人教版八年级数学上山东省济宁市邹城市北宿中学(上)第一次月考数学试题(解析版).docx
新人教版初二上第一次月考数学试卷及答案
滨州留守少年儿童寄宿制学校2015-2016学年上学期第一次月考初二数学试题第I卷(选择题)一、选择题(本大题共12小题,共36分)1、下列三条线段,能组成三角形的是()A、3,3,3B、3,3,6C、3,2,5D、3,2,62、在ΔABC中,AB=AC,∠B的外角=100゜,那么∠A=( )A、10゚B、20゚C、60゚D、80゚3. 从n边形的一个顶点作对角线,把这个n边形分成三角形的个数是()A. n个B. (n-1)个C. (n-2)个D. (n-3)个4、已知△ABC中,∠A、∠B、∠C三个角的比例如下,其中能说明△ABC是直角三角形的是()A、2:3:4B、1:2:3C、4:3:5D、1:2:25. 下列图形中有稳定性的是()A. 正方形B. 直角三角形C. 长方形D. 平行四边形6.已知△ABC中,∠ABC和∠ACB的平分线交于点O,则∠BOC一定()A.小于直角B.等于直角C.大于直角D.不能确定7、下列正多边形材料中,不能单独用来铺满地面的是()(A)正三角形(B)正四边形(C)正五边形(D)正六边形8、正多边形的每个内角都等于135º,则该多边形是正()边形。
(A)8 (B)9 (C)10 (D)119、三角形一个外角小于与它相邻的内角,这个三角形()(A)是钝角三角形(B)是锐角三角形(C)是直角三角形(D)属于哪一类不能确定。
10.六边形的对角线的条数是()(A)7 (B)8 (C)9 (D)1011.如图,将一副三角板叠放在一起,使直角的顶点重合于O,则∠AOC+∠DOB=()A、90 ºB、120 ºC、160 ºD、180 º12.如图,△ABC中,BD是∠ ABC的角平分线,DE ∥ BC,交AB 于 E, ∠A=60º, ∠BDC=95º,则∠BED 的度数是( )A 、35 ºB 、70ºC 、110 ºD 、130 º第12题图第II 卷(非选择题)二、填空题(本大题共6小题,共24分)13.五边形的内角和是__________,外角和是__________。
人教版八年级数学上第一次月考试题含答案(含答案)
山东省莒县第三协作区2017-2018学年八年级数学上学期第一次月考试题一、选择题(1—8每题3分,9—12每题4分,共40分) 1.下列图标中,是轴对称图形的是( )A .(1)(4)B .(2)(4)C .(2)(3)D .(1)(2)2.△ABC ≌△A ′B ′C ′,其中∠A ′=50°,∠B ′=70°,则∠C 的度数为( ) A .55° B .60° C .70° D .75°3.某同学把一块三角形的玻璃打碎成了3块(如图2),现在要到玻璃店去配一块完全一样的玻璃,那么最省事方法是( )A .带①去B .带②去C .带③去D .①②③都带去 4.和点P(-3,2)关于y 轴对称的点是( )A .(3,2)B .(-3,2)C .(3,-2)D .(-3,-2)5.已知12∠=∠,AC AD =,增加下列条件:①AB AE =;②BC ED =;③C D ∠=∠; ④B E ∠=∠。
其中能使ABC AED ∆≅∆的条件有( ) A. 4个B. 3个C. 2个D. 1个(第3题)) (第7题) (第5题) 6.等腰三角形的一个角为50°,则这个等腰三角形的顶角可能为( ) A .50° B .65° C .80° D .50°或80°7.如图,已知∠ABC=∠BAD,添加下列条件还不能判定△ABC≌△BAD 的是( )A .AC =BDB .∠CAB =∠DBAC .∠C =∠D D .BC =AD8.如图,一艘海轮位于灯塔P 的南偏东70°方向的M 处,它以每小时40海里的速度向正北方向航行,2小时后到达位于灯塔P 的北偏东40°方向的N 处,则N 处与灯塔P 的距离为( )A .40海里B .60海里C .70海里D .80海里(第8题) (第9题) (第11题) (第12题)9.在平面直角坐标系xOy 中,已知点A(2,-2),在y 轴上确定一点P ,使△AOP 为等腰三角形,则符合条件的点P 有( )A .1个B .2个C .3个D .4个10.如图,在Rt△ABC 中,∠C =90°,以顶点A 为圆心,适当长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,作射线AP 交边BC 于点D ,若CD =4,AB =15,则△ABD 的面积是( )A .15B .30C .45D .6011.如图,在△ABC 和△CDE 中,若∠ACB=∠CED=90°,AB =CD ,BC =DE ,则下列结论中不正确的是( )A .△ABC ≌△CDEB .CE =AC C .AB ⊥CD D .E 为BC 的中点12.如图,AD 是△ABC 的中线,E ,F 分别是AD 和AD 延长线上的点,且DE =DF ,连接BF ,CE .下列说法:①CE =BF ;②△ABD 和△ACD 的面积相等;③BF ∥CE ;④△BDF ≌△CDE .其中正确的有( )A .1个B .2个C .3个D .4个 二、填空题(每题4分,共16分)13.已知点A(a ,-2)和B(3,2),当满足条件________时,点A 和点B 关于x 轴对称. 14.如图,已知方格纸中是4个相同的正方形,则∠1+∠2+∠3=____度.(第14题)(第16题)15、一个汽车车牌在水中的倒影为,则该车的牌照号码是________.16、如图:△ABC中,DE是AC的垂直平分线,AE=3cm,△ABD的周长为13cm,则△ABC的周长为________.三、解答题(共64分)17.(8)如图,已知A(0,4),B(-2,2),C(3,0).(1)作△ABC关于x轴对称的△A1B1C1;(2)写出点A1,B1,C1的坐标;(3)△A1B1C1的面积S△A1B1C1=________.(第17题)18(10).如图,点B,F,C,E在直线l上(点F,点C之间不能直接测量),点A,D 在l异侧,测得AB=DE,AC=DF,BF=EC.(1)求证:△ABC≌△DEF;(2)指出图中所有平行的线段,并说明理由.19.(10)如图,已知在△ABC中,D为BC上的一点,DA平分∠EDC,且∠E=∠B,DE =DC,求证:AB=AC.20.(10)如图,在△ABC中,AB=AC,∠A=36°,AC的垂直平分线交AB于E,D为垂足,连接EC.(1)求∠ECD的度数;(2)若CE=5,求BC的长.(第20题)21.(12)已知△ABN和△ACM位置如图所示,AB=AC,AD=AE,∠1=∠2.(1)求证:BD=CE;(2)求证:∠M=∠N.22.(14分)如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=90°.(1)当点D在AC上时,如图①,线段BD,CE有怎样的数量关系和位置关系?请证明你的猜想;(2)将图①中的△ADE绕点A顺时针旋转α(0°<α<90°),如图②,线段BD,CE有怎样的数量关系和位置关系?请说明理由.八年级数学月考答案一、选择题1.D 2.B 3.C 4.A5.B 6.D 7.A 8.D 9.D 10.B 1 1.D 12.D 二、填空 13.a =3 14.135 15.w5236499 16.19cm 三、17.解:(1)如图.(第17题)(2)A 1(0,-4),B 1(-2,-2),C 1(3,0).(3)718.(1)证明:∵BF=CE ,∴BF +FC =FC +CE ,即BC =EF ,在△ABC 和△DEF 中,⎩⎪⎨⎪⎧AB =DE ,AC =DF ,BC =EF ,∴△ABC ≌△DEF(SSS ) (2)结论:AB∥DE,AC ∥DF.理由:∵△ABC≌△DEF,∴∠ABC =∠DEF,∠ACB =∠DFE,∴AB ∥DE ,AC ∥DF19a.证明:∵DA 平分∠EDC ,∴∠ADE =∠ADC.又∵DE =DC ,AD =AD ,∴△AED≌△ACD(SAS ).∴∠E=∠C.又∵∠E=∠B,∴∠B=∠C.∴AB=AC.20.解:(1)∵DE 垂直平分AC , ∴AE=CE ,∴∠ECD=∠A=36°. (2)∵AB=AC ,∠A=36°, ∴∠ABC=∠ACB=72°. ∵∠BEC=∠A+∠ACE=72°, ∴∠B=∠BEC,∴BC=CE =5.21.(1)证明:在△ABD 和△ACE 中,⎩⎪⎨⎪⎧AB =AC ,∠1=∠2,AD =AE ,∴△ABD ≌△ACE(SAS ),∴BD =CE(2)证明:∵∠1=∠2,∴∠1+∠DAE =∠2+∠DAE ,即∠BAN =∠CAM ,由(1)得:△ABD≌△ACE,∴∠B =∠C,在△ACM 和△ABN 中,⎩⎪⎨⎪⎧∠C=∠B,AC =AB ,∠CAM =∠BAN,∴△ACM ≌△ABN(ASA ),∴∠M =∠N 22.解:(1)BD =CE ,BD ⊥CE.证明:延长BD 交CE 于点M ,易证△AB D≌△ACE(SAS ),∴BD =CE ,∠ABD =∠ACE,∵∠BME =∠MBC+∠BCM=∠MBC+∠ACE+∠ACB =∠MBC +∠ABD +∠ACB =∠ABC +∠ACB =90°,∴BD ⊥CE (2)仍有BD =CE ,BD ⊥CE ,理由同(1)。
山东省济宁市 八年级(上)第一次月考数学试卷
八年级(上)第一次月考数学试卷一、选择题(本大题共10小题,共30.0分)1.下列每组数分别是三根小木棒的长度,用它们能摆成三角形的一组是()A. 3cm 3cm 6cmB. 2cm 10cm 13cmC. 8cm 7cm 15cmD. 4cm 5cm 6 cm2.下列说法正确的是()A. 三角形的三条中线交于一点B. 三角形的三条高都在三角形内部C. 三角形不一定具有稳定性D. 三角形的角平分线可能在三角形的内部或外部3.一个三角形的两边的长分别为3和8,第三边的长为奇数,则第三边的长为()A. 5或7B. 7C. 9D. 7或94.如果正n边形的一个外角是40°,则n的值为()A. 5B. 6C. 8D. 95.如图,在锐角△ABC中,CD,BE分别是AB,AC边上的高,且CD,BE相交于一点P,若∠A=50°,则∠BPC=()A. 150∘B. 130∘C. 120∘D. 100∘6.如图,已知AD是∠CAE的平分线,∠B=35°,∠DAE=75°,则∠ACD等于()A. 95∘B. 65∘C. 75∘D. 105∘7.如图,将一副三角板叠放在一起,使直角的顶点重合于O,则∠AOC+∠DOB=()A. 90∘B. 120∘C. 160∘D. 180∘8.如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是()A. 带①去B. 带②去C. 带③去D. 带①和②去9.如图,将两根钢条AA′、BB′的中点O连在一起,使AA′、BB′可以绕点O自由转动,就做成了一个测量工件,则A′B′的长等于内槽宽AB,则判定△OAB≌△OA′B′的理由是()A. 边边边B. 角边角C. 边角边D. 角角边10.如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置,若∠EFB=65°,则∠AED′等于()A. 50∘B. 55∘C. 60∘D. 65∘二、填空题(本大题共5小题,共15.0分)11.等腰三角形一边长为8,一边长为4,则它的周长为______.12.如图,∠A=50°,∠ABO=28°,∠ACO=32°,则∠BDC=______度,∠BOC=______度.13.如图,在△ABC中,AB=AC,BE、CF是中线,则由______可得△AFC≌△AEB.14.如图,AD⊥BC,D为BC的中点,则△ABD≌△______.15.一个多边形的内角和与外角和的差是180°,则这个多边形的边数为______.三、计算题(本大题共1小题,共12.0分)16.(1)如图(1),BD、CD是∠ABC和∠ACB的角平分线且相交于点D,请猜想∠A与∠BDC之间的数量关系,并说明理由.(2)如图(2),BD、CD是∠ABC和∠ACB外角的平分线且相交于点D.请猜想∠A 与∠BDC之间的数量关系,并说明理由.(3)如图(3),BD、CD是∠ABC和∠ACB外角的平分线且相交于点D,请猜想∠A 与∠BDC之间的数量关系,并说明理由.四、解答题(本大题共6小题,共43.0分)17.如图所示,在△ABC中:(1)画出BC,AC边上的高AD,BF和中线AE.(2)若∠B=30°,∠ACB=130°,求∠BAD和∠CAD的度数.18.完成下面的证明过程已知:如图,AB∥CD,AE⊥BD于E,CF⊥BD于F,BF=DE.求证:△ABE≌△CDF.证明:∵AB∥CD,∴∠1=______.(两直线平行,内错角相等)∵AE⊥BD,CF⊥BD,∴∠AEB=______=90°.∵BF=DE,∴BE=______.在△ABE和△CDF中,∴△ABE≌△CDF______.19.已知,如图,在△ABC中,AD,AE分别是△ABC的高和角平分线,若∠B=30°,∠C=50°.(1)求∠DAE的度数;(2)试写出∠DAE与∠C-∠B有何关系?(不必证明)20.如图,已知AD、AE分别是Rt△ABC的高和中线,∠BAC=90°,AB=6cm,AC=8cm,BC=10cm.求证:(1)AD的长;(2)△ACE的面积;(3)△ACE和△ABE的周长的差.21.如图,AB=AC,AD=AE,∠1=∠2,试说明△ABD与△ACE全等.22.如图,AD是△ABC的中线,BE是△ABD的中线.(1)在△BED中作BD边上的高.(2)若△ABC的面积为20,BD=5,则点E到BC边的距离为多少?答案和解析1.【答案】D【解析】解:A、3+3=6,不能组成三角形;B、2+10<13,不能组成三角形;C、8+7=15,不能组成三角形;D、4+5>6,能组成三角形.故选:D.根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.2.【答案】A【解析】解:A.三角形的三条中线交于一点,正确;B.锐角三角形的三条高都在三角形内部,错误;C.三角形一定具有稳定性,错误;D.三角形的角平分线一定在三角形的内部,错误;故选:A.依据三角形角平分线、中线以及高线的概念,即可得到正确结论.本题主要考查了三角形角平分线、中线以及高线的概念,锐角三角形的三条高在三角形内部,相交于三角形内一点,直角三角形有两条高与直角边重合,另一条高在三角形内部,它们的交点是直角顶点;钝角三角形有两条高在三角形外部,一条高在三角形内部,三条高所在直线相交于三角形外一点.3.【答案】D【解析】解:根据三角形的三边关系,得第三边大于8-3=5,而小于两边之和8+3=11.又第三边应是奇数,则第三边等于7或9.故选:D.首先根据三角形的三边关系求得第三边的取值范围,再根据第三边又是奇数得到答案.此类求三角形第三边的范围的题,实际上就是根据三角形三边关系定理列出不等式,然后解不等式即可.4.【答案】D【解析】解:根据题意得:360°÷40°=9,则n的值为9,故选:D.根据多边形的外角和公式求出n的值即可.此题考查了多边形内角与外角,熟练掌握内角和及外角和公式是解本题的关键.5.【答案】B【解析】解:∵BE⊥AC,CD⊥AB,∴∠ADC=∠AEB=90°,∴∠BPC=∠DPE=180°-50°=130°.故选:B.根据垂直的定义和四边形的内角和是360°求得.主要考查了垂直的定义以及四边形内角和是360度.注意∠BPC与∠DPE互为对顶角.6.【答案】B【解析】解:∵AD平分∠EAC,∴∠DAE=∠DAC=75°,∴∠CAE=150°,∴∠BAC=180°-150°=30°,∴∠ACD=∠B+∠BAC=65°,故选:B.根据∠ACD=∠B+∠BAC,只要求出∠BAC即可.本题考查三角形内角和定理,角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.7.【答案】D【解析】解:设∠AOD=a,∠AOC=90°+a,∠BOD=90°-a,所以∠AOC+∠BOD=90°+a+90°-a=180°.故选:D.因为本题中∠AOC始终在变化,因此可以采用“设而不求”的解题技巧进行求解.本题考查了角度的计算问题,在本题中要注意∠AOC始终在变化,因此可以采用“设而不求”的解题技巧进行求解.8.【答案】C【解析】解:A、带①去,仅保留了原三角形的一个角和部分边,不能得到与原来一样的三角形,故A选项错误;B、带②去,仅保留了原三角形的一部分边,也是不能得到与原来一样的三角形,故B选项错误;C、带③去,不但保留了原三角形的两个角还保留了其中一个边,符合ASA 判定,故C选项正确;D、带①和②去,仅保留了原三角形的一个角和部分边,同样不能得到与原来一样的三角形,故D选项错误.故选:C.此题可以采用全等三角形的判定方法以及排除法进行分析,从而确定最后的答案.主要考查学生对全等三角形的判定方法的灵活运用,要求对常用的几种方法熟练掌握.9.【答案】C【解析】解:∵AA′、BB′的中点O连在一起,∴OA=OA′,OB=OB′,在△OAB和△OA′B′中,,∴△OAB≌△OA′B′(SAS).所以用的判定定理是边角边.故选:C.因为AA′、BB′的中点O连在一起,因此OA=OA′,OB=OB′,还有对顶角相等,所以用的判定定理是边角边.本题考查全等三角形的判定定理,关键知道是怎么证明的全等,然后找到用的是哪个判定定理.10.【答案】A【解析】解:∵AD∥BC,∴∠EFB=∠FED=65°,由折叠的性质知,∠FED=∠FED′=65°,∴∠AED′=180°-2∠FED=50°.故∠AED′等于50°.故选:A.首先根据AD∥BC,求出∠FED的度数,然后根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等,则可知∠FED=∠FED′,最后求得∠AED′的大小.本题考查了:1、折叠的性质;2、矩形的性质,平行线的性质,平角的概念求解.11.【答案】20【解析】解:若8为等腰三角形的腰长,则4为底边的长,此时等腰三角形的周长=8+8+4=20;若4为等腰三角形的腰长,则8为底边的长,此时4+4=8,不能组成三角形;则等腰三角形的周长为20.故答案为:20.因为等腰三角形的底边和腰不确定,8可以为底边也可以为腰长,故分两种情况考虑:当8为腰时,根据等腰三角形的性质得另一腰也为8,底边为4,求出此时的周长;当8为底边时,4为腰长,根据等腰三角形的性质得另一腰也为4,求出此时的周长.此题考查等腰三角形的性质,以及分类讨论的数学思想.学生做题时对于两种情况得到的三角形三边需利用三角形的两边之和大于第三边判定是否能构成三角形.12.【答案】78 110【解析】解:∵∠A=50°,∠ABO=28°,∠ACO=32°,∴∠BDC=∠A+∠ABO=78°,∴∠BOC=∠BDC+∠ACO=110°.本题考查的是三角形的外角性质.本题解题的关键是观察各个三角形之间的关系,然后再根据三角形外角性质求解.13.【答案】SAS【解析】解:∵在△ABC中,AB=AC,BE、CF是中线∴AF=BF=AE=EC∵∴△AFC≌△AEB(SAS).因为该判定是两边角且该角为两边的夹角,所以用的是SAS.故填SAS.由已知AB=AC,BE、CF是中线,可得AF=AE,这样△AFC与△AEB中,有两边及它们的夹角对应相等,符合SAS,于是可得答案.本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.根据已知条件在三角形中的位置来选择方法是正确解答本题的关键.14.【答案】ACD【解析】证明:∵AD⊥BC,D为BC的中点,∴∠ADB=∠ADC,BD=CD,在△ABD和△ACD中,∴△ABD≌△ACD(SAS).故填ACD.三角形全等必须满足3个元素,垂直提供了两只角相等,中点提供了两边相等,加上一公共边,一对全等三角形就出来了,注意书写,对应点要在相应的位置.本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.本题书写时要注意对应点要在相应的位置,顺序要一致.15.【答案】5【解析】解:设这个多边形的边数是n,则(n-2)•180°-360°=180°,解得n=5.故答案为:5.根据多边形的内角和公式(n-2)•180°与外角和定理列式求解即可.本题考查了多边形的内角和与外角和定理,任意多边形的外角和都是360°,与边数无关.16.【答案】解:(1)∠BDC=90°+12∠A.理由如下:∵BD、CD是∠ABC和∠ACB的角平分线,∴∠DBC=12∠ABC,∠DCB=12∠ACB,∵∠D=180°-(∠DBC+∠DCB),即∠D=180°-12(∠ABC+∠ACB),而∠ABC+∠ACB=180°-∠A,∴∠D=180°-12(180°-∠A),即∠BDC=90°+12∠A;(2)∠BDC=90°-12∠A.理由如下:∵BD、CD是∠ABC和∠ACB外角的平分线,∴∠DBC=12∠EBC,∠DCB=12∠FCB,∴∠DBC=12(180°-∠ABC),∠DCB=12(180°-∠ACB),∴∠D=180°-(∠DBC+∠DCB),即∠D=180°-12(360°-∠ABC-∠ACB),而∠ABC+∠ACB=180°-∠A,∴∠D=180°-12(360°-180°+∠A),即∠BDC=90°-12∠A;(3)∠BDC=12∠A.理由如下:∵BD、CD是∠ABC和∠ACB外角的平分线,∴∠DBC=12∠ABC,∠DCE=12∠ACE,∵∠DCE=∠DBC+∠D,∴∠D=12∠ACE-12∠ABC=12(∠ACE-∠ABC)=12∠A.【解析】(1)根据角平分线的定义得到∠DBC=∠ABC,∠DCB=ACB,再根据三角形内角和定理得∠D=180°-(∠ABC+∠ACB),然后把∠ABC+∠ACB=180°-∠A 代入即可得到∠BDC=90°+∠A;(2)根据角平分线的定义得到∠DBC=∠EBC,∠DCB=FCB,利用邻补角的定义有∠DBC=(180°-∠ABC),∠DCB=(180°-∠ACB),则∠D=180°-(∠DBC+∠DCB),即∠D=180°-(360°-∠ABC-∠ACB),然后把∠ABC+∠ACB=180°-∠A代入整理得到∠BDC=90°-∠A;(3)根据角平分线的定义得到∠DBC=∠ABC,∠DCE=ACE,根据三角形外角性质得∠DCE=∠DBC+∠D,所以∠D=∠ACE-∠ABC=(∠ACE-∠ABC)=∠A.本题考查了三角形内角和定理:三角形内角和为180°.也考查了三角形外角性质以及角平分线的定义.17.【答案】解:(1)△ABC中,BC,AC边上的高AD,BF和中线AE,如图所示;(2)∵AD⊥BC,∴∠ADB=90°,∵∠ABC=30°,∴∠BAD=90°-30°=60°,∵∠ACB=∠ADC+∠CAD,∴∠CAD=130°-90°=40°.【解析】(1)根据高,中线的定义画出图形即可;(2)在Rt△ADB中,根据两锐角的和为90°,即可求出∠BAD,根据∠ACB=∠ADC+∠CAD,即可求出∠CAD;本题考查作图-基本作图,三角形的内角和定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.18.【答案】∠2 ∠CFD DF(ASA)【解析】证明:∵AB∥CD,∴∠1=∠2(两直线平行,内错角相等),∵AE⊥BD,CF⊥BD,∴∠AEB=∠CFD=90°,∵BF=DE,∴BE=DF,在△ABE和△CDF中,,∴△ABE≌△CDF(ASA).故答案为:∠2;∠CFD;DF;∠2,DF,∠CFD;(ASA).根据AB∥CD,可得∠1=∠2,根据AE⊥BD于E,CF⊥BD于F,可得∠AEB=∠CFD=90°,然后根据BF=DE,可得BE=DF,利用ASA可证明△ABE≌△CDF.本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.19.【答案】解:(1)∵∠B=30°,∠C=50°,∴∠BAC=180°-30°-50°=100°.∵AE是∠BAC的平分线,∴∠BAE=50°.在Rt△ABD中,∠BAD=90°-∠B=60°,∴∠DAE=∠BAD-∠BAE=60°-50=10°;(2)∠C-∠B=2∠DAE.【解析】(1)由三角形内角和定理可求得∠BAC=100°,由角平分线的性质知∠BAE=50°,在Rt△ABD中,可得∠BAD=60°,故∠DAE=∠BAD-∠BAE;(2)由(1)可知∠C-∠B=2∠DAE.本题利用了三角形内角和定理、角的平分线的性质、直角三角形的性质求解.20.【答案】解:∵∠BAC=90°,AD是边BC上的高,∴12AB•AC=12BC•AD,∴AD=AB⋅ACCB=6×810=4.8(cm),即AD的长度为4.8cm;(2)如图,∵△ABC是直角三角形,∠BAC=90°,AB=6cm,AC=8cm,∴S△ABC=12AB•AC=12×6×8=24(cm2).又∵AE是边BC的中线,∴BE=EC,∴12BE•AD=12EC•AD,即S△ABE=S△AEC,∴S△AEC=12S△ABC=12(cm2).∴△AEC的面积是12cm2.(3)∵AE为BC边上的中线,∴BE=CE,∴△ACE的周长-△ABE的周长=AC+AE+CE-(AB+BE+AE)=AC-AB=8-6=2(cm),即△ACE和△ABE的周长的差是2cm.【解析】(1)利用“面积法”来求线段AD的长度;(2)△AEC与△ABE的等底同高的两个三角形,它们的面积相等.(3)由于AE是中线,那么BE=CE,于是△ACE的周长-△ABE的周长=AC+AE+CE-(AB+BE+AE),化简可得△ACE的周长-△ABE的周长=AC-AB,易求其值.本题考查了三角形的面积.(1)三角形的面积等于底边长与高线乘积的一半,即S△=×底×高.(2)三角形的中线将三角形分成面积相等的两部分.21.【答案】证明:∵∠1=∠2,∴∠1+∠BAE=∠2+∠BAE,即∠CAE=∠BAD,在△ACE和△ABD中AC=AB∠CAE=∠BADAE=AD,∴△ABD≌△ACE(SAS).【解析】利用等式的性质可得∠CAE=∠BAD,再利用SAS判定△ABD≌△ACE即可.本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.22.【答案】解:(1)如图所示:(2)∵AD是△ABC的中线,∴S△ABD=12S△ABC,∵BE是△ABD的中线,∴S△BED=12S△ABD,∵△ABC的面积为20,∴△EBD的面积是20÷4=5,∴12•DB•EH=5,∴12×5•EH=5,EH=2.即点E到BC边的距离为2.【解析】(1)根据过直线外一点作已知直线的垂线的方法作图即可;(2)首先根据三角形的中线把三角形的面积分成相等的两部分可得△EBD的面积是5,再利用三角形的面积公式进而得到EH的长.此题主要考查了复杂作图,以及三角形中线的性质,关键是掌握中线把三角形的面积分成相等的两部分.。
人教版八年级数学上学期第一次月考测试卷含答案
