经典小升初奥数题及答案
小升初奥数题及答案(三篇)
【导语】在解奥数题时,经常要提醒⾃⼰,遇到的新问题能否转化成旧问题解决,化新为旧,透过表⾯,抓住问题的实质,将问题转化成⾃⼰熟悉的问题去解答。
转化的类型有条件转化、问题转化、关系转化、图形转化等。
以下是整理的《⼩升初奥数题及答案(三篇)》相关资料,希望帮助到您。
⼩升初奥数题及答案篇⼀ 1、⼀个数除以7所得的余数和商相同,并且各个数位上的数字和最⼩,这个数是_______。
2、⼀项⼯程,预计15个⼯⼈每天做4个⼩时,18天可以完成。
为了赶⼯期,增加3⼈并且每天⼯作时间增加1⼩时,可以提前_______天完⼯。
3、甲、⼄两⼈背诵英语单词,甲⽐⼄每天多背8个,⼄因⽣病,中途停⽌10天。
40天后,⼄背的单词正好是甲的⼀半,甲背单词________个。
4、在⼀个两位数的两个数字之间加上⼀个0,所得的新数是原数的9倍,原数是。
5、买电影票,5元、8元、12元⼀张的⼀共150张,⽤去1140元,其中5元和8元的张数相等,5元的电影票有。
答案: 1、40 2、6 3、960 4、45 5、60⼩升初奥数题及答案篇⼆ 1、有2013名学⽣参加竞赛,共有20道竞赛题,每个学⽣有基础分25分,此外,答对⼀题得3分,不答题得1分,答错1题扣1分。
那么,所有参赛学⽣的得分总和是奇数还是偶数? 2、有n个同样⼤⼩的正⽅体,将它们堆成⼀个长⽅体,这个长⽅体的底⾯就是原正⽅体的底⾯。
如果这么长⽅体的表⾯积是3096平⽅厘⽶,当从这个长⽅体的顶部拿去⼀个正⽅体后,新的长⽅体的表⾯积⽐原来的表⾯积减少144平⽅厘⽶,那么n等于多少? 答案: 1、每个学⽣的基础分为奇数,⽆论题⽬的答题情况,每⼀题都将是总分加上或减去⼀个奇数,所以20题之后,总分相当于21个奇数做加减法,所以每个学⽣的总分肯定是奇数,⽽学⽣有2013名,奇数和奇数的和还是奇数,所以所有学⽣的分数⼀定是奇数。
2、正⽅体⼀个⾯的⾯积是144÷4=36平⽅厘⽶,根据长⽅体的表⾯积可得: 36×(4n+2)=3096 144n+72=3096 n=21 答:n是21。
小升初奥数题及答案(经典版)
小升初奥数题及答案(经典版)小升初奥数题及答案(经典版)一、选择题1.某数除以6,商是4,余数是多少?A. 3B. 4C. 5D. 6答案:B2.甲数的3倍等于乙数的5倍,则甲数是乙数的几分之几?A. 3/5B. 4/5C. 5/4D. 5/3答案:C3.某数的两倍增加60等于90,这个数是多少?A. 15B. 20C. 45D. 60答案:A4.下一个“完全平方数”是什么?A. 64B. 81C. 88D. 100答案:B5.质数是指只能被1和自己整除的自然数,以下哪个数是质数?A. 1B. 10C. 17D. 27答案:C二、填空题1.现在是星期三,10天后是星期几?答案:星期六2.一个四位数,千位数是2,个位数是4,十位数比个位数多1,百位数比十位数多4,这个数是多少?答案:21443.一个大于1的自然数除以2,商是5,余数是4,这个数是多少?答案:14三、解答题1.小明家附近有一片矩形草坪,长20米,宽15米。
他想在草坪四周围上一圈木栅栏,每段木栅栏的长度都相等。
请问每段木栅栏的长度是多少米?答案:每条木栅栏的长度是20+15+20+15=70米。
2.某书店新到一批数学书籍,分为4个等分。
如果每个等分有55本书,那么这批书共有多少本?答案:这批书共有4 × 55 = 220本。
3.有20个小球,其中16个重量一样,其他4个也重量一样,但比那16个重的小球更重。
请问,至少需要用天平称几次可以找出重的小球?答案:只需要用天平称2次。
首先,我们将20个小球平分成两组,每组10个小球,然后只需要用天平比较这两组小球的重量,就可以确定出重的小球所在的一组。
接下来,我们再将这一组里的10个小球平分成两组,每组5个小球,再次用天平比较,就可确定出重的小球所在的一组。
最后,将这一组的5个小球中任意两个拿出来比较,就能找到重的小球。
总结:小升初奥数题及答案(经典版)涵盖了选择题、填空题和解答题。
小升初奥数题集锦及答案(全面)
小升初奥数题集锦及答案(全面)1、某市小学数学竞赛,不低于80分的人数比80分以下的人数的4倍还多2人,及格的人数比不低于80分的人数多22人,恰是不及格人数的6倍。
求参赛的总人数。
解:设不低于80分的人数为4x+2,80分以下的人数为x,及格的人数为4x+24,不及格的人数为x/6.因为总人数为不低于80分的人数加上80分以下的人数,即4x+2+x=5x+2,所以总人数为5x+2.又因为及格的人数比不低于80分的人数多22人,即4x+24=5x+2+22,解得x=44.所以总人数为5x+2=222.2、一张电影票原价为x元,根据题意可列出方程:(x-3)*1.5=1.2x,解得x=15,所以一张电影票原价为15元。
3、设乙的存款为y元,则甲的存款为9600-y元。
根据题意可列出方程:9600*0.6-120=(9600-y)*0.6,解得y=3600,所以乙的存款为3600元。
4、设原混合糖中有奶糖x颗,巧克力糖y颗。
根据题意可列出方程组:y+10=0.6(x+10+y)y+30=0.75(x+10+y)解得x=60,y=90,所以原混合糖中有60颗奶糖,90颗巧克力糖。
