SRA2211E中文资料
HCNW-2211中文资料
1-131HVery High CMR, Wide V CC Logic Gate Optocouplers Technical DataHCPL-2201HCPL-2202HCPL-2211HCPL-2212HCPL-2231HCPL-2232HCPL-0201HCPL-0211HCNW2201HCNW2211Features• 10 kV/µs Minimum Common Mode Rejection (CMR) at V CM = 1000 V(HCPL-2211/2212/0211/2232, HCNW2211)• Wide Operating V CC Range:4.5 to 20 Volts• 300 ns Propagation Delay Guaranteed over the Full Temperature Range• 5 Mbd Typical Signal Rate • Low Input Current (1.6mA to 1.8 mA)• Hysteresis• Totem Pole Output (No Pullup Resistor Required)• Available in 8-Pin DIP,SOIC-8, Widebody Packages • Guaranteed Performance from -40°C to 85°C • Safety ApprovalUL Recognized -2500 V rms for 1 minute (5000V rms for 1 minute forHCNW22XX) per UL1577CSA ApprovedVDE 0884 Approved with V IORM = 630 V peak (HCPL-2211/2212 Option 060 only)and V IORM = 1414 V peak (HCNW22XX only)BSI Certified (HCNW22XX only)• MIL-STD-1772 Version Available(HCPL-52XX/62XX)Applications• Isolation of High Speed Logic Systems• Computer-Peripheral Interfaces• Microprocessor System Interfaces• Ground Loop Elimination • Pulse Transformer Replacement• High Speed Line Receiver • Power Control SystemsDescriptionThe HCPL-22XX, HCPL-02XX,and HCNW22XX are optically-coupled logic gates. TheHCPL-22XX, and HCPL-02XX contain a GaAsP LED while the HCNW22XX contains an AlGaAs LED. The detectors have totem pole output stages and optical receiver input stages with built-in Schmitt triggers to provide logic-compatible waveforms, eliminat-ing the need for additional waveshaping.A superior internal shield on the HCPL-2211/12, HCPL-0211,CAUTION: It is advised that normal static precautions be taken in handling and assembly of this componentto prevent damage and/or degradation which may be induced by ESD.Functional DiagramA 0.1 µF bypass capacitor must be connected between pins 5 and 8.NC ANODE CATHODE NC GNDV CC V O NC HCPL-2201/11 HCPL-0201/11NC ANODE CATHODE NC GNDV CC V O NCANODE 1CATHODE 1CATHODE 2ANODE 2GNDV CC V O1V O2TRUTH TABLE (POSITIVE LOGIC)LED ON OFF V O HIGH LOW5965-3595ESelection GuideNotes:1. HCPL-2200/2219 devices include output enable/disable function.2. Technical data for the HCPL-2200/2219, HCPL-52XX and HCPL-62XX are on separate HP publications.3. Minimum CMR of 10 kV/µs with V CM = 1000 V can be achieved with input current, I F, of 5 mA.Ordering InformationSpecify Part Number followed by Option Number (if desired).Example:HCPL-2211#XXX060 = VDE 0884 V IORM = 630 V peak Option*300 = Gull Wing Surface Mount Option**500 = Tape and Reel Packaging OptionOption data sheets available. Contact your Hewlett-Packard sales representative or authorized distributor for information.*For HCPL-2211/2212 only.**Gull wing surface mount option applies to through hole parts only.SchematicHCPL-2201/02/11/12HCPL-0201/11HCNW2201/11V CCV OGNDVV CCV O1HCPL-2231/32VV O2GNDHCPL-2232 and HCNW2211guarantees common modetransient immunity of 10 kV/µs ata common mode voltage of 1000volts.The electrical and switchingcharacteristics of the HCPL-22XX, HCPL-02XX andHCNW22XX are guaranteed from-40°C to +85°C and a V CC from4.5 volts to 20 volts. Low I F andwide V CC range allow compatibil-ity with TTL, LSTTL, and CMOSlogic and result in lower powerconsumption compared to otherhigh speed couplers. Logic signalsare transmitted with a typicalpropagation delay of 150ns.1-1320.254+ 0.076- 0.051(0.010+ 0.003)- 0.002)DIMENSIONS IN MILLIMETERS AND (INCHES).*MARKING CODE LETTER FOR OPTION NUMBERS"V" = OPTION 060OPTION NUMBERS 300 AND 500 NOT MARKED. Package Outline Drawings8-Pin DIP Package (HCPL-2201/02/11/12/31/32)8-Pin DIP Package with Gull Wing Surface Mount Option 300 (HCPL-2201/02/11/12/31/32)MAX.(0.100)BSCDIMENSIONS IN MILLIMETERS (INCHES).LEAD COPLANARITY = 0.10 mm (0.004 INCHES).+ 0.076- 0.051+ 0.003)- 0.002)1-133Small-Outline SO-8 Package (HCPL-0201/11) 8-Pin Widebody DIP Package (HCNW2201/11)1.78 ± 0.15+ 0.076- 0.0051+ 0.003)- 0.002)(0.012)MIN.DIMENSIONS IN MILLIMETERS (INCHES).LEAD COPLANARITY = 0.10 mm (0.004 INCHES).1-1341-1358-Pin Widebody DIP Package with Gull Wing Surface Mount Option 300 (HCNW2201/11)Note: Use of nonchlorine activated fluxes is highly recommended.240TIME – MINUTEST E M P E R A T U R E – °C220200180160140120100806040200260Solder Reflow Temperature Profile (HCPL-02XX and Gull Wing Surface Mount Option 300 Parts)1.78 ± 0.15 MAX.BSCDIMENSIONS IN MILLIMETERS (INCHES).LEAD COPLANARITY = 0.10 mm (0.004 INCHES).Regulatory Information The HCPL-22XX/02XX and HCNW22XX have been approved by the following organizations: ULRecognized under UL 1577, Component Recognition Program, File E55361.CSAApproved under CSA ComponentAcceptance Notice #5, File CA88324.VDEApproved according to VDE0884/06.92. (HCPL-2211/2212Option 060 and HCNW22XX only)BSICertification according toBS415:1994,(BS EN60065:1994);BS EN60950:1992(BS7002:1992) andEN41003:1993 for Class IIapplications. (HCNW22XX only)Insulation and Safety Related Specifications8-pin DIP Package8-Pin DIP Widebody(300 Mil)SO-8(400 Mil)Parameter Symbol Value Value Value Units Conditions Minimum External L(101)7.1 4.99.6mm Measured from input terminals Air Gap (External to output terminals, shortest Clearance)distance through air. Minimum External L(102)7.4 4.810.0mm Measured from input terminals Tracking (External to output terminals, shortest Creepage)distance path along body. Minimum Internal0.080.08 1.0mm Through insulation distance, Plastic Gap conductor to conductor, usually (Internal Clearance)the direct distance between thephotoemitter and photodetectorinside the optocoupler cavity. Minimum Internal NA NA 4.0mm Measured from input terminals Tracking (Internal to output terminals, along Creepage)internal cavity.Tracking Resistance CTI200200200Volts DIN IEC 112/VDE 0303 Part 1 (ComparativeTracking Index)Isolation Group IIIa IIIa IIIa Material Group(DIN VDE 0110, 1/89, Table 1) Option 300 - surface mount classification is Class A in accordance with CECC 00802.1-136VDE 0884 Insulation Related Characteristics(HCPL-2211/2212 Option 060 ONLY)*Refer to the front of the optocoupler section of the current catalog, under Product Safety Regulations section (VDE 0884), for a detailed description.Note: Isolation characteristics are guaranteed only within the safety maximum ratings which must be ensured by protective circuits in application.1-137VDE 0884 Insulation Related Characteristics (HCNW22XX ONLY)*Refer to the front of the optocoupler section of the current catalog, under Product Safety Regulations section (VDE 0884), for a detailed description.Note: Isolation characteristics are guaranteed only within the safety maximum ratings which must be ensured by protective circuits in application.Absolute Maximum Ratings1-138*The initial switching threshold is 1.6 mA or less. It is recommended that 2.2 mA be used to permit at least a 20% LED degradation guardband.†The initial switching threshold is 1.8 mA or less. It is recommended that 2.5 mA be used to permit at least a 20% LED degradation guardband.Electrical Specifications-40°C ≤ T A≤ 85°C, 4.5 V ≤ V CC≤ 20 V, 1.6 mA ≤ I F(ON)* ≤ 5 mA, 0 V ≤ V F(OFF)≤ 0.8 V, unless otherwise specified. All Typicals at T A = 25°C. See Note 7.*For HCPL-223X, 1.8 mA ≤ I F(ON)≤ 5 mA.**Typical V OH = V CC - 2.1 V.1-139Switching Specifications (AC)-40°C ≤ T A≤ 85°C, 4.5 V ≤ V CC≤ 20 V, 1.6 mA ≤ I F(ON)*≤ 5 mA, 0 V ≤ V F(OFF)≤ 0.8 V. All Typicals at T A = 25°C, V CC = 5 V, I F(ON) = 3 mA unless otherwise specified.*For HCPL-223X, 1.8 mA ≤ I F(ON)≤ 5 mA.†I F = 1.8 mA for HCPL-2231.‡I F = 1.8 mA for HCPL-2232.1-140Package Characteristics*The Input-Output Momentary Withstand Voltage is a dielectric voltage rating that should not be interpreted as an input-output continuous voltage rating. For the continuous voltage rating refer to the VDE 0884 Insulation Characteristics Table (if applicable), your equipment level safety specification or HP Application Note 1074 entitled “Optocoupler Input-Output Endurance Voltage,”publication number 5963-2203E.Notes:1. Each channel.2. Derate total package power dissipation, P T, linearly above 70°C free-air temperature at a rate of 4.5 mW/°C.3. Duration of output short circuit time should not exceed 10 ms.4. For single devices, input capacitance is measured between pin 2 and pin 3.5. Device considered a two-terminal device: pins 1, 2, 3, and 4 shorted together and pins 5, 6, 7, and 8 shorted together.6. The t PLH propagation delay is measured from the 50% point on the leading edge of the input pulse to the 1.3 V point on theleading edge of the output pulse. The t PHL propagation delay is measured from the 50% point on the trailing edge of the input pulse to the 1.3 V point on the trailing edge of the output pulse.7. CM H is the maximum slew rate of the common mode voltage that can be sustained with the output voltage in the logic high state,V O > 2.0 V. CM L is the maximum slew rate of the common mode voltage that can be sustained with the output voltage in the logic low state, V O < 0.8 V.8. For HCPL-2202/12, V O is on pin 6.9. Use of a 0.1 µF bypass capacitor connected between pins 5 and 8 is recommended.10. In accordance with UL 1577, each optocoupler is proof tested by applying an insulation test voltage ≥3000 V rms for one second(leakage detection current limit, I I-O≤5 µA). This test is performed before the 100% production test for partial discharge (Methodb) shown in the VDE 0884 Insulation Characteristics Table, if applicable.11. In accordance with UL 1577, each optocoupler is proof tested by applying an insulation test voltage ≥6000 V rms for one second(leakage detection current limit, I I-O≤5 µA). This test is performed before the 100% production test for partial discharge (Methodb) shown in the VDE 0884 Insulation Characteristics Table.12. For HCPL-2231/32 only. Measured between pins 1 and 2, shorted together, and pins 3 and 4, shorted together.1-1411-142I O H – H I G H L E V E L O U T P U T C U R R E N T – m A-8T A – TEMPERATURE – °C 0-5-3-1-6-7-4-2V O – O U T P U T V O L T A G E –VI F – INPUT CURRENT – mAFigure 1. Typical Logic Low Output Voltage vs. Temperature.Figure 2. Typical Logic High Output Current vs. Temperature.Figure 3. Typical Output Voltage vs.Forward Input Current.I F – F O R W A R D C U R R E N T – m AV F – FORWARD VOLTAGE – VHCPL-22XX I F – F O R W A R D C U R R E N T – m AV F – FORWARD VOLTAGE – VFigure 4. Typical Input Diode Forward Characteristic.Figure 5. Circuit for t PLH , t PHL , t r ,t f .ΩARE INCLUDED IN C 1 AND C 2.D 2D 3D 4R 1I F (ON)2.15 k Ω 1.6 mA 1.10 k Ω 3 mA681 Ω 5 mA ALL DIODES ARE 1N916 OR 1N3064.ΩARE INCLUDED IN C 1 AND C 2.D 2D 3D 4R 1I F (ON)1.96 k Ω 1.8 mA 1.10 k Ω 3 mA681 Ω 5 mA ALL DIODES ARE 1N916 OR 1N3064.F (ON)V OL* 0.1 µF BYPASS — SEE NOTE 9.V O L – L O W L E V E L O U T P U T V O L T A G E – VT A – TEMPERATURE – °C1-143t P – P R O P A G A T I O N D E L A Y – n s50T A – TEMPERATURE – °C 200250100150Figure 6. Typical Propagation Delays vs. Temperature.Figure 7. Maximum Output Power per Channel vs. Supply Voltage.V O H – H I G H L E VE L O U T P U T V O L T A G E – VV CC – SUPPLY VOLTAGE – V 1520510t r , t f – R I S E , F A L LT I M E – n sT A – TEMPERATURE – °CFigure 8. Typical Logic High Output Voltage vs. Supply Voltage.Figure 9. Typical Rise, Fall Time vs.Temperature.Figure 10. Test Circuit for Common Mode Transient Immunity and Typical Waveforms.V CM (PEAK)OUTPUT V O0 VV OH|V CM |V OLV O (MAX.)*V O (MIN.)*SWITCH AT A: I F = 1.6 mA**SWITCH AT B: V F = 0 V* SEE NOTE 7, 9.** I F = 1.8 mA FOR HCPL-2231/32 DEVICES.t P – P R O P A G A T I O N D E L AY – n s50T A – TEMPERATURE – °C 200250100150HCPL-22XX HCPL-02XXP O – M A X I M U M O U T P U T P O W E R P E R C H A NN E L (m W )V CC – SUPPLY VOLTAGE – VHCPL-2201/11 HCPL-02XX O R V FFO V FF1-144O U T P U T P O W E R – P S , I N P U T C U R R E N T – I S0T S – CASE TEMPERATURE – °C 400600800200100300500700Figure 11. Typical Input Threshold Current vs. Temperature.Figure 12. Thermal Derating Curve, Dependence of Safety Limiting Value with Case Temperature per VDE 0884.Figure 13a. Recommended LSTTL to LSTTL Circuit where 500 ns Propagation Delay is Sufficient.HCPL-2201/11 HCPL-02XX DATA INPUTV CC2 (+5 V)UP TO 16 LSTTL LOADS OR 4 TTL LOADSV CC1DATA OUTPUTI N P U T C U R R E N T T H R E S H O L D – m A0.5T A – TEMPERATURE – °C 1.00.70.80.90.6HCPL-22XXI N P U T C U R R E N T T H R E S H O L D – m AT A – TEMPERATURE – °CHCNW22XXO U T P U T P O W E R P S , I N P U T C U R R E N T I S0T S – CASE TEMPERATURE – °C1000400600800200100300500700900HCNW22XX1-145Figure 16. Series LED Drive with Open Collector Gate (4.7k Resistor Shunts I OH from the LED).Figure 14. LSTTL to CMOS Interface Circuit.HCPL-2201/11 HCPL-02XX V CC1Figure 15. Alternative LED Drive Circuit.HCPL-2201/11 HCPL-02XX DATA INPUTV CC RESISTOR MAY BE SHORTED WHERE 500 ns PROPAGATION DELAY IS SUFFICIENT.Figure 13b. Recommended LSTTL to LSTTL Circuit for Applications Requiring a Maximum Allowable Propagation Delay of 300 ns.HCPL-2201/11 HCPL-02XX DATA INPUTV CC2 (+5 V)UP TO 16 LSTTL LOADS OR 4 TTL LOADSV CC1 DATA OUTPUTDATA INPUTV CC2 **0.1 µF BYPASSV DATA OUTPUTMAY BE OMITTED AND 80 ΩRESISTOR MAY BE SHORTED WHERE 500 ns PROPAGATION DELAY IS SUFFICIENT.10 V 15 V 20 V 2.37 k Ω3.83 k Ω5.11 k Ω。
Schneider Electric M221CE40R 产品数据手册说明书
