2017-2018学年山东省济宁市邹城市七年级上学期数学期末试卷带答案
2017-2018第一学期期末七年级数学试题及答案
2017—2018学年度第一学期期末教学质量检测七年级数学试卷注意事项:1.答卷前,先将密封线左侧的项目填写清楚.一、选择题:(本大题共16个小题,每小题2分,共32分.在每小题给出的四个选项中只有一项是符合题目要求的,请将它的代号填在题后的括号内.)1.-43的相反数是………… 【 】(A )43 (B )-34 (C ) -43(D ) 342.如图1,小明的家在A 处,书店在B 处,星期日他到书 店去买书,想尽快的赶到书店,请你帮助他选择一条最近的路线 ………………………………………………………………………………【 】 (A )A →C →D →B (B )A →C →F →B (C )A →C →E →F →B (D )A →C →M →B3.下列四种说法中,正确的是 ……………………………………………………… 【 】(A )“3x ”表示“3+x ” (B )“x 2”表示“x +x ”(C )“3x 2”表示“3x ·3x ” (D )“3x +5”表示“x +x +x +5”4.下列计算结果为负数的是 ………………………………………………………… 【 】 (A )-2-(-3) (B )()23- (C )21- (D )-5×(-7)5.迁安市某天的最低气温为零下9℃,最高气温为零上3℃,则这一天的温差为 … 【 】 (A )6℃ (B )-6℃ (C )12℃ (D )-12℃6.嘉琪同学将一副三角板按如图所示位置摆放,其中∠α与∠β一定互补的是 …【 】(A )(B ) (C ) (D )7.解方程2(3)3(4)5x x ---=时,下列去括号正确的是 …………………………【 】 (A )23345x x --+= (B )26345x x ---= (C )233125x x ---= (D )263125x x --+=8.定义新运算:a ⊕b =ab +b ,例如:3⊕2=3×2+2=8,则(-3)⊕4= ……………… 【 】 (A )-8 (B )-10 (C )-16 (D )-24 9. 已知3=x 是关于x 的方程:ax a x +=-34的解,那么a 的值是 ………………【 】 (A )2(B )49 (C )3 (D )29M图1A DB E F·10.如图2,小红做了四道方程变形题,出现错误有【(A )①②③(B )①③④ (C )②③④ (D )①②④11.如图3,将三角形ABC 绕着点C 顺时针旋转50°后得到三角形A ′B ′C , 若∠A´CB´=30°,则∠BCA ′的度数 是…………………………【 】 (A )110° (B )80°(C )50° (D )30°12.若x a +2y 4与-3x 3y 2b 是同类项,则2018(a -b )2 018的值是…………………………………………【 】 (A )2 018 (B )1 (C )-1 (D )-2 018 13.如图4,四个有理数在数轴上的对应点M 、P 、N 、 Q .若点M ,N 表示的有理数互为相反数,则图中表示绝对值最小的数的点是………………【 】 (A )点M (B )点N (C ) 点P (D )点Q14.某企业今年3月份产值为a 万元,4月份比3月份减少了10%,5月份比4月份增加了15%, 则5月份的产值是…………………………【 】(A )(a -10%)(a +15%)万元 (B )a (1-10%)(1+15%)万元 (C )(a -10%+15%)万元 (D )a (1-10%+15%)万元 15.用围棋子按下面的规律摆图形,则摆第n 个图形需要围棋子的枚数是…………【 】(A )4n +1 (B )3n +1 (C )4n +2 (D )3n +2 16. 已知线段AB =10cm ,P A + PB =20cm ,下列说法正确的是…………………………【 】 (A )点P 不能在直线AB 上 (B )点P 只能在直线AB 上 (C )点P 只能在线段AB 的延长线上 (D )点P 不能在线段AB 上 二、填空题(本大题共3小题,共10分;17-18题每小题3分,19题每空2分)17.数轴上的点A 表示﹣3,将点A 先向右移动7个单位长度,再向左移动5个单位长度,那么终点到原点的距离是 个单位长度. 18. 如图5,已知∠AOB =50°,∠AOD= 90°,OC 平分∠AOB . 则∠COD 的度数是 .N M P Q 图4图3 图2图5D19.根据如图6所示的程序计算,写出关于x 的代数式 为 ;若输入x 的值为1,则输出 y 的值为 .三、解答题(本大题共6个小题,共58分,解答应写出文字说明、证明过程或演算步骤)20.(本题满分8分)(1)解方程:1)3(31)1(31++-=-x x(2)计算:32)12()4161()8(2)21(432---⨯-+-÷--⨯图621. (本题满分8分)小明受到《乌鸦喝水》故事的启发,利用量筒和体积相同的小球进行了如图7-1、图7-2、图7-3的操作实验:发现问题:(1)投入第1个小球后,水位上升了 cm ,此时桶里的水位高度达到了 cm ; 提出问题:(2)设投入n 个小球后没有水溢出,用n 表示此时桶里水位的高度 cm ; 解决问题:(3)请你求出最多投入小球多少个水没有从量筒中溢出?(列方程方程求解)图7-1 图7-2 图7-322. (本题满分10分)已知:ab a B A 7722-=-,且7642++-=ab a B . (1)求A 等于多少?(2)若0)2(12=-++b a ,求A 的值.23.(本题满分10分)如图8-1,某学校由于经常拔河,长为40米的拔河比赛专用绳AB 左右两端各有一段(AC 和BD )磨损了,磨损后的麻绳不再符合比赛要求.已知磨损的麻绳总长度不足20米。
山东省济宁市七年级上学期期末数学试卷
山东省济宁市七年级上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)如果一个数的倒数是它本身,那么这个数是()A . 0B . 1C . -1D . ±12. (2分)已知a+b=4,c-d=-3,则(b+c)-(d-a)的值为()A . 7B . -7C . 1D . -13. (2分)如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=32°,那么∠2的度数是()A . 32°B . 58°C . 68°D . 60°4. (2分)若和互为相反数,则x的值是()A . ﹣9B . 9C . ﹣8D . 85. (2分)上海世博会的召开,引来了世人的充分关注,大家纷纷前往参观,据统计10月16日参观人数达到了130万人,若用科学记数法表示当日的参观人数为()A . 130×104人B . 13×105人C .1.3×106人D . 1.3×107人6. (2分)下列计算正确的是()A .B .C .D .7. (2分)数a的相反数是()A . |a|B .C . -aD .8. (2分)将方程变形正确的是()A . 9+B . 0.9+C . 9+D . 0.9+ =3﹣10x9. (2分)(2017·齐齐哈尔) 一个圆锥的侧面积是底面积的3倍,则这个圆锥侧面展开图的圆心角度数为()A . 120°B . 180°C . 240°D . 300°10. (2分)古希腊数学家把数1,3,6,10,15,21,…叫做三角数,它有一定的规律性.若把第一个三角数记为a1 ,第二个三角数记为a2 ,…,第n个三角数记为an ,则an﹣1+an=()()A . (n﹣1)2B . n2C . (n+1)2D . (n+2)2二、填空题 (共4题;共5分)11. (2分) (2017七上·重庆期中) ﹣2倒数是________,﹣2绝对值是________.12. (1分)一列单项式:﹣x2 , 3x3 ,﹣5x4 , 7x5 ,…,按此规律排列,则第7个单项式为________。
2017-2018学年第一学期期末测试七年级数学试题及答案
2017—2018学年第一学期期末测试七年级数学试题温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页。
满分为120分。
考试用时100分钟。
考试结束后,只上交答题卡。
2.答卷前,考生务必用0.5毫米黑色签字笔将自己的学校、班级、姓名、准考证号、考场、座号填写在答题卡规定的位置上,并用2B 铅笔填涂相应位置。
3.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
答案不能答在试题卷上。
24.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;不准使用涂改液、胶带纸、修正带。
不按以上要求作答的答案无效。
第Ⅰ卷(选择题)一、选择题:本大题共12小题,共36分,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1.下列算式:(1) (2)--;(2) 2- ;(3) 3(2)-;(4) 2(2)-. 其中运算结果为正数的个数为(A ) 1 (B ) 2 (C ) 3 (D ) 4【 2.若a 与b 互为相反数,则a-b 等于(A )2a (B )-2a (C ) 0 (D )-2 3.下列变形符合等式基本性质的是(A )如果2a -b =7,那么b =7-2a (B )如果mk =nk ,那么m =n (C )如果-3x =5,那么x =5+3 (D )如果-13a =2,那么a =-64.下列去括号的过程(1)c b a c b a --=--)(; (2)c b a c b a ++=--)(; (3)c b a c b a +-=+-)(; (4)c b a c b a --=+-)(.其中运算结果错误的个数为(A ) 1 (B ) 2 (C ) 3 (D ) 4【 5.下列说法正确的是(A )1-x 是一次单项式 (B)单项式a 的系数和次数都是1 (C )单项式-π2x 2y 2的次数是6 (D)单项式24102x ⨯的系数是26.下列方程:(1)2x -1=x -7 ,(2)12x =13x -1 ,(3)2(x +5)=-4-x , (4)23x =x -2.其中解为x =-6的方程的个数为 (A ) 4 (B ) 3 (C ) 2 (D ) 1 7.把方程5.07.01.023.012.0-=--x x 的分母化为整数的方程是 (A )57203102-=--x x (B )5723102-=--x x (C )572312-=--x x (D )5720312-=--x x 8.森林是地球之肺,每年能为人类提供大约28.3亿吨的有机物,28.3亿吨用科学记数法表示为(A ) 28.3×107(B ) 2.83×108(C )0.283×1010(D )2.83×1099.下列现象中,可用基本事实“两点之间,线段最短”来解释的现象是 (A )用两个钉子就可以把木条固定在墙上(B )利用圆规可以比较两条线段的大小关系 (C )把弯曲的公路改直,就能缩短路程(D )植树时,只要定出两棵树的位置,就能确定同一行树所在的直线10.一个两位数,个位数字为a ,十位数字为b ,把这个两位数的个位数字与十位数字 交换,得到一个新的两位数,则新两位数与原两位数的和为 (A )b a 99+ (B )ab 2 (C )ab ba + (D )b a 1111+ 11.已知表示有理数a 、b 的点在数轴上的位置如图所示:则下列结论正确的是(A )|a|<1<|b| (B )1<a<b (C )1<|a|<b (D ) -b<-a<-1 12.定义符号“*”表示的运算法则为a*b =ab +3a ,若(3*x)+(x*3)=-27,则x = (A )29-(B )29(C )4 (D )-4 第Ⅱ卷(非选择题)(第11题图)二、填空题:本大题共6小题,共24分,只要求填写最后结果,每小题填对得4分. 13.若把45.58°化成以度、分、秒的形式,则结果为 . 14.若xm-1y 3与2xyn的和仍是单项式,则(m-n )2018的值等于______ .15. 若031)2(2=++-y x ,则y x -= . 16.某同学在计算10+2x 的值时,误将“+”看成了“﹣”,计算结果为20, 那么10+2x 的值应为 . 17.如图,数轴上相邻刻度之间的距离是51,若BC=52,A 点在数轴上对应的数值是53-,则B 点在数轴上对应的数值是 .218.我们知道,钟表的时针与分针每隔一定的时间就会重合一次,请利用所学知识确定,时针与分针从上一次重合到下一次重合,间隔的时间是______ 小时.三、解答题:本大题共6个小题,满分60分.解答时请写出必要的演推过程.19.(每小题分5分,本小题满分10分)计算: (1)11(0.5)06(7)( 4.75)42-+--+-- (2)[(﹣5)2×]×(﹣2)3÷7.20.