5、设XXX原有玻璃球为x个,则XXX原有玻璃球为3x/4,根据题意可列出方程:x/6=(3x/4+2)-x,解得x=24,所以XXX原有玻璃球24个。
6、设丙帮助甲的时间为x小时,帮助乙的时间为y小时,则可列出方程组:10/x+12/y=110/(x+y)+12/(x+y)+15/(x+y)=1解得x=20,y=30,所以丙帮助甲10小时,帮助乙12小时。
7、设全部工作需要的时间为x天,则可列出方程组:1/72)+(1/72+1/48)*2+(1/72+1/48+1/28)*4/3=1/31/72)+(1/72+1/48)*3+(1/72+1/48+1/28)*4/3+8=(5/6)*x1/72+1/48+1/28)*2/3=(1/72+1/48+1/28+1/x)*1/6解得x=72,所以余下的工作由丙单独完成需要36天。
小升初常考奥数练习题及答案【三篇】
小升初常考奥数练习题及答案【三篇】1和差问题已知两数的和与差,求这两个数。
【口诀】和加上差,越加越大;除以2,便是大的;和减去差,越减越小;除以2,便是小的。
例:已知两数和是10,差是2,求这两个数。
按口诀,则大数=(10+2)/2=6,小数=(10-2)/2=4 2差比问题【口诀】我的比你多,倍数是因果。
分子实际差,分母倍数差。
商是一倍的,乘以各自的倍数,两数便可求得。
例:甲数比乙数大12且甲:乙=7:4,求两数。
先求一倍的量,12/(7-4)=4,所以甲数为:4X7=28,乙数为:4X4=16。
3年龄问题【口诀】岁差不会变,同时相加减。
岁数一改变,倍数也改变。
抓住这三点,一切都简单。
例1:小军今年8 岁,爸爸今年34岁,几年后,爸爸的年龄是小军的3倍?分析:岁差不会变,今年的岁数差点34-8=26,到几年后仍然不会变。
已知差及倍数,转化为差比问题。
26/(3-1)=13,几年后爸爸的年龄是13X3=39岁,小军的年龄是13X1=13岁,所以应该是5年后。
例2:姐姐今年13岁,弟弟今年9岁,当姐弟俩岁数的和是40岁时,两人各应该是多少岁?分析:岁差不会变,今年的岁数差13-9=4几年后也不会改变。
几年后岁数和是40,岁数差是4,转化为和差问题。
则几年后,姐姐的岁数:(40+4)/2=22,弟弟的岁数:(40-4)/2=18,所以答案是9年后。
4和比问题已知整体,求部分。
【口诀】家要众人合,分家有原则。
分母比数和,分子自己的。
和乘以比例,就是该得的。
例:甲乙丙三数和为27,甲:乙:丙=2:3:4,求甲乙丙三数。
分母比数和,即分母为:2+3+4=9;分子自己的,则甲乙丙三数占和的比例分别为2/9,3/9,4/9。
和乘以比例,则甲为27X2/9=6,乙为27X3/9=9,丙为27X4/9=12 5鸡兔同笼问题【口诀】假设全是鸡,假设全是兔。
多了几只脚,少了几只足?除以脚的差,便是鸡兔数。
例:鸡免同笼,有头36 ,有脚120,求鸡兔数。
小升初典型奥数题及详细答案
小升初典型奥数题及详细答案1、一列火车长200米,通过一条长430的隧道用了42秒,以同样的速度通过某站台用25秒,这个站台长多少米?【答案解析】:(200+430)÷42×25-200=375-200=175米2、某次数学测验共20题,做对1题得5分,做错1题扣1分,不做得0分,小华得了76分,他对了多少题?【答案解析】:20-(20×5-76)÷(5+1)=16(道)3、一班有学生45人,男生2/5和女生的1/4参加了数学竞赛,参赛的共有15人,男女生各几人【答案解析】:设男生有X人,则女生有(45r)。
2∕5x+l∕4(45-χ)=152∕5x+4/45-4∕x=15x=25女生:45-25=20(人)4、一项工作,甲单独做需15天完成,乙单独做需12天完成。
这项工作由甲乙两人合做,并且施工期间乙休息7天,问几天完成?【答案解析】:设完成工作要X天,所以甲乙一起工作(X-6)天,甲单独工作6天。
根据题意可得甲单独一天可完成1/15.乙1/12,由此得式子:【答案解析】:(1/15+1/12)(X-6)+1/15X6=1解地X=IO他整个行5、本骑车前往一座城市,去时的速度为X,回来时的速度为yo程的平均速度是多少?(答案是2xy∕x+y,为什么?)【答案解析】:设总路程为S,则去时用的时间为S/X,回来的时候用的时间为S/Y那么平均速度为2S∕(S/X+S/Y)=2/(1∕X+1∕Y)=2XY∕(X+Y)6、参加数学竞赛的男生比女生多28人,女生全部优胜,男生的3/4得优胜男女生各优胜的共42人,求男女生参加竞赛的各多少人?方程:【答案解析】:设男生参赛有X人x+(x+28)×3/4=42解得x=1212+28=40算术:(42-28)/(1+3/4)=21X4/7=12(八)12+28=40(人)答:女生参赛有40人。
7、将37分为甲、乙、丙三个数,使甲、乙、丙三个数的乘积为1440,并且甲、乙两数的积比丙数多12,求甲、乙、丙各是几?【答案解析】:解:把1440分解质因数:1440=12×12×10=2×2×3×2×2×3×2×5=(2×2×2)X(3×3)×(2×2×5)如果甲、乙二数分别是8、9,丙数是20,贝U:8×9=72,20×3+12=72正符合题中条件。
小升初奥数试题及参考答案