TM221CE40R TM221CE40R.T h e i n f o r m a t i o n p r o v i d e d i n t h i s d o c u m e n t a t i o n c o n t a i n s g e n e r a l d e s c r i p t i o n s a n d /o r t e c h n i c a l c h a r a c t e r i s t i c s o f t h e p e r f o r m a n c e o f t h e p r o d u c t s c o n t a i n e d h e r e i n .T h i s d o c u m e n t a t i o n i s n o t i n t e n d e d a s a s u b s t i t u t e f o r a n d i s n o t t o b e u s e d f o r d e t e r m i n i n g s u i t a b i l i t y o r r e l i a b i l i t y o f t h e s e p r o d u c t s f o r s p e c i f i c u s e r a p p l i c a t i o n s .I t i s t h e d u t y o f a n y s u c h u s e r o r i n t e g r a t o r t o p e r f o r m t h e a p p r o p r i a t e a n d c o m p l e t e r i s k a n a l y s i s , e v a l u a t i o n a n d t e s t i n g o f t h e p r o d u c t s w i t h r e s p e c t t o t h e r e l e v a n t s p e c i f i c a p p l i c a t i o n o r u s e t h e r e o f .N e i t h e r S c h n e i d e r E l e c t r i c I n d u s t r i e s S A S n o r a n y o f i t s a f f i l i a t e s o r s u b s i d i a r i e s s h a l l b e r e s p o n s i b l e o r l i a b l e f o r m i s u s e o f t h e i n f o r m a t i o n c o n t a i n e d h e r e i n .Product data sheetCharacteristicsTM221CE40Rcontroller M221 40 IO relay EthernetMainRange of product Modicon M221Product or component typeLogic controller [Us] rated supply volt-age100...240 V ACDiscrete input number 24 discrete input conforming to IEC 61131-2 Type 1including 4 fast input Analogue input number 2 at input range: 0...10 V Discrete output type Relay normally open Discrete output number 16 relay Discrete output voltage 5...250 V AC 5...125 V DC Discrete output current2 AComplementaryDiscrete I/O number40Number of I/O expansion module <= 7 with <= 48 discrete output(s) for relay output Supply voltage limits 85...264 V Network frequency 50/60 Hz Inrush current<= 40 APower consumption in VA <= 70 VA at 100...240 VDiscrete input logic Sink or source (positive/negative)Discrete input voltage 24 V Discrete input voltage type DC Analogue input resolution 10 bits LSB value 10 mVConversion time1 ms per channel + 1 controller cycle time for analog input Permitted overload on inputs +/- 15 V DC for analog input permanent+/- 30 V DC for analog input with 5 min maximum Voltage state1 guaranteed >= 15 V for input Current state 1 guaranteed >= 2.5 mA for input Voltage state 0 guaranteed <= 5 V for input Current state 0 guaranteed <= 1 mA for input Discrete input current 7 mA for inputInput impedance 100 kOhm for analog input 3.4 kOhm for discrete inputResponse time10 ms turn-off operation for output 10 ms turn-on operation for output 5 µs turn-off operation for fast input 5 µs turn-on operation for fast input100 µs turn-off operation for input; I8...I15 terminal 100 µs turn-on operation for input; I8...I15 terminal 35 µs turn-off operation for input; I2...I5 terminal 35 µs turn-on operation for input; I2...I5 terminal Configurable filtering time12 ms for input 3 ms for input 0 ms for input Output voltage limits 277 V AC 125 V DC Current per output common 8 AAbsolute accuracy error+/- 1 % of full scale for analog inputElectrical durability Inductive (L/R = 7 ms) DC-13, 24 V/ 7.2 W : 300000 cyclesInductive (L/R = 7 ms) DC-13, 24 V/ 24 W : 100000 cyclesResistive DC-12, 24 V/ 16 W : 300000 cyclesResistive DC-12, 24 V / 48 W : 100000 cyclesInductive AC-14, (cos phi = 0.7) 240 V/ 72 VA : 300000 cyclesInductive AC-14, (cos phi = 0.7) 120 V/ 36 VA : 300000 cyclesInductive AC-14, (cos phi = 0.7) 240 V/ 240 VA : 100000 cyclesInductive AC-14, (cos phi = 0.7) 120 V/ 120 VA : 100000 cyclesInductive AC-15, (cos phi = 0.35) 240 V / 36 VA : 300000 cyclesInductive AC-15, (cos phi = 0.35) 120 V/ 18 VA : 300000 cyclesInductive AC-15, (cos phi = 0.35) 240 V / 120 VA : 100000 cyclesInductive AC-15, (cos phi = 0.35) 120 V/ 60 VA : 100000 cyclesResistive AC-12, 240 V/ 160 VA : 300000 cyclesResistive AC-12, 120 V / 80 VA : 300000 cyclesResistive AC-12, 240 V/ 480 VA : 100000 cyclesResistive AC-12, 120 V / 240 VA : 100000 cyclesSwitching frequency20 switching operations/minute with maximum loadMechanical durability>= 20000000 cycles for relay outputMinimum load10 mA at 5 V DC for relay outputReset time 1 sMemory capacity256 kB for program with 10000 instructionsData backed up256 kB built-in flash memory for backup of programsData storage equipment 2 GB SD card optionalBattery type BR2032 lithium non-rechargeable, battery life: 4 yrBackup time 1 year at 25 °C by interruption of power supplyExecution time for 1 KInstruction0.3 ms for event and periodic taskExecution time per instruction0.2 µs BooleanExct time for event task60 µs response timeClock drift<= 30 s/month at 25 °CRegulation loop Adjustable PID regulator up to 14 simultaneous loopsControl signal type Single phase signal at 100 kHz for fast input (HSC mode)Pulse/Direction signal at 100 kHz for fast input (HSC mode)A/B signal at 50 kHz for fast input (HSC mode)Counting input number 4 fast input (HSC mode) (counting frequency: 100 kHz), counting capacity: 32bitsIntegrated connection type Ethernet with connector RJ45Non isolated serial link "serial 1" with connector RJ45 and interface RS232/RS485USB port with connector mini B USB 2.0Supply Serial serial link supply at 5 V 200 mATransmission rate480 Mbit/s - communication protocol: USB1.2...115.2 kbit/s (115.2 kbit/s by default) for bus length of 3 m - communicationprotocol: RS2321.2...115.2 kbit/s (115.2 kbit/s by default) for bus length of 15 m - communicationprotocol: RS485Communication port protocol Non isolated serial link : Modbus protocol master/slave - RTU/ASCII or SoMa-chine-NetworkUSB port : USB protocol - SoMachine-NetworkPort Ethernet10BASE-T/100BASE-TX 1 port with 100 m copper cableCommunication service DHCP clientModbus TCP serverModbus TCP clientModbus TCP slave deviceLocal signalling Ethernet network link yellow for Link (Link Status)Ethernet network activity green for ACT1 LED green for SL1 LED per channel green for I/O state1 LED red for BAT1 LED green for SD card access (SD)1 LED red for module error (ERR)1 LED green for RUN1 LED green for PWRElectrical connection Mini B USB 2.0 connector for a programming terminalConnector, 4 terminal(s) for analogue inputsTerminal block, 3 terminal(s) for connecting the 24 V DC power supplyRemovable screw terminal block for outputsRemovable screw terminal block for inputsCable length<= 30 m unshielded cable for output<= 10 m shielded cable for fast input<= 30 m unshielded cable for inputInsulation Non-insulated between analogue inputsNon-insulated between analogue input and internal logic500 V AC between output groups500 V AC between output and internal logicNon-insulated between inputs500 V AC between fast input and internal logic500 V AC between input and internal logicMarking CESensor power supply24 V DC at 250 mA supplied by the controllerMounting support Plate or panel with fixing kitTop hat type TH35-7.5 rail conforming to IEC 60715Top hat type TH35-15 rail conforming to IEC 60715Height70 mmDepth70 mmWidth160 mmProduct weight0.456 kgEnvironmentStandards EN/IEC 61131-2EN/IEC 61010-2-201Product certifications CSACULusIACS E10RCMResistance to electrostatic discharge 4 kV on contact conforming to EN/IEC 61000-4-28 kV in air conforming to EN/IEC 61000-4-2Resistance to electromagnetic fields 1 V/m ( 2 GHz...3 GHz) conforming to EN/IEC 61000-4-33 V/m ( 1.4 GHz...2 GHz) conforming to EN/IEC 61000-4-310 V/m ( 80 MHz...1 GHz) conforming to EN/IEC 61000-4-3Resistance to magnetic fields30 A/m at 50...60 Hz conforming to EN/IEC 61000-4-8Resistance to fast transients 1 kV for serial link conforming to EN/IEC 61000-4-41 kV for Ethernet line conforming to EN/IEC 61000-4-41 kV for I/O conforming to EN/IEC 61000-4-42 kV for relay output conforming to EN/IEC 61000-4-42 kV for power lines conforming to EN/IEC 61000-4-4Surge withstand 1 kV for relay output in differential mode conforming to EN/IEC 61000-4-51 kV for power lines (AC) in differential mode conforming to EN/IEC 61000-4-50.5 kV for power lines (DC) in differential mode conforming to EN/IEC 61000-4-51 kV for shielded cable in common mode conforming to EN/IEC 61000-4-51 kV for I/O in common mode conforming to EN/IEC 61000-4-52 kV for relay output in common mode conforming to EN/IEC 61000-4-52 kV for power lines (AC) in common mode conforming to EN/IEC 61000-4-51 kV for power lines (DC) in common mode conforming to EN/IEC 61000-4-5Resistance to conducted disturbances, induced by radio frequency fields 10 Vrms (spot frequency (2, 3, 4, 6.2, 8.2, 12.6, 16.5, 18.8, 22, 25 MHz)) con-forming to Marine specification (LR, ABS, DNV, GL)3 Vrms (0.1...80 MHz) conforming to Marine specification (LR, ABS, DNV, GL) 10 Vrms (0.15...80 MHz) conforming to EN/IEC 61000-4-6Electromagnetic emission Radiated emissions conforming to EN/IEC 55011 class A 10 m, 230 MHz (1)GHz : 47 dBμV/m QPRadiated emissions conforming to EN/IEC 55011 class A 10 m, 30...230 MHz :40 dBμV/m QPConducted emissions conforming to EN/IEC 55011 power lines, 1.5...30 MHz : 63dBμV/m QPConducted emissions conforming to EN/IEC 55011 power lines, 150 kHz...1.5MHz : 79...63 dBμV/m QPConducted emissions conforming to EN/IEC 55011 power lines, 10...150 kHz :120...69 dBµV/m QPConducted emissions conforming to EN/IEC 55011 power lines (AC), 0.5 (300)MHz : 73 dBμV/m QP/60 dBμV/m AVConducted emissions conforming to EN/IEC 55011 power lines (AC), 0.15...0.5MHz : 79 dBμV/m QP/66 dBμV/m AVImmunity to microbreaks10 msAmbient air temperature for operation-10...35 °C for vertical installation-10...55 °C for horizontal installationAmbient air temperature for storage-25...70 °CRelative humidity10...95 % without condensation in storage10...95 % without condensation in operationIP degree of protection IP20 with protective cover in placePollution degree<= 2Operating altitude0...2000 mStorage altitude0...3000 mVibration resistance 3 gn (vibration frequency: 8.4...150 Hz) on panel mounting3.5 mm (vibration frequency: 5...8.4 Hz) on panel mounting3 gn (vibration frequency: 8.4...150 Hz) on symmetrical rail3.5 mm (vibration frequency: 5...8.4 Hz) on symmetrical rail Shock resistance10 gn (test wave duration:11 ms)Product data sheetTM221CE40R Dimensions DrawingsDimensionsProduct data sheetMounting and ClearanceTM221CE40RMounting on a RailDirect Mounting on a Panel Surface(1)Install a mounting stripMounting Hole LayoutMountingCorrect Mounting PositionAcceptable Mounting PositionIncorrect Mounting PositionClearanceProduct data sheetConnections and SchemaTM221CE40RDigital InputsWiring Diagram (Positive Logic)(*)Type T fuseWiring Diagram (Negative Logic)(*)Type T fuseConnection of the Fast InputsRelay OutputsPositive Logic (Sink)(*)Type T fuse(1)The COM0, COM1, COM2 and COM3 terminals are not connected internally.(2)To improve the life time of the contacts, and to protect from potential inductive load damage, you must connect a free wheeling diode in parallel to each inductive DC load or an RC snubber in parallel of each inductive AC loadNegative Logic (Source)(*)Type T fuse(1)The COM0, COM1, COM2 and COM3 terminals are not connected internally.(2)To improve the life time of the contacts, and to protect from potential inductive load damage, you must connect a free wheeling diode in parallel to each inductive DC load or an RC snubber in parallel of each inductive AC loadAnalog InputsThe (-) poles are connected internally.Ethernet ConnectionUSB Mini-B ConnectionSL1 ConnectionSL1N.C.: not connectedProduct data sheet Performance Curves TM221CE40RDerating CurvesEmbedded Digital Inputs (No Cartridge)X :Ambient temperature Y :Input simultaneous ON ratioEmbedded Digital Inputs (with Cartridge)X :Ambient temperature Y :Input simultaneous ON ratioTM221CE40R TM221CE40R.。
希捷HMC187AMS8 187AMS8E 0.85-2.0GHz GaAs MMIC SMT 被动
For price, delivery and to place orders: Hittite Microwave Corporation, 20 Alpha Road, Chelmsford, MA 01824Phone: 978-250-3343 Fax: 978-250-3373 Order On-line at Application Support: Phone: 978-250-3343 or apps@F r e q . M u l t i p l i e r s - p A s s i V e - s M t55 - 1HMC187AMS8 / 187AMS8EGaAs MMIC SMT PASSIVE FREQUENCYDOUBLER, 0.85 - 2.0 GHz INPUTv00.0410General DescriptionFeaturesFunctional DiagramConversion loss: 15 dB Fo, 3Fo, 4Fo isolation: 40 dB input Drive level: 10 to 20 dBmElectrical Specifications, T A = +25° C, As a Function of Drive LevelTypical Applicationsthe HMC187AMs8(e) is ideal for:•Wireless local loop•lMDs, VsAt, and point-to-point radios •uNii & HiperlAN•test equipmentthe HMC187AMs8(e) is a miniature frequency dou-bler MMiC in plastic 8-lead MsOp package. the sup-pression of undesired fundamental and higher order harmonics is 40 dB typical with respect to input signal levels. the doubler uses the same diode/balun tech-nology used in Hittite MMiC mixers. the doubler is ideal for high volume applications where frequency doubling of a lower frequency is more economical than directly generating a higher frequency. the pas-sive schottky diode doubler technology contributes no measurable additive phase noise onto the multiplied signal.input = +10 dBminput = +15 dBminput = +20 dBmparameterMin.typ. Max.Min.typ. Max.Min.typ. Max.units Frequency range, input 1.25 - 1.75 1.0 - 1.750.85 - 2.0GHz Frequency range, Output 2.5 - 3.5 2.0 - 3.5 1.7 - 4.0GHz Conversion loss182214171518dB FO isolation(with respect to input level)3545dB 3FO isolation(with respect to input level)4246dB 4FO isolation(with respect to input level)3040dB* N/C denotes no internal connection, however, it is recommended to connect these pins to ground.*Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.Trademarks and registered trademarks are the property of their respective owners.For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 Phone: 781-329-4700 • Order online at Application Support: Phone: 1-800-ANALOG-DOBS OL E T EFor price, delivery and to place orders: Hittite Microwave Corporation, 20 Alpha Road, Chelmsford, MA 01824Phone: 978-250-3343 Fax: 978-250-3373 Order On-line at ApplicationSupport:Phone:******************************F r e q . M u l t i p l i e r s - p A s s i V e - s M t55 - 2Conversion Gain @ +15 dBm Drive LevelIsolation @ +15 dBm Drive Level*Input Return Loss vs. Drive LevelOutput Return Lossfor Several Input Frequencies*With respect to input level-35-30-25-20-15-10-50123456+85 C +25 C -40 CC O N V E R S I O N G A I N (d B )OUTPUT FREQUENCY (GHz)-25-20-15-10-52468102.50 GHz 1.75 GHz 1.00 GHzR E T U R N L O S S (d B )OUTPUT FREQUENCY (GHz)-90-75-60-45-30-1500246810121F03F04F0I S O L A T I O N (d B )FREQUENCY (GHz)-30-25-20-15-10-500.51 1.52 2.5317 dBm 15 dBm 13 dBm 10 dBmR E T U R N L O S S (d B )INPUT FREQUENCY (GHz)DOUBLER, 0.85 - 2.0 GHz INPUTOBS OL E T EFor price, delivery and to place orders: Hittite Microwave Corporation, 20 Alpha Road, Chelmsford, MA 01824Phone: 978-250-3343 Fax: 978-250-3373 Order On-line at Application Support: Phone: 978-250-3343 or apps@F r e q . M u l t i p l i e r s - p A s s i V e - s M t55 - 3Conversion Gain @ 25°C vs. Drive LevelOutput Return Loss with 1 GHz InputConversion Gain @ -40°C vs. Drive LevelOutput Return Loss with 2.5 GHz InputConversion Gain @ +85°C vs. Drive LevelOutput Return Loss with 1.75 GHz Input-20-15-10-512345617 dBm 15 dBm 10 dBmR E T U R N L O S S (d B )OUTPUT FREQUENCY (GHz)-35-30-25-20-15-10-5012345620 dBm 17 dBm 15 dBm13 dBm 11 dBm 9 dBmC O N V E R S I O N G A I N (d B )OUTPUT FREQUENCY (GHz)-20-15-10-5012345617 dBm 15 dBm 10 dBmR E T U R N L O S S (d B )OUTPUT FREQUENCY (GHz)-35-30-25-20-15-10-5012345620 dBm 17 dBm 15 dBm13 dBm 11 dBm 9 dBmC O N V E R S I O N G A I N (d B )OUTPUT FREQUENCY (GHz)-20-15-10-5012345617 dBm 15 dBm 10 dBmR E T U R N L O S S (d B )OUTPUT FREQUENCY (GHz)-35-30-25-20-15-10-5012345620 dBm 17 dBm 15 dBm13 dBm 11 dBm 9 dBmC O N V E R S I O N G A I N (d B )OUTPUT FREQUENCY (GHz)DOUBLER, 0.85 - 2.0 GHz INPUTOBS OL E T EFor price, delivery and to place orders: Hittite Microwave Corporation, 20 Alpha Road, Chelmsford, MA 01824Phone: 978-250-3343 Fax: 978-250-3373 Order On-line at ApplicationSupport:Phone:******************************F r e q . M u l t i p l i e r s - p As s i V e - s M t55 - 4Absolute Maximum RatingsOutline DrawingeleCtrOstAtiC seNsitiVe DeViCeOBserVe HANDliNG preCAutiONs[2] Max peak reflow temperature of 260 °C [3] 4-Digit lot number XXXXPackage InformationNOtes:1. leADFrAMe MA teriAl: COpper AllOY2. DiMeNsiONs Are iN iNCHes [MilliMeters].3. DiMeNsiON DOes NOt iNCluDe MOlDFlAsH OF 0.15mm per siDe.4. DiMeNsiON DOes NOt iNCluDe MOlDFlAsH OF 0.25mm per siDe.5. All GrOuND leADs Must Be sOlDereD tO pCB rF GrOuND.DOUBLER, 0.85 - 2.0 GHz INPUTT EFor price, delivery and to place orders: Hittite Microwave Corporation, 20 Alpha Road, Chelmsford, MA 01824Phone: 978-250-3343 Fax: 978-250-3373 Order On-line at Application Support: Phone: 978-250-3343 or apps@F r e q . M u l t i p l i e r s - p A s s i V e - s M t55 - 5Pin Descriptionpin Number Function Descriptioninterface schematic1, 4, 5, 8N/Cthese pins are not connected internally; however, all data shown herein was measured with these pins connected to rF/DC groundexternally.3, 6GNDAll ground leads must be soldered to pCB rF/DC ground.2rFiNpin is DC coupled and matched to 50 Ohms.7rFOutpin is DC coupled and matched to 50 Ohms.DOUBLER, 0.85 - 2.0 GHz INPUTOBS OL E T EFor price, delivery and to place orders: Hittite Microwave Corporation, 20 Alpha Road, Chelmsford, MA 01824 Phone: 978-250-3343 Fax: 978-250-3373 Order On-line at ApplicationSupport:Phone:******************************F r e q . M u l t i p l i e r s -p A s s i V e -sMt55 -6 Evaluation PCBList of Materials for Evaluation PCB 103313[1][1] reference this number when ordering complete evaluation pCB[2] Circuit Board Material: rogers 4350the circuit board used in the application shouldbe generated with proper rF circuit design tech-niques. signal lines should have 50 ohm imped-ance while the package N/C and ground leadsshould be connected directly to the ground planesimilar to that shown. the evaluation circuit boardshown is available from Hittite upon request.DOUBLER, 0.85 - 2.0 GHz INPUT BSO。
带预热和功率MOS管的节能灯芯片UBA2211中文规格书
UBA2211驱动CFL的半桥功率集成电路产品数据手册1.概述UBA2211是一种高压单片集成电路,采用半桥结构,用于驱动的紧凑型荧光灯(CFL)。
该系列产品提供了简单一体化的照明控制方案,适用于各种市电输入和功率范围的灯管。
专利技术和集成保护类型:·预热阶段t)和预热电流。
在启动阶-- 预热应用:可调节的预热电流控制模式,调节预热时间(ph段触发该模式-- 非预热应用:点火后,专用的辉光时间控制,最小化电极点火损害。
·电流饱和保护(SCP):在点火阶段,提供专门饱和保护。
这确保了灯电感运行在饱和电流以下,且不超过集成半桥功率管的额定电流。
·RMS电流控制f保证RMS电流为恒值。
正常工作下,将启芯片内部计算RMS电流,通过改变频率OSC动专门的RMS电流控制,保证恒定的灯电流和IC损耗,正常半桥灯管电流可以通过检测电R)来设定。
阻(SENSE·过热保护和电容模式保护在非标准条件下,过热和电容模式保护会对电路进行检测,确保系统正常关闭和在灯管达到使用寿命时,处于安全状态。
2.特性和优点2.1系统集成度·集成半桥功率晶体管UBA2211A:市电220V,导通阻抗13.5Ω,最大点火电流0.9AUBA2211B:市电220V,导通阻抗9Ω,最大点火电流1.35AUBA2211C:市电220V,导通阻抗6.6Ω,最大点火电流1.85A·集成自举二极管·集成高压供电电源2.2灯管寿命·电流控制预热,预热时间和电流可调·最小辉光时间支持冷起动·灯功率不受电源电压变化影响·点火期间电感饱和保护2.3安全性·过热保护·电容模式保护·过功率控制·灯管寿命终止时,系统自动关闭2.4 应用简单·可调工作频率,方便与各种灯管匹配·该系列各种型号包含相同的控制器功能,保证使用于各种功率范围的CFL。
SSM2211CPZ-REEL71资料
Low Distortion, 1.5 W AudioPower AmplifierSSM2211 Rev. DInformation furnished by Analog Devices is believed to be accurate and reliable. However, noresponsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. T rademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 Fax: 781.461.3113 ©2006 Analog Devices, Inc. All rights reserved.FEATURES1.5 W output1Differential (BTL2) outputSingle-supply operation: 2.7 V to 5.5 V Functions down to 1.75 VWide bandwidth: 4 MHzHighly stable phase margin: >80 degrees Low distortion: 0.2% THD + N @ 1 W output Excellent power supply rejection APPLICATIONSPortable computersPersonal wireless communicatorsHands-free telephonesSpeaker phonesIntercomsMusical toys and talking gamesFUNCTIONAL BLOCK DIAGRAMV OUT B IN–IN+SHUTDOWNBYPASSV OUT A358-1Figure 1.GENERAL DESCRIPTIONThe SSM22113 is a high performance audio amplifier that delivers 1 W rms of low distortion audio power into a bridge-connected 8 Ω speaker load (or 1.5 W rms into a 4 Ω load).It operates over a wide temperature range and is specified for single-supply voltages between 2.7 V and 5.5 V. When oper-ating from batteries, it continues to operate down to 1.75 V. This makes the SSM2211 the best choice for unregulated applications, such as toys and games. Featuring a 4 MHz bandwidth and distortion below 0.2% THD + N @ 1 W, superior performance is delivered at higher power or lower speaker load impedance than competitive units.The low differential dc output voltage results in negligible losses in the speaker winding and makes high value dc blocking capacitors unnecessary. Battery life is extended by using shutdown mode, which typically reduces quiescent current drain to 100 nA.The SSM2211 is designed to operate over the –40°C to +85°C temperature range. The SSM2211 is available in 8-lead SOIC (narrow body) and LFCSP (lead frame chip scale) surface-mount packages. The advanced mechanical packaging of the LFCSP models ensures lower chip temperature and enhanced performance relative to standard packaging options. Applications include personal portable computers, hands-free telephones and transceivers, talking toys, intercom systems, and other low voltage audio systems requiring 1 W output power.1 At R L = 4 Ω, T A = 25°C, THD + N < 1%, V S = 5 V, 4-layer PCB.2 Bridge-tied load.3 Protected by U.S. Patent No. 5,519,576.SSM2211Rev. D | Page 2 of 24TABLE OF CONTENTSFeatures..............................................................................................1 Applications.......................................................................................1 Functional Block Diagram..............................................................1 General Description.........................................................................1 Revision History...............................................................................2 Electrical Characteristics.................................................................3 Absolute Maximum Ratings............................................................5 Thermal Resistance......................................................................5 ESD Caution..................................................................................5 Pin Configurations and Function Descriptions...........................6 Typical Performance Characteristics.............................................7 Product Overview...........................................................................14 Thermal Performance—LFCSP................................................14 Typical Applications.......................................................................15 Bridged Output vs. Single-Ended Output Configurations...15 Speaker Efficiency and Loudness.............................................15 Power Dissipation.......................................................................16 Output Voltage Headroom........................................................17 Automatic Shutdown-Sensing Circuit.....................................17 Shutdown-Circuit Design Example.........................................18 Start-Up Popping Noise.............................................................18 SSM2211 Amplifier Design Example..................................18 Single-Ended Applications........................................................19 Driving Two Speakers Single Endedly.....................................19 Evaluation Board........................................................................20 LFCSP Printed Circuit Board Layout Considerations..........20 Outline Dimensions.......................................................................21 Ordering Guide.. (21)REVISION HISTORY11/06—Rev. C to Rev. DUpdated Format..................................................................Universal Changes to General Description....................................................1 Changes to Electrical Characteristics............................................3 Changes to Absolute Maximum Ratings.......................................5 Added Table 6....................................................................................6 Changes to Figure 32......................................................................11 Changes to the Product Overview Section.................................14 Changes to the Output Voltage Headroom Section...................17 Changes to the Start-Up Popping Noise Section........................18 Changes to the Evaluation Board Section...................................20 Updated Outline Dimensions.......................................................21 Changes to Ordering Guide..........................................................21 10/04—Data Sheet Changed from Rev. B to Rev. CUpdated Format..................................................................Universal Changes to General Description....................................................1 Changes to Table 5............................................................................4 Deleted Thermal Performance—SOIC Section ...........................8 Changes to Figure 31......................................................................10 Changes to Figure 40......................................................................12 Changes to Thermal Performance—LFCSP Section.................13 Deleted Figure 52, Renumbered Successive Figures..................14 Deleted Printed Circuit Board Layout—SOIC Section.............14 Changes to Output Voltage Headroom Section.........................16 Changes to Start-Up Popping Noise Section..............................17 Changes to Ordering Guide..........................................................20 10/02—Data Sheet Changed from Rev. A to Rev. BDeleted 8-Lead PDIP.........................................................Universal Updated Outline Dimensions.......................................................15 5/02—Data Sheet Changed from Rev. 0 to Rev. AEdits to General Description...........................................................1 Edits to Package Type.......................................................................3 Edits to Ordering Guide...................................................................3 Edits to Product Overview...............................................................8 Edits to Printed Circuit Board Layout Considerations.............13 Added section Printed Circuit Board LayoutConsiderations—LFCSP (14)SSM2211ELECTRICAL CHARACTERISTICSV S = 5.0 V, T A = 25°C, R L = 8 Ω, C B = 0.1 μF, V CM = V D/2, unless otherwise noted.Table 1.Parameter Symbol Conditions Min Typ Max Unit GENERAL CHARACTERISTICSDifferential Output Offset Voltage V OOS A VD = 2, –40°C ≤ T A ≤ +85°C 4 50 mVOutput Impedance Z OUT0.1 ΩSHUTDOWN CONTROLInput Voltage High V IH I SY = < 100 mA 3.0 VInput Voltage Low V IL I SY = normal 1.3 VPOWER SUPPLYPower Supply Rejection Ratio PSRR V S = 4.75 V to 5.25 V 66 dBSupply Current I SY V O1 = V O2 = 2.5 V, –40°C ≤ T A ≤ +85°C 9.5 20 mASupply Current, Shutdown Mode I SD Pin 1 = V DD (see Figure 32), –40°C < T A < +85°C 0.1 1 μA DYNAMIC PERFORMANCEGain Bandwidth GBP 4 MHz Phase Margin ΦM86 Degrees AUDIO PERFORMANCETotal Harmonic Distortion THD + N P = 0.5 W into 8 Ω, f = 1 kHz 0.15 %Total Harmonic Distortion THD + N P = 1.0 W into 8 Ω, f = 1 kHz 0.2 %Voltage Noise Density e n f = 1 kHz 85 nV√HzV S = 3.3 V, T A = 25°C, R L = 8 Ω, C B = 0.1 μF, V CM = V D/2, unless otherwise noted.Table 2.Parameter Symbol Conditions Min Typ Max Unit GENERAL CHARACTERISTICSDifferential Output Offset Voltage V OOS A VD = 2, –40°C ≤ T A ≤ +85°C 5 50 mVOutput Impedance Z OUT0.1 ΩSHUTDOWN CONTROLInput Voltage High V IH I SY = < 100 μA 1.7 VInput Voltage Low V IL I SY = normal 1 VPOWER SUPPLYSupply Current I SY V O1 = V O2 = 1.65 V, –40°C ≤ T A ≤ +85°C 5.2 20 mASupply Current, Shutdown Mode I SD Pin 1 = V DD (see Figure 32), –40°C ≤ T A ≤ +85°C 0.1 1 μAAUDIO PERFORMANCETotal Harmonic Distortion THD + N P = 0.35 W into 8 Ω, f = 1 kHz 0.1 %Rev. D | Page 3 of 24SSM2211V S = 2.7 V, T A = 25°C, R L = 8 Ω, C B = 0.1 μF, V CM = V S/2, unless otherwise noted.Table 3.Parameter Symbol Conditions Min Typ Max Unit GENERAL CHARACTERISTICSDifferential Output Offset Voltage V OOS A VD = 2 5 50 mV Output Impedance Z OUT0.1 ΩSHUTDOWN CONTROLInput Voltage High V IH I SY = < 100 mA 1.5 V Input Voltage Low V IL I SY = normal 0.8 V POWER SUPPLYSupply Current I SY V O1 = V O2 = 1.35 V, –40°C ≤ T A ≤ +85°C 4.2 20 mA Supply Current, Shutdown Mode I SD Pin 1 = V DD (see Figure 32), –40°C ≤ T A ≤ +85°C 0.1 1 μA AUDIO PERFORMANCETotal Harmonic Distortion THD + N P = 0.25 W into 8 Ω, f = 1 kHz 0.1 %Rev. D | Page 4 of 24SSM2211Rev. D | Page 5 of 24ABSOLUTE MAXIMUM RATINGSAbsolute maximum ratings apply at 25°C, unless otherwise noted. Table 4.Parameter RatingSupply Voltage6 V Input VoltageV DD Common-Mode Input Voltage V DD ESD Susceptibility2000 VStorage Temperature Range −65°C to +150°C Operating Temperature Range −40°C to +85°C Junction Temperature Range−65°C to +165°C Lead Temperature Range, Soldering (60 sec)300°CStresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operationalsection of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.THERMAL RESISTANCEθJA is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages. Table 5. Thermal ResistancePackage Type θJA Unit 8-Lead LFCSP_VD (CP-Suffix)1 50 °C/W8-Lead SOIC_N (S-Suffix)2121 °C/W1For the LFCSP_VD, θJA is measured with exposed lead frame soldered to the printed circuit board. 