(每小题分5分,本小题满分10分)先化简,再求值: (1)3x 2-[5x-(6x-4)-2x 2],其中x=3(2)(8mn-3m 2)-5mn-2(3mn-2m 2),其中m=-1,n=2. 21.(每小题分5分,本小题满分10分)解方程:53-(1)6322-41--=x x . (2)3125121103--=+x x . 22.(本小题满分8分)一个角的余角比这个角的补角的 13还小10°,求这个角的度数.23.(本大题满分10分)列方程解应用题:A 车和B 车分别从甲,乙两地同时出发,沿同一路线相向匀速而行.出发后1.5小时两车相距75公里,之后再行驶2.5小时A 车到达乙地,而B 车还差40公里才能到达甲地.求甲地和乙地相距多少公里?24.(本小题满分12分)如图,∠AOB 是直角,ON 是∠AOC 的平分线,OM 是∠BOC 的平分线. (1)当∠AOC =40°,求出∠MON 的大小,并写出解答过程理由; (2)当∠AOC =50°,求出∠MON 的大小,并写出解答过程理由; (3)当锐角∠AOC=α时,求出∠MON 的大小,并写出解答过程理由.2017—2018学年第一学期期末测试七年级数学试题参考答案一、选择题(本大题12个小题,每小题3分,共36分)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案CADCBCBDCDCD二、填空题(本大题6个小题,每小题4分,共24分)(第24题图)13.45°34'48"; 14.1; 15.37; 16. 0 ; 17.0或54 ; 18.1112 . 三、解答题(本大题6个小题,共60分) 19.(每小题分5分,本小题满分10分)计算: 解:(1)11(0.5)06(7)( 4.75)42-+--+-- =130.567.5444-+-+ ………………………………………………2分 =13(0.57.5)(64)44--++ ………………………………………………4分 =3. ………………………………………………5分(2)[(﹣5)2×]×(﹣2)3÷7=[25×]×(﹣8)÷7……………………………………1分=[﹣15+8]×(﹣8)÷7………………………………………………2分=﹣7×(﹣8)÷7………………………………………………………3分=56÷7…………………………………………………………4分=8.…………………………………………………………5分20.(每小题分5分,本小题满分10分)先化简,再求值: 解:(1)原式, ………………………3分当时,原式; ………………………5分(2)原式,………………………3分当时,原式. ………………………5分21.(每小题分5分,本小题满分10分)解方程: 解:(1)去分母得:, …………3分移项合并得:; …………5分(2)解:原方程可化为312253--=+x x . …………1分 去分母,得)12(2)53(3--=+x x . …………2分去括号,得24159+-=+x x . …………3分 移项,得215-49+=+x x . …………4分 合并同类项,得1313-=x .系数化为1,得1-=x . …………5分22.(本小题满分8分)解:设这个角的度数为x °, …………1分 根据题意,得90-x =13(180-x)-10, …………5分解得x =60. …………7分 答:这个角的度数为60°. …………8分 23.(本大题满分10分)解:设甲地和乙地相距x 公里,根据题意,列出方程752401.5 1.52.5x x --=+ ………………………………………5分 解方程,得4300360x x -=- ………………………………………7分240x = ………………………………………9分答:甲地和乙地相距240公里. ……………………………10分 24.(本小题满分12分) 解:(1)∠AOC =40°时,∠MON =∠MOC -∠CON ………………………………………1分 =12(∠BOC -∠AOC) ………………………………………3分=12∠AOB ………………………………………5分=45°. ………………………………………6分 (2)当∠AOC =50°,∠MON =45°.理由同(1).………………………9分 (3)当∠AOC=α时,∠MON =45°. 理由同(1).………………………12分注意:评分标准仅做参考,只要学生作答正确,均可得分。
2017-2018学年度第一学期七年级期末数学试卷(有答案)【精品】
第一学期七年级期末评价数 学 试 卷一、选择题:(本大题10个小题,每小题3分,共30分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将正确答案的代号填在题后的括号中。
【 】A . - 6 B. – 5 C. - 1 D. l2.下列说法中①小于90°的角是锐角; ②等于90°的角是直角;③大于90°的角是钝角; ④平角等于180°;⑤周角等于360°,正确的有………………………………………………【 】 A .5个 B .4个C .3个D .2个3.用代数式表示“m 的3倍与n 的差的平方”,正确的是…………………………………【 】 A .(3m -n )2B .3(m -n )2C .3m -n 2D .(m -3n )24.如图,∠AOB =120°,OC 是∠AOB 内部任意一条射线,OD ,OE 分别是∠AOC ,∠BOC 的角平分线,下列叙述正确的是【 】A .∠DOE 的度数不能确定B .∠AOD =12∠EOC C .∠AOD +∠BOE =60°D .∠BOE =2∠COD5..有理数a ,b 在数轴的位置如图,则下面关系中正确的个数为……………………………【 】 ①a -b >0; ②ab <0; ③11a b>; ④a 2>b 2. A .1B .2C .3D .46.一件商品按成本价提高30%后标价,再打8折(标价的80%)销售,售价为312元,设这件商品的成本价为元,根据题意,下面所列的方程正确的是……………………………【 】 A .·30%×80%=312 B .·30%=312×80% C .312×30%×80%=D .(1+30%)×80%=3127..下列等式变形正确的是…………………………………………………………………【 】A .如果s= 2ab,那么b=2s a B .如果12=6,那么=3 C .如果-3 =y-3,那么-y =0 D .如果m= my ,那么=y8.下列方程中,以=-1为解的方程是………………………………………………………【 】 A .13222xx +=-B .7(-1)=0C .4-7=5+7D .133x =-9.如图,边长为2m +3的正方形纸片剪出一个边长为m +3的正方形之后,剩余部分可剪拼成一个长方形,若拼成的长方形一边长为m ,则另一边长为…………………………………………………【 】 A .2m +6B .3m +6C .2m 2+9m +6D .2m 2+9m +910.下列图案是用长度相同的火柴按一定规律拼搭而成,第一个图案需8根火柴,第二个图案需15根火柴,…,按此规律,第n 个图案需几根火柴棒 ………………………………………………………………………………………【 】A .2+7nB .8+7nC .7n +1D .4+7n二、填空题:(本大题8个小题,每小题4分,共32分)在每小题中,请将答案直接填在题后的横线上。
济宁市七年级上学期数学期末试卷及答案-百度文库
济宁市七年级上学期数学期末试卷及答案-百度文库一、选择题1.当x 取2时,代数式(1)2x x -的值是( ) A .0B .1C .2D .32.﹣3的相反数是( ) A .13-B .13C .3-D .33.如图,已知,,A O B 在一条直线上,1∠是锐角,则1∠的余角是( )A .1212∠-∠B .132122∠-∠C .12()12∠-∠D .21∠-∠4.一项工程,甲独做需10天完成,乙单独做需15天完成,两人合作4天后,剩下的部分由乙独做全部完成,设乙独做x 天,由题意得方程( )A .410 +415x -=1 B .410 +415x +=1 C .410x + +415=1 D .410x + +15x=1 5.如图,直线AB ∥CD ,∠C =44°,∠E 为直角,则∠1等于( )A .132°B .134°C .136°D .138°6.若OC 是∠AOB 内部的一条射线,则下列式子中,不能表示“OC 是∠AOB 的平分线”的是( ) A .∠AOC=∠BOC B .∠AOB=2∠BOC C .∠AOC=12∠AOB D .∠AOC+∠BOC=∠AOB7.若(1,2)表示教室里第1列第2排的位置,则教室里第2列第3排的位置表示为( ) A .(2,1)B .(3,3)C .(2,3)D .(3,2)8.下列各组数中,互为相反数的是( ) A .2与12B .2(1)-与1C .2与-2D .-1与21-9.图中是几何体的主视图与左视图, 其中正确的是( )A .B .C .D .10.如图的几何体,从上向下看,看到的是( )A .B .C .D .11.正方形ABCD 的轨道上有两个点甲与乙,开始时甲在A 处,乙在C 处,它们沿着正方形轨道顺时针同时出发,甲的速度为每秒1 cm ,乙的速度为每秒5 cm ,已知正方形轨道ABCD 的边长为2 cm ,则乙在第2 020次追上甲时的位置在( )A .AB 上 B .BC 上 C .CD 上D .AD 上12.阅读:关于x 方程ax=b 在不同的条件下解的情况如下:(1)当a≠0时,有唯一解x=ba;(2)当a=0,b=0时有无数解;(3)当a=0,b≠0时无解.请你根据以上知识作答:已知关于x 的方程 3x •a= 2x ﹣ 16(x ﹣6)无解,则a 的值是( ) A .1 B .﹣1 C .±1 D .a≠1二、填空题13.单项式2x m y 3与﹣5y n x 是同类项,则m ﹣n 的值是_____. 14.如果实数a ,b 满足(a-3)2+|b+1|=0,那么a b =__________. 15.已知|x |=3,y 2=4,且x <y ,那么x +y 的值是_____.16.定义一种对正整数n 的“C 运算”:①当n 为奇数时,结果为3n +1;②当n 为偶数时,结果为2k n (其中k 是使2kn为奇数的正整数)并且运算重复进行,例如,n =66时,其“C运算”如下:若n =26,则第2019次“C 运算”的结果是_____.17. 已知线段AB =8 cm ,在直线AB 上画线段BC ,使得BC =6 cm ,则线段AC =________cm.18.写出一个比4大的无理数:____________.19.某水果点销售50千克香蕉,第一天售价为9元/千克,第二天降价6元/千克,第三天再降为3元/千克.三天全部售完,共计所得270元.若该店第二天销售香蕉t 千克,则第三天销售香蕉 千克. 20.请先阅读,再计算: 因为:111122=-⨯,1112323=-⨯,1113434=-⨯,…,111910910=-⨯, 所以:1111122334910++++⨯⨯⨯⨯ 1111111122334910⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭11111111911223349101010=-+-+-++-=-= 则111110010110110210210320192020++++=⨯⨯⨯⨯_________.21.五边形从某一个顶点出发可以引_____条对角线.22.已知一个角的补角是它余角的3倍,则这个角的度数为_____. 23.8点30分时刻,钟表上时针与分针所组成的角为_____度.24.已知代数式235x -与233x -互为相反数,则x 的值是_______.三、压轴题25.已知多项式3x 6﹣2x 2﹣4的常数项为a ,次数为b .(1)设a 与b 分别对应数轴上的点A 、点B ,请直接写出a = ,b = ,并在数轴上确定点A 、点B 的位置;(2)在(1)的条件下,点P 以每秒2个单位长度的速度从点A 向B 运动,运动时间为t 秒:①若PA ﹣PB =6,求t 的值,并写出此时点P 所表示的数;②若点P 从点A 出发,到达点B 后再以相同的速度返回点A ,在返回过程中,求当OP =3时,t 为何值?26.如图,数轴上点A 表示的数为4-,点B 表示的数为16,点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动同时点Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t 秒(t 0)>.()1A ,B 两点间的距离等于______,线段AB 的中点表示的数为______;()2用含t 的代数式表示:t 秒后,点P 表示的数为______,点Q 表示的数为______; ()3求当t 为何值时,1PQ AB 2=?()4若点M 为PA 的中点,点N 为PB 的中点,点P 在运动过程中,线段MN 的长度是否发生变化?若变化,请说明理由;若不变请直接写出线段MN 的长.27.