小升初奥数试题及参考答案一、选择题1. 下列哪个数是最小的质数?A. 0B. 1C. 2D. 3参考答案:C2. 一个数的1/5加上它的1/3,求和的结果是这个数的几分之几?A. 1/15B. 8/15C. 1/3D. 3/5参考答案:B3. 一个长方体的长是10厘米,宽是8厘米,高是5厘米,其表面积是多少平方厘米?A. 170B. 270C. 340D. 420参考答案:D二、填空题4. 一个数的3/4加上它的1/2,和是这个数的______。
参考答案:7/85. 一本书的价格是35元,如果打8折出售,那么现价是______元。
参考答案:286. 一个正方形的边长增加10%,那么它的面积增加了多少百分比?参考答案:21%三、解答题7. 一块长方形草地的长是40米,宽是30米。
现在要在其四周围上篱笆,问篱笆的总长度是多少米?参考答案:(40+30)×2 = 140米8. 小明和小红合作完成一项工作,小明单独完成需要4小时,小红单独完成需要6小时。
现在他们合作,共同完成这项工作需要多少时间?参考答案:设工作总量为1,小明每小时完成1/4,小红每小时完成1/6的工作量。
合作时,他们每小时完成的工作量是1/4 + 1/6 =5/12。
所以,他们合作完成工作需要的时间为1 ÷ (5/12) = 2.4小时。
9. 一个班级有48名学生,其中2/3是男生,剩下的是女生。
问这个班级有多少名女生?参考答案:48 × (1 - 2/3) = 48 × 1/3 = 16名女生。
四、应用题10. 小华有一些贴纸,她给了小明一半的贴纸后,自己还剩下20张。
请问小华原来有多少张贴纸?参考答案:设小华原来有x张贴纸,根据题意,x/2 = 20,解得x = 40张。
11. 一辆汽车从甲地到乙地,如果速度提高20%,可以比原定时间提前1小时到达。
已知原定速度是60公里/小时,求两地之间的距离。
小升初奥数题试题及答案
小升初奥数题试题及答案【试题一】题目:一个数列的前三项分别为 2,4,6,从第四项开始,每一项都是它前三项的和。
求第 10 项的值。
答案:首先,我们可以观察到数列的规律是每一项都是前三项的和。
数列的前几项为:2,4,6,(2+4+6)=12,(4+6+12)=22,(6+12+22)=40,(12+22+40)=74,(22+40+74)=136,(40+74+136)=250,(74+136+250)=460。
所以,第 10 项的值为 460。
【试题二】题目:一个长方形的长是宽的两倍,若将长和宽都增加 8 厘米,新的长方形面积比原来增加了192 平方厘米。
求原来长方形的宽。
答案:设原来长方形的宽为 x 厘米,那么长就是 2x 厘米。
根据题意,长和宽都增加 8 厘米后,新的长方形的长为 2x + 8 厘米,宽为 x + 8 厘米。
新的长方形面积比原来增加了 192 平方厘米,可以得到方程:(2x + 8)(x + 8) - 2x * x = 192。
解这个方程,我们可以得到 x =10 厘米。
所以,原来长方形的宽是 10 厘米。
【试题三】题目:一个班级有 48 名学生,其中 1/4 是女生,剩下的是男生。
这些男生中,有 1/8 是足球队的成员。
问班级中有多少名男生,以及足球队中有多少名男生。
答案:班级中有 48 名学生,其中 1/4 是女生,即女生有 48 * 1/4= 12 名。
剩下的是男生,所以男生有 48 - 12 = 36 名。
这些男生中,有 1/8 是足球队的成员,即足球队的男生有 36 * 1/8 = 4.5 名。
但是学生人数必须是整数,所以这个问题的描述有误,无法给出准确的答案。
【试题四】题目:一个水池有 A 和 B 两个进水管,同时开放 A 和 B,注满水池需要 6 小时。
如果只开放 A,注满水池需要 10 小时。
问只开放 B,注满水池需要多少小时?答案:设 A 和 B 的工作效率分别为 A 和 B,水池的容量为 C。
小升初奥数题及答案【六篇】
【导语】奥数是奥林匹克数学竞赛的简称。
1934年—1935年,前苏联开始在列宁格勒和莫斯科举办中学数学竞赛,并冠以数学奥林匹克竞赛的名称,1959年在布加勒斯特举办第xx届国际数学奥林匹克竞赛。
以下是整理的《2021年愚⼈节简短句⼦3篇》相关资料,希望帮助到您。
1.⼩升初奥数题及答案 ⽤1~9可以组成______个不含重复数字的三位数:如果再要求这三个数字中任何两个的差不能是1,那么可以组成______个满⾜要求的三位数? 答案与解析: (1)9×8×7=504个。
(2)504-(6+5+5+5+5+5+5+6)×6-7×6=210个; (减去有2个数字差是1的情况,括号⾥8个数分别表⽰这2个数是12,23,34,45,56,67,78,89的情况,×6是对3个数字全排列,7×6是三个数连续的123、234、345、456、567、789这7种情况)。
2.⼩升初奥数题及答案 龟兔赛跑,全程5.2千⽶,兔⼦每⼩时跑20千⽶,乌龟每⼩时跑3千⽶,乌龟不停地跑;兔⼦边跑边玩,它先跑了1分钟后玩了15分钟,⼜跑了2分钟后玩15分钟,再跑3分钟后玩15分钟,……。
那么先到达终点⽐后到达终点的快多少分钟? 答案与解析: 乌龟⽤时:5.2÷3×60=104(分钟);兔⼦总共跑了:5.2÷20×60=15.6(分钟)。
⽽我们有:15.6=1+2+3+4+5+0.6按照题⽬条件,从上式中我们可以知道兔⼦⼀共休息了5次,共15×5=75(分钟)。
所以兔⼦共⽤时:15.6+75=90.6(分钟)。