人教版八年级数学上学期第一次月考测试卷含答案一、选择题1.下列各式中,运算正确的是( )A .32222-=B .8383-=-C .2323+=D .()222-=-2.下列运算正确的是 ( ) A .3223÷= B .235+= C .233363⨯=D .18126-=3.已知:x =3+1,y =3﹣1,求x 2﹣y 2的值( ) A .1B .2C .3D .434.下列各式中,正确的是( ) A .16=±4 B .±16=4C .2668⨯= D .42783+⨯=- 45.式子2x -在实数范围内有意义,则x 的取值范围是( ) A .0x <B .0xC .2xD .2x6.下列说法错误的个数是( ) ①所有无限小数都是无理数;②()23-的平方根是3±;③2a a =;④数轴上的点都表示有理数 A .1个B .2个C .3个D .4个7.如图直线a ,b 都与直线m 垂直,垂足分别为M 、N ,MN =1,等腰直角△ABC 的斜边,AB 在直线m 上,AB =2,且点B 位于点M 处,将等腰直角△ABC 沿直线m 向右平移,直到点A 与点N 重合为止,记点B 平移平移的距离为x ,等腰直角△ABC 的边位于直线a ,b 之间部分的长度和为y ,则y 关于x 的函数图象大致为( )A .B .C .D .8.下列计算或判断:(1)±3是27的立方根;(2)33a =a ;(3)64的平方根是2;(4)22(8)±=±8;(5)65- =65+,其中正确的有( )A .1个B .2个C .3个D .4个 9.下列各式计算正确的是( )A .235+=B .2236=()C .824+=D .236⨯=10.关于12的下列说法中错误的是( ) A .12是12的算术平方根 B .3124<< C .12不能化简 D .12是无理数11.使式子2124x x ++-成立的x 的取值范围是( ) A .x≥﹣2B .x >﹣2C .x >﹣2,且x ≠2D .x≥﹣2,且x ≠212.下列各式计算正确的是( ) A .()233= B .()255-=± C .523-= D .3223-=二、填空题13.(1)已知实数a 、b 在数轴上的位置如图所示,化简()222144a a ab b +--+=_____________;(2)已知正整数p ,q 32016p q =()p q ,的个数是_______________;(3)△ABC 中,∠A=50°,高BE 、CF 所在的直线交于点O,∠BOC 的度数__________. 14.设a ﹣b=23b ﹣c=23a 2+b 2+c 2﹣ab ﹣ac ﹣bc=_____.15.为了简洁、明确的表示一个正数的算术平方根,许多数学家进行了探索,期间经历了400余年,直至1637年法国数学家笛卡儿在他的《几何学》中开始使用”表示算数平方根.我国使用根号是由李善兰(1811-1882年)译西方数学书时引用的,她在《代数备旨》中把图1所示题目翻译为:22164?a x a x =则图2所示题目(字母代表正数)翻译为_____________,计算结果为_______________.16.14(1)(1)(2)(8)(9)x x x x x x +⋅⋅⋅=+++++的解是______.17.若a 、b 、c 均为实数,且a 、b 、c 均不为043252a cb=___________ 18.已知|a ﹣20072008a -=a ,则a ﹣20072的值是_____.19.对于任意实数a ,b ,定义一种运算“◇”如下:a ◇b =a(a -b)+b(a +b),如:3◇2=3×(3-2)+2×(3+2)=1332=_____.20.2m 1-1343m --mn =________.三、解答题21.观察下列各式子,并回答下面问题. 211-222-233-244-(1)试写出第n 个式子(用含n 的表达式表示),这个式子一定是二次根式吗?为什么? (2)你估计第16个式子的值在哪两个相邻整数之间?试说明理由.【答案】(12n n -,该式子一定是二次根式,理由见解析;(224015和16之间.理由见解析. 【分析】(1)依据规律可写出第n 个式子,然后判断被开方数的正负情况,从而可做出判断; (2)将16n =代入,得出第16240,再判断即可. 【详解】解:(12n n - 该式子一定是二次根式,因为n 为正整数,2(1)0n n n n -=-≥,所以该式子一定是二次根式(221616240- 22515=25616=,∴1516<<.15和16之间. 【点睛】本题考查的知识点是二次根式的定义以及估计无理数的大小,掌握用“逼近法”估算无理数的大小的方法是解此题的关键.22.(112=3=4=;……写出④ ;⑤ ;(2)归纳与猜想.如果n 为正整数,用含n 的式子表示这个运算规律; (3)证明这个猜想.【答案】(12=5==;(2=3)证明见解析. 【解析】 【分析】(1)根据题目中的例子直接写出结果; (2)根据(1)中的特例,可以写出相应的猜想;(3)根据(2)中的猜想,对等号左边的式子进行化简,即可得到等号右边的式子,从而可以解答本题. 【详解】解:(1)由例子可得,④5=25,(2)如果n 为正整数,用含nn, (3)证明:∵n 是正整数,n.故答案为5=256; n;(3)证明见解析. 【点睛】本题考查了二次根式的混合运算、数字的变化类,解答本题的关键是明确题意,找出所求问题需要的条件.23.计算(a +b aba b-+)÷(ab b ++ab a --ab )(a ≠b ).【答案】-+a b 【解析】试题分析:先计算括号内的,然后把除法转化为乘法,约分即可得出结论. 试题解析:解:原式=a ab b ab a b++-+÷()()()()()()a aa b b ba b a b a b aba ba b--+-+-+-=a b+÷()()2222a a ab b ab b a b ab a b a b ----++-=a b +·()()()ab a b a b ab a b -+-+=-a b +.24.阅读下列材料,然后回答问题: 在进行二次根式运算时,我们有时会碰上如3、3+1这样的式子,其实我们还可以将其进一步化简:535==33333⨯⨯;22(31)2(31)=313+1(3+1)(31)(3)1⨯-⨯-==--- . 以上这种化简过程叫做分母有理化.3+1还可以用以下方法化简:22(3)1(3+1)(31)=313+13+13+13+1--===-. (1)请用其中一种方法化简1511-;(2)化简:++++3+15+37+599+97.【答案】(1) 15+11;(2) 311-1. 【分析】(1)运用了第二种方法求解,即将4转化为1511-;(2)先把每一个加数进行分母有理化,再找出规律,即后面的第二项可以和前面的第一项抵消,然后即可得出答案. 【详解】 (1)原式==;(2)原式=+++…=﹣1+﹣+﹣+…﹣=﹣1=3﹣1【点睛】本题主要考查了分母有理化,找准有理化的因式是解题的关键.25.先化简再求值:(a ﹣22ab b a -)÷22a b a-,其中2,b=12. 【答案】原式=2a ba b-=+【分析】括号内先通分进行分式的加减运算,然后再进行分式的乘除法运算,最后将数个代入进行计算即可. 【详解】原式=()()222a ab b aa ab a b -+⨯+-=()()()2·a b a aa b a b -+- =a ba b-+, 当2,b=12时, 原式221212++-2【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算的运算顺序以及运算法则是解题的关键.26.计算下列各式: (1()2112323-;(21118-48227【答案】(14323 ;(2)355239【分析】先根据二次根式的性质化简,再合并同类二次根式即可. 【详解】(1)原式2=-2=;(2)原式==. 【点睛】本题考查了二次根式的加减,熟练掌握性质是解答本题的关键(0)(0)a a a a a ≥⎧==⎨-<⎩,)0,0a b =≥≥=(a ≥0,b >0).27.计算:(1(2|a ﹣1|,其中1<a 【答案】(1)1;(2)1 【分析】(1)根据二次根式的乘法法则计算;(2)由二次根式的非负性,a 的取值范围进行化简. 【详解】解:(1-1=2-1=1(2)∵1<a ,a ﹣1=2﹣a +a ﹣1=1. 【点睛】本题考查二次根式的性质、二次根式的乘法法则,主要检验学生的计算能力.28.(1|5-+;(2)已知实数a 、b 、c 满足|3|a +=,求2(b a +的值.【答案】(1)5;(2)4 【分析】(1)先利用二次根式的乘法法则和绝对值的意义计算,再进行回头运算即可; (2)先根据二次根式有意义的条件确定b 的值,再根据非负数的和的意义确定a ,c 的值,然后再计算代数式的值即可. 【详解】解:(15-+5)=+5=+5=(2)由题意可知:5050b b -≥⎧⎨-≥⎩, 解得5b =由此可化简原式得,30a +=30a ∴+=,20c -=3a ∴=-,2c =22((534b a ∴+=--=【点睛】可不是考查了二次根式的混合运算以及二次根式的化简求值,熟练掌握运算法则和运算顺序是解答此题的关键.29.(1)计算)(2201113-⎛⎫--•- ⎪⎝⎭(2)已知,,a b c 为实数且2c =2c ab-的值【答案】(1)13;(2)12-【分析】(1)利用完全平方公式、负整数指数幂、零指数幂分别计算再合并即可; (2)先依据二次根式有意义的条件,求得a 、b 、c 的值,然后再代入计算即可. 【详解】(1))(2201113-⎛⎫--•- ⎪⎝⎭31=+⨯=4+9=13;(2)根据二次根式有意义的条件可得:∵()2303010a a b ⎧-≥⎪⎪-≥⎨⎪-+≥⎪⎩, ∴3a =,1b =-,∴2c =∴(()2223112c ab -=-⨯-=-【点睛】本题主要考查了二次根式的混合运算,二次根式有意义的条件以及二次根式的化简求值,熟练掌握二次根式有意义的条件是解题的关键.30.计算下列各题: (1(2)2-. 【答案】(1)2)2-- 【分析】(1)根据二次根式的运算顺序和运算法则计算即可; (2)利用平方差、完全平方公式进行计算. 【详解】解:(1)原式==; (2)原式22(5=--+525=---2=--【点睛】本题考查二次根式的加减乘除混合运算,熟练掌握运算法则和乘法公式是关键.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】由合并同类项、二次根式的性质分别进行判断,即可得到答案.【详解】解:A 、-=A 正确;B =B 错误;C 、2不能合并,故C 错误;D 2=,故D 错误;故选:A . 【点睛】本题考查了二次根式的性质,合并同类项,解题的关键是熟练掌握运算法则进行解题.2.A解析:A 【分析】根据各个选项中的式子,可以计算出正确的结果,从而可以解答本题. 【详解】A 、3=,故选项A 正确;B B 错误;C 、18=,故选项C 错误;D =D 错误; 故选:A . 【点睛】本题考查了二次根式的混合运算,解答本题的关键是明确二次根式混合运算的计算方法.3.D解析:D 【分析】先根据x 、y 的值计算x y +、x y -的值,再将所求式子利用平方差公式进行化简,然后代入求值即可. 【详解】∵1,1x y ==,∴11112x y x y +==-=-=,则22()()2x y x y y x -=+-== 故选:D . 【点睛】本题考查了代数式的化简求值、二次根式的加减法与乘法,利用平方差公式对代数式进行化简是解题关键.4.C解析:C 【分析】根据算术平方根与平方根的定义、二次根式的加法与乘除法逐项判断即可.【详解】A4=,此项错误B、4=±,此项错误C==,此项正确D==故选:C.【点睛】本题考查了算术平方根与平方根的定义、二次根式的加法与乘除法,掌握二次根式的运算法则是解题关键.5.D解析:D【分析】根据二次根式有意义的条件(被开方数≥0),列出不等式求解即可得到答案;【详解】x-≥,即:20x,解得:2故选:D;【点睛】本题主要考查了二次根式有意义的条件,掌握二次根式有意义即被开方数≥0是解题的关键. 6.C解析:C【分析】根据无理数定义判断①;根据平方根的算法判断②;利用二次根式的性质化简判断③;根据数轴的特点,判断④.【详解】无限不循环小数才是无理数,①错误;=,3的平方根是②正确;3a=,③错误;数轴上的点可以表示所有有理数和无理数,④错误故选:C.【点睛】本题考查无理数的定义、平方根的计算、二次根式的性质以及数轴表示数,紧抓相关定义是解题关键.7.D解析:D【解析】【分析】根据等腰直角△ABC被直线a和b所截的图形分为三种情况讨论:①当0≤x≤1时,y是BM+BD;②当1<x≤2时,y是CP+CQ+MN;当2<x≤3时,y=AN+AF,分别用x表示出这三种情况下y的函数式,然后对照选项进行选择.【详解】①当0≤x≤1时,如图1所示.此时BM=x,则DM=x,在Rt△BMD中,利用勾股定理得BD=2x,所以等腰直角△ABC的边位于直线a,b之间部分的长度和为y=BM+BD=(2+1)x,是一次函数,当x=1时,B点到达N点,y=2+1;②当1<x≤2时,如图2所示,△CPQ是直角三角形,此时y=CP+CQ+MN=2+1.即当1<x≤2时,y的值不变是2+1.③当2<x≤3时,如图3所示,此时△AFN是等腰直角三角形,AN=3﹣x,则AF2(3﹣x),y=AN+AF=(﹣1﹣2)x2,是一次函数,当x=3时,y=0.综上所述只有D答案符合要求.故选:D.【点睛】本题主要考查动点问题的函数图象,解题的方法是动中找静,在不同的情况下找到y与x 的函数式.8.B解析:B【解析】根据立方根的意义,可知27的立方根是3,故(133a a=正确,故(2)正64=8,可知其平方根为±2,故(3)不正确;根据算术平方根的意义,可知=,故2288±=(),故(4656-5(5)正确.故选B.9.D解析:D【分析】根据二次根式的运算法则一一判断即可.【详解】A23B、错误,2();2312=C8222232==D23236=⨯=故选:D.【点睛】本题考查二次根式的运算,解题的关键是熟练掌握二次根式的加减乘除运算法则,属于中考常考题型.10.C解析:C【分析】根据算术平方根的定义,无理数的定义及估值,二次根式的化简依次判断.【详解】A12的算术平方根,故该项正确;B、34<<,故该项正确;C=D=是无理数,故该项正确;故选:C.【点睛】此题考查算术平方根的定义,无理数的定义及估值,二次根式的化简,熟练掌握各知识点并运用解题是关键.11.C解析:C【分析】根据分式和二次根式有意义的条件(分式的分母不为零,二次根式的被开方数为非负数)即可得到结果.【详解】解:由题意得:2x-40≠,2x∴≠±,又∵20x+≥,∴x≥-2.∴x的取值范围是:x>-2且2x≠.故选C.【点睛】本题考查了分式和二次根式有意义的条件,解不等式,是基础题.12.A解析:A【分析】根据二次根式的性质和运算法则逐一计算可得.【详解】A、23=此选项计算正确,符合题意;B、5=此选项计算错误,不符合题意;C-不是同类二次根式,不能合并,此选项计算错误,不符合题意;D、-=故选:A.【点睛】本题主要考查了利用二次根式的性质化简以及二次根式的加减运算,准确利用二次根式的性质计算是解题的关键.二、填空题13.(1)2a -2b +1;(2)3;(3)130°或50°.【解析】(1)∵-1<a<0,b>1,∴=|a+1|-|a-2b|=1+a-2b+a=2a-2b+1.(2)∵,∴,p=20解析:(1)2a -2b +1;(2)3;(3)130°或50°.【解析】(1)∵-1<a<0,b>1, ∴222(1)4a a ab b +--+=|a+1|-|a-2b|=1+a-2b+a=2a-2b+1.(2)∵32016p q +=, ∴20163p q =-,p=2016-62016+9q,∴p=14x 3(其中x 为正整数), 同理可得:q=14y 2(其中y 为正整数),则x+3y=12(x 、y 为正整数)∴963,,123x x x y y y ===⎧⎧⎧⎨⎨⎨===⎩⎩⎩, ∴整数对有(p,q )=(14⨯81,141⨯),或(1436,144)⨯⨯ ,或(149,149⨯⨯)。
初中数学 2023-2024学年山东省济宁市邹城市八年级(上)第一次月考数学试卷
2023-2024学年山东省济宁市邹城市王村中学八年级(上)第一次月考数学试卷一、选择题(本大题共10小题,共30.0分。
在每小题列出的选项中,选出符合题目的一项)A .1种B .2种C .3种D .4种1.(3分)有四条线段,它们的长分别为1cm ,2cm ,3cm ,4cm ,从中选三条构成三角形,其中正确的选法有( )A.B.C.D.2.(3分)下列四个图形中,线段BE 是△ABC 中AC 边的高的是( )A .稳定性,稳定性B .稳定性,不稳定性C .不稳定性,稳定性D .不稳定性,不稳定性3.(3分)桥梁上的拉杆,电视塔的底座,都是三角形结构,而活动挂架是四边形结构,这是分别利用三角形和四边形的()A .2B .19C .2或19D .2或124.(3分)在△ABC 中,AC =7,BC 边上的中线AD 把△ABC 分成周长差为5的两个三角形,则AB 的长为( )A .∠A =2∠B =3∠C B .∠B +∠A =∠CC .两个内角互余D .∠A :∠B :∠C =2:3:55.(3分)满足下列条件的△ABC 中,不是直角三角形的是( )A .30°B .40°C .50°D .80°6.(3分)如图,a ∥b ,∠3=80°,∠1-∠2=20°,则∠1的度数是( )二、填空题(本大题共8小题,共24.0分)A .70°B .80°C .90°D .100°7.(3分)如图,BP 是△ABC 中∠ABC 的平分线,CP 是∠ACB 的外角的平分线,如果∠ABP =20°,∠ACP =50°,则∠A +∠P =( )A .7cmB .8cmC .5cmD .无法确定8.(3分)如图,△ABC ≌△CDA ,AC =7cm ,AB =5cm ,BC =8cm ,则AD 的长为( )A .45°B .60°C .72°D .90°9.(3分)若正多边形的内角和是540°,则该正多边形的一个外角为( )A .45°B .135°C .45°或67.5°D .45°或135°10.(3分)等腰三角形一腰上的高与另一腰的夹角为45°,则其顶角为( )11.(3分)如图,AB ∥CD ,∠A =45°,∠C =29°,则∠E = .12.(3分)如图,∠A +∠B +∠C +∠D +∠E = .13.(3分)把一副三角板按如图方式放置,则两条斜边所形成的钝角α= 度.三、解答题(本大题共6小题,共46.0分。
人教版八年级上册数学《第一次月考》考试题含答案
人教版八年级上册数学《第一次月考》考试题含答案 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分) 1.4的平方根是( )A .±2B .2C .﹣2D .162.估计7+1的值( )A .在1和2之间B .在2和3之间C .在3和4之间D .在4和5之间3.下列各式中,正确的是( )A .2(3)3-=-B .233-=-C .2(3)3±=±D .23=3± 4.如果a+b <0,并且ab >0,那么( )A .a <0,b <0B .a >0,b >0C .a <0,b >0D .a >0,b <05.已知一次函数y =kx +b 随着x 的增大而减小,且kb <0,则在直角坐标系内它的大致图象是( )A .B .C .D .6.如图,已知70AOC BOD ∠=∠=︒,30BOC ∠=︒,则AOD ∠的度数为( )A .100︒B .110︒C .130︒D .140︒7.如图,在▱ABCD 中,对角线AC 的垂直平分线分别交AD 、BC 于点E 、F ,连接CE ,若△CED 的周长为6,则▱ABCD 的周长为( )A .6B .12C .18D .248.已知a =2018x +2018,b =2018x +2019,c =2018x +2020,则a 2+b 2+c 2-ab -ac -bc 的值是( )A .0B .1C .2D .39.如图,//DE BC ,BE 平分ABC ∠,若170∠=,则CBE ∠的度数为( )A .20B .35C .55D .7010.如图,AB ∥EF ,CD ⊥EF ,∠BAC=50°,则∠ACD=( )A .120°B .130°C .140°D .150°二、填空题(本大题共6小题,每小题3分,共18分)1.已知a 、b 为两个连续的整数,且11a b <<,则a b +=__________.2.已知三角形ABC 的三边长为a,b,c 满足a+b=10,ab=18,c=8,则此三角形为__________三角形.3.若m+1m =3,则m 2+21m=________. 4.如图是一个三级台阶,它的每一级的长、宽和高分别为20 dm,3 dm,2 dm ,A 和B 是这个台阶两个相对的端点,A 点有一只蚂蚁,想到B 点去吃可口的食物,则蚂蚁沿着台阶面爬到B 点的最短路程是__________dm.5.如图是一张长方形纸片ABCD ,已知AB=8,AD=7,E 为AB 上一点,AE=5,现要剪下一张等腰三角形纸片(△AEP ),使点P 落在长方形ABCD 的某一条边上,则等腰三角形AEP 的底边长是_____________.6.如图,在矩形ABCD 中,BC =20cm ,点P 和点Q 分别从点B 和点D 出发,按逆时针方向沿矩形ABCD 的边运动,点P 和点Q 的速度分别为3cm /s 和2cm /s ,则最快_________s 后,四边形ABPQ 成为矩形.三、解答题(本大题共6小题,共72分)1.解方程(1)240x -= (2)2(3)(21)(3)x x x +=-+2.先化简,再求值:a 3a 2++÷22a 6a 9a -4++-a 1a 3++,其中50+-113⎛⎫ ⎪⎝⎭2(-1)3.已知关于x 的不等式组5x 13(x-1),13x 8-x 2a 22+>⎧⎪⎨≤+⎪⎩恰有两个整数解,求实数a 的取值范围.4.某市推出电脑上网包月制,每月收取费用y (元)与上网时间x (小时)的函数关系如图所示,其中BA 是线段,且BA ∥x 轴,AC 是射线.(1)当x ≥30,求y 与x 之间的函数关系式;(2)若小李4月份上网20小时,他应付多少元的上网费用?(3)若小李5月份上网费用为75元,则他在该月份的上网时间是多少?5.某蔬菜生产基地的气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜.如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度y (℃)与时间x(h)之间的函数关系,其中线段AB、BC表示恒温系统开启阶段,双曲线的一部分CD表示恒温系统关闭阶段.请根据图中信息解答下列问题:(1)求这天的温度y与时间x(0≤x≤24)的函数关系式;(2)求恒温系统设定的恒定温度;(3)若大棚内的温度低于10℃时,蔬菜会受到伤害.问这天内,恒温系统最多可以关闭多少小时,才能使蔬菜避免受到伤害?6.为了抓住梵净山文化艺术节的商机,某商店决定购进A、B两种艺术节纪念品.若购进A种纪念品8件,B种纪念品3件,需要950元;若购进A种纪念品5件,B种纪念品6件,需要800元.(1)求购进A、B两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,但不超过7650元,那么该商店共有几种进货方案?(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、B4、A5、A6、B7、B8、D9、B10、C二、填空题(本大题共6小题,每小题3分,共18分)1、72、直角3、74、255、56、4三、解答题(本大题共6小题,共72分)1、(1)12x =-,22x =;(2)13x =-,24x =2、-33a +,;12-.3、-4≤a<-3.4、(1)y=3x ﹣30;(2)4月份上网20小时,应付上网费60元;(3)5月份上网35个小时.5、(1)y 关于x 的函数解析式为210(05)20(510)200(1024)x x y x x x ⎧⎪+≤<⎪=≤<⎨⎪⎪≤≤⎩;(2)恒温系统设定恒温为20°C ;(3)恒温系统最多关闭10小时,蔬菜才能避免受到伤害.6、(1)A 种纪念品需要100元,购进一件B 种纪念品需要50元(2)共有4种进货方案(3)当购进A 种纪念品50件,B 种纪念品50件时,可获最大利润,最大利润是2500元。
人教版八年级(上)第一次月考数学试卷及答案
人教版八年级(上)第一次月考数学试卷及答案人教版八年级(上)第一次月考数学试卷一、选择题(共12小题,每小题4分,满分48分)1.以下长度的三条线段中,能够组成三角形的是()。
A。
2cm,3cm,4cmB。
1cm,4cm,2cmC。
1cm,2cm,3cmD。
6cm,2cm,3cm2.如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是()。
A。
带①去B。
带②去C。
带③去D。
带①和②去3.能够把一个任意三角形分成面积相等的两部分的是()。
A。
角平分线B。
中线C。
高D。
A、B、C都可以4.下面四个图形中,线段BE是△ABC的高的图形是()。
A。
B。
C。
D。
5.适合条件∠A=∠B=∠C的△ABC是()。
A。
锐角三角形B。
直角三角形C。
钝角三角形D。
等边三角形6.一个多边形的内角和比它的外角和的2倍还大180°,这个多边形的边数是()。
A。
5B。
6C。
7D。
87.下列命题正确的是()。
A。
三角形的角平分线,中线,高均在三角形内部B。
三角形中至少有一个内角不小于60°C。
直角三角形仅有一条高D。
直角三角形斜边上的高等于斜边的一半8.如图,在△ABC中,AB=AC,∠BAD=∠CAD,则下列结论:①△ABD≌△ACD,②∠B=∠C,③BD=CD,④AD⊥BC。
其中正确的个数有()。
A。
1个B。
2个C。
3个D。
4个9.如图,在△ABC中,AD平分∠XXX于D,XXX于E,∠B=40°,∠BAC=82°,则∠DAE=()。
A。
7°B。
8°C。
9°D。
10°10.已知,如图AB=CD,BC=AD,∠B=23°,则∠D=()。
A。
67°B。
46°C。
23°D。
不能确定11.如图,EA∥DF,AE=DF,要使△AEC≌△DFB,只要()。
A。
AB=CDB。
人教版数学八年级上册第一次月考数学试卷含答案解析
人教版数学八年级上册第一次月考数学试卷一.选择题(共8小题,每小题3分,满分24分)1.下列每组数分别表示三根木棒的长度,将它们首尾连接后,能摆成三角形的一组是()A.1,2,6 B.2,2,4 C.1,2,3 D.2,3,42.一个三角形的三条边长分别为1、2、x,则x的取值范围是()A.1≤x≤3 B.1<x≤3 C.1≤x<3 D.1<x<33.如图,AD是△ABC的中线,已知△ABD的周长为25cm,AB比AC长6cm,则△ACD的周长为()A.19cm B.22cm C.25cm D.31cm4.若AD是△ABC的中线,则下列结论错误的是()A.AD平分∠BAC B.BD=DC C.AD平分BC D.BC=2DC5.如图,直线a∥b,则∠A的度数是()A.28°B.31°C.39°D.42°6.已知△ABC中,∠A:∠B:∠C=2:3:4,则这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形7.如图,l1∥l2,∠1=120°,∠2=100°,则∠3=()A.20°B.40°C.50°D.60°8.如下图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE二.填空题(共6小题,每小题3分,满分18分)9.一个三角形的两边长分别为2厘米和9厘米,若第三边的长为奇数,则第三边的长为厘米.10.在直角三角形、钝角三角形和锐角三角形这三种三角形中,有两条高在三角形外部的是三角形.11.如图,AB∥CD,∠1=50°,∠2=110°,则∠3= 度.12.如图,直线MA∥NB,∠A=70°,∠B=40°,则∠P= 度.13.如图,若△OAD≌△OBC,且∠O=65°,∠C=20°,则∠OAD= 度.14.如图,AB=AC,要使△ABE≌△ACD,应添加的条件是(添加一个条件即可).三.解答题(满分25分)15.已知,如图,AE是∠BAC的平分线,∠1=∠D.求证:∠1=∠2.16.如图,△ABC中,按要求画图:(1)画出△ABC中BC边上的中线AD;(2)画出△ABC中AB边上的高CH.17.如图,在△ABC中,∠A=70°,∠B=50°,CD平分∠ACB,求∠ACD的度数.18.如图,AB∥CD,∠A=60°,∠C=∠E,求∠C.19.如图,AB∥CD,证明:∠A=∠C+∠P.四、解答题(共18分)20.一个多边形,它的内角和比外角和的4倍多180°,求这个多边形的边数及内角和度数.21.如图,已知AC平分∠BAD,AB=AD.求证:△ABC≌△ADC.22.如图,AB=AC,点E、F分别是AB、AC的中点,求证:△AFB≌△AEC.五、解答题(共15分)23.如图,在△ABC中,∠ABC=66°,∠ACB=54°,BE是AC上的高,CF是AB上的高,H是BE和CF的交点,求∠ABE、∠ACF和∠BHC的度数.24.已知,如图在△ABC中,AC=BC,AC⊥BC,直线EF交AC于F,交AB于E,交BC的延长线于D,且CF=CD,连接AD、BF,则AD与BF之间有何关系?请证明你的结论.参考答案与试题解析一.选择题(共8小题,每小题3分,满分24分)1.下列每组数分别表示三根木棒的长度,将它们首尾连接后,能摆成三角形的一组是()A.1,2,6 B.2,2,4 C.1,2,3 D.2,3,4【考点】三角形三边关系.【分析】根据三角形的三边关系:三角形两边之和大于第三边,计算两个较小的边的和,看看是否大于第三边即可.【解答】解:A、1+2<6,不能组成三角形,故此选项错误;B、2+2=4,不能组成三角形,故此选项错误;C、1+2=3,不能组成三角形,故此选项错误;D、2+3>4,能组成三角形,故此选项正确;故选:D.【点评】此题主要考查了三角形的三边关系,关键是掌握三角形的三边关系定理.2.一个三角形的三条边长分别为1、2、x,则x的取值范围是()A.1≤x≤3 B.1<x≤3 C.1≤x<3 D.1<x<3【考点】三角形三边关系.【分析】已知两边,则第三边的长度应是大于两边的差而小于两边的和,这样就可求出第三边长的范围.【解答】解:根据题意得:2﹣1<x<2+1,即1<x<3.故选D.【点评】考查了三角形三边关系,本题需要理解的是如何根据已知的两条边求第三边的范围.3.如图,AD是△ABC的中线,已知△ABD的周长为25cm,AB比AC长6cm,则△ACD的周长为()A.19cm B.22cm C.25cm D.31cm【考点】三角形的角平分线、中线和高.【分析】根据三角形中线的定义可得BD=CD,再表示出△ABD和△ACD的周长的差就是AB、AC的差,然后计算即可.【解答】解:∵AD是BC边上的中线,∴BD=CD,∴△ABD和△ACD周长的差=(AB+BD+AD)﹣(AC+AD+CD)=AB﹣AC,∵△ABD的周长为25cm,AB比AC长6cm,∴△ACD周长为:25﹣6=19cm.