有机染料敏化纳米晶太阳能电池
光伏材料物理1_染料敏化太阳能电池2
卟啉系列和酞菁系列
R R
R R
N
N
N
N N
M
N N
N NMΒιβλιοθήκη NNNR
R
R
R
R = SO3-, OC5H11; M = H2, Zn, AlCl
A. Kay and M. Gratzel, et al J. Phys. Chem., 1993, 97, 6272. M.M. Ressler and R.K. Panday, Chemtech., 1998, 3, 39.
• Role of the TCO electrode in a DSSC
– Electrons transportation and collection
• Characteristics
– – – – –
I
T
High transmittance in visible region () High electrical conductivity () Thermal endurance () Corrosion resistance Energy level not higher than nanoparticle oxide
染料敏化太阳能电池
被引用已达12411次
1991 年瑞士洛桑高工 (EPFL)Grätzel 等,利用联 吡啶钌(Ⅱ)配合物染料和纳 米多孔TiO2薄膜制备的染料 敏化纳米薄膜太阳电池,获 得了 7.1%的光电转换效率。 这一突破性进展为研究染料 敏化纳米薄膜太阳电池开辟 了新天地,特别是对未来工 业化生产提供了新思路。 优点: 1.可以克服半导体本身只吸 收紫外光的缺点,使得电池 对可见光谱的吸收大大增加 2.可通过改变染料的种类得 到理想的光电化学太阳能电 池 3.大大降低生产成本,以利 于运用于日常生活中
染料敏化太阳能电池和有机太阳能电池
染料敏化太阳能电池和有机太阳能电池染料敏化太阳能电池和有机太阳能电池是目前新型太阳能电池技术中具有重要研究价值的两种类型。
两者在实现清洁能源利用方面都有着重要的意义。
首先,本文将分别介绍两种太阳能电池的工作原理和结构特点,然后比较两者的优缺点以及在未来应用前景方面的展望。
最后,将对两种太阳能电池的未来发展提出一些展望和建议。
染料敏化太阳能电池(DSSC)工作原理是利用染料敏化半导体膜,通过光生电子-空穴对,产生一个电子被注入导电材料的过程,从而产生电流。
DSSC的结构是由玻璃基底、导电玻璃、阳极(TiO2薄膜)、电解质、阴极(Pt)等组成的。
这种太阳能电池因其低成本、易制备、高转换效率等特点而备受关注。
有机太阳能电池(OPV)又称为塑料太阳能电池,其工作原理是利用有机半导体材料吸收光子后产生电子-空穴对,将电子注入到电极上,从而产生电流。
OPV的结构包括有机半导体薄膜、透明导电层、金属导电层等。
有机太阳能电池因其轻薄、柔性、低成本等特点,被认为是未来太阳能电池领域的发展方向。
两种太阳能电池在光电转换效率、稳定性、生产成本、材料寿命、材料丰富度等方面都有所不同。
DSSC的光电转换效率较高,但在稳定性和材料寿命方面存在一定的问题;而OPV在生产成本和可塑性方面具有优势,但转换效率较低。
两者的未来应用前景也不尽相同,DSSC适用于建筑一体化等大型应用领域,而OPV则适用于轻便、柔性的便携式设备。
未来,DSSC可以通过材料改性、器件结构优化等技术手段提高其稳定性和寿命,同时更多地探索高效、廉价的染料和电解质。
而OPV可以通过材料设计合成、工艺工程实现将提高转换效率,并提高大规模生产的制备技术。
在应用方面,两者可以通过与其他新能源技术相结合,拓展多种应用场景。
总体来说,两种太阳能电池技术在未来都具有重要的发展潜力。
需要深入研究其中的物理和化学机制,并通过工程技术手段来优化器件性能,同时也需要加强两者之间的技术对接和协同创新。
染料敏化太阳能电池行业的发展
染料敏化太阳能电池行业的发展染料敏化太阳能电池是一种新型的太阳能电池,它采用了全新的技术和原理,具有很高的发电效率和实用性。
随着环保意识的提高和新能源的逐渐普及,染料敏化太阳能电池行业的发展前景非常广阔。
本文将从这个角度出发,深入探讨染料敏化太阳能电池的技术原理、应用领域和未来发展方向等问题。
一、技术原理染料敏化太阳能电池是一种类似于传统晶体硅太阳能电池的装置,但它与传统太阳能电池不同的是采用了一种全新的电池材料——染料。
染料敏化太阳能电池的工作原理是利用染料分子吸收太阳能中的光子,将其转化成电子和空穴。
染料分子吸收光子后,电子从染料分子的价带跃迁到染料分子的导带中,同时留下一个具有正电荷的空穴。
在电池的两个电极(正极和负极)之间,这些电子和空穴被分别收集,构成电荷传输路线。
通过连接一定的电路,这些电子和空穴就可以被引导到获得电能的装置中,发挥最终功效。
二、应用领域染料敏化太阳能电池具有很高的发电效率和稳定性,它的应用领域非常广泛。
目前主要应用于以下几个方面:1.户外光伏产品——染料敏化太阳能电池可以制成柔性太阳能板,这种太阳能板可以贴在各种户外设备上,如行车记录仪、充电宝、户外摄像机、自行车等。
在户外野外等没有电源的环境下,可以利用它来为这些装备提供电源,十分便捷。
2.建筑光伏应用——染料敏化太阳能电池可以在建筑的门面、窗户、墙壁、屋顶等处应用,可以减少对建筑外观的破坏,美化建筑外观,同时还可以为建筑提供持续的电力,节省能源成本,使得建筑更加环保。
