+e ,得2-1<e <1.故选B.2. (2023·金东区校级三模)已知F 1,F 2分别为双曲线:x 2a 2-y 2b2=1(a >0,b >0)的左,右焦点,点P 为双曲线渐近线上一点,若PF 1⊥PF 2,tan ∠PF 1F 2=14,则双曲线的离心率为( B )A.178B .1715C .158D .85【解析】 PF 1⊥PF 2,tan ∠PF 1F 2=14,则|PF 1|=4|PF 2|,△PF 1F 2是直角三角形,O 是F 1F 2的中点,又|OF 1|=|OF 2|=|OP |=12|F 1F 2|=c ,且点P 在渐近线y =ab x 上,如图,点P 在第三象限,则点P 坐标为(-b ,-a ),∵|PF 1|=4|PF 2|,∴|PF 1|2=16|PF 2|2,∴b 2+(-a -c )2=16b 2+16(-a +c )2,又b 2=c 2-a 2,∴15c 2-17ac =0,则e =1715.故选B.角度2:双曲线渐近线问题3. (2023·河南三模)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左焦点为F ,M ,N ,P 是双曲线C 上的点,其中线段MN 的中点恰为坐标原点O ,且点M 在第一象限,若NP →=3NF →,∠OFM =∠OMF ,则双曲线C 的渐近线方程为( B )A .y =±43xB .y =±223xC .y =±324xD .y =±34x【解析】 设双曲线C 的右焦点为F ′,连接PF ′,MF ′,NF ′,∵∠OFM =∠OMF ,∴|OM |=|OF |=|OF ′|,∴MF ′⊥MF ,又O 为MN 中点,∴四边形MFNF ′为矩形;设|NF |=x ,则|PF |=2x ,|PN |=3x ,∴|NF ′|=2a +x ,|PF ′|=2a +2x ,∵|PN |2+|NF ′|2=|PF ′|2,∴9x 2+(2a +x )2=(2a +2x )2,解得:x =23a ,又|NF |2+|NF ′|2=|FF ′|2,∴49a 2+649a 2=4c 2,即689a 2=4a 2+4b 2,整理可得:b a =223,∴双曲线C 的渐近线方程为y =±223x .故选B.4. (2023·安庆二模)已知双曲线y 2a 2-x 2b2=1,(a >0,b >0)的两个焦点分别为F 1,F 2,过x 轴上方的焦点F 1的直线与双曲线上支交于M ,N 两点,以NF 2为直径的圆经过点M ,若|MF 2|,|MN |,|NF 2|成等差数列,则该双曲线的渐近线方程为 y =±63x . 【解析】 如图所示:由双曲线的定义|MF 2|=2a +|MF 1|,|NF 2|=2a +|NF 1|,所以|MF 2|+|NF 2|=4a +|MF 1|+|NF 1|=4a +|MN |.因为|MF 2|,|MN |,|NF 2|成等差数列,所以|MF 2|+|NF 2|=2|MN |,即4a +|MN |=2|MN |,|MN |=4a .令|MF 1|=x ,在△MNF 2中,MF 2⊥MF 1,所以|MF 2|2+|MN |2=|NF 2|2,即(2a +x )2+(4a )2=(6a -x )2,解得x =a ,即|MF 1|=a ,|MF 2|=3a ,又在Rt △F 1MF 2中,a 2+(3a )2=(2c )2,2c 2=5a 2,又c 2=a 2+b 2,所以2b 2=3a 2,即ab =63,y =±a b x =±63x . 角度3:抛物线的焦点弦问题5. (2023·贵州模拟)已知抛物线C :y 2=8x 的焦点为F ,过F 的直线l 与抛物线C 交于A ,B 两点,若A (1,22),则|AB |=( A )A .9B .7C .6D .5【解析】 由题意直线l 的斜率必存在,抛物线C :y 2=8x 的焦点为F (2,0),设直线l :y =k (x -2),则⎩⎪⎨⎪⎧y =k x -2,y 2=8x ,得k 2x 2-(4k 2+8)x +4k 2=0,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=4k 2+8k2,x 1x 2=4,又A (1,22),则x 1=1,x 2=4,k 2=8,|AB |=1+k 2·x 1+x 22-4x 1x 2=3×3=9.