直线与圆的位置关系教学案例设计

合集下载

直线与圆的位置关系教学案例设计

直线与圆的位置关系教学案例设计

教师学科教案[ 20 – 20 学年度第__学期]任教学科:_____________任教年级:_____________任教老师:_____________xx市实验学校《直线与圆的位置关系》教学设计东川中学姚惠教学方法情景教学法、问题探究法、小组合作讨论、体验学习法教学准备学生准备圆规,直尺,圆形纸片3个教师准备制作多媒体课件,搜集生活中直线与圆的位置关系的图片.教学方法及设计思路在课堂教学中,必须以学生为主体,教师在教学中起主导作用。

本节课主要是如何判断直线与圆的位置关系,学习过程中,要使学生理解判断方法,并会灵活应用,要鼓励学生积极参与教学活动,包括思维的参与和行为的参与,既要有教师的讲授和指导,也要有学生的自主探究与合作交流。

整体思路创设情景→激发兴趣→自主探究,讨论归纳→得出新知→尝试练习→感知新知典例分析→应用新知→归纳方法,知识升华→课堂练习问题预设教学过程设计设计意图问题1 通过何种方法可以确定点和圆的位置关系2.图示与(一)复习提问问题1:前面我们学习了点和圆的位置关系?请大家回忆一下点和圆有几种位置关系.生:点在圆上,点在圆外,点在圆内.师:如何判断点与圆的位置关系的?生:点到圆心的距离与圆的半径的比较.设点到圆心的距离为d,圆的半径为r (1)当d>r时,点在圆外.(2)当d=r时,点在圆上.(3)当d<r时,点在圆内.问题2 动手画出这几种对应的位置关系图师:(1)A点在圆内⇔OA r;(2)B点在圆上⇔OB r;(3)C点在圆外⇔OC r.问题3 如图,O是直线l外一点,A、B、C、D是直线l上的点,且OD⊥l,线段OD的长度是点O到直线l的距离.通过问题引导学生复习回顾旧知,以实现对点与圆位置关系的归纳总结,能及时反馈旧知识的掌握情况,为直线与圆的位置关系的学习作好铺垫学生动手能可以使知识更加形象鲜明,形成知识能力数值之间有何种关系3.三条线段相比较你有和发现生:OD的长度是O到直线l的距离.师:我们分别以OA、OB、OC、OD为半径画圆,会到的怎样的图形小组之间欣赏:看看同学们画的图形4.看着初升的太阳我们不仅看到了美(二)探索新知1.创设情境:给出一段太阳东升西落的视频,让学生在美的境界中进入学习状态.观察在太阳升起的过程中,其周边与地平线有几个交点?借助媒体演示,形象地得到圆与直线的位置关系,激发学生学习的兴趣. 通过6.学生如何把圆心、直线圆三者相联系?我们对刚才的景象进行数学的抽象不难发现,直线和圆在相对运动过程中会有三种不同的位置关系.请大家观察直线与圆处在不同位置关系时有哪些不同点(引导学生观察图形,发现问题)直线与圆处在不同位置关系时直线与圆的公共点个数不同.(将公共点个数确立为直线和圆位置关系分类的原则,对三种分类进行定义)问题1那大家想一想,直线与圆公共点有几种情况呢?生:有三种,没有公共点,一个公共点,两个公共点.师:在黑板上画出这三种情况.dHOdHOdHO2.揭示课题——直线与圆的位置关系直线与圆的位置关系只有、和三种(学生口述教师板书)1.直线与圆有两个公共点时,叫做直线与圆相交.2.直线与圆有惟一公共点时,叫做直线与圆相切,这条直线叫做圆的切线.3.直线与圆没有公共点时,叫直线与圆相离.会到数学知识无处不在,应用数学无处不有.这样设计教学程序,能使学生在探究过程中产生认知冲突,激发他们探究新知的欲望激发他们学习数学的兴趣,渗透数学结合思想巩固已有知识7.数与形的结合在于抽象与形象的结合3.得出新知:直线与圆的三种位置关系中r和d满足的关系:直线与圆相离<=> d﹥r直线(切线)与圆相切<=> d﹦r直线(割线)与圆相交<=> d﹤练习1.已知圆的半径是5.5cm,圆心到直线的距离为d,当d=7.5 cm时,直线与圆有个公共点,当d=5 cm时,直线与圆有个公共点,当d=5.5cm时直线与圆有个公共点。

直线与圆的位置关系》教学设计-优质教案

直线与圆的位置关系》教学设计-优质教案

2.5直线与圆的位置关系(1)教学目标1.经历探索直线与圆的位置关系的过程;2.理解直线与圆的三种位置关系——相交、相切、相离;3.能利用圆心到直线的距离d与圆的半径r之间的数量关系判别直线与圆的位置关系.教学重点用“圆心到直线的距离与圆半径之间的数量关系”来描述“直线与圆的位置关系”的方法.教学难点直线和圆相切:“直线和圆有唯一公共点”的含义.教学过程(教师)学生活动设计思路情境引入1.我们已经学习过点和圆的位置关系,请同学们回忆:(1)点和圆有哪几种位置关系?(2)怎样判定点和圆的位置关系?(数量关系——位置关系)2.观察三幅太阳升起的照片,地平线与太阳经历了哪些位置关系?通过这个自然现象,你猜想直线和圆的位置关系有哪几种?1.先让每个学生回忆思考,然后全班交流.2.引导学生将整个日出过程演示一下,从而猜想直线和圆的位置关系有哪几种?如果学生回答不完整,让其他同学补充说明,并带着疑问和兴趣探究今天的知识.通过学生熟悉的问题入手,既能复习旧知,同时也通过类比,激发学生的兴趣,导入新课.例题讲解例1 在△ABC中,∠A=45°,AC=4,以C为圆心,r为半径的圆与直线AB有怎样的位置关系?为什么?(1)r=2;(2)r=22;(3)r=3.1.先让学生独立思考,然后让学生板演,最后学生点评.(强调:过点C作AB的垂线.)知识点的综合运用,进一步培养学生分析问题的能力.例2 已知:如图示,∠AOB=300,M为OB上一点,以M为圆心,5cm长为半径作圆,若M在OB上运动,问:①当OM满足时,⊙M与OA相离?②当OM满足时,⊙M与OA相切?③当OM满足时,⊙M与OA相交?2.先让学生独立思考,然后让学生板演,最后学生点评.本题难度不大,主要是让学生学会如何判断直线与圆的位置关系,寻找d与r的大小关系.练一练1.已知⊙O的直径为10cm,点O到直线l的距离为d:(1)若直线l与⊙O相切,则d=____;(2)若d=4cm,则直线l与⊙O有学生先独立思考并完成,然后集体反馈.巩固所学知识.MBOA·_____个公共点;(3)若d=6cm,则直线l与⊙O的位置关系是________.2.在Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,以C为圆心,r为半径的圆与AB有怎样的位置关系?为什么?(1)r=2cm;(2)r=2.4cm;(3)r=3cm.拓展提升在平面直角坐标系中有一点A(-3,-4),以点A为圆心,r长为半径时,思考:随着r的变化,⊙A与坐标轴交点的变化情况.学生先独立思考,然后自己完成,最后小组交流.拓展学生思维,渗透分类思想.总结1.这节课你有哪些收获和困惑?2.直线与圆的位置关系中的d与点和圆的位置关系中的d,两者有何区别与联系?各抒己见.培养学生归纳、口头表达能力.课后作业课本P65第1、2.独立完成.进一步复习巩固所学知识.。