3.光伏无人机应用——染料敏化太阳能电池的重量轻、成本低,非常适合应用于无人机光伏电池上。
通过利用它提供的太阳能电能,无人机可以飞行更长时间,飞行高度也更高。
同时,它不会对固定翼强制要求的结构大小和重量带来影3.智能家居应用——染料敏化太阳能电池可以应用于各种家用电器、电子设备中,使得这些设备在电网停电或人为故意停电的情况下,仍然可以继续工作。
在智能家居领域,染料敏化太阳能电池的应用前景非常广泛。
染料敏化太阳能电池前景
染料敏化太阳能电池(DSSCs)未来应用前景广阔太阳能是新能源开发利用最活跃的领域。
目前市场上的太阳能电池主要是单晶硅和多晶硅两种。
但这两种太阳能电池最大的问题在于工艺条件苛刻,制造成本过高,不利于广泛应用。
而上世纪90年代出现的纳米TiO2有机半导体复合太阳能电池和有机/聚合物太阳能电池,工艺条件简单,成本较低,有可能成为21世纪太阳能电池的新贵。
染料敏化太阳能电池极有可能取代传统硅系太阳能电池,成为未来太阳能电池的主导能源是世界经济发展的首要问题,当前,许多国家都把发展新能源作为应对金融危机、加快经济复苏的重要举措。
我国改善能源结构也必须积极发展可再生能源和新能源,不断提高清洁能源在能源结构中的比重。
作为一种“取之不尽、用之不竭”的洁净的天然能源,太阳能成为最有希望的能源之一。
目前研究和应用最广泛的太阳能电池主要是硅系太阳能电池,但硅系电池原料成本高、生产工艺复杂、效率提高潜力有限,其光电转换效率的理论极限值为30%,因此其民用化受到技术性限制,急需开发低成本的太阳能电池。
人工制造的“树叶”染料敏化太阳能电池价格相对低廉,制作工艺简单,拥有潜在的高光电转换效率,所以极有可能取代传统硅系太阳能电池,成为未来太阳能电池的主导。
上个世纪90年代初,染料敏化纳米晶太阳能电池DSSCs(Namo-CrystallionDye-Sensitized Solar Cells)初露峥嵘,其光电转换效率达7.1%—7.9%,开创了太阳能电池研究和发展的全新领域。
随后Gatzel和同伴开发出了光电能量转换效率达10%—11%的DSSCs。
目前,在标准条件下,染料敏化太阳能电池的能量转化效率已达到11. 2%,如果你知道树叶的结构,你会很好地理解DSSCs。
从结构上来看,DSSCs就像人工制作的树叶,只是植物中的叶绿素被敏化剂所代替,而纳米多孔半导体膜结构则取代了树叶中的磷酸类酯膜。
染料敏化纳米晶太阳能电池,主要由制备在导电玻璃或透明导电聚酯片上的纳米晶半导体薄膜、敏化剂分子、电解质和对电极组成,其中制备在导电玻璃或透明导电聚酯片上的纳米晶半导体薄膜构成光阳极。
染料敏化太阳能电池
DOCS
DOCS SMART CREATE
染料敏化太阳能电池技术及应用
01
染料敏化太阳能电池基本原理及结构
染料敏化太阳能电池的工作原理概述
光吸收过程
• 染料分子吸收太阳光 • 激发态染料分子与半导体纳米颗粒 相互作用
光生电子空穴对生成
• 激发态染料分子衰变产生电子空穴 对 • 电子空穴对在半导体纳米颗粒中分 离
对电极层
• 作为电池的正负极 • 收集和传输光生电子 • 与电解质接触实现离子 传输
电解质层
• 填充在染料敏化半导体 层与对电极层之间 • 提供离子传输通道 • 维持电池内部的电化学 平衡
染料敏化太阳能电池的关键材料介绍
染料分子
• 光敏性染料 • 宽光谱吸收 • 高光吸收系数
电解质材料
• 固态电解质 • 液态电解质 • 离子液体电解质
半导体纳米颗粒
• 纳米尺寸效应 • 高表面积 • 快速电子传输
对电极材料
• 贵金属对电极 • 复合对电极 • 导电聚合物对电极
02
染料敏化太阳能电池的性能特点及优势
染料敏化太阳能电池的光电转换效率及性能优势
光电转换效率
• 高于传统硅太阳能电池 • 目前实验室最高光电转换效率达25%
性能优势
• 宽光谱吸收 • 低成本原材料 • 柔性及可透明性 • 良好的环境稳定性
技术进步
• 提高光电转换效率 • 改善稳定性 • 降低成本
创新方向
• 新型染料分子研究 • 新型半导体纳米颗粒研究 • 新型电解质材料研究
染料敏化太阳能电池的市场前景及增长潜力
市场前景
• 全球能源转型 • 太阳能市场需求增长 • 染料敏化太阳能电池市场份额扩大
染料敏化太阳能电池学术发展简史
染料敏化太阳能电池学术发展简史2016-05-07 13:13来源:内江洛伯尔材料科技有限公司作者:研发部基于钌化合物的染料敏化太阳能电池1839年,Becquerel发现氧化铜或卤化银涂在金属电极上会产生光电现象,证实了光电转换的可能。
1960年代,H.Gerischer,H.Tributsch,Meier及R.Memming发现染料吸附在半导体上并在一定条件下产生电流的现象,成为光电化学电池的重要基础。
1980年代, 光电转换研究的重点转向人工模拟光合作用,美国州立Arizona大学的Gust和Moore研究小组成功模拟了光合作用中光电子转换过程,并取得了一定的成绩。
Fujihia等将有机多元分子用L B 膜组装成光电二极管,开拓了这方面的工作。
1970年代到90年代,R.Memming,H.Gerischer,Hauffe,H.Tributsh等人大量研究了各种染料敏化剂与半导体纳米晶间光敏化作用,研究主要集中在平板电极上,这类电极只有表面吸附单层染料,光电转换效率小于1%。