2For the SOIC_N, θJA is measured with the device soldered to a 4-layer printed circuit board.ESD CAUTIONSSM2211Rev. D | Page 6 of 24PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS00358-002SHUTDOWNBYPASS IN+IN–V OUT B V–V+V OUTA1SHUTDOWN 2BYPASS 3IN+4IN–7V–8V OUT B 6V+5V OUT A00358-003Figure 2. 8-Lead SOIC_N Pin Configuration (R-8)Figure 3. 8-Lead LFCSP_VD Pin Configuration (CP-8-2)Table 6. Pin Function DescriptionsPin No. Mnemonic Description 1 SHUTDOWN Shutdown Enable. 2 BYPASS Bypass Capacitor. 3 I N+ Noninverting Input. 4 I N– I nverting I nput. 5 V OUT A Output A. 6 V+ Positive Supply. 7 V– Negative Supply. 8 V OUT B Output B.SSM2211Rev. D | Page 7 of 24TYPICAL PERFORMANCE CHARACTERISTICSFREQUENCY (Hz)T H D + N (%)1010.012010020k1k10k 0.100358-004Figure 4. THD + N vs. FrequencyFREQUENCY (Hz)T H D + N (%)1010.010.100358-005Figure 5. THD + N vs. FrequencyFREQUENCY (Hz)T H D + N (%)1010.010.100358-006Figure 6. THD + N vs. Frequency FREQUENCY (Hz)T H D + N (%)1010.012010020k1k10k 0.100358-007Figure 7. THD + N vs. FrequencyFREQUENCY (Hz)T H D + N (%)1010.012010020k1k10k 0.100358-008Figure 8. THD + N vs. FrequencyFREQUENCY (Hz)T H D + N (%)1010.010.100358-009Figure 9. THD + N vs. FrequencySSM2211Rev. D | Page 8 of 24P OUTPUT (W)T H D + N (%)1010.0120n0.120.1100358-010Figure 10. THD + N vs. P OUTPUTP OUTPUT (W)T H D + N (%)1010.010.100358-011Figure 11. THD + N vs. P OUTPUTP OUTPUT (W)T H D + N (%)1010.010.100358-012Figure 12. THD + N vs. P OUTPUT FREQUENCY (Hz)T H D + N (%)1010.012010020k1k10k0.100358-013Figure 13. THD + N vs. FrequencyFREQUENCY (Hz)T H D + N (%)1010.012010020k1k10k 0.100358-014Figure 14. THD + N vs. FrequencyFREQUENCY (Hz)T H D + N (%)1010.010.100358-015Figure 15. THD + N vs. FrequencySSM2211Rev. D | Page 9 of 24P OUTPUT (W)T H D + N (%)1010.0120n0.120.1100358-016Figure 16. THD + N vs. P OUTPUTP OUTPUT (W)T H D + N (%)1010.0120n0.120.1100358-017Figure 17. THD + N vs. P OUTPUTP OUTPUT (W)T H D + N (%)1010.010.100358-018Figure 18. THD + N vs. P OUTPUTFREQUENCY (Hz)T H D + N (%)1010.012010020k1k10k 0.100358-019Figure 19. THD + N vs. FrequencyFREQUENCY (Hz)T H D + N (%)1010.012010020k1k10k0.100358-020Figure 20. THD + N vs. FrequencyFREQUENCY (Hz)T H D + N (%)1010.012010020k1k10k0.100358-021Figure 21. THD + N vs. FrequencySSM2211Rev. D | Page 10 of 24P OUTPUT (W)T H D + N (%)1010.0120n0.120.1100358-022Figure 22. THD + N vs. P OUTPUTP OUTPUT (W)T H D + N (%)1010.010.100358-023Figure 23. THD + N vs. P OUTPUTP OUTPUT (W)T H D + N (%)1010.0120n0.120.1100358-024Figure 24. THD + N vs. P OUTPUT FREQUENCY (Hz)T H D + N (%)1010.010.100358-025Figure 25. THD + N vs. FrequencyFREQUENCY (Hz)T H D + N (%)1010.012010020k1k10k 0.100358-026Figure 26. THD + N vs. FrequencyFREQUENCY (Hz)T H D + N (%)1010.012010020k1k10k0.100358-027Figure 27. THD + N vs. FrequencySSM2211P OUTPUT (W)T H D + N (%)1010.0120n0.120.1100358-028Figure 28. THD + N vs. P OUTPUTP OUTPUT (W)T H D + N (%)1010.010.100358-029Figure 29. THD + N vs. P OUTPUTP OUTPUT (W)T H D + N (%)1010.0120n0.120.1100358-030Figure 30. THD + N vs. P OUTPUT AMBIENT TEMPERATURE (°C)M A X I M U M P O W E R D I S S I P A T I O N (W )0358-0310.51.01.52.02.53.03.54.0–40–30–20–100103070204050609080110100120Figure 31. Maximum Power Dissipation vs. Ambient TemperatureSHUTDOWN VOLTAGE AT PIN 1 (V)S U P P L Y C U R R E N T (µA )10k8k0512346k4k2k00358-032Figure 32. Supply Current vs. Shutdown Voltage at Pin 1SUPPLY VOLTAGE (V)S U P P L Y C U R R E N T (m A )1401623451210842600358-033Figure 33. Supply Current vs. Supply VoltageSSM2211LOAD RESISTANCE (Ω)O U T P U T P O W E R (W )1.60.6048481216202428323640441.40.80.40.21.21.000358-034Figure 34. P OUTPUT vs. Load ResistanceFREQUENCY (Hz)G A I N (d B )80–60–80–40–2002040601001k 100M10k 100k 1M 10MP H A S E S H I F T (D e g r e e s )180–135–180–90–450459013500358-035Figure 35. Gain and Phase Shift vs. Frequency (Single Amplifier) OUTPUT OFFSET VOLTAGE (mV)F R E Q U E N C Y25200–20–1525–10–5010152051510500358-036Figure 36. Output Offset Voltage DistributionOUTPUT OFFSET VOLTAGE (mV)F R E Q U E N C Y20160–30–2030–1001020128400358-037Figure 37. Output Offset Voltage DistributionSSM2211OUTPUT OFFSET VOLTAGE (mV)20160–30–2030–10010201284F R E Q U E N C Y00358-038Figure 38. Output Offset Voltage DistributionSUPPLY CURRENT (mA)F R E QU E N C Y600300678910111213141550040020010000358-039Figure 39. Supply Current DistributionFREQUENCY (Hz)P S R R (d B )–702010030k1k10k–65–60–55–5000358-040Figure 40. PSRR vs. FrequencySSM2211PRODUCT OVERVIEWThe SSM2211 is a low distortion speaker amplifier that can run from a 2.7 V to 5.5 V supply. It consists of a rail-to-rail input and a differential output that can be driven within 400 mV of either supply rail while supplying a sustained output current of 350 mA. The SSM2211 is unity-gain stable, requiring no external compensation capacitors, and can be configured for gains of up to 40 dB. Figure 41 shows the simplified schematic.V O1V V O200358-041Figure 41. Simplified SchematicPin 4 and Pin 3 are the inverting and noninverting terminals to A1. An offset voltage is provided at Pin 2, which should be connected to Pin 3 for use in single-supply applications. The output of A1 appears at Pin 5. A second operational amplifier, A2, is configured with a fixed gain of A V = −1 and produces an inverted replica of Pin 5 at Pin 8. The SSM2211 outputs at Pin 5 and Pin 8 produce a bridged configuration output to which a speaker can be connected. This bridge configuration offers the advantage of a more efficient power transfer from the input to the speaker. Because both outputs are symmetric, the dc bias at Pin 5 and Pin 8 are exactly equal, resulting in zero dc differ-ential voltage across the outputs. This eliminates the need for a coupling capacitor at the output.THERMAL PERFORMANCE—LFCSPThe addition of the LFCSP to the Analog Devices, Inc., package portfolio offers the SSM2211 user even greater choice when considering thermal performance criteria. For the 8-lead, 3 mm × 3 mm LFCSP , the θJA is 50°C/W . This is a significant performance improvement over most other packaging options.SSM2211TYPICAL APPLICATIONSAUDIO INPUTSPEAKER8V00358-042Figure 42. Typical ConfigurationFigure 42 shows how the SSM2211 is connected in a typical application. The SSM2211 can be configured for gain much like a standard operational amplifier. The gain from the audio input to the speaker isI F V R R A ×=2 (1)The 2× factor comes from the fact that Pin 8 has the opposite polarity of Pin 5, providing twice the voltage swing to thespeaker from the bridged-output configuration.C S is a supply bypass capacitor used to provide power supply filtering. Pin 2 is connected to Pin 3 to provide an offset voltage for single-supply use, with C B providing a low ac impedance to ground to help power supply rejection. Because Pin 4 is avirtual ac ground, the input impedance is equal to R I . C C is the input coupling capacitor, which also creates a high-pass filter with a corner frequency ofCI HP C R f ×π=21 (2) Because the SSM2211 has an excellent phase margin, a feedbackcapacitor in parallel with R F to band limit the amplifier is not required, as it is in some competitor products. BRIDGED OUTPUT VS. SINGLE-ENDED OUTPUTCONFIGURATIONSThe power delivered to a load with a sinusoidal signal can beexpressed in terms of the peak voltage of the signal and theresistance of the load asLPK L R V P ×=22 (3)By driving a load from a bridged-output configuration, the voltage swing across the load doubles. Therefore, an advantage in using a bridged-output configuration becomes apparent from Equation 3, as doubling the peak voltage results in four timesthe power delivered to the load. In a typical applicationoperating from a 5 V supply, the maximum power that can be delivered by the SSM2211 to an 8 Ω speaker in a single-ended configuration is 250 mW . By driving this speaker with a bridged output, 1 W of power can be delivered. This translates to a 12 dB increase in sound pressure level from the speaker. Driving a speaker differentially from a bridged output offers another advantage in that it eliminates the need for an output coupling capacitor to the load. In a single-supply application, the quiescent voltage at the output is half of the supply voltage. If a speaker is connected in a single-ended configuration, acoupling capacitor is needed to prevent dc current from flowing through the speaker. This capacitor also needs to be largeenough to prevent low frequency roll-off. The corner frequency is given byCL C R f ×=−π21dB 3 (4)where R L is the speaker resistance and C C is the couplingcapacitance. For an 8 Ω speaker and a corner frequency of 20 Hz, a 1000 μF capacitor would be needed, which is physically large and costly. By connecting a speaker in a bridged-output configuration, the quiescent differential voltage across the speaker becomes nearly zero, eliminating the need for the coupling capacitor.SPEAKER EFFICIENCY AND LOUDNESSThe effective loudness of 1 W of power delivered into an 8 Ω speaker is a function of speaker efficiency. The efficiency is typically rated as the sound pressure level (SPL) at 1 meter infront of the speaker with 1 W of power applied to the speaker.Most speakers are between 85 dB and 95 dB SPL at 1 meter at 1 W . Table 7 shows a comparison of the relative loudness ofdifferent sounds.Table 7. Typical Sound Pressure LevelsSource of Sound dB SPLThreshold of Pain 120 Heavy Street Traffic95 Cabin of Jet Aircraft80 Average Conversation65 Average Home at Night50 Quiet Recording Studio30 Threshold of Hearing 0It can easily be seen that 1 W of power into a speaker can produce quite a bit of acoustic energy.SSM2211POWER DISSIPATIONAnother important advantage in using a bridged-output config-uration is the fact that bridged-output amplifiers are more efficient than single-ended amplifiers in delivering power to a load. Efficiency is defined as the ratio of power from the power supply to power delivered to the loadSYLP P =η An amplifier with a higher efficiency has less internal power dissipation, which results in a lower die-to-case junction tem-perature as compared to an amplifier that is less efficient. This is important when considering the amplifier maximum power dissipation rating vs. ambient temperature. An internal power dissipation vs. output power equation can be derived to fully understand this.The internal power dissipation of the amplifier is the internal voltage drop multiplied by the average value of the supply current. An easier way to find internal power dissipation is to measure the difference between the power delivered by the supply voltage source and the power delivered into the load. The waveform of the supply current for a bridged-outputamplifier is shown in Figure 43.00358-043V OUT V PEAKI SYI DD, PEAKFigure 43. Bridged Amplifier Output Voltage and Supply Current vs. TimeBy integrating the supply current over a period, T, then dividing the result by T, I DD,AVG can be found. Expressed in terms of peak output voltage and load resistanceLPEAK AVG DD R V I π2,=(5) Therefore, power delivered by the supply, neglecting the bias current for the device, is LPEAK DD SY R V V P π×=2(6) The power dissipated by the amplifier internally is simply the difference between Equation 6 and Equation 3. The equation for internal power dissipated, P DISS , expressed in terms of power delivered to the load and load resistance, isLPEAKDD DISS R V V P π×=22 (7)The graph of this equation is shown in Figure 44.OUTPUT POWER (W)1.50 1.5P O W E R D I S S I P A T I O N (W )0.5 1.01.00.500358-044Figure 44. Power Dissipation vs. Output Power with V DD = 5 VBecause the efficiency of a bridged-output amplifier (Equation 3 divided by Equation 6) increases with the square root of P L , the power dissipated internally by the device stays relatively flat and actually decreases with higher output power. The maximum power dissipation of the device can be found by differentiating Equation 7 with respect to load power and setting the derivative equal to zero. This yields01221=−×π×=∂∂−LL DDLDISS P R V P P (8)and occurs whenLDD MAX DISS R V P 22,π2=(9)Using Equation 9 and the power derating curve in Figure 31, the maximum ambient