故选:A.【点评】本题主要考查了三角形的中线的定义,把三角形的周长的差转化为已知两边AB、AC的长度的差是解题的关键.4.若AD是△ABC的中线,则下列结论错误的是()A.AD平分∠BAC B.BD=DC C.AD平分BC D.BC=2DC【考点】三角形的角平分线、中线和高.【分析】根据三角形的中线的概念:连接三角形的顶点和对边中点的线段叫做三角形的中线.【解答】解:A、AD平分∠BAC,则AD是△ABC的角平分线,故本选项错误;AD是△ABC的中线,则有BD=DC,AD平分BC,BC=2DC,故B、C、D正确.故选A.【点评】本题主要考查三角形的中线的概念,并能够正确运用几何式子表示是解本题的关键.5.如图,直线a∥b,则∠A的度数是()A.28°B.31°C.39°D.42°【考点】三角形内角和定理;平行线的性质.【专题】计算题;压轴题.【分析】本题主要利用平行线的性质和三角形的有关性质进行做题.【解答】解:∵a∥b,∴∠DBC=∠BCb=70°(内错角相等),∴∠ABD=180°﹣70°=110°(补角定义),∴∠A=180°﹣31°﹣110°=39°(三角形内角和性质).故选C.【点评】此题主要考查了学生的三角形的内角和定理:三角形的内角和为180°.及平行线的性质.6.已知△ABC中,∠A:∠B:∠C=2:3:4,则这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形【考点】三角形内角和定理.【专题】压轴题.【分析】根据比例,设三个内角为2k、3k、4k,再根据三角形的内角和定理求出最大角的度数.【解答】解:根据题意,设∠A、∠B、∠C分别为2k、3k、4k,则∠A+∠B+∠C=2k+3k+4k=180°,解得k=20°,∴4k=4×20°=80°<90°,所以这个三角形是锐角三角形.故选A.【点评】本题主要考查设“k”法的运用和三角形的内角和定理.7.如图,l1∥l2,∠1=120°,∠2=100°,则∠3=()A.20°B.40°C.50°D.60°【考点】三角形的外角性质;平行线的性质.【专题】计算题.【分析】先延长∠1和∠2的公共边交l1于一点,利用两直线平行,同旁内角互补求出∠4的度数,再利用外角性质求解.【解答】解:如图,延长∠1和∠2的公共边交l1于一点,∵l1∥l2,∠1=120°,∴∠4=180°﹣∠1=180°﹣120°=60°,∴∠3=∠2﹣∠4=100°﹣60°=40°.故选B.【点评】本题主要考查作辅助线构造三角形,然后再利用平行线的性质和外角性质求解.8.如下图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE【考点】全等三角形的性质.【分析】根据全等三角形的性质,全等三角形的对应边相等,全等三角形的对应角相等,即可进行判断.【解答】解:∵△ABE≌△ACD,∠1=∠2,∠B=∠C,∴AB=AC,∠BAE=∠CAD,BE=DC,AD=AE,故A、B、C正确;AD的对应边是AE而非DE,所以D错误.故选D.【点评】本题主要考查了全等三角形的性质,根据已知的对应角正确确定对应边是解题的关键.二.填空题(共6小题,每小题3分,满分18分)9.一个三角形的两边长分别为2厘米和9厘米,若第三边的长为奇数,则第三边的长为9 厘米.【考点】三角形三边关系.【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边.即可求解.【解答】解:根据三角形的三边关系,得:第三边的取值范围是大于7而小于11.又第三边的长是奇数,故第三边的长是9厘米.【点评】考查了三角形的三边关系,还要注意第三边是奇数这一条件.10.在直角三角形、钝角三角形和锐角三角形这三种三角形中,有两条高在三角形外部的是钝角三角形.【考点】三角形的角平分线、中线和高.【分析】根据三角形的高的概念,通过具体作高.发现:锐角三角形的三条高都在三角形的内部;直角三角形有两条高即三角形的两条直角边,一条在内部;钝角三角形有两条高在三角形的外部,一条在内部.【解答】解:有两条高在三角形外部的是钝角三角形.【点评】注意不同形状的三角形的高的位置.11.如图,AB∥CD,∠1=50°,∠2=110°,则∠3= 60 度.【考点】三角形内角和定理;对顶角、邻补角;平行线的性质.【专题】计算题.【分析】如图所示,可根据邻补角、内错角以及三角形内角和求出∠3的度数.【解答】解:∵∠2=110°,∴∠4=70°,∵AB∥CD,∴∠5=∠1=50°,利用三角形的内角和定理,就可以求出∠3=180°﹣∠4﹣∠5=60°.【点评】本题考查了三角形的内角和定理,以及平行线的性质:两直线平行,同旁内角互补.12.如图,直线MA∥NB,∠A=70°,∠B=40°,则∠P= 30 度.【考点】三角形的外角性质;平行线的性质.【专题】计算题.【分析】要求∠P的度数,只需根据平行线的性质,求得其所在的三角形的外角,根据三角形的外角的性质进行求解.【解答】解:根据平行线的性质,得∠A的同位角是70°.再根据三角形的外角的性质,得∠P=70°﹣40°=30°.故答案为:30°.【点评】特别注意根据平行线的性质以及三角形的一个外角等于和它不相邻的两个内角和,能够发现并证明此题中的结论:∠P=∠A﹣∠B.13.如图,若△OAD≌△OBC,且∠O=65°,∠C=20°,则∠OAD= 95 度.【考点】全等三角形的性质.【分析】运用全等求出∠D=∠C,再用三角形内角和即可求.【解答】解:∵△OAD≌△OBC,∴∠OAD=∠OBC;在△OBC中,∠O=65°,∠C=20°,∴∠OBC=180°﹣(65°+20°)=180°﹣85°=95°;∴∠OAD=∠OBC=95°.故答案为:95.【点评】考查全等三角形的性质,三角形内角和及推理能力,本题比较简单.14.如图,AB=AC,要使△ABE≌△ACD,应添加的条件是∠B=∠C或AE=AD (添加一个条件即可).【考点】全等三角形的判定.【专题】开放型.【分析】要使△ABE≌△ACD,已知AB=AC,∠A=∠A,则可以添加一个边从而利用SAS来判定其全等,或添加一个角从而利用AAS来判定其全等.【解答】解:添加∠B=∠C或AE=AD后可分别根据ASA、SAS判定△ABE≌△ACD.故答案为:∠B=∠C或AE=AD.【点评】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.三.解答题(满分25分)15.已知,如图,AE是∠BAC的平分线,∠1=∠D.求证:∠1=∠2.【考点】平行线的判定与性质;三角形的角平分线、中线和高.【专题】证明题.【分析】由∠1=∠D,根据同位角相等,两直线平行可证AE∥DC,根据两直线平行,内错角相等可证∠EAC=∠2,再根据角平分线的性质即可求解.【解答】证明:∵∠1=∠D,∴AE∥DC(同位角相等,两直线平行),∴∠EAC=∠2(两直线平行,内错角相等),∵AE是∠BAC的平分线,∴∠1=∠EAC,∴∠1=∠2.【点评】本题考查了平行线的判定与性质和三角形的角平分线的性质,有一定的综合性,但难度不大.16.如图,△ABC中,按要求画图:(1)画出△ABC中BC边上的中线AD;(2)画出△ABC中AB边上的高CH.【考点】作图—复杂作图;三角形的角平分线、中线和高.【分析】(1)作线段BC的垂直平分线,垂足为D,连接AD即可;(2)以C为圆心,以任意长为半径画弧交BA的延长线于两点,再以这两点为圆心,以大于这两点间的长度的为半径画弧,相交于一点,然后作出高即可.【解答】解:(1)如图,AD即为所求作的BC边上的中线;(2)如图,CH即为所求作的AB边上的高.【点评】本题考查了复杂作图,主要有线段垂直平分线的作法,过一点作已知直线的垂线,都是基本作图,需熟练掌握.17.如图,在△ABC中,∠A=70°,∠B=50°,CD平分∠ACB,求∠ACD的度数.【考点】三角形内角和定理.【专题】压轴题.【分析】本题考查的是三角形内角和定理,求出∠ACB的度数后易求解.【解答】解:∵∠A=70°,∠B=50°,∴∠ACB=180°﹣70°﹣50°=60°(三角形内角和定义).∵CD平分∠ACB,∴∠ACD=∠ACB=×60°=30°.【点评】此类题解答的关键为求出∠ACB后求解即可.18.如图,AB∥CD,∠A=60°,∠C=∠E,求∠C.【考点】平行线的性质;三角形的外角性质.【专题】计算题.【分析】根据两直线平行,内错角相等,可得∠DFE,由外角的性质,即可求得∠C.【解答】解:∵AB∥CD,∠A=60°,∴∠DFE=∠A=60°,∵∠DFE=∠C+∠E,∠C=∠E,∴∠C=30°.【点评】此题考查了平行线的性质与三角形外角的性质.19.如图,AB∥CD,证明:∠A=∠C+∠P.【考点】平行线的性质;三角形的外角性质.【专题】证明题.【分析】因为∠PED为△PCE的外角,所以∠P+∠C=∠PED;再根据两直线平行,同位角相等可得∠A=∠PED,即∠A=∠C+∠P.【解答】证明:∵AB∥CD,∴∠A=∠PED,(两直线平行,同位角相等)又∠PED为△PCE的外角,∴∠P+∠C=∠PED,∴∠P+∠C=∠A.【点评】本题考查三角形外角的性质及平行线的性质,解答的关键是沟通外角和内角的关系.四、解答题(共18分)20.一个多边形,它的内角和比外角和的4倍多180°,求这个多边形的边数及内角和度数.【考点】多边形内角与外角.【分析】多边形的内角和比外角和的4倍多180°,而多边形的外角和是360°,则内角和是1620度.n边形的内角和可以表示成(n﹣2)•180°,设这个多边形的边数是n,就得到方程,从而求出边数.【解答】解:根据题意,得(n﹣2)•180=1620,解得:n=11.则这个多边形的边数是11,内角和度数是1620度.【点评】此题比较简单,只要结合多边形的内角和公式寻求等量关系,构建方程即可求解.21.如图,已知AC平分∠BAD,AB=AD.求证:△ABC≌△ADC.【考点】全等三角形的判定.【专题】证明题.【分析】首先根据角平分线的定义得到∠BAC=∠DAC,再利用SAS定理便可证明其全等.【解答】证明:∵AC平分∠BAD,∴∠BAC=∠DAC,在△ABC和△ADC中,,∴△ABC≌△ADC.【点评】此题主要考查了全等三角形的判定,关键是找准能使三角形全等的条件.22.如图,AB=AC,点E、F分别是AB、AC的中点,求证:△AFB≌△AEC.【考点】全等三角形的判定.【专题】证明题.【分析】根据中点的定义可知AE=AB,AF=AC,可知AE=AF,根据SAS即可证明△AFB≌△AEC.【解答】证明:∵点E、F分别是AB、AC的中点,∴AE=AB,AF=AC,∵AB=AC,∴AE=AF,在△AFB和△AEC中,AB=AC,∠A=∠A,AE=AF,∴△AFB≌△AEC.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.五、解答题(共15分)23.如图,在△ABC中,∠ABC=66°,∠ACB=54°,BE是AC上的高,CF是AB上的高,H是BE和CF的交点,求∠ABE、∠ACF和∠BHC的度数.【考点】三角形的角平分线、中线和高;三角形内角和定理.【分析】由三角形的内角和是180°,可求∠A=60°.又因为BE是AC边上的高,所以∠AEB=90°,所以∠ABE=30°.同理,∠ACF=30度,又因为∠BHC是△CEH的一个外角,所以∠BHC=120°.【解答】解:∵∠ABC=66°,∠ACB=54°,∴∠A=180°﹣∠ABC﹣∠ACB=180°﹣66°﹣54°=60°.又∵BE是AC边上的高,所以∠AEB=90°,∴∠ABE=180°﹣∠BAC﹣∠AEB=180°﹣90°﹣60°=30°.同理,∠ACF=30°,∴∠BHC=∠BEC+∠ACF=90°+30°=120°.【点评】此题主要考查了三角形外角的性质及三角形的内角和定理,求角的度数常常要用到“三角形的内角和是180°”这一隐含的条件;三角形的外角通常情况下是转化为内角来解决.24.已知,如图在△ABC中,AC=BC,AC⊥BC,直线EF交AC于F,交AB于E,交BC的延长线于D,且CF=CD,连接AD、BF,则AD与BF之间有何关系?请证明你的结论.【考点】全等三角形的判定与性质.【分析】通过全等三角形的判定定理SAS证得△BCF≌△ACD,则由“全等三角形的对应边相等”推知AD=BF.【解答】解:AD=BF,理由如下:如图,∵AC⊥BC,∴∠BCF=∠ACD=90°,∴在△BCF与△ACD中,,∴△BCF≌△ACD(SAS),∴AD=BF.【点评】本题考查了全等三角形的判定与性质.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.考试中答题策略和几个答题窍门对于中学生来说,最终都要参加升学考试,而考试的遗憾莫过于实有的水平未能充分发挥出来,致使十几年的辛劳毁于两小时的“经验”不足。
人教版八年级上册数学第一次月考模拟考试【及参考答案】
人教版八年级上册数学第一次月考模拟考试【及参考答案】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣2的绝对值是( )A .2B .12C .12-D .2-2.若点1(),6A x -,2(),2B x -,32(),C x 在反比例函数12y x =的图像上,则1x ,2x ,3x 的大小关系是( )A .123x x x <<B .213x x x <<C .231x x x <<D .321x x x <<3.如果线段AB =3cm ,BC =1cm ,那么A 、C 两点的距离d 的长度为( )A .4cmB .2cmC .4cm 或2cmD .小于或等于4cm ,且大于或等于2cm4.□ABCD 中,E 、F 是对角线BD 上不同的两点,下列条件中,不能得出四边形AECF 一定为平行四边形的是( )A .BE=DFB .AE=CFC .AF//CED .∠BAE=∠DCF5.若关于x 的一元二次方程(k -1)x 2+4x +1=0有两个不相等的实数根,则k 的取值范围是( )A .k<5B .k<5,且k ≠1C .k ≤5,且k ≠1D .k>56.下列长度的三条线段能组成直角三角形的是( )A .3, 4,5B .2,3,4C .4,6,7D .5,11,127.如图,在数轴上表示实数15的点可能是( )A .点PB .点QC .点MD .点N8.如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为( )A .90°B .60°C .45°D .30°9.两个一次函数1y ax b 与2y bx a ,它们在同一直角坐标系中的图象可能是( )A .B .C .D .10.如图,将△ABC 沿DE ,EF 翻折,顶点A ,B 均落在点O 处,且EA 与EB 重合于线段EO ,若∠DOF =142°,则∠C 的度数为( )A .38°B .39°C .42°D .48°二、填空题(本大题共6小题,每小题3分,共18分)1.若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是______.21273=___________. 323(1)0m n -+=,则m -n 的值为________.4.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=_________5.如图,在平面直角坐标系中,△AOB ≌△COD ,则点D 的坐标是__________.6.如图,ABCD 的周长为36,对角线AC ,BD 相交于点O .点E 是CD 的中点,BD=12,则△DOE 的周长为________.三、解答题(本大题共6小题,共72分)1.解方程23111x x x -=--.2.先化简,再求值:24211326x x x x -+⎛⎫-÷ ⎪++⎝⎭,其中21x =.3.已知,a 、b 互为倒数,c 、d 互为相反数,求31ab c d -+的值.4.如图,矩形ABCD 中,AB =6,BC =4,过对角线BD 中点O 的直线分别交AB ,CD 边于点E ,F .(1)求证:四边形BEDF 是平行四边形;(2)当四边形BEDF 是菱形时,求EF 的长.5.我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.(1)如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.求证:中点四边形EFGH是平行四边形;(2)如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH 的形状,并证明你的猜想;(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明)6.某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗的价格比甲种树苗贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同.(1)求甲、乙两种树苗每棵的价格各是多少元?(2)在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1500元,那么他们最多可购买多少棵乙种树苗?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、D4、B5、B6、A7、C8、C9、C10、A二、填空题(本大题共6小题,每小题3分,共18分)1、823、44、135°5、(-2,0)6、15.三、解答题(本大题共6小题,共72分)x1、223、0.4、(1)略;(2).5、(1)略;(2)四边形EFGH是菱形,略;(3)四边形EFGH是正方形.6、(1)甲种树苗每棵的价格是30元,乙种树苗每棵的价格是40元;(2)他们最多可购买11棵乙种树苗.。
人教版八年级上册数学第一次月考测试卷及参考答案
人教版八年级上册数学第一次月考测试卷及参考答案 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.若关于x 的不等式组324x a x a <+⎧⎨>-⎩无解,则a 的取值范围是( ) A .a ≤﹣3 B .a <﹣3 C .a >3 D .a ≥32.在平面直角坐标系中,点()3,5P --关于原点对称的点的坐标是( )A .()3,5-B .()3,5-C .()3,5D .()3,5--3.在圆的周长C =2πR 中,常量与变量分别是( )A .2是常量,C 、π、R 是变量B .2π是常量,C,R 是变量C .C 、2是常量,R 是变量D .2是常量,C 、R 是变量4.已知-10m 是正整数,则满足条件的最大负整数m 为( )A .-10B .-40C .-90D .-1605.若 45+a =5b (b 为整数),则a 的值可以是( )A .15B .27C .24D .206.一个整数815550…0用科学记数法表示为8.1555×1010,则原数中“0”的个数为( )A .4B .6C .7D .107.下列图形中,是轴对称图形的是( )A .B .C .D .8.如图,△ABC 中,AD 为△ABC 的角平分线,BE 为△ABC 的高,∠C=70°,∠ABC=48°,那么∠3是( )A.59°B.60°C.56°D.22°9.如图,将△ABC放在正方形网格图中(图中每个小正方形的边长均为1),点A,B,C恰好在网格图中的格点上,那么△ABC中BC边上的高是()A.102B.104C.105D.510.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b.若ab=8,大正方形的面积为25,则小正方形的边长为()A.9 B.6 C.4 D.3二、填空题(本大题共6小题,每小题3分,共18分)1.若△ABC三条边长为a,b,c,化简:|a-b-c|-|a+c-b|=__________.2.已知34(1)(2)xx x---=1Ax-+2Bx-,则实数A=__________.3.如果实数a,b满足a+b=6,ab=8,那么a2+b2=________.4.在直线l上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是a,b,c,正放置的四个正方形的面积依次是S1,S2,S3,S4,则S1+S2+S3+S4=________.5.如图是一张长方形纸片ABCD,已知AB=8,AD=7,E为AB上一点,AE=5,现要剪下一张等腰三角形纸片(△AEP),使点P落在长方形ABCD的某一条边上,则等腰三角形AEP 的底边长是_____________.6.如图,在正方形ABCD 的外侧,作等边DCE ,则AEC ∠的度数是__________.三、解答题(本大题共6小题,共72分)1.用适当的方法解方程组(1)3322x y x y =-⎧⎨+=⎩ (2)353123x y x y -=⎧⎪⎨-=⎪⎩2.先化简,再从﹣1、2、3、4中选一个合适的数作为x 的值代入求值.2222444424x x x x x x x ⎛⎫---÷ ⎪-+--⎝⎭.3.已知5a 2+的立方根是3,3a b 1+-的算术平方根是4,c 13分.(1)求a ,b ,c 的值;(2)求3a b c -+的平方根.4.在▱ABCD 中,∠BAD 的平分线交直线BC 于点E ,交直线DC 于点F(1)在图1中证明CE=CF;(2)若∠ABC=90°,G是EF的中点(如图2),直接写出∠BDG的度数;(3)若∠ABC=120°,FG∥CE,FG=CE,分别连接DB、DG(如图3),求∠BDG 的度数.5.如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F(1)证明:PC=PE;(2)求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.6.学校需要添置教师办公桌椅A、B两型共200套,已知2套A型桌椅和1套B型桌椅共需2000元,1套A型桌椅和3套B型桌椅共需3000元.(1)求A,B两型桌椅的单价;(2)若需要A型桌椅不少于120套,B型桌椅不少于70套,平均每套桌椅需要运费10元.设购买A型桌椅x套时,总费用为y元,求y与x的函数关系式,并直接写出x的取值范围;(3)求出总费用最少的购置方案.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、B4、A5、D6、B7、B8、A9、A10、D二、填空题(本大题共6小题,每小题3分,共18分)1、2b-2a2、13、204、a+c5、56、45︒三、解答题(本大题共6小题,共72分)1、(1)47xy=-⎧⎨=⎩;(2)831xy⎧=⎪⎨⎪=⎩2、x+2;当1x=-时,原式=1.3、(1)a=5,b=2,c=3 ;(2)±4.4、(1)略;(2)45°;(3)略.5、(1)略(2)90°(3)AP=CE6、(1)A,B两型桌椅的单价分别为600元,800元;(2)y=﹣200x+162000(120≤x≤130);(3)购买A型桌椅130套,购买B型桌椅70套,总费用最少,最少费用为136000元.。
最新人教版八年级数学上册第一次月考考试题及答案【完美版】
最新人教版八年级数学上册第一次月考考试题及答案【完美版】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.2020的相反数是( )A .2020B .2020-C .12020D .12020- 2.若点A (1+m ,1﹣n )与点B (﹣3,2)关于y 轴对称,则m+n 的值是( )A .﹣5B .﹣3C .3D .13.若﹣2a m b 4与5a n +2b 2m +n 可以合并成一项,则m-n 的值是( )A .2B .0C .-1D .1 4.若关于x 的方程333x m m x x ++--=3的解为正数,则m 的取值范围是( ) A .m <92B .m <92且m ≠32C .m >﹣94D .m >﹣94且m ≠﹣34 5.已知一个多边形的内角和为1080°,则这个多边形是( )A .九边形B .八边形C .七边形D .六边形6.如果2a a 2a 1+-+=1,那么a 的取值范围是( )A .a 0=B .a 1=C .a 1≤D .a=0a=1或7.如图,在数轴上表示实数15的点可能是( )A .点PB .点QC .点MD .点N8.如图,一艘轮船位于灯塔P 的北偏东60°方向,与灯塔P 的距离为30海里的A 处,轮船沿正南方向航行一段时间后,到达位于灯塔P 的南偏东30°方向上的B处,则此时轮船所在位置B与灯塔P之间的距离为()A.60海里B.45海里C.203海里D.303海里9.如图,菱形ABCD的周长为28,对角线AC,BD交于点O,E为AD的中点,则OE的长等于()A.2 B.3.5 C.7 D.1410.如图,点P是边长为1的菱形ABCD对角线AC上的一个动点,点M,N分别是AB,BC边上的中点,则MP+PN的最小值是()A.12B.1 C.2D.2二、填空题(本大题共6小题,每小题3分,共18分)1.9的平方根是_________.2.若二次根式x1-有意义,则x的取值范围是▲.3.若m+1m=3,则m2+21m=________.4.如图,一次函数y=﹣x﹣2与y=2x+m的图象相交于点P(n,﹣4),则关于x的不等式组22{20x m xx+----<<的解集为________.5.如图,正方形纸片ABCD 的边长为12,E 是边CD 上一点,连接AE .折叠该纸片,使点A 落在AE 上的G 点,并使折痕经过点B ,得到折痕BF ,点F 在AD 上.若5DE =,则GE 的长为__________.6.如图,AD ∥BC ,∠D=100°,CA 平分∠BCD ,则∠DAC=________度.三、解答题(本大题共6小题,共72分)1.解方程(1)2250x x --= (2)1421x x =-+2.先化简,再求值:2282442x x x x x ⎛⎫÷-- ⎪-+-⎝⎭,其中2x =.3.已知22a b -=,且1a ≥,0b ≤.(1)求b 的取值范围(2)设2m a b =+,求m 的最大值.4.已知:如图所示△ACB 和△DCE 都是等腰直角三角形,∠ACB=∠DCE=90°,连接AE ,BD .求证:AE=BD .5.如图,有一个直角三角形纸片,两直角边6AC =cm ,8BC = cm ,现将直角边沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,你能求出CD 的长吗?6.在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.(1)求每台电脑、每台电子白板各多少万元?(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、D3、A4、B5、B6、C7、C8、D9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、±32、x 1≥.3、74、﹣2<x <25、49136、40°三、解答题(本大题共6小题,共72分)1、(1)1211x x ==(2)3x =是方程的解.2、22x -,12-.3、(1)102b -≤≤;(2)2 4、略.5、CD 的长为3cm.6、(1)每台电脑0.5万元,每台电子白板1.5万元(2)见解析。
人教版八年级上学期第一次月考数学试题含解析