《直线和圆的位置关系》教学教案设计.doc

《直线和圆的位置关系》教学教案设计.doc

24.2.2直线和圆的位置关系(一)学习目标:1、知识与技能:使学生理解直线和圆的位置关系;初步掌握直线和圆的位置关系的数量关系。

2、过程与方法:通过对直线和圆的三种位置关系的直观演示,培养学生能从直观演示中归纳出几何性质的能力。

3、情感与价值观:在用运动的观点揭示直线和圆的位置关系的过程中向学生渗透,世界上的一切事物都是变化着的,并且在变化的过程中在一定的条件下是可以互相转化的。

重点:使学生正确理解直线和圆的位置关系。

难点:圆心到直线的距离和圆的半径大小关系的理解。

教学过程:一、回顾旧知师:我们已经学习了点和圆,同学们想一想点和圆有哪几种位置关系?生:点在圆外、点在圆上、点在圆内。

师:怎样判断点和圆的位置关系?生:根据点到圆心的距离与圆半径大小来判断。

当d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内。

二、创设情境师:我们知道了点和圆有三种位置关系,那么直线和圆有几种位置关系呢?今天我们就来研究这个问题。

“24.2.2直线和圆的位置关系(一)”教师板书课题。

三、探索新知师:下面老师先画一个圆。

师:我们把直尺的边缘看作一条直线,任意移动直尺。

同学们想一想,这一过程中直线和圆的公共点可能有多少个?生:直线和圆公共点可能有0个,1个,2个。

教师画出图形并标出公共点。

师:根据公共点的个数,我们把直线和圆位置关系分成三种,即没有公共点叫相离,唯一公共点叫相切,两个公共点叫相交。

教师板书定义。

师:我们知道要判断点和圆的位置关系可以根据点到圆心的距离与半径的大小来判断,那么要判断直线和圆的位置关系可不可以用类似的方法呢?下面请一位同学画出圆心到直线的距离d?师:看图形你发现了什么?生:我发现了直线与圆相离时,d>r;相切时,d=r;相交时,d<r。

教师板书上述数量关系。

师:这是已知了直线与圆的位置关系,得出对应的数量关系,反过来,如果已知数量关系,可不可以得出对应的位置关系呢?用这种数量关系来判断直线与圆的位置关系,关键是要知道d和r,然后比较d与r大小,从而确定位置关系。

北师大版数学九年级下册3.6《直线和圆的位置关系》教案2

北师大版数学九年级下册3.6《直线和圆的位置关系》教案2

北师大版数学九年级下册3.6《直线和圆的位置关系》教案2一. 教材分析《直线和圆的位置关系》是北师大版数学九年级下册第3.6节的内容。

本节主要让学生了解直线和圆的位置关系,包括相切和相交两种情况,并掌握判断直线和圆位置关系的方法。

通过本节的学习,学生能够进一步理解直线和圆的性质,为后续解析几何的学习打下基础。

二. 学情分析学生在学习本节内容前,已经掌握了直线、圆的基本性质和相互之间的交点性质。

但对于判断直线和圆位置关系的实践操作能力尚待提高,需要通过实例分析和动手操作,进一步理解和掌握。

三. 教学目标1.让学生了解直线和圆的位置关系,包括相切和相交两种情况。

2.让学生掌握判断直线和圆位置关系的方法。

3.培养学生的实践操作能力和解决实际问题的能力。

四. 教学重难点1.教学重点:直线和圆的位置关系的判断方法。

2.教学难点:如何运用位置关系解决实际问题。

五. 教学方法采用问题驱动法、案例分析法和动手操作法,引导学生主动探究,合作交流,从而提高学生对直线和圆位置关系的理解和应用能力。

六. 教学准备1.准备相关的教学案例和图片。

2.准备课件和教学道具。

3.安排学生在课前预习相关内容。

七. 教学过程1.导入(5分钟)通过提问方式复习直线和圆的基本性质,为新课的学习做好铺垫。

例如:“直线和圆有哪些基本的性质?它们之间有什么联系?”2.呈现(15分钟)展示直线和圆的位置关系图片,让学生观察并描述它们之间的位置关系。

接着,通过课件演示直线和圆相切、相交的动态过程,引导学生直观地理解两种位置关系。

3.操练(15分钟)让学生分组讨论,每组选取一个实例,分析直线和圆的位置关系。

学生可以利用直尺、圆规等工具进行实际操作,验证理论。

教师巡回指导,解答学生的疑问。

4.巩固(10分钟)请学生上台演示刚才的操作,并讲解直线和圆位置关系的判断方法。

其他学生认真听讲,互相交流心得。

5.拓展(10分钟)出示一些实际问题,让学生运用所学知识解决。

5.1直线与圆的位置关系 一等奖创新教案_1

5.1直线与圆的位置关系 一等奖创新教案_1

5.1直线与圆的位置关系一等奖创新教案《直线与圆的位置关系》教学设计一、教学目标:1.知识目标:掌握判断直线与圆的位置关系的两种方法;解决与位置关系相关的问题,如,弦长、切线方程等;2.能力目标:能够几何问题代数化,代数问题几何化;3.情感目标:形成“数学是相互联系、统一的整体”的数学观。

二、教学重点、难点:重点:掌握几何法和解析法判断直线与圆的位置关系难点:灵活运用“数形结合”来解决直线与圆的位置关系三、教学方法探究式教学法、讲练结合、情景教学四、学情分析通过初中的学习,直线与圆的位置关系已有感性认识,学生已经知道直线与圆有三种位置关系,并且从直线与圆的直观感受上,学生已经懂得“利用直线与圆的交点的个数及圆心到直线的距离与圆的半径的大小比较”来研究直线与圆的位置关系。

