(完整版)旋转经典练习题

合集下载

人教版九年级数学上册第23章《旋转》基础练习含答案(4套)(含知识点)

人教版九年级数学上册第23章《旋转》基础练习含答案(4套)(含知识点)

旋转基础练习附答案时间:10分钟满分:25分一、选择题(每小题3分,共6分)1.如图J23-1-1,将△ABC旋转至△CDE,则下列结论中一定成立的是()A.AC=CE B.∠A=∠DEC C.AB=CD D.BC=EC2.如图J23-1-2,将三角尺ABC(其中∠ABC=60°,∠C=90°)绕点B按顺时针方向转动一个角度到A1BC1的位置,使得点A,B,C1在同一条直线上,那么这个角度等于()A.120°B.90°C.60°D.30°图J23-1-1 图J23-1-2 图J23-1-3 图J23-1-4二、填空题(每小题4分,共8分)3.如图J23-1-3,△ABC绕点C旋转后得到△CDE,则∠A的对应角是__________,∠B=________,AB=________,AC=________.4.如图J23-1-4,AC⊥BE,AC=EC,CB=CF,则△EFC可以看作是△ABC绕点________按________方向旋转了__________度而得到的.三、解答题(共11分)5.如图J23-1-5,△ABC是直角三角形,延长AB到点E,使BE=BC,在BC上取一点F,使BF=AB,连接EF,△ABC旋转后能与△FBE重合,请回答:(1)旋转中心是哪一点?(2)旋转了多少度?(3)AC与EF的关系如何?图J23-1-5基础知识反馈卡·23.2.1时间:10分钟满分:25分一、选择题(每小题3分,共6分)1.下列图形绕某点旋转180°后,不能与原来图形重合的是()2.如图J23-2-1,△ABC与△A′B′C′关于点O成中心对称,下列结论中不成立的是()A.OC=OC′B.OA=OA′C.BC=B′C′D.∠ABC=∠A′C′B′图J23-2-1 图J23-2-2 图J23-2-3二、填空题(每小题4分,共8分)3.如图J23-2-2,△ABC和△A′B′C′关于点O成中心对称,如果连接线段AA′,BB′,CC′,它们都经过点_____,且AB=________,AC=________,BC=________.4.如图J23-2-3,将等边△ABD沿BD中点旋转180°得到△BDC.现给出下列命题:①四边形ABCD是菱形;②四边形ABCD是中心对称图形;③四边形ABCD是轴对称图形;④AC=BD.其中正确的是________(写上正确的序号).三、解答题(共11分)5.△ABC在平面直角坐标系中的位置如图J23-2-4所示,将△ABC沿y 轴翻折得到△A1B1C1,再将△A1B1C1绕点O旋转180°得到△A2B2C2.请依次画出△A1B1C1和△A2B2C2.图J23-2-4基础知识反馈卡·23.2.2时间:10分钟满分:25分一、选择题(每小题3分,共9分)1.若点A(n,2)与点B(-3,m)关于原点对称,则n-m=()A.-1 B.-5C.1 D.52.点P关于原点的对称点为P1(3,4),则点P的坐标为()A.(3,-4) B.(-3,-4)C.(-4,-3) D.(-3,4)3.若点A(2,-2)关于x轴的对称点为B,点B关于原点的对称点为C,则点C的坐标是()A.(2,2) B.(-2,2)C.(-1,-1) D.(-2,-2)二、填空题(每小题4分,共8分)4.点A(-2,1)关于y轴对称的点坐标为________,关于原点对称的点的坐标为________.5.若点A(2,a)关于x轴的对称点是B(b,-3),则ab的值是________.三、解答题(共8分)6.如图J23-2-5,利用关于原点对称的点的坐标的特点,作出与线段AB 关于原点对称的图形.图J23-2-5基础知识反馈卡·23.3时间:10分钟满分:25分一、选择题(每小题3分,共9分)1.下列选项中,能通过旋转把图a变换为图b的是()2.图J23-3-1的四个图案中,既可用旋转来分析整个图案的形成过程,又可用轴对称来分析整个图案的形成过程的有()图J23-3-1A.1个B.2个C.3个D.4个3.在下图右侧的四个三角形中,不能由左侧的三角形经过旋转或平移得到的是()二、填空题(每小题4分,共8分)4.正六边形可以看成由基本图形________经过________次旋转而成.5.如图J23-3-2,一串有趣的图案按一定规律排列.请仔细观察,按此规律画出的第10个图案是__________;在前16个图案中“”有______个.图J23-3-2三、解答题(共8分)6.认真观察图J23-3-3中的四个图案,回答下列问题:图J23-3-3(1)请写出这四个图案都具有的两个共同特征:特征1:____________________;特征2:____________________________.(2)请你在图J23-3-4中设计出你心中最美的图案,使它也具备你所写出的上述特征.图J23-3-4基础知识反馈卡·23.2.11.B 2.D3.O A′B′A′C′B′C′ 4.①②③5.解:如图DJ1.图DJ1基础知识反馈卡·23.2.21.D 2.B 3.D4.(2,1)(2,-1) 5.66.解:如图DJ2.图DJ2基础知识反馈卡·23.31.A 2.D 3.B4.正三角形 65. 56.解:(1)是轴对称图形是中心对称图形(2)如图DJ3(答案不唯一).图DJ3以下不需要可以删除人教版初中数学知识点总结必备必记目录七年级数学(上)知识点 (1)第一章有理数 (1)第二章整式的加减 (3)第三章一元一次方程 (4)第四章图形的认识初步 (5)七年级数学(下)知识点 (6)第五章相交线与平行线 (6)第六章平面直角坐标系 (8)第七章三角形 (9)第八章二元一次方程组 (12)第九章不等式与不等式组 (13)第十章数据的收集、整理与描述 (13)八年级数学(上)知识点 (14)第十一章全等三角形 (14)第十二章轴对称 (15)第十三章实数 (16)第十四章一次函数 (17)第十五章整式的乘除与分解因式 (18)八年级数学(下)知识点 (19)第十六章分式 (19)第十七章反比例函数 (20)第十八章勾股定理 (21)第十九章四边形 (22)第二十章数据的分析 (23)九年级数学(上)知识点 (24)第二十一章二次根式 (24)第二十二章一元二次根式 (25)第二十三章旋转 (26)第二十四章圆 (27)第二十五章概率 (28)九年级数学(下)知识点 (30)第二十六章二次函数 (30)第二十七章相似 (32)第二十八章锐角三角函数 (33)第二十九章投影与视图 (34)七年级数学(上)知识点人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容. 第一章有理数一.知识框架二.知识概念1.有理数:(1)凡能写成)0pq,p(pq≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;π不是有理数;(2)有理数的分类: ①⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数②⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ a+b=0 ⇔ a、b互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a(a)0a()0a(aa或⎩⎨⎧<-≥=)0a(a)0a(aa;绝对值的问题经常分类讨论;5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数-大数<0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么a的倒数是a1;若ab=1⇔ a、b 互为倒数;若ab=-1 a 、b 互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ).10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定. 11 有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );(3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a .13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n .14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字. 请判断下列题的对错,并解释.1.近似数25.0的精确度与近似数25一样.2.近似数4千万与近似数4000万的精确度一样.3.近似数660万,它精确到万位.有三个有效数字.4.用四舍五入法得近似数6.40和6.4是相等的.5.近似数3.7x10的二次与近似数370的精确度一样.1、错。