兔⼦先到达终点,⽐后到达终点的乌龟快:104-90.6=13.4(分钟)。
3.⼩升初奥数题及答案 ⼩华从甲地到⼄地,3分之1骑车,3分之2乘车;从⼄地返回甲地,5分之3骑车,5分之2乘车,结果慢了半⼩时。
已知,骑车每⼩时12千⽶,乘车每⼩时30千⽶,问:甲⼄两地相距多少千⽶? 解答:把路程当作1,得到时间系数 去时时间系数:1/3÷12+2/3÷30 返回时间系数:3/5÷12+2/5÷30 两者之差:(3/5÷12+2/5÷30)-(1/3÷12+2/3÷30)=1/75相当于1/2⼩时 去时时间:1/2×(1/3÷12)÷1/75和1/2×(2/3÷30)1/75 路程:12×〔1/2×(1/3÷12)÷1/75〕+30×〔1/2×(2/3÷30)1/75〕=37.5(千⽶)4.⼩升初奥数题及答案 ⽼奶奶家有20个鸡蛋,还养了⼀天能下⼀个蛋的⽼母鸡,如果她家⼀天吃两个鸡蛋,⽼奶奶家的鸡蛋可以连续吃多少天? 解答: (1)20个鸡蛋,每天吃2个 20÷2=10天,在这10天⾥,母鸡⼜下了10个鸡蛋 (2)10个鸡蛋,每天吃2个 10÷2=5天,在这5天⾥,母鸡⼜下了5个鸡蛋 (3)5个鸡蛋,每天吃2个 5÷2=2天……1个,在这2天⾥,母鸡⼜下了2个鸡蛋 (4)2个鸡蛋+余下的1个鸡蛋,每天吃2个 3÷2=1天……1个,在这1天⾥,母鸡⼜下了1个鸡蛋 (5)1个鸡蛋+余下的1个鸡蛋,每天吃2个 2÷2=1天 (6)总天数 10+5+2+1+1=19天5.⼩升初奥数题及答案 有⼀班同学去划船,他们算了⼀下,如果增加⼀条船,每条船正好坐6⼈;如果减少⼀条船,每条船正好坐9⼈。
小升初奥数题及答案五篇
【导语】在解奥数题时,经常要提醒⾃⼰,遇到的新问题能否转化成旧问题解决,化新为旧,透过表⾯,抓住问题的实质,将问题转化成⾃⼰熟悉的问题去解答。
转化的类型有条件转化、问题转化、关系转化、图形转化等。
以下是®⽆忧考⽹整理的《⼩升初奥数题及答案五篇》相关资料,希望帮助到您。
1.⼩升初奥数题及答案 1、⽤⼀只⽔桶装⽔,把⽔加到原来的2倍,连桶重10千克,如果把⽔加到原来的5倍,连桶重22千克。
桶⾥原有⽔多少千克? 想:由已知条件可知,桶⾥原有⽔的(5-2)倍正好是(22-10)千克,由此可求出桶⾥原有⽔的重量。
解:(22-10)÷(5-2)=12÷3=4(千克) 答:桶⾥原有⽔4千克。
2、⼩红和⼩华共有故事书36本。
如果⼩红给⼩华5本,两⼈故事书的本数就相等,原来⼩红和⼩华各有多少本? 想:从“⼩红给⼩华5本,两⼈故事书的本数就相等”这⼀条件,可知⼩红⽐⼩华多(5×2)本书,⽤共有的36本去掉⼩红⽐⼩华多的本数,剩下的本数正好是⼩华本数的2倍。
解:⼩华有书的本数:(36-5×2)÷2=13(本) ⼩红有书的本数:13+5×2=23(本) 答:原来⼩红有23本,⼩华有13本。
2.⼩升初奥数题及答案 1、已知⼀张桌⼦的价钱是⼀把椅⼦的10倍,⼜知⼀张桌⼦⽐⼀把椅⼦多288元,⼀张桌⼦和⼀把椅⼦各多少元? 想:由已知条件可知,⼀张桌⼦⽐⼀把椅⼦多的288元,正好是⼀把椅⼦价钱的(10-1)倍,由此可求得⼀把椅⼦的价钱。
再根据椅⼦的价钱,就可求得⼀张桌⼦的价钱。
解:⼀把椅⼦的价钱:288÷(10-1)=32(元) ⼀张桌⼦的价钱:32×10=320(元) 答:⼀张桌⼦320元,⼀把椅⼦32元。
2、3箱苹果重45千克。
⼀箱梨⽐⼀箱苹果多5千克,3箱梨重多少千克? 想:可先求出3箱梨⽐3箱苹果多的重量,再加上3箱苹果的重量,就是3箱梨的重量。
小升初数学奥数题120道附带完整答案
小升初数学奥数题120道附带完整答案1. 某数加上6,乘以6,减去6,除以6,其结果等于6,求这个数。
答案:1。
解题思路:从后向前来推算,“除以6,结果等于6”,则前一个数是6×6=36;“减去6 等于36”,则前一个数是36+6=42;“乘以6 等于42”,则前一个数是42÷6=7;“加上6 等于7”,所以这个数是7-6=1。
2. 两支蜡烛,第一支4 小时燃尽,第二支3 小时燃尽,如果同时点燃这两支蜡烛,问多长时间后第一支蜡烛的长度是第二支蜡烛的2 倍?答案:12/5 小时。
解题思路:把蜡烛的长度看作单位“1”,第一支蜡烛每小时燃烧1/4,第二支蜡烛每小时燃烧1/3,设x 小时后第一支蜡烛的长度是第二支蜡烛的 2 倍,可列出方程1-x/4=2×(1-x/3),解得x=12/5。
3. 一个最简分数,如果分子加1,分数值就等于1,如果分母加1,分数值就等于2/3,求原来这个分数。
答案:4/5。
解题思路:设分子为x,分母为y,根据条件可列方程组(x+1)/y=1,x/(y+1)=2/3,解方程组可得x=4,y=5,所以原来的分数是4/5。
4. 甲、乙两车分别从A、B 两地同时出发相向而行,它们的速度比是2:3,在途中相遇后,甲车速度提高20%,乙车速度不变,当乙车到达A 地时,甲车距B 地还有28 千米,求A、B 两地相距多少千米?答案:180 千米。
解题思路:相遇时甲乙所行路程比也是2:3,设全程为 5 份,相遇后乙行2 份到 A 地,甲行2×(1+20%)=2.4 份,那么3-2.4=0.6 份是28 千米,一份是28÷0.6=140/3 千米,全程5 份就是140/3×5=700/3=180 千米。