1991年,Graetzel M.于《Nature》上发表了关于染料敏化纳米晶体太阳能电池的文章以较低的成本得到了>7%的光电转化效率,开辟了太阳能电池发展史上一个崭新的时代,为利用太阳能提供了一条新的途径。
1993年,Graetzel M.等人再次研制出光电转换效率达10 %的染料敏化太阳能电池, 已接近传统的硅光伏电池的水平。
1997年,该电池的光电转换效率达到了10%-11%,短路电流达到18mA/cm2,开路电压达到720mV。
1998年,采用固体有机空穴传输材料替代液体电解质的全固态Gr?tzel电池研制成功,其单色光电转换效率达到33%,从而引起了全世界的关注。
2000年,东芝公司研究人员开发含碘/碘化物的有机融盐凝胶电解质的准固态染料敏化纳米晶太阳能电池,其光电能量转换率7.3 % 。
2001年, 澳大利亚STA 公司建立了世界上第一个中试规模的DSC 工厂。
染料敏化纳米晶太阳能电池的历史发展及研究现状
第一章染料敏化纳米晶太阳能电池的历史发展及研究现状1-2法国科学家Henri Becquerel于1839年首次观察到光电转化现象3,但是直到1954年第一个可实用性的半导体太阳能电池的问世,“将太阳能转化成电能”的想法才真正成为现实4。
在太阳能电池的最初发展阶段,所使用的材料一般是在可见区有一定吸收的窄带隙半导体材料,因此这种太阳能电池又称为半导体太阳能电池。
尽管宽带隙半导体本身捕获太阳光的能力非常差,但将适当的染料吸附到半导体表面上,借助于染料对可见光的强吸收,也可以将太阳能转化为电能,这种电池就是染料敏化太阳能电池。
1991年,瑞士科学家Grätzel等人首次利用纳米技术将染料敏化太阳能电池中的转化效率提高到7%5。
从此,染料敏化纳米晶太阳能电池(即Grätzel电池)随之诞生并得以快速发展。
1.1 基本概念1.1.1大气质量数6对一个具体地理位置而言,太阳对地球表面的辐射取决于地球绕太阳的公转与自转、大气层的吸收与反射以及气象条件(阴、晴、雨)等。
距离太阳一个天文单位处,垂直辐射到单位面积上的辐照通量(未进入大气层前)为一常数,称之为太阳常数。
其值为1.338~1.418 kW·m-2,在太阳电池的计算中通常取1.353 kW·m-2。
太阳光穿过大气层到达地球表面,受到大气中各种成分的吸收,经过大气与云层的反射,最后以直射光和漫射光到达地球表面,平均能量约为1kW·m-2。
一旦光子进入大气层,它们就会由于水、二氧化碳、臭氧和其他物质的吸收和散射,使连续的光谱变成谱带。
因此太阳光光谱在不同波长处存在许多尖峰,特别是在红外区域内。
现在通过太阳模拟器,在室内就能够得到模拟太阳光进行试验。
在太阳辐射的光谱中,99%的能量集中在276~4960nm之间。
由于太阳入射角不同,穿过大气层的厚度随之变化,通常用大气质量(air mass,AM)来表示。
并规定,太阳光在大气层外垂直辐照时,大气质量为AM0,太阳入射光与地面的夹角为90º时大气质量为AM1。
什么是染料敏化太阳能电池
kT J sc Voc ln q J dk
q表示完成一个氧化还原循环过程需要转移的电子数目,Jdk指的是暗电 流的电流密度,k指波尔兹曼常数。
影响填充因子的因素
填充因子可以反映太阳能电池的输出性质,是一个重要参 数。太阳能电池的串联电阻越小,并联电阻越大,填充系 数就越大,反映到太阳能电池的电流-电压特性曲线上, 曲线就越接近矩形,此时太阳能电池的转换效率就越高。
diffusion I3(anode) 3I (cathode) electrolyte
circuit e- |TiO2 e- |Pt
(2) (3) (4)
(5)
(6)
electron recapture I3 + 2e-(cb) 3I dark reaction recombination TiO2 |S+ + e-(cb) TiO2 |S dark reaction
(1)
injection TiO2 |S* TiO2 |S+ + e-(cb) regeneration TiO2 |2S+ + 3I- TiO |2S + I 2 3 anode deoxidizing reaction I3 + 2e-(Pt) 3I cathode
填充因子 0.26 0.483
效率 (%) 1.47 4.51
存在问题
1. TiO2与空穴传输层之间的界面电荷复合率高;
电池填充因子较低
2. 空穴传输材料本身的导电率很低;电 Nhomakorabea光电流较低
3. 电解质与电极纳米粒子之间的接触性能差; 影响界面上的电荷传质速度,降低填充因子
染料敏化太阳能电池原理
染料敏化太阳能电池原理染料敏化太阳能电池原理近年来,随着能源危机的加剧以及环境问题的日益凸显,人们对可再生能源的需求逐渐上升。
在各种可再生能源技术中,太阳能电池因其可用性广泛且环保的特点备受关注。
然而,传统的硅太阳能电池存在高成本、制造复杂等问题。
染料敏化太阳能电池作为太阳能电池的一种新型形式,凭借其材料简单、制造成本低廉、能量转换效率高等优势,成为了备受研究关注的领域。
染料敏化太阳能电池原理是基于半导体材料、染料分子和电解质溶液相互协作的。
