《工业催化原》PPT课件

合集下载

工业催化原理PPT

工业催化原理PPT

1.2.1催化反应分类
按催化反应系统物相的均一性进行分类
均相催化反应
非均相(又称多 相)催化反应
酶催化反应
均相催化反应是指 反应物和催化剂居 于同一相态中的反 应。
非均相催化反应是 指反应物和催化剂 居于不同相态的反 应。
酶催化反应同时 具有均相和非均 相反应的性质。
1.2.1催化反应分类
按反应类型进行分类
表1-3 催化剂对可能进行的特定反应的选择催化作
反应类用型
常用催化剂
加氢 脱氢 氧化
羰基化
聚合 卤化 裂解 水合 烷基化,异构化
Ni,Pt,Pd,Cu,NiO,MoS2,WS2,Co(CN)63Cr2O3,Fe2O3,ZnO,Ni,Pd,Pt V2O3,MoO3,CuO,Co3O4,Ag,Pd,Pt,PdCl2 Co2(CO)8,Ni(CO)4,Fe(CO)3,PdCl(Pph3)3*,RhCl2(CO)Pp
问题2:请同学们举二个以上的实例?
1.1.4催化剂对加速化学反应具有选择性
表1-2 催化剂对可能进行的特定反应的选择催化作 用
反应物 催化剂及反应条件
Rh/Pt/SiO2,573K,7×105Pa
CO+H
2
Cu-Zn-O,Zn-Cr-O,573K, 1.0133×107~ 2.0266×107Pa
1.1.2催化作用不能改变化学平衡
问题1:实际工业上催化正反应、逆反应 时为什么往往选用不同的催化剂?
❖ 第一,对某一催化反应进行正反应和进行逆反应的操 作条件(温度、压力、进料组成)往往会有很大差别, 这对催化剂可能会产生一些影响。
❖ 第二,对正反应或逆反应在进行中所引起的副反应也 是值得注意的,因为这些副反应会引起催化剂性能变 化。

工业催化原理精品PPT课件

工业催化原理精品PPT课件
1 Energy belt
2个Na+ 2×3S1 N个Na N×3S1
半导体的能带结构及其催化活性
本征半导体 n-型半导体 p-型半导体
绝缘体
图3-36
各种固体的能带结构
半导体的能带结构是不迭加的,形成分开 的带,价带,空带,禁带(能量宽度为Eg )。
金属的Eg为零,绝缘体的Eg很大,各种半 导体的Eg居于金属和绝缘体之间。
2)p型半导体 在空气中加热NiO会吸氧。少量Ni2+变成 Ni3+,NI3+实际是Ni2+束缚了一个正电 荷或一个空穴,温度不高时,就可以脱 离Ni2+离子而形成空穴,构成p型半导体, 称Ni3+为受主。
5.1.2 Theory of semiconductor energy belt Back
Li+消灭一个M2+⊕
3.本征 semiconductor
Back
不含杂质,具有理想的完整的晶体结构,具有 电子和孔穴两种载流体。
Fe3O4 Fe3(Fe2+, Fe3+)O4 没有 “donor and acceptor”
4.半导体的形成
1)n型半导体的形成 在空气中加热ZnO产生极少量的Zn Zn可以看成由Zn2+束缚两个电子,它 不稳定,容易给出电子,产生电子导电 形成n型半导体
n-型半导体 ZnO ;施主能级 ―提供电子的 附加能级 (靠近空带 )
p-型半导体 NiO ;受主能级 ―空穴产生的 附加能级 (靠近价带 )
Fermi能级Ef 。Ef越高电子逸出越易。 本征半导体,Ef在禁带中间;n-型半导体, Ef在施主能级与导带之间;p-型半导体, Ef在受主能级与满带之间。