5. 有含盐8%的盐水40 千克,要配制成含盐20%的盐水,需加盐多少千克?答案:6 千克。
解题思路:原来盐水中盐的质量为40×8%=3.2 千克,设加盐x 千克,可列出方程(3.2+x)/(40+x)=20%,解得x=6。
小升初奥数题及答案五篇
小升初奥数题及答案五篇第一篇:数与代数1. 某数的三倍加上5等于20,求这个数。
解答:设这个数为x,则根据题意,可以列出方程3x + 5 = 20。
解这个一次方程可以得到x = 5。
2. 一个数增加20%后得到30,求这个数。
解答:设这个数为x,则根据题意,可以列出方程x + 0.2x = 30。
解这个一次方程可以得到x = 25。
第二篇:几何与图形1. 已知长方形的长是5cm,宽是3cm,求其面积和周长。
解答:长方形的面积可以通过长度乘以宽度来计算,即5cm × 3cm = 15cm²。
周长可以通过将长度和宽度相加再乘以2来计算,即(5cm + 3cm) × 2 = 16cm。
2. 在平面直角坐标系中,点A(2,3)和点B(5,1)连线,求线段AB的长度。
解答:根据坐标系中两点间的距离公式,线段AB的长度可以计算为√[(5-2)²+(1-3)²] = √[(3)²+(-2)²] = √(9+4) = √13。
第三篇:概率与统计1. 从1至15中随机抽取一个整数,求这个整数是偶数的概率。
解答:在1至15中,一共有8个偶数(2, 4, 6, 8, 10, 12, 14, 15)和7个奇数(1, 3, 5, 7, 9, 11, 13)。
因此,抽取的整数是偶数的概率为8/15。
2. 一个骰子中的每个面都标有1至6的数字,投掷骰子一次,求投掷结果是5或6的概率。
解答:骰子共有6个面,其中有2个面标有5和6。
因此,投掷结果是5或6的概率为2/6 = 1/3。
第四篇:逻辑与推理1. 小明说他有7本书,其中一半给了朋友,又借了5本回来,这时他还有多少本书?解答:小明有7本书,一半给了朋友,剩下的数量是7/2 = 3.5本。
因为书的数量不能为小数,所以小明实际上只剩下3本书。
2. 汤姆比杰克大三岁,而杰克比肯尼大两岁。
如果汤姆今年10岁,那么肯尼的年龄是多少?解答:根据题意,杰克比肯尼大两岁,汤姆比杰克大三岁,所以汤姆与肯尼之间的年龄差是5岁。
小升初数学常见奥数题100道附答案(完整版)
小升初数学常见奥数题100道附答案(完整版)1. 甲、乙两人同时从A、B 两地相向而行,甲每分钟走52 米,乙每分钟走48 米,两人走了10 分钟后交叉而过,又相距38 米,A、B 两地相距多少米?答案:962 米思路:两人10 分钟走的路程之和为(52 + 48)×10 = 1000 米,减去交叉而过相距的38 米,A、B 两地相距1000 - 38 = 962 米。
2. 一筐苹果,先拿出140 个,又拿出余下的60%,这时剩下的苹果正好是原来总数的1/6,这筐苹果原来有多少个?答案:240 个思路:设这筐苹果原来有x 个,(x - 140)×(1 - 60%) = 1/6x ,解得x = 240 。
3. 修一条路,第一天修了全长的1/5 多100 米,第二天修了余下的2/7 ,还剩500 米,这条路全长多少米?答案:1000 米思路:设全长为x 米,第一天修了1/5x + 100 米,余下x - (1/5x + 100) = 4/5x - 100 米,第二天修了2/7×(4/5x - 100) 米,可列方程4/5x - 100 - 2/7×(4/5x - 100) = 500 ,解得x = 1000 。
4. 某工厂三个车间共有180 人,第二车间人数是第一车间人数的3 倍多1 人,第三车间人数是第一车间人数的一半还少1 人,三个车间各有多少人?答案:第一车间40 人,第二车间121 人,第三车间19 人思路:设第一车间有x 人,则第二车间有3x + 1 人,第三车间有1/2x - 1 人,x + 3x + 1 + 1/2x - 1 = 180 ,解得x = 40 ,第二车间121 人,第三车间19 人。
5. 一个书架,上层书的本数是下层的4 倍,如果从上层拿60 本到下层,两层书的本数就相同,上层和下层原来各有多少本书?答案:上层160 本,下层40 本思路:设下层原来有x 本,则上层原来有4x 本,4x - 60 = x + 60 ,解得x = 40 ,上层160 本。
小升初常考的奥数题100道附答案(完整版)
小升初常考的奥数题100道附答案(完整版)1. 有红、黄、白三种颜色的球,红球和黄球一共有21 个,黄球和白球一共有20 个,红球和白球一共有19 个。
三种球各有多少个?答案:三种球的总数:(21 + 20 + 19)÷2 = 30(个)白球:30 - 21 = 9(个)红球:30 - 20 = 10(个)黄球:30 - 19 = 11(个)2. 在一个减法算式里,被减数、减数与差的和等于120,而减数是差的3 倍,那么差等于多少?答案:被减数= 减数+ 差被减数+ 减数+ 差= 120所以被减数= 60差:60÷(3 + 1) = 153. 某班学生去划船,如果增加一条船,那么每条船正好坐6 人;如果减少一条船,那么每条船就要坐9 人。
问:学生有多少人?答案:设原来有x 条船。
6(x + 1) = 9(x - 1)x = 5学生人数:6×(5 + 1) = 36(人)4. 老师把一些苹果分给小朋友。