故选A.6. (2023·茂南区校级三模)已知O 为坐标原点,直线l 过抛物线D :y 2=2px (p >0)的焦点F ,与抛物线D 及其准线依次交于A ,B ,C 三点(其中点B 在A ,C 之间),若|AF |=4,|BC |=2|BF |.则△OAB 的面积是 433.【解析】 过点B 作BM 垂直于准线,垂足为M ,过点A 作AN 垂直于准线,垂足为N ,设准线与x 轴相交于点P ,如图,则|BM |=|BF |,|AN |=|AF |=4,在△MBC 中,|BC |=2|BF |,所以|BC |=2|BM |,所以∠MCB =30°,故在△ANC 中,|AC |=2|AN |=8,所以|AC |=|AF |+|CF |=8,则|CF |=8-|AF |=4.又CN ⊥x 轴,∠MCB =30°,所以|PF |=12|CF |=2,又抛物线D :y 2=2px ,则P ⎝ ⎛⎭⎪⎫-p 2,0,F ⎝ ⎛⎭⎪⎫p 2,0,所以|PF |=p 2+p2=p =2,所以抛物线D :y 2=4x ,点F (1,0).因为∠MCB =30°,所以直线AB 的斜率k =-3,则直线AB :y =-3(x -1),与抛物线方程联立⎩⎨⎧y =-3x -1,y 2=4x ,消y 并化简得3x 2-10x +3=0,易得Δ>0,设点A (x 1,y 1),B (x 2,y 2),则x 1+x 2=103,则|AB |=|BF |+|AF |=|BM |+|AN |=x 1+p 2+x 2+p2=x 1+x 2+p =103+2=163,又直线AB :y =-3(x -1),可化为3x +y -3=0,则点O 到直线AB 的距离d =|-3|3+1=32,所以S △OAB =12|AB |·d =12×163×32=433.方法技巧· 精提炼1.圆锥曲线中有关的取值范围问题的解题思路(1)若条件中存在不等关系,则借助此关系直接转化求解.(2)若条件中没有不等关系,要善于发现隐含的不等关系或借助曲线中的不等关系来解决.2.涉及双曲线渐近线的常用结论(1)求双曲线x 2a 2-y 2b 2=1(a >0,b >0)或y 2a 2-x 2b 2=1(a >0,b >0)的渐近线方程的方法是令右边的常数等于0,即令x 2a 2-y 2b 2=0,得y =±b a x ,或令y 2a 2-x 2b 2=0,得y =±abx .(2)已知渐近线方程为y =±b a x ,可设双曲线方程为x 2a 2-y 2b2=λ(a >0,b >0,λ≠0).提醒:两条渐近线的倾斜角互补,斜率互为相反数,且两条渐近线关于x 轴、y 轴对称. 3.抛物线焦点弦的4个性质设AB 是过抛物线y 2=2px (p >0)焦点F 的弦,若A (x 1,y 1),B (x 2,y 2),则 性质1:x 1·x 2=p 24.性质2:y 1·y 2=-p 2.性质3:|AB |=x 1+x 2+p =2psin 2 α(α是直线AB 的倾斜角).性质4:1|AF |+1|BF |=2p为定值(F 是抛物线的焦点).加固训练· 促提高1. (2023·船营区校级模拟)如图,椭圆的中心在坐标原点,焦点在x 轴上,A 1,A 2,B 1,B 2椭圆顶点,F 2为右焦点,延长B 1F 2与A 2B 2交于点P ,若∠B 1PA 2为钝角,则该椭圆离心率的取值范围是( D )A.⎝⎛⎭⎪⎫5-22,0B .⎝ ⎛⎭⎪⎫0,5-22 C.⎝⎛⎭⎪⎫0,5-12 D .⎝⎛⎭⎪⎫5-12,1【解析】 如图所示,∠B 1PA 2是B 2A 2→与F 2B 1→的夹角;设椭圆的长半轴、短半轴、半焦距分别为a ,b ,c ,则B 2A 2→=(a ,-b ),F 2B 1→=(-c ,-b );∵向量的夹角为钝角时,B 2A 2→·F 2B 1→<0,∴-ac +b 2<0,又b 2=a 2-c 2,∴a 2-ac -c 2<0;两边除以a 2得1-e -e 2<0,即e 2+e -1>0;解得e <-1-52,或e >-1+52;又∵0<e <1,∴-1+52<e <1;∴椭圆离心率e 的取值范围是⎝⎛⎭⎪⎫-1+52,1.故选D.2.设F 为抛物线C :y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,O 为坐标原点,则△OAB 的面积为( D )A.334B .938C .6332D .94【解析】 由2p =3,及|AB |=2p sin 2 α,得|AB |=2p sin 2 α=3sin 2 30°=12.