小学旋转测试题及答案

小学旋转测试题及答案

小学旋转测试题及答案一、选择题(每题2分,共10分)1. 一个正方形旋转90度后,它的形状会改变吗?A. 会B. 不会C. 不确定答案:B2. 一个圆在平面内旋转360度后,它的位置会改变吗?A. 会B. 不会C. 不确定答案:B3. 一个等边三角形绕着它的一个顶点旋转120度后,它的位置会改变吗?A. 会B. 不会C. 不确定答案:B4. 一个矩形绕着它的中心点旋转180度后,它的形状和位置会改变吗?A. 形状和位置都会改变B. 形状不会改变,位置会改变C. 形状和位置都不会改变答案:C5. 如果一个图形绕着一个点旋转了360度,那么这个图形的位置会回到原来的位置吗?A. 会B. 不会C. 不确定答案:A二、填空题(每题2分,共10分)1. 一个图形绕着一个点旋转____度后,会回到原来的位置。

答案:3602. 一个图形旋转后,它的形状____改变。

答案:不会3. 一个图形绕着它的中心点旋转,它的形状和位置____改变。

答案:不会4. 一个图形旋转180度后,它的位置____改变。

答案:会5. 一个图形绕着一个点旋转90度后,它的位置____改变。

答案:会三、判断题(每题2分,共10分)1. 一个正方形旋转180度后,它的形状和位置都会改变。

()答案:×2. 一个圆在平面内旋转任意角度后,它的形状都不会改变。

()答案:√3. 一个矩形绕着它的一个顶点旋转90度后,它的形状不会改变。

()答案:√4. 一个等边三角形绕着它的中心点旋转120度后,它的位置不会改变。

()答案:√5. 一个图形旋转360度后,它的位置一定会回到原来的位置。

()答案:√四、简答题(每题5分,共20分)1. 请简述旋转对称图形的特点。

答案:旋转对称图形是指一个图形绕着一个点旋转一定角度后,能够与自身重合的图形。

这样的图形在旋转过程中,其形状和大小不会发生改变,只是位置发生了变化。

2. 为什么一个圆在平面内旋转任意角度后,它的形状不会改变?答案:一个圆在平面内旋转任意角度后,它的形状不会改变,因为圆是所有点到圆心距离相等的点的集合,无论旋转多少角度,这些点到圆心的距离都保持不变,因此圆的形状不会发生改变。

旋转 典型例题(精品解析)

旋转 典型例题(精品解析)

典型例题一例 如图,以点O 为旋转中心,将ABC ∆顺时针旋转45°,画出图形.分析 当旋转中心O 在图形之外时,O 是一个孤立的点,没有从O 出发的线段或射线作参照,就无法确定旋转的角度,因此,首先还须将O 与图形上的某点(或某些点)连结起来.解 如图,连结OA 、OB 、OC .将这三条线段绕O 点分别顺时针旋转45°,得C O B O A O '''、、,则C B A '''∆就是按题目要求得到的旋转后的图形.说明: 图形旋转后的效果有时不像平移那样直观,画图出现错误时可能不易发现,因此画图时要特别细心.典型例题二例 如图,正方形ABCD 中,E 是正方形内的一点,把AED ∆绕着点A 按逆时针旋转90°,画出旋转后的三角形,并回答:(1)图中有哪些等线段和等角?(2)哪两个三角形形状、大小都一样?分析 一个图形绕它的对称中心旋转一个角度后,图形中的每一点都绕旋转中心旋转了同样大小的角度.本例中可以发现AD 旋转90°后,刚好与AB 重合,于是将AE 旋转90°到E A '的位置,使︒='∠90E EA ,确定点E ',连E B ',则E AB '∆就是ADE ∆按要求旋转的三角形.(1)(2)中,根据图形旋转的特征,图形从一个位置旋转到另一个位置,形状和大小都没有改变,可确定相等的线段、相等的角以及形状相同的三角形.答案 (1)相等的线段有:E B DE E A AE CD BC AB AD '='====,,.相等的角有:E E E AB ADE E BA DAE '∠=∠'∠=∠'∠=∠,,.(2)ADE ∆与E AB '∆的形状和大小都一样.典型例题三例 如图,把一块砖ABCD 直立于地面上,然后将其轻轻推倒.在这个过程中,A 点保持不动,四边形ABCD 旋转到B C D A '''位置.(1)指出在这个过程中的旋转中心,并说出旋转的角度是多大?(2)指出图中的对应线段.分析(1)由于四边形B C D A '''是由四边形ADCB 旋转得到的,A 点保持不动,所以A 是旋转中心.又由于D A B ',,三点在一条直线上,且AB AD ⊥,所以旋转的角度是90°.(2)由于D C B A ,,,的对应点分别是D C B A ''',,,,所以不难找出图中的对应线段.答案 (1)A 是旋转中心,旋转的角度是90°.(2)CD BC AD AB ,,,的对应线段分别是D C C B D A B A '''''',,,.典型例题四例 (1)把长方形ABCD 绕着顶点A 逆时针旋转60°.如图.(2)把长方形ABCD 绕着长方形内一点P 逆时针旋转60°.解 (1)①AB 绕A 点逆时针旋转60°到B A '位置,.,60AB B A AB B ='︒='∠②连结AC ,作.,60AC C A AC C ='︒='∠③作.,60AD D A AD D ='︒='∠连结B C C D '''',,则四边形D C B A '''是四边形ABCD 逆时针旋转60°得到的图形.(2)①连结AP ,作︒='∠60PA A ,使.AP P A ='②用同样的方法作出D C B '''、、,连结A D D C C B B A ''''''''、、、.则四边形D C B A ''''是四边形ABCD 绕P 点逆时针旋转60°得到的图形.典型例题五例 画一个三角形,使通过这个三角形的旋转得到一个正六边形,指出这是一个什么三角形、旋转中心和每次旋转的角度、需要旋转多少次才能完成这个图形.分析 这个题目给了我们一个由三角形制作正多边形的方法.解 给出的三角形应该是正三角形,可以以它的任一个顶点为旋转中心,每次旋转60°,旋转六次便可完成这个图形.说明: 利用这个方法,可以画出任意边数的正多边形.请想一下,画正n 边形应该使用什么样的三角形?怎样旋转呢?典型例题六例 把8个同样大小的等腰梯形拼成如图所示的图形.(1)找出它的旋转中心.(2)当它旋转多少度后与自身重合.分析 (1)从图中可以看出,这八个等腰梯形的八个顶点H G F E D C B A ,,,,,,,恰好在同一个圆周上,该图形的旋转中心就是各顶点所在圆的圆心.因此只要把任意两腰延长,它们的延长线的交点就是旋转中心.(2)这八个等腰梯形将圆周八等分,因此,它只要旋转︒=︒458360后就能与自身重合. 答案 (1)任意延长任何梯形的两腰,这两腰延长线的交点就是旋转中心.(2)旋转的角度是45°.典型例题七例 找出下列图形中的旋转中心,旋转角以及旋转的“基本图案”。