如果每人分一个,还剩下8 个苹果;如果每人分2 个,那么还少2 个苹果。
一共有多少个小朋友?答案:设小朋友有x 个。
x + 8 = 2x - 2x = 105. 甲、乙两数的和是180,甲数的1/4 等于乙数的1/5,甲、乙两数各是多少?答案:甲:乙= 4 : 5甲:180×4/(4 + 5) = 80乙:180 - 80 = 1006. 一个长方形,如果长增加2 厘米,宽增加5 厘米,那么面积就增加60 平方厘米,这时恰好是一个正方形。
原来长方形的面积是多少平方厘米?答案:设正方形边长为x 厘米。
(x - 2)(x - 5) + 60 = x²x = 10原长方形长8 厘米,宽 5 厘米,面积40 平方厘米。
7. 一筐苹果分给甲、乙、丙三人,甲分得全部苹果的1/5 加5 个苹果,乙分得全部苹果的1/4 加7 个苹果,丙分得其余苹果的1/2,最后剩下的苹果正好等于一筐苹果的1/8。
小升初50道经典奥数题及答案详细解析
小升初50道经典奥数题及答案详细解析1.已知一张桌子的价钱是一把椅子的10倍,又知道一张桌子比一把椅子多288元。
求一张桌子和一把椅子各多少元。
设一把椅子的价钱为x元,则一张桌子的价钱为10x元。
根据题意,有10x - x = 288,解得x = 32,因此一把椅子的价钱为32元,一张桌子的价钱为320元。
2.3箱苹果重45千克。
一箱梨比一箱苹果多5千克,求3箱梨重多少千克。
设一箱苹果的重量为x千克,则3箱苹果重量为3x千克。
根据题意,有3x = 45,解得x = 15,因此一箱苹果的重量为15千克。
又因为一箱梨比一箱苹果多5千克,所以一箱梨的重量为20千克,3箱梨的重量为60千克。
3.甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇。
甲比乙速度快,甲每小时比乙快多少千米。
设甲的速度为x千米/小时,则乙的速度为(x-4)千米/小时。
根据题意,有4x = (x-4)×4 + 4,解得x = 16,因此甲的速度为16千米/小时,乙的速度为12千米/小时,甲比乙每小时快4千米。
4.___和___同样多的钱买了同一种铅笔,___要了13支,___要了7支,___又给___5元钱。
求每支铅笔多少钱。
设每支铅笔的价钱为x元,则___付出13x元,___付出7x元。
又因为___给___5元钱,所以有13x = 7x + 5,解得x = 0.5,因此每支铅笔的价钱为0.5元。
5.甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸。
由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午2点。
甲车每小时行40千米,乙车每小时行45千米,求两地相距多少千米。
设两地相距为x千米,则甲乙两车相遇时,已经行驶了共(40+45)t千米,其中t为两车相遇后再返回各自出发车站的时间。
又因为两车同时到达河的两岸,所以甲车和乙车各自返回的时间相等,且均为(12-t)小时。
小升初奥数题及解答(三篇)
小升初奥数题及解答(三篇)小升初奥数题及解答篇一解答:根据最不利原则,3×4+1=13张。
2、某些三位数的数字之和是5的倍数,这样的三位数有多少个?解答:根据乘法原理,百位和十位分别有9种和10种选法,这时由前两位构成的数共有9×10=90个。
这90个数的数字之和可分为5类(被5整除,被5除余1,被5除余2,被5除余3,被5除余4),每类其个位均可有两种填法,使其变成数字之和能被5整除的三位数。
所以满足条件的三位数共有9×10×2=180种。
小升初奥数题及解答篇二考点:与最小。
分析:根据题意,设出两个质数,再根据题中的数量关系,列出方程,再根据未知数的取值受限,解答即可。
解答:解:设a,b是满足题意的质数,根据一个两位质数写在另一个两位质数后面,得到一个四位数,它能被这两个质数之和的一半整除,那么有100a+b=k(a+b)÷2(k为大于0的整数),即(200-k)a=(k-2)b,由于a,b均为质数,所以k-2可以整除a,200-k可以整除b,那么设k-2=ma,200-k=mb,(m为整数),得到m(a+b)=198,由于a+b可以被2整除,所以m是99的约数,可能是1,3,9,11,33,99,若m=1,a+b=198且为两位数显然只有99+99这时a,b不是质数,若m=3,a+b=66则a=13b=53,或a=19b=47,或a=23b=43,或a=29b=37,若m=9,a+b=22则a=11b=11(舍去),其他的m值都不存在满足的a,b,综上a,b实数对有(13,53)(19,47)(23,43)(29,37)共4对,当两个质数最接近时,乘积,所以两个质数乘积是:29×37=1073,故答案为:1073。
点评:解答此题的关键是根据题意,列出不定方程,再根据质数,整除的定义及未知数的取值受限,解不定方程即可。
小升初奥数题及解答篇三解答:当每封信用的信封和信纸数都是1时(即甲的使用情况),信封用完还有20张信纸,说明两人的信纸数比信封数多20;当每封信用1个信封3张信纸时,信纸用完还有20个信封,要把信封用完,还得增加信纸20×3=60(张)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