它采用了一种光敏染料来吸收太阳光的能量,并将其转换成电能。
整个染料敏化太阳能电池可以分为三个主要部分:敏化层、电解质层和光电转换层。
1. 敏化层:染料敏化太阳能电池的核心是敏化剂,它承担着吸收光能并将其转换成电子的重要任务。
敏化剂通常是一种有机染料分子,它能够吸收不同波长范围内的阳光。
一旦光束通过透明导电电极进入敏化层,染料分子吸收光能并将其转化为电子激发态。
这些激发态的电子将被输运到电解质层。
2. 电解质层:电解质层在染料敏化太阳能电池中起着电子输运和离子传输的关键作用。
它一般由一种电子导电和离子传输的材料组成,常见的是有机盐或其它电解质。
当电子通过敏化剂激发并进入电解质层时,电解质中的离子会移动以供给电子输运路径。
这个过程形成了一个电化学势差,使电子从敏化剂转移到电解质,从而形成了一个电流。
3. 光电转换层:光电转换层一般由电子导电材料和电子传输路径组成。
常用的电子导电材料有纳米金属氧化物,如二氧化钛。
光电转换层的主要作用是接收电解质层中输送过来的电子,并将其输送到下一个电子传输路径。
在这个过程中,光电转换层会起到催化剂的作用,促进电流的传输和提高电池的效率。
总结起来,染料敏化太阳能电池的原理是基于染料分子对光能的吸收和电子转移。
光能经过敏化剂吸收并激发电子,然后电子在电解质层中移动并离子进行传输,最终通过光电转换层形成电流。
这个过程充分利用了染料分子的吸光特性和电解质的电化学特性,实现了太阳能的高效转换。
染料敏化太阳能电池的介绍
染料敏化太阳能电池的介绍电气与电子工程学院信息1301班1131200116 马文栋十六周的新能源课程让我对新兴能源有了一定的了解,现在让我来介绍一下染料敏华电池。
染料敏化太阳电池主要是模仿光合作用原理,研制出来的一种新型太阳电池。
它是继多晶硅及薄膜太阳能电池之后,第三代太阳能电池产品——染料敏化太阳能电池产业化开发取得突破。
染料敏化太阳能电池是以低成本的纳米二氧化钛和光敏染料为主要原料,模拟自然界中植物利用太阳能进行光合作用,将太阳能转化为电能。
与传统太阳能电池相比,它的最大优势在于其制作工艺简单、不需昂贵的设备和高洁净度的厂房设施,制作成本仅为硅太阳能电池的1/10~1/5。
该电池使用的纳米二氧化钛、N3染料、电解质等材料价格便宜且环保无污染,同时它对光线的要求相对不那么严格,即使在比较弱的光线照射下也能工作。
敏化染料太阳能电池主要优势是:原材料丰富、成本低、工艺技术相对简单,在大面积工业化生产中具有较大的优势,同时所有原材料和生产工艺都是无毒、无污染的,部分材料可以得到充分的回收,对保护人类环境具有重要的意义。
自从1991年瑞士洛桑高工领导的研究小组在该技术上取得突破以来,欧、美、日等发达国家投入大量资金研发。
敏化染料太阳能电池简称DSC, 主要由纳米多孔半导体薄膜、染料敏化剂、氧化还原电解质、对电极和导电基底等几部分组成。
纳米多孔半导体薄膜通常为金属氧化物(TiO2、SnO2、等),聚集在有透明导电膜的玻璃板上作为DSC的负极。
对电极作为还原催化剂,通常在带有透明导电膜的玻璃上镀上铂。
敏化染料吸附在纳米多孔二氧化钛膜面上。
正负极间填充的是含有氧化还原电对的电解质,最常用的是I3-/I-。
敏化染料太阳能电池发电的原理是:(1)染料分子受太阳光照射后由基态跃迁至激发态;(2)处于激发态的染料分子将电子注入到半导体的导带中;(3)电子扩散至导电基底,后流入外电路中;(4)处于氧化态的染料被还原态的电解质还原再生;(5)氧化态的电解质在对电极接受电子后被还原,从而完成一个循环;(6)和(7)分别为注入到TiO2 导带中的电子和氧化态染料间的复合及导带上的电子和氧化态的电解质间的复合;敏化染料太阳能电池工作原理:染料敏化太阳能电池主要由表面吸附了染料敏化剂的半导体电极、电解质、Pt 对电极组成。
染料敏化太阳能电池原理
染料敏化太阳能电池原理1.光吸收:染料敏化太阳能电池利用染料吸收光线,将光子能量转化为电子激发。
染料通常由具有较高光吸收率的有机分子组成,可以吸收一定波长范围内的光线。
2.电荷分离:吸收光线后,染料分子激发产生电子-空穴对。
电子被激发到染料分子的共轭π电子体系中,形成激发态染料阴离子;空穴则留在染料分子上。
激发态染料阴离子具有较长的寿命,可以脱离染料,游离到电解质中。
3.电流输出:电子从染料分子的共轭π电子体系中传输到电解质溶液中的I3-离子上,生成I-离子。
在电解质中增加了I-离子的浓度,促进了电荷传输。
电子从I-离子上传输到导电玻璃(如氧化锡涂层的导电玻璃)上,形成电流。
这个过程是由电解质中的氧化还原反应实现的。
染料敏化太阳能电池的整体结构包括透明导电玻璃、电解质、染料敏化薄膜和反电极。
透明导电玻璃通常是氧化锡涂层的导电玻璃,用于收集电池输出的电流。
电解质提供了离子的传输路径,并进行电子传输和电荷均衡。
染料敏化薄膜涂覆在电解质上,用于吸收光线并产生电子激发。
反电极位于染料敏化薄膜的另一侧,通过电解质与导电玻璃相连接,形成电池的闭路。
整个过程涉及到光吸收、光电转换、电荷分离、电荷传输和电流输出等多个物理和化学过程。
染料敏化太阳能电池的优势是可以利用广谱的光线,包括可见光和红外光,以及光的反射和散射,提高光的利用率。
此外,染料敏化太阳能电池可以通过调整染料的吸收谱来适应不同光照条件,具有较高的光电转换效率。