小学旋转的练习题

小学旋转的练习题

小学旋转的练习题一、选择题1. 一个图形绕某一点旋转了90度,这个点被称为图形的:A. 旋转中心B. 旋转轴C. 旋转半径D. 旋转角度2. 一个正方形顺时针旋转90度后,它的四个顶点的位置:A. 保持不变B. 位置互换C. 位置不变但方向改变D. 位置和方向都改变3. 如果一个图形绕某点旋转180度,那么这个图形将:A. 回到原来的位置B. 位置不变,方向改变C. 位置改变,方向不变D. 位置和方向都不变4. 一个图形绕其一边的中点旋转180度,这个图形:A. 保持不变B. 位置互换C. 位置不变,方向改变D. 位置和方向都改变5. 一个图形绕其一个顶点旋转90度,这个图形:A. 保持不变B. 位置互换C. 位置不变,方向改变D. 位置改变,方向不变二、填空题6. 一个图形绕某点旋转____度,这个点被称为图形的旋转中心。

7. 当一个图形绕其一边的中点旋转180度时,这个图形的位置____。

8. 如果一个图形绕其一个顶点旋转90度,这个图形的位置____。

9. 一个图形顺时针旋转90度后,它的四个顶点的位置____。

10. 一个图形绕某点旋转180度,那么这个图形将____。

三、判断题11. 一个图形旋转后,它的形状和大小都不会改变。

()12. 一个图形绕其一边的中点旋转180度后,图形的每个部分都回到原来的位置。

()13. 一个正方形顺时针旋转90度后,它的面积不变。

()14. 一个图形绕某点旋转90度后,图形的每个部分都回到原来的位置。

()15. 一个图形绕其一个顶点旋转90度后,图形的面积会改变。

()四、简答题16. 描述一个图形绕其一边的中点旋转180度后,图形的哪些部分发生了变化?17. 解释为什么一个图形旋转后,它的形状和大小不会改变。

18. 如果一个图形绕其一个顶点旋转90度,图形的哪些部分保持不变?19. 为什么一个正方形顺时针旋转90度后,它的面积不会改变?20. 描述一个图形绕某点旋转90度后,图形的哪些部分发生了变化,并解释原因。

(完整版)四年级衣物旋转练习题

(完整版)四年级衣物旋转练习题

(完整版)四年级衣物旋转练习题四年级衣物旋转练题
1. 衣物的基本分类是什么?
- 衣物的基本分类有两种,分别是上衣和下装。

2. 什么是衣物的旋转?
- 衣物的旋转是指不同的衣物进行搭配,以达到更多穿搭的可能性和变化。

3. 请你给下面的衣物配上合适的搭配:
- 上衣:白色T恤、蓝色衬衫、灰色卫衣、红色毛衣
- 下装:牛仔裤、黑色裙子、短裤、运动裤
请自行组合衣物的搭配,并写出你的答案。

4. 衣物的旋转可以带来什么好处?
- 衣物的旋转可以带来以下好处:
- 增加穿搭的变化和乐趣。

- 最大限度地发挥衣物的搭配潜力。

- 减少对单一衣物的依赖,实现延长使用寿命的效果。

5. 你还能想到哪些衣物的搭配组合?请列举三个例子。

- 上衣:灰色卫衣
下装:牛仔裤
- 上衣:白色T恤
下装:短裤
- 上衣:红色毛衣
下装:黑色裙子
6. 通过衣物的旋转,你可以发现什么?
- 通过衣物的旋转,你可以发现不同衣物的组合搭配会给人不同的感觉和形象,同时也会激发你对穿搭的创造力和想象力。

7. 你对衣物的旋转有什么新的认识和体会?
- 对衣物的旋转,我有了更多搭配衣物的思路和灵感,意识到在不同的搭配中,可以尝试出不同的风格和效果。

初三旋转测试题卷子及答案

初三旋转测试题卷子及答案

初三旋转测试题卷子及答案一、选择题(每题3分,共15分)1. 一个点绕原点旋转90度后,其坐标变为原来的什么?A. 相反数B. 倒数C. 两倍D. 四倍2. 一个图形绕某点旋转180度后,与原图形的关系是?A. 完全重合B. 完全相反C. 部分重合D. 没有关系3. 一个图形绕某点旋转60度后,其面积和周长会如何变化?A. 面积不变,周长不变B. 面积变小,周长变小C. 面积不变,周长变长D. 面积变小,周长变大4. 一个图形绕其对称轴旋转180度后,图形的位置会如何变化?A. 完全重合B. 完全相反C. 部分重合D. 没有变化5. 如果一个图形绕某点旋转了θ度,那么它的旋转矩阵是什么?A. [cosθ -sinθ; sinθ cosθ]B. [cosθ sinθ; -sinθ cosθ]C. [sinθ cosθ; cosθ -sinθ]D. [sinθ -sinθ; cosθ cosθ]二、填空题(每题2分,共10分)6. 一个点P(x, y)绕原点旋转θ度后,其新坐标为_________。

7. 若一个图形绕点(a, b)旋转θ度,其旋转后的图形与原图形的对应点坐标变化关系为_________。

8. 一个正方形绕其中心点旋转45度后,其四个顶点的坐标变化情况是_________。

9. 一个圆绕其圆心旋转任意角度,其形状和大小_________。

10. 旋转矩阵可以表示为_________,其中θ为旋转角度。

三、解答题(每题5分,共20分)11. 给定一个点P(1, 2),求该点绕原点旋转120度后的坐标。

12. 一个矩形ABCD,其中A(-1, 1),B(1, 1),C(1, -1),D(-1, -1),求该矩形绕点A旋转90度后的顶点坐标。

13. 描述一个正方形绕其对称轴旋转90度后,四个顶点的坐标变化情况。

14. 解释旋转矩阵在图形旋转变换中的作用。

四、综合题(每题5分,共10分)15. 一个正六边形绕其中心点旋转60度后,求其顶点坐标的变化。

旋转相关练习题

旋转相关练习题

旋转相关练习题旋转是一种常见的运动方式,它在日常生活中存在于各个方面。

无论是体育运动、舞蹈表演还是工程设计,都可以发现旋转的身影。

今天我们就来做一些旋转相关的练习题,通过动手实践来掌握旋转的基本概念和运算方法。

一、简单旋转练习题1. 小明手持一只铅笔,以手腕为轴心做旋转动作,请描述他手腕所绕的轴线是什么形状?2. 以下哪个物体的旋转轴线属于直线?A.风车的转轴B.自行车的轮轴C.田径比赛中铅球的投掷轴线D.棋盘中心的旋转轴3. 时间过得真快,转眼间一年又过去了。