一、选择题1.如图,在平行四边形ABCD 中,∠DBC=45°,DE ⊥BC 于E ,BF ⊥CD 于F ,DE ,BF 相交于H ,BF 与AD 的延长线相交于点G ,下面给出四个结论:①2BD BE =; ②∠A=∠BHE ;③AB=BH ; ④△BCF ≌△DCE , 其中正确的结论是( )A .①②③B .①②④C .②③④D .①②③④2.如图,已知1号、4号两个正方形的面积之和为7,2号、3号两个正方形的面积之和为4,则a 、b 、c 三个正方形的面积之和为( )A .11B .15C .10D .223.一艘渔船从港口A 沿北偏东60°方向航行至C 处时突然发生故障,在C 处等待救援.有一救援艇位于港口A 正东方向20(3﹣1)海里的B 处,接到求救信号后,立即沿北偏东45°方向以30海里/小时的速度前往C 处救援.则救援艇到达C 处所用的时间为( )A .3小时B .23小时C .223 小时D .232+小时 4.如图是我国数学家赵爽的股弦图,它由四个全等的直角三角形和小正方形拼成的一个大正方形.已知大正方形的面积是l3,小正方形的面积是1,直角三角形的较短直角边长为a ,较长直角边长为b ,那么()2a b +值为( )A .25B .9C .13D .1695.下列结论中,矩形具有而菱形不一定具有的性质是( )A .内角和为360°B .对角线互相平分C .对角线相等D .对角线互相垂直6.A 、B 、C 分别表示三个村庄,AB 1700=米,800BC =米,AC 1500=米,某社区拟建一个文化活动中心,要求这三个村庄到活动中心的距离相等,则活动中心P 的位置应在( )A .AB 的中点B .BC 的中点 C .AC 的中点D .C ∠的平分线与AB 的交点7.已知M 、N 是线段AB 上的两点,AM =MN =2,NB =1,以点A 为圆心,AN 长为半径画弧;再以点B 为圆心,BM 长为半径画弧,两弧交于点C ,连接AC ,BC ,则△ABC 一定是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形8.如图,在矩形ABCD 中,BC=6,CD=3,将△BCD 沿对角线BD 翻折,点C 落在点C '处,B C '交AD 于点E ,则线段DE 的长为( )A .3B .154C .5D .1529.在下列以线段a 、b 、c 的长为边,能构成直角三角形的是( )A .a =3,b =4,c =6B .a =5,b =6,c =7C .a =6,b =8,c =9D .a =7,b =24,c =2510.如图,在Rt △ABC 中,∠ACB=90°,AC=6,BC=8,AD 是∠BAC 的平分线.若P ,Q 分别是AD 和AC 上的动点,则PC+PQ 的最小值是( )A .245B .5C .6D .8二、填空题11.如图,点E 在DBC △边DB 上,点A 在DBC △内部,∠DAE =∠BAC =90°,AD =AE ,AB =AC ,给出下列结论,其中正确的是_____(填序号)①BD =CE ;②∠DCB =∠ABD =45°;③BD ⊥CE ;④BE 2=2(AD 2+AB 2).12.如图,在平面直角坐标系中,等腰直角三角形OA 1A 2的直角边OA 1在y 轴的正半轴上,且OA 1=A 1A 2=1,以OA 2为直角边作第二个等腰直角三角形OA 2A 3,以OA 3为直角边作第三个等腰直角三角形OA 3A 4,…,依此规律,得到等腰直角三角形OA 2018A 2019,则点A 2019的坐标为________.13.如图,在Rt ABC 中,90ACB ∠=︒,4AC =,2BC =,以AB 为边向外作等腰直角三角形ABD ,则CD 的长可以是__________.14.如图,Rt ABC 中,90A ∠=︒,8AC =,6AB =,DE AC ⊥,13CD BC =,13CE AC =,P 是直线AC 上一点,把CDP 沿DP 所在的直线翻折后,点C 落在直线DE 上的点H 处,CP 的长是__________15.如图,已知△DBC 是等腰直角三角形,BE 与CD 交于点O ,∠BDC=∠BEC=90°,BF=CF ,若BC=8,2,则OF=______.16.如图,在ABC △中8,4,AB AC BC AD BC ===⊥于点D ,点P 是线段AD 上一个动点,过点P 作PE AB ⊥于点E ,连接PB ,则PB PE +的最小值为________.17.如图,在△ABC 中,AB =AC ,∠BAC =120°,AC 的垂直平分线交 BC 于 F ,交 AC 于 E ,交 BA 的延长线于 G ,若 EG =3,则 BF 的长是______.18.一块直角三角形绿地,两直角边长分别为3m ,4m ,现在要将绿地扩充成等腰三角形,且扩充时只能延长长为3m 的直角边,则扩充后等腰三角形绿地的面积为____m 2.19.如图,由两个直角三角形和三个正方形组成的图形,已知25AB = ,24AC = 其中阴影部分面积是_____________平方单位.20.已知:如图,等腰Rt OAB ∆的直角边OA 的长为1,以AB 边上的高1OA 为直角边,按逆时针方向作等腰11Rt OA B ∆,11A B 与OB 相交于点2A ,若再以2OA 为直角边按逆时针方向作等腰22Rt OA B ∆,22A B 与1OB 相交于点3A ,按此作法进行下去,得到33OA B ∆,44OA B ∆,…,则66OA B ∆的周长是______.三、解答题21.在等边ABC 中,点D 是线段BC 的中点,120,EDF DE ∠=︒与线段AB 相交于点,E DF 与射线AC 相交于点F .()1如图1,若DF AC ⊥,垂足为,4,F AB =求BE 的长;()2如图2,将()1中的EDF ∠绕点D 顺时针旋转一定的角度,DF 仍与线段AC 相交于点F .求证:12BE CF AB +=.()3如图3,将()2中的EDF ∠继续绕点D 顺时针旋转一定的角度,使DF 与线段AC 的延长线交于点,F 作DN AC ⊥于点N ,若,DN FN =设,BE x CF y ==,写出y 关于x 的函数关系式.22.如图,已知ABC ∆中,90B ∠=︒,8AB cm =,6BC cm =,P 、Q 是ABC ∆边上的两个动点,其中点P 从点A 开始沿A B →方向运动,且速度为每秒1cm ,点Q 从点B 开始沿B C →方向运动,且速度为每秒2cm ,它们同时出发,设出发的时间为t 秒.(1)当2t =秒时,求PQ 的长;(2)求出发时间为几秒时,PQB ∆是等腰三角形?(3)若Q 沿B C A →→方向运动,则当点Q 在边CA 上运动时,求能使BCQ ∆成为等腰三角形的运动时间.23.如图,在边长为2的等边三角形ABC 中,D 点在边BC 上运动(不与B ,C 重合),点E 在边AB 的延长线上,点F 在边AC 的延长线上,AD DE DF ==. (1)若30AED ∠=︒,则ADB =∠______.(2)求证:BED CDF △≌△.(3)试说明点D 在BC 边上从点B 至点C 的运动过程中,BED 的周长l 是否发生变化?若不变,请求出l 的值,若变,请求出l 的取值范围.24.如图1,在等腰直角三角形ABC 中,动点D 在直线AB (点A 与点B 重合除外)上时,以CD 为一腰在CD 上方作等腰直角三角形ECD ,且90ECD ∠=︒,连接AE .(1)判断AE 与BD 的数量关系和位置关系;并说明理由.(2)如图2,若4BD =,P ,Q 两点在直线AB 上且5EP EQ ==,试求PQ 的长. (3)在第(2)小题的条件下,当点D 在线段AB 的延长线(或反向延长线)上时,判断PQ 的长是否为定值.分别画出图形,若是请直接写出PQ 的长;若不是请简单说明理由.25.已知ABC ∆中,AB AC =.(1)如图1,在ADE ∆中,AD AE =,连接BD 、CE ,若DAE BAC ∠=∠,求证:BD CE =(2)如图2,在ADE ∆中,AD AE =,连接BE 、CE ,若60DAE BAC ∠=∠=,CE AD ⊥于点F ,4AE =,5EC =,求BE 的长;(3)如图3,在BCD ∆中,45CBD CDB ∠=∠=,连接AD ,若45CAB ∠=,求AD AB的值.26.定义:在△ABC 中,若BC =a ,AC =b ,AB =c ,若a ,b ,c 满足ac +a 2=b 2,则称这个三角形为“类勾股三角形”,请根据以上定义解决下列问题:(1)命题“直角三角形都是类勾股三角形”是 命题(填“真”或“假”);(2)如图1,若等腰三角形ABC 是“类勾股三角形”,其中AB =BC ,AC >AB ,请求∠A 的度数;(3)如图2,在△ABC 中,∠B =2∠A ,且∠C >∠A .①当∠A =32°时,你能把这个三角形分成两个等腰三角形吗?若能,请在图2中画出分割线,并标注被分割后的两个等腰三角形的顶角的度数;若不能,请说明理由; ②请证明△ABC 为“类勾股三角形”.27.如图,在平面直角坐标系中,点O 是坐标原点,ABC ∆,ADE ∆,AFO ∆均为等边三角形,A 在y 轴正半轴上,点0()6,B -,点(6,0)C ,点D 在ABC ∆内部,点E 在ABC ∆的外部,32=AD 30DOE ∠=︒,OF 与AB 交于点G ,连接DF ,DG ,DO ,OE .(1)求点A 的坐标;(2)判断DF 与OE 的数量关系,并说明理由;(3)直接写出ADG ∆的周长.28.如图,在边长为2正方形ABCD 中,点O 是对角线AC 的中点,E 是线段OA 上一动点(不包括两个端点),连接BE .(1)如图1,过点E 作EF BE ⊥交CD 于点F ,连接BF 交AC 于点G .①求证:BE EF =;②设AE x =,CG y =,求y 与x 的函数关系式,并写出自变量x 的取值范围. (2)在如图2中,请用无刻度的直尺作出一个以BE 为边的菱形.29.(已知:如图1,矩形OACB 的顶点A ,B 的坐标分别是(6,0)、(0,10),点D 是y 轴上一点且坐标为(0,2),点P 从点A 出发以每秒1个单位长度的速度沿线段AC ﹣CB 方向运动,到达点B 时运动停止.(1)设点P 运动时间为t ,△BPD 的面积为S ,求S 与t 之间的函数关系式;(2)当点P 运动到线段CB 上时(如图2),将矩形OACB 沿OP 折叠,顶点B 恰好落在边AC 上点B ′位置,求此时点P 坐标;(3)在点P 运动过程中,是否存在△BPD 为等腰三角形的情况?若存在,求出点P 坐标;若不存在,请说明理由.30.已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O.(1)如图1,连接AF、CE.求证:四边形AFCE为菱形.(2)如图1,求AF的长.(3)如图2,动点P、Q分别从A、C两点同时出发,沿△AFB和△CDE各边匀速运动一周.即点P自A→F→B→A停止,点Q自C→D→E→C停止.在运动过程中,点P的速度为每秒1cm,设运动时间为t秒.①问在运动的过程中,以A、P、C、Q四点为顶点的四边形有可能是矩形吗?若有可能,请求出运动时间t和点Q的速度;若不可能,请说明理由.②若点Q的速度为每秒0.8cm,当A、P、C、Q四点为顶点的四边形是平行四边形时,求t 的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】先判断△DBE是等腰直角三角形,根据勾股定理可推导得出2BE,故①正确;根据∠BHE和∠C都是∠HBE的余角,可得∠BHE=∠C,再由∠A=∠C,可得②正确;证明△BEH≌△DEC,从而可得BH=CD,再由AB=CD,可得③正确;利用已知条件不能得到④,据此即可得到选项.【详解】解:∵∠DBC=45°,DE⊥BC于E,∴在Rt △DBE 中,BE 2+DE 2=BD 2,BE=DE ,∴BE ,故①正确;∵DE ⊥BC ,BF ⊥DC ,∴∠BHE 和∠C 都是∠HBE 的余角,∴∠BHE=∠C ,又∵在▱ABCD 中,∠A=∠C ,∴∠A=∠BHE ,故②正确;在△BEH 和△DEC 中,BHE C HEB CED BE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△BEH ≌△DEC ,∴BH=CD ,∵四边形ABCD 为平行四边形,∴AB=CD ,∴AB=BH ,故③正确;利用已知条件不能得到△BCF ≌△DCE ,故④错误,故选A.【点睛】本题考查了平行四边形的性质、等腰直角三角形的判定与性质、勾股定理、全等三角形的判定与性质等,熟练掌握相关性质与定理是解题的关键.2.B解析:B【分析】由直角三角形的勾股定理以及正方形的面积公式不难发现:a 的面积等于1号的面积加上2号的面积,b 的面积等于2号的面积加上3号的面积,c 的面积等于3号的面积加上4号的面积,据此可以求出三个的面积之和.【详解】利用勾股定理可得:12a S S S =+ ,23b S S S =+,34c S S S =+∴122334a b c S S S S S S S S S ++=+++++74415=++=故选B【点睛】本题主要考查勾股定理的应用,熟练掌握相关性质定理是解题关键.3.C解析:C【解析】【分析】过点C 作CD 垂直AB 延长线于D ,根据题意得∠CDB=45°,∠CAD=30°,设BD=x 则CD=BD=x ,BC=2x ,由∠CAD=30°可知tan∠CAD=3CD AD = 即3320(31)x =-+ ,解方程求出BD 的长,从而可知BC 的长,进而求出救援艇到达C 处所用的时间即可.【详解】如图:过点C 作CD 垂直AB 延长线于D ,则∠CDB=45°,∠CAD=30°,∵∠CDB=45°,CD⊥BD,∴BD=CD,设BD=x ,救援艇到达C 处所用的时间为t , ∵tan∠CAD=33CD AD =,AD=AB+BD , ∴3320(31)x=-+,得x=20(海里), ∴BC=2BD=202(海里),∴t=20230 =223(小时),故选C.【点睛】本题考查特殊角三角函数,正确添加辅助线、熟练掌握特殊角的三角函数值是解题关键.4.A解析:A【分析】根据勾股定理可以求得22a b +等于大正方形的面积,然后求四个直角三角形的面积,即可得到ab 的值,然后根据()2222a b a ab b +=++即可求解.【详解】根据勾股定理可得2213a b +=,四个直角三角形的面积是:14131122ab ⨯=-=,即212ab =, 则()2222131225a b a ab b +=++=+=.【点睛】本题考查了勾股定理以及完全平方式,正确根据图形的关系求得22a b 和ab 的值是关键.5.C解析:C【分析】矩形与菱形相比,菱形的四条边相等、对角线互相垂直;矩形四个角是直角,对角线相等,由此结合选项即可得出答案.【详解】A 、菱形、矩形的内角和都为360°,故本选项错误;B 、对角互相平分,菱形、矩形都具有,故本选项错误;C 、对角线相等菱形不具有,而矩形具有,故本选项正确D 、对角线互相垂直,菱形具有而矩形不具有,故本选项错误,故选C .【点睛】本题考查了菱形的性质及矩形的性质,熟练掌握矩形的性质与菱形的性质是解题的关键.6.A解析:A【分析】先计算AB 2=2890000,BC 2=640000,AC 2=2250000,可得BC 2+AC 2=AB 2,那么△ABC 是直角三角形,而直角三角形斜边上的中线等于斜边的一半,从而可确定P 点的位置.【详解】解:如图∵AB 2=2890000,BC 2=640000,AC 2=2250000∴BC 2+AC 2=AB 2,∴△ABC 是直角三角形,∴活动中心P 应在斜边AB 的中点.故选:A .【点睛】本题考查了勾股定理的逆定理.解题的关键是证明△ABC 是直角三角形.7.B【分析】依据作图即可得到AC=AN=4,BC=BM=3,AB=2+2+1=5,进而得到AC2+BC2=AB2,即可得出△ABC是直角三角形.【详解】如图所示,AC=AN=4,BC=BM=3,AB=2+2+1=5,∴AC2+BC2=AB2,∴△ABC是直角三角形,且∠ACB=90°,故选B.【点睛】本题主要考查了勾股定理的逆定理,如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.8.B解析:B【分析】首先根据题意得到BE=DE,然后根据勾股定理得到关于线段AB、AE、BE的方程,解方程即可解决问题.【详解】解:设ED=x,则AE=6-x,∵四边形ABCD为矩形,∴AD∥BC,∴∠EDB=∠DBC;由题意得:∠EBD=∠DBC,∴∠EDB=∠EBD,∴EB=ED=x;由勾股定理得:BE2=AB2+AE2,即x2=9+(6-x)2,解得:x=154,∴ED=154.【点睛】本题主要考查了几何变换中的翻折变换及其应用问题;解题的关键是根据翻折变换的性质,结合全等三角形的判定及其性质、勾股定理等几何知识,灵活进行判断、分析、推理或解答.9.D解析:D【解析】A选项:32+42≠62,故不符合勾股定理的逆定理,不能组成直角三角形,故错误;B选项:52+62≠72,故不符合勾股定理的逆定理,不能组成直角三角形,故错误;C选项:62+82≠92,故不符合勾股定理的逆定理,不能组成直角三角形,故错误;D选项:72+242=252,故符合勾股定理的逆定理,能组成直角三角形,故正确.故选D.10.A解析:A【分析】过C作CM⊥AB于M,交AD于P,过P作PQ⊥AC于Q,由角平分线的性质得出PQ=PM,这时PC+PQ有最小值,为CM的长,然后利用勾股定理和等面积法求得CM的长即可解答.【详解】过C作CM⊥AB于M,交AD于P,过P作PQ⊥AC于Q,∵AD是∠BAC的平分线,∴PQ=PM,则PC+PQ=PC+PM=CM,即PC+PQ有最小值,为CM的长,∵在Rt△ABC中,∠ACB=90°,AC=6,BC=8,∴由勾股定理得:AB=10,又1122ABCS AB CM AC BC==△,∴6824105 CM⨯==,∴PC+PQ的最小值为245,故选:A.【点睛】本题考查了角平分线的性质、最短路径问题、勾股定理、三角形等面积法求高,解答的关键是掌握线段和最短类问题的解决方法:一般是运用轴对称变换将直线同侧的点转化为异侧的点,从而把两条线段的位置关系转换,再根据两点之间线段最短或垂线段最短,使两条线段之和转化为一条直线来解决.二、填空题11.①③【分析】①由已知条件证明DAB ≌EAC 即可;②由①可得∠ABD=∠ACE<45°,∠DCB>45°;③由∠ECB+∠EBC=∠ABD+∠ECB+∠ABC=∠ACE+∠ECB+∠ABC =45°+45°=90°可判断③; ④由BE 2=BC 2-EC 2=2AB 2-(CD 2﹣DE 2)=2AB 2-CD 2+2AD 2=2(AD 2+AB 2)-CD 2可判断④.【详解】解:∵∠DAE =∠BAC =90°,∴∠DAB =∠EAC ,∵AD =AE ,AB =AC ,∴∠AED=∠ADE=∠ABC=∠ACB=45°, ∵在DAB 和EAC 中,AD AE DAB EAC AB AC ⎧⎪⎨⎪⎩===, ∴DAB ≌EAC ,∴BD =CE ,∠ABD =∠ECA ,故①正确;由①可得∠ABD=∠ACE<45°,∠DCB>45°故②错误;∵∠ECB+∠EBC=∠ABD+∠ECB+∠ABC=∠ACE+∠ECB+∠ABC =45°+45°=90°,∴∠CEB =90°,即CE ⊥BD ,故③正确;∴BE 2=BC 2-EC 2=2AB 2-(CD 2﹣DE 2)=2AB 2-CD 2+2AD 2=2(AD 2+AB 2)-CD 2. ∴BE 2=2(AD 2+AB 2)-CD 2,故④错误.故答案为:①③.【点睛】本题主要考查全等三角形判定与性质以及勾股定理的应用,熟记全等三角形的判定与性质定理以及勾股定理公式是解题关键.12.(21009,0).【分析】根据等腰直角三角形的性质得到OA 1=1,OA 2=1,OA 3=2,OA 4=3,…OA 2019=2018,再利用1A 、2A 、3A …,每8个一循环,再回到y 轴的正半轴的特点可得到点A 2019在x 轴的正半轴上,即可确定点A 2019的坐标.【详解】∵等腰直角三角形OA 1A 2的直角边OA 1在y 轴的正半轴上,且OA 1=A 1A 2=1,以OA 2为直角边作第二个等腰直角三角形OA 2A 3,以OA 3为直角边作第三个等腰直角三角形OA 3A 4,…,∴OA 1=1,OA 2=2,OA 3=(2)2,…,OA 2019=(2)2018,∵A 1、A 2、A 3、…,每8个一循环,再回到y 轴的正半轴,∴2019÷8=252…3,∴点A 2019在x 轴正半轴上.∵OA 2019=(2)2018,∴点A 2019的坐标为(()20182,0)即(21009,0).故答案为:(21009,0).【点睛】本题考查了规律型:点的坐标,等腰直角三角形的性质:等腰直角三角形的两底角都等于45°;斜边等于直角边的2倍.也考查了直角坐标系中各象限内点的坐标特征.13.210或213或32【分析】在ABC 中计算AB ,情况一:作AE CE ⊥于E ,计算AE ,DE ,CE ,可得CD ;情况二:作BE CE ⊥于E ,计算BE ,CE ,DE ,可得CD ;情况三:作DE CE ''⊥,计算,,DF DE CE '',可得CD .【详解】∵90ACB ︒∠=,4,2AC BC ==,∴25AB =,情况一:当25AD AB ==时,作AE CE ⊥于E∴ 1122BC AC AB AE ⋅=⋅,即45AE =,145DE = ∴22855CE AC AE =-= ∴22213CD CE DE =+=情况二:当25BD AB ==时,作BE CE ⊥于E ,∴1122BC AC AB BE ⋅=⋅,即45BE =,145DE = ∴2225CE BC BE =-= ∴22210CD CE DE =+=情况三:当AD BD =时,作DE CE ''⊥,作BE CE ⊥于E∴1122BC AC AB BE ⋅=⋅, ∴55BE =35CE ∴= ∵ABD △为等腰直角三角形∴152BF DF AB ===∴955DE DF E F DF BE ''=+=+= 2535555CE EE CE BF CE ''=-=-== ∴2232CD CE E D ''=+=故答案为:210或213或32【点睛】本题考查了等腰直角三角形的探索,勾股定理的计算等,熟知以上知识是解题的关键.14.53或203【分析】 根据折叠后点C 的对应点H 与AC 的位置关系分类讨论,分别画出对应的图形,利用勾股定理求出各边的长,再根据折叠的性质与勾股定理列出对应的方程即可求出结论.【详解】解:①当折叠后点C 的对应点H 在AC 的下方时,如下图所示∵Rt ABC 中,90A ∠=︒,8AC =,6AB =,根据勾股定理可得2210AB AC += ∵13CD BC =,13CE AC =, ∴13CD BC ==103,13CE AC ==83 ∵DE AC ⊥根据勾股定理可得222CD CE -=由折叠的性质可得:DH=CD=103,CP=PH ∴EH=DH -DE=43设CP=PH=x,则EP=CE-CP=83-x在Rt△PEH中,EP2+EH2=PH2即(83-x)2+(43)2=x2解得:x=5 3即此时CP=53;②当折叠后点C的对应点H在AC的上方时,如下图所示根据折叠的性质可得DH=CD=103,CP=PH∴EH=DH+DE=16 3设CP=PH=y,则EP= CP-CE =y-8 3在Rt△PEH中,EP2+EH2=PH2即(y-83)2+(163)2=y2解得:y=20 3即此时CP=203.综上所述:CP=53或203.故答案为:53或203.【点睛】此题考查的是勾股定理和折叠问题,掌握利用勾股定理解直角三角形、折叠的性质和分类讨论的数学思想是解决此题的关键.1510【分析】过点F 作FG ⊥BE ,连接OF 、EF ,先根据等腰直角三角形的性质得出DC 的值,再用勾股定理求出OE 的值,然后根据中位线定理得出FG 的的值,最后再根据勾股定理得出OF 的值即可.【详解】过点F 作FG ⊥BE ,连接OF 、EF ,如下图所示:∵DBC ∆是等腰直角三角形,且BF CF =,8BC = ∴422DC DB ===∵2OD =∴32OC DC OD =-= ∴2234OB BD DO +=设OE x =,∵∠BEC=90°则()2222OC OE BC OB OE -=-+ ∴33417OE = ∴221234EC OC EO =-=∵BF CF =,FG ⊥BE ,∠BEC=90° ∴16342FG EC ==∴2034BE BO OE =+=∴17342GO GE OE BE OE =-=-= ∴22=10OF GO GF -=【点睛】本题主要考查了等腰直角三角形的性质、相似三角形、中位线定理、勾股定理等,综合度比较高,准确作出辅助线是关键.1615根据题意点B 与点C 关于AD 对称,所以过点C 作AB 的垂线,与AD 的交点即点P ,求出CE 即可得到答案【详解】∵8,AB AC AD BC ==⊥∴点B 与点C 关于AD 对称过点C 作CE ⊥AB 于一点即为点P ,此时PB PE +最小∵8,4,AB AC BC AD BC ===⊥∴BD=2在Rt △A BC 中, 222282215AD AB BD =-=-= ∵S △ABC=1122BC AD AB CE ⋅⋅=⋅⋅ ∴42158CE ⨯=得15CE =故此题填15【点睛】此题考察最短路径,根据题意找到对称点,作直角三角形,利用勾股定理解决问题 17.4【分析】根据线段垂直平分线得出AE=EC ,∠AEG=∠AEF=90°,求出∠B=∠C=∠G=30°,根据勾股定理和含30°角的直角三角形性质求出AE 和EF ,即可求出FG ,再求出BF=FG 即可【详解】∵AC 的垂直平分线FG ,∴AE=EC ,∠AEG=∠AEF=90°,∵∠BAC=120°,∴∠G=∠BAC-∠AEG=120°-90°=30°,∵∠BAC=120°,AB=AC ,∴∠B=∠C=12(180°-∠BAC )=30°, ∴∠B=∠G ,∵在Rt△AEG中,∠G=30°,EG=3,∴AG=2AE,即(2AE)2=AE2+32,∴AE=3(负值舍去)即CE=3,同理在Rt△CEF中,∠C=30°,CF=2EF,(2EF)2=EF2+(3)2,∴EF=1(负值舍去),∴BF=GF=EF+CE=1+3=4,故答案为4.【点睛】本题考查了勾股定理,含30°角的直角三角形性质,等腰三角形的性质和判定等知识点,能综合运用定理进行推理是解此题的关键.18.8或10或12或25 3【详解】解:①如图1:当BC=CD=3m时,AB=AD=5m,AC⊥BD,此时等腰三角形绿地的面积:12×6×4=12(m2);②如图2:当AC=CD=4m时,AC⊥CB,此时等腰三角形绿地的面积:12×4×4=8(m2);③如图3:当AD=BD 时,设AD=BD=xm ,在Rt △ACD 中,CD=(x-3)m ,AC=4m ,由勾股定理,得AD 2=DC 2+CA 2,即(x-3)2+42=x 2,解得x=256, 此时等腰三角形绿地的面积:12BD·AC=12×256×4=253(m 2); ④如图4,延长BC 到D ,使BD=AB=5m ,故CD=2m ,此时等腰三角形绿地的面积:12BD·AC=12×5×4=10(m 2); 综上所述,扩充后等腰三角形绿地的面积为8m 2或12m 2或10m 2或253m 2. 点睛:此题主要考查了等腰三角形的性质以及勾股定理的应用,解决问题的关键是根据题意正确画出图形.19.49【分析】先计算出BC 的长,再由勾股定理求出阴影部分的面积即可.【详解】∵∠ACB=90︒,25AB = ,24AC =,∴22222252449BC AB AC =-=-=,∴阴影部分的面积=249BC =,故答案为:49.【点睛】此题考查勾股定理,能利用根据直角三角形计算得到所需的边长,题中根据勾股定理的图形得到阴影部分面积等于BC 的平方是解题的关键.20【分析】依次求出在Rt △OAB 中,OA 1Rt △OA 1B 1中,OA 2OA 1)2;依此类推:在Rt △OA 5B 5中,OA 6=(2)6,由此可求出△OA 6B 6的周长. 【详解】∵等腰Rt OAB ∆的直角边OA 的长为1,∴在Rt △OA 1B 1中OA 1=2OA =2,在22Rt OA B ∆中OA 2=2OA 1=(2)2, …故在Rt △OA 6B 6中OA 6=2OA 5=(2)6= OB 666A B OB 6故△OA 6B 6+2×(2)6+2×18=28+.【点睛】 本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.三、解答题21.(1)BE =1;(2)见解析;(3)(2y x =【分析】(1)如图1,根据等边三角形的性质和四边形的内角和定理可得∠BED =90°,进而可得∠BDE =30°,然后根据30°角的直角三角形的性质即可求出结果;(2)过点D 作DM ⊥AB 于M ,作DN ⊥AC 于N ,如图2,根据AAS 易证△MBD ≌△NCD ,则有BM =CN ,DM =DN ,进而可根据ASA 证明△EMD ≌△FND ,可得EM =FN ,再根据线段的和差即可推出结论;(3)过点D 作DM ⊥AB 于M ,如图3,同(2)的方法和已知条件可得DM =DN =FN =EM ,然后根据线段的和差关系可得BE +CF =2DM ,BE ﹣CF =2BM ,在Rt △BMD 中,根据30°角的直角三角形的性质可得DM=3BM,进而可得BE+CF=3(BE﹣CF),代入x、y后整理即得结果.【详解】解:(1)如图1,∵△ABC是等边三角形,∴∠B=∠C=60°,BC=AC=AB=4.∵点D是线段BC的中点,∴BD=DC=12BC=2.∵DF⊥AC,即∠AFD=90°,∴∠AED=360°﹣60°﹣90°﹣120°=90°,∴∠BED=90°,∴∠BDE=30°,∴BE=12BD=1;(2)过点D作DM⊥AB于M,作DN⊥AC于N,如图2,则有∠AMD=∠BMD=∠AND=∠CND=90°.∵∠A=60°,∴∠MDN=360°﹣60°﹣90°﹣90°=120°.∵∠EDF=120°,∴∠MDE=∠NDF.在△MBD和△NCD中,∵∠BMD=∠CND,∠B=∠C,BD=CD,∴△MBD≌△NCD(AAS),∴BM=CN,DM=DN.在△EMD和△FND中,∵∠EMD=∠FND,DM=DN,∠MDE=∠NDF,∴△EMD≌△FND(ASA),∴EM=FN,∴BE+CF=BM+EM+CN-FN=BM+CN=2BM=BD=12BC=12AB;(3)过点D 作DM ⊥AB 于M ,如图3,同(2)的方法可得:BM =CN ,DM =DN ,EM =FN .