如图,以长方形OBCD 的顶点O 为坐标原点建立平面直角坐标系,B 点坐标为(0,a ),C 点坐标为(c ,b ),且a 、b 、C 满足6a ++|2b+12|+(c ﹣4)2=0.(1)求B 、C 两点的坐标;(2)动点P 从点O 出发,沿O→B→C 的路线以每秒2个单位长度的速度匀速运动,设点P 的运动时间为t 秒,DC 上有一点M (4,﹣3),用含t 的式子表示三角形OPM 的面积; (3)当t 为何值时,三角形OPM 的面积是长方形OBCD 面积的13?直接写出此时点P 的坐标.28.如图,数轴上有A , B 两点,分别表示的数为a ,b ,且()225350a b ++-=.点P 从A 点出发以每秒13个单位长度的速度沿数轴向右匀速运动,当它到达B 点后立即以相同的速度返回往A 点运动,并持续在A ,B 两点间往返运动.在点P 出发的同时,点Q 从B 点出发以每秒2个单位长度向左匀速运动,当点Q 达到A 点时,点P ,Q 停止运动. (1)填空:a = ,b = ;(2)求运动了多长时间后,点P ,Q 第一次相遇,以及相遇点所表示的数; (3)求当点P ,Q 停止运动时,点P 所在的位置表示的数;(4)在整个运动过程中,点P 和点Q 一共相遇了几次.(直接写出答案)29.如图,已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=20,动点P从A点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数______;点P表示的数______(用含t的代数式表示)(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P、Q同时出发,问多少秒时P、Q之间的距离恰好等于2?(3)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速到家动,若点P、Q 同时出发,问点P运动多少秒时追上Q?(4)若M为AP的中点,N为BP的中点,在点P运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN的长.30.点A在数轴上对应的数为﹣3,点B对应的数为2.(1)如图1点C在数轴上对应的数为x,且x是方程2x+1=12x﹣5的解,在数轴上是否存在点P使PA+PB=12BC+AB?若存在,求出点P对应的数;若不存在,说明理由;(2)如图2,若P点是B点右侧一点,PA的中点为M,N为PB的三等分点且靠近于P点,当P在B的右侧运动时,有两个结论:①PM﹣34BN的值不变;②13PM24+ BN的值不变,其中只有一个结论正确,请判断正确的结论,并求出其值31.阅读下列材料,并解决有关问题:我们知道,(0)0(0)(0)x xx xx x>⎧⎪==⎨⎪-<⎩,现在我们可以用这一结论来化简含有绝对值的式子,例如化简式子|1||2|x x++-时,可令10x+=和20x-=,分别求得1x=-,2x=(称1-、2分别为|1|x+与|2|x-的零点值).在有理数范围内,零点值1x=-和2x=可将全体有理数不重复且不遗漏地分成如下三种情况:(1)1x<-;(2)1-≤2x<;(3)x≥2.从而化简代数式|1||2|x x++-可分为以下3种情况:(1)当1x<-时,原式()()1221x x x=-+--=-+;(2)当1-≤2x<时,原式()()123x x=+--=;(3)当x≥2时,原式()()1221x x x=++-=-综上所述:原式21(1)3(12)21(2)x x x x x -+<-⎧⎪=-≤<⎨⎪-≥⎩通过以上阅读,请你类比解决以下问题:(1)填空:|2|x +与|4|x -的零点值分别为 ; (2)化简式子324x x -++.32.已知:如图,点M 是线段AB 上一定点,12AB cm =,C 、D 两点分别从M 、B 出发以1/cm s 、2/cm s 的速度沿直线BA 向左运动,运动方向如箭头所示(C 在线段AM 上,D 在线段BM 上)()1若4AM cm =,当点C 、D 运动了2s ,此时AC =________,DM =________;(直接填空)()2当点C 、D 运动了2s ,求AC MD +的值.()3若点C 、D 运动时,总有2MD AC =,则AM =________(填空) ()4在()3的条件下,N 是直线AB 上一点,且AN BN MN -=,求MN AB的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】把x 等于2代入代数式即可得出答案. 【详解】 解:根据题意可得: 把2x =代入(1)2x x -中得: (1)21==122x x -⨯, 故答案为:B. 【点睛】本题考查的是代入求值问题,解题关键就是把x 的值代入进去即可.2.D解析:D【解析】【分析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0.【详解】根据相反数的定义可得:-3的相反数是3.故选D.【点睛】本题考查相反数,题目简单,熟记定义是关键.3.C解析:C【解析】【分析】由图知:∠1和∠2互补,可得∠1+∠2=180°,即12(∠1+∠2)=90°①;而∠1的余角为90°-∠1②,可将①中的90°所表示的12(∠1+∠2)代入②中,即可求得结果.【详解】解:由图知:∠1+∠2=180°,∴12(∠1+∠2)=90°,∴90°-∠1=12(∠1+∠2)-∠1=12(∠2-∠1).故选:C.【点睛】此题综合考查余角与补角,难点在于将∠1+∠2=180°进行适当的变形,从而与∠1的余角产生联系.4.B解析:B【解析】【分析】直接利用总工作量为1,分别表示出两人完成的工作量进而得出方程即可.【详解】设乙独做x天,由题意得方程:4 10+415x=1.故选B.【点睛】本题主要考查了由实际问题抽象出一元一次方程,正确表示出两人完成的工作量是解题的关键.5.B解析:B【解析】过E作EF∥AB,求出AB∥CD∥EF,根据平行线的性质得出∠C=∠FEC,∠BAE=∠FEA,求出∠BAE,即可求出答案.解:过E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠C=∠FEC,∠BAE=∠FEA,∵∠C=44°,∠AEC为直角,∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,∴∠1=180°﹣∠BAE=180°﹣46°=134°,故选B.“点睛”本题考查了平行线的性质的应用,能正确作出辅助线是解此题的关键.6.D解析:D【解析】A. ∵∠AOC=∠BOC,∴OC平分∠AOB,即OC是∠AOB的角平分线,正确,故本选项错误;B. ∵∠AOB=2∠BOC=∠AOC+∠BOC,∴∠AOC=∠BOC,∴OC平分∠AOB,即OC是∠AOB的角平分线,正确,故本选项错误;C. ∵∠AOC=12∠AOB,∴∠AOB=2∠AOC=∠AOC+∠BOC,∴∠AOC=∠BOC,∴OC平分∠AOB,即OC是∠AOB的角平分线,正确,故本选项错误;D. ∵∠AOC+∠BOC=∠AOB,∴假如∠AOC =30°,∠BOC =40°,∠AOB =70°,符合上式,但是OC 不是∠AOB 的角平分线,故本选项正确. 故选D.点睛: 本题考查了角平分线的定义,注意:角平分线的表示方法,①OC 是∠AOB 的角平分线,②∠AOC =∠BOC ,③∠AOB =2∠BOC (或2∠AOC ),④∠AOC (或∠BOC )=12∠AOB . 7.C解析:C 【解析】 【分析】根据数对(1,2)表示教室里第1列第2排的位置,可知第一个数字表示列,第二个数字表示排,由此即可求得答案. 【详解】∵(1,2)表示教室里第1列第2排的位置, ∴教室里第2列第3排的位置表示为(2,3), 故选C. 【点睛】本题考查了数对表示位置的方法的灵活应用,分析出数对表示的意义是解题的关键.8.C解析:C 【解析】 【分析】根据相反数的定义进行判断即可. 【详解】A. 2的相反数是-2,所以2与12不是相反数,不符合题意; B. 2(1)=1-,1的相反数是-1,所以2(1)-与1不是相反数,不符合题意; C. 2与-2互为相反数,符合题意;D. 211=--,所以-1与21-不是相反数,不符合题意; 故选:C . 【点睛】本题考查了相反数的判断与乘方计算,熟记相反数的定义是解题的关键.9.D解析:D 【解析】 【分析】从正面看到的图叫做主视图,从左面看到的图叫做左视图.根据图中正方体摆放的位置判定则可.【详解】解:从正面看,左边1列,中间2列,右边1列;从左边看,只有竖直2列,故选D.【点睛】本题考查简单组合体的三视图.本题考查了空间想象能力及几何体的主视图与左视图.10.A解析:A【解析】【分析】根据已知图形和空间想象能力,从上面看图形,根据看的图形选出即可.【详解】从上面看是水平方向排列的两列,上一列是二个小正方形,下一列是右侧一个正方形,故A符合题意,故选:A.【点睛】本题考查了简单组合体的三视图的应用,主要培养学生的观察能力和空间想象能力.11.D解析:D【解析】【分析】根据题意列一元一次方程,然后四个循环为一次即可求得结论.【详解】解:设乙走x秒第一次追上甲.根据题意,得5x-x=4解得x=1.∴乙走1秒第一次追上甲,则乙在第1次追上甲时的位置是AB上;设乙再走y秒第二次追上甲.根据题意,得5y-y=8,解得y=2.∴乙再走2秒第二次追上甲,则乙在第2次追上甲时的位置是BC上;同理:∴乙再走2秒第三次次追上甲,则乙在第3次追上甲时的位置是CD上;∴乙再走2秒第四次追上甲,则乙在第4次追上甲时的位置是DA上;乙在第5次追上甲时的位置又回到AB上;∴2020÷4=505∴乙在第2020次追上甲时的位置是AD上.故选:D.【点睛】本题考查了一元一次方程的应用,解决本题的关键是寻找规律确定位置.12.A解析:A要把原方程变形化简,去分母得:2ax=3x ﹣(x ﹣6), 去括号得:2ax=2x+6,移项,合并得,x=31a -,因为无解,所以a ﹣1=0,即a=1. 故选A . 点睛:此类方程要用字母表示未知数后,清楚什么时候是无解,然后再求字母的取值.二、填空题13.-2.【解析】【分析】所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【详解】解:∵单项式2xmy3与﹣5ynx 是同类项,∴m=1,n =3,∴m﹣n =1﹣3=﹣2.故答案解析:-2.【解析】【分析】所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【详解】解:∵单项式2x m y 3与﹣5y n x 是同类项,∴m =1,n =3,∴m ﹣n =1﹣3=﹣2.故答案为:﹣2.【点睛】本题主要考查的是同类项的定义,熟练掌握同类项的概念是解题的关键.14.-1;【解析】解:由题意得:a-3=0,b+1=0,解得:a=3,b=-1,∴=-1. 故答案为-1. 点睛:本题考查了非负数的性质:几个非负数的和为0,则每个非负数都为0. 解析:-1;【解析】解:由题意得:a -3=0,b +1=0,解得:a =3,b =-1,∴3(1)a b =-=-1. 故答案为-1.点睛:本题考查了非负数的性质:几个非负数的和为0,则每个非负数都为0.15.﹣1或﹣5【分析】利用绝对值和乘方的知识确定x、y的值,然后计算即可解答.【详解】解:∵|x|=3,y2=4,∴x=±3,y=±2,∵x<y,∴x=﹣3,y=±2,当x=﹣解析:﹣1或﹣5【解析】【分析】利用绝对值和乘方的知识确定x、y的值,然后计算即可解答.【详解】解:∵|x|=3,y2=4,∴x=±3,y=±2,∵x<y,∴x=﹣3,y=±2,当x=﹣3,y=2时,x+y=﹣1,当x=﹣3,y=﹣2时,x+y=﹣5,所以,x+y的值是﹣1或﹣5.故答案为:﹣1或﹣5.【点睛】本题主要考查了有理数的乘方、绝对值的性质有理数的加法等知识,,解题的关键是确定x、y的值.16.【解析】【分析】根据题意,可以写出前几次输出的结果,从而可以发现结果的变化规律,从而可以得到第2019次“C运算”的结果.【详解】解:由题意可得,当n=26时,第一次输出的结果为:13解析:【解析】【分析】根据题意,可以写出前几次输出的结果,从而可以发现结果的变化规律,从而可以得到第2019次“C运算”的结果.解:由题意可得,当n=26时,第一次输出的结果为:13,第二次输出的结果为:40,第三次输出的结果为:5,第四次输出的结果为:16,第五次输出的结果为:1,第六次输出的结果为:4,第七次输出的结果为:1第八次输出的结果为:4…,∵(2019﹣4)÷2=2015÷2=1007…1,∴第2019次“C运算”的结果是1,故答案为:1.【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.17.2或14【解析】【分析】由题意分两种情况讨论:点C在线段AB上,点C在线段AB的延长线上,根据线段的和差,可得答案.