又原点到直线AB 的距离d =|OF |·sin 30°=38,故S △OAB =12|AB |·d =12×12×38=94.3. (2023·淮安模拟)已知F 1,F 2,分别为双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,过F 2作C 的两条渐近线的平行线,与渐近线交于M ,N 两点.若cos ∠MF 1N =513,则C的离心率为 5 .【解析】 易知MN 关于x 轴对称,令∠MF 1F 2=α,cos 2α=513,∴cos 2α=12×⎝⎛⎭⎪⎫1+513=913,sin 2α=413,∴tan 2α=49,∴tan α=23,⎩⎪⎨⎪⎧ y =bax ,y =-ba x -c⇒⎩⎪⎨⎪⎧x =c2,y =bc2a ,∴M ⎝ ⎛⎭⎪⎫c 2,bc2a ,tan α=bc 2a 32c =23,∴b a =2.∴e =ca =1+⎝ ⎛⎭⎪⎫b a2= 5.。
圆锥曲线问题在高考的常见题型及解题技巧
圆锥曲线问题在高考的常见题型及解题技巧圆锥曲线是数学中的一个重要概念,在高考数学考试中经常出现。
圆锥曲线问题在高考中的题型多样,涉及到椭圆、双曲线和抛物线等各种不同的情况。
学生需要掌握不同类型圆锥曲线的基本知识和解题方法,才能在考试中取得好成绩。
本文将详细介绍圆锥曲线问题在高考中的常见题型及解题技巧。
一、椭圆问题在高考数学中,椭圆问题是圆锥曲线中的一个常见题型。
椭圆是圆锥曲线中的一种,其数学方程一般表示为x²/a² + y²/b² = 1。
椭圆问题在高考中主要涉及到椭圆的性质、方程和相关的几何问题。
下面是一些常见的椭圆问题和解题技巧:1. 椭圆的性质椭圆有许多独特的性质,例如焦点、长轴、短轴等。
解决椭圆问题时,首先需要熟悉椭圆的基本性质,包括焦点的坐标、长轴和短轴的长度等。
了解这些性质可以帮助学生更好地理解和解决椭圆相关的问题。
2. 椭圆的方程学生需要掌握椭圆的标准方程和一般方程,以及如何从一个方程中得到椭圆的相关信息。
如何通过椭圆的方程确定焦点和长轴的长度等。
熟练掌握椭圆的方程和相关的计算方法是解决椭圆问题的关键。
3. 几何问题在高考中,椭圆问题经常涉及到与椭圆相关的几何问题,例如椭圆的切线、法线、焦点、离心率等。
解决这些问题需要学生具有一定的几何直觉和解题技巧,可以通过画图、几何推理等方法来解决。
二、双曲线问题三、抛物线问题在解决圆锥曲线问题时,学生需要注意以下几个解题技巧:1. 画图对于圆锥曲线相关的几何问题,画图是非常重要的。
学生可以通过画图来直观地理解问题,并且可以通过几何推理来解决问题。
2. 几何推理圆锥曲线问题往往需要一定的几何推理能力,例如通过推导得到相关的性质和结论。
学生需要熟练掌握几何推理的方法,以便解决圆锥曲线问题。
3. 代数计算除了几何推理,对于圆锥曲线的方程和相关计算问题,学生还需要掌握代数计算的方法,包括因式分解、配方法、求导等。
高考数学二轮复习 专题五 第2讲 圆锥曲线的基本问题课件 理
解析 (1)抛物线 y2=-4x 的焦点坐标是(-1,0),即双曲线的一个 顶点坐标是(-1,0),设双曲线方程是ax22-by22=1(a>0,b>0),则 a =1,又ac2=12,因此 c=2,b= c2-a2= 3,故其渐近线方程是 y
答案
2 2
考点整合
1.圆锥曲线的定义 (1)椭圆:MF1+MF2=2a(2a>F1F2); (2)双曲线:|MF1-MF2|=2a(2a<F1F2).
2.圆锥曲线的标准方程 (1)椭圆:ax22+by22=1(a>b>0)(焦点在 x 轴上)或ay22+bx22=1(a>b>0)(焦 点在 y 轴上); (2)双曲线:ax22-by22=1(a>0,b>0)(焦点在 x 轴上)或ay22-bx22=1(a>0, b>0)(焦点在 y 轴上).
代
入
椭
圆
方
程
可
得
25(19-b2)+19b2=1,得 b2=23,故椭圆方程为 x2+32y2=1. 答案 (1)3 (2)x2+32y2=1
热点二 圆锥曲线的几何性质
【例 2】 (1)(2015·南京、盐城模拟)在平面直角坐标系 xOy 中,若 中心在坐标原点的双曲线的一条准线方程为 x=12,且它的一个顶 点与抛物线 y2=-4x 的焦点重合,则该双曲线的渐近线方程为 ________. (2)平面直角坐标系 xOy 中,双曲线 C1:ax22-by22=1(a>0,b>0)的渐 近线与抛物线 C2:x2=2py(p>0)交于点 O,A,B.若△OAB 的垂 心为 C2 的焦点,则 C1 的离心率为________.