∵DN =FN ,∴DM =DN =FN =EM ,∴BE +CF =BM +EM +FN -CN =NF +EM =2DM =x +y ,BE ﹣CF =BM +EM ﹣(FN -CN )=BM +NC =2BM =x -y ,在Rt △BMD 中,∵∠BDM =30°,∴BD =2BM ,∴DM =22=3BD BM BM -,∴()3x y x y +=-,整理,得()23y x =-.【点睛】本题考查了等边三角形的性质、四边形的内角和定理、全等三角形的判定与性质、30°角的直角三角形的性质以及勾股定理等知识,具有一定的综合性,正确添加辅助线、熟练掌握上述知识是解题的关键.22.(1)132)83;(3)5.5秒或6秒或6.6秒【分析】(1)根据点P 、Q 的运动速度求出AP ,再求出BP 和BQ ,用勾股定理求得PQ 即可; (2)由题意得出BQ BP =,即28t t =-,解方程即可;(3)当点Q 在边CA 上运动时,能使BCQ ∆成为等腰三角形的运动时间有三种情况: ①当CQ BQ =时(图1),则C CBQ ∠=∠,可证明A ABQ ∠=∠,则BQ AQ =,则CQ AQ =,从而求得t ;②当CQ BC =时(图2),则12BC CQ +=,易求得t ;③当BC BQ =时(图3),过B 点作BE AC ⊥于点E ,则求出BE ,CE ,即可得出t .【详解】(1)解:(1)224BQ cm =⨯=,8216BP AB AP cm =-=-⨯=,90B ∠=︒, 222246213()PQ BQ BP cm =+=+=; (2)解:根据题意得:BQ BP =,即28t t =-,解得:83t =; 即出发时间为83秒时,PQB ∆是等腰三角形; (3)解:分三种情况:①当CQ BQ =时,如图1所示:则C CBQ ∠=∠,90ABC ∠=︒, 90CBQ ABQ ∴∠+∠=︒,90A C ∠+∠=︒,A ABQ ∴∠=∠BQ AQ ∴=,5CQ AQ ∴==,11BC CQ ∴+=,112 5.5t ∴=÷=秒.②当CQ BC =时,如图2所示:则12BC CQ +=1226t ∴=÷=秒.③当BC BQ =时,如图3所示:过B 点作BE AC ⊥于点E , 则68 4.8()10AB BC BE cm AC ⨯=== 22 3.6CE BC BE cm ∴=-=,27.2CQ CE cm ∴==,13.2BC CQ cm ∴+=,13.22 6.6t ∴=÷=秒.由上可知,当t 为5.5秒或6秒或6.6秒时,BCQ ∆为等腰三角形.【点睛】本题考查了勾股定理、三角形的面积以及等腰三角形的判定和性质;本题有一定难度,注意分类讨论思想的应用. 23.(1)90°;(2)证明见解析;(3)变化,234l +≤<.【分析】(1)由等边三角形的性质可得∠ABC=∠ACB=60°,由等腰三角形的性质可求DAE=∠DEA=30°,由三角形内角和定理可求解;(2)根据等腰三角形的性质,可证得∠CDF=∠DEA 和∠EDB=∠DFA ,由此可利用“ASA”证明全等;(3)根据全等三角形的性质可得l =2+AD ,根据AD 的取值范围即可得出l 的取值范围.【详解】解:(1)∵△ABC 是等边三角形,∴AB=AC=BC=2,∠ABC=∠ACB=60°,∵AD=DE∴∠DAE=∠DEA=30°,∴∠ADB=180°-∠BAD-∠ABD=90°,故答案为:90°;(2)∵AD=DE=DF ,∴∠DAE=∠DEA ,∠DAF=∠DFA ,∵∠DAE+∠DAF=∠BAC=60°,∴∠DEA+∠DFA=60°,∵∠ABC=∠DEA+∠EDB=60°,∴∠EDB=∠DFA ,∵∠ACB=∠DFA+∠CDF=60°,∴∠CDF=∠DEA ,在△BDE 和△CFD 中∵CDF DEA DE DF EDB DFA ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BDE ≌△CFD (ASA )(3)∵△BDE ≌△CFD ,∴BE=CD ,∴l =BD+BE+DE=BD+CD+AD=BC+AD=2+AD ,当D 点在C 或B 点时,AD=AC=AB=2,此时B 、D 、E 三点在同一条直线上不构成三角形,2+AD=4;当D 点在BC 的中点时,∵AB=AC ,∴BD=112BC =,AD ==此时22l AD =+=综上可知24l +≤<.【点睛】本题考查全等三角形的性质和判定,勾股定理,等边三角形的性质,等腰三角形的性质,三角形内角和定理.(1)掌握等腰三角形等边对等角是解决此问的关键;(2)中注意角之间的转换;(3)中注意临界点是否可取.24.(1)AE=BD 且AE ⊥BD ;(2)6;(3)PQ 为定值6,图形见解析【分析】(1)由“SAS”可证△ACE ≌△BCD ,可得AE=BD ,∠EAC=∠DBC=45°,可得AE ⊥BD ; (2)由等腰三角形的性质可得PA=AQ ,由勾股定理可求PA 的长,即可求PQ 的长; (3)分两种情况讨论,由“SAS”可证△ACE ≌△BCD ,可得AE=BD ,∠EAC=∠DBC ,可得AE ⊥BD ,由等腰三角形的性质可得PA=AQ ,由勾股定理可求PA 的长,即可求PQ 的长.【详解】解:(1)AE=BD ,AE ⊥BD ,理由如下:∵△ABC ,△ECD 都是等腰直角三角形,∴AC=BC ,CE=CD ,∠ACB=∠ECD=90°,∠ABC=∠CAB=45°,∴∠ACE=∠DCB ,且AC=BC ,CE=CD ,∴△ACE ≌△BCD (SAS )∴AE=BD ,∠EAC=∠DBC=45°,∴∠EAC+∠CAB=90°,∴AE ⊥BD ;(2)∵PE=EQ ,AE ⊥BD ,∴PA=AQ ,∵EP=EQ=5,AE=BD=4,∴AQ=22=2516=3EQ AE --,∴PQ=2AQ=6;(3)如图3,若点D 在AB 的延长线上,∵△ABC ,△ECD 都是等腰直角三角形,∴AC=BC ,CE=CD ,∠ACB=∠ECD=90°,∠ABC=∠CAB=45°, ∴∠ACE=∠DCB ,且AC=BC ,CE=CD ,∴△ACE ≌△BCD (SAS )∴AE=BD ,∠CBD=∠CAE=135°,且∠CAB=45°, ∴∠EAB=90°,∵PE=EQ ,AE ⊥BD ,∴PA=AQ , ∵EP=EQ=5,AE=BD=4,∴AQ=22=2516=3EQ AE --,∴PQ=2AQ=6;如图4,若点D 在BA 的延长线上,∵△ABC ,△ECD 都是等腰直角三角形,∴AC=BC ,CE=CD ,∠ACB=∠ECD=90°,∠ABC=∠CAB=45°, ∴∠ACE=∠DCB ,且AC=BC ,CE=CD ,∴△ACE ≌△BCD (SAS )∴AE=BD ,∠CBD=∠CAE=45°,且∠CAB=45°,∴∠EAB=90°,∵PE=EQ ,AE ⊥BD ,∴PA=AQ ,∵EP=EQ=5,AE=BD=4,∴22=2516=3EQ AE --,∴PQ=2AQ=6.【点睛】本题是三角形综合题,考查了全等三角形的判定和性质,等腰三角形的性质,勾股定理等知识,证明AE ⊥BD 是本题的关键.25.(1)详见解析;(241;(33【分析】(1)证∠EAC=∠DAB.利用SAS 证△ACE ≌△ABD 可得;(2)连接BD ,证1302FEA AED ∠=∠=,证△ACE ≌△ABD 可得30FEA BDA ∠=∠=,CE=BD=5,利用勾股定理求解;(3)作CE 垂直于AC,且CE=AC,连接AE,则90,45ACE CAE ∠=∠=,利用勾股定理得AE 2AB =,3AB ,根据(1)思路得3AB .【详解】(1) 证明:∵∠DAE=∠BAC ,∴∠DAE+∠CAD=∠BAC+∠CAD ,即∠EAC=∠DAB.在△ACE 与△ABD 中,AD AE EAC BAB AC AB =⎧⎪∠=∠⎨⎪=⎩, ∴△ACE ≌△ABD(SAS),∴BD CE =;(2)连接BD因为AD AE =, 60DAE BAC ∠=∠=,所以ADE ∆是等边三角形因为60DAE DEA EDA ∠=∠=∠=,ED=AD=AE=4因为CE AD ⊥ 所以1302FEA AED ∠=∠= 同(1)可知△ACE ≌△ABD(SAS),所以30FEA BDA ∠=∠=,CE=BD=5所以90BDE BDA ADE ∠=∠+∠=所以BE=22225441BD DE +=+=(3)作CE 垂直于AC,且CE=AC,连接AE,则90,45ACE CAE ∠=∠=所以AE=222AB AC AC +=因为AB AC =所以AE 2AB =又因为45CAB ∠=所以90ABE ∠=所以()222223BE AE AB AB AB AB =+=+= 因为45CBD CDB ∠=∠=所以BC=CD, 90BCD ∠=因为同(1)可得△ACD ≌△ECB(SAS)所以AD=BE=3AB所以33AD AB AB ==【点睛】考核知识点:等边三角形;勾股定理.构造全等三角形和直角三角形是关键.26.(1)假;(2)∠A =45°;(3)①不能,理由见解析,②见解析【分析】(1)先由直角三角形是类勾股三角形得出ab+a2=c2,再由勾股定理得a2+b2=c2,即可判断出此直角三角形是等腰直角三角形;(2)由类勾股三角形的定义判断出此三角形是等腰直角三角形,即可得出结论;(3)①分三种情况,利用等腰三角形的性质即可得出结论;②先求出CD=CB=a,AD=CD=a,DB=AB-AD=c-a,DG=BG=12(c-a),AG=12(a+c),两个直角三角形中利用勾股定理建立方程即可得出结论.【详解】解:(1)如图1,假设Rt△ABC是类勾股三角形,∴ab+a2=c2,在Rt△ABC中,∠C=90°,根据勾股定理得,a2+b2=c2,∴ab+b2=a2+b2,∴ab=a2,∴a=b,∴△ABC是等腰直角三角形,∴等腰直角三角形是类勾股三角形,即:原命题是假命题,故答案为:假;(2)∵AB=BC,AC>AB,∴a=c,b>c,∵△ABC是类勾股三角形,∴ac+a2=b2,∴c2+a2=b2,∴△ABC是等腰直角三角形,∴∠A=45°,(3)①在△ABC中,∠ABC=2∠BAC,∠BAC=32°,∴∠ABC=64°,根据三角形的内角和定理得,∠ACB=180°﹣∠BAC﹣∠ABC=84°,∵把这个三角形分成两个等腰三角形,∴(Ⅰ)、当∠BCD=∠BDC时,∵∠ABC=64°,∴∠BCD=∠BDC=58°,。
人教版八年级数学上山东省济宁市邹城市北宿中学(上)第一次月考数学试题(解析版)
初中数学试卷金戈铁骑整理制作2015-2016 学年山东省济宁市邹城市北宿中学八年级(上)第一次月考数学试卷一、精心选一选,慧眼识金!(每题 3 分,共计30 分)1.以下列图形中有牢固性的是()A .正方形B .长方形C.直角三角形D.平行四边形2.以下说法正确的选项是()A.全等三角形是指形状相同的三角形B.全等三角形是指面积相等的两个三角形C.全等三角形的周长和面积相等D.所有等边三角形是全等三角形3.如图,为估计池塘岸边 A 、 B 的距离,小方在池塘的一侧采用一点O,测得 OA=15 米,OB=10 米, A 、 B 间的距离不能能是()A.20 米B.15 米 C.10 米 D.5 米4.以下四组图形中,BE 是△ ABC 的高线的图是()A.B.C.D.5.以下列图,△ ACB≌ A′CB′,∠ BCB′=30°,则∠ ACA′的度数为()A . 20° B. 30° C. 35° D. 40°6.如图,已知AC ∥ ED,∠ C=26°,∠ CBE=37 °,则∠ BED 的度数是()A . 63° B. 83° C. 73° D. 53°7.已知△ABC 中,∠ A ,∠ B,∠ C 三个角的比比以下,其中能说明△ ABC是直角三角形的是()A.2:3:4 B.1:2: 3 C.4:3:5 D.1: 2:28.以下度数中,不能能是某个多边形的内角和的是(A . 180°B. 270°C. 2700 ° D .1080 °)9.如图,在△ ABC ∠C 的度数是(中,AD )均分∠ BAC且与BC订交于点 D ,∠ B=40 °,∠ BAD=30°,则A.70°B. 80°C. 100°D. 110°10.已知在正方形网格中,每个小方格都是边长为上,地址以下列图,点 C 也在小方格的极点上,且以则点 C 的个数为()1 的正方形, A , B 两点在小方格的极点A , B, C 为极点的三角形面积为 1,A.3 个 B.4 个C.5 个D.6 个二、耐心填一填,一锤定音! (每题 3 分,共计15 分)11.八边形的内角和等于度.12.如图,已知∠ ABE=142 °,∠ C=72 °,则∠ A=度,∠ ABC=度.13.AD 是△ ABC 的中线,则△ ACD 的面积△ ABD的面积.(填“<”“>”或“=”)14.已知:如图,△OAD≌△ OBC,且∠ O=70°,∠ C=25°,则∠ AEB=度.15.如图,三角形纸片ABC 中,∠A=65 °,∠ B=75 °,将纸片的一角折叠,使点C落在△ABC 内,若∠ 1=20°,则∠ 2 的度数为度.三、专心做一做,旗开获胜!(本大题共55 分)16.等腰三角形两边长为4cm、 6cm,求等腰三角形的周长.17.如图, AB=AC , AD=AE .求证:∠ B=∠ C.18.如图, C 是 AB 的中点, AD=CE , CD=BE .求证:△ DCA ≌△ EBC .19.在四边形 ABCD 中,∠ D=60 °,∠ B 比∠ A 大 20°,∠ C 是∠ A 的 2 倍,求∠ A ,∠ B ,∠C 的大小.20.已知 AE 、AD 分别是△ ABC 的高和角均分线,且∠ B=46°,∠ C=60°,求∠ DAE的度数.21.如图,要测量河两岸相对的两点 A ,B 的距离,能够在AB 的垂线 BF 上取两点C,D ,使 CD=BC ,再定出BF 的垂线 DE,使 A , C, E 在一条直线上,这时测得的DE 的长就是AB的长,为什么?22.一个零件的形状如图,按规定∠A=90 °,∠ ABD 和∠ ACD ,应分别是32°和 21°,检验工人量得∠ BDC=148 °,就判断这个零件不合格,运用三角形的相关知识说明零件不合格的原由.2015-2016 学年山东省济宁市邹城市北宿中学八年级(上)第一次月考数学试卷参照答案与试题分析一、精心选一选,慧眼识金!(每题 3 分,共计30 分)1.以下列图形中有牢固性的是()A .正方形B .长方形C.直角三角形D.平行四边形考点:三角形的牢固性.分析:牢固性是三角形的特点.解答:解:依照三角形拥有牢固性,可得四个选项中只有直角三角形拥有牢固性.应选: C.谈论:牢固性是三角形的特点,这一点需要记忆.2.以下说法正确的选项是()A.全等三角形是指形状相同的三角形B.全等三角形是指面积相等的两个三角形C.全等三角形的周长和面积相等D.所有等边三角形是全等三角形考点:全等图形.分析:能够完好重合的两个图形叫做全等形.做题时严格按定义逐个考据.全等形的面积和周长相等.解答:解: A 、全等三角形不不过形状相同而且大小相同,错;B、全等三角形不不过面积相等而且要边、角完好相同,错;C、全等则重合,重合则周长与面积分别相等,则 C 正确.D、完好相同的等边三角形才是全等三角形,错.应选 C.谈论:此题观察了全等形的特点,做题时必然要严格依照全等的定义进行.3.如图,为估计池塘岸边 A 、 B 的距离,小方在池塘的一侧采用一点O,测得OA=15米,OB=10 米, A 、 B 间的距离不能能是()A.20 米B.15 米 C.10 米 D.5 米考点:三角形三边关系.专题:应用题.分析:依照三角形的三边关系,第三边的长必然大于已知的两边的差,而小于两边的和,求得相应范围,看哪个数值不在范围即可.解答:解:∵ 15﹣10< AB < 10+15,∴5< AB < 25.∴所以不能能是 5米.应选: D.谈论:已知三角形的两边,则第三边的范围是:>已知的两边的差,而<两边的和.4.以下四组图形中,BE 是△ ABC 的高线的图是()A.B.C.D.考点:三角形的角均分线、中线和高.分析:三角形的高即从三角形的极点向对边引垂线,极点和垂足间的线段.依照看法可知.解答:解:过点 B 作直线 AC 的垂线段,即画 AC 边上的高 BE ,所以画法正确的选项是A.应选 A.谈论:观察了三角形的高的看法,能够正确作三角形一边上的高.5.以下列图,△ ACB≌ A′CB′,∠ BCB′=30°,则∠ ACA′的度数为()A.20°B. 30°C. 35°D. 40°考点:分析:解答:全等三角形的性质.依照全等三角形性质求出∠解:∵△ ACB ≌ A ′CB ′,ACB= ∠ A ′CB′,都减去∠ A ′CB即可.∴∠ ACB= ∠ A ′CB′,∴∠ ACB ﹣∠ A ′CB= ∠A ′CB′﹣∠ A ′CB,∴∠ ACA ′=∠BCB ′,∵∠ BCB ′=30 °,∴∠ ACA ′=30 °,应选 B.谈论:此题观察了全等三角形性质的应用,注意:全等三角形的对应角相等.6.如图,已知AC ∥ ED,∠ C=26°,∠ CBE=37 °,则∠ BED 的度数是()A . 63° B. 83° C. 73° D. 53°考点:三角形的外角性质;平行线的性质.专题:计算题.分析:因为 AC ∥ ED ,所以∠ BED= ∠ EAC ,而∠ EAC是△ABC的外角,所以∠B ED= ∠ EAC= ∠ CBE+∠ C.解答:解:∵在△ABC 中,∠ C=26°,∠ CBE=37 °,∴∠ CAE= ∠C+∠CBE=26 °+37°=63 °,∵AC ∥ED,∴∠ BED= ∠CAE=63 °.应选 A.谈论:此题观察的是三角形外角与内角的关系及两直线平行的性质.7.已知△ABC 中,∠ A ,∠ B,∠ C 三个角的比比以下,其中能说明△ ABC是直角三角形的是()A.2:3:4 B.1:2: 3 C.4:3:5 D.1: 2:2考点:三角形内角和定理.分析:依照三角形的内角和公式分别求得各角的度数,从而判断其形状.解答:解:A 、设三个角分别为2x,3x,4x,依照三角形内角和定理得三个角分别为:40°,60°,80°,所以不是直角三角形;B、设三个角分别为x, 2x, 3x,依照三角形内角和定理得三个角分别为:30°, 60°, 90°,所以是直角三角形;C、设三个角分别为3x, 4x, 5x,依照三角形内角和定理得三个角分别为:45°, 60°, 75°,所以不是直角三角形;D、设三个角分别为x, 2x, 2x,依照三角形内角和定理得三个角分别为:36°, 72°, 72°,所以不是直角三角形.应选 B.谈论:此题经过设合适的参数,依照三角形内角和定理建立方程求出三个内角的度数后判断.8.以下度数中,不能能是某个多边形的内角和的是()A . 180°B. 270°C. 2700 ° D .1080 °考点:多边形内角与外角.分析:依照多边形的内角和公式可知多边形的内角和能够整除180°.解答:解:∵ 270 不能够整除180,∴270°不能够是某个多边形的内角和.应选: B.谈论:此题主要观察的是多边形的内角和公式,掌握多边形的内角和公式是解题的要点.9.如图,在△ ABC 中, AD 均分∠ BAC 且与 BC 订交于点 D ,∠ B=40 °,∠ BAD=30 °,则∠C 的度数是()A.70°B. 80°C. 100°D. 110°考点:三角形内角和定理.分析:利用三角形角均分线的定义和三角形内角和定理可求出.解答:解: AD 均分∠ BAC ,∠ BAD=30 °,∴∠ BAC=60 °,∴∠ C=180°﹣ 60°﹣ 40°=80 °.应选 B.谈论:此题主要利用三角形角均分线的定义和三角形内角和定理,质.要点是熟练掌握相关性10.已知在正方形网格中,每个小方格都是边长为上,地址以下列图,点 C 也在小方格的极点上,且以则点 C 的个数为()1 的正方形, A , B 两点在小方格的极点A , B, C 为极点的三角形面积为 1,A.3 个 B.4 个 C.5 个 D.6 个考点:三角形的面积.专题:网格型.分析:怎样采用分类的标准,才能做到点 C 的个数不遗不漏,依照点 C 所在的直线分为两种情况:当点 C 与点 A 在同一条直线上时, AC 边上的高为 1, AC=2 ,吻合条件的点 C有 4 个;当点 C 与点 B 在同一条直线上时,BC 边上的高为 1,BC=2 ,吻合条件的点 C 有 2个.解答:解: C 点所有的情况以下列图:应选: D.谈论:此类题应采用分类的标准,才能做到不遗不漏.二、耐心填一填,一锤定音! (每题 3 分,共计 15 分)11.八边形的内角和等于1080 度.考点:多边形内角与外角.分析:n 边形的内角和能够表示成(n﹣ 2) ?180°,代入公式就可以求出内角和.解答:解:( 8﹣ 2)×180°=1080 °.故答案为: 1080°.谈论:此题主要观察了多边形的内角和公式,是需要熟记的内容.12.如图,已知∠ ABE=142 °,∠ C=72°,则∠ A= 70 度,∠ ABC=38 度.考点:三角形的外角性质.分析:依照三角形的一个外角等于和它不相邻的两个内角和及平角定义计算.解答:解:∠ A=142 °﹣ 72°=70°,∠A BC=180 °﹣142°=38 °.故填 70, 38.谈论:掌握三角形的外角的性质:三角形的一个外角等于和它不相邻的两个内角和.13. AD 是△ABC 的中线,则△ACD 的面积=△ ABD的面积.(填“<”“>”或“=”)考点:三角形的面积.分析:依照三角形的面积公式以及三角形的中线的看法,知:三角形的中线把三角形的面积分成相等的两部分.解答:解:依照等底同高可得,△ ACD的面积=△ ABD的面积.谈论:注意此题中的结论,是发现相等面积的三角形的常用的一种方法.14.已知:如图,△OAD ≌△ OBC ,且∠ O=70 °,∠ C=25 °,则∠ AEB=120 度.考点:全等三角形的性质;三角形的外角性质.专题:压轴题.分析:结合已知运用两三角形全等及一个角的外角等于别的两个内角的和,就可以获取∠CAE ,尔后又能够获取∠AEB .解答:解:∵△ OAD ≌△ OBC ,∴∠ D=∠ C=25 °,∴∠ CAE= ∠O+ ∠D=95 °,∴∠ AEB= ∠C+∠CAE=25 °+95 °=120°.故填 120谈论:观察全等三角形的性质和三角形外角的性质,做题时要仔细读图,发现并利用外角是解决此题的核心.C 落在△ABC 15.如图,三角形纸片 ABC 中,∠A=65 °,∠ B=75 °,将纸片的一角折叠,使点内,若∠ 1=20°,则∠ 2 的度数为 60 度.考点:翻折变换(折叠问题).分析:依照题意,已知∠A=65 °,∠ B=75 °,可结合三角形内角和定理和折叠变换的性质求解.解答:解:∵∠ A=65 °,∠ B=75 °,∴∠ C=180°﹣( 65°+75 °) =40 度,∴∠ CDE+ ∠CED=180 °﹣∠ C=140°,∴∠ 2=360 °﹣(∠ A+ ∠ B+∠ 1+∠ CED+ ∠ CDE) =360 °﹣ 300°=60 度.故填 60.谈论:此题经过折叠变换观察三角形、四边形内角和定理.注意折叠前后图形全等;三角形内角和为 180°;四边形内角和等于 360 度.三、专心做一做,旗开获胜!(本大题共55 分)16.等腰三角形两边长为4cm、 6cm,求等腰三角形的周长.考点:等腰三角形的性质;三角形三边关系.分析:两边的长为 4m 和 6cm,详尽哪边是底,哪边是腰没有明确,应分两种情况谈论.解答:解:当腰长是4m,底长是 6cm 时,能构成三角形,则周长是:4+4+6=14cm ;当腰长是6m,底长是4cm 时,能构成三角形,则周长是4+6+6=16cm ;则等腰三角形的周长是14cm 或 16cm.谈论:此题观察了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目必然要想到两种情况,分类进行谈论,还应试据各种情况可否能构成三角形进行解答,这点特别重要,也是解题的要点.17.如图, AB=AC , AD=AE .求证:∠ B=∠ C.考点:全等三角形的判断与性质.专题:证明题.分析:要证∠ B= ∠ C,可利用判断两个三角形全等的方法“两边和它们的夹角对应相等的两个三角形全等”证△ ABE≌△ ACD,尔后由全等三角形对应边相等得出.解答:证明:在△ABE 与△ACD 中,,∴△ ABE ≌△ ACD ( SAS),∴∠ B=∠ C.谈论:此题主要观察了两个三角形全等的其中一种判断方法,即“边角边”判断方法.观察出公共角∠ A 是解决此题的要点.18.如图, C 是 AB 的中点, AD=CE , CD=BE .求证:△ DCA ≌△ EBC .考点:全等三角形的判断.专题:证明题.分析:依照中点定义可得AC=BC ,再利用SSS 判断△ DCA ≌△ EBC 即可.解答:证明:∵ C 是 AB 的中点,∴AC=BC ,在△ ACD 和△ CBE 中,,∴△ ACD ≌△ CBE ( SSS).谈论:此题主要观察了三角形全等的判断方法,判断两个三角形全等的一般方法有:SSS、SAS、 ASA 、 AAS 、 HL .注意: AAA 、 SSA 不能够判断两个三角形全等,判断两个三角形全等时,必定有边的参加,若有两边一角对应相等时,角必定是两边的夹角.19.在四边形 ABCD 中,∠ D=60 °,∠ B 比∠ A 大 20°,∠ C 是∠ A 的 2 倍,求∠ A ,∠ B ,∠C 的大小.考点:多边形内角与外角.专题:计算题.分析:此题可设∠ A=x(度),则∠ B=x+20 ,∠ C=2x ,利用四边形的内角和即可解决问题.解答:解:设∠ A=x ,则∠ B=x+20 °,∠ C=2x .四边形内角和定理得x+ ( x+20 °)+2x+60 °=360 °,解得 x=70 °.∴∠ A=70 °,∠ B=90 °,∠ C=140°.谈论:此题需仔细分析题意,利用多边形的内角和公式结合方程即可解决问题.20.已知 AE 、AD 分别是△ ABC 的高和角均分线,且∠ B=46°,∠ C=60°,求∠ DAE的度数.考点:三角形内角和定理.分析:先依照三角形的内角和定理获取∠BAC的度数,再利用角均分线的性质可求出∠DAC=∠BAC,而∠ EAC=90 °﹣∠ C,尔后利用∠DAE=∠DAC ﹣∠ EAC进行计算即可.解答:解:在△ ABC 中,∠ B=46 °,∠ C=60 °∴∠ BAC=180 °﹣∠ B﹣∠ C=180°﹣ 46°﹣ 60°=74 °∵AD 是的角均分线∴∵AE 是△ ABC 的高∴∠ AEC=90 °∴在△ AEC 中,∠ EAC=180 °﹣∠ AEC ﹣∠ C=180°﹣90°﹣60°=30°∴∠ DAE= ∠ DAC ﹣∠ EAC=37 °﹣ 30°=7°.谈论:观察了三角形的内角和定理:三角形的内角和为 180°.也观察了三角形的高线与角均分线的性质21.如图,要测量河两岸相对的两点 A ,B 的距离,能够在AB 的垂线 BF 上取两点C,D ,使 CD=BC ,再定出BF 的垂线 DE,使 A , C, E 在一条直线上,这时测得的DE 的长就是AB的长,为什么?考点:全等三角形的应用.专题:应用题.分析:此题是测量两点之间的距离方法中的一种,吻合全等三角形全等的条件,方案的操作性强,只要测量的线段和角度在陆地一侧即可推行.解答:解:∵ AB ⊥BF, DE ⊥BF,∴∠ ABC= ∠ EDC=90 °,又∵直线 BF 与 AE 交于点 C,∴∠ ACB= ∠ ECD (对顶角相等),∵CD=BC ,∴△ ABC ≌△ EDC ,∴A B=ED ,即测得 DE 的长就是 A , B 两点间的距离.谈论:此题观察了全等三角形的应用;解答此题的要点是设计三角形全等,巧妙地借助两个三角形全等,做题时要注意搜寻所求线段与已知线段之间的等量关系.22.一个零件的形状如图,按规定∠ A=90 °,∠ ABD 和∠ ACD ,应分别是 32°和 21°,检验工人量得∠ BDC=148 °,就判断这个零件不合格,运用三角形的相关知识说明零件不合格的原由.考点:三角形内角和定理.分析:连接 AD ,利用三角形内角与外角的关系求出此零件合格时∠CDB的度数与已知度数对照较即可.解答:解:不合格,原由以下:连接 AD 并延长,则∠ 1=∠ ACD+ ∠ CAD ,∠2= ∠ ABD+ ∠ BAD ,故∠ BDC= ∠ ACD+ ∠ ABD+ ∠ A=32 °+21 °+90 °=143°,因为∠ BDC 本质等于148°,所以此零件不合格.谈论:此题观察的是三角形内角与外角的关系,比较简单.。
人教版八年级上学期第一次月考数学试题含解析