工业催化原理第三章第二讲幻灯片PPT

工业催化原理第三章第二讲幻灯片PPT
工业催化原理第三章第二 讲幻灯片PPT
本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢!
H0 is less, the acid strength is
3.2 Catalytic cracking
Back
3.2.1 Introduction to petroleum 1 Kinds of petroleum
烷烃或石蜡基石油(此类我国多) 环烷烃或沥青基石油 芳烃基石油 混合基石油(石蜡+沥青基石油)
2 Separation of petroleum
-13.76
2, 4-二硝基氟代苯
-14.52
2, 4, 6-三硝基甲苯
-15.60
1, 3, 5-三硝基苯
-16.04
Back
B. Calorimeter (微量热法) 用碱性物质来测定,放热越大,说明酸愈
强。
C. Normal butyl amine method (正丁胺滴 定法)
Measuring concentration and strength smaller than H0
1
+
H 2. β 断裂:RCH2CH2C ·
H
H RC · + CH2=CH2
H
最后成CH3 ·
3.2.3.1- Page 2
Back
三特点:自由基β 断裂,
少量的链转移,
自由价不在碳之间转移,没有异构产物

3.2.3.2 Catalytic cracking

工业催化原理ppt课件

工业催化原理ppt课件
CFSE对催化作用的影响
➢ 对六配位的八面体按SN-1机理进行反应时将形成 五配位中间过渡态构型。按SN-2机理进行时将形 成七配位的中间过渡态构型。
按配位场理论进行的过渡金属氧化物
催化过程
如果我们把吸附物当作配位体,多相催化过程可 以看作是均相配位(络合)催化过程的一个特例。
这样多相反应过程的吸附过程可以引起(稳定化 能)CFSE的变化。如在岩盐型结构氧化物(100) 表面金属离子的配位构型 退过吸附会从正方锥体 五配位变成八面体(六配位)。按SN-1机理吸附 作用对弱场中电子构型为d3和d8离子CFSE是有 利的。相反对反应物脱附来说则弱场中的d4和d9 离子和对强场中的d2,d7,d9离子有利。
B)对于施电子气体吸附(以H2为例)
➢ 对于H2来说,不论在n型还是p型氧化物上以正离 子(H+)吸附于表面,在表面形成正电荷,起施主 作用。
吸附气 半导体类 吸附物种 吸附剂 吸附位
EF


受电子 气体 (O2)
N型 V2O5)
O2→O2O-,O22-,O2-
P型 Cu2O
O2→O2O-,O22-,O2-
晶体场稳定化能(CFSE)
晶体场稳定化能(CFSE)
➢ d电子处于未分裂的d轨道的总能量和它们进入分 裂的d轨道的总能之差。即d电子从未分裂的d轨 道进入分裂后的d轨道后产生的总能量下降值。
➢ 这种由于中心离子(或原子)d轨道的分离,给予 氧化物(络合物)额外的稳定能,称这种能量为 稳定化能(CFSE)
半导体催化剂化学吸附与催化作用
1、化学吸附 A)受电子气体吸附(以O2为例) (1)在n型半导体上吸附
O2电负性大,容易夺导带电子,随氧压增大而使 导带中自由电子减少,导电率下降。另一方面在 表面形成的负电层不利于电子进一步转移,结果 是氧在表面吸附是有限的。

工业催化原理》第四章 合成氨工业催化基础和过程幻灯片PPT

工业催化原理》第四章 合成氨工业催化基础和过程幻灯片PPT
② 真实吸附模型的等温方程:
因为真实吸附与Langmuir吸附模型并不完全一致,与真实吸附模型的速率方程相对 应,下面介绍两种等温方程:
(1)Temkin等温方程
从Elovich速率方程,吸附平衡时:
kap e /R Tkde / RT
两边取对数得 : RTlnka p kd

1
lnCo
p
(2)Freundlich等温方程
工业催化原理》第四章 合 成氨工业催化基础和过程
幻灯片PPT
本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢!
第一节 吸附作用与催化反应
化工资源有效利用国家重点实验室
第一节 吸附作用与催化反应
物理吸附与化学吸附的主要特征
作用力 吸附热 吸附速度 吸附温度 吸附层数 选择性 可逆性
物理吸附
化学吸附
范德华力
化学键力
< 40 kJ/mol 吸附速率快,不需活化
≥ 40 kJ/mol 吸附速率慢,一般需活化
接近气体的液化点
通常在高温下,高于气体的液化点
EaEa oln
EdEd oln
从理论上可推导出吸附和脱附速率方程分别为:
rakap/RT
rd kd /RT
化工资源有效利用国家重点实验室
第一节 吸附作用与催化反应
(三)吸附平衡
当吸附速率与脱附速率相等时,催化剂表面上吸附的气体量维持不变,这种状态即为 吸附平衡。吸附平衡与压力、温度、吸附剂的性质、吸附质的性质等因素有关。 通常物理吸附很快就能达到平衡,而化学吸附则很慢,这与化学吸附往往需要活 化能有关。