【详解】解:当点C在线段AB上时,由线段的和差,得AC=AB-BC=8解析:2或14【解析】【分析】由题意分两种情况讨论:点C在线段AB上,点C在线段AB的延长线上,根据线段的和差,可得答案.【详解】解:当点C在线段AB上时,由线段的和差,得AC=AB-BC=8-6=2cm;当点C在线段AB的延长线上时,由线段的和差,得AC=AB+BC=8+6=14cm;故答案为2或14.点睛:本题考查了两点间的距离,分类讨论是解题关键,不能遗漏.18.答案不唯一,如:【分析】无理数是指无限不循环小数,根据定义和实数的大小比较法则写出一个即可.【详解】一个比4大的无理数如.故答案为.【点睛】本题考查了估算无理数的大小,实数的解析:答案不唯一,如:17【解析】【分析】无理数是指无限不循环小数,根据定义和实数的大小比较法则写出一个即可.【详解】一个比4大的无理数如17.故答案为17.【点睛】本题考查了估算无理数的大小,实数的大小比较的应用,能估算无理数的大小是解此题的关键,此题是一道开放型的题目,答案不唯一.19.30﹣【解析】试题分析:设第三天销售香蕉x千克,则第一天销售香蕉(50﹣t﹣x)千克,根据三天的销售额为270元列出方程:9(50﹣t﹣x)+6t+3x=270,则x==30﹣,故答案为:30解析:30﹣【解析】试题分析:设第三天销售香蕉x千克,则第一天销售香蕉(50﹣t﹣x)千克,根据三天的销售额为270元列出方程:9(50﹣t﹣x)+6t+3x=270,则x==30﹣,故答案为:30﹣.考点:列代数式20.【解析】【分析】根据给出的例子找出规律,然后依据规律列出式子解决即可.解:故答案为【点睛】本题考查了规律计算,解决本题的关键是正确理解题意,能够根据题意找到式子间存在的 解析:242525【解析】【分析】根据给出的例子找出规律,然后依据规律列出式子解决即可.【详解】 解:111110010110110210210320192020++++⨯⨯⨯⨯ 1111111110010110110210210320192020⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 1111111110010110110210210320192020-+-+-++-=9610100242525== 故答案为242525【点睛】本题考查了规律计算,解决本题的关键是正确理解题意,能够根据题意找到式子间存在的规律,利用规律将所求算式进行化简计算. 21.2【解析】【分析】从n 边形的一个顶点出发有(n−3)条对角线,代入求出即可.【详解】解:从五边形的一个顶点出发有5﹣3=2条对角线,故答案为2.本题考查了多边形的对角线,熟记解析:2【解析】【分析】从n边形的一个顶点出发有(n−3)条对角线,代入求出即可.【详解】解:从五边形的一个顶点出发有5﹣3=2条对角线,故答案为2.【点睛】本题考查了多边形的对角线,熟记知识点(从n边形的一个顶点出发有(n−3)条对角线)是解此题的关键.22.45°【解析】【分析】根据互为余角的和等于90°,互为补角的和等于180°用这个角表示出它的余角与补角,然后列方程求解即可.【详解】设这个角为α,则它的余角为90°﹣α,补角为180°﹣α解析:45°【解析】【分析】根据互为余角的和等于90°,互为补角的和等于180°用这个角表示出它的余角与补角,然后列方程求解即可.【详解】设这个角为α,则它的余角为90°﹣α,补角为180°﹣α,根据题意得,180°-α=3(90°-α),解得α=45°.故答案为:45°.【点睛】本题考查了余角与补角,能分别用这个角表示出它的余角与补角是解题的关键.23.75【解析】钟表8时30分时,时针与分针所成的角的角的度数为30×8-(6-0.5)×30=240-165=75度,故答案为75.解析:75钟表8时30分时,时针与分针所成的角的角的度数为30×8-(6-0.5)×30=240-165=75度,故答案为75.24.【解析】【分析】根据互为相反数的两个数之和为0,建立方程求解即可.【详解】∵与互为相反数∴解得:【点睛】本题考查了相反数的性质和解一元一次方程,熟记相反数的性质建立方程是解题的关键解析:27 8【解析】【分析】根据互为相反数的两个数之和为0,建立方程求解即可.【详解】∵235x-与233x-互为相反数∴23230 53-⎛⎫+-=⎪⎝⎭xx解得:278 x=【点睛】本题考查了相反数的性质和解一元一次方程,熟记相反数的性质建立方程是解题的关键.三、压轴题25.(1)﹣4,6;(2)①4;②1319,22或【解析】【分析】(1)根据多项式的常数项与次数的定义分别求出a,b的值,然后在数轴上表示即可;(2)①根据PA﹣PB=6列出关于t的方程,解方程求出t的值,进而得到点P所表示的数;②在返回过程中,当OP=3时,分两种情况:(Ⅰ)P在原点右边;(Ⅱ)P在原点左边.分别求出点P运动的路程,再除以速度即可.(1)∵多项式3x 6﹣2x 2﹣4的常数项为a ,次数为b ,∴a =﹣4,b =6.如图所示:故答案为﹣4,6;(2)①∵PA =2t ,AB =6﹣(﹣4)=10,∴PB =AB ﹣PA =10﹣2t .∵PA ﹣PB =6,∴2t ﹣(10﹣2t )=6,解得t =4,此时点P 所表示的数为﹣4+2t =﹣4+2×4=4;②在返回过程中,当OP =3时,分两种情况:(Ⅰ)如果P 在原点右边,那么AB+BP =10+(6﹣3)=13,t =132; (Ⅱ)如果P 在原点左边,那么AB+BP =10+(6+3)=19,t =192. 【点睛】本题考查了一元一次方程的应用,路程、速度与时间关系的应用,数轴以及多项式的有关定义,理解题意利用数形结合是解题的关键.26.(1)20,6;(2)43t -+,162t -;(3)t 2=或6时;(4)不变,10,理由见解析.【解析】【分析】(1)由数轴上两点距离先求得A ,B 两点间的距离,由中点公式可求线段AB 的中点表示的数;(2)点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动同时点Q 从点B 出发,向右为正,所以-4+3t ;Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动,向左为负,16-2t. (3)由题意,1PQ AB 2=表示出线段长度,可列方程求t 的值; (4)由线段中点的性质可求MN 的值不变.【详解】 解:()1点A 表示的数为4-,点B 表示的数为16,A ∴,B 两点间的距离等于41620--=,线段AB 的中点表示的数为41662-+= 故答案为20,6 ()2点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,∴点P 表示的数为:43t -+,点Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动,∴点Q 表示的数为:162t -,故答案为43t -+,162t -()13PQ AB 2= ()43t 162t 10∴-+--=t 2∴=或6答:t 2=或6时,1PQ AB 2= ()4线段MN 的长度不会变化,点M 为PA 的中点,点N 为PB 的中点,1PM PA 2∴=,1PN PB 2= ()1MN PM PN PA PB 2∴=-=- 1MN AB 102∴== 【点睛】本题考查了一元一次方程的应用,数轴上两点之间的距离,找到正确的等量关系列出方程是本题的关键.27.(1)B 点坐标为(0,﹣6),C 点坐标为(4,﹣6)(2)S △OPM =4t 或S △OPM =﹣3t+21(3)当t 为2秒或133秒时,△OPM 的面积是长方形OBCD 面积的13.此时点P 的坐标是(0,﹣4)或(83,﹣6)【解析】【分析】(1)根据绝对值、平方和算术平方根的非负性,求得a ,b ,c 的值,即可得到B 、C 两点的坐标;(2)分两种情况:①P 在OB 上时,直接根据三角形面积公式可得结论;②P 在BC 上时,根据面积差可得结论;(3)根据已知条件先计算三角形OPM 的面积为8,根据(2)中的结论分别代入可得对应t 的值,并计算此时点P 的坐标.【详解】(1)∵|2b +12|+(c ﹣4)2=0,∴a +6=0,2b +12=0,c ﹣4=0,∴a =﹣6,b =﹣6,c =4,∴B 点坐标为(0,﹣6),C 点坐标为(4,﹣6).(2)①当点P 在OB 上时,如图1,OP =2t ,S △OPM 12=⨯2t ×4=4t ;②当点P 在BC 上时,如图2,由题意得:BP =2t ﹣6,CP =BC ﹣BP =4﹣(2t ﹣6)=10﹣2t ,DM =CM =3,S △OPM =S 长方形OBCD ﹣S △0BP ﹣S △PCM ﹣S △ODM =6×412-⨯6×(2t ﹣6)12-⨯3×(10﹣2t )12-⨯4×3=﹣3t +21. (3)由题意得:S △OPM 13=S 长方形OBCD 13=⨯(4×6)=8,分两种情况讨论: ①当4t =8时,t =2,此时P (0,﹣4); ②当﹣3t +21=8时,t 133=,PB =2t ﹣626188333=-=,此时P (83,﹣6). 综上所述:当t 为2秒或133秒时,△OPM 的面积是长方形OBCD 面积的13.此时点P 的坐标是(0,﹣4)或(83,﹣6).【点睛】本题考查了一元一次方程的应用,主要考查了平面直角坐标系中求点的坐标,动点问题,求三角形的面积,还考查了绝对值、平方和算术平方根的非负性、解一元一次方程,分类讨论是解答本题的关键.28.(1)25- ,35 (2)运动时间为4秒,相遇点表示的数字为27 ;(3)5;(4) 一共相遇了7次.【解析】【分析】(1)根据0+0式的定义即可解题;(2)设运动时间为x 秒,表示出P ,Q 的运动路程,利用路程和等于AB 长即可解题;(3)根据点Q 达到A 点时,点P ,Q 停止运动求出运动时间即可解题;(4)根据第三问点P 运动了6个来回后,又运动了30个单位长度即可解题.【详解】解:(1)25- ,35(2)设运动时间为x 秒13x 2x 2535+=+解得 x 4=352427-⨯=答:运动时间为4秒,相遇点表示的数字为27(3)运动总时间:60÷2=30(秒),13×30÷60=6…30即点P运动了6个来回后,又运动了30个单位长度,∵25305-+=,∴点P所在的位置表示的数为5 .(4)由(3)得:点P运动了6个来回后,又运动了30个单位长度,∴点P和点Q一共相遇了6+1=7次.【点睛】本题考查了一元一次方程的实际应用,数轴的应用,难度较大,熟悉路程,时间,速度之间的关系是解题关键.29.(1)-12,8-5t;(2)94或114;(3)10;(4)MN的长度不变,值为10.【解析】【分析】(1)根据已知可得B点表示的数为8﹣20;点P表示的数为8﹣5t;(2)运动时间为t秒,分点P、Q相遇前相距2,相遇后相距2两种情况列方程进行求解即可;(3)设点P运动x秒时追上Q,根据P、Q之间相距20,列方程求解即可;(4)分①当点P在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差求出MN的长即可.【详解】(1)∵点A表示的数为8,B在A点左边,AB=20,∴点B表示的数是8﹣20=﹣12,∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒,∴点P表示的数是8﹣5t,故答案为﹣12,8﹣5t;(2)若点P、Q同时出发,设t秒时P、Q之间的距离恰好等于2;分两种情况:①点P、Q相遇之前,由题意得3t+2+5t=20,解得t=94;②点P、Q相遇之后,由题意得3t﹣2+5t=20,解得t=11 4,答:若点P、Q同时出发,94或114秒时P、Q之间的距离恰好等于2;(3)如图,设点P运动x秒时,在点C处追上点Q,则AC=5x,BC=3x,∵AC﹣BC=AB,∴5x﹣3x=20,解得:x=10,∴点P运动10秒时追上点Q;(4)线段MN的长度不发生变化,都等于10;理由如下:①当点P在点A、B两点之间运动时:MN=MP+NP=12AP+12BP=12(AP+BP)=12AB=10,②当点P运动到点B的左侧时:MN=MP﹣NP=12AP﹣12BP=12(AP﹣BP)=12AB=10,∴线段MN的长度不发生变化,其值为10.【点睛】本题考查了数轴上的动点问题,一元一次方程的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分两种情况进行讨论.30.(1)存在满足条件的点P,对应的数为﹣92和72;(2)正确的结论是:PM﹣34BN的值不变,且值为2.5.【解析】【分析】(1)先利用数轴上两点间的距离公式确定出AB的长,然后求得方程的解,得到C表示的点,由此求得12BC+AB=8设点P在数轴上对应的数是a,分①当点P在点a的左侧时(a<﹣3)、②当点P在线段AB上时(﹣3≤a≤2)和③当点P在点B的右侧时(a>2)三种情况求点P所表示的数即可;(2)设P点所表示的数为n,就有PA=n+3,PB=n﹣2,根据已知条件表示出PM、BN的长,再分别代入①PM﹣34BN和②12PM+34BN求出其值即可解答.