一、选择题1.如图,在平行四边形ABCD 中,∠DBC=45°,DE ⊥BC 于E ,BF ⊥CD 于F ,DE ,BF 相交于H ,BF 与AD 的延长线相交于点G ,下面给出四个结论:①2BD BE =; ②∠A=∠BHE ;③AB=BH ; ④△BCF ≌△DCE , 其中正确的结论是( )A .①②③B .①②④C .②③④D .①②③④2.如图,在四边形ABCD 中,//AD BC ,90D ∠=,8AD =,6BC =,分别以点A ,C 为圆心,大于12AC 长为半径作弧,两弧交于点E ,作射线BE 交AD 于点F ,交AC 于点O .若点O 是AC 的中点,则CD 的长为( )A .42B .6C .210D .83.已知,如图,ABC ,点,P Q 分别是BAC ∠的角平分线AD ,边AB 上的两个动点,45C ︒∠=,6BC =,则PB PQ +的最小值是( )A .3B .23C .4D .324.如图,在等腰三角形ABC 中,AC=BC=5,AB=8,D 为底边上一动点(不与点A ,B 重合),DE ⊥AC ,DF ⊥BC ,垂足分别为E 、F ,则DE+DF= ( )A .5B .8C .13D .4.85.如图,四边形ABCD 中,AC ⊥BD 于O ,AB =3,BC =4,CD =5,则AD 的长为( )A .1B .32C .4D .236.如图,在等腰Rt △ABC 中,∠C =90°,AC =7,∠BAC 的角平分线AD 交BC 于点D ,则点D 到AB 的距离是( )A .3B .4C .7(21)-D .7(21)+ 7.由下列条件不能判定△ABC 为直角三角形的是( ) A .∠A+∠B=∠CB .∠A :∠B :∠C=1:3:2C .a=2,b=3,c=4D .(b+c)(b-c)=a²8.如图,点A 和点B 在数轴上对应的数分别是4和2,分别以点A 和点B 为圆心,线段AB 的长度为半径画弧,在数轴的上方交于点C .再以原点O 为圆心,OC 为半径画弧,与数轴的正半轴交于点M ,则点M 对应的数为( )A .3.5B .23C .13D .36 9.如图,已知△ABC 中,∠ABC =90°,AB =BC ,三角形的顶点在相互平行的三条直线l 1,l 2,l 3上,且l 1,l 2之间的距离为2,l 2,l 3之间的距离为3,则AC 的长是( )A .17B .5C .2D .710.下列四组数据不能作为直角三角形的三边长的是 ( )A.6,8,10 B.5,12,13 C.3,5,6 D.2,3,5二、填空题∠+∠=__________°(点A,B,C是11.如图所示的网格是正方形网格,则ABC ACB网格线交点).12.如图,在四边形ABCD中,AB =AD,BC=DC,点E为AD边上一点,连接BD、CE,CE 与BD交于点F,且CE∥AB,若∠A =60°,AB=4,CE=3,则BC的长为_______.13.已知,如图:在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点A、C的坐标分别为A(10,0)、C(0,4),点D是OA的中点,点P在BC边上运动,当△ODP 是腰长为5的等腰三角形时,点P的坐标为_____.14.我国古代数学名著《九章算术》中有云:“今有木长二丈,围之三尺.葛生其下,缠木七周,上与木齐.问葛长几何?”大意为:有一根木头长2丈,上、下底面的周长为3尺,葛生长在木下的一方,绕木7周,葛梢与木头上端刚好齐平,则葛长是______尺.(注:l丈等于10尺,葛缠木以最短的路径向上生长,误差忽略不计)15.在△ABC 中,若222225,75a b a b c -+===,,则最长边上的高为_____.16.如图,在Rt △ABC 中,∠B=90°,以AC 为斜边向外作等腰直角三角形COA ,已知BC=8,OB=102,则另一直角边AB 的长为__________.17.如图,△ABC 中,∠ACB=90°,AB=2,BC=AC ,D 为AB 的中点,E 为BC 上一点,将△BDE 沿DE 翻折,得到△FDE ,EF 交AC 于点G ,则△ECG 的周长是___________.18.如图,小正方形的边长为1,连接小正方形的三个格点可得△ABC ,则AC 边上的高的长度是_____________.19.如图,直线l 上有三个正方形a ,b ,c ,若a ,c 的边长分别为5和12,则b 的面积为_________________.20.观察:①3、4、5,②5、12、13,③7、24、25,……,发现这些勾股数的“勾”都是奇数,且从3起就没断过.根据以上规律,请写出第8组勾股数:______.三、解答题△中,∠ACB = ∠DCE=90°.21.如图,在两个等腰直角ABC和CDE(1)观察猜想:如图1,点E在BC上,线段AE与BD的数量关系是,位置关系是;△绕直角顶点C旋转到图2的位置,(1)中的结论还成立吗?(2)探究证明:把CDE说明理由;△绕点C在平面内自由旋转,若AC = BC=10,DE=12,当A、E、(3)拓展延伸:把CDED三点在直线上时,请直接写出 AD的长.22.如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,点D在边AB上,点E在边AC的左侧,连接AE.(1)求证:AE=BD;(2)试探究线段AD、BD与CD之间的数量关系;,求线段AB (3)过点C作CF⊥DE交AB于点F,若BD:AF=1:22,CD=36的长.23.如图,△ABC中,∠ACB=90°,AB=5cm,BC=3cm,若点P从点A出发,以每秒2cm 的速度沿折线A﹣C﹣B﹣A运动,设运动时间为t秒(t>0).(1)若点P在AC上,且满足PA=PB时,求出此时t的值;(2)若点P恰好在∠BAC的角平分线上,求t的值;(3)在运动过程中,直接写出当t为何值时,△BCP为等腰三角形.24.在ABC ∆中,90ACB ∠=︒,6AC BC ==,点D 是AC 的中点,点E 是射线DC 上一点,DF DE ⊥于点D ,且DE DF =,连接CF ,作FH CF ⊥于点F ,交直线AB 于点H .(1)如图(1),当点E 在线段DC 上时,判断CF 和FH 的数量关系,并加以证明; (2)如图(2),当点E 在线段DC 的延长线上时,问题(1)中的结论是否依然成立?如果成立,请求出当ABC △和CFH △面积相等时,点E 与点C 之间的距离;如果不成立,请说明理由.25.阅读下列一段文字,然后回答下列问题.已知在平面内有两点()111, P x y 、()222, P x y ,其两点间的距离()()22121212PP x x y y =-+-,同时,当两点所在的直线在坐标轴或平行于坐标轴或垂直于坐标轴时,两点间距离公式可化简为12x x -或1|y -2|y .(1)已知()2, 4A 、()3, 8B --,试求A 、B 两点间的距离______.已知M 、N 在平行于y 轴的直线上,点M 的纵坐标为4,点N 的纵坐标为-1,试求M 、N 两点的距离为______;(2)已知一个三角形各顶点坐标为()1, 6D 、()3, 3E -、()4, 2F ,你能判定此三角形的形状吗?说明理由.(3)在(2)的条件下,平面直角坐标系中,在x 轴上找一点P ,使PD PF +的长度最短,求出点P 的坐标及PD PF +的最短长度.26.(1)如图1,在Rt △ABC 和Rt △ADE 中,AB =AC ,AD =AE ,且点D 在BC 边上滑动(点D 不与点B ,C 重合),连接EC ,①则线段BC,DC,EC之间满足的等量关系式为;②求证:BD2+CD2=2AD2;(2)如图2,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°.若BD=9,CD=3,求AD 的长.27.菱形ABCD中,∠BAD=60°,BD是对角线,点E、F分别是边AB、AD上两个点,且满足AE=DF,连接BF与DE相交于点G.(1)如图1,求∠BGD的度数;(2)如图2,作CH⊥BG于H点,求证:2GH=GB+DG;(3)在满足(2)的条件下,且点H在菱形内部,若GB=6,CH=43,求菱形ABCD的面积.28.阅读下列材料,并解答其后的问题:我国古代南宋数学家秦九韶在其所著书《数学九章》中,利用“三斜求积术”十分巧妙的解决了已知三角形三边求其面积的问题,这与西方著名的“海伦公式”是完全等价的.我们也称这个公式为“海伦•秦九韶公式”,该公式是:设△ABC中,∠A、∠B、∠C所对的边分别为a、b、c,△ABC的面积为S=()()()()a b c a b c a c b b c a+++-+-+-.(1)(举例应用)已知△ABC中,∠A、∠B、∠C所对的边分别为a、b、c,且a=4,b =5,c=7,则△ABC的面积为;(2)(实际应用)有一块四边形的草地如图所示,现测得AB=(26+42)m,BC=5m,CD=7m,AD=46m,∠A=60°,求该块草地的面积.29.如图,在△ABC中,D是边AB的中点,E是边AC上一动点,连结DE,过点D作DF⊥DE交边BC于点F(点F与点B、C不重合),延长FD到点G,使DG=DF,连结EF、AG.已知AB=10,BC=6,AC=8.(1)求证:△ADG ≌△BDF ;(2)请你连结EG,并求证:EF=EG ;(3)设AE=x ,CF=y ,求y 关于x 的函数关系式,并写出自变量x 的取值范围;(4)求线段EF 长度的最小值.30.已知ABC 是等边三角形,点D 是BC 边上一动点,连结AD()1如图1,若2BD =,4DC =,求AD 的长;()2如图2,以AD 为边作60ADE ADF ∠=∠=,分别交AB ,AC 于点E ,F . ①小明通过观察、实验,提出猜想:在点D 运动的过程中,始终有AE AF =,小明把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的两种想法想法1:利用AD 是EDF ∠的角平分线,构造角平分线的性质定理的基本图形,然后通过全等三角形的相关知识获证.想法2:利用AD 是EDF ∠的角平分线,构造ADF 的全等三角形,然后通过等腰三角形的相关知识获证.请你参考上面的想法,帮助小明证明.(AE AF =一种方法即可)②小聪在小明的基础上继续进行思考,发现:四边形AEDF 的面积与AD 长存在很好的关系.若用S 表示四边形AEDF 的面积,x 表示AD 的长,请你直接写出S 与x 之间的关系式.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】先判断△DBE 是等腰直角三角形,根据勾股定理可推导得出BE ,故①正确;根据∠BHE 和∠C 都是∠HBE 的余角,可得∠BHE=∠C ,再由∠A=∠C ,可得②正确;证明△BEH ≌△DEC ,从而可得BH=CD ,再由AB=CD ,可得③正确;利用已知条件不能得到④,据此即可得到选项.【详解】解:∵∠DBC=45°,DE ⊥BC 于E ,∴在Rt △DBE 中,BE 2+DE 2=BD 2,BE=DE ,∴BE ,故①正确;∵DE ⊥BC ,BF ⊥DC ,∴∠BHE 和∠C 都是∠HBE 的余角,∴∠BHE=∠C ,又∵在▱ABCD 中,∠A=∠C ,∴∠A=∠BHE ,故②正确;在△BEH 和△DEC 中,BHE C HEB CED BE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△BEH ≌△DEC ,∴BH=CD ,∵四边形ABCD 为平行四边形,∴AB=CD ,∴AB=BH ,故③正确;利用已知条件不能得到△BCF ≌△DCE ,故④错误,故选A.【点睛】本题考查了平行四边形的性质、等腰直角三角形的判定与性质、勾股定理、全等三角形的判定与性质等,熟练掌握相关性质与定理是解题的关键.2.A解析:A【分析】连接FC ,根据基本作图,可得OE 垂直平分AC ,由垂直平分线的性质得出AF =FC .再根据ASA 证明△FOA ≌△BOC ,那么AF =BC =3,等量代换得到FC =AF =3,利用线段的和差关系求出FD =AD -AF =1.然后在直角△FDC 中利用勾股定理求出CD 的长.【详解】解:如图,连接FC ,∵点O 是AC 的中点,由作法可知,OE 垂直平分AC ,∴AF =FC .∵AD ∥BC ,∴∠FAO =∠BCO .在△FOA 与△BOC 中,FAO BCO OA OCAOF COB ∠∠⎧⎪⎨⎪∠∠⎩=== , ∴△FOA ≌△BOC (ASA ),∴AF =BC =6,∴FC =AF =6,FD =AD -AF =8-6=2.在△FDC 中,∵∠D =90°,∴CD 2+DF 2=FC 2,∴CD 2+22=62,∴CD =42故选:A .【点睛】本题考查了作图-基本作图,勾股定理,线段垂直平分线的判定与性质,全等三角形的判定与性质,难度适中.求出CF 与DF 是解题的关键.3.D解析:D【分析】先根据等腰三角形的性质得出AD 是线段QE 垂直平分线,再根据垂直平分线的性质、两点之间线段最短得出PB PQ +最小值为BE ,最后根据垂线段最短、直角三角形的性质得出BE 的最小值即可得.【详解】如图,作QE AD ⊥,交AC 于点E ,∵AD 平分∠BAC ,∴∠BAD=∠CAD ,AD ∴是线段QE 垂直平分线(等腰三角形的三线合一)PQ PE ∴=PB PQ PB PE ∴+=+由两点之间线段最短得:当点,,B P E 共线时,PB PE +最小,最小值为BE点,P Q 都是动点BE ∴随点,P Q 的运动而变化由垂线段最短得:当BE AC ⊥时,BE 取得最小值在Rt BCE ∆中,456,C C B ∠=︒= 232BE CE BC ∴=== 即PB PQ +的最小值为32故选:D .【点睛】本题考查了等腰三角形的性质、垂直平分线的性质、两点之间线段最短等知识点,利用两点之间线段最短和垂线段最短确认PB PQ +的最小值是解题关键. 4.D解析:D【分析】过点C 作CH ⊥AB ,连接CD ,根据等腰三角形的三线合一的性质及勾股定理求出CH ,再利用ABC ACD BCD S S S =+即可求出答案.【详解】如图,过点C 作CH ⊥AB ,连接CD ,∵AC=BC ,CH ⊥AB ,AB=8,∴AH=BH=4,∵AC=5, ∴2222543CH AC AH =-=-=, ∵ABC ACD BCD SS S =+, ∴111222AB CH AC DE BC DF ⋅⋅=⋅⋅+⋅⋅, ∴1118355222DE DF ⨯⨯=⨯+⨯, ∴DE+DF=4.8,故选:D.【点睛】此题考查等腰三角形三线合一的性质,勾股定理解直角三角形,根据题意得到ABC ACD BCD S S S =+的思路是解题的关键,依此作辅助线解决问题.5.B解析:B【分析】设OA =a ,OB =b ,OC =c ,OD =d ,根据勾股定理求出a 2+b 2=AB 2=9,c 2+b 2=BC 2=16,c 2+d 2=CD 2=25,即可证得a 2+d 2=18,由此得到答案.【详解】设OA =a ,OB =b ,OC =c ,OD =d ,由勾股定理得,a 2+b 2=AB 2=9,c 2+b 2=BC 2=16,c 2+d 2=CD 2=25,则a 2+b 2+c 2+b 2+c 2+d 2=50,∴a 2+d 2+2(b 2+c 2)=50,∴a 2+d 2=50﹣16×2=18,∴AD 221832a d +==故选:B .【点睛】此题考查勾股定理的运用,根据题中的已知条件得到直角三角形,再利用勾股定理求出未知的边长,解题中注意直角边与斜边.6.C解析:C【分析】过点D 作DE ⊥AB 于点E ,根据角平分线的性质定理,可得:DE =DC =x ,则BE =2x ,进而可得到AE =AC =7,在Rt △BDE 中,应用勾股定理即可求解.【详解】过点D 作DE ⊥AB 于点E ,则∠AED =90°,AE =AC =7,∵△ABC 是等腰直角三角形,∴BC =AC =7,AB 22AC +BC =72在Rt △AED 和Rt △ACD 中,AE =AC ,DE =DC ,∴Rt △AED ≌Rt △ACD ,∴AE =AC =7,设DE =DC =x ,则BD =7-x ,在Rt △BDE 中,222BE +DE =BD , 即:()()22272-77-x x +=, 解得: 7(21)x =-,故选:C .【点睛】本题考查角平分线的性质定理,全等三角形的判定与性质,勾股定理等,运用方程思想是解题的关键.7.C解析:C【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方或最大角是否是90°即可.【详解】A 、∠A+∠B =∠C ,可得∠C =90°,是直角三角形,错误;B 、∠A :∠B :∠C =1:3:2,可得∠B =90°,是直角三角形,错误;C 、∵22+32≠42,故不能判定是直角三角形,正确;D 、∵(b+c )(b ﹣c )=a 2,∴b 2﹣c 2=a 2,即a 2+c 2=b 2,故是直角三角形,错误; 故选C .【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.8.B解析:B【分析】如图,作CD ⊥AB 于点D ,由题意可得△ABC 是等边三角形,从而可得BD 、OD 的长,然后根据勾股定理即可求出CD 与OC 的长,进而可得OM 的长,于是可得答案.【详解】解:∵点A 和点B 在数轴上对应的数分别是4和2,∴OB=2,OA=4,如图,作CD ⊥AB 于点D ,则由题意得:CA=CB=AB=2,∴△ABC 是等边三角形,∴BD=AD=11 2AB=,∴OD=OB+BD=3,223CD BC BD=-=,∴()22223323OC OD CD=+=+=,∴OM=OC=23,∴点M对应的数为23.故选:B.【点睛】本题考查了实数与数轴、等边三角形的判定与性质以及勾股定理等知识,属于常见题型,正确理解题意、熟练掌握上述知识是解题的关键.9.A解析:A【解析】试题解析:作AD⊥l3于D,作CE⊥l3于E,∵∠ABC=90°,∴∠ABD+∠CBE=90°又∠DAB+∠ABD=90°∴∠BAD=∠CBE,{BAD CBEAB BCADB BEC∠=∠=∠=∠,∴△ABD≌△BCE∴BE=AD=3在Rt△BCE中,根据勾股定理,得25+9=34,在Rt△ABC中,根据勾股定理,得342=217.故选A.考点:1.勾股定理;2.全等三角形的性质;3.全等三角形的判定.10.C解析:C【分析】求出两小边的平方和长边的平方,再看看是否相等即可.【详解】A 、62+82=102,此时三角形是直角三角形,故本选项不符合题意;B 、52+122=132,此时三角形是直角三角形,故本选项不符合题意;C 、32+52≠62,此时三角形不是直角三角形,故本选项符合题意;D 、()()()222235+=,此时三角形是直角三角形,故本选项不符合题意; 故选:C . 【点睛】本题主要考查了勾股定理逆定理,关键是掌握判断一个三角形是不是直角三角形,必须满足较小两边平方的和等于最大边的平方才能做出判断.二、填空题11.45【分析】如下图,延长BA 至网络中的点D 处,连接CD. ABC ACB DAC ∠+∠=∠,只需证△ADC 是等腰直角三角形即可【详解】如下图,延长BA 至网络中的点D 处,连接CD设正方形网络每一小格的长度为1则根据网络,555BC=5,∴5其中BD 、DC 、BC 边长满足勾股定理逆定理∴∠CDA=90°∵AD=DC∴△ADC 是等腰直角三角形∴∠DAC=45°故答案为:45°本题是在网格中考察勾股定理的逆定理,解题关键是延长BA,构造处△ABC的外角∠CAD 12.7【分析】连接AC交BD于点O,由题意可证AC垂直平分BD,△ABD是等边三角形,可得∠BAO=∠DAO=30°,AB=AD=BD,BO=OD,通过证明△EDF是等边三角形,可得DE=EF=DF,由勾股定理可求OC,BC的长.【详解】连接AC,交BD于点O,∵AB=AD,BC=DC,∠A=60°,∴AC垂直平分BD,△ABD是等边三角形,∴∠BAO=∠DAO=30°,AB=AD=BD=4,BO=OD=2,∵CE∥AB,∴∠BAO=∠ACE=30°,∠CED=∠BAD=60°,∴∠DAO=∠ACE=30°,∴AE=CE=3,∴DE=AD−AE=1,∵∠CED=∠ADB=60°,∴△EDF是等边三角形,∴DE=EF=DF=1,∴CF=CE−EF=2,OF=OD−DF=1,22OC CF OF3∴-=22∴BC=OB+OC=77【点睛】本题考查了等边三角形的性质和判定,勾股定理,熟练运用等边三角形的判定是本题的关键.13..(3,4)或(2,4)或(8,4).【分析】题中没有指明△ODP的腰长与底分别是哪个边,故应该分情况进行分析,从而求得点P的【详解】解:(1)OD是等腰三角形的底边时,P就是OD的垂直平分线与CB的交点,此时OP=PD≠5;(2)OD是等腰三角形的一条腰时:①若点O是顶角顶点时,P点就是以点O为圆心,以5为半径的弧与CB的交点,在直角△OPC中,CP=22-=3,则P的坐标是(3,4).54-=22OP OC②若D是顶角顶点时,P点就是以点D为圆心,以5为半径的弧与CB的交点,过D作DM⊥BC于点M,在直角△PDM中,PM=22-=3,PD DM当P在M的左边时,CP=5﹣3=2,则P的坐标是(2,4);当P在M的右侧时,CP=5+3=8,则P的坐标是(8,4).故P的坐标为:(3,4)或(2,4)或(8,4).故答案为:(3,4)或(2,4)或(8,4).【点睛】本题考查了等腰三角形的性质和勾股定理的运用等知识,注意正确地进行分类,考虑到所有可能的情况并进行分析求解是解题的关键.14.【分析】这种立体图形求最短路径问题,可以展开成为平面内的问题解决,展开后可转化下图,所以是个直角三角形求斜边的问题,根据勾股定理可求出.【详解】解:如图,一条直角边(即木棍的高)长20尺,另一条直角边长7×3=21(尺),22+=29(尺).2021答:葛藤长29尺.故答案为:29.【点睛】本题考查了平面展开最短路径问题,关键是把立体图形展成平面图形,本题是展成平面图形后为直角三角形按照勾股定理可求出解.15.125 【分析】 解方程222225,7a b a b +=-=可求得a=4,b=3,故三角形ABC 是直角三角形,在利用三角形的面积转化得到斜边上的高.【详解】解:∵222225,7a b a b +=-=,将两个方程相加得:2232a =,∵a >0,∴a=4代入得:22425b +=,∵b >0,∴b=3,∵a=3,b=4,c=5满足勾股定理逆定理,∴△ABC 是直角三角形,如下图,∠ACB=90°,CD ⊥AB ,1122ABC SAC BC AB CD =⋅⋅=⋅⋅ , 即:1134522CD ⋅⋅=⋅⋅, 解得:CD=125, 故答案为:125. 【点睛】 本题考查求解三角形的高,解题关键是利用三角形的面积进行转化,在同一个三角形中,一个底乘对应高等于另一个底乘对应高.16.12【分析】延长BA 至E ,使AE=BC ,并连接OE.证∆BCO ≅∠EAO ,再证三角形BOE 是等腰直角三角形,利用勾股定理可得BE=()()222210210220BO EO +=+=,可得AB=BE-AE.【详解】如图,延长BA 至E ,使AE=BC ,并连接OE.因为三角形COA 是等腰直角三角形所以CO=AO,∠AOC=∠BOC+∠AOB=90°因为∠ABC=90°,∠AOC=90°,所以∠BAO+∠BCO=180°,又∠BAO+∠OAE=180° 所以∠BCO=∠OAE所以∆BCO ≅∠EAO所以BO=EO, ∠BOC=∠EOA所以,∠BOE=∠EOA+∠AOB=90°所以三角形BOE 是等腰直角三角形所以()()222210210220BO EO +=+=所以AB=BE-AE=20-8=12故答案为:12【点睛】考核知识点:全等三角形,勾股定理.构造全等三角形是关键.172【分析】连接CE .根据“直角三角形斜边上的中线等于斜边的一半”、等腰三角形的性质以及折叠的性质推知EG+CG=EG+GF=EF=BE ,【详解】解:(1)如图,连接CD 、CF.∵Rt△ABC中,∠ACB=90°,AC=BC,D为AB边的中点,∴BD=CD=1.BC=2 ,∵由翻折可知BD=DF,∴CD=BD=DF=1,∠DFE=∠B=∠DCA=45°,∴∠DCF=∠DFC,∴∠DCF-∠DCA=∠DFC-∠DFE,即∠GCF=∠GFC,∴GC=GF,∴EG+CG=EG+GF=EF=BE,∴△ECG的周长=EG+GC+CE=BE+EC=BC=2,故答案为2.【点睛】本题考查了折叠的性质、勾股定理、直角三角形的性质,能将三角形的周长转移到已知线段上是解题的关键..18.35 5【详解】四边形DEFA是正方形,面积是4;△ABF,△ACD的面积相等,且都是×1×2=1.△BCE的面积是:12×1×1=12.则△ABC的面积是:4﹣1﹣1﹣12=32.在直角△ADC中根据勾股定理得到:222+1=5设AC边上的高线长是x.则125x=32,解得:355.故答案为355. 19.169 【解析】解:由于a 、b 、c 都是正方形,所以AC =CD ,∠ACD =90°;∵∠ACB +∠DCE =∠ACB +∠BAC =90°,即∠BAC =∠DCE ,∠ABC =∠CED =90°,AC =CD ,∴△ACB ≌△DCE ,∴AB =CE ,BC =DE ; 在Rt △ABC 中,由勾股定理得:AC 2=AB 2+BC 2=AB 2+DE 2,即S b =S a +S c =22512+=169. 故答案为:169.点睛:此题主要考查对全等三角形和勾股定理的综合运用,结合图形求解,对图形的理解能力要比较强.20.17,144,145【分析】由题意观察题干这些勾股数,根据所给的勾股数找出三个数之间的关系即可.【详解】解:因为这些勾股数的“勾”都是奇数,且从3起就没断过,所以从3、5、7…依次推出第8组的“勾”为17,继续观察可知弦-股=1,利用勾股定理假设股为m ,则弦为m+1,所以有22217(1)m m +=+,解得144m =,1145m +=,即第8组勾股数为17,144,145.故答案为17,144,145.【点睛】本题属规律性题目,考查的是勾股数之间的关系,根据题目中所给的勾股数及勾股定理进行分析即可. 三、解答题21.(1)AE BD =,AE BD ⊥;(2)成立,理由见解析;(3)14或2.【分析】(1)先根据等腰三角形的定义可得AC BC =,CE CD =,再根据三角形全等的判定定理与性质可得AE BD =,EAC DBC ∠=∠,然后根据直角三角形两锐角互余、等量代换即可得90AHD ∠=︒,由此即可得;(2)先根据三角形全等的判定定理与性质可得AE BD =,EAC DBC ∠=∠,再根据直角三角形两锐角互余可得90EAC AOC ∠+∠=︒,然后根据对顶角相等、等量代换可得90BOH DBC ∠∠+=︒,从而可得90OHB ∠=︒,由此即可得;(3)先利用勾股定理求出102AB =,再分①点,,A E D 在直线上,且点E 位于中间,②点,,A E D 在直线上,且点D 位于中间两种情况,结合(1)(2)的结论,利用勾股定理求解即可得.【详解】(1)AE BD =,AE BD ⊥,理由如下:如图1,延长AE 交BD 于H ,由题意得:AC BC =,90ACE BCD ∠=∠=︒,CE CD =,∴()ACE BCD SAS ≅,∴AE BD =,EAC DBC ∠=∠,∵90DBC BDC ∠+∠=︒,∴90EAC BDC ∠+∠=︒,∴0)9018(EAC BD A D C H ∠+∠∠︒==-︒,即AE BD ⊥,故答案为:AE BD =,AE BD ⊥;(2)成立,理由如下:如图2,延长AE 交BD 于H ,交BC 于O ,∵90ACB ECD ∠=∠=︒,∴ACB BCE ECD BCE ∠-∠=∠-∠,即ACE BCD ∠=∠,在ACE △和BCD 中,AC BC ACE BCD CE CD =⎧⎪∠=∠⎨⎪=⎩,∴()ACE BCD SAS ≅,∴AE BD =,EAC DBC ∠=∠,∵90ACB ∠=︒,∴90EAC AOC ∠+∠=︒,∵AOC BOH ∠=∠,∴90BOH DBC ∠∠+=︒,即90OBH BOH ∠+∠=︒,∴180()90OHB OBH BOH ∠=︒-∠+∠=︒,即AE BD ⊥;(3)设AD x =,10,90AC BC ACB ==∠=︒,2102AB AC ∴==,由题意,分以下两种情况:①如图3-1,点,,A E D 在直线上,且点E 位于中间,同理可证:AE BD =,AE BD ⊥,12DE =,12BD AE AD DE x ∴==-=-,在Rt ABD △中,222AD BD AB +=,即222(12)(102)x x +-=,解得14x =或2x =-(不符题意,舍去),即14AD =,②如图3-2,点,,A E D 在直线上,且点D 位于中间,同理可证:AE BD =,AE BD ⊥,12DE =,12BD AE AD DE x ∴==+=+,在Rt ABD △中,222AD BD AB +=,即222(12)(102)x x ++=,解得2x =或14x =-(不符题意,舍去),即2AD =,综上,AD 的长为14或2.【点睛】本题考查了三角形全等的判定与性质、勾股定理等知识点,较难的是题(3),正确分两种情况讨论,并画出图形是解题关键.22.(1)见解析;(2)BD2+AD2=2CD2;(3)AB=2+4.【分析】(1)根据等腰直角三角形的性质证明△ACE≌△BCD即可得到结论;(2)利用全等三角形的性质及勾股定理即可证得结论;(3)连接EF,设BD=x,利用(1)、(2)求出EF=3x,再利用勾股定理求出x,即可得到答案.【详解】(1)证明:∵△ACB和△ECD都是等腰直角三角形∴AC=BC,EC=DC,∠ACB=∠ECD=90°∴∠ACB﹣∠ACD=∠ECD﹣∠ACD∴∠ACE=∠BCD,∴△ACE≌△BCD(SAS),∴AE=BD.