工业催化原理,第4章金属催化剂及其催化作用

工业催化原理,第4章金属催化剂及其催化作用

配位场理论
❖ 在孤立的金属原子中,5个d轨道是能级简并的,引入面心 立方的正八面体对称配位场后,简并的能级发生分裂,分 成t2g轨道和eg轨道两组。前者包括dxy、dzx和dzy;后 者包括dx2-y2和dz2 eg能带高,t2g能带低。
➢ 由于它们的空间指向性,所以表面金属原子的成键具有明 显的定域性。
Ru Pd
Cu
Ni
Co
Fe
250
300
350
400
生成热
450
各种金属对甲酸分解的催化活性
❖ 金属催化剂催化活性的经验规则 ❖ (1)d带空穴与催化活性 ❖ (2)d%与催化活性 ❖ (3)晶格间距与催化活性 ❖ (4)表面在原子水平上的不均匀和催化活性
晶体结构基础知识介绍
➢ 晶体是按晶胞的几何图形在三维空间呈周期性无 限重复位移而得的空间点阵。
能带理论
❖ 金属键可以看作是多原子共价键的极限情况。按分子轨道 理论,金属中N个原子轨道可以形成N个分子轨道。随着 金属原子数增多,能级间距越来越小,当原子数N很大时, 能级实际变成了连续的能带。
❖ 能带理论:能级是连续的,电子共有化。 ❖ s轨道合成的S能带相互作用强,能带宽,电子密度小。 ❖ d轨道合成的d能带相互作用弱,能带较窄,电子密度大。 ❖ 电子占用的最高能级为Fermi能级。
简单立方
体心立方
面心立方
分子的几何构型
AX2 SN=2 线型
AX3 SN=3 平面三角
AX4 SN=4 四面体
AX5 SN=5 三角双锥
f (Ei )
1 1 Ej E0F
1e kR
❖ 当T →时分布函数极端情况讨论
❖ ➢首先,令当T= 0°k 时令EF= E0F

1-工业催化原理ppt课件

1-工业催化原理ppt课件

H2在金属催化剂表面均裂为化 学吸附的活泼的氢原子
42
Hale Waihona Puke 酸碱催化指通过催化剂和反应物的自由电子对或 在反应过程中由反应物分子的键非均裂 形成的自由电子对.使反应物与催化剂 形成非均裂键。
例如,催化异构化反应中,反应物烯烃 与催化剂的酸性中心作用、生成活泼的 正碳离子中间化合物
43
烯烃与催化剂酸性中心作用、 生成活泼正碳离子中间化合物
催化剂作为一种化学物质,它能够与反
应物相互作用,但是在反应的终结它仍 保持不变。
4
催化剂加速化学反应的实例
SO2+O2 SO3 ( V2O5),无催化剂时, 即使加热也几乎不生成 SO3。
N2+H2 NH3 (Fe催化剂),若没有铁催 化剂,在反应温度为400℃时,其反应速 度极慢,竞不能觉察出来,而当有铁催 化剂的存在时,就实现工业生产合成氨。
39
按催化反应分类
催化反应同非催化反应一样,也可根 据反应中反应分子之间电子传递的情况 来分类,可分为:
氧化还原反应
酸碱反应。
40
氧化还原
催化剂使反应物分子中的键均裂而出现 不成对电子,并在催化剂的电子参与下 与催化剂形成均裂键。
这类反应的重要步骤是催化剂与反应物 之间的单电子交换。
41
19
催化剂对反应具有选择性
根据热力学计算,某一反应可能生成不 只一种产物时,应用催化剂可加速某一 目的产物的反应,即称为催化剂对该反 应的选择性。
工业上就是利用催化剂具有选择性,使 原料转化为所需要的产品。
例如,以合成气(CO+H2)为原料,使用 不同的催化剂则沿不同的途径进行反应。
20
催化剂对反应具有选择性
46
双功能催化剂的实例