temperature can be found easily. This ensures that the SSM2211 does not exceed its maximumjunction temperature of 150°C. The power dissipation for asingle-ended output application where the load is capacitively coupled is given byL L LDDDISS P P R V P −×π×=∂22 (10)The graph of Equation 10 is shown in Figure 45.SSM2211OUTPUT POWER (W)00.40.1P O W E R D I S S I P A T I O N (W )0.20.300358-045Figure 45. Power Dissipation vs. Single-Ended Output Powerwith V DD = 5 V The maximum power dissipation for a single-ended output isLDDMAX DISS R V P 22,π2=(11) OUTPUT VOLTAGE HEADROOMThe outputs of both amplifiers in the SSM2211 can come towithin 400 mV of either supply rail while driving an 8 Ω load. As compared to equivalent competitor products, the SSM2211 has a higher output voltage headroom. This means that the SSM2211 can deliver an equivalent maximum output power while running from a lower supply voltage. By running at a lower supply voltage, the internal power dissipation of the device is reduced, as can be seen in Equation 9. This extended output headroom, along with the LFCSP package, allows the SSM2211 to operate in higher ambient temperatures than competitor devices.The SSM2211 is also capable of providing amplification even at supply voltages as low as 2.7 V . The maximum power available at the output is a function of the supply voltage. Therefore, as the supply voltage decreases, so does the maximum power output from the device. The maximum output power vs. supply voltage at various bridge-tied load resistances is shown in Figure 46. The maximum output power is defined as the point at which the output has 1% total harmonic distortion (THD + N). To find the minimum supply voltage needed to achieve a specified maximum undistorted output power use Figure 46. For example, an application requires only 500 mW to be output for an 8 Ω speaker. With the speaker connected in a bridged-output configuration, the minimum supply voltage required is 3.3 V.SUPPLY VOLTAGE (V)M A X P O U T @ 1% T H D (W )1.61.00.80.40.21.41.20.600358-046Figure 46. Maximum Output Power vs. V SYShutdown FeatureThe SSM2211 can be put into a low power consumption shut-down mode by connecting Pin 1 to 5 V . In shutdown mode, the SSM2211 has an extremely low supply current of less than 10 nA. This makes the SSM2211 ideal for battery-powered applications. Connect Pin 1 to ground for normal operation. Connecting Pin 1 to V DD mutes the outputs and puts the device into shutdown mode. A pull-up or pull-down resistor is not required. Pin 1 should always be connected to a fixed potential, either V DD or ground, and never be left floating. Leaving Pin 1 unconnected can produce unpredictable results.AUTOMATIC SHUTDOWN-SENSING CIRCUITFigure 47 shows a circuit that can be used to take the SSM2211 in and out of shutdown mode automatically. This circuit can be set to turn the SSM2211 on when an input signal of a certain amplitude is detected. The circuit also puts the device into low power shutdown mode if an input signal is not sensed within a certain amount of time. This can be useful in a variety ofportable radio applications, where power conservation is critical.V INADDITIONAL PINS OMITTED FOR CLARITY00358Figure 47. Automatic Shutdown Circuit。
LED驱动方案的过流保护应用分享
LED驱动方案的过流保护应用分享【大比特导读】本文选择与明微电子最新线性恒流LED驱动IC SM2211E 的应用案例来说明在高压线性电源的最佳过流保护应用。
AEM SMD 250VAC应用保险丝(AirMatrix Surface Mount fuses)自推向市场以来,以体积小、SMT生产工艺、高抗浪涌能力、环保设计(无铅无卤)、波峰焊与回流焊皆宜生产等的超高性价比,迅速在固态照明、AC/DC电源、电子镇流器、小家电设备等交流应用场合获得广泛推广应用。
本文选择与明微电子最新线性恒流LED驱动IC SM2211E的应用案例来说明在高压线性电源的最佳过流保护应用。
SM2211E是一款可分段调节亮度/色温的LED恒流驱动芯片,适用于200Vac~240Vac或90Vac~130Vac输入电压,应用于LED恒流驱动,可设计T5/T8系列LED日光灯管,LED球泡灯/吸顶灯应用领域。
上图为球泡灯的典型应用。
如下线路的典型调光应用电路图从明微的应用情况了解到,AEM的MF2410 系列料号的250Vac SMD fuse十分契合其电路的设计保护要求,主要体现在下列几点:1、小体积。
适合全贴片化的生产工艺,最大限度提升LED灯产能;同时省却人工成本。
2、在低过载过流或半短路情况下迅速动作断开,具备安全可靠的保护功能。
3、具备高抗浪涌能力的保护,如2A fuse在SM2211E系统的测试中,满足1KV以上的浪涌测试或1.5KV(加MOV)测试。
4、无有害物质和抗硫化的能力,完全满足LED灯环保的要求。
明微电子深耕LED照明电源驱动市场,AEM专注新型贴片保护元器件的开发和生产,二者强强联合的方案应用将进一步促进LED照明上下游产业朝更高的应用水平迈进。
本文由大比特资讯收集整理()。
D200E中文资料
MicroPower Direct292 Page StreetSuite DStoughton, MA 02072USAT: (781) 344-8226F: (781) 344-8481E: sales@ W: RoHS CompliantKey Features:• 2W Output Power • Miniature SIP Case• UL Approved (File E245422)• Single & Dual Outputs • 1,000 VDC Isolation • >3.5 MHour MTBF • 24 Standard Models •LOWEST COST!!D200E Low Cost, 2W SIPSingle & Dual Output DC/DC Con v ert e rsSeriesInputParameterConditionsMin.Typ.Max.UnitsInput Voltage Range 5 VDC Input 4.5 5.0 5.5VDC 12 VDC Input 10.812.013.224 VDC Input21.624.026.4Input FilterInternal CapacitorReverse Polarity Input Current0.3A OutputParameterConditionsMin.Typ.Max.Units Output Voltage Accuracy ±1.0±3.0%Output Voltage Balance Dual Output , Balanced Loads±0.1±1.0%Line Regulation For Vin Change of 1%±1.2%Load Regulation See Model Selection GuideRipple & Noise (20 MHz)100150mV P - P Output Power Protection 120%Temperature Coeffi cient ±0.02±0.03%/ºC Output Short CircuitMomentary (1.0 Sec.)GeneralParameter ConditionsMin.Typ.Max.Units Isolation Voltage 60 Seconds 1,000VDC Isolation Resistance 500 VDC 1,000M ΩIsolation Capacitance 100 kHz, 1V60pF Switching Frequency75kHz EnvironmentalParameterConditionsMin.Typ.Max.Units Operating Temperature Range Ambient-40+25+85ºC Storage Temperature Range -55+125ºCCooling Free Air ConvectionHumidityRH, Non-condensing95%PhysicalCase Size (5V 12V & 24V Input Models)0.77 x 0.28 x 0.40 Inches (19.6 x 7.0 x 10.2 mm)Case Material Non-Conductive Black Plastic (UL94-V0)Weight0.07 Oz (2.1g)Reliability Specifi cationsParameter ConditionsMin.Typ.Max.Units MTBFMIL HDBK 217F , 25ºC, Gnd Benign3.5MHoursSafety Standards UL 1950, EN 60950, IEC 60950Safety ApprovalsUL, cUL; File No. E245422Absolute Maximum RatingsParameterConditionsMin.Typ.Max.UnitsInput Voltage Surge (1 Sec) 5 VDC Input -0.79.0VDC 12 VDC Input -0.718.024 VDC Input-0.730.0Lead Temperature 1.5 mm From Case For 10 Sec300ºC Internal Power DissipationAll Models450mW Caution: Exceeding Absolute Maximum Ratings may damage the module. These are not continuous operating ratings.Electrical Specifi cationsSpecifi cations typical @ +25°C, nominal input voltage & rated output current, unless otherwise noted. Specifi cations subject to change without notice.Notes:• All dimensions are typical in inches (mm)• Tolerance x.xx = ±0.01 (±0.25)• Pin 1 is marked by a “dot” or indentation on the side of the unitModel Number InputOutput LoadRegulation (%, Max) Effi ciency(%, Typ)Fuse Rating Slow-Blow (mA)Voltage (VDC)Current (mA)Voltage (VDC)Current (mA, Max)Current(mA, Min)Nominal RangeFull-Load No-LoadD201E 5 4.5 - 5.549430 5.0400.040.015811,000D202E 5 4.5 - 5.5488309.0222.023.015821,000D203E 5 4.5 - 5.54763012.0167.017.015841,000D204E 5 4.5 - 5.54763015.0133.014.015841,000D205E 5 4.5 - 5.548830±5.0±200.0±20.015821,000D206E 5 4.5 - 5.548230±9.0±111.0±12.015831,000D207E 5 4.5 - 5.547030±12.0±83.0±9.015851,000D208E 5 4.5 - 5.547030±15.0±67.0±7.015851,000D211E 1210.8 - 13.220315 5.0400.040.01582500D212E 1210.8 - 13.2201159.0222.023.01583500D213E 1210.8 - 13.21961512.0167.017.01585500D214E 1210.8 - 13.21961515.0133.014.01585500D215E 1210.8 - 13.220115±5.0±200.0±20.01583500D216E 1210.8 - 13.219815±9.0±111.0±12.01584500D217E 1210.8 - 13.219415±12.0±83.0±9.01586500D218E 1210.8 - 13.219415±15.0±67.0±7.01586500D221E 2421.6 - 26.41008 5.0400.040.01583200D222E 2421.6 - 26.49989.0222.023.01584200D223E 2421.6 - 26.497812.0167.017.01586200D224E 2421.6 - 26.497815.0133.014.01586200D225E 2421.6 - 26.4998±5.0±200.0±20.01584200D226E 2421.6 - 26.4988±9.0±111.0±12.01585200D227E 2421.6 - 26.4968±12.0±83.0±9.01587200D228E2421.6 - 26.4968±15.0±67.0±7.01587200Pin Single Dual Pin Single Dual 1+Vin +Vin 5No Pin Common 2-Vin -Vin 6+Vout+Vout4-Vout-VoutDerating Curve gNotes:1. Output load regulation is specifi ed for a load change of 10% to 100%.2. T hese units should not be operated with a load under 10% of full load. Operation at no-load may cause damage to the unit.3. These converters will operate without external components. However, when measuring output ripple, it is recommended that an external ceramic capacitor be placed from the +Vout pin to the -Vout pin for single output units and from each out-put to common for dual output units. An input capacitor will enhance stability over temperature and input line variations. Recommended capacitor values are given in the table below. For applications requiring very low output noise levels, a simple LC fi lter should be effective.4. D ual output units may be connected to provide a 10V, 18V, 24V or 30 VDC output. To do this, connect the load across the posi-tive (+Vout) and negative (-Vout) outputs and fl oat the output common5. It is recommended that a fuse be used on the input of a power supply for protection. See the Model Selection table above forthe correct rating.Vin InputCapacitor VoutOutput Capacitor Single Dual5 VDC 4.7 µF 5 VDC 10.0 µF 4.7 µF 12 VDC 2.2 µF 9 VDC 4.7 µF 2.2 µF 24 VDC 1.0 µF 12 VDC 2.2 µF 1.0 µF15 VDC 1.0 µF 0.47 µF MicroPower Direct292 Page Street Ste D Stoughton, MA 02072 • TEL: (781) 344-8226 • FAX: (781) 344-8481 • E-Mail: sales@Model Selection GuideMechanical DimensionsPin Connections。
OPA2211中文资料
ü
ü
ห้องสมุดไป่ตู้
ü
ü
ü
ü
ü
ü
ü
ü
ü
ü
ü
ü
PACKAGE DESIGNATOR
DRG DCK
D DRG DCK
DRG DCK
D DRG DCK
PACKAGE MARKING
TBD TBD TBD TBD TBD
TBD TBD TBD TBD TBD
(1) For the most current package and ordering information see the Package Option Addendum at the end of this document, or see the TI web site at .
元器件交易网
PRODUCT PREVIEW
BurrĆBrown Products from Texas Instruments
OPA211
OPA211
OPA2211
OPA2211
OPA211 OPA2211
SBOS377A – OCTOBER 2006 – REVISED FEBRUARY 2007
All trademarks are the property of their respective owners.
PRODUCT PREVIEW information concerns products in the formative or design phase of development. Characteristic data and other specifications are design goals. Texas Instruments reserves the right to change or discontinue these products without notice.
AN221E04-QFPTR中文资料
AN221E04 Datasheet Dynamically Reconfigurable FPAA With Enhanced I/ODisclaimerAnadigm reserves the right to make any changes without further notice to any products herein. Anadigm makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Anadigm assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including with out limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Anadigm does not in this document convey any license under its patent rights nor the rights of others. Anadigm software and associated products cannot be used except strictly in accordance with an Anadigm software license. The terms of the appropriate Anadigm software license shall prevailover the above terms to the extent of any inconsistency.© Anadigm® Ltd. 2003© Anadigm®, Inc. 2003All Rights Reserved.AN221E04 Datasheet – Dynamically Reconfigurable FPAA With Enhanced I/OPRODUCT AND ARCHITECTURE OVERVIEWThe AN221E04 device consists of a 2x2 matrix of fully Configurable Analog Blocks (CABs), surrounded by a fabric of programmable interconnect resources. Configuration data is stored in an on-chip SRAM configuration memory. Compared with the first-generation FPAAs, the Anadigmvortex architecture provides a significantly improved signal-to-noise ratio as well as higher bandwidth. These devices also accommodate nonlinear functions such as sensor response linearization and arbitrary waveform synthesis.The AN221E04 device features an advanced input/output structure that allows the FPAA to be programmed with up to six outputs – or triple the number provided by the ANx20E04 devices. The AN221E04 devices have four configurable I/O cells and two dedicated output cells. For I/O-intensive applications, this means a single FPAA can now be used to process multiple channels of analog signals where two or more such devices were previously needed.In addition, the AN221E04 devices allow designers to implement an integrated 8-bit analog-to-digital converter on the FPAA, eliminating the potential need for an external converter. Using this new device, designers can route the digital output of the A/D converter off-chip using one of the dedicated output cells.Figure 1: Architectural overview of the AN221E04 device With dynamic reconfigurability, the functionality of the AN221E04 can be reconfigured in-system by the designer or on-the-fly by a microprocessor. A single AN221E04 can thus be programmed to implement multiple analog functions and/or to adapt on-the-fly to maintain precision operation despite system degradation and aging.PRODUCT FEATURES•Dynamic reconfiguration•Four configurable I/O cells, two dedicated output cells•8-bit SAR analog–to–digital converter• Fullydifferentialarchitecture•Fully differential I/O buffering with options for single ended to differential conversion•Low input offset through chopper stabilized amplifiers•256 Byte Look-Up Table (LUT) for linearization and arbitrary signal generation•4:1 Input multiplexer•Typical Signal Bandwidth: DC-2MHz (Bandwidth is CAM dependent)•Signal to Noise Ratio:o Broadband80dBo Narrowband(audio)100dB•Total Harmonic Distortion (THD): 80dB•DC offset <100µV•Package: 44-pin QFP (10x10x2mm)o Lead pitch 0.8mm•Supply voltage: 5VORDERING CODESAN221E04-QFPSP Dynamically reconfigurable FPAASample PackAN221E04-QFPTY Dynamically reconfigurable FPAATray (96 pcs)AN221E04-QFPTR Dynamically reconfigurable FPAATape & Reel (1000 pcs)AN221D04-EVAL AN221E04 Evaluation KitAN221D04-DEVLP AN221E04 Development Kit APPLICATIONS•Real-time software control of analog system peripherals • Intelligentsensors•Adaptive filtering and control•Adaptive DSP front-end•Adaptive industrial control and automation• Self-calibratingsystems•Compensation for aging of system components•Dynamic recalibration of remote systems•Ultra-low