(2)解:由(1)得△ACE≌△BCD,∴∠CAE=∠CBD,又∵△ABC是等腰直角三角形,∴∠CAB=∠CBA=∠CAE=45°,∴∠EAD=90°,在Rt△ADE中,AE2+AD2=ED2,且AE=BD,∴BD2+AD2=ED2,∵ED2CD,∴BD2+AD2=2CD2,(3)解:连接EF,设BD=x,∵BD :AF =1:2AF =2x ,∵△ECD 都是等腰直角三角形,CF ⊥DE ,∴DF =EF ,由 (1)、(2)可得,在Rt △FAE 中,EF 22AF AE +22(22)x x +3x ,∵AE 2+AD 2=2CD 2, ∴222(223)2(36)x x x ++=,解得x =1,∴AB =2+4.【点睛】此题考查三角形全等的判定及性质,等腰直角三角形的性质,勾股定理.23.(1) 2516;(2)83t =或6;(3)当153,5,210t =或194时,△BCP 为等腰三角形. 【分析】(1)设存在点P ,使得PA PB =,此时2PA PB t ==,42PC t =-,根据勾股定理列方程即可得到结论;(2)当点P 在CAB ∠的平分线上时,如图1,过点P 作PE AB ⊥于点E ,此时72BP t =-,24PE PC t ==-,541BE =-=,根据勾股定理列方程即可得到结论; (3)在Rt ABC 中,根据勾股定理得到4AC cm =,根据题意得:2AP t =,当P 在AC 上时,BCP 为等腰三角形,得到PC BC =,即423t -=,求得12t =,当P 在AB 上时,BCP 为等腰三角形,若CP PB =,点P 在BC 的垂直平分线上,如图2,过P 作PE BC ⊥于E ,求得194t =,若PB BC =,即2343t --=,解得5t =,PC BC =③,如图3,过C 作CF AB ⊥于F ,由射影定理得;2BC BF AB =⋅,列方程2234352t --=⨯,即可得到结论. 【详解】 解:在Rt ABC 中,5AB cm =,3BC cm =,4AC cm ∴=,(1)设存在点P ,使得PA PB =,此时2PA PB t ==,42PC t =-,在Rt PCB 中,222PC CB PB +=,即:222(42)3(2)t t -+=, 解得:2516t =, ∴当2516t =时,PA PB =; (2)当点P 在BAC ∠的平分线上时,如图1,过点P 作PE AB ⊥于点E ,此时72BP t =-,24PE PC t ==-,541BE =-=,在Rt BEP 中,222PE BE BP +=,即:222(24)1(72)t t -+=-,解得:83t =, 当6t =时,点P 与A 重合,也符合条件,∴当83t =或6时,P 在ABC ∆的角平分线上; (3)根据题意得:2AP t =,当P 在AC 上时,BCP 为等腰三角形,PC BC ∴=,即423t -=,12t ∴=, 当P 在AB 上时,BCP 为等腰三角形,CP PB =①,点P 在BC 的垂直平分线上,如图2,过P 作PE BC ⊥于E ,1322BE BC ∴==, 12PB AB ∴=,即52342t --=,解得:194t =, PB BC =②,即2343t --=,解得:5t =,PC BC =③,如图3,过C 作CF AB ⊥于F ,12BF BP ∴=, 90ACB ∠=︒,由射影定理得;2BC BF AB =⋅,即2234352t --=⨯, 解得:5310t =, ∴当15319,5,2104t =或时,BCP 为等腰三角形. 【点睛】本题考查了等腰三角形的判定,三角形的面积,难度适中.利用分类讨论的思想是解(3)题的关键.24.(1)CF FH =,证明见解析;(2)依然成立,点E 与点C 之间的距离为333.理由见解析.【分析】(1)做辅助线,通过已知条件证得ADG 与DEF 是等腰直角三角形.证出CEF FGH ≌,利用全等的性质即可得到CF FH =.(2)设AH ,DF 交于点G ,可根据ASA 证明△FCE ≌△HFG ,从而得到CF FH =,当ABC △和CFH △均为等腰直角三角形当他们面积相等时,6CF AC ==.利用勾股定理可以求DE 、CE 的长,即可求出CE 的长,即可求得点E 与点C 之间的距离.【详解】(1)CF FH =证明:延长DF 交AB 于点G∵在ABC △中,90ACB ∠=︒,6AC BC ==,∴45A B ∠=∠=︒∵DF DE ⊥于点D ,且DE DF =,∴90EDF ∠=︒,ADG 与DEF 是等腰直角三角形.∴45AGD DEF ∠=∠=︒,AD DG =,90DCF CFD ∠+∠=︒,∴135CEF FGH ∠=∠=︒,∵点D 是AC 的中点,∴132CD AD AC ===,∴CD DG = ∴CE FG =∵FH CF ⊥于点F ,∴90CFG ∠=︒,∴90GFH CFD ∠+∠=︒∴DCF GFH ∠=∠∴CEF FGH ≌∴CF FH =;(2)依然成立理由:设AH ,DF 交于点G ,由题意可得出:DF=DE ,∴∠DFE=∠DEF=45°,∵AC=BC ,∴∠A=∠CBA=45°,∵DF ∥BC ,∴∠CBA=∠FGB=45°,∴∠FGH=∠CEF=45°,∵点D 为AC 的中点,DF ∥BC ,∴DG=12BC,DC=12AC , ∴DG=DC ,∴EC=GF ,∵∠DFC=∠FCB ,∴∠GFH=∠FCE ,在△FCE 和△HFG 中CEF FGH EC GFECF GFH ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△FCE ≌△HFG(ASA),∴HF=FC.由(1)可知ABC △和CFH △均为等腰直角三角形当他们面积相等时,6CF AC ==. ∴2233DE DF CF CD ==-=∴333CE DE DC =-=-∴点E 与点C 之间的距离为333-.【点睛】本题考查了全等三角形的判定和性质、等腰直角三角形的性质以及勾股定理,学会利用全等和等腰三角形的性质,借助勾股定理解决问题.25.(1)13,5;(2)等腰直角三角形,理由见解析;(3)当P 的坐标为(1304,)时,PD+PF 73【解析】【分析】(1)根据阅读材料中A 和B 的坐标,利用两点间的距离公式即可得出答案;由于M 、N 在平行于y 轴的直线上,根据M 和N 的纵坐标利用公式1|y -2|y 即可求出MN 的距离; (2)由三个顶点的坐标分别求出DE ,DF ,EF 的长,即可判定此三角形的形状;(3)作F 关于x 轴的对称点F',连接DF',与x 轴交于点P ,此时PD PF +最短,最短距离为DF',P 的坐标即为直线DF'与x 轴的交点.【详解】解:(1)∵()2, 4A 、()3, 8B --∴()()22AB 234813=+++=故A 、B 两点间的距离为:13.∵M 、N 在平行于y 轴的直线上,点M 的纵坐标为4,点N 的纵坐标为-1∴()MN 415=--=故M 、N 两点的距离为5.(2)∵()1, 6D 、()3, 3E -、()4, 2F∴()()22DE 13635=++-= ()()22DF 14625=-+-= ()()22EF 343252=--+-=∴DE=DF ,222DE DF EF +=∴△DEF 为等腰直角三角形(3)作F 关于x 轴的对称点F',连接DF',与x 轴交于点P ,此时DP+PF 最短设直线DF'的解析式为y=kx+b将D (1,6),F'(4,-2)代入得:642k b k b +=⎧⎨+=-⎩解得83263k b ⎧=-⎪⎪⎨⎪=⎪⎩∴直线DF'的解析式为:826y 33x =-+ 令y=0,解得13x 4=,即P 的坐标为(1304,) ∵PF=PF'∴PD+PF=PD+ PF'= DF'()()22146273-++=故当P 的坐标为(1304,)时,PD+PF 73 【点睛】本题属于一次函数综合题,待定系数法求一次函数解析式以及一次函数与x 轴的交点,弄清楚材料中的距离公式是解决本题的关键.26.(1)①BC =DC +EC ,理由见解析;②证明见解析;(2)6.【解析】【分析】(1)证明△BAD≌△CAE,根据全等三角形的性质解答;(2)根据全等三角形的性质得到BD=CE,∠ACE=∠B,得到∠DCE=90°,根据勾股定理计算即可;(3)作AE⊥AD,使AE=AD,连接CE,DE,证明△BAD≌△CAE,得到BD=CE=9,根据勾股定理计算即可.【详解】(1)①解:BC=DC+EC,理由如下:∵∠BAC=∠DAE=90°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴BD=EC,∴BC=DC+BD=DC+EC,;故答案为:BC=DC+EC;②证明:∵Rt△ABC中,AB=AC,∴∠B=∠ACB=45°,由(1)得,△BAD≌△CAE,∴BD=CE,∠ACE=∠B=45°,∴∠DCE=∠ACB+∠ACE=90°,∴CE2+CD2=ED2,在Rt△ADE中,AD2+AE2=ED2,又AD=AE,∴BD2+CD2=2AD2;(2)解:作AE⊥AD,使AE=AD,连接CE,DE,如图2所示:∵∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,在△BAD与△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE=9,∵∠ADC=45°,∠EDA=45°,∴∠EDC=90°,∴DE===6,∵∠DAE=90°,∴AD=AE=DE=6.【点睛】本題是四边形综合题目,考查的是全等三角形的判定和性质、等直角三角形的性质、勾股定理、直角三角形的判定等知识:本题综合性强,熟练掌握等腰直角三角形的性质,证明三角形全等是解题的关键.27.(1)∠BGD=120°;(2)见解析;(3)S四边形ABCD=263.【解析】【分析】(1)只要证明△DAE≌△BDF,推出∠ADE=∠DBF,由∠EGB=∠GDB+∠GBD=∠GDB+∠ADE=60°,推出∠BGD=180°-∠BGE=120°;(2)如图3中,延长GE到M,使得GM=GB,连接BD、CG.由△MBD≌△GBC,推出DM=GC,∠M=∠CGB=60°,由CH⊥BG,推出∠GCH=30°,推出CG=2GH,由CG=DM=DG+GM=DG+GB,即可证明2GH=DG+GB;(3)解直角三角形求出BC即可解决问题;【详解】(1)解:如图1﹣1中,∵四边形ABCD是菱形,∴AD=AB,∵∠A=60°,∴△ABD是等边三角形,∴AB=DB,∠A=∠FDB=60°,在△DAE和△BDF中,。
八年级数学上学期第一次月考试卷(含解析) 新人教版-新人教版初中八年级全册数学试题
2015-2016学年某某省某某市庆元县岭头乡中学八年级(上)第一次月考数学试卷一、选择题(每小题3分,共30分)命1.下列语句是命题的是()A.作直线AB的垂线B.在线段AB上取点CC.同旁内角互补 D.垂线段最短吗?2.在下列长度的四根木棒中,能与4cm、9cm长的两根木棒钉成一个三角形的是()A.4cm B.5cm C.9cm D.13cm3.工人师傅砌门时,常用一根木条固定长方形门框,使其不变形,这样做的根据是()A.两点之间的线段最短B.三角形具有稳定性C.长方形是轴对称图形D.长方形的四个角都是直角4.如图,∠BAC=90°,AD⊥BC,则图中互余的角有()A.2对B.3对C.4对D.5对5.小明不慎将一块三角形的玻璃碎成如图所示的四块(图中所标1、2、3、4),你认为将其中的哪一块带去,就能配一块与原来大小一样的三角形玻璃?应该带第_____块去,这利用了三角形全等中的_____原理()A.2;SAS B.4;ASA C.2;AAS D.4;SAS6.在数学课上,同学们在练习画边AC上的高时,有一部分同学画出下列四种图形,请你判断一下,正确的是()A.B.C.D.7.下列叙述中:①任意一个三角形的三条高至少有一条在此三角形内部;②以a,b,c为边(a,b,c都大于0,且a+b>c)可以构成一个三角形;③一个三角形内角之比为3:2:1,此三角形为直角三角形;④有两个角和一条边对应相等的两个三角形全等;正确的有()个.A.1 B.2 C.3 D.48.如图,点A、B、C、D、E、F是平面上的6个点,则∠A+∠B+∠C+∠D+∠E+∠F的度数是()A.180°B.360°C.540°D.720°9.如图,点D、E分别在AC、AB上,已知AB=AC,添加下列条件,不能说明△ABD≌△ACE 的是()A.∠B=∠C B.AD=AE C.∠BDC=∠CEB D.BD=CE10.如图所示,在△ABC中,已知点D,E,F分别为边BC,AD,CE的中点,且S△ABC=4cm2,则S阴影等于()A.2cm2B.1cm2C.cm2D.cm2二、填空题(每小题4分,共24分)11.把“对顶角相等”改写成“如果…那么…”的形式是:_______.12.如图,∠A=50°,∠ABO=28°,∠ACO=32°,则∠BDC=_______度,∠BOC=_______度.13.已知图中的两个三角形全等,则∠α的度数是_______.14.如图,在△ABC中,AB=2013,AC=2010,AD为中线,则△ABD与△ACD的周长之差=_______.15.如图,已知AC=DB,再添加一个适当的条件_______,使△ABC≌△DCB.(只需填写满足要求的一个条件即可).16.已知,在△ABC中,AD是BC边上的高线,且∠ABC=26°,∠ACD=55°,则∠BAC=_______.三、综合题(共46分)17.如图,在△ABC中,∠BAC是钝角,按要求完成下列画图.(不写作法,保留作图痕迹,并分别写出结论)①用尺规作∠BAC的角平分线AE.②用三角板作AC边上的高BD.③用尺规作AB边上的垂直平分线MN.18.如图,已知∠B=∠C,AD=AE,则AB=AC,请说明理由(填空)解:在△ABC和△ACD中,∠B=∠_______ (_______)∠A=∠_______ (_______)AE=_______ (已知)∴△ABE≌△ACD (_______)∴AB=AC(_______)19.已知:如图,∠ACD=2∠B,CE平分∠ACD.求证:CE∥AB.20.已知:如图,在△ABC中,∠BAC=80°,AD⊥BC于D,AE平分∠DAC,∠B=60°,求∠C、∠DAE的度数.21.如图,AB=AC,AD=AE,∠BAC=∠DAE.求证:BE=CD.22.在△ABC中,∠AOB=90°,AO=BO,直线MN经过点O,且AC⊥MN于C,BD⊥MN于D (1)当直线MN绕点O旋转到图①的位置时,求证:CD=AC+BD;(2)当直线MN绕点O旋转到图②的位置时,求证:CD=AC﹣BD;(3)当直线MN绕点O旋转到图③的位置时,试问:CD、AC、BD有怎样的等量关系?请写出这个等量关系,并加以证明.2015-2016学年某某省某某市庆元县岭头乡中学八年级(上)第一次月考数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)命1.下列语句是命题的是()A.作直线AB的垂线B.在线段AB上取点CC.同旁内角互补 D.垂线段最短吗?【考点】命题与定理.【分析】根据命题的定义作答.【解答】解:A、是作图语言,不符合命题的定义,不是命题;B、是作图语言,不符合命题的定义,不是命题;C、符合命题的定义,是命题;D、是一个问句,不符合命题的定义,不是命题.故选C.2.在下列长度的四根木棒中,能与4cm、9cm长的两根木棒钉成一个三角形的是()A.4cm B.5cm C.9cm D.13cm【考点】三角形三边关系.【分析】易得第三边的取值X围,看选项中哪个在X围内即可.【解答】解:设第三边为c,则9+4>c>9﹣4,即13>c>5.只有9符合要求.故选C.3.工人师傅砌门时,常用一根木条固定长方形门框,使其不变形,这样做的根据是()A.两点之间的线段最短B.三角形具有稳定性C.长方形是轴对称图形D.长方形的四个角都是直角【考点】三角形的稳定性.【分析】在窗框上斜钉一根木条,构成三角形,故可用三角形的稳定性解释.【解答】解:盖房子时,在窗框未安装好之前,木工师傅常常先在窗框上斜钉一根木条,这样就构成了三角形,故这样做的数学道理是三角形的稳定性.故选B.4.如图,∠BAC=90°,AD⊥BC,则图中互余的角有()A.2对B.3对C.4对D.5对【考点】直角三角形的性质.【分析】此题直接利用直角三角形两锐角之和等于90°的性质即可顺利解决.【解答】解:∵∠BAC=90°∴∠B+∠C=90°①;∠BAD+∠CAD=90°②;又∵AD⊥BC,∴∠BDA=∠CDA=90°,∴∠B+∠BAD=90°③;∠C+∠CAD=90°④.故共4对.故选C.5.小明不慎将一块三角形的玻璃碎成如图所示的四块(图中所标1、2、3、4),你认为将其中的哪一块带去,就能配一块与原来大小一样的三角形玻璃?应该带第_____块去,这利用了三角形全等中的_____原理()A.2;SAS B.4;ASA C.2;AAS D.4;SAS【考点】全等三角形的应用.【分析】根据全等三角形的判断方法解答.【解答】解:由图可知,带第4块去,符合“角边角”,可以配一块与原来大小一样的三角形玻璃.故选:B.6.在数学课上,同学们在练习画边AC上的高时,有一部分同学画出下列四种图形,请你判断一下,正确的是()A.B.C.D.【考点】三角形的角平分线、中线和高.【分析】根据三角形的高的概念直接观察图形进行判断即可得出答案.【解答】解:AC边上的高应该是过B作垂线段AC,符合这个条件的是C;A,B,D都不过B点,故错误;故选C.7.下列叙述中:①任意一个三角形的三条高至少有一条在此三角形内部;②以a,b,c为边(a,b,c都大于0,且a+b>c)可以构成一个三角形;③一个三角形内角之比为3:2:1,此三角形为直角三角形;④有两个角和一条边对应相等的两个三角形全等;正确的有()个.A.1 B.2 C.3 D.4【考点】全等三角形的判定;三角形的角平分线、中线和高;三角形三边关系;三角形内角和定理.【分析】锐角三角形的三条高都在三角形的内部,直角三角形有一条高在三角形的内部,两条在三角形的两边上,钝角三角形的一条高在三角形的内部,两条高在三角形的外部,根据以上内容即可判断①;举出反例a=2,b=c=1,满足a+b>c,但是边长为1、1、2不能组成三角形,即可判断②;设三角形的三角为3x°,2x°,x°,由三角形的内角和定理得:3x+2x+x=180,求出3x=90,得出三角形是直角三角形,即可判断③;根据两条边和其中一边的对角对应相等的两个三角形不一定全等即可判断④.【解答】解:∵锐角三角形的三条高都在三角形的内部,直角三角形有一条高在三角形的内部,两条在三角形的两边上,钝角三角形的一条高在三角形的内部,两条高在三角形的外部,∴①正确;∵当a=2,b=c=1时,满足a+b>c,但是边长为1、1、2不能组成三角形,∴②错误;∵设三角形的三角为3x°,2x°,x°,∴由三角形的内角和定理得:3x+2x+x=180,∴x=30,3x=90,即三角形是直角三角形,∴③正确;∵两条边和其中一边的对角对应相等的两个三角形不一定全等,∴④错误;故选B.8.如图,点A、B、C、D、E、F是平面上的6个点,则∠A+∠B+∠C+∠D+∠E+∠F的度数是()A.180°B.360°C.540°D.720°【考点】三角形内角和定理.【分析】先根据三角形外角的性质得出∠A+∠B=∠1,∠E+∠F=∠2,∠C+∠D=∠3,再根据三角形的外角和是360°进行解答.【解答】解:∵∠1是△ABG的外角,∴∠1=∠A+∠B,∵∠2是△EFH的外角,∴∠2=∠E+∠F,∵∠3是△CDI的外角,∴∠3=∠C+∠D,∵∠1、∠3、∠3是△GIH的外角,∴∠1+∠2+∠3=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.故选B.9.如图,点D、E分别在AC、AB上,已知AB=AC,添加下列条件,不能说明△ABD≌△ACE 的是()A.∠B=∠C B.AD=AE C.∠BDC=∠CEB D.BD=CE【考点】全等三角形的判定.【分析】要使△ABD≌△ACE,则需对应边相等,夹角相等,可用两边夹一角,也可用两角夹一边判定全等.【解答】解:已知条件中AB=AC,∠A为公共角,A中∠B=∠C,满足两角夹一边,可判定其全等,A正确;B中AD=AE两边夹一角,也能判定全等,B也正确;C中∠BDC=∠CEB,即∠ADB=∠AEC,又∠A为公共角,∴∠B=∠C,所以可得三角形全等,C 对;D中两边及一角,但角并不是夹角,不能判定其全等,D错.故选D.10.如图所示,在△ABC中,已知点D,E,F分别为边BC,AD,CE的中点,且S△ABC=4cm2,则S阴影等于()A.2cm2B.1cm2C.cm2D.cm2【考点】三角形的面积.【分析】根据三角形的面积公式,知:等底等高的两个三角形的面积相等.【解答】解:S阴影=S△BCE=S△ABC=1cm2.故选:B.二、填空题(每小题4分,共24分)11.把“对顶角相等”改写成“如果…那么…”的形式是:如果两个角是对顶角,那么它们相等.【考点】命题与定理.【分析】先找到命题的题设和结论,再写成“如果…那么…”的形式.【解答】解:∵原命题的条件是:“两个角是对顶角”,结论是:“它们相等”,∴命题“对顶角相等”写成“如果…那么…”的形式为:“如果两个角是对顶角,那么它们相等”.故答案为:如果两个角是对顶角,那么它们相等.12.如图,∠A=50°,∠ABO=28°,∠ACO=32°,则∠BDC= 78 度,∠BOC= 110 度.【考点】三角形的外角性质;三角形内角和定理.【分析】本题考查的是三角形的外角性质.【解答】解:∵∠A=50°,∠ABO=28°,∠ACO=32°,∴∠BDC=∠A+∠ABO=78°,∴∠BOC=∠BDC+∠ACO=110°.13.已知图中的两个三角形全等,则∠α的度数是50°.【考点】全等三角形的性质.【分析】根据全等三角形对应角相等解答即可.【解答】解:∵两个三角形全等,∴α=50°.故答案为:50°.14.如图,在△ABC中,AB=2013,AC=2010,AD为中线,则△ABD与△ACD的周长之差= 3 .【考点】三角形的角平分线、中线和高.【分析】根据三角形中线的定义可得BD=CD,然后根据三角形的周长公式列式计算即可得解.【解答】解:∵AD为中线,∴BD=CD,∴△ABD与△ACD的周长之差=(AB+AD+BD)﹣(AC+AD+CD)=AB﹣AC,∵AB=2013,AC=2010,∴△ABD与△ACD的周长之差=2013﹣2010=3.故答案为:3.15.如图,已知AC=DB,再添加一个适当的条件AB=DC ,使△ABC≌△DCB.(只需填写满足要求的一个条件即可).【考点】全等三角形的判定.【分析】要使△ABC≌△DCB,由于BC是公共边,若补充一组边相等,则可用SSS判定其全等.【解答】解:添加AB=DC∵AC=DB,BC=BC,AB=DC∴△ABC≌△DCB∴加一个适当的条件是AB=DC.16.已知,在△ABC中,AD是BC边上的高线,且∠ABC=26°,∠ACD=55°,则∠BAC= 99°或29°.【考点】三角形内角和定理.【分析】根据AD的不同位置,分两种情况进行讨论:AD在△ABC的内部,AD在△ABC的外部,分别求得∠BAC的度数即可.【解答】解:如图,当AD在△ABC的内部时,∠BAC=180°﹣∠B﹣∠C=180°﹣26°﹣55°=99°;如图,当AD在△ABC的外部时,∠BAC=∠ACD﹣∠B=55°﹣26°=29°.故答案为:99°或29°三、综合题(共46分)17.如图,在△ABC中,∠BAC是钝角,按要求完成下列画图.(不写作法,保留作图痕迹,并分别写出结论)①用尺规作∠BAC的角平分线AE.②用三角板作AC边上的高BD.③用尺规作AB边上的垂直平分线MN.【考点】作图—复杂作图.【分析】(1)根据角平分线的做法作图即可;(2)利用直角三角板,一条直角边与AC重合,另一条直角边过点B,再画垂线即可;(3)根据线段垂直平分线的作法作图.【解答】解:如图所示:.18.如图,已知∠B=∠C,AD=AE,则AB=AC,请说明理由(填空)解:在△ABC和△ACD中,∠B=∠ C (已知)∠A=∠ A (公共角)AE= AD (已知)∴△ABE≌△ACD (AAS )∴AB=AC(全等三角形对应边相等)【考点】全等三角形的判定与性质.【分析】根据题干中给出的∠B=∠C,AD=AE和公共角∠A即可证明△ABC≌△ACD,根据全等三角形对应边相等的性质即可解题.【解答】证明:在△ABC和△ACD中,,∴△ABC≌△ACD(AAS),∴AB=AC(全等三角形对应边相等).19.已知:如图,∠ACD=2∠B,CE平分∠ACD.求证:CE∥AB.【考点】平行线的判定.【分析】由CE为角平分线,利用角平分线的定义得到一对角相等,再由已知一对角相等,利用等量代换得到一对同位角相等,利用同位角相等两直线平行即可得证.【解答】证明:∵CE平分∠ACD,∴∠ACD=2∠DCE,∵∠ACD=2∠B,∴∠DCE=∠B,∴AB∥CE.20.已知:如图,在△ABC中,∠BAC=80°,AD⊥BC于D,AE平分∠DAC,∠B=60°,求∠C、∠DAE的度数.【考点】三角形内角和定理.【分析】先在△ABC中根据三角形内角和定理计算出∠C=40°,再根据垂直的定义得到∠ADC=90°,则在△ADC中,根据三角形内角和计算出∠DAC=50°,然后根据角平分线的定义求解.【解答】解:在△ABC中,∵∠BAC+∠B+∠C=180°,∴∠C=180°﹣80°﹣60°=40°,∵AD⊥BC于D,∴∠ADC=90°,在△ADC中,∠DAC=90°﹣∠C=90°﹣40°=50°,∵AE平分∠DAC,∴∠DAE=∠DAC=25°.21.如图,AB=AC,AD=AE,∠BAC=∠DAE.求证:BE=CD.【考点】全等三角形的判定与性质.【分析】首先证明∠BAE=∠CAD,再利用SAS证明△BAE≌△CAD即可.【解答】解:∵∠BAC=∠DAE,∴∠BAC+∠CAE=∠DAE+∠CAE,∴∠BAE=∠CAD,∵AB=AC,AD=AE,∴△BAE≌△CAD(SAS),∴BE=CD.22.在△ABC中,∠AOB=90°,AO=BO,直线MN经过点O,且AC⊥MN于C,BD⊥MN于D (1)当直线MN绕点O旋转到图①的位置时,求证:CD=AC+BD;(2)当直线MN绕点O旋转到图②的位置时,求证:CD=AC﹣BD;(3)当直线MN绕点O旋转到图③的位置时,试问:CD、AC、BD有怎样的等量关系?请写出这个等量关系,并加以证明.【考点】几何变换综合题.【分析】(1)通过证明△ACO≌△ODB得到OC=BD,AC=OD,则CD=AC+BD;(2)通过证明△ACO≌△ODB得到OC=BD,AC=OD,则CD=AC﹣BD;(3)通过证明△ACO≌△ODB得到OC=BD,AC=OD,则CD=BD﹣AC.【解答】解:(1)如图1,∵△AOB中,∠AOB=90°,∴∠AOC+∠BOD=90°,直线MN经过点O,且AC⊥MN于C,BD⊥MN于D,∴∠ACO=∠BDO=90°∴∠AOC+∠OAC=90°,∴∠OAC=∠BOD,在△ACO和△ODB中,,∴△ACO≌△ODB(AAS),∴OC=BD,AC=OD,∴CD=AC+BD;(2)如图2,∵△AOB中,∠AOB=90°,∴∠AOC+∠BOD=90°,直线MN经过点O,且AC⊥MN于C,BD⊥MN于D,∴∠ACO=∠BDO=90°∴∠AOC+∠OAC=90°,∴∠OAC=∠BOD,在△ACO和△ODB中,,∴△ACO≌△ODB(AAS),∴OC=BD,AC=OD,∴CD=OD﹣OC=AC﹣BD,即CD=AC﹣BD.(3)如图3,∵△AOB中,∠AOB=90°,∴∠AOC+∠BOD=90°,直线MN经过点O,且AC⊥MN于C,BD⊥MN于D,∴∠ACO=∠BDO=90°∴∠AOC+∠OAC=90°,∴∠OAC=∠BOD,在△ACO和△ODB中,,∴△ACO≌△ODB(AAS),∴OC=BD,AC=OD,∴CD=OC﹣OD=BD﹣AC,即CD=BD﹣AC.。
八年级数学上学期第一次月考试题含解析新人教版