工业催化ppt课件

工业催化ppt课件

新能源开发
用于生产太阳能电池、燃料电 池等新能源材料。
制药行业
用于合成药物、生物催化剂等 生物医药产品的生产。
02
工业催化原理与技术
催化反应原理
催化反应定义
在催化剂的作用下,反应物之间 发生化学反应并生成产物的过程

催化反应特点
反应速率快、选择性高、能耗低、 副产物少。
催化反应机理
了解催化反应过程中,反应物如何 通过催化剂表面的吸附、活化、反 应和脱附等步骤转化为产物。
对设计的催化反应流程进行技术经济评估 ,确保其在工业生产中的可行性和经济效 益。
工业催化设备及其选型
确定设备参数
根据工艺要求和设备类型,确定设备的主 体尺寸、材质、压力、温度等参数,以确
保设备的性能和安全性。
A 确定设备类型
根据催化反应的类型和规模,选择 适合的工业催化设备,如固定床反 应器、流化床反应器、搅拌釜等。
工业催化实验方法与操作规程
实验方法选择
根据实验目的和要求,选择合适 的实验方法和操作规程,确保实 验结果的准确性和可靠性。
实验操作流程
按照实验步骤和要求进行操作, 注意实验细节和注意事项,避免 实验误差和安全事故。
数据处理与分析
对实验数据进行处理、分析和解 释,得出实验结论,为实际工业 生产提供指导和参考。
提高工业催化效率的途径与方法
优化催化剂设计
通过改进催化剂的组成和结构,提高其活性和选 择性,从而提高催化效率。
强化反应条件
优化反应温度、压力、浓度等条件,以降低能耗 和提高产物收率。
过程集成与优化
通过集成和优化催化反应过程,实现能源的高效 利用和废物的减量化。
THANKS
感谢观看

工业催化PPT教学课件

工业催化PPT教学课件

总成绩=期末考试成绩(50%)+平时成绩(20%)+论文(30%)
论文是一篇关于“催化在各自领域中的研究与应用现状”的综述性文章。
.
3
参考书目
(1)工业催化基础 —赵光 编 哈尔滨工程大学出版社 1999年 (2)应用催化基础 —吴越著 化学工业出版社 2008年 (3)Heterogeneous Catalysis In Industrial Practice Second Edition---Charles N. Satterfield, McGraw-Hill, Inc.(实用多相催化) (4)Heterogeneous Catalysis Principles and Applications-----G.C. Bond, Oxford Science publications
经过一段时间的沉寂,化学 工业从“重视产量”转向 “重视功能化”发展,将过去
大宗化学品生产过程中累积的技术与经验转 向应用和高性能的精细化工方向发展,很快 使化学工业出现了转机。
此阶段催化技术配合化学工 业出现了“择形催化”、 “手性催化”、环境友好的 “固体酸催化”等,以及用 于具有监控能力的“传感器 催化技术”、防治汽车污染 的“三效催化技术”等。
H2、 甲醇、. 二甲醚、 FT合成
硫制
聚烯烃 芳烃
1973年 金属有机 催化
12
化学工业的发展与催化剂的应用是密不可分的。
20世纪 30年代以前
20世纪 30~80年代
20世纪 80~90年代至今
属于当时尖端科技的 化学工业主要是天然 物质的直接利用
能量
代谢
.
8
自然界催化现象普遍存在(3)
植物的光合作用