【详解】(1)∵点A在数轴上对应的数为﹣3,点B对应的数为2,∴AB=5.解方程2x+1=12x﹣5得x=﹣4.所以BC=2﹣(﹣4)=6.所以.设存在点P满足条件,且点P在数轴上对应的数为a,①当点P 在点a 的左侧时,a <﹣3,PA =﹣3﹣a ,PB =2﹣a ,所以AP +PB =﹣2a ﹣1=8,解得a =﹣,﹣<﹣3满足条件;②当点P 在线段AB 上时,﹣3≤a ≤2,PA =a ﹣(﹣3)=a +3,PB =2﹣a ,所以PA +PB =a +3+2﹣a =5≠8,不满足条件;③当点P 在点B 的右侧时,a >2,PA =a ﹣(﹣3)=a +3,PB =a ﹣2.,所以PA +PB =a +3+a ﹣2=2a +1=8,解得:a =,>2,所以,存在满足条件的点P ,对应的数为﹣和.(2)设P 点所表示的数为n ,∴PA =n +3,PB =n ﹣2.∵PA 的中点为M ,∴PM =12PA =.N 为PB 的三等分点且靠近于P 点,∴BN =PB =×(n ﹣2).∴PM ﹣34BN =﹣34××(n ﹣2), =(不变).②12PM +34BN =+34××(n ﹣2)=34n ﹣(随P 点的变化而变化). ∴正确的结论是:PM ﹣BN 的值不变,且值为2.5.【点睛】本题考查了一元一次方程的解,数轴的运用,数轴上任意两点间的距离公式的运用,去绝对值的运用,解答时了灵活运用两点间的距离公式求解是关键.31.(1) 2x =-和4x = ;(2) 35(4)11(43)35(3)x x x x x x --<-⎧⎪+-≤<⎨⎪+≥⎩【解析】【分析】(1)令x +2=0和x -4=0,求出x 的值即可得出|x +2|和|x -4|的零点值,(2)零点值x =3和x =-4可将全体实数分成不重复且不遗漏的如下3种情况:x <-4、-4≤x <3和x ≥3.分该三种情况找出324x x -++的值即可.【详解】解:(1)2x =-和4x =,(2)由30x -=得3,x =由40x +=得4x =-,①当4x <-时,原式()()32435x x x =---+=--,②当4-≤3x <时,原式()()32411x x x =--++=+,③当x ≥3时,原式()()32435x x x =-++=+,综上所述:原式()35(4)11(43)353x x x x x x ⎧--<-⎪=+-≤<⎨⎪+≥⎩, 【点睛】本题主要考查了绝对值化简方法,解决本题的关键是要熟练掌握绝对值化简方法.32.(1)2AC cm =,4DM cm =;(2)6AC MD cm +=;(3)4AM =;(4)13MN AB =或1. 【解析】【详解】(1)根据题意知,CM=2cm ,BD=4cm .∵AB=12cm ,AM=4cm ,∴BM=8cm ,∴AC=AM ﹣CM=2cm ,DM=BM ﹣BD=4cm . 故答案为2,4;(2)当点C 、D 运动了2 s 时,CM=2 cm ,BD=4 cm .∵AB=12 cm ,CM=2 cm ,BD=4 cm ,∴AC+MD=AM ﹣CM+BM ﹣BD=AB ﹣CM ﹣BD=12﹣2﹣4=6 cm ;(3)根据C 、D 的运动速度知:BD=2MC .∵MD=2AC ,∴BD+MD=2(MC+AC ),即MB=2AM .∵AM+BM=AB ,∴AM+2AM=AB ,∴AM=13AB=4. 故答案为4;(4)①当点N 在线段AB 上时,如图1.∵AN ﹣BN=MN .又∵AN ﹣AM=MN ,∴BN=AM=4,∴MN=AB ﹣AM ﹣BN=12﹣4﹣4=4,∴MN AB =412=13; ②当点N 在线段AB 的延长线上时,如图2.∵AN ﹣BN=MN .。
2017--2018七年级数学期末测试题及答案
2017----2018学年度上学期七年级期末数学试卷(人教版) 2017.12(试卷共4页,考试时间为120分钟,满分150分)一、选择题(本题共12个小题,每小题4分,共48分.将正确答案的字母填入方框中)1.2-等于( )A .-2B .12-C .2D .122.在墙壁上固定..一根横放的木条,则至少..需要钉子的枚数是 ( ) A .1枚 B .2枚 C .3枚 D .任意枚3.下列方程为一元一次方程的是( ) A .y +3= 0B .x +2y =3C .x 2=2xD .21=+y y4.下列各组数中,互为相反数的是( ) A .)1(--与1B .(-1)2与1 C .1-与1D .-12与15.下列各组单项式中,为同类项的是( ) A .a 3与a 2B .12a 2与2a 2 C .2xy 与2x D .-3与a6.如图,数轴A 、B 上两点分别对应实数a 、b ,则下列结论正确的是A .a +b>0B .ab >0C .110a b -<D .110a b +>7.下列各图中,可以是一个正方体的平面展开图的是( )8.把两块三角板按如图所示那样拼在一起,则∠ABC 等于( ) A .70° B .90° C .105° D .120°9.在灯塔O 处观测到轮船A 位于北偏西54°的方向,同时轮船B 在南偏东15°的大小为 ( )A .69°B .111°C .141°D .159°10.一件夹克衫先按成本提高50%标价,再以8折(标价的80%)出售,结果获 利28元,若设这件夹克衫的成本是x 元,根据题意,可得到的方程是( ) A .(1+50%)x ×80%=x -28 B .(1+50%)x ×80%=x +28 C .(1+50%x)×80%=x -28 D .(1+50%x)×80%=x +2811.轮船沿江从A 港顺流行驶到B 港,比从B 港返回A 港少用3小时,若船速为26千米/时,水速为2千米/时,求A 港和B 港相距多少千米.设A 港和B 港相距x 千米.根据题意,可列出的方程是 ( )A .32428-=x x B .32428+=x x C .3262262+-=+x x D .3262262-+=-x x 12.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m 的值应是( )ABCD6222 4 20 4 884446 ……第8题图A .110B .158C .168D .178二、填空题(本大题共6个小题;每小题4分,共24分.把答案写在题中横线上) 13.单项式12-xy 2的系数是_________.14.若x =2是方程8-2x =ax 的解,则a =_________. 15.计算:15°37′+42°51′=_________.16.青藏高原是世界上海拔最高的高原,它的面积约为2 500 000平方千米.将2 500 000用科学记数法表示应为_________________平方千米. 17.已知,a -b =2,那么2a -2b +5=_________.18.已知y 1=x +3,y 2=2-x ,当x =_________时,y 1比y 2大5. 三、解答题(本大题共8个小题;共78分)19.(本小题满分8分)计算:(-1)3-14×[2-(-3)2] .20.(本小题满分10分)一个角的余角比这个角的21少30°,请你计算出这个角的大小.21.(本小题满分10分) 先化简,再求值:41(-4x 2+2x -8)-(21x -1),其中x =21.22.(本小题满分10分) 解方程:513x +-216x -=1.23.(本小题满分10分)一点A 从数轴上表示+2的点开始移动,第一次先向左移动1个单位,再向右移动2个单位;第二次先向左移动3个单位,再向右移动4个单位;第三次先向左移动5个单位,再向右移动6个单位……(1)写出第一次移动后这个点在数轴上表示的数为 ; (2)写出第二次移动结果这个点在数轴上表示的数为 ;(3)写出第五次移动后这个点在数轴上表示的数为;(4)写出第n次移动结果这个点在数轴上表示的数为;(5)如果第m次移动后这个点在数轴上表示的数为56,求m的值.24.(本小题满分10分)如图,∠AOB=∠COD=90°,OC平分∠AOB,∠BOD=3∠DOE.求:∠COE的度数.25.(本小题满分8分)如图,已知线段AB和CD的公共部分BD=13AB=14CD,线段AB、CD的中点E、F之间距离是10cm,求AB、CD的长.26.(本小题满分12分)某中学为了表彰在书法比赛中成绩突出的学生,购买了钢笔30支,毛笔45支,共用了1755元,其中每支毛笔比钢笔贵4元.(1)求钢笔和毛笔的单价各为多少元?(2)①学校仍需要购买上面的两种笔共105支(每种笔的单价不变).陈老师做完预算后,向财务处王老师说:“我这次买这两种笔需支领2447元.”王老师算了一下,说:“如果你用这些钱只买这两种笔,那么帐肯定算错了.”请你用学过的方程知识....解释王老师为什么说他用这些钱只买这两种笔的帐算错了.②陈老师突然想起,所做的预算中还包括校长让他买的一支签字笔.如果签字笔的单价为小于10元的整数,请通过计算,直接..写出签字笔的单价可能为元.A E DB F C2017---2018学年度第一学期七年级期末考试数学试题参考答案及评分说明说明: 1.各校在阅卷过程中,如还有其它正确解法,可参照评分标准按步骤酌情给分. 2.坚持每题评阅到底的原则,当学生的解答在某一步出现错误,影响了后继部分时,如果该步以后的解答未改变这一题的内容和难度,可视影响的程度决定后面部分的给分,但不得超过后继部分应给分数的一半;如果这一步后面的解答有较严重的错误,就不给分.一、选择题(每小题3分,共36分)1.C ;2.B ;3.A ;4.D ;5.B ;6. D ;7.C ;8.D ;9.C ;10. B ;11.A ;12.B. 二、填空题(每题3分,共24分) 13.31-;14.21-;15.2;16.58°28′;17.2.5×106;18.9;19.2;20.8. 三、解答题(共60分) 21.解:原式= -1-14×(2-9) ………………………………………………………3分=-1+47…………………………………………………………………………5分=43……………………………………………………………………………6分 22.解:设这个角的度数为x . ……………………………………………………………1分由题意得:30)90(21=--x x ………………………………………………3分解得:x =80 …………………………………………………………………5分答:这个角的度数是80° ……………………………………………………………6分 23.解:原式 =1212212+--+-x x x ………………………………………………3分 =12--x (4)分把x =21代入原式: 原式=12--x =1)21(2--……………………………………………………………5分=45- ……………………………………………………………………………7分24.解:6)12()15(2=--+x x . ……………………………………………2分612210=+-+x x . ………………………………………………………4分8x =3. …………………………………………………………6分83=x . …………………………………………………………7分 X|k |B| 1 . c|O |m25.解:(1)第一次移动后这个点在数轴上表示的数是3; ……………………………1分(2)第二次移动后这个点在数轴上表示的数是4; ……………………………2分(3)第五次移动后这个点在数轴上表示的数是7;……………………………3分(4)第n次移动后这个点在数轴上表示的数是n+2;…………………………5分(5)54. ………………………………………………………………………7分26.解:∵∠AOB=90°,OC平分∠AOB∴∠BOC=12∠AOB=45°,………………………………………………………2分∵∠BOD=∠COD-∠BOC=90°-45°=45°,………………………………4分∠BOD=3∠DOE∴∠DOE=15,..............................................................................7分∴∠COE=∠COD-∠DOE=90°-15°=75°.......................................8分27.解:设BD=x cm,则AB=3x cm,CD=4x cm,AC=6x cm. (1)分∵点E、点F分别为AB、CD的中点,∴AE=12AB=1.5x cm,CF=12CD=2x cm.……………………………………………3分∴EF=AC-AE-CF=2.5x cm. (4)分∵EF=10cm,∴2.5x=10,解得:x=4.………………………………………………………………6分∴AB=12cm,CD=16cm.……………………………………………………………8分28.解:(1)设钢笔的单价为x元,则毛笔的单价为(x+4)元. ………………………1分由题意得:30x+45(x+4)=1755 (3)分解得:x=21则x+4=25. ……………………………………………………………………4分答:钢笔的单价为21元,毛笔的单价为25元. ……………………………………5分(2)设单价为21元的钢笔为y支,所以单价为25元的毛笔则为(105-y)支. …6分根据题意,得21y+25(105-y)=2447.………………………………………………7分解之得:y=44.5 (不符合题意) . ……………………………………………………8分所以王老师肯定搞错了. ……………………………………………………………9分(3)2或6. ………………………………………………………………………11分〖答对1个给1分,答错1个倒扣1分,扣到0分为止〗28.(3)解法提示:设单价为21元的钢笔为z支,签字笔的单价为a元则根据题意,得21z+25(105-z)=2447-a.即:4z=178+a,因为a、z都是整数,且178+a应被4整除,所以a为偶数,又因为a为小于10元的整数,所以a可能为2、4、6、8.当a=2时,4z=180,z=45,符合题意;当a=4时,4z=182,z=45.5,不符合题意;当a=6时,4z=184,z=46,符合题意;当a=8时,4z=186,z=46.5,不符合题意.所以笔记本的单价可能2元或6元.〖本题也可由①问结果,通过讨论钢笔单价得到答案〗Welcome To Download !!!欢迎您的下载,资料仅供参考!。