八年级数学上学期第一次月考试题(含解析新人教版)重庆七十一中2015-2016学年八年级数学上学期第一次月考试题一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上对应题目的正确答案标号涂黑.1.25的平方根是()A.5B.±5C.D.±2.若x2x4()=x16,则括号内应填x的代数式为()A.x10B.x8C.x4D.x23.计算(﹣a2)3的结果是()A.a5B.﹣a5C.a6D.﹣a64.下列计算正确的是()A.x2x3=x6B.(x2)3=x5C.x2+x3=x5D.x6÷x3=x3 5.有一个数值转换器,原理如图所示,当输入x的值为16时,输出的y的值为()A.8B.C.2D.36.下列运算正确的是()A.B.4C.=6D.7.计算(﹣x2y3)3(﹣xy2)的结果是()A.﹣x7y11B.x7y11C.x6y8D.﹣x7y88.化简x(2x﹣1)﹣x2(2﹣x)的结果是()A.﹣x3﹣xB.x3﹣xC.﹣x2﹣1D.x3﹣19.下列运算的结果等于x2﹣3x﹣18的是()A.(x+3)(x﹣6)B.(x﹣3)(x+6)C.(x+2)(x ﹣9)D.(x﹣2)(x+9)10.下列计算中错误的是()A.(x2﹣5)(3x﹣7)=6x2﹣29x+35B.(3x+7)(10x ﹣8)=30x2﹣36x﹣56C.(﹣3x+)(﹣)=xxD.(1﹣x)(x+1)+(x+2)(x ﹣2)=﹣311.已知:a+b=m,ab=﹣4,化简(a﹣2)(b﹣2)的结果是()A.6B.2m﹣8C.2mD.﹣2m12.若2x3﹣ax2﹣5x+5=(2x2+ax﹣1)(x﹣b)+3,其中a,b为整数,则a+b的值为()A.﹣4B.﹣2C.0D.4二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.化简的结果是.14.比较大小:0.5.15.若xn=5,yn=3,则(xy2)n=.16.(﹣a2b)2a=.17.定义=ad﹣bc.若=8,则x=.18.一个长方形的长减少5cm,宽增加2cm,就变成了一个正方形,并且这两个图形的面积相等,则原长方形的面积为cm2.三、解答题:(本大题2个小题,每小题7分,共14分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上.19.计算:.20.化简:(a+3)2+a(4﹣a).四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上.21.先化简,再求值:x(x+2)﹣(x+1)(x﹣1),其中x=﹣.22.已知+(b﹣)2=0,求代数式2b2+(a+b)(a﹣b)﹣(a﹣b)2的值.23.如图,大小两个正方形的边长分别为a,b.求阴影部分的面积S(用含a,b的代数式表示).24.若(x+m)(x2﹣3x+n)的积中不含x2、x项,求m和n的值.五、解答题:(本大题2个小题,每小题12分,共24分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上.25.(1)解方程:3(x﹣1)3﹣1=80;(2)已知一个正数的平方根是a+3与2a﹣15,求a的值;(3)已知x,y为实数,且y=+4,求+的值.26.阅读后作答:我们知道,有些代数恒等式可以用平面图形的面积来表示,例如(2a+b)(a+b)=2a2+3ab+b2,就可以用图1所示的面积关系来说明.(1)图2中阴影部分的面积为;(2)根据图3写出一个等式;(3)已知等式(x+p)(x+q)=x2+(p+q)x+pq,请画出一个相应的几何图形加以说明. 2015-2016学年重庆七十一中八年级(上)第一次月考数学试卷参考答案与试题解析一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上对应题目的正确答案标号涂黑.1.25的平方根是()A.5B.±5C.D.±【考点】平方根.【分析】根据开平方的意义,可得答案.【解答】解;25的平方根是±5,故选:B.2.若x2x4()=x16,则括号内应填x的代数式为()A.x10B.x8C.x4D.x2【考点】同底数幂的乘法.【分析】根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,即可得出答案.【解答】解:设括号里面的代数式为xa,则x2+4+a=x16,即可得2+4+a=16,解得:a=10.故选A.3.计算(﹣a2)3的结果是()A.a5B.﹣a5C.a6D.﹣a6【考点】幂的乘方与积的乘方.【分析】根据积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘,进行计算即可.【解答】解:(﹣a2)3=﹣a2×3=﹣a6.故选D.4.下列计算正确的是()A.x2x3=x6B.(x2)3=x5C.x2+x3=x5D.x6÷x3=x3【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据同底数幂的乘法、幂的乘方,合并同类项,同底数幂的除法求出每个式子的值,再进行判断即可.【解答】解:A、x2x3=x5,故本选项错误;B、(x2)3=x6,故本选项错误;C、x2和x3不是同类项,不能合并,故本选项错误;D、x6÷x3=x3,故本选项正确;故选D.5.有一个数值转换器,原理如图所示,当输入x的值为16时,输出的y的值为()A.8B.C.2D.3【考点】算术平方根.【分析】先看懂数值转换器,若输入一个数,求出的这个数的算术平方根,若结果是有理数,再重新输入,若结果是无理数就输出.据此作答即可.【解答】解:当输入是16时,取算术平方根是4,4是有理数,再把4输入,4的算术平方根是2,2是有理数,再把2输入,2取算术平方根是,是无理数,所以输出是.故选B.6.下列运算正确的是()A.B.4C.=6D.【考点】实数的运算.【分析】原式各项计算得到结果,即可做出判断.【解答】解:A、原式=|﹣2|=2,错误;B、原式=4﹣3=,错误;C、原式=2×=6,正确;D、原式===3,错误,故选C7.计算(﹣x2y3)3(﹣xy2)的结果是()A.﹣x7y11B.x7y11C.x6y8D.﹣x7y8【考点】单项式乘单项式.【分析】根据单项式乘单项式的运算法则进行计算,选择正确答案即可.【解答】解:(﹣x2y3)3(﹣xy2)=x7y11,故选:B.8.化简x(2x﹣1)﹣x2(2﹣x)的结果是()A.﹣x3﹣xB.x3﹣xC.﹣x2﹣1D.x3﹣1【考点】单项式乘多项式.【分析】原式利用单项式乘多项式法则计算,去括号合并即可得到结果.【解答】解:原式=2x2﹣x﹣2x2+x3=x3﹣x,故选B.9.下列运算的结果等于x2﹣3x﹣18的是()A.(x+3)(x﹣6)B.(x﹣3)(x+6)C.(x+2)(x ﹣9)D.(x﹣2)(x+9)【考点】多项式乘多项式.【分析】各项利用多项式乘以多项式法则计算得到结果,即可做出判断.【解答】解:A、原式=x2﹣3x﹣18,符合题意;B、原式=x2+3x﹣18,不合题意;C、原式=x2﹣7x﹣18,不合题意;D、原式=x2+7x﹣18,不合题意,故选A10.下列计算中错误的是()A.(x2﹣5)(3x﹣7)=6x2﹣29x+35B.(3x+7)(10x﹣8)=30x2﹣36x﹣56C.(﹣3x+)(﹣)=xxD.(1﹣x)(x+1)+(x+2)(x ﹣2)=﹣3【考点】多项式乘多项式;单项式乘多项式.【分析】原式各项利用多项式乘以多项式法则计算得到结果,即可做出判断.【解答】解:A、原式=3x3﹣7x2﹣15x+35,错误;B、原式=30x2﹣36x﹣56,正确;C、原式=x2﹣x,正确;D、原式=1﹣x2+x2﹣4=﹣3,正确,故选A11.已知:a+b=m,ab=﹣4,化简(a﹣2)(b﹣2)的结果是()A.6B.2m﹣8C.2mD.﹣2m【考点】整式的混合运算—化简求值.【分析】(a﹣2)(b﹣2)=ab﹣2(a+b)+4,然后代入求值即可.【解答】解:(a﹣2)(b﹣2)=ab﹣2(a+b)+4=﹣4﹣2m+4=﹣2m.故选D.12.若2x3﹣ax2﹣5x+5=(2x2+ax﹣1)(x﹣b)+3,其中a,b为整数,则a+b的值为()A.﹣4B.﹣2C.0D.4【考点】一元二次方程的定义;多项式乘多项式.【分析】根据多项式的乘法把等式右边展开,然后根据对应项系数相等列方程求出a、b的值,然后相加计算即可得解.【解答】解:∵(2x2+ax﹣1)(x﹣b)+3=2x3﹣(2b﹣a)x2﹣(ab+1)x+b+3,∴2b﹣a=a,b+3=5,解得b=2,a=2,所以,a+b=2+2=4.故选D.二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.化简的结果是.【考点】二次根式的性质与化简.【分析】直接利用二次根式的性质化简求出即可.【解答】解:原式==.故答案是:.14.比较大小:>0.5.【考点】实数大小比较.【分析】首先把0.5变为,然后估算的整数部分,再根据比较实数大小的方法进行比较即可.【解答】解:∵0.5=,2<<3,∴>1,∴故填空答案:>.15.若xn=5,yn=3,则(xy2)n=45.【考点】幂的乘方与积的乘方.【分析】根据幂的乘方和积的乘方的运算法则求解.【解答】解:∵xn=5,yn=3,∴(xy2)n=xny2n=5×9=45.故答案为:45.16.(﹣a2b)2a=a5b2.【考点】幂的乘方与积的乘方;同底数幂的乘法.【分析】根据积的乘方以及同底数幂的乘方等知识求解即可求得答案.【解答】解:(﹣a2b)2a=a4b2a=a5b2.故答案为:a5b2.17.定义=ad﹣bc.若=8,则x=.【考点】多项式乘多项式;解一元一次方程.【分析】已知等式利用已知的新定义化简,计算即可求出x的值.【解答】解:根据题中的新定义得:(x+1)(x+2)﹣(1﹣x)(2﹣x)=8,整理得:x2+3x+2﹣x2+3x﹣2=8,解得:x=,故答案为:18.一个长方形的长减少5cm,宽增加2cm,就变成了一个正方形,并且这两个图形的面积相等,则原长方形的面积为cm2.【考点】整式的混合运算;一元一次方程的应用.【分析】先设正方形的边长是xcm,根据题意可得(x+5)(x﹣2)=x2,解得x=,进而可求面积.【解答】解:正方形的边长是xcm,则(x+5)(x﹣2)=x2,解得x=,∴S=x2=.故答案为:.三、解答题:(本大题2个小题,每小题7分,共14分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上.19.计算:.【考点】二次根式的混合运算.【分析】先进行二次根式的乘法运算,然后进行化简合并.【解答】解:原式=2+4=6.20.化简:(a+3)2+a(4﹣a).【考点】整式的混合运算.【分析】原式第一项利用完全平方公式化简,第二项利用单项式乘以多项式法则计算,去括号合并即可得到结果.【解答】解:原式=a2+6a+9+4a﹣a2=10a+9.四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上.21.先化简,再求值:x(x+2)﹣(x+1)(x﹣1),其中x=﹣.【考点】整式的混合运算—化简求值.【分析】根据单项式乘多项式的法则和平方差公式计算化简,然后代入数据计算即可.【解答】解:x(x+2)﹣(x+1)(x﹣1),=x2+2x﹣(x2﹣1),=x2+2x﹣x2+1,=2x+1,当x=﹣时,原式=2×(﹣)+1=0.22.已知+(b﹣)2=0,求代数式2b2+(a+b)(a﹣b)﹣(a﹣b)2的值.【考点】整式的混合运算—化简求值;非负数的性质:偶次方;非负数的性质:算术平方根.【分析】原式利用平方差公式,以及完全平方公式化简,去括号合并得到最简结果,利用非负数的性质求出a与b 的值,代入计算即可求出值.【解答】解:原式=2b2+a2﹣b2﹣a2+2ab﹣b2=2ab,∵+(b﹣)2=0,∴a=﹣3,b=,当a=﹣3,b=时,原式=﹣3.23.如图,大小两个正方形的边长分别为a,b.求阴影部分的面积S(用含a,b的代数式表示).【考点】整式的混合运算.【分析】利用整体面积减去空白面积得出阴影部分面积求出即可.【解答】解:由图可知,阴影部分的面积为:S=a2+b2﹣a2﹣(a+b)b=a2+b2﹣ab.答:阴影部分的面积为a2+b2﹣ab.24.若(x+m)(x2﹣3x+n)的积中不含x2、x项,求m和n的值.【考点】多项式乘多项式.【分析】原式利用多项式乘以多项式法则计算得到结果,由题意得到x2、x项系数为0,求出m与n的值即可.【解答】解:原式=x3﹣3x2+nx+mx2﹣3mx+mn=x3+(m﹣3)x2+(n﹣3m)x+mn,由题意得到m﹣3=0,n﹣3m=0,解得:m=3,n=9.五、解答题:(本大题2个小题,每小题12分,共24分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上.25.(1)解方程:3(x﹣1)3﹣1=80;(2)已知一个正数的平方根是a+3与2a﹣15,求a的值;(3)已知x,y为实数,且y=+4,求+的值.【考点】立方根;平方根;二次根式有意义的条件.【分析】(1)方程整理后,利用立方根定义开立方即可求出解;(2)根据正数的平方根有2个,且互为相反数求出a的值即可;(3)利用负数没有平方根求出x的值,进而确定出y的值,即可求出原式的值.【解答】解:(1)方程整理得:(x﹣1)3=27,开立方得:x﹣1=3,解得:x=4;(2)根据平方根的性质得,a+3+2a﹣15=0,解得:a=4;(3)满足二次根式与有意义,则,解得:x=9,∴y=0﹣0+4=4,∴原式=3+2=5.26.阅读后作答:我们知道,有些代数恒等式可以用平面图形的面积来表示,例如(2a+b)(a+b)=2a2+3ab+b2,就可以用图1所示的面积关系来说明.(1)图2中阴影部分的面积为(m﹣n)2;(2)根据图3写出一个等式;(3)已知等式(x+p)(x+q)=x2+(p+q)x+pq,请画出一个相应的几何图形加以说明.【考点】多项式乘多项式.【分析】(1)图2中阴影部分面积等于大正方形面积减去四个矩形面积;(2)根据图3写出等式即可;(3)根据已知等式画出相应图形即可.【解答】解:(1)图2中阴影部分的面积为:(m+n)2﹣4mn=m2+n2+2mn﹣4mn=m2﹣2mn+n2=(m﹣n)2;(2)图3表达的代数恒等式为:(2a+b)(a+2b)=2a2+5ab+2b2;(3)等式(x+p)(x+q)=x2+(p+q)x+pq可以用以下图形面积关系说明:故答案为:(1)(m﹣n)2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学试卷马鸣风萧萧2015-2016学年山东省济宁市邹城市北宿中学八年级(上)第一次月考数学试卷一、精心选一选,慧眼识金!(每小题3分,共计30分)1.下列图形中有稳定性的是()A.正方形B.长方形C.直角三角形D.平行四边形2.下列说法正确的是()A.全等三角形是指形状相同的三角形B.全等三角形是指面积相等的两个三角形C.全等三角形的周长和面积相等D.所有等边三角形是全等三角形3.如图,为估计池塘岸边A、B的距离,小方在池塘的一侧选取一点O,测得OA=15米,OB=10米,A、B间的距离不可能是()A.20米B.15米C.10米D.5米4.下列四组图形中,BE是△ABC的高线的图是()A .B .C .D .5.如图所示,△ACB≌A′CB′,∠BCB′=30°,则∠ACA′的度数为()A.20°B.30°C.35°D.40°6.如图,已知AC∥ED,∠C=26°,∠CBE=37°,则∠BED的度数是()A.63°B.83°C.73°D.53°7.已知△ABC中,∠A,∠B,∠C三个角的比例如下,其中能说明△ABC是直角三角形的是()A.2:3:4 B.1:2:3 C.4:3:5 D.1:2:28.下列度数中,不可能是某个多边形的内角和的是()A.180°B.270°C.2700°D.1080°9.如图,在△ABC中,AD平分∠BAC且与BC相交于点D,∠B=40°,∠BAD=30°,则∠C的度数是()A.70°B.80°C.100°D.110°10.已知在正方形网格中,每个小方格都是边长为1的正方形,A,B两点在小方格的顶点上,位置如图所示,点C也在小方格的顶点上,且以A,B,C为顶点的三角形面积为1,则点C的个数为()A.3个B.4个C.5个D.6个二、耐心填一填,一锤定音!(每小题3分,共计15分)11.八边形的内角和等于度.12.如图,已知∠ABE=142°,∠C=72°,则∠A=度,∠ABC=度.13.AD是△ABC的中线,则△ACD的面积△ABD的面积.(填“<”“>”或“=”)14.已知:如图,△OAD≌△OBC,且∠O=70°,∠C=25°,则∠AEB=度.15.如图,三角形纸片ABC中,∠A=65°,∠B=75°,将纸片的一角折叠,使点C落在△ABC内,若∠1=20°,则∠2的度数为度.三、用心做一做,马到成功!(本大题共55分)16.等腰三角形两边长为4cm、6cm,求等腰三角形的周长.17.如图,AB=AC,AD=AE.求证:∠B=∠C.18.如图,C是AB的中点,AD=CE,CD=BE.求证:△DCA≌△EBC.19.在四边形ABCD中,∠D=60°,∠B比∠A大20°,∠C是∠A的2倍,求∠A,∠B,∠C的大小.20.已知AE、AD分别是△ABC的高和角平分线,且∠B=46°,∠C=60°,求∠DAE的度数.21.如图,要测量河两岸相对的两点A,B的距离,可以在AB的垂线BF上取两点C,D,使CD=BC,再定出BF的垂线DE,使A,C,E在一条直线上,这时测得的DE的长就是AB的长,为什么?22.一个零件的形状如图,按规定∠A=90°,∠ABD和∠ACD,应分别是32°和21°,检验工人量得∠BDC=148°,就断定这个零件不合格,运用三角形的有关知识说明零件不合格的理由.2015-2016学年山东省济宁市邹城市北宿中学八年级(上)第一次月考数学试卷参考答案与试题解析一、精心选一选,慧眼识金!(每小题3分,共计30分)1.下列图形中有稳定性的是()A.正方形B.长方形C.直角三角形D.平行四边形考点:三角形的稳定性.分析:稳定性是三角形的特性.解答:解:根据三角形具有稳定性,可得四个选项中只有直角三角形具有稳定性.故选:C.点评:稳定性是三角形的特性,这一点需要记忆.2.下列说法正确的是()A.全等三角形是指形状相同的三角形B.全等三角形是指面积相等的两个三角形C.全等三角形的周长和面积相等D.所有等边三角形是全等三角形考点:全等图形.分析:能够完全重合的两个图形叫做全等形.做题时严格按定义逐个验证.全等形的面积和周长相等.解答:解:A、全等三角形不仅仅形状相同而且大小相同,错;B、全等三角形不仅仅面积相等而且要边、角完全相同,错;C、全等则重合,重合则周长与面积分别相等,则C正确.D、完全相同的等边三角形才是全等三角形,错.故选C.点评:本题考查了全等形的特点,做题时一定要严格按照全等的定义进行.3.如图,为估计池塘岸边A、B的距离,小方在池塘的一侧选取一点O,测得OA=15米,OB=10米,A、B间的距离不可能是()A.20米B.15米C.10米D.5米考点:三角形三边关系.专题:应用题.分析:根据三角形的三边关系,第三边的长一定大于已知的两边的差,而小于两边的和,求得相应范围,看哪个数值不在范围即可.解答:解:∵15﹣10<AB<10+15,∴5<AB<25.∴所以不可能是5米.故选:D.点评:已知三角形的两边,则第三边的范围是:>已知的两边的差,而<两边的和.4.下列四组图形中,BE是△ABC的高线的图是()A.B. C.D.考点:三角形的角平分线、中线和高.分析:三角形的高即从三角形的顶点向对边引垂线,顶点和垂足间的线段.根据概念可知.解答:解:过点B作直线AC的垂线段,即画AC边上的高BE,所以画法正确的是A.故选A.点评:考查了三角形的高的概念,能够正确作三角形一边上的高.5.如图所示,△ACB≌A′CB′,∠BCB′=30°,则∠ACA′的度数为()A.20°B.30°C.35°D.40°考点:全等三角形的性质.分析:根据全等三角形性质求出∠ACB=∠A′CB′,都减去∠A′CB即可.解答:解:∵△ACB≌A′CB′,∴∠ACB=∠A′CB′,∴∠ACB﹣∠A′CB=∠A′CB′﹣∠A′CB,∴∠ACA′=∠BCB′,∵∠BCB′=30°,∴∠ACA′=30°,故选B.点评:本题考查了全等三角形性质的应用,注意:全等三角形的对应角相等.6.如图,已知AC∥ED,∠C=26°,∠CBE=37°,则∠BED的度数是()A.63°B.83°C.73°D.53°考点:三角形的外角性质;平行线的性质.专题:计算题.分析:因为AC∥ED,所以∠BED=∠EAC,而∠EAC是△ABC的外角,所以∠BED=∠EAC=∠CBE+∠C.解答:解:∵在△ABC中,∠C=26°,∠CBE=37°,∴∠CAE=∠C+∠CBE=26°+37°=63°,∵AC∥ED,∴∠BED=∠CAE=63°.故选A.点评:本题考查的是三角形外角与内角的关系及两直线平行的性质.7.已知△ABC中,∠A,∠B,∠C三个角的比例如下,其中能说明△ABC是直角三角形的是()A.2:3:4 B.1:2:3 C.4:3:5 D.1:2:2考点:三角形内角和定理.分析:根据三角形的内角和公式分别求得各角的度数,从而判断其形状.解答:解:A、设三个角分别为2x,3x,4x,根据三角形内角和定理得三个角分别为:40°,60°,80°,所以不是直角三角形;B、设三个角分别为x,2x,3x,根据三角形内角和定理得三个角分别为:30°,60°,90°,所以是直角三角形;C、设三个角分别为3x,4x,5x,根据三角形内角和定理得三个角分别为:45°,60°,75°,所以不是直角三角形;D、设三个角分别为x,2x,2x,根据三角形内角和定理得三个角分别为:36°,72°,72°,所以不是直角三角形.故选B.点评:本题通过设适当的参数,根据三角形内角和定理建立方程求出三个内角的度数后判断.8.下列度数中,不可能是某个多边形的内角和的是()A.180°B.270°C.2700°D.1080°考点:多边形内角与外角.分析:依据多边形的内角和公式可知多边形的内角和能够整除180°.解答:解:∵270不能整除180,∴270°不能是某个多边形的内角和.故选:B.点评:本题主要考查的是多边形的内角和公式,掌握多边形的内角和公式是解题的关键.9.如图,在△ABC中,AD平分∠BAC且与BC相交于点D,∠B=40°,∠BAD=30°,则∠C的度数是()A.70°B.80°C.100°D.110°考点:三角形内角和定理.分析:利用三角形角平分线的定义和三角形内角和定理可求出.解答:解:AD平分∠BAC,∠BAD=30°,∴∠BAC=60°,∴∠C=180°﹣60°﹣40°=80°.故选B.点评:本题主要利用三角形角平分线的定义和三角形内角和定理,关键是熟练掌握相关性质.10.已知在正方形网格中,每个小方格都是边长为1的正方形,A,B两点在小方格的顶点上,位置如图所示,点C也在小方格的顶点上,且以A,B,C为顶点的三角形面积为1,则点C的个数为()A.3个B.4个C.5个D.6个考点:三角形的面积.专题:网格型.分析:怎样选取分类的标准,才能做到点C的个数不遗不漏,按照点C所在的直线分为两种情况:当点C与点A在同一条直线上时,AC边上的高为1,AC=2,符合条件的点C有4个;当点C与点B在同一条直线上时,BC边上的高为1,BC=2,符合条件的点C有2个.解答:解:C点所有的情况如图所示:故选:D.点评:此类题应选取分类的标准,才能做到不遗不漏.二、耐心填一填,一锤定音!(每小题3分,共计15分)11.八边形的内角和等于1080度.考点:多边形内角与外角.分析:n边形的内角和可以表示成(n﹣2)•180°,代入公式就可以求出内角和.解答:解:(8﹣2)×180°=1080°.故答案为:1080°.点评:本题主要考查了多边形的内角和公式,是需要熟记的内容.12.如图,已知∠ABE=142°,∠C=72°,则∠A=70度,∠ABC=38度.考点:三角形的外角性质.分析:根据三角形的一个外角等于和它不相邻的两个内角和及平角定义计算.解答:解:∠A=142°﹣72°=70°,∠ABC=180°﹣142°=38°.故填70,38.点评:掌握三角形的外角的性质:三角形的一个外角等于和它不相邻的两个内角和.13.AD是△ABC的中线,则△ACD的面积=△ABD的面积.(填“<”“>”或“=”)考点:三角形的面积.分析:根据三角形的面积公式以及三角形的中线的概念,知:三角形的中线把三角形的面积分成相等的两部分.解答:解:根据等底同高可得,△ACD的面积=△ABD的面积.点评:注意此题中的结论,是发现相等面积的三角形的常用的一种方法.14.已知:如图,△OAD≌△OBC,且∠O=70°,∠C=25°,则∠AEB=120度.考点:全等三角形的性质;三角形的外角性质.专题:压轴题.分析:结合已知运用两三角形全等及一个角的外角等于另外两个内角的和,就可以得到∠CAE,然后又可以得到∠AEB.解答:解:∵△OAD≌△OBC,∴∠D=∠C=25°,∴∠CAE=∠O+∠D=95°,∴∠AEB=∠C+∠CAE=25°+95°=120°.故填120点评:考查全等三角形的性质和三角形外角的性质,做题时要仔细读图,发现并利用外角是解决本题的核心.15.如图,三角形纸片ABC中,∠A=65°,∠B=75°,将纸片的一角折叠,使点C落在△ABC内,若∠1=20°,则∠2的度数为60度.考点:翻折变换(折叠问题).分析:根据题意,已知∠A=65°,∠B=75°,可结合三角形内角和定理和折叠变换的性质求解.解答:解:∵∠A=65°,∠B=75°,∴∠C=180°﹣(65°+75°)=40度,∴∠CDE+∠CED=180°﹣∠C=140°,∴∠2=360°﹣(∠A+∠B+∠1+∠CED+∠CDE)=360°﹣300°=60度.故填60.点评:本题通过折叠变换考查三角形、四边形内角和定理.注意折叠前后图形全等;三角形内角和为180°;四边形内角和等于360度.三、用心做一做,马到成功!(本大题共55分)16.等腰三角形两边长为4cm、6cm,求等腰三角形的周长.考点:等腰三角形的性质;三角形三边关系.分析:两边的长为4m和6cm,具体哪边是底,哪边是腰没有明确,应分两种情况讨论.解答:解:当腰长是4m,底长是6cm时,能构成三角形,则周长是:4+4+6=14cm;当腰长是6m,底长是4cm时,能构成三角形,则周长是4+6+6=16cm;则等腰三角形的周长是14cm或16cm.点评:本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.17.如图,AB=AC,AD=AE.求证:∠B=∠C.考点:全等三角形的判定与性质.专题:证明题.分析:要证∠B=∠C,可利用判定两个三角形全等的方法“两边和它们的夹角对应相等的两个三角形全等”证△ABE≌△ACD,然后由全等三角形对应边相等得出.解答:证明:在△ABE与△ACD中,,∴△ABE≌△ACD(SAS),∴∠B=∠C.点评:本题主要考查了两个三角形全等的其中一种判定方法,即“边角边”判定方法.观察出公共角∠A 是解决本题的关键.18.如图,C是AB的中点,AD=CE,CD=BE.求证:△DCA≌△EBC.考点:全等三角形的判定.专题:证明题.分析:根据中点定义可得AC=BC,再利用SSS判定△DCA≌△EBC即可.解答:证明:∵C是AB的中点,∴AC=BC,在△ACD和△CBE中,,∴△ACD≌△CBE(SSS).点评:此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.19.在四边形ABCD中,∠D=60°,∠B比∠A大20°,∠C是∠A的2倍,求∠A,∠B,∠C的大小.考点:多边形内角与外角.专题:计算题.分析:本题可设∠A=x(度),则∠B=x+20,∠C=2x,利用四边形的内角和即可解决问题.解答:解:设∠A=x,则∠B=x+20°,∠C=2x.四边形内角和定理得x+(x+20°)+2x+60°=360°,解得x=70°.∴∠A=70°,∠B=90°,∠C=140°.点评:本题需仔细分析题意,利用多边形的内角和公式结合方程即可解决问题.20.已知AE、AD分别是△ABC的高和角平分线,且∠B=46°,∠C=60°,求∠DAE的度数.考点:三角形内角和定理.分析:先根据三角形的内角和定理得到∠BAC的度数,再利用角平分线的性质可求出∠DAC=∠BAC,而∠EAC=90°﹣∠C,然后利用∠DAE=∠DAC﹣∠EAC进行计算即可.解答:解:在△ABC中,∠B=46°,∠C=60°∴∠BAC=180°﹣∠B﹣∠C=180°﹣46°﹣60°=74°∵AD是的角平分线∴∵AE是△ABC的高∴∠AEC=90°∴在△AEC中,∠EAC=180°﹣∠AEC﹣∠C=180°﹣90°﹣60°=30°∴∠DAE=∠DAC﹣∠EAC=37°﹣30°=7°.点评:考查了三角形的内角和定理:三角形的内角和为180°.也考查了三角形的高线与角平分线的性质21.如图,要测量河两岸相对的两点A,B的距离,可以在AB的垂线BF上取两点C,D,使CD=BC,再定出BF的垂线DE,使A,C,E在一条直线上,这时测得的DE的长就是AB的长,为什么?考点:全等三角形的应用.专题:应用题.分析:本题是测量两点之间的距离方法中的一种,符合全等三角形全等的条件,方案的操作性强,只要测量的线段和角度在陆地一侧即可实施.解答:解:∵AB⊥BF,DE⊥BF,∴∠ABC=∠EDC=90°,又∵直线BF与AE交于点C,∴∠ACB=∠ECD(对顶角相等),∵CD=BC,∴△ABC≌△EDC,∴AB=ED,即测得DE的长就是A,B两点间的距离.点评:本题考查了全等三角形的应用;解答本题的关键是设计三角形全等,巧妙地借助两个三角形全等,做题时要注意寻找所求线段与已知线段之间的等量关系.22.一个零件的形状如图,按规定∠A=90°,∠ABD和∠ACD,应分别是32°和21°,检验工人量得∠BDC=148°,就断定这个零件不合格,运用三角形的有关知识说明零件不合格的理由.考点:三角形内角和定理.分析:连接AD,利用三角形内角与外角的关系求出此零件合格时∠CDB的度数与已知度数相比较即可.解答:解:不合格,理由如下:连接AD并延长,则∠1=∠ACD+∠CAD,∠2=∠ABD+∠BAD,故∠BDC=∠ACD+∠ABD+∠A=32°+21°+90°=143°,因为∠BDC实际等于148°,所以此零件不合格.点评:本题考查的是三角形内角与外角的关系,比较简单.。