frequency signal conditioning•Custom analog signal processing[For more detailed information on the features of the AN221E04 device, please refer to the AN121E04/AN221E04 User Manual]AN221E04 Datasheet – Dynamically Reconfigurable FPAA With Enhanced I/OELECTRICAL CHARACTERISTICSAbsolute Maximum RatingsParameter Symbol Min Typ Max Unit CommentDC Power SuppliesAVDD(2) BVDD DVDD-0.5 - 5.5 V VAVSS, BVSS, DVSS and SVSS allheld to 0.0 V a xVDD to xVDD Offset-0.50.5VIdeally all supplies should be at the same voltagePackage Power Dissipation Pmax 25°C Pmax 85°C - - 1.80.73 WStill air, No heatsink, 4 layer board, 44 pins. θja = 55°C/W Analog and Digital Input Voltage Vinmax Vss-0.5 - Vdd+0.5 V Ambient Operating Temperature Top -40 - 85 °CStorage TemperatureTstg -65 150 °CaAbsolute Maximum DC Power Supply Rating - The failure mode is non-catastrophic for Vdd of up to 7 volts, but will cause reducedoperating life time. The additional stress caused by higher local electric fields within the CMOS circuitry may induce metal migration, oxide leakage and other time/quality related issues.Recommended Operating ConditionsParameter Symbol Min Typ Max Unit CommentDC Power SuppliesAVDD(2) BVDD DVDD 4.75 5.00 5.25 VAVSS, BVSS, DVSS and SVSS allheld to 0 V Analog Input Voltage. Vina VMR-1.9 - VMR+1.9V VMR is 2.0 volts above AVSS Digital Input Voltage Vind 0- DVDD VJunction TempTj-40-125°CAssume a package θja = 55°C/W bbIn order to calculate the junction temperature you must first empirically determine the current draw (total Idd) for the design. Once the current consumption established then the following formula can be used; Tj = Ta + Idd x Vdd x 55 °C/W, where Ta is the ambient temperature. The worst case θja of 55 °C/W assumes no air flow and no additional heatsink of any type.General Digital I/O Characteristics (Vdd = 5v +/- 10%, -40 to 85 deg.C)Parameter Symbol Min Typ Max Unit CommentInput Voltage Low Vih 0 - 30 - % of DVDD Input Voltage High Vil 70 - 100 - % of DVDD Output Voltage Low Vol 0 - 20 - % of DVDD Output Voltage High Voh 80 - 100 - % of DVDDInput Leakage Current Iil--±1.0µAAll pins except DCLKInput Leakage Current Iil - ±12.0 - µADCLK if a crystal is connected andthe on-chip oscillator is used Max. Capacitive Load Cmax - - 10 pFThe maximum load for a digitaloutput is 10 pF // 10 Kohm Min. Resistive Load Rmin 10 - - KohmThe maximum load for a digitaloutput is 10 pF // 10 Kohm DCLK Frequency Fmax - - 40 MHzFor MODE = 1, Max DCLK is16 MHzACLK Frequency Fmax - - 40 MHzDivide down to <8 MHz prior to useas a CAB clockClock Duty Cycle- 45 - 55 % All clocksAN221E04 Datasheet – Dynamically Reconfigurable FPAA With Enhanced I/ODetailed Digital I/O Interface Characteristics: Vdd = 5.0voltsLCCbParameter Symbol Min Typ Max Unit CommentOutput Voltage Low Vol Vss - 150 mV Load 20pF//50Kohm to Vss Output Voltage High Voh 4.5 - Vdd V Load 20pF//50Kohm to VssMax. Capacitive Load Cmax - - 20 pF Maximum load 20 pF // 50 Kohm Min. Resistive Load Rmin 50 - - Kohm Maximum load 20 pF // 50 Kohm Current Sink Isnkmax - - 15 mA LCCb pin shorted to Vdd Current SourceIsrcmax--4mALCCb pin shorted to VssCFGFLG, ACTIVATEParameter Symbol Min Typ Max Unit CommentInput Voltage Low Vil 0 30 % % of DVDD Input Voltage High Vih70100%% of DVDD Output Voltage Low Vol Vss - 85 mVPin load =Internal pullup + 20pF//50K to Vss Output Voltage High Voh 4.5 - Vdd VPin load =Internal pullup + 20pF//50K to Vss Output Voltage Low Vol Vss - 200 mV Pin Load =External 5K ohm pullup +20pF//50K to Vss Output Voltage High Voh 4.5 - Vdd V Pin Load =External 5Kohm pullup +20pF//50K to VssMax. Capacitive Load Cmax - - 50 pF Maximum load 50 pF // 50 Kohm Min. Resistive Load Rmin 50 - - Kohm Maximum load 50 pF // 50 Kohm Current Sink Isnkmax - - 2.5 mA Pin shorted to Vdd Current SourceIsrcmax - - 200 µA Pin shorted to VssExternal Resistive PullupRpullupext 5 7.5 10 KohmUse only if internal pullup isdeselectedERRbParameter Symbol Min Typ Max Unit CommentInput Voltage LowVil 0 30 % % of DVDD Input Voltage High Vih 70 100 % % of DVDD Output Voltage Low Vol Vss - 50 mV Output Voltage High Voh 4.9 - Vdd V Max. Capacitive Load Cmax - - 50 pF Maximum load 50 pF // 50 Kohm Min. Resistive Load Rmin 50 - - Kohm Maximum load 50 pF // 50 Kohm Current Sink Isnkmax - - 10 mA Current SourceIsrcmax - - 0 µA External Resistive PullupRpullupext 10 10 10 KohmDCLK,Mode,DIN,EXECUTE,PORb,CS1b,CS2bParameter Symbol Min Typ Max Unit CommentInput Voltage LowVil 0 - 30 % % of DVDD Input Voltage HighVih70-100%% of DVDDAN221E04 Datasheet – Dynamically Reconfigurable FPAA With Enhanced I/O OUTCLK/SPIMEM,DOUTCLKMaxCommentUnitParameter SymbolMinTypOutput Voltage Low Vol 0 - 20 % % of DVDDOutput Voltage High Voh 80 - 100 % % of DVDDMax. Capacitive Load Cmax - - 50 pF Maximum load 50 pF // 50 Kohm Min. Resistive Load Rmin 10 - - Kohm Maximum load 50 pF // 50 Kohm Current Sink Isnkmax - - 17 mACurrent Source Isrcmax - - 4 mAACLK/SPIPUnitCommentMaxTypMinParameter SymbolInput Voltage Low Vil 0 - 30 % % of DVDDInput Voltage High Vih 70 - 100 % % of DVDDOutput Voltage Low Vol 0 - 20 % % of DVDDOutput Voltage High Voh 80 - 100 % % of DVDDMax. Capacitive Load Cmax - - 50 pF Maximum load 50 pF // 50 Kohm Min. Resistive Load Rmin 10 - - Kohm Maximum load 50 pF // 50 Kohm Current Sink Isnkmax - - 15 mACurrent Source Isrcmax - - 4 mAAN221E04 Datasheet – Dynamically Reconfigurable FPAA With Enhanced I/OAnalog Inputs GeneralParameter Symbol Min Typ Max Unit CommentHigh Precision Input Range c Vina 0.5 - 3.5 V VMR +/- 1.5v Standard precision Input Range d Vina 0.1 - 3.9 V VMR +/- 1.9vHigh PrecisionDifferential Input cVdiffina 0 - +/-3.0 V Common mode voltage = 2 V Standard PrecisionDifferential Input d Vdiffina 0 - +/-3.8 VCommon mode voltage = 2 V Common Mode Input Range Vcm 1.8 2.0 2.2 VInput Offset Vos - 5 15 mV Non-chopper stabilized input Input Frequency Fain 0 <2 8 MHzMax value is clock, CAM and inputstage dependant. Input frequency is limited to approx <2MHz due toCAM signal processing which is based on sampled data architectures.c. High precision operating range provides optimal linearity and dynamic range.d.Standard precision operating range provides maximum dynamic range and reduced linearity.Input Differential Amplifier ON and filter OFFParameter Symbol Min Typ Max Unit CommentInput RangeVina Vdiffina See analog input aboveUsable input range will be reduced by the effective gain settingGain Setting Ginamp16 - 128 Gain Accuracy- 1.0 2.5 %Gain Drift (Temperature, Supply Voltage zand Time)Dist - - 1.0 %Equivalent Input Offset VoltageVos - 3 12 mV Non-chopper stabilized inputWhen the input amplifier and filterare used in combination Voscontribution comes only from the input amplifierOffset Voltage TemperatureCoefficientVoffsettc - 1 10 µV/°C from -40°C to 125°CInput Frequency c Fain 0 - 2 MHzInput Frequency dFain 0 <2 8 MHz Power Supply Rejection Ratio PSRR 65 - - dBd.c. Amp Gain =16a.c. See graphs page 18Common Mode Rejection Ratio CMRR - 67 - dBLarge Signal Harmonic Distortion Dist - -65 - dB0.4v p-p Differential input at 660HzGain setting = 16Input Resistance Rin 10 - Mohm Input Capacitance Cin - 5.0 pF Input Referred Noise Figure NF - 0.1 - µV/sqrtHzInput cell Gain = 16Applies to audio frequency range(400Hz to 30KHz).See graphical data on page 18Signal-to Noise Ratio and Distortion SINAD - 75 - dB Input signal = 285 mV p-p diff, audio frequency rangeSee graphical data on page 18Spurious Free Dynamic Range SFDR - 73 - dBInput signal = 100 mV p-p diffSee graphical data on page 18c. High precision operating range provides optimal linearity and dynamic range.d.Standard precision operating range provides maximum dynamic range and reduced linearity.AN221E04 Datasheet – Dynamically Reconfigurable FPAA With Enhanced I/OInput Differential Chopper Amplifier on and filter OFFParameter Symbol Min Typ Max Unit CommentInput RangeVinaVdiffinaSee analog input aboveUsable input range will be reducedby the effective gain settingGain Setting Ginamp 16 - 128Gain Accuracy- 1.0 2.5 %Gain Drift, (Temperature, Supply Voltage and Time)- - 1.0 %Chopper Frequency Clock RangeFch Fc/260100 - >250 KHzFc = master clock frequencySet Fch as slow as possibleFch > 250KHz will result in some signal attenuationEquivalent Input Offset VoltageVos - <100 200 µVChopper stabilized amplifier The maximum value of 200µV isguaranteed by production test This is a tester limitation Offset Voltage Temperature CoefficientVoffsettc-0.52.0µV/°Cfrom -40°C to 125°CPower Supply Rejection Ratio PSRR 65- - dBd.c.a.c. See graphs on page 18Common Mode Rejection Ratio CMRR - 102 - dBLarge Signal Harmonic Distortion Dist - -40 - dB 0.4v p-p Differential input at660HzGain setting = 16Input FrequencyFain 0 Fch/20 Fch/2 KHz Fch=Chopper clock frequency The chopper frequency and input frequency should bechosen such that subsequentlow pass filtering can remove the chopper stage frequency elementsInput Resistance Rin 10 - Mohm Input to filter or chopper Input CapacitanceCin - 5.0 pFInput Referred Noise FigureNF - 0.09 - µV/sqrtHz Input cell Gain = 16Applies to Audio frequencyrange Chopper clock Fch =250KHzSee graphical data on page 18 Signal-to Noise Ratio and DistortionSINAD - 75 - dBInput signal = 285 mV p-p differential,Audio frequency rangeSee graphical data on page 18 Spurious Free Dynamic RangeSFDR - 74 - dB Input signal =100 mV p-pdifferentialSee graphical data on page 18 Input Differential Amplifier OFF and filter ONParameter Symbol Min Typ Max Unit CommentInput RangeVina VdiffinaSee analog input aboveEquivalent Input Offset Vos - 8 32 mVNon-chopper stabilized input,Filter corner frequency =470KHz Offset Voltage Temperature Coefficient Voffsettc - 0.05 I 1.0 IImV/°Cfrom -40°C to 125°CI. measured at filter corner=470Khz II. maximum at Filter corner=76KHz Input FrequencyFain - - - MHzInput filter frequency will define the maximum frequencyInput filter is recommended to be>30x higher than the max input frequency, for 80dB distortion performanceAN221E04 Datasheet – Dynamically Reconfigurable FPAA With Enhanced I/OCommon Mode Rejection Ration CMRR-60-dBPower Supply Rejection Ratio PSRR 68 - - dBd.c.a.c. See graphical data on page 19 Large Signal Harmonic Distortion Dist - -82 - dB4v p-p Differential input at 660HzFilter corner frequency 470KHz Input Low Pass Filter (Anti-Alias) Corner Frequency Settings Ffiltcorner 76 - 470 KHzInput Resistance Rin 10 - - Mohm Input to filter or chopperInput CapacitanceCin-5.0pFInput Referred Noise Figure NF - 0.17 - µV/sqrtHz Input cell filter corner Fc = 470KHzApplies to Audio frequency rangeSee graphical data on page 18 Signal-To Noise Ratio and DistortionSINAD - 84 - dB Input signal = 1400 mV p-p diff,Audio frequency rangeSee graphical data on page 18Spurious Free Dynamic RangeSFDR - 90 - dBInput signal =1400 mV p-p differentialSee graphical data on page 18 Input Differential Voltage mode, Amplifier OFF, Filter OFF and Unity Gain stage ONParameter Symbol Min Typ Max Unit CommentInput RangeVina Vdiffina See analog input above VEquivalent Input OffsetVos - 5 15 mV Non-chopper stabilized input Offset Voltage Temperature CoefficientVoffsettc-2050µV/°Cfrom -40°C to 125°CInput FrequencyFain - - 1.0 MHzGain Bandwidth limited by inputimpedance Power Supply Rejection Ratio PSRR 60 - - dBd.c.a.c. See graphs on page 18Common Mode Rejection Ratio CMRR - 60 - dB Large Signal Harmonic Distortion Dist - -80 - dB 4v p-p Differential input at 660Hz Large Signal Harmonic Distortion Dist - -80 - dB 3v p-p single ended signal at 660Hz Input Resistance Rin - 126 - Kohm Input to unity gain stage Input CapacitanceCin - 2.0 5.0 pFInput Referred Noise Figure NF - 0.16 - µV/sqrtHzApplies to Audio frequency rangeSee graphical data on page 18 Signal-To Noise Ratio and DistortionSINAD - 84 - dBInput signal = 1400 mV p-p diff, Audio frequency range See graphical data on page 18Spurious Free Dynamic RangeSFDR - 90 - dBInput signal =1400 mV p-p differentialSee graphical data on page 18Input Differential Voltage mode, Amplifier OFF, Filter OFF and Unity Gain stage OFFParameter Symbol Min Typ Max Unit CommentInput RangeVina Vdiffina See analog input above VEquivalent Input OffsetVosN/AN/AN/AmVSee CAM Op Amp Offset Voltage Temperature CoefficientVoffsettc N/A N/A N/A µV/°CSee CAM Op Amp.from -40°C to 125°CInput FrequencyFain - - 8 MHz Dependant upon CAM Power Supply Rejection Ratio PSRR N/A N/A N/A dB See CAM Op Amp Large Signal Harmonic Distortion Dist - -85 - dB See CAM Op AmpInput ResistanceRin - - - Mohm Input to CAM directly (Input cell bypass mode). This variable isinfluenced by CAB capacitor size,CAB clock frequency and CAB architectureInput CapacitanceCin - - - pF Input to CAM directly (Input cell bypass mode)This variable is influenced by CABcapacitor size, CAB clock frequency and CAB architectureAN221E04 Datasheet – Dynamically Reconfigurable FPAA With Enhanced I/OAnalog Outputs(See “Output Cell” section in the AN120E04/AN220E04 user manual for more details)Parameter Symbol Min Typ Max Unit CommentHigh Precision Output Range c Vouta 0.5 - 3.5 V VMR +/- 1.5vStandard Precision OutputRange dVouta 0.1 - 3.9 V VMR +/- 1.9v High PrecisionDifferential Output cVdiffouta - - +/-3.0 V Common mode voltage = 2 V Standard precisionDifferential Output dVdiffouta - - +/-3.8 V Common mode voltage = 2 V Common Mode VoltageVcm 1.9 2.0 2.1 Vc . High precision operating range provides optimal linearity and dynamic range.d. Standard precision operating range provides maximum dynamic range and reduced linearity.Output Voltage mode and filter ON, corner frequency 470KHzParameter Symbol Min Typ Max Unit CommentInput RangeVina Vdiffina See analog input above V Equivalent Input Offset Vos-515mVOffset Voltage Temperature Coefficient Voffsettc 0.05 I 