高中要求学生能够利用直线与圆的方程,定量来进行判断,解决问题的主要方法是解析法,而解析法的思想方法学生不熟悉。

本节课,学生将进一步挖掘直线与圆的位置关系中的“数”的关系。

五、教学过程1.情景导入借用“大漠孤烟直,长河落日圆”引出日落情景,把太阳比做圆,地平面作为水平线,引出本节课题内容:直线与圆的三种位置关系。

2. 引入课题引导探究:通过几何画图,观察直线与圆的位置关系,进而引出判断直线与圆的位置关系。

(1)直线与圆的位置关系圆与直线的交点个数:几何判定法:(1)直线与圆__相交__,有两个公共点;设r为圆的半径,d为圆心到直线的距离:(2)直线与圆__相切__,只有一个公共点;(1)d>r 圆与直线__相离__;(3)直线与圆__相离__,没有公共点.(2)d=r 圆与直线__相切__;(3)d0 直线与圆__相交__;(2)Δ=0 直线与圆__相切__;(3)Δ。

直线和圆的位置关系教学设计

直线和圆的位置关系教学设计

直线和圆的位置关系(第一课时)教学设计课题:直线和圆的位置关系(第一课时)(北京师范大学出版社《义务教育课程标准实验教科书数学》九年级下册第三章第5节)课型:新授课教学目标:1、知识技能:学生通过学习,能够从具体的事例中认知和理解直线和圆的三种位置关系并能概括其定义,会用定义和“ 圆心到直线的距离d和圆半径r的数量关系”来判断直线和圆的位置关系.2、数学思考:(1)学生通过亲身经历探索直线和圆的位置关系.(2)学生通过观察、实验等活动,归纳出直线和圆的三种位置关系,从中体会和感悟数形结合的数学思想方法.(3)学生通过数学活动发展合情推理和演绎推理能力,进一步发展学生的理性思维的能力.3、问题解决:(1)学生通过观察、实验、讨论、合作研究等一系列数学活动,了解探索数学问题的一般过程.(2)学生通过数学活动获得用心体验、观察生活中的数学问题的能力,获得分析和解决问题的一些基本方法,体验解决问题方法的多样性.4、情感态度:(1)学生在探索、交流中感受自主探索、与人合作的快乐,体验成功的乐趣,同时培养学生严谨求实的科学态度以及发现、提出问题的能力.(2)学生在数学学习过程中积累基本经验,帮助学生养成认真勤奋、独立思考、合作交流、反思质疑等学习习惯,形成实事求是的科学态度.教学重点、难点:学生能根据形(直线和圆的公共点的个数)和数(圆心到直线的距离d与圆的半径r之间的数量关系),揭示直线和圆的位置关系.教具:多媒体(PPT)、圆规、直尺、几何画板.教法与学法分析:在教学过程中,不仅要让学生掌握数学知识,更重要的应该是让他们经历数学学习的一般过程,感悟和了解数学的基本思想方法.九年级的学生虽然有一定的理解力,但在某种程度上特别是平面几何问题上,学生还是依靠事物的具体直观形象,所以我以参与式探究教学法为主,整堂课紧紧围绕“情景问题——学生体验——合作交流”的模式,并发挥几何画板的直观、形象功能,辅助演示直线和圆的位置关系,激励学生积极参与,通过观察思考发现其知识的内在联系.这样一方面可激发学生学习的兴趣,提高学生的学习效率,另一方面拓展学生的思维空间,培养学生观察、分析、总结及解决问题的能力. 让不同的学生在数学上得到不同的发展.教学过程:。

直线与圆的位置关系 说课稿 教案 教学设计

直线与圆的位置关系   说课稿  教案 教学设计

圆心到直线的距离d直线与圆的位置关系公共点个数图形与半径r的关系相交两个d<r相切只有一个d=r相离没有d>r③方法一,判断直线l与圆的位置关系,就是看由它们的方程组成的方程组有无实数解;方法二,可以依据圆心到直线的距离与半径长的关系判断直线与圆的位置关系.④直线与圆的位置关系的判断方法:几何方法步骤:1°把直线方程化为一般式,求出圆心和半径.2°利用点到直线的距离公式求圆心到直线的距离.3°作判断:当d>r时,直线与圆相离;当d=r时,直线与圆相切;当d<r时,直线与圆相交.代数方法步骤:1°将直线方程与圆的方程联立成方程组.2°利用消元法,得到关于另一个元的一元二次方程.3°求出其判别式Δ的值.4°比较Δ与0的大小关系,若Δ>0,则直线与圆相离;若Δ=0,则直线与圆相切;若Δ<0,则直线与圆相交.反之也成立.应用示例例1 已知直线l:3x+y-6=0和圆心为C的圆x2+y2-2y-4=0,判断直线l与圆的位置关系.如果相交,求出它们的交点坐标.活动:学生思考或交流,回顾判断的方法与步骤,教师引导学生考虑问题的思路,必要时提示,对学生的思维作出评价;方法一,判断直线l与圆的位置关系,就是看由它们的方程组成的方程组有无实数解;方法二,可以依据圆心到直线的距离与半径长的关系判断直线与圆的位置关系.解法一:由直线l与圆的方程,得y-2=21(x+1), 即x-2y+5=0. 课堂小结(1)判断直线与圆的位置关系的方法:几何法和代数法. (2)求切线方程. 作业习题4.2 A 组1、2、3.第2课时导入新课一艘轮船在沿直线返回港口的途中,接到气象台的台风预报:台风中心位于轮船正西70 km 处,受影响的范围是半径长为30 km 的圆形区域.已知港口位于台风中心正北40 km 处,如果这艘轮船不改变航线,那么它是否会受到台风的影响?图2分析:如图2,以台风中心为原点O,以东西方向为x 轴,建立直角坐标系,其中,取10 km 为单位长度.则台风影响的圆形区域所对应的圆心为O 的圆的方程为x 2+y 2=9; 轮船航线所在的直线l 的方程为4x+7y-28=0.问题归结为圆心为O 的圆与直线l 有无公共点.因此我们继续研究直线与圆的位置关系. 推进新课 新知探究 提出问题①过圆上一点可作几条切线?如何求出切线方程? ②过圆外一点可作几条切线?如何求出切线方程?③过圆内一点可作几条切线?④你能概括出求圆切线方程的步骤是什么吗?⑤如何求直线与圆的交点?⑥如何求直线与圆的相交弦的长?讨论结果:①过圆上一点可作一条切线,过圆x2+y2=r2上一点(x0,y0)的切线方程是x0x+y0y=r2;过圆(x-a)2+(y-b)2=r2上一点(x0,y0)的切线方程是(x0-a)(x-a)+(y0-b)(y-b)=r2.②过圆外一点可作两条切线,求出切线方程有代数法和几何法.代数法的关键是把直线与圆相切这个几何问题转化为联立它们的方程组只有一个解的代数问题.可通过一元二次方程有一个实根的充要条件——Δ=0去求出k的值,从而求出切线的方程.用几何方法去求解,要充分利用直线与圆相切的几何性质,圆心到切线的距离等于圆的半径(d=r),求出k的值.③过圆内一点不能作圆的切线.④求圆切线方程,一般有三种方法,一是设切点,利用①②中的切线公式法;二是设切线的斜率,用判别式法;三是设切线的斜率,用图形的几何性质来解,即圆心到切线的距离等于圆的半径(d=r),求出k的值.⑤把直线与圆的方程联立得方程组,方程组的解即是交点的坐标.⑥把直线与圆的方程联立得交点的坐标,结合两点的距离公式来求;再就是利用弦心距、弦长、半径之间的关系来求.应用示例例1 过点P(-2,0)向圆x2+y2=1引切线,求切线的方程.图3解:如图3,方法一:设所求切线的斜率为k,则切线方程为y=k(x+2),因此由方程组⎪⎩⎪⎨⎧=++=,1),2(22yxxky得x2+k2(x+2)2=1.图4解:如图4,方法一:设所求的直线方程为y=kx+b,由圆心到直线的距离等于圆的半径,得 d=21||k b +=r,∴b=±r 21k +,求得切线方程是y=kx±r 21k +.方法二:设所求的直线方程为y=kx+b,直线l 与圆x 2+y 2=r 2只有一个公共点,所以它们组成的方程组只有一组实数解,由⎪⎩⎪⎨⎧=++=222,ry x b kx y ,得x 2+k 2(x+b)2=1,即x 2(k 2+1)+2k 2bx+b 2=1,Δ=0得b=±r 21k +,求得切线方程是y=kx±r 21k +.例 2 已知圆的方程为x 2+y 2+ax+2y+a 2=0,一定点为A(1,2),要使过定点A(1,2)作圆的切线有两条,求a 的取值范围.活动:学生讨论,教师指导,教师提问,学生回答,教师对学生解题中出现的问题及时处理,利用几何方法,点A(1,2)在圆外,即到圆心的距离大于圆的半径.解:将圆的方程配方得(x+2a )2+(y+1)2=4342a -,圆心C 的坐标为(-2a ,-1),半径r=4342a -,条件是4-3a 2>0,过点A(1,2)所作圆的切线有两条,则点A 必在圆外, 即22)12()21(+++a >4342a -.化简,得a 2+a+9>0,由⎪⎩⎪⎨⎧>->++,034,0922a a a。