答案
由双曲线方程可知 a=4,b=3,所以两条渐近线方程为 y=
高三数二轮专题复习课件圆锥曲线
极坐标与圆锥曲线
理解极坐标与圆锥曲线的交汇点,掌 握利用极坐标解决圆锥曲线问题的方 法。
05
圆锥曲线解题技巧与策略
代数法求解圆锥曲线问题
利用代数方法进行求解
代数法是解决圆锥曲线问题的一种基本方法,主要通过将问题转化为代数方程, 然后进行求解。这种方法需要掌握圆锥曲线的标准方程和相关性质,以及代数方 程的求解技巧。
抛物线
离心率e为1,因为抛物线是所有点与固定点(焦 点)距离相等的点的集合。
03
圆锥曲线的应用
曲线的切线问题
切线斜率
通过求导数或利用曲线的参数方程,求出切线的斜率,进而求出 切线方程。
切线长
利用切线斜率和点到直线的距离公式,求出切线长。
切线与弦的关系
利用切线与弦的垂直关系,求出弦的中点坐标和长度。
THANKS
感谢观看
关于x轴和y轴都是对称的 。
抛物线
只有一条对称轴,通常为 y=x或y=-x。
曲线的范围
椭圆
在x轴和y轴上都有一定的范围, 确保所有点都在椭圆上。
双曲线
在x轴和y轴上都有一定的范围,确 保所有点都在双曲线上。
抛物线
只关于一个轴有范围,通常为y≥0 或y≤0。
曲线的顶点和焦点
椭圆
有两个顶点和两个焦点,顶点是 曲线的最高和最低点,焦点用于
确定曲线的形状。
双曲线
有一个顶点和两个焦点,顶点是 曲线的最高或最低点,焦点用于
确定曲线的形状。
抛物线
有一个顶点和焦点,顶点是曲线 的最高或最低点,焦点在顶点的
正上方或正下方。
曲线的离心率
椭圆
2024年高考数学二轮复习专题五解析几何解答题专项5圆锥曲线的综合问题
C.
(1)求 C 的方程;
(2)设 M,N 是 C 上的不同两点,直线 MN 的斜率存在且与曲线 x2+y2=1 相切,
若点 F 为( 2,0),求△MNF 的周长的最大值.
解 (1)设点 P 坐标为(x,y),点 A,B 的坐标分别为(a,0),(0,b).
所以设直线 MN:y=kx+m,M(x1,y1),N(x2,y2).
因为 M,N 是椭圆 C 上的不同两点,所以 k≠0.
||
由直线 MN 与曲线 x +y =1 相切,可得
2
2
=1,
2 +1
= + ,
2 2
2
得 m2=k2+1.联立 2
可得(1+3k
)x
+6kmx+3m
-3=0,
因为-5≤y0≤-3,所以当 y0=-3 时,|FN|min=
2
4
因此 p=2.
(方法二 利用圆的几何意义求最小值)点 F
|FM|-1= +4-1=4,解得
2
p=2.
+ 3 + 9=4.又 p>0,解得 p=2,
0, 2
到圆 M 的距离的最小值为
2
2
(2)(方法一)由(1)知,抛物线 C 的方程为 x =4y,即 y= ,则 y'= .
0 2
2
· (1 + 2 )2 -41 2 =
(02 + 4)(02 -40 ).
1
y= 2 -y1,
高考数学第二轮专题复习 圆锥曲线
高考数学第二轮专题复习圆锥曲线高考数学第二轮专题复习-圆锥曲线高三第二轮数学专题复习——二次曲线一、知识结构1.方程的曲线在平面直角坐标系中,如果曲线C上的点(视为适合特定条件的点集或点轨迹)和二元方程f(x,y)=0的实解建立以下关系:(1)曲线上的点的坐标都是这个方程的解;(2)这个方程解的坐标中的点都是曲线上的点,所以这个方程叫做曲线方程;这条曲线叫做方程的曲线点与曲线的关系若曲线c的方程是f(x,y)=0,则点p0(x0,y0)在曲线c上?f(x0,y0)=0;不在曲线上(x0,Y0)?f(x0,y0)≠0两条曲线的交点若曲线c1,c2的方程分别为f1(x,y)=0,f2(x,y)=0,则f1(x0,y0)=0点p0(x0,y0)是c1,c2的交点?f2(x0,y0)=0方程有n个不同的实解,两条曲线有n个不同的交点;如果方程没有实解,曲线就没有交点2.圆圆的定义点集:{m|om|=R},其中不动点O是圆的中心,固定长度R是圆的半径方程(1)标准方程圆心在c(a,b),半径为r的圆方程是二百二十二(x-a)+(y-b)=r圆心位于坐标原点,半径为R的圆方程为222x+y=r(2)一般方程22当D+e-4f>0时,一元二次方程22x+y+dx+ey+f=0de叫做圆的一般方程,圆心为(-,-,半径是22x+y+DX+ey+F=02二d2?e2-4f.配方,将方程2D2?e2-4f(x+)(y+)=422当d+e-4f=0时,方程表示一个点(-222二de,-);22当d+e-4f<0时,方程不表示任何图形.如果已知点和圆之间的位置关系,圆心C(a,b),半径为r,点m的坐标为(x0,Y0),则|mc|<r?点m在圆c内,|mc|=r?点m在圆c上,mc>r?点m在圆C中,其中|mc|=(x0-a)?(y0-b).(3)线与圆的位置关系①直线和圆有相交、相切、相离三种位置关系直线与圆相交?有两个公共点直线与圆相切?有一个公共点直线与圆相离?没有公共点②直线和圆的位置关系的判定(i)判别式法(二)使用从圆C(a,b)中心到直线ax+by+C=0的距离d=22aa?bb?ca?b22与半径r的大小关系决定3.椭圆、双曲线和抛物线椭圆的基本知识,双曲线和抛物线如下表所示:椭圆双曲线特性点集:({m#MF1+#点集:{m#MF1#-#轨迹条件MF2#=2A,#F1F2#<MF2#。
高考复习课件高考二轮·理科数学专题5第14讲圆锥曲线的基本问题
【命题立意】本题主要考查椭圆的定义、标准方 程与几何性质,考查数形结合思想与运算求解能力, 属难题.