如果我们假设地球的自转轴为直线,则完成一次自转需要多长时间?二、旋转运算练习题1. 物体A绕着直线轴旋转,角速度为ω,物体B以与轴相同的角速度旋转。

若物体A的半径是物体B的2倍,则物体B与物体A的线速度比值为多少?2. 某车轮以角速度ω绕轴心旋转,车轮半径为R,请计算车轮一个完整的旋转周期所对应的线速度。

三、旋转转换练习题1. 小球A以角速度ω1绕轴旋转,半径为R1;小球B以角速度ω2绕轴旋转,半径为R2。

已知R2 = 2R1,若A和B同时开始旋转,则多久后A与B相对位置性质不再改变?2. 某体育馆内有一个固定的旋转平台,上面放置着数个相同质量、相同半径的小球。

当平台加速开始旋转时,小球A和小球B恰好位于平台边缘两侧,A在平台上,B在平台下。

在平台旋转至一定角度后,小球A和小球B的相对位置将会发生变化。

请问这是因为平台的何种旋转?四、思考题1. 物体在旋转过程中,角速度与半径之间存在着怎样的关系?2. 在旋转运动中,物体的哪些性质会发生改变?以上是关于旋转相关练习题的一些内容。

通过这些练习题,我们可以更好地理解旋转的概念和运算方法,提高我们解决旋转问题的能力。

希望这些练习能对你有所帮助!。

旋转专项练习题

旋转专项练习题

旋转专项练习题在几何学中,旋转是一种常见的变换操作,它可以将一个图形沿着中心点或轴线旋转一定角度。

通过多次练习旋转操作,不仅可以锻炼我们的思维能力,还能够提高我们的几何学知识。

本文将为您提供一些旋转专项练习题,帮助您巩固和拓展相关知识。

题目一:旋转矩形对于给定的矩形ABCD,中心点为O,若将该矩形按顺时针方向绕O点旋转90度,求旋转后各点的坐标。

解析:根据旋转规则,顺时针旋转90度可以理解为每个点的坐标绕O点逆时针旋转90度。

已知矩形ABCD的坐标如下:A(0, 0) B(4, 0) C(4, 2) D(0, 2)根据旋转规则,逆时针旋转90度后的坐标为:A'(-0, 0) B'(0, -4) C'(-2, -4) D'(-2, 0)题目二:旋转三角形对于给定的三角形ABC,中心点为O,若将该三角形按逆时针方向绕O点旋转180度,求旋转后各点的坐标。

解析:根据旋转规则,逆时针旋转180度可以理解为每个点的坐标绕O点旋转180度。

已知三角形ABC的坐标如下:A(0, 0) B(4, 0) C(2, 3)根据旋转规则,旋转180度后的坐标为:A'(0, 0) B'(-4, 0) C'(-2, -3)题目三:旋转正方形对于给定的正方形ABCD,中心点为O,若将该正方形按逆时针方向绕O点旋转270度,求旋转后各点的坐标。

解析:根据旋转规则,逆时针旋转270度可以理解为每个点的坐标绕O点逆时针旋转270度。

已知正方形ABCD的坐标如下:A(0, 0) B(4, 0) C(4, 4) D(0, 4)根据旋转规则,逆时针旋转270度后的坐标为:A'(0, 0) B'(0, 4) C'(-4, 4) D'(-4, 0)题目四:旋转圆形对于给定的圆形O,若将该圆形按逆时针方向绕O点旋转45度,求旋转后各点的坐标。

解析:由于圆形的每个点到中心点的距离都相等,因此旋转后每个点的坐标仍然是相对于中心点O的极坐标系。

旋转测试题及答案

旋转测试题及答案

旋转测试题及答案一、选择题1. 一个物体绕着一个固定点旋转,这个固定点被称为什么?A. 旋转中心B. 旋转轴C. 旋转半径D. 旋转角答案:A2. 如果一个物体绕着一个点旋转了180度,这个物体的状态是:A. 完全翻转B. 回到原位C. 位置不变D. 无法确定答案:B3. 在平面几何中,一个点绕原点旋转90度后,其坐标的变化是:A. 坐标不变B. 坐标变为原来的相反数C. 横坐标变为纵坐标,纵坐标变为横坐标的相反数D. 横坐标变为纵坐标的相反数,纵坐标变为横坐标答案:C二、填空题4. 旋转对称图形在旋转一定角度后,图形的______不变。

答案:形状和大小5. 一个物体在平面上绕一点旋转,如果旋转角度为360度,物体将______。

答案:回到原位三、简答题6. 描述一个物体绕着一个点旋转的过程,并说明旋转的性质。

答案:一个物体绕着一个点旋转的过程是物体的每一个点都以旋转点为中心,按照相同的旋转角度进行移动。

旋转的性质包括旋转的方向(顺时针或逆时针)、旋转的角度以及旋转的中心点。

旋转后,物体上各点到旋转中心的距离保持不变,形状和大小也保持不变。

四、计算题7. 如果一个点P(x, y)绕原点(0, 0)顺时针旋转90度,求旋转后点P 的新坐标。

答案:旋转后点P的新坐标为(-y, x)。

五、论述题8. 论述旋转在日常生活中的应用,并给出至少两个例子。

答案:旋转在日常生活中有广泛的应用。

例如:- 门的开关:门围绕门轴的旋转使得我们可以打开或关闭门。

- 风力发电机:风力发电机的叶片围绕中心轴旋转,将风能转换为电能。

六、绘图题9. 给定一个正方形ABCD,点A位于(0, 0),点B位于(1, 0),点C位于(1, 1),点D位于(0, 1)。

请画出正方形绕点A顺时针旋转45度后的图形。

答案:[绘图题,答案需要根据旋转的几何规则进行作图,此处不提供具体图形,考生需自行绘制]。

旋转练习题及答案

旋转练习题及答案

旋转练习题及答案一、选择题1. 一个图形绕某一点旋转90°后,与原图形相比,位置发生了变化,但形状和大小不变。

这种现象称为:A. 平移B. 对称B. 旋转D. 反射答案:C2. 一个正方形绕其中心点旋转180°后,其形状和位置将如何变化?A. 形状改变,位置不变B. 形状不变,位置改变C. 形状和位置都不变D. 形状和位置都改变答案:C3. 在平面直角坐标系中,点P(3,4)绕原点O(0,0)顺时针旋转90°后,新坐标为:A. (4,-3)B. (-4,3)C. (-3,4)D. (3,4)答案:A二、填空题4. 若一个图形绕某点旋转θ°后,旋转后的图形与原图形关于该点对称,则称该图形为______图形。

答案:中心对称5. 一个图形绕某点旋转180°后,与原图形完全重合,这种现象称为图形的______。

答案:中心对称三、解答题6. 已知点A(1,2),求点A绕原点O(0,0)顺时针旋转90°后的坐标。

解答:设点A旋转后的坐标为(x,y)。

根据旋转公式,我们有:\[ x = 2 \]\[ y = -1 \]因此,点A的新坐标为(2, -1)。

7. 一个等边三角形ABC,其中A(0,0),B(1,√3),C(-1,√3)。

求三角形ABC绕点A顺时针旋转60°后的顶点坐标。

解答:首先,我们需要找到等边三角形的旋转矩阵。

对于顺时针旋转60°,旋转矩阵为:\[ \begin{bmatrix} \cos(60°) & -\sin(60°) \\ \sin(60°) & \cos(60°) \end{bmatrix} = \begin{bmatrix} 1/2 & -√3/2 \\ √3/2 & 1/2 \end{bmatrix} \]应用旋转矩阵到点B和C,我们得到:B' = (1/2 - √3/2, √3/2 + 1/2)C' = (-1/2 + √3/2, √3/2 - 1/2)因此,旋转后的顶点坐标为:B'(1/2 - √3/2, √3/2 + 1/2)C'(-1/2 + √3/2, √3/2 - 1/2)四、应用题8. 一个时钟的时针在12点整时指向上方,若时针以恒定速度旋转,求时针在3小时后的位置。