2017-2018学年初一上期末质量数学试题附含答案
2017—2018学年度第一学期期末教学质量检测七年级数学科试题参考答案及评分标准说明:1.参考答案与评分标准给出了一种解法供参考,如果考生的解法与参考答案不同可比照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.2-1-c-n-j-y3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分.一、选择题:本大题共10小题,每小题3分,共30分。
1.A 2.A 3.C 4.B 5.D6.B 7.C 8.C 9.A 10.D二、填空题:本大题共6小题,每小题4分,共24分。
11.1.18×105 12.11 13.X= -714.39 15.75 16.18cm三、解答题(一):本大题共3小题,每小题6分,共18分。
17.解:原式=3-2×25 ………………(3分)=3-50 ……………(5分)=-47 …………(6分)18.解:原式=10-1+a-1+a+a2+1+a-a2-a3…………………(2分)=9+3a-a3…………………(4分)3……………(6分)819.解:∵m2-mn=7,mn-n2=-2 ……………………(2分)∴m2-n2= m2-mn+mn-n2 =5 …………………(4分)m2-2mn+n2= m2-mn-(mn –n2)=7+2=9 ……………(6分)四、解答题(二):本大题共3小题,每小题7分,共21分。
20.解: 2x+2-4=8+2-x ……(3分)∴2x+x=8+2+4-2 …………(4分)∴3x=12 …………(6分)∴x =4 ………………(7分)21.解:设这种服装每件成本是x 元,依题意得……………(1分)∴(1+40%)×0.8x - x=12 ……………………(3分) ∴1.12x - x=120.12x =12 ………………(5分)X=100………………(6分)答:设这种服装每件成本是100元 …………………(7分)22.解:设∠AOB 的度数是x 0 ……………(1分)x+36………………(3分)x+36 ……(4分) 32x=144+3632x=180 ……(5分)X=120 ……(6分)答:∠AOB 的度数是1200 ……………… (7分)五、解答题(三):本大题共3小题,每小题9分,共27分。
2017-2018七年级上学期数学试卷答案
2017—2018学年上学期期末考试 模拟卷(1)七年级数学·参考答案3 9.420.53-<-<< 10.4 11.①②③④⑦,③⑦ 12.113.2 14.45 1516.(本题8分)【解析】(1)原式=348)7(-++=;(2分)(2)原式(5分)(3)原式(8分) 17.(本题9分)【解析】如图所示:(9分)18.(本题9分)【解析】原式=22223566136411ab b ab a b b b +---+--+=,(6分) 当1a =,2b =-时,原式=7.(9分) 19.(本题9分)【解析】(1)852x x -=+,移项,得528x x --=-,合并同类项,得66x -=-,解得1x =.(4分)(2)12225y y y -+-=-,去分母,得10510(2(2)2)y y y --=-+,即1055202y y y -+=--,移项,得10522045y y y -+=--,合并同类项,得711y =,解得117y =.(9分)20.(本题9分)【解析】由题意得2222134)12)2((B x x x x x ----=+-=+.(4分) 则222214(3(5)2)2A x x B x x x +=+++-=+-.(9分) 21.(本题10分)【解析】(1)109715614421076491514213()-+-+-+-=+++----=-千米.答:A 在岗亭南方,距岗亭13千米.(5分)(2)10971561442380(1)++++++++=千米,(8分)0.5(801)0)4(⨯÷=升.答:这时摩托车共耗油4升.(10分) 22.(本题10分)【解析】(1)∵OE ⊥AB ,∴∠AOE =90°,∵∠EOD =20°,∴180902070AOC ∠=︒-︒-︒=︒.(4分)(2)设∠AOC =x ,则∠BOC =2x ,∵∠AOC +∠BOC =180°,∴x +2x =180°,解得x =60°.(8分)∴∠AOC =60°,∴180906030EOD ∠=︒-︒-︒=︒.(10分) 23.(本题11分)【解析】(1)设出发后x 小时相遇,根据题意,可得80120600x x +=,解得x =3. 答:若相向而行,出发后3小时相遇.(2分)(2)设y 小时后两车相距800千米,根据题意,可得80120800600y y +=-,解得y =1.答:若相背而行,1小时后,两车相距800千米.(5分)(3)设z 小时后快车追上慢车,根据题意,可得12080600z z =+,解得z =15. 答:若两车同向而行,快车在慢车后面,15小时后,快车追上慢车.(8分)(4)设t 小时后两车相距760千米,根据题意,可得12080760600t t -=-,解得t =4.答:若两车同向而行,慢车在快车后面,4小时后,两车相距760千米.(11分)。
2017-2018第一学期期末七数答案
2017—2018学年度第一学期期末教学质量检测七年级数学答案20. (1)解:3)3(1++-=-x x …………………………………………………… 1分 331+--=-x x …………………………………………………………2分12=x ……………………………………………………………………3分21=x ……………………………………………………………………4分 (2)解:原式=112411261)8(8414-⨯+⨯--÷-⨯ ……………………………6分=13211-+-+…………………………………………………………………7分 =2 ……………………………………………………………………………… 8分21.解:(1)2,32;……………………………………………………………………… 2分 (2)2n +30; ………………………………………………………………………3分(3)设投入n 个小球后没有水溢出, 2n +30=49解得 n =219…………………………………………………………………6分 应为投入的小球为整数,且小于219,故n =9 .所以最多投入小球9个水没有从量筒中溢. ………………………………………8分 22.解:(1)因为ab a B A 7722-=-所以B ab a A 2772+-= ………………………………………………1分 =)764(27722++-+-ab a ab a …………………………………2分=141287722++--ab a ab a ………………………………………4分 =1452++-ab a …………………………………………………… 5分 (2)依题意得:01=+a ,02=-b ,∴1-=a ,2=b , ……………………………………………………… 7分∴ 1452++-=ab a A=142)1(5)1(2+⨯-⨯+--…………………………………………8分 =14101+-- ……………………………………………………… 9分 =3 …………………………………………………………………… 10分23.解:(1) ……………2分(2)符合要求. ……………………………………………………………………3分∵C 为AM 的中点,F 为BM 的中点,∴AC =CM=21AM ,MF =FB=21MB ………………………………………5分 ∴CF = CM + MF=21AM +21MB ………………………………………………………6分 =21(AM + MB ) =21AB …………………………………………………………………7分 ∵AB =40m ,∴CF =20m ………………………………………………………………… 8分 ∵20AC BD +<m ,∴CD >20m. ………………………………………………………………9分∴CF 符合要求. ………………………………………………………… 10分24.解:(1)设经过x 分钟摩托车追上自行车, …………………………………………1分 1200100200+=x x …………………………………………3分 解得12=x …………………………………………4分 答:经过12分钟摩托车追上自行车.(2)设经过y 分钟两人相距150米, …………………………………………5分 第一种情况:摩托车超过自行车150米时,1200100150200++=y y …………………………………………6分 解得5.13=x …………………………………………7分第二种情况:摩托车还差150米追上自行车时,1501001200200-=-y y …………………………………………8分 解得5.10=x …………………………………………9分· · A C D B 图9-2 MF答:经过13.5分钟或10.5分钟两人相距150米. …………………………10分(其它的解法请参照此标准给分)25.解:(1)90°;……………………………………………………………………………2分(2)∵点O 为直线AB 上一点,∠AOC :∠BOC =2:1,∴∠AOC =120°,∠BOC =60°. ……………………………………………4分 ∵∠BON =90°﹣∠BOM ,∠COM =60°﹣∠BOM , ………………………6分 ∴∠BON ﹣∠COM =90°﹣∠BOM ﹣60°+∠BOM =30° …………………8分(3)画图如图11-4. ……………………………………………………………9分∵OM 恰为∠BOC 的平分线, ∴∠COM =30°. ……………………………………………………………10分 ∴三角板旋转的角度为: 90°+∠AOC+∠COM=90°+120°+30°=240° … …………………………11分 ∵三角板绕点O 按每秒钟15°的速度旋转, ∴三角板绕点O 的运动时间为15240=16(秒) …………………………12分图11-4N。
2017—2018学年第一学期初一数学期末考试试卷及答案
1 2
x2
2(4x
4xy)
,其中
x
2
.
21. (本题满分 8 分,每小题 4 分)解下列方程:
(1) 2 3(2 x) 4 x ;
(2) x 1 1 2 3x
2
3
22. (本题满分 6 分)已知关于 x 的方程 3(x 1) 3m 6 与 2x 5 1的解互为相反数,求 (m 1 )3 的值. 2
是另两条射线所夹角的角平分线?若存在,请求出所有满足题意的 t 的取值.若不存
在,请说明理由.
③在旋转的过程中,当边 AB 与射线 OE 相交时(如图 3),求 AOC BOE 的值.
⁰ (结果化成度).
13. 若代数式 2amb4 与 5a2bn1 是同类项,则 mn =
.
14. 当 x =
时,代数式 2x 1 与代数式 1 x 3 的值相等.
2
2
15. 若 2a b 3 0 ,则多项式8 6a 3b 的值是
.
16. 五个完全相同的小长方形拼成如图所示的大长方形,大长方形的周长是 16cm,则小长
大米 8 吨,记作+8 吨;当天运出大米 15 吨,记作-15 吨.)
某粮仓大米一周进出情况表(单位:吨)
星期一
星期二
星期三
星期四
星期五
星期六 星期日
-32
+ 26
-23
-16
m
+42
-21
(1)若经过这一周,该粮仓存有大米 88 吨,求 m 的值,并说明星期五该粮仓是运进还是
运出大米,运进或运出大米多少吨?