经典小升初奥数题及答案Document number:NOCG-YUNOO-BUYTT-UU986-1986UT1、某次数学测验共20题,作对1题得5分,做错1题扣1分,不做得0分,小华得了76分,他对了多少题?20-(20×5-76)÷(5+1)=16(道)2、一班有学生45人,男生2/5和女生的1/4参加了数学竞赛,参赛的共有15人,男女生各几人解:设男生有x人,则女生有(45-x)。
2/5x+1/4(45-x)=152/5x+4/45-4/x=15x=25女生:45-25=20(人)3、一列火车长200米,通过一条长430的隧道用了42秒,以同样的速度通过某站台用25秒,这个站台长多少米?(200+430)÷42×25-200=375-200=175米4、一项工作,甲单独做需15天完成,乙单独做需12天完成。
这项工作由甲乙两人合做,并且施工期间乙休息7天,问几天完成?解:设完成工作要X天,所以甲乙一起工作(X-6)天,甲单独工作6天。
根据题意可得甲单独一天可完成1/15.乙1/12,由此得式子:(1/15+1/12)(X-6)+1/15*6=1解得X=105、本骑车前往一座城市,去时的速度为x,回来时的速度为y。
他整个行程的平均速度是多少?(答案是2xy/x+y,为什么)解:设总路程为S,则去时用的时间为S/X,回来的时候用的时间为S/Y那么平均速度为2S/(S/X+S/Y)=2/(1/X+1/Y)=2XY/(X+Y)6、游泳池里,参加游泳的学生,小学生占30%,又来一批学生后,学生总数增加20%,小学生占学生总数的40%,小学7、将37分为甲、乙、丙三个数,使甲、乙、丙三个数的乘积为1440,并且甲、乙两数的积比丙数多12,求甲、乙、丙各是几?解:把1440分解质因数:1440=12×12×10=2×2×3×2×2×3×2×5=(2×2×2)×(3×3)×(2×2×5)=8×9×20如果甲、乙二数分别是8、9,丙数是20,则:8×9=72,20×3+12=72正符合题中条件。
答:甲、乙、丙三个数分别是8、9、20。
8、在800米环岛上,每隔50米插一面彩旗,后来又增加了一些彩旗,就把彩旗的间隔缩短了,起点的彩旗不动,重新插后发现,一共有四根彩旗没动,问现在的彩旗间隔多少米?800米环岛每隔50米插一面彩旗,共插800÷50=16根,重新插完后,有4根没动,而这4根中的任意相邻的两根间的距离为50×(16÷4)=200米,重新插完后每相邻的两根彩旗间的距离与50的最小公倍数是200,并且这个距离一定小于50米.现在间隔为40米。
9、小学组织春游,同学们决定分成若干辆至多可乘32人的大巴车前去。
如果打算每辆车坐22个人,就会有一人没有座位;如果少开一辆车,那么,这批同学刚好平均分成余下的大巴。
那么原来有多少同学多少辆大巴?少开一车那么这车上的22个人就下车了其他车上的人不动就多余22+1=23个人本来多余一个人,这剩下的23个人要刚好分配给剩下的车辆应为人是个体的不能分开所以这23人刚好平均分配注意只平均分配就是说每车都分到相同人数而23是一个奇数能让23整除的只有1和23这2个数1排除掉只有23所以:22+1=23<人>23+1=24<辆>23*23=529<人>答:原先租了24辆客车.学校师生共529人.10、一块正方体木块,体积是1331立方厘米。
这块正方体木块的棱长是多少厘米(适于六年级)解:把1331分解质因数:1331=11×11×11答:这块正方体木块的棱长是11厘米。
11、李明是个集邮爱好者。
他集的小型张是邮票总数的十一分之一,后来他又收集到十五张小型张,这时小型张是邮票总数的九分之一,李明一共收集邮票多少张先找出不变量:不是小型张的邮票原来小型张是不是小型张的1/10现在小型张是不是小型张的1/8不是小型张:15/(1/8-1/10)=600张小型张:600*1/8=75张共:600+75=675(张)12、两堆沙,第一堆25吨,第二堆21吨。
这两堆中各用去同样多的一部分后,第二堆剩下的是第一堆的3/4,每堆用多设用去x吨(25-x)3/4=21-xx=9用去9吨13、幼儿园买来的苹果是梨的3倍,吃掉10个梨和6个苹果后,还有苹果正好是梨的5倍。
原来买来苹果和梨共多少个?设买来梨x只,则苹果3x只5(x-10)=3x-6x=22所以梨为22只,苹果66只。
共88只。
14、在一个圆里画一个最大的正方形,已知圆的面积是628平方厘米,求正方形的面积。
解:用圆的面积除以π就是r的平方,即正方形面积的1/4,用r的平方乘4为正方形的面积。
列式:628÷=200平方米(r的平方,也是正方形面积的1/4)200*4=800平方米答:正方形的面积是800平方米。
注:在一个圆里画一个最大的正方形,正方形的对角线是直径。
15、在一个正方形内画一个最大的圆,已知正方形的面积是20平方厘米,圆的面积是多少?16、小明看一本故事书,第一天看的页数与总页数的比是3:7,如果再看15页,正好是这本书的一半,这本书有多少页?设总页数位X:3x/7+15=x/2解x得:7x/14-6x/14=15x/14=15x=210(页)17、某服装店出售某种服装,已知售价比进价高20%以上才能出售。
为了获得更高的利润,该店老板以高出进价80%的格标价。
若你想买下标价360元的这种服装,店老板最多降价多少元?标价为360元的衣服,实际进价为:360÷(1+80%)=200元。