(完整版)五年级图形的旋转练习题

(完整版)五年级图形的旋转练习题

l五年级图形旋转练习题1.如右图,绕它的中心至少旋转( )才能与原图形重合。

A .30° B .60° C .90° D .2. 把图形绕着O 点顺时针旋转90°后,得到的图形是( )。

A .B .C .D .3.利用旋转画一朵小花:4.图形(1)是以点( )为中心旋转的;图形(2)是以点( )为中心旋转的;图形(3)是以点( )为中心旋转的。

5.如图,指针从A 开始,顺时针旋转了90°到( )点,逆时针旋转了90°到( )点;要从A 旋转到C ,可以按( )时针方向旋转( )°,也可以按( )时针方向旋转( )°。

6.观察图形,填写空格。

①号图形是绕A 点按( )时针方向旋转了( )°;②号图形是绕( )点按顺时针方向旋转了( )°;③号图形是绕()点按( )时针方向旋转了90°;④号图形是绕( )点按( )时针方向旋转了( )。

7.观察图形并填空。

(1)图1绕点“O ”逆时针旋转90°到达图( )的位置;(2)图1绕点“O ”逆时针旋转180°到达图( )的位置;(3)图1绕点“O ”顺时针旋转( )°到达图4的位置;(4)图2绕点“O ”顺时针旋转( )°到达图4的位置;(5)图2绕点“O ”顺时针旋转90°到达图( )的位置;(6)图4绕点“O”逆时针旋转90°到达图( )的位置。

8.将下面的图案绕点“O ”按顺时针方向旋转90°,得到的图案是( )。

9.如右图,绕它的中心至少旋转( )才能与原图形重合。

A .30° B .60° C .90° D .180°10.将下列图形绕着各自的中心点旋转120°后,不能与原来的图形重合的是()。

11.由图形(1)不能变为图形(2)的方法是( )。

(完整版)旋转经典练习题

(完整版)旋转经典练习题

第二周旋转周清试题一、选择题(共16小题)1.观察图中的图案,它们绕各自的中心旋转一定的角度后,能与自身重合,其中旋转角可以为120°的是()A.B.C.D.2.如下所示的4组图形中,左边图形与右边图形成中心对称的有()A.1组B.2组C.3组D.4组3.如图是一个中心对称图形,A为对称中心,若∠C=90°,∠B=30°,AC=,则BB′的长为()A.2B.3C.4D.64.下列图形中,既是轴对称图形,又是中心对称图形的是()A.(1)、(2)B.(1)、(3)C.(2)、(3)D.(1)、(4)5.剪纸是中国的民间艺术.剪纸的方法很多,下面提供一种剪纸方法:如图所示,先将纸折叠,然后再剪,展开即得到图案:下面四个图形中,不能用上述方法剪出图案的是()A.B.C.D.6.如图所示,△ABC中,AC=5,中线AD=7,△EDC是由△ADB旋转180°所得,则AB边的取值范围是()A.1<AB<29 B.4<AB<24 C.5<AB<19 D.9<AB<19(6) (7)7.如图,直线y=﹣x+4与x轴、y轴分别交于A、B两点,△AOB绕点A顺时针旋转90°后得到△AO′B′,则点B的对应点B′坐标为()A.(3,4) B.(7,4) C.(7,3) D.(3,7)8.在如图所示的单位正方形网格中,△ABC经过平移后得到△A1B1C1,已知在AC上一点P(2.4,2)平移后的对应点为P1,点P1绕点O逆时针旋转180°,得到对应点P2,则P2点的坐标为()(8) (9)A.(1.4,﹣1) B.(1.5,2)C.(1.6,1)D.(2.4,1)9.如图,将△ABC绕点C(0,﹣1)旋转180°得到△A′B′C,设点A′的坐标为(a,b),则点A的坐标为()A.(﹣a,﹣b)B.(﹣a,﹣b﹣1) C.(﹣a,﹣b+1)D.(﹣a,﹣b﹣2)10.已知点M(x,y)在第二象限内,且|x|=2,|y|=3,则点M关于原点的对称点的坐标是()A.(﹣3,2)B.(﹣2,3)C.(3,﹣2)D.(2,﹣3)11.如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(3a﹣1,b),则a与b的数量关系为()(11) (12)A.3a+b=1 B.3a+b=﹣1 C.3a﹣b=1 D.a=b12.如图,D是等腰直角△ABC内一点,BC是斜边,如果将△ABD绕点A逆时针方向旋转到△ACD 的位置(B与C重合,D与D′重合),则∠ADD′的度数是()A.25°B.30°C.35°D.45°13.将直角边长为5cm的等腰直角△ABC绕点A逆时针旋转15°后,得到△AB′C′,则图中阴影部分的面积是()cm2.(13)(14)A.12.5 B.C.D.不能确定14.如图,将矩形ABCD绕点A旋转至矩形A′B′C′D′的位置,此时AC的中点恰好与D点重合,AB′交CD于点E.若AB=3,则△AEC的面积为()A.3 B.1.5 C.D.15.在平面直角坐标系中,P点关于原点的对称点为P1(﹣3,﹣),P点关于x轴的对称点为P2(a,b),则=()A.﹣2 B.2 C.4 D.﹣416.如图,在△ABC中,∠CAB=65°,将△ABC在平面内绕点A旋转到△AB′C′的位置,使CC′∥AB,则旋转角的度数为()A.35°B.40°C.50°D.65°二.填空题(共7小题)17.点P(2,3)绕着原点逆时针方向旋转90°与点P′重合,则P′的坐标为.18.如图,在等腰Rt△ABC中,∠A=90°,AC=9,点O在AC上,且AO=2,点P 是AB上一动点,连接OP将线段OP绕O逆时针旋转90°得到线段OD,要使点D 恰好落在BC上,则AP的长度等于.(18) (19) (20)19、将两块直角三角尺的直角顶点重合为如图的位置,若∠AOD=110°,则∠COB=度20、如图,小亮从A点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,…,照这样走下去,他第一次回到出发地A点时,一共走了米.21.如图,将矩形ABCD绕点A顺时针旋转90°后,得到矩形AB′C′D′,如果CD=2DA=2,那么CC′=.(21)(22)(23)22.如图,菱形ABCD的对角线交于平面直角坐标系的原点,顶点A坐标为(﹣2,3),现将菱形绕点O顺时针方向旋转180°后,A点坐标变为.23.如图,△COD是△AOB绕点O顺时针方向旋转40°后所得的图形,点C恰好在AB上,∠AOD=90°,则∠D的度数是°三、解答题(共5小题)24.如图所示的正方形网格中,△ABC的顶点均在格点上,请在所给直角坐标系中按要求画图和解答下列问题:(1)以A点为旋转中心,将△ABC绕点A顺时针旋转90°得△AB1C1,画出△AB1C1.(2)作出△ABC关于坐标原点O成中心对称的△A2B2C2.(3)作出点C关于x轴的对称点P.若点P向右平移x(x取整数)个单位长度后落在△A2B2C2的内部,请直接写出x的值.25、如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A按顺时针方向旋转得到的,连接BE、CF相交于点D.(1)求证:BE=CF;(2)当四边形ACDE为菱形时,求BD的长.26、如图,P是正三角形ABC内的一点,且PA=6,PB=8,PC=10.若将△PAC绕点A逆时针旋转后,得到△P′AB.(1)求点P与点P′之间的距离;(2)求∠APB的度数.27、请认真观察图(1)的4个图中阴影部分构成的图案,回答下列问题:(1)请写出这四个图案都具有的两个共同特征:特征1:;特征2:.(2)请在图(2)中设计出你心中最美的图案,使它也具备你所写出的上述特征(用阴影表示).28、【问题提出】如图①,已知△ABC是等腰三角形,点E在线段AB上,点D在直线BC上,且ED=EC,将△BCE绕点C顺时针旋转60°至△ACF连接EF试证明:AB=DB+AF【类比探究】(1)如图②,如果点E在线段AB的延长线上,其他条件不变,线段AB,DB,AF之间又有怎样的数量关系?请说明理由(2)如果点E在线段BA的延长线上,其他条件不变,请在图③的基础上将图形补充完整,并写出AB,DB,AF之间的数量关系,不必说明理由.29、小明遇到这样一个问题:如图1,在等边三角形ABC内有一点P,且PA=3,PB=4,PC=5,求∠APB度数.小明发现,利用旋转和全等的知识构造△AP′C,连接PP′,得到两个特殊的三角形,从而将问题解决(如图2).图1请回答:图1中∠APB的度数等于? 图2中∠PP′C的度数?参考小明思考问题的方法,解决问题:如图3,在平面直角坐标系xOy中,点A 坐标为(,1),连接AO.如果点B是x轴上的一动点,以AB为边作等边三角形ABC. 当C(x,y)在第一象限内时,求y与x之间的函数表达式.。