2017-2018学年初中七年级上册数学期末考试试卷及答案
2017-2018年度七年级第一学期期末考试数学模拟试卷(时间:90分钟满分:120分)一、选择题(每小题3分,共36分)1、下列说,其中正确的个数为()①正数和负数统称为有理数;②一个有理数不是整数就是分数;③有最小的负数,没有最大的正数;④符号相反的两个数互为相反数;⑤a 一定在原点的左边。
A .1个B .2个C .3个D .4个2、下列计算中正确的是()A .532aaaB .22aaC .33)(aa D .22)(aa 3、b a 、两数在数轴上位置如图3所示,将b a b a 、、、用“<”连接,其中正确的是()A .a <a <b <bB .b <a <a <bC .a <b <b <aD .b <a <b <a4、据《2011年国民经济与社会发展统计公报》报道,2011年我国国民生产总值为471564亿元,471564亿元用科学记数法表示为(保留三个有效数字)()A .13107.4元B .12107.4元C .131071.4元D .131072.4元5、下列结论中,正确的是()A .单项式732xy 的系数是3,次数是 2 B .单项式m 的次数是1,没有系数C .单项式z xy 2的系数是1,次数是 4D .多项式322xyx是三次三项式6、在解方程133221x x 时,去分母正确的是()A .134)1(3x x B .63413x x C .13413xxD .6)32(2)1(3xx7、某品牌手机的进价为1200元,按原价的八折出售可获利14%,则该手机的原售价为()A .1800元B .1700元C .1710元D .1750元8、中国古代问题:有甲、乙两个牧童,甲对乙说:“把你的羊给我一只,我的羊数就是你的羊数的2倍”。
乙回答说:“最好还是把你的羊给我一只,我们羊数就一样了”。
若设甲有x 只羊,则下列方程正确的是()A .)2(21x xB .)1(23x xC .)3(21xxD .1211x x9、某中学学生军训,沿着与笔直的铁路并列的公路匀速前进,每小时走4500米。
2017-2018学年七年级上学期数学期末考试试卷及答案_1
2017-2018学年第一学期初一年级期末数学模拟试卷一、选择题(共10个小题,每小题2分,共20分。
在每小题列出的四个选项中,选出符合题目要求的一项)1. -2的相反数是( )A. 2 B. 21 C. 21- D. -22. 我国以2018年11月1日零时为标准时点,进行了第六次全国人口普查,查得北京市常住人口约为19612000人,北京市常住人口总数用科学记数法可表示为( )A. 19612 310⨯ B. 19.612610⨯ C. 1.9612710⨯ D. 1.9612810⨯3. 9442y x π的系数与次数分别为( )A.94,7 B. π94,6 C. π4,6 D. π94,4 4. 对方程13122=--x x 去分母正确的是( )A. ()61223=--x xB. ()11223=--x xC. 6143=--x xD. ()112=--x x5. 有理数3.645精确到百分位的近似数为( ) A. 3.6 B. 3.64 C. 3.7 D. 3.656. 已知一个多项式与x x 932+的和等于1432-+x x ,则这个多项式是( ) A. 15--x B. 15+x C. -x 13 1 D. 11362-+x x7. 若4=x 是关于x 的方程42=-a x的解,则a 的值为( ) A. -6 B. 2 C. 16 D. -2 8. 一个长方形的周长是26cm ,若这个长方形的长减少1cm ,宽增加2cm ,就可以成为一个正方形,则长方形的长是( ) A. 5cm B. 7cm C. 8cm D. 9cm 9. 将如图所示的直角梯形绕直线l 旋转一周,得到的立体图形是( )10. 在正方体的表面画有如图(1)中所示的粗线,图(2)是其展开图的示意图,但只在A 面上画有粗线,那么将图(1)中剩余两个面中的粗线画入图(2)中,画法正确的是( )二、填空题(共10个小题,每小题2分,共20分)11. 代数式12+a 与a 21+互为相反数,则=a .12. 与原点的距离为2个单位的点所表示的有理数是__________。
2017-2018学年第一学期期末检测七年级数学试题及参考答案
2017—2018学年度第一学期期末调研考试七年级数学试题注意:本份试卷共8页,三道大题,26个小题,总分120分,时间120分钟。
题号一二三20 21 22 23 24 25 26得分一、选择题(本大题共16个小题,共42分.1~10每小题3分,11~16每小题2分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将正确的选项填在下表中.)题号 1 2 3 4 5 6 7 8 答案题号9 10 11 12 13 14 15 16 答案1.-2的绝对值是A.2 B.-2 C.D.-2.木匠师傅锯木料时,一般先在木板上画出两个点,然后过这两点弹出一条墨线,这是因为A.两点之间,线段最短B.过一点,有无数条直线C.两点确定一条直线D.连接两点之间的线段的长叫做两点间的距离3.下列有理数大小关系判断正确的是A.0>|-10| B.-(-)>-|-|C.|-3|<|+3| D.-1>-0.014.从正面观察如右图的两个立体图形,得到的平面图形是A.B.C.D.5.用四舍五入法对2.06032分别取近似值,其中错误的是A.2.1(精确到0.1)B.2.06(精确到千分位)C.2.06(精确到百分位)D.2.0603(精确到0.0001)6.如果a、b互为相反数,且b≠0,则式子a+b,,|a|-|b|的值分别为A.0,1,2 B.1,0,1 C.1,-1,0 D.0,-1,07.下列结论:①-xy的系数是-1;②-x2y3z是五次单项式;③2x2-3xy-1是二次三项式;④把多项式-(2x2+3x3-1+x)去括号,结果是-3x3-2x2+x-1;⑤雄安新区规划建设以特定区域为起步区先行开发,起步区面积约100平方公里,中期发展区面积约200平方公里,远期控制区面积约2000平方公里.2000用科学计数法表示为2×103.其中结论正确的个数有A.1个B.2个C.3个D.4个8.若-的倒数与m+4互为相反数,那么m的值是A.m=1 B.m=-1 C.m=2 D.m=-29.已知|x+1|+(x-y+3)2=0,那么x-y的值是A.1 B.-3C.3 D.-110.若3x m+5y2与x3y n的和是单项式,则m n=A.2 B.4 C.8 D.911.下列各式运用等式的性质变形,错误..的是A.若-a=-b,则a=b B.若=,则a=bC.若ac=bc,则a=b D.若(m2+1)a=(m2+1)b,则a=b12.一件商品的进价为80元,七折售出仍可获利5%.若标价为x元,则可列方程为A.80×(1+5%)=0.7x B.80×0.7×(1+5%)=xC.(1+5%)x=0.7x D.80×5%=0.7x13.点M,N,P和原点O在数轴上的位置如图所示,点M,N,P对应的有理数为a,b,c(对应顺序暂不确定).如果ab<0,a+b>0,ac>bc,那么表示数b的点为A.点M B.点N C.点P D.点O14.小明在解方程时,不小心将方程中的一个常数污染了看不清楚,被污染的方程是“2y-=y-■”,怎么办呢?小明想了一想,便翻了书后的答案,此方程的解为y=-,很快补好了这个常数,你能补出这个常数吗?它应是A.1 B.2 C.3 D.415.如图给定的是纸盒的外表面,下面能由它折叠而成的是A.B.C.D.16.如图,在数轴上有A、B、C、D四个整数点(即各点均表示整数),且2AB=BC=3CD,若A、D两点表示的数分别为-5和6,且AC的中点为E,BD的中点为M,BC之间距点B的距离为BC的点N,则该数轴的原点为A.点E B.点F C.点M D.点N二、填空题(本大题共3小题,共10分.17~18小题各3分;19小题有2个空,每空2分.把答案写在题中横线上)17.规定图形表示运算a-b+c,图形表示运算x+z-y-w.则+=.18.若一个角比它的补角大36°48′,则这个角的度数为.19.用完全一样的火柴棍,按如下图所示的方法拼成“金鱼”形状的图形,则按照这样的方法拼成第4个图形需要火柴棍根,拼成第n个图形(n为正整数)需要火柴棍根(用含n的代数式表示).三、解答题(本大题共7小题,共68分.解答应写出文字说明、证明过程或演算步骤)20.计算(本题有2个小题,每题4分,共8分)(1)-36×()+(-3)2(2)-12018+(-2)3+|-3|÷.21.解方程(本题有2个小题,第(1)题4分,第(2)题5分,共9分)(1)x+2(5-3x)=15-(7-5x)(2)-1=x-.22.(本题满分9分)如图,已知∠AOB是平角,∠AOC=20°,∠COD:∠DOB=3:13,且OE平分∠BOD,求∠COE的度数.23.(本题满分9分)小明同学做一道数学题时,误将求“A-B”看成求“A+B”,结果求出的答案是3x2-2x+5.已知A=4x2-3x-6.(1)请你帮助小明同学求出A-B;(2)当x取最大负整数时,求A-B的值.24.(本题满分10分)已知点A、B、C在同一条直线上,且AC=5cm,BC=3cm,点M、N分别是AC、BC 的中点.(1)画出符合题意的图形;(2)依据(1)的图形,求线段MN的长.25.(本题满分11分)一种商品按销售量分三部分制定销售单价,如下表:销售量单价不超过100件的部分 2.5元/件超过100件不超过300件的部分 2.2元/件超过300件的部分2元/件(1)若买100件花元,买300件花元;买350件花元;(2)小明买这种商品花了338元,列方程求购买这种商品多少件?(3)若小明花了n元(n>250),恰好购买0.45n件这种商品,求n的值.26.(本题满分12分)如图1,点O为直线AB上一点,过点O作射线OC,使∠BOC=120°,将有一30度角的直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB 的下方.(图中∠OMN=30°,∠NOM=90°)(1)将图1中的三角板绕点O逆时针旋转至图2,使OM在∠BOC的内部,且恰好平分∠BOC,问直线ON是否平分∠AOC?请说明理由;(2)将图1中的三角板绕点O按每秒6°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,求t的值;(3)将图1中的三角板绕点O顺时针旋转至图3,使ON在∠AOC的内部,请探究:∠AOM与∠NOC之间的数量关系,并说明理由.2017—2018 (1)七年级数学参考答案及评分标准说明:1.在阅卷过程中,如果考生还有其它正确解法,可参照评分参考酌情给分;2.填空题缺少必有的单位或答案不完整不得分;3.坚持每题评阅到底的原则,当考生的解答在某一步出现错误,影响了后继部分时,如果该步以后的解答未改变这一题的内容和难度,可视影响的程度决定后面部分的给分,但不得超过后继部分应给分数的一半;如果这一步后面的解答有较严重的错误,就不给分;4.解答右端所注分数,表示正确做到这一步应得的累积分数.一、(本大题有16小题,共43分.1~10每小题各3分,11~16每小题各2分)题号 1 2 3 4 5 6 7 8 答案 A C B A B D C D 题号9 10 11 12 13 14 15 16 答案 B B C A A C B D 二、(本大题有3个小题,共10分.17~18小题个3分;19小题有2个空,每空2分) 17.0;18.108°24′(或108.4°);19.30,(7n+2).三、(本大题有7小题,共68分)20.解:(1)原式153=3636369 1294⎛⎫⎛⎫-⨯-⨯--⨯-+⎪ ⎪⎝⎭⎝⎭=-3+20+27+9………………………………………………………………………………3分=53;…………………………………………………………………………………………4分(2)原式=-1-8+3÷………………………………………………………..…………2分=-1-8+9=0.………………………………………………………………………….………………4分21. 解:(1)去括号得:x+10-6x=15-7+5x,………………………….…………..…1分移项得:x-6x-5x =15-7-10,……………………………………………………..…2分合并得:-10x=-2,……………………………………..……………………………….3分系数化为1,得:x=0.2;…………………………………….……………….……………4分(2)去分母得:6x+3-12=12x-(10x+1)…………………………………………..…1分去括号得:6x+3-12=12x-10x-1,………………………………………………….…2分移项得:6x-12x+10x =-1-3+12,…………………………………………………..…3分合并得:4x=8,………………………………………………………………………….…4分系数化为1,得:x=2.…………………………………….………………………………5分22. 解:因为∠AOB是平角,∠AOC=20°,所以∠BOC=180°-20°=160°,即∠COD+∠DOB=160°,………………………………….………………………….…2分又因为∠COD:∠DOB=3:13,所以∠COD=∠COD=×160°=30°,∠DOB=×160°=130°,…………………5分因为OE平分∠BOD所以∠DOE=∠BOD=65°,…………………………………….………………….……7分所以∠COE=∠COD+∠DOE=30°+65°=95°.………………………………….….……9分23. 解:(1)由题意,知B=3x2-2x+5-(4x2-3x-6)…………………….……..…1分=3x2-2x+5-4x2+3x+6=-x2+x+11.………….………………………………………………………………….…3分所以A-B=4x2-3x-6-(-x2+x+11)…………………………………………………4分=4x2-3x-6+x2-x-11=5x2-4x-17.………….………………………………………………………………..…6分(2)x取最大负整数,即x=-1时,…………………………………..……………..…7分A-B=5×(-1)2-4×(-1)-17=5+4-17=-8. ………….………………………9分24. 解:(1)点B在线段AC上,如下图………….…………………….…….….….3分点B在线段AC的延长线上,如下图…………….……..5分(2)当点B在线段AC上时,由AC=5cm,BC=3cm,点M、N分别是AC、BC的中点,得MC=AC=×5=cm,NC=BC=×3=cm,由线段的和差,得MN=MC-NC=-=1cm;………….