1.0 II mV/°C from -40°C to 125°CImeasured at filter corner: 470Khz IImaximum at filter corner: 76KHz Output FrequencyFaout - - - MHzOutput filter frequency will define the maximum frequencyInput filter is recommended to be>30x higher then the max input frequency, for good distortion performance Power Supply Rejection Ratio PSRR 60 - - dBd.c.a.c. See graphical data on page 19 Large Signal Harmonic DistortionDist - -82 - dB4v p-p Differential input at 660HzFilter corner frequency 470KHz Input Low Pass Filter (Anti-Alias) Corner Frequency Settings Ffiltcorner 76 - 470 KHzOutput Load c e Rload 0.1 - - MohmOutput Load c eCload - - 50 pF Output Load d e Rload 1 10 - KohmAdditional loading causes internalvoltage drops across output stage and series resistancesThe output stage has a smallsignal output impedance of approx 10ohmOutput Load d eCload - - 100 pF Common Mode Rejection Ratio CMRR - 56 - dBInput Referred Noise Figure NF - 0.22 - µV/sqrtHzOutput filter corner fc = 470KHzApplies to Audio frequency range See graphical data on page 18 Signal-To Noise Ratio andDistortion SINAD - 82 - dBInput signal = 1400 mV p-p diff, Audio frequency range See graphical data on page 18Spurious Free Dynamic Range SFDR - 90 - dBInput signal =1400 mV p-p diffSee graphical data on page 18c. High precision operating range provides optimal linearity and dynamic range.d. Standard precision operating range provides maximum dynamic range and reduced linearity. e. The maximum load for an analog output is 50 pF // 100 Kohms. This load maybe with respect to analog ground VMR or AVSS.AN221E04 Datasheet – Dynamically Reconfigurable FPAA With Enhanced I/OOutput Voltage mode and filter off (bypass mode)Parameter Symbol Min Typ Max Unit CommentInput RangeVinaVdiffina See analog input aboveVEquivalent Input Offset VosN/A N/A N/A mV See CAM Op Amp Offset Voltage TemperatureCoefficientVoffsettc N/A N/A N/A mV/°C See CAM Op AmpOutput Frequency c e Faout - - 4 MHzOutput Frequency d fFaout - - 8 MHzThe realizable output frequency islimited to approx <2MHz due to CAM signal processing which is based on sampled data architectures.Power Supply Rejection Ratio PSRR N/A N/A N/A dB See CAM Op Amp Large Signal Harmonic Distortion Dist - -85 - dB Output Load Rload N/A N/A N/A Mohm See CAM Op Amp Output Load Cload N/A N/A N/A pF See CAM Op Ampcd. Standard precision operating range provides maximum dynamic range and reduced linearity. e. The maximum load for an analog output is 50 pF // 100 Kohms. This load maybe with respect to analog ground VMR or AVSS. f. The maximum load for an analog output is 100 pF // 100 Kohms. This load must be differential and with respect to analog ground(VMR).VMR (voltage Mid Rail) and VREF (Reference Voltage) RatingsParameter Symbol Min Typ Max Unit CommentVMR Output VoltageVvmr 1.925 2.01 2.075 V At 25°C, Vdd=5.00 volts VREF+ Output Voltage Vref+ 3.4 3.51 3.6 V At 25°C, Vdd=5.00 volts VREF- Output Voltage Vref-0.45 0.505 0.55 VAt 25°C, Vdd=5.00 voltsOutput Voltage Deviation VREF+, VMR, VREF- Vrefout - 0.5 1 %Over process and supply voltagecorners Voltage Temperature CoefficientVREF+, VMR, VREF-Vreftc - - - -See typical graphical data below-40°C to 125°C f Power Supply Rejection Ratio, VMRPSSR 60 - - dB Power Supply Rejection Ratio Vref+ and Vref- PSSR 75 - - dB Start Up TimeTstart--1msAssuming recommendedcapacitorsAN221E04 Datasheet – Dynamically Reconfigurable FPAA With Enhanced I/OCAB (Configurable Analog Block) Differential Operational AmplifierParameter Symbol Min Typ Max Unit CommentHigh Precision Input/Output Range cVinouta 0.5 - 3.5 V VMR +/- 1.5v Standard Precision Input/Output Range dVinouta 0.1 - 3.9 VVMR +/-1.9vHigh Precision.Differential Input/Output c Vdiffioa - - +/-3.0 V Common mode voltage = 2 VStandard PrecisionDifferential Input/Output d Vdiffioa - - +/-3.8 V Common mode voltage = 2 V Common Mode Input Voltage Range dVcm 0 2.0 4 V Common Mode Output Voltage RangeVcm 1.9 2.0 2.1 VEquivalent Input Voltage Offset. Voffset 0.1 5 15 mV Some CAMs (ConfigurableAnalog Modules) can inherentlycompensateOffset Voltage Temperature Coefficient Voffsettc - 1 10 µV/°Cfrom -40°C to 125°C someCAMs (Configurable AnalogModules) can inherentlycompensatePower Supply Rejection Ratio PSSR - 80 - dB Variation between CAMs isexpected because of variationsin architectureCommon Mode Rejection RatioCMRR - 77 - dBExample 1 GainInv CAM CAM clock = 1MHzCAM parameter settings Gain = 1Common Mode Rejection RatioCMRR - 60 - dBExample 2 Filterbiquad Setting = Low pass filter CAM clock = 1MHzCAM parameter settings Gain = 1,Corner frequency = 50KHz Quality Factor = 0.707Differential Slew Rate, Internal Slew - 50 - V/µsecApplicable when the OpAmpload is internal to the FPAA Differential Slew Rate, External Slew - 10 - V/µsec Applicable when the OpAmpdriving signal out of the FPAApackageUnity Gain Bandwidth,Full Power Mode.UGB - 50 - MHz Applicable when sourcing andloading the OpAmp with a loadinternal to the FPAAInput Impedance, Internal Rin 10 - - MohmOutput Impedance, Internal Rout - - - Ohms The OpAmp output is designedto drive all internal nodes, theseare dominantly capacitive loads Output Impedance, External Rout - - - Ohms Output to an FPAA output pin (ouput cell bypass mode). Thisvariable is influenced by CABcapacitor size, CAB clockfrequency and CAB architectureOutput Load, External c eRload 0.1 - - Mohm Output Load, External c e Cload - - 50 pF Output Load, External d e f Rload 1 10 - KohmAdditional loading causesinternal voltage drops across output stage and series resistances The output stage has a small signal output impedance of approx 10ohmOutput Load, External d e fCload - - 50 pFNoise Figure gNoise - 0.13 - µV/sqrtHz Example1 GainInv CAM CAM clock = 1MHzGain = 1AN221E04 Datasheet – Dynamically Reconfigurable FPAA With Enhanced I/OSignal-To Noise Ratio and Distortion gSINAD - 80 - dBInput signal=1400 mV p-p differentialAudio frequency rangeExample. GainInv CAM CAM clock = 1MHz Gain = 1Spurious Free Dynamic Range gSFDR - 92 - dBInput signal=1400 mV p-p differential,Audio frequency rangeExample. GainInv CAM CAM clock = 1MHz Gain = 1c. High precision operating range provides optimal linearity and dynamic range.d. Standard precision operating range provides maximum dynamic range and reduced linearity. e. The maximum load for an analog output is 50 pF || 100 Kohms. This load may be with respect to analog ground VMR or AVSS. f. Using the FPAA with CAB Op Amp’s driving directly off-chip, requires care, full characterization of the performance of each application circuit by the circuit designer is necessary. g. This specification parameter can only be characterized when a circuit topology is configured onto the CAB differential amplifier architecture. The figure provided here is an representative on the performance of one specific CAM, as specified in the comments.The idealized open loop gain plot is provided forinformation only. This information is associated with the FPAA in full power mode of operation. The FPAAoperation amplifier open loop gain cannot be observed nor used when associated with external connections to the device. Internal reprogrammable routing impedancesand switched capacitor circuit architecture using this operational amplifier limit the effective usable bandwidth of a circuit realized in the FPAA to less than 2MHz.AN221E04 Datasheet – Dynamically Reconfigurable FPAA With Enhanced I/OCAB (Configurable Analog Block) Differential ComparatorParameter Symbol Min Typ Max Unit CommentInput Range, Internal Vina 0.1 - 3.9 V Input Range, External Vina 0.0 - Vdd VDifferential Input, Internal Vdiffina - - +/-3.8 V Common mode voltage = 2 V Differential Input, ExternalVdiffina+/- 0.0-+/- VddVCommon Mode Output Voltage Range, Internal cVcm 1.9 2.0 2.1 VCommon Mode Input Voltage Range, External cVcm 0 2.0 4 VCommon Mode Input Voltage, External dVcm 0 - 5 VThe comparator will function correctlyDifferential OutputVoutdiff - - +/-5 V Single Pin Output (Ox1P) Vout 0 - 5 V Input Voltage OffsetVoffcomp - 2 10 mV Zero hysterisisOffset Voltage Temperature CoefficientVoffsettc - 1 10 µV/°Cfrom -40°C to 125°C,Zero HysterisisSetup Time, Internal Tsetint - - 125 nsec Setup Time, External Tsetext - - 500 nsecDelay Time Tdelay ½Td+25 - 1½Td+25 nsecTd = 1/FcFc = master clock frequency Output Load Rload 10 - - Kohm Applies if comparator drive offchip with output cell in bypassmodeOutput LoadCload - - 50 pF Applies if comparator drive offchip with output cell in bypassmode Differential Variable Reference Voltage SettingsCompVref 0 -+/-4.0 V Differential Hysteresis Hysta1 - Voffcomp- mV Hysteresis setting = zero Differential Hysteresis Hysta2 - 20 - mV Hysteresis setting = 10mV Differential Hysteresis Hysta3 - 40 - mV Hysteresis setting = 20mV Differential HysteresisHysta4 - 80 - mV Hysteresis setting = 40mV Hysteresis Setting Accuracy Hystb - 25- %Hysteresis Temperature CoefficientHysttc1 - 5 - µV/°C Hysteresis setting = zero Hysteresis Temperature CoefficientHysttc2 - 50 - µV/°C Hysteresis setting = 10mV Hysteresis Temperature CoefficientHysttc3 - 100 - µV/°C Hysteresis setting = 20mV Hysteresis Temperature CoefficientHysttc4-200-µV/°CHysteresis setting = 40mVc. High precision operating range provides optimal linearity and dynamic range.d. Standard precision operating range provides maximum dynamic range and reduced linearity.。
2211(X7R)贴片陶瓷电容器规格书说明书
2 倍额定电压
电压 250V<V<1KV 1.5 倍额定电压
1KV≤V
1.2 倍额定电压
在常温常湿下放置 48±4 小时后再测试.
注:NO3,11,12,13 电容的初值测定:先放在 150℃预热 1 小时,再常温常压放置48 小时测试。
第 5 页 共 14 页
No 项 目
规格
测试方法
使用混合焊锡将电容器焊接在图1 的夹具(玻璃 环氧树脂)上,然后再图 2 所释放向加力. 焊接应 用回流焊进行,避免焊接不均及热冲击等不良 现象.
第 8 页 共 14 页
第 9 页 共 14 页
第 10 页 共 14 页
第 11 页 共 14 页
第 12 页 共 14 页
第 13 页 共 14 页
第 14 页 共 14 页
6
耐电压
无介质被击穿或损伤
Ur=450/500/630V,1.5倍额定电压
(DC)
1KV≤Ur≤2KV,........ 1.2倍额定电压
2KV<Ur,............... 1.1 倍额定电压 升压时间为:1~3S 保压时间为:5S
7
可焊性
■上锡率应大于 95% ■外观无可见损伤
将电容器在 80-120℃预热 10-30 秒,无铅焊料,使用 助焊剂;焊锡温度:245±5℃
测试电压:额定电压测
试时间:60±5 秒测试
5
绝缘电阻
IR≥4*109Ω,C≤25nF
湿度:≤75% 测试
IR*Cr≥100*1012Ω,C>25nF 温度:25±5℃
测试充放电电流:≤50mA
Ur=100V,............. 2.5 倍额定电压
Ur=200V/250V,.... 2.0 倍额定电压
F2211中文资料
RF CHARACTERISTICS ( WATTS OUTPUT )15General DescriptionSilicon VDMOS and LDMOS transistors designed specifically for broadband RF applications. Suitable for Military Radios,Cellular and Paging Amplifier Base Stations, Broadcast FM/AM, MRI, Laser Driver and others.PATENTED GOLD METALIZED 15Watts Push - Pull Package Style AQ HIGH EFFICIENCY, LINEAR,ABSOLUTE MAXIMUM RATINGS (TC = 25 C)oTotal Device Junction to Case Thermal Maximum Junction StorageTemperatureDC Drain CurrentDrain to Gate Drain to Source Gate to Source 30Watts6Co 200-65to 150 3.2A30VVV5050ELECTRICAL CHARACTERISTICS (EACH SIDE)SYMBOL PARAMETERMIN TYPMAXUNITS TEST CONDITIONSSYMBOL PARAMETERMIN TYPMAXUNITSTEST CONDITIONS GpsηVSWRCommon Source Power Gai Drain EfficiencyLoad Mismatch TolerancdB %Relative10450.420:1Idq = Idq = Idq = 0.40.4A,A,A,12.5Vds =V,12.5Vds =V,12.5Vds =V, F =400MHz F =400MHz F =400MHzBvdss Idss Igss Vgs gM Rdson Idsat Ciss Crss CossDrain Breakdown Voltag Zero Bias Drain Curren Gate Leakage Curren Gate Bias for Drain Curren Forward Transconductanc Saturation Resistanc Saturation CurrenCommon Source Input Capacitanc Common Source Feedback Capacitanc Common Source Output Capacitanc400.41710.41.24.6152.416Mho Ohm Amp pF V V pF pFmA uA 0.02Ids = A,Vgs = 0V 12.5Vds =V,Vgs = 0V Vds = 0 V,Vgs = 30V 0.04Ids =A,Vgs = VdsVds = 10V,Vgs = 5V Vgs = 20V,Ids =3.2Vgs = 20V,Vds = 10V12.5Vds =V, Vgs = 0V, F = 1 MHz A 12.5Vds =V, Vgs = 0V, F = 1 MHz 12.5Vds =V, Vgs = 0V, F = 1 MHzPOLYFET RF DEVICES1110 Avenida Acaso, Camarillo, CA 93012 TEL:(805) 484-4210 FAX:(805) 484-3393 EMAIL:Sales@ URL:REVISION SILICON GATE ENHANCEMENT MODE RF POWER HIGH GAIN, LOW NOISE"Polyfet" process features gold metal for greatly extended lifetime. Low output capacitance and high F enhance broadband performancet TMC o Co C/Wo F2211polyfet rf devicesDissipation ResistanceTemperature Voltage Voltage Voltage 8/1/97VDMOS TRANSISTORPOUT VS PIN GRAPHF2211POLYFET RF DEVICES1110 Avenida Acaso, Camarillo, CA 93012 TEL:(805) 484-4210 FAX:(805) 484-3393 EMAIL:Sales@ URL:CAPACITANCE VS VOLTAGEIV CURVE ID AND GM VS VGSS11 AND S22 SMITH CHART PACKAGE DIMENSIONS IN INCHESREVISION 8/1/97。
HF2211 Serial Server Device User Manual