一、椭圆 1.椭圆的定义 平面内的动点的轨迹是椭圆必须满足两个条件: (1)到两个定点 F1、F2 的距离和等于常数 2a; (2)2a>|F1F2|.
2.椭圆的标准方程和几何性质 标准方 程 x2 y2 + = a2 b2 1(a>b>0) y2 x2 + = a2 b2 1(a>b>0)
二、双曲线
1.双曲线的定义 平面内的动点的轨迹是双曲线必须满足两个 条件: (1) 到两个定点 F1 , F2 的距离的差的绝对值等 于常数2a;
(2)2a<|F1F2|.
2.双曲线的标准方程和几何性质 x 2 y2 y2 x 2 标准 2- 2=1(a>0, 2- 2=1(a>0, a b a b 方程 b>0) b>0)
4 b a2-2b2 2 + c + c2 c
=2(a2-b2)+2a a2-2b2=(a+ a2-2b2)2.
由椭圆的定义 , |PF1| + |PF2| = 2a , |QF1| + |QF2| =2a.从而由|PF1|=|PQ|=|PF2|+|QF2|, 有|QF1|=4a- 2|PF1|, 又由 PF1⊥PF2,|PF1|=|PQ|,知|QF1|= 2|PF1|, 因此(2+ 2)|PF1|=4a,即(2+ 2)(a+ a2-2b2)=4a, 于是(2+ 2)(1+ 2e2-1)=4, 解得 e=
【解析】(1)由椭圆的定义,2a=|PF1|+|PF2|=(2 + 2)+(2- 2)=4,故 a=2. 设椭圆的半焦距为 c,由已知 PF1⊥PF2, 因此 2c=|F1F2|= |PF1|2+|PF2|2 = (2+ 2)2+(2- 2)2=2 3.
新教材适用2024版高考数学二轮总复习第1篇专题5解析几何第2讲圆锥曲线的方程和性质核心考点3圆锥曲
核心考点3 圆锥曲线的交汇问题典例研析· 悟方法典例 (1) (2023·射洪市校级模拟)已知抛物线y 2=4x 的焦点和椭圆的一个焦点重合,且抛物线的准线截椭圆的弦长为3,则椭圆的标准方程为( B )A.x 23+y 22=1 B .x 24+y 23=1C.x 25+y 24=1 D .x 26+y 25=1【解析】 抛物线y 2=4x 的焦点在(1,0),准线为x =-1,设椭圆的方程为x 2a 2+y 2b2=1(a >b >0),椭圆中,c =1,当x =-1时,|y |=32,故1a 2+94b2=1,又a 2=b 2+c 2,所以a =2,b =3,故椭圆方程为x 24+y 23=1.故选B.(2) (2023·和平区校级二模)已知抛物线y 2=2px (p >0)上一点M (1,m )(m >0)到其焦点的距离为5,双曲线x 2a2-y 2=1的左顶点为A ,若双曲线的一条渐近线与直线AM 平行,则实数a 的值为( A )A.13 B .14 C .19D .12【解析】 根据题意,抛物线y 2=2px (p >0)上一点M (1,m )(m >0)到其焦点的距离为5,则点M 到抛物线的准线x =-p 2的距离也为5,即1+p2=5,解得p =8,所以抛物线的方程为y 2=16x ,则m 2=16,所以m =4,即M 的坐标为(1,4),又双曲线x 2a2-y 2=1的左顶点A (-a,0),一条渐近线为y =1a x ,而k AM =41+a ,由双曲线的一条渐近线与直线AM 平行,则有41+a =1a ,解得a =13.故选A.(3) (2023·锦江区校级模拟)已知F 1,F 2是双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左,右焦点,过点F 1作斜率为22的直线l 与双曲线的左,右两支分别交于M ,N 两点,以F 2为圆心的圆过M ,N ,则双曲线C 的离心率为( B )A. 2B . 3C .2D . 5【解析】 取MN 的中点P ,因为以F 2为圆心的圆过M ,N ,则MF 2=NF 2,连接F 2P ,则F 2P ⊥MN ,设MF 2=NF 2=x ,因为MF 2-MF 1=2a ,则MF 1=x -2a ,又因为NF 1-NF 2=2a ,则NF 1=x +2a ,所以MN =NF 1-MF 1=4a ,则MP =NP =2a ,故PF 1=x ,在Rt △F 1F 2P 中,PF 2=4c 2-x 2,在Rt △MF 2P 中,PF 2=x 2-4a 2,所以4c 2-x 2=x 2-4a 2,解得x 2=2a 2+2c 2,又直线的斜率为22,则tan ∠PF 1F 2=F 2P F 1P =2b 22a 2+2c 2=22,所以c 2-a 2a 2+c 2=12,即c 2=3a 2,所以离心率e =c a= 3.