直线和圆的位置关系教案设计

直线和圆的位置关系教案设计

全国中小学“教学中的互联网搜索”教学案例评选直线和圆的位置关系教案设计一、教案背景1、面向学生:中学2、学科:数学3、课时:14、学生课前准备:复习已学过的点与圆有几种位置关系。

(若点与圆的位置关系不明确可通过互联网百度图片搜索_点与圆的搜索结果,)观看百度图片搜索_日出图片的搜索结果二、教学课题知识目标:1、让学生理解掌握直线和圆的位置关系;2、让学生掌握判断直线和圆的位置关系的方法。

过程与方法:1、应用观察和比较的方法,使学生掌握直线和圆的位置关系;2、培养学生的分析问题、解决问题的能力,归纳总结能力、逻辑思维能力。

情感目标:1、培养学生“由简单到复杂、由特殊到一般”的化归思想和辩证思想;2、培养学生的分析判断能力和审美能力,树立正确的人生观。

3、培养学生的探究能力和协作学习的能力,从而提高学习数学的兴趣。

三、教材分析本节是北师大版九年级《数学》下册第三章圆的第5节,从而让学生在初中阶段比较系统、完整地学习圆的知识.本章的主要内容是直线与圆、圆与圆的位置关系,以及各种位置关系的判定和性质.本章是今后学习解析几何等知识的重要基础.由于本章所研究的问题往往是直线形与曲线形交织在一起,解决问题常需要综合运用代数、几何、三角等多方面知识,所以将本章编写在这里.本章的重点是圆的切线和圆与圆相切的判定及性质.利用直线与圆、圆与圆的位置关系的判断与性质解决实际问题需要学生较强的理解能力及转化能力,综合程度较高,是本章的主要难点教学之前用百度在网上搜索《直线与圆的位置关系》的相关教学材料,找了很多教案作参考,了解到教学的重点和难点,确定课堂教学形式和方法。

首先根据课堂教学需要,用百度图片搜索_日出图片的搜索结果,激发学生的学习兴趣;接着通过制作的课件进行新课教学,让学生掌握直线与圆的位置关系,引导学生从中发现规律;激励学生积极参与、观察、发现其知识的内在联系,使每个学生都能积极思维。

这样,一方面可激发学生学习的兴趣,提高学生的学习效率,另一方面拓展学生的思维空间,培养学生用创造性思维去学会学习。

直线与圆的位置关系教案(2篇)

直线与圆的位置关系教案(2篇)

直线与圆的位置关系教案(2篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、演讲发言、策划方案、合同协议、心得体会、计划规划、应急预案、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, speeches, planning plans, contract agreements, insights, planning, emergency plans, teaching materials, essay summaries, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!直线与圆的位置关系教案(2篇)作为一无名无私奉献的教育工作者,就不得不需要编写教案,教案是教材及大纲与课堂教学的纽带和桥梁。

直线与圆的位置关系教案

直线与圆的位置关系教案

直线与圆的位置关系教案一、教学目标1.知识目标:了解直线与圆的位置关系的基本概念及判断方法。

2.能力目标:能够根据已知条件判断直线与圆的位置关系。

3.情感目标:培养学生观察问题、分析问题和解决问题的能力,培养学生的数学思维和创新意识。

二、教学重点三、教学难点根据已知条件判断直线与圆的位置关系。

四、教学准备1.教学工具:黑板、白板、教学投影仪。

2.教学素材:教材课件、教案、实例、练习题。

五、教学步骤步骤一:引入新课(5分钟)1.教师展示一些直线与圆的照片,向学生提问:“你们在日常生活中见过直线和圆吗?它们之间有什么关系?”2.学生回答后,教师引导学生思考直线与圆的关系,并给出提示:“直线和圆在几何学中有着重要的位置关系。