总结起来,染料敏化太阳能电池依靠染料吸收光线,并利用电解质和导电玻璃之间的氧化还原反应,将光能转化为电能。
它具有许多优点,可以成为太阳能电池技术的发展方向之一。
染料敏化太阳能电池的概述
染料敏化太阳能电池的概述染料敏化太阳能电池(Dye Sensitized Solar Cells,简称DSSC)全称为“染料敏化纳米薄膜太阳能电池”,由瑞士洛桑高等理工学院(EPFL)Gratzel教授于1991年取得突破性进展,立即受到国际上广泛的关注和重视,DSSC主要是指以染料敏化多孔纳米结构TiO2薄膜为光阳极的一类半导体光电化学电池,另外也有用ZnO、SnO2等作为TiO2薄膜替代材料的光电化学电池。
1.1染料敏化太阳能电池优点它是仿照植物叶绿素光合作用原理的一种太阳能电池。
由于染料敏化太阳能电池中使用了有机染料,其功能就如同树叶中的叶绿素,在太阳光的照射下,易产生光生电子,而纳晶TiO2薄膜就相当于磷酸类脂膜,因此我们形象的把这种太阳能电池称为人造树叶。
DSSC 与传统的太阳电池相比有以下一些优势:(1)寿命长:使用寿命可达15-20年;(2)结构简单、易于制造,生产工艺简单,易于大规模工业化生产;(3)制备电池耗能较少,能源回收周期短;(4)生产成本较低,仅为硅太阳能电池的1/5~1/10,预计每瓦的电池成本在10元以内;(5)生产过程中无毒无污染;纳米晶染料敏化太阳能电池有着十分广阔的产业化前景和应用前景,相信在不久的将来,DSSC将会走进我们的生活。
因此吸引了各国众多科学家与企业大力进行研究和开发,近年来获得了飞速发展。
1.2染料敏化太阳能电池(DSSC)的結构组成染料敏化太阳能电池包括四部分:纳米氧化物半导体多孔膜(TiO2,ZnO),含有氧化还原电对的电解液(I-/I3-),作为敏化剂的染料(如N719/N3)以及对电极(如Pt)。
除此之外DSSC还需要衬底材料,通常为氟掺杂的氧化锡导电玻璃(FTO导电玻璃)。
该实验中,纳米氧化物半导体多孔膜为ZnO,敏化剂用N719染料。
(1)FTO透明导电玻璃FTO导电玻璃为掺杂氟的SnO2透明导电玻璃(SnO2:F),简称为FTO。
FTO玻璃被作为ITO导电玻璃的替换用品被开发利用,可被广泛用于液晶显示屏,它是染料敏化太阳能电池的TiO2/ZnO薄膜的载体,同时也是光阳极电子的传导器和对电极上电子的传导器和对电极上电子的收集器。
染料敏化纳米太阳能电池学习资料PPT
电池 封装
测试过程 中保持电 池的稳定
性
1)单色光转化效率 单色光光电转换效率定义( IPCE )为入射单色光子 -电子转化效率,即为外电路中产生的电子数(Ne) 与总的入射单色光子数(Np)之比。其数学表达式 为:
IPCE=Ne/Np= (1.241×10-6×Isc)/PInλ )
其中 Isc为电池短路电流,λ 为入射单色光的波长, Pin为入射单色光的功率。
染料敏化太阳能电池的测试方法
a)可变电阻法:在RL的位置加一可变电阻,然后对该电阻的 电压及流经电流进行记录,可得到电池 I-V 曲线,
缺点:由于外部导线电阻和电流表本身串联电阻的存在,电
路不能完全短路;同样由于电压表本身内阻的因素,电路也不 能完全断路,表现在 I-V 曲线上就是曲线两端只能接近坐标轴, 而无法与坐标轴相交。
染料敏化太阳能电池等效电路图
染料敏化太阳能电池的等效电路如上图,可以看出光电 流的产生在恒定的光强下可以个恒电流源,与之并联的 有一个处于正向偏压下的二极管和一个并联电阻 Rsh, 剩余的电流流经串联电阻 Rs,进入外电路。两个电阻分 别表示在太阳能电池中两种类型的损耗,串联电阻 Rs表 示由于界面接触及外电路产生的电阻,并联电阻 Rsh用 来表示暗电流的作用。
TEM :用来观察 TiO2纳米晶显微形貌结构 XRD:分析样品的结晶类型 DSC-TGA:分析试样相转变、有机物挥发
和反应等
BET:比表面积和孔径分布。 UV-Vis:紫外可见吸收光谱
将适当的染料吸附到宽带隙的半导体表面上,借助于染料
对可见光的强吸收,可以将半导体的光谱响应拓宽到可见
区,这种现象称为半导体的染料敏化作用,而载有染料的 半导体为染料敏化半导体电极。
染料敏化太阳电池资料
2 氧化物半导体薄膜
** (1)TiO2纳米晶(用的最多、效率最高) 优点:含量丰富、价格便宜、无毒、稳定、抗腐蚀性好 一般采用锐钛型TiO2。
粉体制备方法:溶胶-凝胶法、TiCl4水解法、电化学等
易实现对TiO2晶型和粒径的有效控制
多孔薄膜制备法:浸渍法、旋涂法、丝网印刷法、溅射法、 水热反应法、醇盐水解法、高温溶胶喷射沉积、等离子喷涂 等
2013年由瑞士洛桑联邦理工学院 (Michael Grätzel)的研究小组、英国 牛津大学和日本桐荫横滨大学的研究3小组,分别独立开发出了转换效率超 过15%的固体型染料敏化太阳能电池。
优势
✓生产工艺简单,易于大规模工业化生产; ✓制备电池耗能较少,能源回收周期短; ✓制成透明的产品,应用范围广; ✓在各种光照条件下使用; ✓光的利用效率高; ✓对光阴影不敏感……
阳极发生的净反应为: 1.5I-+hν→0.5I3-+e-(TiO2)
对电极: 0.5I3-+e-(Pt)→1.5I-(电解质还原)
整个电池的反应结果为: e-(Pt)7+hν→e-(TiO2)(光电流)
+.