故选B.方法技巧· 精提炼 圆锥曲线及圆之间的综合问题抓联系辨性质:圆锥曲线之间、圆锥曲线与圆之间的综合问题的解决,关键是抓住两种曲线之间的联系,再结合其自身的几何性质解题.加固训练· 促提高1. (2023·河南三模)已知抛物线C :y 2=4x 的焦点为F ,点P 是C 上异于原点O 的任意一点,线段PF 的中点为M ,则以F 为圆心且与直线OM 相切的圆的面积最大值为( B )A .πB .π2C .π3D .π4【解析】 由题意,作图如下:设P (t 2,2t )(不妨令t >0),由已知可得F (1,0),则M ⎝ ⎛⎭⎪⎫t 2+12,t ,所以直线OM 的方程为y =2t t 2+1x ,设k =2t t 2+1,则k =2t +1t≤1(当且仅当t =1时取“=”),所以点F 到直线OM 的距离为|k |k 2+1=11+1k 2≤22,即圆F 的半径最大值为22,面积最大值为π2.故选B. 2. (2023·定远县校级模拟)已知椭圆x 2a 2+y 2b2=1(a >b >0)的一个焦点是圆x 2+y 2-6x +8=0的圆心,且短轴长为8,则椭圆的长轴长为_10__.【解析】 由x 2+y 2-6x +8=0得(x -3)2+y 2=1,其圆心为(3,0),即椭圆的一个焦点是(3,0),所以a 2-b 2=9,又2b =8,得a 2=25,即a =5,所以2a =10,椭圆的长轴长为10.。
高考数学专题复习完美版圆锥曲线知识点总结
圆锥曲线的方程与性质1.椭圆(1)椭圆观点平面内与两个定点F、F2的距离的和等于常数 2 a(大于| F F2|)的点的轨迹叫做椭圆。
这两个定点叫做椭圆11的焦点,两焦点的距离2c 叫椭圆的焦距。
若M 为椭圆上随意一点,则有|MF1 | |MF2 |2a 。
椭圆的标准方程为:x2y21(a b0 )(焦点在y2x 21(a b 0)(焦点在 y 轴a2b2x 轴上)或2b 2a上)。
注:①以上方程中a,b 的大小a b0 ,此中b2a2c2;②在 x2y21和 y2x2 1 两个方程中都有a b0 的条件,要分清焦点的地点,只需看x2和 y2的分a2b2a2b2母的大小。
比如椭圆x2y21( m 0, n0 , m n )当m n时表示焦点在x 轴上的椭圆;当 m n 时m n表示焦点在y 轴上的椭圆。
(2)椭圆的性质①范围:由标准方程x2y21 知 | x | a , | y | b ,说明椭圆位于直线x a ,y b 所围成的矩形里;a2b2②对称性:在曲线方程里,若以y 取代 y 方程不变,所以若点(x, y) 在曲线上时,点(x, y) 也在曲线上,所以曲线对于 x 轴对称,同理,以x 取代 x 方程不变,则曲线对于y 轴对称。
若同时以x 取代 x ,y取代y 方程也不变,则曲线对于原点对称。
所以,椭圆对于x 轴、y轴和原点对称。
这时,坐标轴是椭圆的对称轴,原点是对称中心,椭圆的对称中心叫椭圆的中心;③极点:确立曲线在座标系中的地点,常需要求出曲线与x 轴、y 轴的交点坐标。
在椭圆的标准方程中,令x 0 ,得y b ,则 B1(0,b) ,B2(0, b)是椭圆与y 轴的两个交点。
同理令y 0 得x a ,即A1(a,0),A2(a,0)是椭圆与x 轴的两个交点。
所以,椭圆与坐标轴的交点有四个,这四个交点叫做椭圆的极点。
同时,线段A1A2、B1B2分别叫做椭圆的长轴和短轴,它们的长分别为2a 和 2b ,a和 b 分别叫做椭圆的长半轴长和短半轴长。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2讲 圆锥曲线的基本问题一、填空题1.已知双曲线C ∶x 2a 2-y 2b2=1(a >0,b >0)的实轴长为2,离心率为2,则双曲线C 的焦点坐标是________.解析 ∵2a =2,∴a =1,又c a=2,∴c =2,∴双曲线C 的焦点坐标是(±2,0). 答案 (±2,0)2.(2013·陕西卷)双曲线x 216-y 2m =1(m >0)的离心率为54,则m 等于________.解析 由题意得c =16+m ,所以16+m 4=54,解得m =9. 答案 93.已知P 为椭圆x 225+y 216=1上的一点,M ,N 分别为圆(x +3)2+y 2=1和圆(x -3)2+y 2=4上的点,则PM +PN 的最小值为________.解析 由题意知椭圆的两个焦点F 1,F 2分别是两圆的圆心,且PF 1+PF 2=10,从而PM +PN 的最小值为PF 1+PF 2-1-2=7.