工业催化原理工业催化剂的制备和成型

工业催化原理工业催化剂的制备和成型

4、流化喷洒浸渍法
对于流化床反应器所使用的细粉状催化剂,可在流化床中使载 体在流化状态下直接喷洒浸渍液进行浸渍操作,然后进行干燥 焙烧和活化,即可制备出催化剂。可见,这种方法可使浸渍、 干燥、分解、活化等操作在流化床中一次完成,因此具有工艺 流程简单、操作方便等优点。
化工资源有效利用国家重点实验室 18
浸渍法的最大优点是催化剂的活性组分利用率高,用 量少。因为活性组分大多仅分布在载体的表面,这对 贵金属催化剂有为重要。同时,浸渍法的操作工艺相 对较为简单,制备步骤也较少。
化工资源有效利用国家重点实验室 14
第二节 浸渍法
一、浸渍法的工艺流程
催化剂载体 催化剂活性组分浸渍 干燥
焙烧
负载型催化剂
化工资源有效利用国家重点实验室 15
(2)催化剂的制备 用预定量的铂化合物(如氯铂酸或氯铂酸铵),铼化合物(如高铼酸或 高铼酸铵),盐酸,去离子水混合成浸渍液,浸渍液与载体 γ-Al2O3的体 积比为1.0-2.5,在室温下浸渍12-24 h,然后过滤,60-80℃干燥6-10 h, 100-130℃干燥12-24 h,干空气中450-550℃,气剂比为500-1200的条件系 活化2-12 h,H2中400-500℃还原4 h,即得铂铼重整催化剂制备。
1
化工资源有效利用国家重点实验室
第一节 沉淀法
制备 γ-Al2O3实例:工艺流程示意图
化工资源有效利用国家重点实验室
2
第一节 沉淀法
制备 γ-Al2O3实例:具体过程
将工业硫酸产品粉碎,于 60-70℃温水中溶解,制成相对密度为 1.21-
1.23的Al2(SO4)3溶液,同时配制质量含量为20%的Na2CO3溶液。将此
第一节 沉淀法
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
工业催化原理
Catalysis in industrial processes
厦门大学化学化工
a
学院化工系
1
过渡金属半导体氧化物催化剂
金属氧化物中缺陷和半导体性质 ➢ 满带:凡是能被子电子完全充满的能带叫满带。 ➢ 导带:凡是能带没有完全被电子充满的。 ➢ 空带:根本没有填充电子的能带。 ➢ 禁带:在导带(空带)和满带之间没有能级不能
➢ 温度升高,降低受主能级位置或增加受主杂质浓 度都可以提高p型半导体的导电能力。
➢ 催化剂制备上措施:晶体缺陷,掺杂,通过杂质 能级来改善催化性能。
a
8
杂质对半导体催化剂的影响
➢ 1、对n型半导体 A)加入施主型杂质,EF↗Φ↘导电率↗ B)加入受主杂质, EF ↘ Φ ↗导电率↘ ➢ 2、对p型半导体 A)加入施主型杂质EF↗Φ↘导电率↘ B)加入受主型杂质EF ↘ Φ ↗导电率↗
• 如果出现的杂质能级靠近满带上部称为受主能级。
在受主能级上有空穴存在。很容易接受满带中的
跃迁的电子使满带产生正电空穴关进行空穴导电,
这种半导体称为p型半导体。
a
5
半导体费米能级与逸出功的关系
φ
φ
EF
φ
EF
施主
受主
EF
本征
n
a
p
6
n型半导体与p型半导体的生成
n型半导体生成条件
➢ A)非化学计量比化合物中含有过量的金属原子 或低价离子可生成n型半导体。
a
9
半导体催化剂化学吸附与催化作用
1、化学吸附 A)受电子气体吸附(以O2为例) (1)在n型半导体上吸附
O2电负性大,容易夺导带电子,随氧压增大而使 导带中自由电子减少,导电率下降。另一方面在 表面形成的负电层不利于电子进一步转移,结果 是氧在表面吸附是有限的。
a
10
(2)p型半导体上吸附
O2相当于受主杂质,可接受满带的电子增加满带 空穴量,随氧压的增加导电率增大,由于满带中 有大量电子,因此吸附可一直进行,表面吸附氧 浓度较高。
V4+ →V5+
Cu+→ Cu2+
负离子吸附
在高价金属


负离子吸附 在高价金属


施电子 N型 气 体 ZnO (H2)
P型 NiO
1/2H2→H+ 1/2H2→H+
Zn2+ →Zn+
↗ 正 离 子 气 体
吸附在低价 金属离子上
Ni3+→ Ni2+
a
↗ 正 离 子 气 体
吸附在低价 金属离子上
φ