8
DSSC的评价技术指标
(1)短路电流(Isc ):当太阳电池的 输出端短路时(V=0)。与入射光强 度成正比。
4
DSSC的组成
5
DSSC和植物的光合作用
叶绿体的结构
纳米晶半导体网络结构相 当于叶绿体的内囊体,起 着支撑敏化剂染料分子、 增加吸收太阳光的面积和 传递电子的作用。
敏化剂染料分子相当于叶 绿体中的叶绿素,起着吸 收太阳光光子的作用。
6
DSSC的工作原理
光电阳极: Dye + hν→Dye* (染料激发) Dye*→Dye++e-(TiO2)(产生光电流) Dye++1.5I- →Dye+0.5I3-(染料还原)
染料敏化太阳能电池的原理
染料敏化太阳能电池的原理染料敏化太阳能电池(Dye-Sensitized Solar Cells,简称DSSCs)是一种新型的光电转换器件,具有高效率、低成本、易制备等优点,因此备受关注。
其工作原理主要包括光吸收、电子传输和电荷注入等过程。
下面将详细介绍染料敏化太阳能电池的原理。
1. 光吸收过程染料敏化太阳能电池的光吸收过程是其工作的第一步。
在DSSCs 中,染料分子起着吸收光子的作用。
染料分子通常吸收可见光范围内的光子,将光子激发至激发态。
常用的染料有吲哚染料、酞菁染料等。
当光子被染料吸收后,染料分子发生跃迁,电子从基态跃迁至激发态。
2. 电子传输过程在光吸收后,染料分子中的电子被激发至激发态,形成激子。
激子在染料分子内部扩散,最终将电子注入到TiO2(二氧化钛)纳米晶体表面。
TiO2作为电子传输的介质,具有良好的导电性和光稳定性,能够有效地传输电子。
3. 电荷注入过程当激子将电子注入到TiO2纳米晶体表面时,电子被注入到TiO2的导带中,形成电子空穴对。
同时,染料分子中失去电子的正离子被还原,形成还原态染料。
在这一过程中,电子从TiO2传输至电解质中,形成电子流,从而产生电流。
而正离子则通过电解质回迁至染料分子,完成电荷平衡。
4. 电子回流过程在DSSCs中,电子传输至电解质后,需要通过外部电路回流至染料分子,以维持电荷平衡。
外部电路中连接有负载,电子在外部电路中流动,产生电流,从而实现光能转化为电能的过程。
电子回流的速率直接影响DSSCs的光电转换效率。
综上所述,染料敏化太阳能电池的工作原理主要包括光吸收、电子传输、电荷注入和电子回流等过程。
通过这些过程,DSSCs能够将太阳能转化为电能,实现光电转换。
随着对染料敏化太阳能电池原理的深入研究,其性能不断提升,为可再生能源领域的发展带来新的希望。
如何精准测量第三代(有机、染料敏化、钙钛矿)太阳能电池
如何精准测量第三代(有机、染料敏化、钙钛矿)太阳能电池随着电池材料的日新月异,有别于传统晶硅电池,新型电池在测试或评价方法上,比传统晶硅电池有更严谨的测试要求。
本文将介绍第三代太阳能电池之最大功率测量方法,提供一标准的测试方法来达到更精确的结果。
由测试光源的光谱和电池间的光谱响应来计算和标准测试条件STC下AM1.5G光谱的差异;经由此方法来选择合适的标准电池,再利用此标准电池来标定太阳模拟器标准光强,减少测试误差及不确定度。
1. 简介有机太阳电池OPV、染料敏化太阳电池DSSC及钙钛矿Perovskite(PVK) 研究在近几年来有跃进式的发展,目前有不少研究单位研究出转换效率突破10%的电池结构,且效率持续增加中,但其测试方式却不同于较成熟的晶硅电池。
由于此类电池材料对光的反应不如晶硅电池快,所以测试上必需考虑测试的反应时间,才能真正有效测量电池效率;另一个很重要的原因在测试前模拟光源的光强校准,因为OPV/DSSC/PVK和晶硅参考电池其光谱响应有很明显的差异,也就是光谱失配,所以必需透过光谱失配修正后才能进行光强校准。
选择合适的标准电池能减小(忽略)和待测电池的光谱失配,才不会造成测量上的误差。
2. 光谱失配修正在国际规范IEC 60904-9清楚定义评价太阳模拟器等级的方式,对于最大功率量测时的辐照度,使用标准电池来标定测试时的辐照度,但太阳模拟器光谱和标准测试条件AM 1.5G光谱必然的存在光谱误差,即使是等级A的太阳模拟器,仍有近±25%的误差。
而标准电池和待测样品的光谱响应若不同时,则必需透过IEC 60904-7计算光谱失配来修正辐照度。
如图一,以OPV为例,太阳模拟器光谱和电池的光谱响应图。
图一、太阳模拟器光谱和电池的光谱响应图IEC 60904-7 提供了一光谱失配的方法如式(1),MM =∫E ref (λ)S ref (λ)dλ∫E meas (λ)S sample (λ)dλ∫E meas (λ)S ref (λ)dλ∫E ref (λ)S sample (λ)dλ(1)其中E ref (λ)是参考的光谱辐照度,较常用的光谱也就是AM 1.5G ;E meas (λ)是测试时,当下光源的光谱;S ref (λ)是用来标定模拟器光强的标准电池光谱响应;S sample (λ)是待测电池的光谱响应。
太阳能电池的分类太阳能电池的分类介绍
太阳能电池的分类太阳能电池的分类介绍太阳能电池依据所用材料的不同,太阳能电池可分为:硅太阳能电池、多元化合物薄膜太阳能电池、聚合物多层修饰电极型太阳能电池、纳米晶太阳能电池、有机太阳能电池、塑料太阳能电池,其中硅太阳能电池是进展最成熟的,在应用中居主导地位。
1、硅太阳能电池硅太阳能电池分为单晶硅太阳能电池、多晶硅薄膜太阳能电池和非晶硅薄膜太阳能电池三种。
单晶硅太阳能电池转换效率最高,技术也最为成熟。
在试验室里最高的转换效率为24.7%,规模生产时的效率为15%(截止2023,为18%)。
在大规模应用和工业生产中仍占据主导地位,但由于单晶硅成本价格高,大幅度降低其成本很困难,为了节约硅材料,进展了多晶硅薄膜和非晶硅薄膜作为单晶硅太阳能电池的替代产品。
多晶硅薄膜太阳能电池与单晶硅比较,成本低廉,而效率高于非晶硅薄膜电池,其试验室最高转换效率为18%,工业规模生产的转换效率为10%(截止2023,为17%)。
因此,多晶硅薄膜电池不久将会在太阳能电池市场上占据主导地位。
非晶硅薄膜太阳能电池成本低重量轻,转换效率较高,便于大规模生产,有极大的潜力。
但受制于其材料引发的光电效率衰退效应,稳定性不高,直接影响了它的实际应用。
假如能进一步解决稳定性问题及提高转换率问题,那么,非晶硅太阳能电池无疑是太阳能电池的主要进展产品之一。
2、多晶体薄膜太阳能电池多晶体薄膜电池硫化镉、碲化镉多晶薄膜电池的效率较非晶硅薄膜太阳能电池效率高,成本较单晶硅电池低,并且也易于大规模生产,但由于镉有剧毒,会对环境造成严峻的污染,因此,并不是晶体硅太阳能电池最抱负的替代产品。
3、纳米晶太阳能电池纳米晶体化学能太阳能电池是新近进展的,优点在于它廉价的成本和简洁的工艺及稳定的性能。
其光电效率稳定在10%以上,制作成本仅为硅太阳电池的1/5~1/10.寿命能达到20年以上。
此类电池的讨论和开发刚刚起步,不久的将来会逐步走上市场。