小学旋转测试题目及答案

小学旋转测试题目及答案

小学旋转测试题目及答案一、选择题1. 一个正方形旋转180度后,其形状和大小会如何变化?A. 形状和大小都不变B. 形状不变,大小变小C. 形状改变,大小不变D. 形状和大小都改变答案:A2. 一个圆形在平面上旋转任意角度,其形状和大小会如何变化?A. 形状和大小都不变B. 形状不变,大小变小C. 形状改变,大小不变D. 形状和大小都改变答案:A3. 一个等腰直角三角形绕着其直角边旋转180度,其形状和大小会如何变化?A. 形状和大小都不变B. 形状不变,大小变小C. 形状改变,大小不变D. 形状和大小都改变答案:A二、填空题1. 当一个物体绕着一个点旋转360度后,其位置和方向将______。

答案:保持不变2. 如果一个物体绕着一个点旋转90度,那么它的位置将______。

答案:改变三、判断题1. 一个物体绕着一个轴旋转180度后,它将回到原始位置。

()答案:正确2. 一个物体绕着一个轴旋转360度后,它的位置和方向将发生变化。

()答案:错误四、简答题1. 描述一个物体绕着一个点旋转90度后,它的位置和方向的变化。

答案:物体绕着一个点旋转90度后,它的位置相对于旋转点将顺时针或逆时针移动到新的位置,方向也会相应地顺时针或逆时针旋转90度。

2. 解释为什么一个圆形在平面上旋转任意角度,其形状和大小都不会改变。

答案:圆形是一个对称图形,无论旋转到哪个角度,其所有点到中心点的距离都是相等的,因此形状和大小都不会因为旋转而发生变化。

(完整版)九年级语文《旋转》练习题

(完整版)九年级语文《旋转》练习题

(完整版)九年级语文《旋转》练习题九年级语文《旋转》练题 (完整版)
题目一
阅读下面的短文,根据短文内容回答问题。

旋转是自然界中常见的现象之一。

我们可以在生活中观察到许多旋转的事物,比如风车、旋转木马等。

旋转给我们带来了欢乐和惊喜,我们会被旋转的动作所吸引。

然而,你知道旋转的原理是什么吗?
1. 请简要概括一下旋转的原理。

...
2. 旋转对我们的生活有何影响?
...
题目二
根据以下图片,回答问题:
![旋转](image1.jpg)
1. 请写出图片中旋转的事物。

...
2. 结合实际生活,列举一个不在图片中的旋转事物,并说明它的作用。

...
题目三
请根据你对旋转的理解,写一个小故事,旋转是故事的主题之一。

...
题目四
思考并回答以下问题:
1. 旋转是否总是有益的?为什么?
...
2. 在什么情况下,旋转可能带来危险或负面影响?...
总结
请用一句话总结本次练的内容。

...
以上是九年级语文《旋转》练习题的全部内容。

希望你能通过这份练习更好地理解旋转的原理和影响。

旋转练习题集锦(含答案)

旋转练习题集锦(含答案)

旋转练习题集锦(含答案)一、作图题1、如图,在每个小正方形的边长均为1个单位长度的方格纸中,有一个和一点O,的顶点和点O均与小正方形的顶点重合.(1)在方格纸中,将△ABC向下平移5个单位长度得到,请画出;(2)在方格纸中,将△ABC绕点O旋转180°得到,请画出。