么这种杂质是施主型的,相反则为受主型杂质。 • 2、用导电率来判断 • 对于n型,凡是使导电率增加的物质为施主型杂质,
相反则为受主型杂质。 • 对于P型,凡是使导电率下降的物质为施主型杂
质,相反则为受主型杂质。
a
18
ห้องสมุดไป่ตู้
n型半导体生成条件
• A)非化学计量比化合物中含有过量的金属原子或 低价离子可生成N型半导体。
填充电子这个区间叫禁带。半导体的禁带宽度一 般在0.2-3eV。
a
2
E ( a)
E
5eV ~10eV ( b)
E ( c)
0 .2 e V ~ 0 .3 e V
导体
E
( d)
绝缘体
E
( e)
本征半导体
施主能线
受主能线
a
3
N型 半 导 体
P型 半 导 体
Ef
Ef a
Ef 4
本征半导体、n型半导体、P型半导 体
导带
• F(Ej)=1/2
禁带
F
满带
a
15
N型半导体掺杂
掺杂的两种方式 • 施主型掺杂 • 提高供电子的物质浓度。如ZnO中加入Al3+
由于费米能级升高而使逸出功降低。导电 率升高。 • 受主型掺杂 • 它减少了可提供电子的物质浓度。如在ZnO 中添加Li+会使Zn+浓度下降,造成ZnO逸出 功升高和导电率降低。
B)对于施电子气体吸附(以H2为例) ➢ 对于H2来说,不论在n型还是p型氧化物上以正离
子(H+)吸附于表面,在表面形成正电荷,起施主 作用。
a
11
吸附气 体
半导体类 型
吸附物种
吸附剂
吸附位
EF
受电子 气体 (O2)
N型 V2O5)
P型 Cu2O
O2→O2O-,O22-,O2-
O2→O2O-,O22-,O2-
a
16
p型半导体掺杂
掺杂的两种方式 • 施主型掺杂 • 准使得自逸由出空功穴变浓小度和的导降电低率。下这降是。导致EF能级的升高,
• 受主型掺杂(情况类似)
a
17
如何判断参杂杂质类型
掺杂杂质类型可以从杂质对半导体的逸出功和导电 率影响来判断。
• 1、用逸出功来判断 • 如果引入某种杂质后,半导体的逸出功变小,那
a
空带 EA
导带
14
EF能级在过渡金属和半导体中的区 别
• 对于过渡金属而言
• 电子的EF能级处在导带之内,反映金属地带量子 态的填充水平。但对于的半导体情况的EF位置会
发生变化。一般都处于禁带。反映地不是电子的
一格允许能级但同样代表着半导体中电子表的平
均能量,物力意义是一致的电子在该能级出现的
几率为
电子称为受主原子,当温度升高时空穴可以成为 自由空穴。
• 在外电场作用下,满带电子可以定向地向受主能
级跃进迁,这种主要靠准自由空穴导电的半导体
称之主P型半导体。P半导体的EF能级应处于满带
项处EV和受主能级EA之a 间的中间位置。
13
E
Ec
Eg
EA
EF
禁带
EV
f(Ej)
P型半导体能带 (EA为受主能级)


↗↘ ↗↗ ↘↗ ↘↘
12
P型半导体和它的EF能级
• 当过渡技术 形成低价氧化物如NiO,Cu2O,CoO 等,常形成金属阳离子缺位的非计量化合物。如 NiO其中Ni2+缺位,以各缺位相当于两个单位的正 电荷“2+”,由于晶体保持电中性,必然引起缺位 附近两个Ni2+离子价态的变化,即 2Ni2++“2+”→2Ni3+,这里Ni3+=Ni2+,Ni2+可以接受
➢ B)氧缺位
➢ C)高价离子取代晶格中的正离子
➢ D)引入电负性小的原子。
P型半导体生成条件
A)非化学计量比氧化物中出现正离子缺位。
B)用低价正电离子取代晶格中正离子。
C)向晶格掺入电负性在的a 间隙原子。
7
半导体导电性影响因素
➢ 温度升高,提高施主能级位置,增加施主杂质浓 度可提高n型半导体的导电性。
N型半导体和p型半导体的形成

当金属氧化物是非化学计量,或引入杂质离子或 原子可产生n型、p型半导体。
➢ 杂质是以原子、离子或集团分布在金属氧化物晶 体中,存在于晶格表面或晶格交界处。这些杂质 可引起半导体禁带中出现杂质能级。
➢ 如果能级出现在靠近半导体导带下部称为施主能 级。施主能的电子容易激发到导带中产生自由电 子导电。这种半导体称为n型半导体。
相关文档
最新文档