4、有机薄膜太阳能电池有机薄膜太阳能电池,就是由有机材料构成核心部分的太阳能电池。
提高染料敏化太阳能电池光电转换效率的途径
提高染料敏化太阳能电池光电转换效率的途径伴随着能源危机的加剧,染料敏化太阳能电池由于具有低成本、制作工艺简单等优点,受到了各国科学家的广泛关注。
文章回顾了染料敏化太阳能电池从产生到发展再到逐渐成熟以及现阶段取得的成就。
染料敏化太阳能电池虽具有其他太阳能电池无法比拟的众多优点,但其也存在一些问题,如光电转换效率低便是制约染料敏化太阳能电池发展的重要因素之一。
文章综述了提高太阳能利用率及太阳能电池各器件光电转换效率的途径,即优化染料敏化剂增强其与半导体薄膜材料表面的键合强度、吸附量及稳定性。
标签:染料敏化太阳能电池;光电转换效率;途径Abstract:With the aggravation of energy crisis,dye-sensitized solar cells have attracted wide attention from scientists all over the world because of their advantages of low cost and simple fabrication process. This paper reviews the achievements of dye-sensitized solar cells from generation to development to maturity. Dye-sensitized solar cells have many advantages that other solar cells can not compare,but there are some problems,such as low photoelectric conversion efficiency is one of the important factors restricting the development of dye-sensitized solar cells. In this paper,the ways to improve the solar energy utilization rate and the photoelectric conversion efficiency of solar cell devices are reviewed,that is,it intends to optimize the dye sensitizer to enhance the bonding strength,adsorption capacity and stability between the dye sensitizer and the surface of semiconductor thin film.Keywords:dye-sensitized solar cells;photoelectric conversion efficiency;approach能源是人類社会赖以生存和发展的重要基础。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
收稿:2007年8月,收修改稿:2007年9月*黑龙江省自然科学基金重点项目(No.EJG0506 01)、黑龙江省青年基金项目(QC05C15)、黑龙江省教育厅科学技术研究项目(11511271)、哈尔滨市青年基金项目(2005AFQXJ062)和黑龙江大学青年基金项目(QL200516)资助**通讯联系人 e mail:xuduobai@有机染料敏化纳米晶太阳能电池*郑 冰 牛海军 白续铎**(黑龙江大学化学化工与材料学院高分子重点实验室 哈尔滨150080)摘 要 本文综述了有机染料敏化纳米晶太阳能电池的研究现状,简要介绍了有机染料敏化纳米晶太阳能电池的结构和工作原理以及氧化物电极、对电极和电解质的设计思路和制备情况。
重点介绍了有机染料的研究现状,包括香豆素类染料、多烯类染料、噻吩类染料、天然染料、半花菁类染料、卟啉类染料、三苯胺类染料、类染料等。
同时讨论了若干影响有机染料敏化太阳能电池性能的因素,提出了提高光电转换效率的设想与对策,对未来的发展进行了展望。
关键词 有机染料 太阳能电池 电解质 电极中图分类号:O646;TM914 4 文献标识码:A 文章编号:1005 281X(2008)06 0828 13Organic Dye Sensitized Nanocrystalline Solar CellsZheng Bing Niu Haijun Bai Xuduo**(Key Laboratory of Polymer,School of Chemistry and Materials Science,Heilongjiang University,Harbin 150080,China)Abstract This paper reviews recent development status of organic dye sensitized nanocrystalline solar cells (DSSCs)and introduces the structure and working principle of organic dye sensitized nanocrystalline solar cells briefly as well as the design and preparation status,including oxide electrodes,c ounter electrodes and electrolytes.The article gives more priorities to the recent development status of organic dyes,such as coumarin dyes,polyene dyes,thiophene dyes,natural dyes,hemicyanine dyes,porphyrin dyes,triphenylamine dyes,perylene dyes and so forth,in which the influencing factors of the performance of solar cells are discussed.Moreover,the corresponding assumptions and measures on how to improve the energy efficiency of the DSSCs are proposed,and finally the trends and promising prospects are presented.Key words organic dyes;solar cells;electrolytes;electrodes1 引言20世纪以来,随着世界经济的发展与人口的急剧增长,能源、人口、环境等日益成为未来50年人类亟待解决的重大问题[1]。