”3.教师引出本堂课的主题:“本节课我们要学习直线与圆的位置关系,通过学习,我们能够了解它们之间的关系以及如何判断它们的位置关系。

”步骤二:讲解直线与圆的位置关系(15分钟)1.教师向学生介绍直线与圆的位置关系的基本概念。

2.教师通过示意图展示直线与圆的四种位置关系:(1)直线与圆相交;(2)直线与圆内切;(3)直线与圆外切;(4)直线与圆相离。

3.教师通过实例分别讲解以上四种位置关系的判断方法。

步骤三:示例分析与讨论(20分钟)1.教师给出一些示例题,引导学生按照判断方法,分析并判断直线与圆的位置关系。

2.学生在黑板上完成示例题的解答,并与教师及其他同学进行讨论。

3.教师在讨论中强调判断的关键点和注意事项。

步骤四:解释与总结(10分钟)1.教师对本节课的重点知识进行解释和总结,强调直线与圆的位置关系的判断方法。

2.教师鼓励学生对所学知识进行思考,提出自己的疑问或观点,加深对知识的理解。

步骤五:练习与巩固(20分钟)1.学生在教师的指导下,完成一些练习题,巩固所学知识。

2.学生互相交流解题过程和答案,讨论解题思路和方法。

3.教师在学生解题过程中及时给予指导和点评。

六、课堂小结1.教师对本节课的重点进行概括性总结,强调直线与圆的位置关系的判断方法。

直线与圆位置关系教案

直线与圆位置关系教案

直线与圆位置关系教案【篇一:直线与圆的位置关系(教案)】《直线与圆的位置关系》的教学设计一、教学课题:人民教育出版社出版的普通高中课程标准实验教科书a版数学②第四章第二节“直线与圆的位置关系”第一课时。

二、设计要点:学生在初中平面几何中已学过直线与圆的三种位置关系,在前面几节课学习了直线与圆的方程,因此,本节课主要以问题为载体,通过教师几个环节的设问,让学生利用已有的知识,自己去探究用坐标法研究直线与圆的位置关系的方法。

用过学生的参与和一个个问题的解决,让学生体验有关的数学思想,提高学生自主学习、分析问题和解决问题的能力,培养学生“用数学”及合作学习的意识。

三、教学目标:1.知识目标:能根据给定直线、圆的方程判断直线与圆的位置关系,并解决相关的问题; 2.能力目标:通过理论联系实际培养学生建模能力,培养学生数形结合思想与方程的思想; 3.情感目标:通过学生的自主探究,培养学生学习的主动性和合作交流的学习习惯。

四、教学重点、难点、关键:(1)重点:用坐标法判断直线与圆的位置关系(2)难点:学生对用方程组的解来判断直线与圆的位置关系方法的理解(3)关键:展现数与形的关系,启发学生思考、探索。

五、教学方法与手段:1.教学方法:探究式教学法2。

教学手段:多媒体、实物投影仪六、教学过程:1.创设情境,提出问题教师利用多媒体展示如下问题:问题:一艘轮船在沿直线返回港口的途中,接到气象台的台风预报:台风中心位于轮船正西50km处,受到影响的范围是半径长为30km 的圆形区域,已知港口位于台风中心正北50km处,如果这艘轮船不改变航线,那么它是否会受到台风的影响?教师提出:利用初中所学的平面几何知识,你能解决这个问题吗?请同学们动手试一下。

设计意图:让学生从数学角度看日常生活中的问题,体验数学与生活的密切联系,激发学生的探索热情。

2.切入主题,提出课题(1)由学生将问题数学建模,展示平面几何解决方法,得出结论。

《直线和圆的位置关系》教学设计

《直线和圆的位置关系》教学设计

《直线和圆的位置关系》教学设计《直线和圆的位置关系》教学设计(精选5篇)教学设计是把教学原理转化为教学材料和教学活动的计划。

教学设计要遵循教学过程的基本规律,选择教学目标,以解决教什么的问题。

今天应届毕业生店铺为大家编辑整理了《直线和圆的位置关系》教学设计,希望对大家有所帮助。

《直线和圆的位置关系》教学设计篇1一、素质教育目标㈠知识教学点⒈使学生理解直线和圆的位置关系。

⒉初步掌握直线和圆的位置关系的数量关系定理及其运用。

㈡能力训练点⒈通过对直线和圆的三种位置关系的直观演示,培养学生能从直观演示中归纳出几何性质的能力。

⒉在7.1节我们曾学习了“点和圆”的位置关系。

⑴点P在⊙O上OP=r⑵点P在⊙O内OP<r⑶点P在⊙O外OP>r初步培养学生能将这个点和圆的位置关系和点到圆心的距离的数量关系互相对应的理论迁移到直线和圆的位置关系上来。

㈢德育渗透点在用运动的观点揭示直线和圆的位置关系的过程中向学生渗透,世界上的一切事物都是变化着的,并且在变化的过程中在一定的条件下是可以相互转化的。

二、教学重点、难点和疑点⒈重点:使学生正确理解直线和圆的位置关系,特别是直线和圆相切的关系,是以后学习中经常用到的一种关系。

⒉难点:直线和圆的位置关系与圆心到直线的距离和圆的关径大小关系的对应,它既可做为各种位置关系的判定,又可作为性质,学生不太容易理解。

⒊疑点:为什么能用圆心到直线的距离九圆的关径大小关系判断直线和圆的位置关系?为解决这一疑点,必须通过图形的演示,使学生理解直线和圆的位置关系必转化成圆心到直线的距离和圆的关径的大小关系来实现的。

三、教学过程㈠情境感知⒈欣赏网页flash动画,《海上日出》提问:动画给你形成了怎样的几何图形的印象?⒉演示z+z超级画板制作《日出》的简易动画,给学生形成直线和圆的位置关系的印象,像这样平面上给定一条定直线和一个运动着的圆,它们之间虽然存在着若干种不同的位置关系,如果从数学角度,它的若干位置关系能分为几大类?请同学们打开练习本,画一画互相研究一下。

直线与圆的位置关系教案设计

直线与圆的位置关系教案设计

直线与圆的位置关系教学目标:1.了解直线与圆的位置关系2.通过动手操作、合作探究总结出直线与圆的三种位置关系3.进一步加强对类比、数形结合的数学思想的认识,感悟数学来源与生活又服务于生活。

学情分析:本节课在点和圆的位置关系之后,学生有一定的学习基础,所以整堂课学生理解的很轻松。

但是九年级的学生由于年龄特征,不具备很强的抽象思维能力,所以在教师的提示启发下,学生尝试动手操作,通过自主探究、合作交流,进而引导学生用类比的方法来研究直线和圆的位置关系,着重加强对数学思想和方法的渗透,使学生不断由学会向会学发展。

教学重点:直线与圆的位置关系的判断方法教学难点:体会数形结合、类比的数学思想教学方法:自主探究、合作交流法。

教具学具:三角板、圆规、课件、教学情境图。

课时安排:两课时(第一课时)教学过程 :一、创设情境,引入新知师:请同学们欣赏一幅图片,来自巴金的《海上日出》,从这幅图中我们能抽象出哪些几何图形呢?我们可以把太阳看作是一个圆,水平面看作是一条直线,那么太阳在冉冉升起的过程中,和水平面会有怎样的位置关系?今天,我们就来一起研究直线与圆的位置关系。