二、简答题2、如图,已知的三个顶点的坐标分别为、、.(1)请直接写出点关于轴对称的点的坐标;(2)将绕坐标原点逆时针旋转90°.画出图形,直接写出点的对应点的坐标;(3)请直接写出:以为顶点的平行四边形的第四个顶点的坐标.三、选择题3、如图所示,在平面直角坐标系中,点A、B的坐标分别为(2,0)和(2,0).月牙①绕点B顺时针旋转900得到月牙②,则点A的对应点A’的坐标为【】(A)(2,2)(B)(2,4)(C)(4,2) (D)(1,2)4、将图按顺时针方向旋转90°后得到的是( )5、在方格纸(每个小方格都是边长为1个单位长度的正方形)中,我们把每个小正方形的顶点称为格点,以格点为顶点的图形称为格点图形.如上图中的△ABC称为格点△ABC.现将图中△ABC绕点A顺时针旋转,并将其边长扩大为原来的2倍,则变形后点B的对应点所在的位置是()A.甲 B.乙C.丙 D.丁6、下图是一个旋转对称图形,以O为旋转中心,以下列哪一个角为旋转角旋转,能使旋转后的图形与原图形重合()A.60° B.90° C.120°D.180°7、在下图右侧的四个三角形中,不能由△ABC经过旋转或平移得到的是 ( )8、下面四个图案中,是旋转对称图形的是()A.B.C.D.9、下列运动是属于旋转的是( )A.电梯的上下运动 B.火车的运动C.钟表中分针的运动 D.升国旗时,国旗的徐徐运动10、如图所示,将其中的图甲变成图乙,可经过的变换是( )A.旋转、平移 B.平移、对称 C.旋转、对称 D.不能确定11、如图,该图形围绕自己的旋转中心,按下列角度旋转后,不能与其自身重合的是()A.72° B.108° C.144° D.216°12、如图,D是等腰Rt△ABC内一点,BC是斜边,如果将△ABD绕点A逆时针方向旋转到△ACD’的位置,则∠ADD’的度数是( )A.25° B.30° C.35°D.45°13、如图可以看作是一个等腰直角三角形旋转若干次而成的,则每次旋转的度数最小是( )A.90° B.60° C.45°D.30°14、如图,经过平移或旋转不可能将图甲变为图乙的是()15、下列图形中,既是中心对称图形,又是轴对称图形的是()A.菱形B.等边三角形 C.等腰三角形D.平行四边形16、如图所示,可由一个“基本图案”旋转l80°而形成的是()A B CD17、已知,将点A1(6,1)向左平移4个单位到达点A2的位置,再向上平移3个单位到达点A3的位置,△A1A2A3绕点A2逆时针方向旋转900,则旋转湖A3的坐标为()A.(-2,1) B.(1,1) C.(-1,1) D.(5,1)18、下图是一张边被裁直的白纸,把一边折叠后,BC、BD为折痕,、、B在同一直线上,则∠CBD的度数()A.不能确定B.大于C.小于 D.等于四、计算题19、将一张透明的平行四边形胶片沿对角线剪开,得到图①中的两张三角形胶片和.将这两张三角形胶片的顶点与顶点重合,把绕点顺时针方向旋转,这时与相交于点.(1)当旋转至如图②位置,点,在同一直线上时,与的数量关系是.(2)当继续旋转至如图③位置时,(1)中的结论还成立吗?请说明理由.(3)在图③中,连接,探索与之间有怎样的位置关系,并证明.20、如图所示,左边方格纸中每个正方形的边长均为a,右边方格纸中每个正方形的边长均为b,将左边方格纸中的图形顺时针旋转90°,并按b:a的比例画在右边方格纸中.21、点B.C.E在同一直线上,点A.D在直线CE的同侧,AB=AC,EC=ED,∠BAC=∠CED,直线AE、BD交于点F。

旋转试题及答案

旋转试题及答案

旋转试题及答案一、选择题1. 旋转变换不改变图形的:A. 形状B. 大小C. 面积D. 所有选项答案:D2. 一个图形绕某点旋转180°后,与原图形:A. 完全重合B. 不同C. 部分重合D. 无法确定答案:A二、填空题1. 旋转中心是旋转变换中的________。

答案:固定点2. 旋转角度的正负表示旋转的方向,顺时针旋转角度为________。

答案:正三、简答题1. 请简述旋转的性质。

答案:旋转的性质包括:(1)旋转不改变图形的形状和大小;(2)旋转后图形的位置发生变化,但与原图形保持相同的角度和距离;(3)旋转可以是顺时针或逆时针。

2. 描述一个图形绕某点旋转90°后可能发生的变化。

答案:当一个图形绕某点旋转90°后,其位置会发生变化,图形的四个顶点会分别沿顺时针或逆时针方向移动90°。

图形的形状和大小保持不变,但方向发生改变。

四、计算题1. 假设有一个正方形ABCD,中心点为O,如果正方形绕O点顺时针旋转45°,求旋转后A点的新位置。

答案:旋转后A点的新位置可以通过计算得出。

首先确定A点相对于O点的坐标,然后应用旋转矩阵进行坐标变换。

假设A点的初始坐标为(x1, y1),旋转45°后的坐标为(x2, y2),则有:x2 = x1 * cos(45°) - y1 * sin(45°)y2 = x1 * sin(45°) + y1 * cos(45°)2. 如果一个图形绕原点旋转θ角度,求该图形上任意一点P(x, y)旋转后的新坐标。

答案:设点P的初始坐标为(x, y),旋转θ角度后的坐标为(x',y'),则有:x' = x * cos(θ) - y * sin(θ)y' = x * sin(θ) + y * cos(θ)五、论述题1. 论述旋转在几何学中的重要性及其应用。

数学旋转问题练习题

数学旋转问题练习题

数学旋转问题练习题在数学中,旋转是一个常见且重要的概念,它在几何学、代数学和物理学等领域中都有广泛的应用。

旋转问题是数学中常见的问题之一,它需要我们根据给定条件,灵活运用旋转的概念来解决问题。

下面将给出一些数学旋转问题的练习题,帮助读者加深对旋转的理解和运用能力。

练习题1:平面上的旋转问题描述:平面上有三个点A、B和C,以点A为中心,将线段BC顺时针旋转90度得到线段A'D,若点B的坐标为(2,3),点C的坐标为(4,5),则点D的坐标为多少?解题思路:根据旋转的性质,我们知道点D的坐标可以通过将BC绕点A逆时针旋转90度得到。

首先,我们需要计算向量AB和向量AC的坐标表示。

向量AB的坐标表示为(2-0, 3-0) = (2, 3),向量AC的坐标表示为(4-0, 5-0) = (4, 5)。

根据旋转的性质,向量A'D的坐标表示为(-3, 2)。

最后,我们可以通过点A的坐标(0, 0)和向量A'D的坐标(-3, 2)计算出点D的坐标为(0-3, 0+2) = (-3, 2)。

练习题2:三维空间的旋转问题描述:在三维空间中,点O(0,0,0)为坐标原点,点P(2,3,4)为某点的坐标。

将点P绕坐标轴x轴逆时针旋转90度,得到点P',求点P'的坐标。

解题思路:首先,我们需要计算点P绕坐标轴x轴逆时针旋转90度后的变化。

根据旋转的性质,点P'(x',y',z')可以表示为点P(x,y,z)绕坐标轴x轴旋转后的坐标。

对于点P(x,y,z),绕坐标轴x轴逆时针旋转90度后,x'保持不变,y'和z'的坐标可以表示为y' = y*cos(90°) - z*sin(90°) = y*0 - z*1 = -z,z' = y*sin(90°) + z*cos(90°) = y*1 + z*0 = y。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二周旋转周清试题
、选择题(共 16 小题)
1.观察图中的图案,它们绕各自的中心旋转一定的角度后,能与自身重
合,其 中旋转角可以为
4 组图形中,左边图形与
右边图形成中心对称的有(
A .(1)、(2)
B .(1)、(3)
C .(2)、( 3)
D .( 1)、(4) 5.剪纸是中国的民间艺术.剪纸的方法很多,下面提供一种剪纸方法:如图所 示,先将纸折叠,然后再剪,展开即得到图案:
A .1 组
B .2组
3.如图是一 个中心对称图形 BB ′的长
为( )
A .2
B .3
C .3组
D .4组
C=90°,∠B=30°,AC= ,则 C .4 D .
4.下列图形中,既是轴对称图形,又是中心对称图形的是( 2.如下所示的 120°的是( ) A 为对称中心,若∠