答案 74.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的一个焦点与抛物线y 2=4x 的焦点重合,且双曲线的离心率等于5,则该双曲线的方程为________.解析 由于抛物线y 2=4x 的焦点为F (1,0),即c =1,又e =c a =5,可得a =55,结合条件有a 2+b 2=c 2=1,可得b 2=45,又焦点在x 轴上,则所求的双曲线的方程为5x 2-54y 2=1. 答案 5x 2-54y 2=15.(2013·新课标全国Ⅰ卷改编)已知椭圆E :x 2a 2+y 2b2=1(a >b >0)的右焦点为F (3,0),过点F的直线交椭圆于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为________. 解析 直线AB 的斜率k =0+13-1=12, 设A (x 1,y 1),B (x 2,y 2),所以⎩⎪⎨⎪⎧x 21a 2+y 21b2=1, ①x 22a 2+y 22b 2=1, ②①-②得y 1-y 2x 1-x 2=-b 2a 2·x 1+x 2y 1+y 2.又x 1+x 2=2,y 1+y 2=-2,所以k =-b 2a 2×2-2,所以b 2a2=12,③ 又a 2-b 2=c 2=9,④由③④得a 2=18,b 2=9.故椭圆E 的方程为x 218+y 29=1.答案x 218+y 29=1 6.(2014·金丽衢十二校联考)已知F 1,F 2分别是双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,点P 在双曲线上且不与顶点重合,过F 2作∠F 1PF 2的角平分线的垂线,垂足为A .若OA =b ,则该双曲线的离心率为________.解析 如图,延长F 2A 交PF 1于B 点,依题意可得BF 1=PF 1-PF 2=2a .又点A 是BF 2的中点, 所以OA =12BF 1,即b =a ,∴c =2a ,即e = 2. 答案27.已知双曲线C 与椭圆x 216+y 212=1有共同的焦点F 1,F 2,且离心率互为倒数.若双曲线右支上一点P 到右焦点F 2的距离为4,则PF 2的中点M 到坐标原点O 的距离等于________. 解析 由椭圆的标准方程,可得椭圆的半焦距c =16-12=2,故椭圆的离心率e 1=24=12,则双曲线的离心率e 2=1e 1=2.因为椭圆和双曲线有共同的焦点,所以双曲线的半焦距也为c =2.设双曲线C 的方程为x 2a 2-y 2b 2=1(a >0,b >0),则有a =c e 2=22=1,b 2=c 2-a 2=22-12=3,所以双曲线的标准方程为x 2-y 23=1.因为点P 在双曲线的右支上,则由双曲线的定义,可得PF 1-PF 2=2a =2,又PF 2=4,所以PF 1=6.因为坐标原点O 为F 1F 2的中点,M 为PF 2的中点. 所以MO =12PF 1=3.答案 38.已知F 1,F 2是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,过F 1的直线l 与椭圆C 交于A ,B 两点.若AB ∶BF 2∶AF 2=3∶4∶5,则椭圆的离心率为________.解析 设AB =3t (t >0),则BF 2=4t ,AF 2=5t ,则AB +BF 2+AF 2=12t .因为AB +BF 2+AF 2=4a ,所以12t =4a ,即t =13a .又F 1A +AF 2=2a ,所以F 1A =2a -53a =13a ,F 1B =23a ,BF 2=43a .由AB ∶BF 2∶AF 2=3∶4∶5, 知AB ⊥BF 2,故F 1B 2+BF 22=4c 2,即(23a )2+(43a )2=4c 2,得59a 2=c 2.所以e 2=c 2a 2=59,即e =53. 答案53二、解答题9.(2014·江苏卷)如图,在平面直角坐标系xOy 中,F 1,F 2分别是椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点,顶点B 的坐标为(0,b ),连接BF 2并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连接F 1C .(1)若点C 的坐标为⎝ ⎛⎭⎪⎫43,13,且BF 2=2,求椭圆的方程;(2)若F 1C ⊥AB ,求椭圆离心率e 的值. 解 设椭圆的焦距为2c ,则F 1(-c,0),F 2(c,0).