(出示本节课的学习目标)二、合作交流,探索新知1.小组活动探究一请同学们拿出手上的硬币和纸上的直线模仿海上日出的过程,找到直线与圆的交点,有几种情况?(学生分组讨论,选小组代表讲解)1.如果一条直线与圆没有公共点,那么就说这条直线与圆相离.2.直线与圆有唯一公共点时,叫做直线与圆相切.此时这条直线叫做圆的切线,这个公共点叫做切点3.直线与圆有两个公共点时,叫做直线与圆相交.这条直线叫做圆的割线同学们,我们根据公共点的个数可以确定直线与圆的三种位置关系,那么,我们在上节课学习点与圆的位置关系是根据什么来判断的呢?我们能否用类比的思想方法来探究直线与圆的另外一种表示方法呢?2.小组活动探究二用圆心O到直线的距离d与圆的半径r的关系来区分(学生分组讨论,选小组代表讲解)直线和圆相交d< r直线和圆相切d= r直线和圆相离d> r3.师生小结直线与圆的位置关系小结三、例题讲解、巩固新知请看本节课的例题:在直角三角形中,∠ACB=90°,两直角边分别为6和8,以C为圆心,分别以下面的r为半径画圆,那么圆与斜边AB所在的直线有怎样的位置关系呢?(1) r=4; (2) r=4.8; (3) r=5.(学生分组讨论,选小组代表讲解)四、反馈练习、检验新知请看本节课的练习题1.已知圆的半径为6cm,圆心到直线的距离为d :当d为4cm、6cm、8cm时,直线与圆有怎样的位置关系?公共点的个数又有几个?请这一列同学回答(你的依据是什么?)2.已知☉O的半径为5cm, 圆心到直线AB的距离为d, 根据条件判断d的取值范围:(1)若AB和☉O相离, 则 ;(2)若AB和☉O相切, 则 ;(3)若AB和☉O相交,则 ;3. 已知⊙A的直径为6 cm,点A的坐标为(-3,-4),则X轴、Y 轴与⊙A的位置关系是怎样的呢?(我们需要判断什么呢?半径与圆心横、纵坐标的距离之间的关系?)(学生畅所欲言,总结所学)五、反思评价、总结收获通过本节课的学习、你有哪些收获?(学生畅所欲言,总结所学)在我们生活中随处可见直线与圆的位置关系,比如说自行车的车轮与地面相切,一副碗筷呢?拱桥与水平面?摩天轮与水平面?可见数学来源与生活又服务于生活。

直线与圆的位置关系教案

直线与圆的位置关系教案

直线与圆的位置关系教案教学目标:1.知道直线与圆的位置关系有三种情况:相离、相切、相交。

2.掌握判断直线与圆的位置关系的方法。

3.能够综合运用所学知识解决直线与圆的位置关系问题。

教学重点:1.直线与圆的位置关系的判断方法。

2.解决直线与圆的位置关系问题的能力。

教学难点:1.判断直线与圆的位置关系。

2.综合运用所学知识解决直线与圆的位置关系问题。

教学过程:一、导入(5分钟)老师出示一张图片,图片上有一条直线与一个圆相交,并让学生观察并回答:直线与圆的位置关系有哪些可能的情况?二、讲授(15分钟)1.老师引入“直线与圆的位置关系”的概念,并给出三种可能的情况:相离、相切、相交。

2.介绍判断直线与圆的位置关系的方法:a.直线与圆相离的情况下,直线与圆的最短距离大于圆的半径。

b.直线与圆相切的情况下,直线与圆的最短距离等于圆的半径。

c.直线与圆相交的情况下,直线与圆的最短距离小于圆的半径。

3.通过示例讲解判断直线与圆的位置关系的方法。

三、练习(20分钟)1.团队合作练习:将学生分成若干小组,给出不同的直线与圆的示例,让学生判断直线与圆的位置关系,并在白板上写出自己的判断结果。

2.小组讨论与展示:每个小组轮流讲解和展示自己的判断结果,并给出相应的理由。

3.整体讨论与总结:老师引导学生就判断直线与圆的位置关系时遇到的问题进行讨论,并总结判断方法和解决问题的关键。

四、拓展(15分钟)1.引导学生思考更复杂的问题:在平面直角坐标系中,如何判断直线与圆的位置关系?2.给出示例并指导解决问题:通过求直线与圆的方程,将问题转化成代数方程求解。

五、讲评(10分钟)1.对学生在练习环节中的表现给予评价和点评。

2.解答学生提出的疑问,帮助学生理解和掌握直线与圆的位置关系。

六、小结(5分钟)老师对本节课的内容进行小结,并指导学生合理复习巩固相关知识。

教学反思:本节课通过引入问题、讲解相关概念、示例分析和练习等环节,使学生逐步理解和掌握直线与圆的位置关系的判断方法。

人教版九年级上册24.2.2直线和圆的位置关系教学设计 (2)

人教版九年级上册24.2.2直线和圆的位置关系教学设计 (2)

人教版九年级上册24.2.2直线和圆的位置关系教学设计一、教学目标知识目标1.了解直线和圆的定义。

2.掌握直线与圆的位置关系:相离、相切、相交。

3.能够判断直线与圆的位置关系。

能力目标1.学会将理论知识运用到实际问题中。

2.培养分析问题、解决问题的能力。

情感目标1.激发学生的数学兴趣。

2.培养学生的合作与交流能力。

二、教学重难点教学重点掌握直线与圆的位置关系:相离、相切、相交。

教学难点能够判断直线与圆的位置关系。

三、教学过程1. 导入新课通过讲解直线和圆的定义,引出本节课的主题:直线和圆的位置关系。

2. 练习题解析1.画出一条直线和一个圆,分析它们的位置关系。

通过解析这道题,引导学生了解直线与圆的位置关系,包括相离、相切、相交等三种情况。

2.画出两条直线和一个圆,分析它们的位置关系。

通过解析这道题,让学生了解直线与圆的位置关系并加以运用,同时培养学生的分析问题和解决问题的能力。

3. 探究性学习让学生自己设计几道问题,并在小组内相互交流,让学生通过彼此的讨论来加深对直线和圆的位置关系的理解和掌握。

4. 作业布置布置有关直线和圆的位置关系的作业,以检测学生掌握情况。

四、教学评估1. 测试出一份测验,测试学生掌握直线和圆的位置关系的能力。

2. 课堂表现通过学生的课堂表现,如回答问题、举手发言等,来了解学生对直线和圆的位置关系的掌握情况。

3. 作业评查通过检查学生的作业情况,来了解学生是否掌握了直线和圆的位置关系的理论知识并能够应用于实际问题中。

五、教学体会本节课通过设计练习题解析、探究性学习等多种形式,使得学生更加深入地理解和掌握了直线和圆的位置关系,同时培养了学生的分析问题、解决问题的能力和合作交流能力。