目前,能源消耗主要来自于化石燃料,由于化石燃料储量有限以及所带来的环境污染问题,人们开始把目光投向可再生能源。
在诸如风能、生物能、潮汐能、水力电气和地热等环境友好、可再生的能源中,太阳能的应用前景最为广阔[2]。
世界各国纷纷加大对可再生能源研究工作的投入,以期尽快解决能源和环境问题。
1839年,法国科学家Becquerel[3]发现涂布了卤化银颗粒的金属电极在电解液中产生了光电流,从此人们在光电转化领域开展了大量的工作。
直到1954年第一个实用性的半导体太阳能电池的问世, 将太阳能转化成电能 的想法终于真正成为现第20卷第6期2008年6月化 学 进 展PROGRESS I N C HE MISTRYVol.20No.6 June,2008实[4]。
1991年,瑞士科学家Gr tzel等[5]首次利用纳米技术将染料敏化太阳能电池的转化效率提高到7 1%。
从此,染料敏化纳米晶太阳能电池(DSSC)随之诞生并快速发展起来。
目前能量转换效率最高的仍为Gr tzel等[6]利用N3染料敏化的二氧化钛纳米晶太阳能电池,在AM1条件下,最高能量转化效率达11 18%。
本文从纳米晶半导体电极、有机染料敏化剂、对电极、电解质几个方面,对有机染料敏化纳米晶太阳能电池的国内外研究成果进行了总结,并提出了提高电池转换效率的对策,对未来DSSC的发展进行了展望。
2 基本概念一般用来评价太阳能电池的指标有:开路电压(V oc)、短路电流密度(J sc)、填充因子(FF)、光电转换效率(IPCE)、能量转换效率( )。
本文中我们主要用能量转换效率、光电转换效率来衡量太阳能电池性能的优劣。
开路电压定义为电池在开路条件下的输出电压,此时电池的输出电流为零。
短路电流密度定义为电池在短路条件下单位面积的工作电流,此时电池的输出电压为零。
填充因子定义为电池最大输出功率与开路光电压与短路光电流乘积的比值。
在电流 电压(I V)曲线上,填充因子是两个矩形面积之比。
实用太阳能电池的填充因子应该在0 6!0 75。
光电转化效率,即入射单色光子到电子转化效率(IPCE),定义为单位时间内转移到外电路中的电子数与单位时间内入射的单色光子数之比。
其数学表达式如下。
IPCE=1240J sc ( )J sc为短路电流密度, 为波长,为光子通量,所使用的单位分别为mA cm2,nm和mW c m2。
能量转换效率( )定义为太阳能电池的最大功率输出与入射太阳光的能量(P in)之比。
=P max P in=J sc V oc FF P light3 有机染料敏化纳米晶太阳能电池的结构与工作原理染料敏化纳米晶太阳能电池(DSSC),如图1所示。
它主要由3部分组成:负极(工作电极)、正极(对电极)和电解质。
在导电基底(通常是I TO、FTO)上制备一层多孔的纳米晶氧化物半导体膜(通常是纳米晶TiO2),然后再将染料分子吸附在多孔膜中,这样就构成负极,即工作电极,是体系的核心部分。
正极一般是沉积铂的导电玻璃。
电解质介于正极和负极之间,且包含氧化还原电对,最常用的氧化还原电对是I3- I-。
有机染料敏化纳米晶太阳能电池采用有机物,或是与其它物质掺杂的有机物作为染料。
染料在光照下激发后,产生电子 空穴对,电子和空穴在染料与氧化物半导体之间的界面发生分离,分别以相反的方向在闭合的回路中流动,产生电流,从而达到光电转换的目的。
图1 染料敏化太阳能电池原理示意图Fig.1 A schematic diagram of the energy flow in DSSC4 纳米晶半导体电极 多孔纳米半导体膜纳米晶半导体电极对于整个太阳能电池至关重要,纳米晶半导体膜的形态、直径、表面状态和多孔性等直接影响电子的传输和电解质在电池中的扩散。
纳米晶半导体电极中,最常用、最理想的是纳米晶TiO2。
此外,ZnO[7!13]、SnO2[14,15]、Nb2O5[16,17]和Sr TiO3[17,18]等氧化物也被广泛研究。
但纳米晶TiO2电极在电子传输方面存在一定缺陷,由于纳米晶半导体内部不存在内建电场,且纳米粒子太小,在粒子与电解质溶液的界面不能产生电荷传输层。
没有电场的驱动力,电子与周围的电子受体的复合难以避免,因而造成电流损失。
因为电子转移总是在表面进行的,所以电极的表面修饰是提高效率的必由之路。
因此,TiO2颗粒的表面修饰被广泛研究[18!20]。
表面修饰主要体现在两个方面:一是复合电极代替单一电极;一是对电极进行包覆。
Harima等[21]利用电化学的方法将Li插入到TiO2纳米颗粒中,有效提高了有机DSSC的开路光电压。
目前,很多研究者利用TiCl4对半导体电极进行修饰,并取得了一定的∀829∀第6期郑 冰等 有机染料敏化纳米晶太阳能电池成效[22,23,27]。
在众多制备半导体电极的方法中,有人认为制备单晶一维的纳米棒、纳米管、纳米线膜半导体是提高DSSCs 效率最有前途的方法之一[24]。
原因是与相互堆砌的纳米粒子组成的多孔TiO 2膜相比,纳米棒、纳米管、纳米线膜中纳米粒子的交联程度大大降低,因此这种一维并且经优化的膜电子传输更加容易[25];纳米棒膜的多孔性和结构特点,孔内包含很多微小的粒子,使电解质在电池中的扩散更加便利。
Jiu 等[24]通过水热法合成了长度为100!300nm,直径为20!30nm 的高度结晶的TiO 2纳米棒。
为了进一步提高性能,他们在膜内引入了三元嵌段共聚物(聚乙撑氧100 聚环氧乙烷65 聚乙撑氧100(F127)),使纳米棒的长度缩短,提高了纳米棒膜的热稳定性,大大提高了能量转换效率。
制作的TiO 2单晶锐钛矿N719敏化纳米线太阳能电池的能量转换效率达7 29%。
Hashimoto 等[26]通过低温溶胶 凝胶反应在反胶束体系中合成了直径约4nm 、长度约40nm 的TiO 2纳米杆阵列,应用于高分子半导体制成的光伏器件,在AM1 5照射条件下,能量转化效率达到0 39%,填充因子达到0 47。
同时,合成有序的TiO 2纳米管半导体电极也有报道[22,27]。
与纳米颗粒体系相比,高度有序的TiO 2纳米管阵列有着电子寿命较长、比表面积大和电子容易穿越等特点,有利于提高光伏电池的能量转换效率和光电流。
通常,生长的纳米管、纳米线要经过退火处理,使纳米管、纳米线阵列结晶化,以提高光电流[22]。
Grimes 等[27]通过TiO 2薄膜阳极氧化的方法,在氟掺杂氧化锡涂敷的玻璃基底上,生长了孔径46nm,壁厚17nm,长360nm 的高度有序TiO 2纳米管阵列,应用于钌DSSCs 中。
在AM1 5条件下,产生的光电流为7 87m A cm 2,能量转换效率为2 9%。