HF2211Serial Server Device User ManualV 1.2Overview of Characteristic✧MIPS MCU with 4MB Flash and 8MB SRAM. Run on eCos✧Support TCP/IP/Telnet /Modbus TCP Protocol✧Support RS232/RS422/RS485 to Ethernet/Wi-Fi Conversion, Serial Speed Upto 230400 bps ✧Support STA/AP/AP+STA Mode✧Support Router or Bridge Network Working Mode.✧Support 10/100M Ethernet Auto-Negotiation✧Support Easy Configuration Through a Web Interface or PC IOTService Tool✧Support Security Protocol Such As TLS/AES/DES3✧Support Web OTA Wirelss Upgrade✧Wide DC Input 5~36VDC✧Size: 95 x 65 x 25 mm (L x W x H)✧FCC/CE/RoHS CertificatedTABLE OF CONTENTS TABLE OF CONTENTSTABLE OF CONTENTS TABLE OF CONTENTS (2)LIST OF FIGURES (3)LIST OF TABLES (4)HISTORY (4)1.PRODUCT OVERVIEW (5)1.1.General Description (5)1.2.Device Paremeters (5)1.3.Key Application (6)2.HARDWARE INTRODUCTION (8)2.1.Pins Definition (9)2.2.RS232 Interface (11)2.3.RS485 Interface (11)2.4.RS422 Interface (11)2.5.RJ45 Interface (12)2.6.Mechanical Size (12)2.7.Rail Mounting (13)2.8.Order Information (13)WORK STRUCTURE (15)3.1.Wireless Network (15)3.1.1.AP Network (15)3.1.2.STA Wireless Network (16)3.1.3.AP+STA Wireless Network (17)3.1.4.IOTService Software (19)3.1.5.Webpage Configuration (20)3.2.Ethernet Interface Function (20)3.2.1.Ethernet Port with Wi-Fi (21)3.2.2.Ethernet Interface Function(Router) (22)3.2.3.Ethernet Port Function(Bridge) (23)4.FUNCTION DESCRIPTION (25)APPENDIX A:REFERENCES (26)A.1.Test Tools (26)1.1/index.php?route=download/category&path=1_4 (26)A.2.Quick Start Manual (26)APPENDIX B: CONTACT INFORMATION (27)LIST OF FIGURESFigure 1. HF2211 Appearance (8)Figure 2. HF2211 Interface (9)Figure 3. HF2211 Side View (10)Figure 4. RS232 Pin Defination(Male/Needle Type) (11)Figure 5. HF2211 RS422 Connection (12)Figure 6. RJ45 Pin Defination (12)Figure 7. HF2211 Mechanical Dimension (13)Figure 8. HF2211 Rail (13)Figure 9. HF2211 Product Order Information (14)Figure 11. HF2211 Function Structure (15)Figure 12. General AP Network (16)Figure 13. STA Application (17)Figure 14. AP+STA Wireless Network (18)Figure 16. Configure Wi-Fi Parameter (19)Figure 17. STA Scan Parameter (19)Figure 18. Configure the Wi-Fi Parameter (20)Figure 19. STA Scan (20)Figure 20. Ethernet Interface Function (21)Figure 21. Ethernet Interface Function(Router) (22)Figure 22. Ethernet Port Function(Bridge) (23)LIST OF TABLESTable 1. HF2211 Technical Specifications (5)Table 2. HF2211 Interface Definition (10)Table 3. RS232 Interface (11)Table 4. RJ45 Interface (12)HISTORYEd. V1.0 08-03-2017 First VersionEd. V1.1 06-07-2017 Update to 1.09j version. IOTService Update to 2.07e.Ed. V1.2 02-15-2019 Correct wrong description.1. PRODUCT OVERVIEW1.1. General DescriptionThe HF2211 provides RS232/RS485/RS422 interface to Ethernet/Wi-Fi connectivity to web enable any device. The HF2211 integrate TCP/IP controller, memory, 10/100M Ethernet transceiver, high-speed serial port and integrates a fully developed TCP/IP network stack and ECos OS. The HF2211 also includes an embedded web server used to remotely configure, monitor, or troubleshoot the attached device.The HF2211 using highly integrated hardware and software platform. It has been optimized for all kinds of applications in the industrial control, smart grid, personal medical application and remote control that have lower data rates, and transmit or receive data on an infrequent basis.The HF2211 integrates all serial to Ethernet functionality with 95 x 65 x 25mm size.1.2. Device ParemetersTable 1. HF2211 Technical Specifications1.3. Key ApplicationThe HF2211 device connects serial device to Ethernet networks using the TCP/IP protocol: ⚫Remote equipment monitoring⚫Asset tracking and telemetry⚫Security Application⚫Industrial sensors and controls⚫Medical devices⚫ATM machines⚫Data collection devices⚫Universal Power Supply (UPS) management units⚫Telecommunications equipment⚫Data display devices⚫Handheld instruments⚫Modems⚫Time/attendance clocks and terminals2. HARDWARE INTRODUCTIONThe HF2211 unit is a complete solution for serial port device connecting to network. This powerful device supports a 10/100BASE-T Ethernet connection, a reliable and proven operating system stored in flash memory, an embedded web server, a full TCP/IP protocol stack, and standards-based (AES) encryption.Through Ethernet cable connect router with HF2211 serial server for data transfer, which makes the data transformation very simple. HF2211 meet EMC Class B security level, It can pass every countries relevant certification testFigure 1. HF2211 Appearance2.1. Pins DefinitionFigure 2. HF2211 InterfaceFigure 3. HF2211 Side View Table 2. HF2211 Interface Definition2.2. RS232 InterfaceDevice serial port is male(needle), RS232 voltage level(can connect to PC directly), Pin Order is cosistent with PC COM port. Use cross Cable connected with PC(2-3 cross, 7-8 cross, 5-5 direct, 7-8 no connection), see the following table for pin defination.Figure 4. RS232 Pin Defination(Male/Needle Type)Table 3. RS232 Interface2.3. RS485 InterfaceRS485 use two wire links, A(DATA+), B(DATA-). Connect A(+) to A(+), B(-) to B(-) for communication.The RS485 interface support maximum 32 485 device, special hardware version can support max 255 device. The cable maximum length is 1200 meters. Need to add 120Ohm terminal resistor for over 300 meters.2.4. RS422 InterfaceRX- Receive Data-Figure 5. HF2211 RS422 Connection2.5. RJ45 InterfaceEthernet port is 10M/100M adaptive, support AUTO MDI/MDIX which means it support direct connecting to PC with Ethernet cable.Figure 6. RJ45 Pin DefinationTable 4. RJ45 Interface2.6. Mechanical SizeThe dimensions of HF2211 are defined as following picture (mm):Figure 7. HF2211 Mechanical Dimension 2.7. Rail MountingWe support to provide rail for mounting as the following picture.Figure 8. HF2211 Rail2.8. Order InformationHF2211 is defined as following:Figure 9. HF2211 Product Order Information3. NETWORK STRUCTURE3.1. Wireless NetworkHF2211 can be set as a wireless STA and AP as well. And logically, it supports two wireless interfaces, one is used as STA and the other is AP. Other STA devices can join into the wireless network through AP interface. So the it can provide flexible networking method and network topology. Functions is as follow:Figure 11. HF2211 Function Structure<Introductions>AP: Wireless access point which is the central joint. Usually, wireless router is a AP, other STA devices can connect with AP to join the network.STA: Wireless station which is terminal of a wireless network. Such as laptop and pad etc.3.1.1.AP NetworkHF2211 can construct a wireless network as AP. All the STA devices will consider the AP as the centre of the wireless network. The mutual communication can be transponded by AP,shown as follow:Figure 12. General AP Network3.1.2.STA Wireless NetworkTake the following picture as example. When router works in AP mode, HF2211 connects to the user’s devices by RS232/RS485 interface. In this topology, the whole wireless network can be easily stretched.rFigure 13. STA Application3.1.3.AP+STA Wireless NetworkHF2211 can support AP+STA method. It can support AP and STA interface at the same time.Shown as follow:Figure 14. AP+STA Wireless NetworkIn this picture, HF2211 open the AP+STA function and the STA interface can be connected to the remote server by the router. Similarly, the AP interface can also be used. Phone/PAD can be connected to the AP interface and to control the serial devices or set itself.Through AP+STA function, it is convenient to use Phone/PAD to monitor the user’s devices and not change its original settings.Through AP+STA function, it is convenient to configure the product.And it solves the problem that the formal product can only configure by serial port.Notes that:When the AP+STA function is opened, the STA interface needs to connect to other router. Otherwise, STA interface will endlessly scan the router information nearby. When it is scanning, it will bring bad effects to the AP interface, like losing data etc.AP and STA parts must set to the different sub-network for the product working as APSTA mode.3.1.4.IOTService SoftwareOpen the IOTService after connect to the AP hotspot generated by HF2211 or connect to Product Ethernet port to PC, then configure the parameter.Figure 16. Configure Wi-Fi ParameterFigure 17. STA Scan Parameter3.1.5.Webpage ConfigurationUse PC to connect with HF2211 through its AP hotspot or Ethernet connection. Input the defaultIP(10.10.100.254, default username and password: admin/admin) to login the webpage to configure the parameter.Figure 18. Configure the Wi-Fi ParameterFigure 19. STA Scan3.2. Ethernet Interface FunctionHF2211 provides with a 100M Ethernet interface. Through the 100M Ethernet interface, user can achieve the connection among WIFI, serial port and Ethernet port.3.2.1.Ethernet Port with Wi-FiFigure 20. Ethernet Interface FunctionHF2211 servers as APSTA and generate a central network. The IP addresses of all the devices and module’s are in the same network segment.Note:If product works in AP mode, then the Ethernet is working as WAN mode, PC will use Auto-IP to set its IP when connect via Ethernet. Better to change via Wi-Fi, then the PC and other devices are all in same subnetwork.(10.10.100.xxx)3.2.2.Ethernet Interface Function(Router)Figure 21. Ethernet Interface Function(Router)The HF2211 device Ethernet interface work in router mode. When connect to router, it will get IP address from router(as picture 192.168.1.100). The product itself generate a subnet(10.10.100.254 default). The device from the Ethernet interface is assigned with IP address by module(10.10.100.101 ).Then the device and the PC1 are in the same subnet for network communication. A connection fro PC1 to PC2, but PC2 cannot actively connect to PC1.3.2.3.Ethernet Port Function(Bridge)Figure 22. Ethernet Port Function(Bridge)The HF2211 device Ethernet interface work in router mode. When connect to router, it will get IP address from router(as picture 192.168.1.101). AT the whole network, the product is like an invisible device. PC1 ad PC2 can communicated mutually without any constraint. But if product needs to connect with other devices, it needs set LAN IP address(192.168.1.10 as picture)Notes:Webpage, IOTService, or Cli command to set working mode, by default is router mode. It need reboot when change its working mode.4. FUNCTION DESCRIPTIONRefer to “IOT_Device_Series_Software_Funtion” document for more detailed function.APPENDIX A:REFERENCESA.1.Test ToolsIOTService Configure Software:/download-center-1/applications-1/download-item-iotservice UART、Network Test software:1.1 /index.php?route=download/category&path=1_4A.2.Quick Start ManualSee our product application on website:/wi-fi-iot/wi-fi-serial-server/rs232-rs485-rs422-to-wifi-serial-serverAPPENDIX B: CONTACT INFORMATION------------------------------------------------------------------------------------------------------------ Address: Room 1002,Building 1,No.3000,Longdong Avenue,Pudong NewArea,Shanghai,China,201203Web: or Contact:Sales:*********************Support:***********************Service:***********************Business:************************---------------------------------------------------------------------------- -------------------------------For more information about IOTworkshop modules, applications, and solutions, please visit our web site <END OF DOCUMENT>。
PI2211-00-QAIG;PI2211-EVAL1;中文规格书,Datasheet资料
Description:
The PI2211 hot swap controller and circuit breaker ensures safe system operation during circuit card insertion by limiting the start-up or in-rush current to the load and eliminating the electrical disturbance or possible voltage sag imposed on a backplane power supply. During steady state operation, the PI2211 acts as a circuit breaker disconnecting from the backplane power source if a overcurrent condition arises. The PI2211 uses an external N-channel MOSFET and employs the MOSFET’s transient thermal characteristics (supplied by the MOSFET supplier) to ensure operation within the MOSFET’s dynamic safe operating area (SOA). The PI2211, with True-SOA™, continuously monitors MOSFET power to calculate the MOSFET junction temperature rise and determines proper operation regardless of load conditions. The PI2211 limits the MOSFET junction temperature rise to a maximum of 60°C preventing overheating (hot spotting) by cycling the MOSFET on/off and allowing it to cool for a period determined by the programmed MOSFET package thermal properties. Emulation and protection based on the specific MOSFET’s transient thermal performance optimizes the safe operating limits and allows designers to take advantage of the latest power MOSFET technologies. During a circuit breaker fault, the PI2211 internal GlitchCatcher™ circuit acts as an active snubber, passing inductive bus energy through the MOSFET mitigating the need for additional BUS input transient protection and protects against MOSFET avalanching.
希捷 Constellation ES 产品概述
主要优势• 第五代企业级近线硬盘,专为全天候运行而设计• 高达 2TB 的容量,适合需要储存大量数据的企业商业应用•增强的卓越抗旋转振动性,确保为高密度应用的持续数据存取提供无与伦比的性能。
•PowerChoice ™ 主机可选电源选项提高了硬盘效率,在低速或闲置时,实现前所未有的节能特性• 希捷 RAID Rebuild ™ 开发平台显著减少损失生产力的时数。
• 多硬盘固件显著提高了企业系统可用性•采用双处理器和斜坡加载技术实现性能飞跃,平均持续吞吐量比上一代产品提高 35%•采用希捷统一存储架构提供业务可持续性- 6Gb/秒 SAS 性能,具有错误识别和纠错 (IOEDC/IOECC) 功能以及 PI (保护信息) - 自加密硬盘 (SED) 选项不仅能降低 IT 硬盘的报废费用,还能保证数据的安全,这是您可以实施的十分简单而又经济高效的安全措施之一。
1 - FIPS 自加密硬盘选项具有 SED 的所有优势且经过 NIST 认证,可满足美国、加拿大和英国政府的数据加密法规要求。
1,2完美应用• 大容量数据中心存储• 主流企业级外置存储阵列(SAN 、NAS 和 DAS )• 企业备份和恢复 - D2D 、虚拟磁带• 集中监控•云存储希捷 Constellation ®ES专为无缝企业级集成设计的大容量存储产品概述51自加密硬盘 (SED) 和 FIPS 自加密硬盘选项需要 TCG 兼容的主机或控制器支持。
并未在所有国家或地区提供。
2可在以下网址查看 FIPS 140-2 2 级证书: /groups/STM/cmvpdocuments/140-1/1401vend.htm.符合FIPS 140-2希捷企业优势Seagate ® Constellation ® ES 硬盘是第五代 3.5 英寸硬盘,适用于容量优化的 7200RPM 企业环境。
该款硬盘采用经济高效的企业级存储解决方案,具有高容量、卓越的可靠性、领先的 6Gb/秒性能、优化的电源和散热性能以及政府级数据安全 - 这一切都享有世界一流的希捷企业服务和支持。
SmartEx AH系列 塑料外壳式断路器(热磁式)
中,一般作配电用,用来分配电能,作为线路及电源设备的过载、短路和欠电压保
护。额定电流630A及以下的断路器亦可作为电动机保护用,用于线路的不频繁转换
及电动机的不频繁起动场所。
该断路器具有体积小、分断能力高、零飞弧、抗振动等特点。
本系列断路系列具有隔离功能,其相应的符号为“
”。
符合标准
SmartEx AH系列断路器执行下列标准: ■ IEC60947-1 : 2007及GB14048.1-2006
装类别为Ⅱ。 ■ 断路器应按产品的使用说明书要求安装和使用。 ■ 防护等级IP20。
03
SmartEx SmartEx
产品选型
壳架电流
63A
100A
160A
配电系统保护塑壳断路器
额定绝缘电压Ui(V)
额定极限短路 分断能力 Icu (kA) 400V AC
额定电流 (A)
10A 16A 20A 25A 25kA 32A 40A 50A 63A
SmartEx
目录 Contents
产品概述
02
产品选型
04
脱扣方式及附件代号
08
型号含义
09
壳架及其附件
10
技术参数
24
保护特性
26
功率损耗
26
热动脱扣器额定工作电流随环境变化的降容系数
26
特性曲线
27
外形及安装尺寸
30
附件列表
39
内部附件
40
外部附件
43
使用及维护
49
安全距离
51
01
SmartEx
AWG011 AWG017 AWG021 AWG026 AWG033 AWG041 AWG051 AWG064
a1semi矽海半导体产品列表
10V
1.5/1.8/2.5 /2.85V/3.3V/5.0V
5A
AS9174 1.6-6V
2A
0.8V
Fixed
1.15V
Fixed
1.16V
Fixed
1.5V
1.25V
package TO92/SOT89
replacement
TO220/TO252
TO92/SOT23-3/5
TO92/SSOOITC-283-3/5
AS1117L3 AS2815 双通道 AS2830 双通道 AS2915
AS2930
AS2930C
8V
1.5/1.8/2.5 /3.0/3.3V/ADJ
1.5-8V 2.5-5.5V
1.5/2.5/2.8V /3.3/5V/ADJ
1.2/1.5/1.8/2.5 2.85/3.3/
1.8-8V 2-6V 2-6V
AS2933 2.2-5.5V
0.8-4.5V
AS2935
2-6V
1.0-4.4V
AS2936 2.2-5.5V AS2950 2.0-5.5V AS2951 1.8-8V
1.0-4.5V
1.5/1.8/2.5 /2.8V/3.V/
1.2-4.5V
AS5102
4-7V
3.3V
0.3A 0.5A 0.3A 0.3A 0.3A 0.5A 0.5A 0.3A
ADJ
AS5428 2.5-5.5V
ADJ
AS5430 4.5V-23V
ADJ
2A
0.923V
340K
SOP8
tape&reel 2.5K
3A
0.8V