《直线和圆的位置关系》优秀教学设计

《直线和圆的位置关系》优秀教学设计

《直线和圆的位置关系》优秀教学设计作为一名为他人授业解惑的教育工作者,时常需要用到教学设计,教学设计是把教学原理转化为教学材料和教学活动的计划。

那么你有了解过教学设计吗?下面是小编精心整理的《直线和圆的位置关系》优秀教学设计,仅供参考,欢迎大家阅读。

《直线和圆的位置关系》优秀教学设计1教学目标:(一)教学知识点:1.了解直线与圆的三种位置关系。

2.了解圆的切线的概念。

3.掌握直线与圆位置关系的性质。

(二)过程目标:1.通过多媒体让学生可以更直观地理解直线与圆的位置关系。

2.通过让学生发现与探究来使学生更加深刻地理解知识。

(三)感情目标:1.通过图形可以增强学生的感观能力。

2.让学生说出解题思路提高学生的语言表达能力。

教学重点:直线与圆的位置关系的性质及判定。

教学难点:有无进入暗礁区这题要求学生将实际问题转化为直线与圆的位置关系的判定,有一定难度,是难点。

教学过程:一、创设情境,引入新课请同学们看一看,想一想日出是怎么样的?屏幕上出现动态地模拟日出的情形。

(把太阳看做圆,把海平线看做直线。

)师:你发现了什么?(希望学生说出直线与圆有三种不同的位置关系,如果学生没有说到这里,我可以直接问学生,你觉得直线与圆有几种不同的位置关系。

)让学生在本子上画出直线与圆三种不同的位置图。

(如图)师:你又发现了什么?(希望学生回答出有第一个图直线与圆没有公共点,第二个图有一个公共点,而第三个有两个公共点,如果没有学生没有发现到这里,我可以引导学生做答)二、讨论知识,得出性质请同学们想一想:如果已知直线l与圆的位置关系分别是相离、相切、相交时,圆心O到直线l的距离d与圆的半径r有什么关系设圆心到直线的距离为d,圆的半径为r让学生讨论之后再与学生一起总结出:当直线与圆的位置关系是相离时,dr当直线与圆的位置关系是相切时,d=r当直线与圆的位置关系是相交时,d知识梳理:直线与圆的位置关系图形公共点d与r的大小关系相离没有r相切一个d=r相交两个d三、做做练习,巩固知识抢答,我能行活动:1、已知圆的`直径为13cm,如果直线和圆心的距离分别为(1)d=4.5cm(2)d=6.5cm(3)d=8cm,那么直线和圆有几个公共点?为什么?(让个别学生答题)师:第一题是已知d与r问直线与圆之间的位置关系,而下面这题是已知d与位置关系求r,那又该如何做呢?请大家思考后作答:2、已知圆心和直线的距离为4cm,如果圆和直线的关系分别为以下情况,那么圆的半径应分别取怎样的值?(1)相交;(2)相切;(3)相离。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

直线与圆的位置关系教学案例设计一、教学内容分析圆的教学在平面解析几何乃至整个中学数学中都占有重要的地位,而直线和圆的位置关系的应用又比较广泛,它是初中几何的综合运用,是在学习了点和圆的位置关系的基础上进行的,又为后面的圆和圆的位置关系作了铺垫,对后面的解题及几何证明,将起到重要的作用。

解决直线与圆的位置关系的思想、方法也为以后解决高考重点问题直线与圆锥曲线的位置关系问题提供思想、方法上的铺垫。

二、学情分析学生在前面已经学习了直线与圆的知识,还有圆锥曲线的知识。

能够解决一些基本题型,掌握了解析几何的一些常用的数学思想方法。

但是因为间隔时间比较长,所以有些知识有些淡忘,特别对某些题型该注意的问题比较模糊。

另外对知识的掌握上还是不够熟练,规律方法的总结上缺乏系统性。

所以这节课主要是通过典型题目起到复习基本知识总结规律的作用,其实解析几何中圆与圆锥曲线的解题方法有很多共性,在后面设置一个难度稍大,比较综合的题目,起到深化知识,统一方法的作用。

三、设计思想课堂教学的中心是学生的学习活动,教学的根本任务是教学生学。

本设计努力挖掘内容的本质和联系,充分考虑学生的学习基础和思维发展方向,力求教学过程的自然流畅。

在教学方法上,以“问题引导,探究交流”为主,兼容讲解、演示、合作等多种方式,力求灵活运用。

在教学目标上,因为这是第一轮复习,所以注重基础和方法规律的总结。

以突出解析思想为主,容知识与技能、过程与方法、情感与体验为一体,力求多元价值取向。

四、教学目标(1)知识与能力目标A.知道直线和圆相交,相切,相离的定义并会根据定义来判断直线和圆的位置关系;B.能根据圆心到直线的距离与圆的半径之间的数量关系来揭示直线和圆的位置关系;也能根据联立方程组的解的个数来判断直线与圆的位置关系。

C.掌握直线和圆的位置关系的应用,能解决弦长、切线以及最值问题。

(2)过程与方法目标让学生通过观察,看图,分析,能找出圆心到直线的距离和圆的半径之间的数量关系,揭示直线和圆的位置关系。

此外,通过直线和圆的相对运动,培养学生运动变化的辨证唯物主义观点,通过对研究过程的反思,进一步强化对分类和把几何形成的结论转化为代数方程的形式的思想。

培养学生借助直观解决抽象问题的能力,也就是由数到形,有形到数;有直观到抽象、由抽象到直观的转化能力(数形结合的思想)。

(3)情感态度与价值观目标通过师生互动,生生互动的教学活动过程,形成学生的体验性认识,体会成功的愉悦,提高数学学习的兴趣,树立学好数学的信心,培养锲而不舍的钻研精神和合作交流的科学态度。