面四个图形中,不能用上述方法剪出图案的是(
B .
6.如图所示,△ ABC 中,AC=5,中线 AD=7,△ EDC 是由
△ ADB 旋转
180°所得, 则
AB 边的取值范围是(
) A .1<AB <29
B . 4< AB < 24
C .5<AB <19
7.如图,直线 y=﹣ x+4与x 轴、y 轴分别交于 A 、B 两点,△ AOB 绕点 A 顺时
针旋转 90°后得到△ AO ′B ,′则点 B 的对应点 B ′坐标为( )
A .(3,4)
B .(7,4)
C .(7,3)
D .( 3,7) 8.在如图所示的单位正方形网格中,△ ABC 经过平移后得到△ A 1B 1C 1,已知在
AC 上一点 P (2.4,2)平移后的对应点为 P 1,点 P 1绕点 O 逆时针旋转 180°,得 到对应点 P 2,则 P 2 点的坐标为( )
(8)
A .(1.4,﹣ 1)
B .(1.5,2)
C .
D . D .9<AB <
19 (9) D .(2.4,

(6)
C.(1.6,1)
9.如图,将△ABC 绕点 C (0,﹣1)旋转 180°得到△ A ′B ,′设C 点 A ′的坐标为(a , b ),则点 A 的坐标为( )
A .(﹣ a ,﹣ b )
B .(﹣a ,﹣b ﹣1)
C .(﹣a ,﹣b+1)
D .(﹣ a ,﹣ b ﹣2) 10.已知点 M (x ,y )在第二象限内,且 | x| =2,| y| =3,则点 M 关于原点的对 称点的坐标是( )
A .(﹣3,2)
B .(﹣2,3)
C .(3,﹣ 2)
D .(2,﹣ 3) 11. 如图,在平面直角坐标系中,以 O 为圆心,适当长为半径画弧,交 x 轴于 点 M ,交 y 轴于点 N ,再分别以点 M 、N 为圆心,大于 MN 的长为半径画弧, 两弧在第二象限交于点 P .若点 P 的坐标为(3a ﹣1,b ),则 a 与b 的数量关系
12.如图, D 是等腰直角△ ABC 内一点, BC 是斜边,如果将△ ABD 绕点 A 逆时 针方向旋转到△ ACD 的位置(B 与 C 重合,D 与 D ′重合),则∠ ADD ′的度数是(
) 13.将直角边长为 5cm 的等腰直角△ ABC 绕点 A 逆时针旋转 15°后,得到△ AB ′ C ,′
A .3a+b=1
B .3a+b=﹣1 (12)
C .3a ﹣ b=1
D .a=b
A .25°
B .30
C .35
D .45
则图中阴影部分的面积是( )cm 2.
14)
为( )
(11)
13)
A .12.5
B .
C .
D .不能确定
14.如图,将矩形 ABCD 绕点 A 旋转至矩形 A ′B ′C 的′位D 置′,此时 AC 的中点恰好 与 D 点重合, AB ′交 CD 于点 E .若 AB=3,则△ AEC 的面积为(

A .3
B .1.5
C .
D . 15.在平面直角坐标系中, P 点关于原点的对称点为 P 1(﹣3,﹣ ),P 点关于 x 轴的对称点为 P 2(a , b ),则 =(
) 16.如图,在△ ABC 中,∠ CAB=65°,将△ ABC 在平面内绕点 A 旋转到△ AB ′的C ′
17.点 P (2,3)绕着原点逆时针方向旋转 90°与点 P ′重合,则 P ′的坐标为 . 18.如图,在等腰 Rt △ABC 中,∠ A=90°,AC=9,点 O 在 AC 上,且 AO=2,点 P 是 AB 上一动点,连接 OP 将线段 OP 绕 O 逆时针旋转
恰好落在 BC 上,则 AP 的长度等于
A .﹣ 2
B .2
C .4
D .﹣
4 90°得到线段 OD ,要使点 D
.填空题(共 7 小
题) (20)
19、将两块直角三角尺的直角顶点重合为如图的位
若∠ AOD=110°,则∠ COB= 置,度
20、如图,小亮从A点出发,沿直线前进10 米后向左转30°,再沿直线前进10
米,又向左转 30°,⋯,照这样走下去,他第一次回到出发地 A 点时,一共走了 米.
21.如图,将矩形 ABCD 绕点 A 顺时针旋转 90°后,得到矩形 AB ′C ′,D 如′果
( 21) ( 22) ( 23)
22.如图,菱形 ABCD 的对角线交于平面直角坐标系的原点,顶点 A 坐标为 (﹣ 2,3),现将菱形绕点 O 顺时针方向旋转 180°后, A 点坐标变为 . 23.如图,△ COD 是△AOB 绕点 O 顺时针方向旋转 40°后所得的图形,点 C 恰好 在 AB 上,∠ AOD=9°0,则∠ D 的度数是 °
三、解答题(共 5 小题) 24.如图所示的正方形网格中,△ ABC 的顶点均在格点上,请在所给直角坐标系 中按要求画图和解答下列问题:
(1)以A 点为旋转中心,将△ ABC 绕点 A 顺时针旋转 90°得△ AB 1C 1,画出△ AB 1C 1.
(2)作出△ ABC 关于坐标原点 O 成中心对称的△ A 2B 2C 2.
(3)作出点 C 关于 x 轴的对称点 P .若点 P 向右平移 x (x 取整数)个单位长度 后落在△ A 2B 2C 2的内部,请直接写出 x 的值.
CD=2DA=2,那么 CC ′
2:
25、如图,△ ABC 中,AB=AC=1,∠BAC=45°,△AEF 是由△ ABC 绕点 A 按顺时针
方向旋转得到的,连接 BE 、CF 相交于点 D .
( 1)求证: BE=CF ;
( 2)当四边形 ACDE 为菱形时,求 BD 的长.
26、如图,P 是正三角形 ABC 内的一点,且 PA=6,PB=8,PC=10.若 将△ PAC 绕点 A 逆时针旋转后,得到△ P ′A .B
(1)求点 P 与点 P ′之间的距离;
(2)求∠ APB 的度数.
27、请认真观察图( 1)的 4 个图中阴影部分构成的图案,回答下列问题:
1 )请写出这四个图案都具有的两个共同特征:特征 1:
;特征
(2)请在图(2)中设计出你心中最美的图案,使它也具备你所写出的上述特征(用阴影表示).
28、【问题提出】
如图①,已知△ ABC是等腰三角形,点E在线段AB上,点D在直线BC上,且ED=EC,将△ BCE绕点C顺时针旋转60°至△ACF连接EF 试证明:
AB=DB+AF
【类比探究】
(1)如图②,如果点 E 在线段AB 的延长线上,其他条件不变,线段AB,DB,AF之间又有怎样的数量关系?请说明理由
(2)如果点E在线段BA的延长线上,其他条件不变,请在图③的基础上将图形
29、小明遇到这样一个问题:如图1,在等边三角形ABC内有一点P,且
PA=3,PB=4,PC=5,求∠ APB度数.小明发现,利用旋转和全等的知识构造
△ AP′C,连接PP′,得到两个特殊的三角形,从而将问题解决(如图2).
图1
请回答:图1中∠ APB的度数等于? 图2中∠PP′C的度数?
参考小明思考问题的方法,解决问题:如图3,在平面直角坐标系xOy 中,点 A 坐标为(,1),连接AO.如果点 B 是x 轴上的一动点,以AB为边作等边三角形ABC. 当C(x,y)在第一象限内时,求y与x之间的函数表达式.。

相关文档
最新文档