最低出售价格为:200×(1+20%)=240元,最低可以降的价格为:360-240=120元。
18、李大爷靠墙围了一个半径是10米的半圆形养鸡场,用了多长的篱笆面积是多少解:圆的周长计算公式c=πd,π=因为是半圆那就是1/2πd,(d=2r)由公式可求出用了多长的篱笆:2**10*=平方米根据圆的面积计算公式,S=πR2可以求出圆的面积,又因为是半圆,那么面积就是整圆的一半。
S=×102×=157平方米!19、甲书架上的书是乙书架上的5分之4,从这两个书架上各借出112本后,甲书架上的书是乙书架上的7分之4,原来甲、乙两个书架各有多少本书(解方程,要有过程)甲书架上的书是乙书架上的4/5,所以设原来甲、乙两个书架上各有4x,5x本书(4x-112)/(5x-112)=4/74(5x-112)=7(4x-112)x=424x=1685x=210原来甲、乙两个书架上各有168,219本书20、六1班订阅数学报,订窗报纸人数占年级人数的百分之四十,订数学报人数占订阅人数的百分之四十订语文报人数的四分之三,两报都订的有15人,全年级有几人订阅语文和数学报的人数是:15÷(40%+3/4-1)=15÷15%=100(人)全年级有:100÷40%=250(人)21、六年级有三个班,一班占全年级的1/3,二班和三班的比是1:13,二班比三班少8人,三个班各有几人?原题应该是二班和三班的比是11:138/(13-11)=44*11=44(人)4*13=52(人)1-(1/3)=2/3(44+52)/(2/3)*(1/3)=48(人)答:一班48人,二班44人,三班52人。
22、张叔叔家种月季花36棵,种菊花的棵树是月季花的5/12,种兰花的棵树是菊花的3/8,张叔叔家种了多少棵兰花(40棵)23、4吨葡萄在新疆测得含水量是99%,运抵南京后测得含水量是98%,问葡萄运抵南京后还剩几吨?4×(1-99%)=吨÷(1-98%)=2吨24、一块长方形试验田,长和宽各增加3米,它的面积就增加99平方米。
现在要在扩建后的试验田四周围上一圈篱笆,这道题需要检查计算是否正确需要准备多长的篱笆?周长=(99-3×3)÷3×2=60米原长宽xy题意得(x+3)(y+3)-xy=99>>>x+y=30>>>2*(x+3+y+3)=7225、三角形三条边分别是3厘米.4厘米.5厘米。
这个三角形斜边上的高是多少厘米?这是一个直角三角形(3和4是底和高),它的面积是4×3÷2=6平方厘米利用面积不变:根据三角形面积公式反推回去,它斜边上的高是:6×2÷5=平方厘米26、一辆汽车每小时行40千米,自行车每行1千米比汽车多用分钟,自行车速度是汽车速度的百分之几?60/40÷(60/40+=27、比例尺1:5000000的地图上,量得甲乙两地距离9厘米,客车和货车同时从甲乙两地相向开出,6时相遇。
客车和货车的速度比是8:7,客车的速度是多少?客车速度是450÷6×8/(8+7)=75×8/15=40千米/小时28、一个圆柱形油桶的容积是60立方分米,底面积是平方分米,装了五分之三桶油,油面高多少分米?解:油面高:60×3/5÷=分米30、用五个长10厘米,宽5厘米,高4厘米的长方体拼成一个表面积最大的长方体,它的表面积是多少?解:5×4=20平方厘米﹙5-1﹚×2=820×8=160平方厘米﹙10×5+10×4+5×4﹚×2×5=1100平方厘米1100-160=940平方厘米。
31、用3个厂5厘米、宽3厘米、高2厘米的长方体拼成一个表面积最小的长方体,要使表面积最小,拼的时候把最大的面(5×3)叠起来得到长方体长5厘米,宽3厘米,高6厘米表面积:(5×3+5×6+3×6)×2=126平方厘米体积:5×3×6=90立方厘米32、同学们从学校去公园,走了全程的百分之八十时,正好到达少年宫;沿原路返回时行了全程的四分之一就过了少年宫千米,学校离公园多少千米?1/4=25%25%-(1-80%)=5%÷5%=6千米33、一列客车长200m,一列货车长280m,它们在平行的轨道上相向行驶,从相遇到车尾离开需18s.已知客车与货车的速度为5:3,求两车每秒各行多少千米?速度和=(200+280)÷18=80/3米/秒客车速度=80/3÷(5+3)×5=50/3米/秒货车速度=80/3-50/3=10米/秒34、5名同学一个组去参观少年宫,正好分成4组,每组一位教师带队,参观少年宫的一共有多少人?35、六年级(1)班原来有学生54人,男生占全班人数的5/9,后来男生转走了几人,这时男生占全班的13/25,问男生转走了几人?54-54×(1-5/9)÷(1-13/25)=4(人)(此题利用的是不变量)36、小猴子扒了50个香蕉,它很贪吃,每走1米就吃一个,猴子家离树林50米,最多能运回家多少根香蕉(0根)37、五年级一班有学生45人,其中男生人数比女生多1/7,后来又转来男生若干人,这时男生和女生人数的比是9:7,现在全班有学生多少人?38、有一张宽6厘米,长12厘米的长方形铁皮,用它做成一个长方形无盖的盒子,盒子的容积可能是多少(长、宽、高均为整厘米)设高取1厘米:1×4×10=40立方厘米设高取2厘米:2×2×8=32立方厘米39、将1、2、3、4、5.......等自然数相加得到2012,结果发现漏算了一个数,请问那个是?设有n个数,拿走的是a,由(1+2+。