五、教学重点与难点教学重点:直线和圆位置关系的判断和应用教学难点:通过解方程组来研究直线和圆的位置关系。

教学准备:制作多媒体课件,学生准备计算器,直尺,量角器。

六、教学过程:我设计的教学程序是:创设情景,激发兴趣——讨论归纳,得出新知——尝试练习,感知新知——典例分析,应用新知——归纳方法,知识升华——课堂练习、体验成功——师生归纳,形成体系——分层作业,拓展提高(一)复习1.直线方程的形式2.圆的方程形式3.点与圆的位置关系4直线与圆的位置关系:(1)直线与圆相交,有两个公共点;(2)直线与圆相切,只有一个公共点;(3)直线与圆相离,没有公共点;(二)新课讲解1.问题情境问题1.一艘轮船在沿直线返回港口的途中,接到气象台的台风预报:台风中心位于轮船正西70km 处,受影响的范围是半径长为50km的圆形区域.已知港口位于台风中心正北70km处,如果这艘轮船不改变航线,那么它是否会受到台风的影响?设计意图:让学生感受台风这个实际问题中所蕴含的直线与圆的位置关系,思考解决问题的方案.通过实际问题引入,让学生体会生活中的数学,突出研究直线与圆的位置关系的重要意义师生活动:让学生进行讨论、交流,启发学生由图形获取判断直线与圆的位置关系的直观认知,引入新课.师:你怎么判断轮船受不受影响?生:台风所在的圆与轮船航线所在直线是否相交.师:(板书标题)这个问题,其实可以归结为直线与圆的位置关系.学生解决方法一:设O为台风中心,A为轮船开始位置,B为港口位置,在OAB中,O到AB的距离=,因此受影响.2.揭示课题——直线与圆的位置关系问题2.在初中,我们学习过直线与圆的位置关系,即直线与圆相交,有两个公共点,直线于圆相切,有一个公共点;直线与圆相离,没有公共点,前面我们又学习了直线的方程和圆的方程,懂得了直线和圆可以用方程来表示,于是,我们就思考一个问题,能否用方程来刻画直线与圆的位置关系呢?如果有这样的可能,又该怎样来描述呢?设计意图:从已有的知识经验出发,建立新旧知识之间的联系,构建学生学习的最近发展区,不断加深对问题的理解.师生活动:引导学生回忆义务教育阶段判断直线与圆的位置关系的思想过程.可以展示下面的表格,使问题直观形象.直线与圆的位置关系公共点个数与的关系图形相交两个相切一个相离 没有3.直线与圆位置关系的判断 问题3:方法一是用平面几何知识判断直线与圆的位置关系,你能根据直线与圆的方程判断它们之间的位置关系吗?设计意图:引导学生用直线与圆的方程判断直线与圆的位置关系,体验坐标法的思想方法. 问题4:这是利用圆心到直线的距离与半径的大小关系判别直线与圆的位置关系.请问用这种方法的一般步骤如何?设计意图:对判断直线与圆的位置关系步骤进行小结,对知识进行梳理,使学生有“操作规范”,培养归纳能力,同时也渗透了算法思想.师生活动:教师引导学生分析归纳:(1)建立平面直角坐标系;(2)求出直线方程,圆心坐标与圆的半径;(3)求出圆心到直线的距离(4)比较与的大小,确定直线与圆的位置关系. ①当时,直线与圆相离; ②当时,直线与圆相切; ③当时,直线与圆相交. 4.例题示范例1 如图,已知直线l :063=-+y x 和圆心为C 的圆04222=--+y y x ,判断直线 l 与圆的位置关系;如果相交,求它们交点的坐标。

设计意图:通过此例题让学生体会这种方法的解题步骤,进一步加深学生对这种方法的记忆。

让学生充分体会几何法的直观性。

问题5:对于平面直角坐标系中的直线和, 联立方程组,我们有如下一些结论: ①与相交,方程组有唯一解; ②与平行,方程组无; ③与平行,方程组有无穷组解.你能用类比的思想,研究直线与圆的位置关系吗?设计意图:让学生通过对两条直线的位置关系的研究过程,回顾坐标法思想的重要作用.并通过类比,使学生获得用坐标法研究直线与圆的位置关系的想法与结论.抽象判断直线与圆的位置关系的思路与方法.师生活动:教师提出问题,引导学生得出: 联立方程组,我们有如下一些结论: ①圆与直线相切,方程组有唯一解; ②圆与直线相交,方程组有两组解; ③圆与直线相离,方程组有无解.问题6:根据方程组是否有解来判断直线与圆的位置关系的步骤如何?设计意图:根据方程组是否有解来判断直线与圆位置关系的步骤进行小结,对知识进行梳理,使学生有“操作规范”,培养归纳能力,同时也渗透了算法思想.师生活动:教师引导学生分析、归纳:(1)将直线方程与圆方程联立成方程组;(2)通过消元,得到一个一元二次方程;(3)求出其判别式△的值;(4)判断△的符号:若△>0,则直线与圆相交;若△=0,则直线与圆相切;若△<0,则直线与圆相离.问题7:我们找到了解决直线与圆的位置关系的代数方法,你能用代数方法来解决例1吗?设计意图:体验平面几何与解析几何的各自解法.平面几何可以定性刻画,解析几何可以精确刻画,体验坐标法的优越性.问题8:你能用我们学过的方法来解决以下变式吗?变式1:判断直线02=-+y kx 与例1中圆的位置关系设计意图:通过此变式让学生体会两种方法各自的优点变式2:若直线所过定点为(2,0),判断直线与例1中圆的位置关系设计意图:通过此变式让学生体会点与圆的位置关系不同,则直线与圆的位置关系不同,另外通过此题让学生体会再通过直线上一点来求直线方程时,先要判断一下直线与圆可能的位置关系。

变式3:若直线所过定点为()2,5,判断直线与例1中圆的位置关系 设计意图:通过此变式让学生体会特殊位置的切线不要丢,也是对第二个变式的延伸。

练习. 已知圆的方程是()9122=+-y x ,求过点 (-2,4)的圆的切线方程.设计意图:进一步强调解题格式,规范解题步骤。

5.弦长问题例2、已知过点M (-3,-3)的直线l 被圆021422=-++y y x 所截得的弦长为32,求直线l 的方程。

设计意图:直线与圆的位置关系,当他们相交时,学习弦长的求法.变式 过点()3,3--的弦中最长弦和最短弦所在直线方程是什么6.课堂小结问题9: 判断直线与圆的位置关系有哪些方法?问题10:当直线与圆相交时,如何求弦长?设计意图:巩固所学知识,培养学生归纳概括能力.师生活动:学生思考,教师引导时应涉及到“如何求弦长”以及判断直线与圆的位置关系有几种方法?它们的步骤是什么?七、教学目标检测1.设0≠m ,则圆()22232m m y x =-+与直线03=-y x 的位置关系________ 2.过点()0,2P 且与圆05622=+-+y y x 相切的直线方程是___________ 3.求直线063:=--y x l 被圆042:22=--+y x y x C 截得的弦AB 的长。

4.求以()3,1N 为圆心,并且与直线0743=--y x 相切的圆的方程。

5.求圆心在直线03=-y x 上,与x 轴相切,且被直线0=-y x 截得的弦长为72的圆的方程。

八.教学反思:本节课的设计,力求体现“以学生发展为本”的教学理念。

教学过程中,以问题为载体,学生活动为主线,为学生提供了探究问题、分析问题、解决问题的活动空间。

例题内容的安排上,注意逐步推进,力求使教师的启发引导与学生的思维同步,顺应学生学习数学的过程,促进学生认知结构的发展;给学生留下广阔的思维空间和拓展探索的余地,让学生体验到数学活动充满了探索和创造。

在教学过程中,注意到培养学生合作交流的意识和能力。

相关文档
最新文档