(1)因为B (0,b ),所以BF 2=b 2+c 2=a . 又BF 2=2,故a = 2.因为点C ⎝ ⎛⎭⎪⎫43,13在椭圆上,所以169a 2+19b 2=1. 解得b 2=1.故所求椭圆的方程为x 22+y 2=1.(2)因为B (0,b ),F 2(c,0)在直线AB 上, 所以直线AB 的方程为x c +y b=1.解方程组⎩⎪⎨⎪⎧ x c +y b =1,x 2a 2+y2b 2=1,得⎩⎪⎨⎪⎧x 1=2a 2c a 2+c2,y 1=bc 2-a 2a 2+c 2,⎩⎪⎨⎪⎧x 2=0,y 2=b .所以点A 的坐标为⎝ ⎛⎭⎪⎫2a 2c a 2+c 2,b c 2-a 2a 2+c 2. 又AC 垂直于x 轴,由椭圆的对称性,可得点C 的坐标为⎝ ⎛⎭⎪⎫2a 2c a 2+c 2,b a 2-c 2a 2+c 2.因为直线F 1C 的斜率为b a 2-c 2a 2+c 2-02a 2c a 2+c 2--c =b a 2-c 23a 2c +c 3,直线AB 的斜率为-bc,且F 1C ⊥AB , 所以b a 2-c 23a 2c +c 3·⎝ ⎛⎭⎪⎫-b c =-1. 又b 2=a 2-c 2,整理得a 2=5c 2.故e 2=15.因此e =55. 10.(2014·北京卷)已知椭圆C :x 2+2y 2=4. (1)求椭圆C 的离心率;(2)设O 为原点,若点A 在椭圆C 上,点B 在直线y =2上,且OA ⊥OB ,试判断直线AB 与圆x 2+y 2=2的位置关系,并证明你的结论. 解 (1)由题意,椭圆C 的标准方程为x 24+y 22=1.所以a 2=4,b 2=2, 从而c 2=a 2-b 2=2.因此a =2,c = 2.故椭圆C 的离心率e =c a =22. (2)直线AB 与圆x 2+y 2=2相切.证明如下: 设点A ,B 的坐标分别为(x 0,y 0),(t,2),其中x 0≠0. 因为OA ⊥OB ,所以OA →·OB →=0,即tx 0+2y 0=0, 解得t =-2y 0x 0.当x 0=t 时,y 0=-t 22,代入椭圆C 的方程,得t =±2,故直线AB 的方程为x =± 2.圆心O 到直线AB 的距离d = 2.此时直线AB 与圆x 2+y 2=2相切.当x 0≠t 时,直线AB 的方程为y -2=y 0-2x 0-t(x -t ),即(y 0-2)x -(x 0-t )y +2x 0-ty 0=0. 圆心O 到直线AB 的距离d =|2x 0-ty 0|y 0-22+x 0-t2.又x 20+2y 20=4,t =-2y 0x 0,故d =⎪⎪⎪⎪⎪⎪2x 0+2y 20x 0x 20+y 20+4y 20x 20+4=⎪⎪⎪⎪⎪⎪4+x 20x 0x 40+8x 20+162x 20= 2.此时直线AB 与圆x 2+y 2=2相切.11.(2014·南京、盐城模拟)在平面直角坐标系xOy 中,过点A (-2,-1)的椭圆C :x 2a 2+y 2b2=1(a >b >0)的左焦点为F ,短轴端点为B 1,B 2,FB 1→·FB 2→=2b 2.(1)求a 、b 的值;(2)过点A 的直线l 与椭圆C 的另一交点为Q ,与y 轴的交点为R .过原点O 且平行于l 的直线与椭圆的一个交点为P .若AQ ·AR =3OP 2,求直线l 的方程.解 (1)因为F (-c,0),B 1(0,-b ),B 2(0,b ),所以FB 1→=(c ,-b ),FB 2→=(c ,b ).因为FB 1→·FB 2→=2b 2, 所以c 2-b 2=2b 2.①因为椭圆C 过A (-2,-1),代入得,4a 2+1b2=1.②由①②解得a 2=8,b 2=2. 所以a =22,b = 2.(2)由题意,设直线l 的方程为y +1=k (x +2).由⎩⎪⎨⎪⎧y +1=k x +2,x 28+y22=1得(x +2)[(4k 2+1)(x +2)-(8k +4)]=0.因为x +2≠0,所以x +2=8k +44k 2+1,即x Q +2=8k +44k 2+1. 由题意,直线OP 的方程为y =kx .由⎩⎪⎨⎪⎧y =kx ,x 28+y22=1,得(1+4k 2)x 2=8.则x 2P =81+4k2, 因为AQ ·AR =3OP 2.所以|x Q -(-2)|×|0-(-2)|=3x 2P . 即⎪⎪⎪⎪⎪⎪8k +44k 2+1×2=3×81+4k 2.解得k =1,或k =-2.当k =1时,直线l 的方程为x -y +1=0, 当k =-2时,直线l 的方程为2x +y +5=0.。