…………………………………………….…8分当点B在线段AC的延长线上时,由AC=5cm,BC=3cm,点M、N分别是AC、BC的中点,得MC=AC=×5=cm,NC=BC=×3=cm,由线段的和差,得MN=MC+NC=+=4cm.………….……………………………………………….…10分25. 解:(1)250;690;790.………….…………………………………..…..…….…3分(2)设小明购买这种商品x件,因为250<338<690,所以100<x<300.根据题意得:100×2.5+(x-100)×2.2=338,………….…………………………....…6分解得:x=140.答:小明购买这种商品140件.………….……………………………………….…….7分(3)当250<n≤690时,有250+2.2(0.45n-100)=n,解得:n=3000(不合题意,舍去);………….………………………………………..…9分当n>690时,有690+2(0.45n-300)=n,解得:n=900.答:n的值为900.………….………………………………………………….……..….11分26. 解:(1)直线ON平分∠AOC;理由如下:………….……………………….……1分设ON的反向延长线为OD,如右图,因为OM平分∠BOC,所以∠MOC=∠MOB=60°,又因为∠MON=90°,所以∠BON=∠MON-∠MOB=30°,所以∠CON=∠BOC+∠BON=120°+30°=150°,所以∠COD=180°-∠CON=30°,因为∠BOC=120°,所以∠AOC=180°-∠BOC=60°,所以∠COD=12∠AOC,所以OD平分∠AOC,即直线ON平分∠AOC;………….……………………………………………….…..…4分(2)由(1)可知∠BON=30°,∠DON=180°因此ON旋转60°或240°时直线ON平分∠AOC,由题意得,6t=60°或6t=240°,所以t=10或40;………….…………………………………………………………….…8分(3)∠AOM-∠NOC=30°,理由如下:…………………………………………….…9分因为∠MON=90°,∠AOC=60°,所以∠AOM=90°-∠AON,∠NOC=60°-∠AON,所以∠AOM-∠NOC=(90°-∠AON)-(60°-∠AON)=30°.…….…………12分。
2017-2018学年第一学期七年级期末数学期末试题(含答案)
2017—2018学年度第一学期期末考试七年级数学试题温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页.满分100分,考试用时90分钟.考试结束后,将试题卷和答题卡一并交回.2.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、准考证号、座号填写在试题卷和答题卡规定的位置上.3.第Ⅰ卷每小题选出答案后,必须用0.5毫米黑色签字笔将该答案选项的字母代号填入答题卡的相应表格中,不能答在试题卷上.4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第Ⅰ卷(选择题 共30分)一、选择题:本大题共10个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来, 并将该选项的字母代号填入答题卡的相应表格中.每小题选对得3分,满分30分. 1.一个有理数的倒数是它本身,则这个数是 A .0B .1C .-1D .±12.地球上的海洋面积约为361000000km 2,用科学记数法可表示为 A .90.36110⨯ km 2B .83.6110⨯km 2C .736.110⨯km 2D .636110⨯km 23.在8(1)-,9(1)-,32-,2(3)-这四个数中最小的数是 A .8(1)-B .9(1)-C .32-D .2(3)-4.下面说法正确的是 A.﹣a 表示负数 B.﹣2是单项式C.3ab π的系数是3D.11x+是多项式 5.已知比例式142=3115.5x,则下列等式中不一定成立的是 A.3114215.5x =⨯ B .1423115.5x =⨯ C .15.514231x =D .3115.5142x=6.植树时,为使同一行树坑在一条直线上,只需定出两个树坑的位置,其中的数学道理是 A. 两点确定一条直线 B .两点确定一条射线C .两点之间直线最短D .两点之间线段最短7.已知M 、N 、P 三点在同一条直线上,线段MN =6cm ,NP =2cm ,则M ,P 两点的距离是 A. 4cmB .8cmC .8cm 或4cmD .无法确定8.轮船沿江从甲港顺流行驶到乙港,比从乙港返回甲港少用0.5小时,若船在静水中的平均速度为27千米/时,水流的速度为3千米/时,求从甲港到乙港的航程.设甲港到乙港的航程为x 千米.根据题意,可列出的方程是A .0.5273x x=+B .0.5273x x=-C .0.5273273x x =++-D .0.5273273x x =-+-9.整理一批图书,由一个人做要60h 完成,现计划有一部分人先做5h ,然后增加4人与他 们一起做3h ,完成这项工作,假设这些人的工作效率相同,则下列判断正确的是 A.这批图书共有3000本B.把一个人的工作效率看为1,设安排x 人先工作5h ,则列出的方程是53(4)60x x ++=C.把总工作量设看为1,设安排x 人先做5h ,则可列出的方程是54316060x x ++= D.具体应先安排7人工作10.一个正方体的表面展开图如图所示,每一个面上都写有一个整数,并且相对两个面上所写的两个整数之和都相等,那么 A .a =23,b =11 B .a =25,b =30C .a =4,b = -20D .a =13,b =6第Ⅱ卷(非选择题 共70分)二、填空题:本大题共8个小题,每小题3分,满分24分. 11.近似数2.30万是精确到 位.12.单项式26412m a b +-与单项式2132n a b +合并的结果为24a b ,则mn = .13.一家商店将某种服装按成本提高30%标价,又以9折优惠卖出,结果每件服装仍可获利 34元,则这种服装每件的成本价是 元.14.几个人共同种一批树苗,如果每人种3棵,则剩下20棵树苗未种;如果每人种4棵, 则缺25棵树苗.根据以上信息可以求出参加种树的有 人. 15.计算:48°29′+67°49′= °.16.一个角的补角等于它的余角的6倍,则这个角的度数为 .17.如图,OA 的方向是北偏东20°,OB 的方向是北偏西30°,如果∠AOC =∠AOB ,那 么OC 的方向是 .18.“数学王子”高斯从小就善于观察和思考, 在他读小学时就能在课堂上快速的计算出:1239899100=5050+++⋅⋅⋅+++. 今天我们可以将高斯的做法归纳如下:令 =1239899100S +++⋅⋅⋅+++ ① 也可写成 =1009998321S +++⋅⋅⋅+++ ② 于是①+②得到2(1100)100S =+⨯ 解得:S 5050=请类比以上做法,计算:357297299301+++⋅⋅⋅+++= . 三、解答题:本大题共6个小题,满分46分. 解答时请写出必要的演推过程. 19.计算:(1)5551242371275÷-⨯-÷-(); (2)223201743521⎡⎤-+---⨯-⎣⎦()()().(第17题图)20.解方程:323146x x -+-=. 21.先化简,再求值:2222222(34)5(3)(3)ab a b a b ab ab a b -+--+,其中a ,b 的值满足2130a b +++=.22.如图,OC 是∠AOB 内部的一条射线,OD 是∠的平分线,OE 是∠AOC 的平分线.如果∠∠DOE=25°,那么∠COD 是多少度?23.(1)探究:数轴上表示5和3的两点之间的距离是 ;表示﹣5和3两点之间的距离是 ;表示﹣5和-3两点之间的距离是 ;一般地,数轴上表示数m 和数n 的两点之间的距离等于 . (2)应用:若2x +=6,求x 的值.解:对于2x +=6可以理解为数轴上表示数x 和 的两点之间的距离是6,所以x 的值为 .(3)拓展:若数轴上表示数x 的点位于表示-7和4的两点之间,问74x x ++-的值是随着x 取值变化而变化还是保持不变的一个数值呢?如果你认为变化,则请说明理由;如果你认为不变,则请直接写出这个值.24.某物流公司的甲、乙两辆货车从A ,B 两地同时出发,沿同一条路线相向匀速而行,出发后2小时相遇.相遇时甲车比乙车多行驶40千米,相遇后2.5小时乙车到达A 地. (1)求甲、乙两辆货车的行驶速度分别是多少?(2)如果乙车出发a 小时时两车相距120千米,那么a 的值是多少?2017—2018学年第一学期七年级数学试题参考答案及评分标准二、填空题:(每题3分,共24分)11.百; 12.-6; 13.200; 14.45; 15.116.3; 16. 72°; 17.北偏东70°; 18.22800. 三、解答题:(共46分)19.解:(1)5551242371275÷-⨯-÷-()=5551512712712-⨯+⨯ ……………………………………… 1分=55111277⨯-+()……………………………………… 2分 =53127⨯ ……………………………………… 3分=528. ……………………………………… 4分(2)223201743521⎡⎤-+---⨯-⎣⎦()()()=[]169581-+--⨯-()() ……………………………………… 2分=1693-+-() …………………………………… 3分=-16+6=-10. …………………………………… 4分20.解:去分母,得12332)2(3)x x --=+(…………………………………… 2分 去括号,得129626x x -+=+ …………………………………… 3分移项,得626912x x -=+- ………………………………… 4分 合并同类项,得43x = …………………………………… 5分 系数化1,得34x =. …………………………………… 6分21.解:2222222(34)5(3)(3)ab a b a b ab ab a b -+--+=222222681553ab a b a b ab ab a b -+--- ……………………………… 2分=222222658153ab ab ab a b a b a b --+-+-()() …………………………… 3分 =24a b . ……………………………… 4分 由2130a b +++=可得1,32a b =-=-, ………………………………… 6分∴原式=214()(3)2⨯-⨯-=-3. ………………………………… 7分22.解:∵∠AOB=130°,OD 是∠AOB 的平分线,∴∠AOD=12∠AOB=65°, ……………………………………………… 2分 又∠DOE=25°,∴∠AOE=∠AOD-∠DOE=65°-25°=40°,……………………………… 4分 又OE 是∠AOC 的平分线, ∴∠COE=∠AOE=40°,…………………………………………………… 6分 ∴∠COD=∠COE-∠DOE=40°-25°=15°. …………………………… 7分 23.(1)2;8;2;m n - . ………………………………… 4分 (2)-2;-8或4. ……………………………………………………… 6分 (3)保持不变地一个数值,这个值是11. ……………………………… 8分 24.(1)解:设甲货车行驶速度为x 千米/时,则乙货车的速度为40()2x -千米/时,根据题意,列出方程 402 2.5()2x x =-………………………………………… 3分 解方程,得 2 2.550x x =-0.550x -=-100x =, ……………………………………………… 4分4010020802x -=-=, 答:甲货车行驶速度为100千米/时,则乙货车的速度为80千米/时. … 5分 (2)解:由(1)可得A,B 两地间的路程为(100+80)×2=360千米,… 6分 由题意,得(10080)360120a +=-或(10080)360120a +=+ …………… 8分解得4833a =或 答:a 的值是4833或. ………………………………………………… 10分。
2017-2018学年山东省济宁市邹城市七年级(上)期末数学试卷
2017-2018学年山东省济宁市邹城市七年级(上)期末数学试卷一、选择题(共10个小题,每小题3分,共30分.在每小题列出的四个选项中,选出符合题目要求的一项,请把答案填在下表相应的位置上)1.(3分)在﹣3,﹣1,0,1四个数中,比﹣2小的数是()A.﹣3 B.﹣1 C.0 D.12.(3分)下列各式中运算正确的是()A.3a﹣2a=1 B.x2+x2=x4C.2a2b﹣3ab2=﹣ab D.2x3+3x3=5x33.(3分)中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4400000000,4400000000这个数用科学记数法表示为()A.44×108 B.4.4×108C.4.4×109D.0.44×10104.(3分)已知x﹣4与2﹣3x互为相反数,则x=()A.1 B.﹣1 C.D.﹣5.(3分)若一个角的余角是50°,则它的补角是()A.140°B.40°C.130° D.160°6.(3分)在解方程时,去分母正确的是()A.3(x﹣1)﹣2(2x+3)=6 B.3(x﹣1)﹣2(2x+3)=1 C.2(x﹣1)﹣2(2x+3)=6 D.3(x﹣1)﹣2(2x+3)=37.(3分)如图,两轮船同时从O点出发,一艘沿北偏西50°方向直线行驶,另一艘沿南偏东25°方向直线行驶,2小时后分别到达A,B点,则此时两轮船行进路线的夹角∠AOB的度数是()A.165°B.155°C.115° D.105°8.(3分)程大位《直指算法统宗》:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完.试问大、小和尚各多少人?设大和尚有x人,依题意列方程得()A.+3(100﹣x)=100 B.﹣3(100﹣x)=100C.3x+=100 D.3x﹣=1009.(3分)延长线AB到C,使得BC=AB,若线段AC=8,点D为线段AC的中点,则线段BD的长为()A.2 B.3 C.4 D.510.(3分)如图所示,每个小立方体的棱长为1,按如图所示的视线方向看,图1中共有1个1立方体,其中1个看得见,0个看不见;图2中共有8个立方体,其中7个看得见,1个看不见;图3中共有27个小立方体,其中19个看得见,8个看不见;…,则第11个图形中,其中看得见的小立方体个数是()A.271 B.272 C.331 D.332二、填空题(共8个小题,每小题3分,共24分)11.(3分)用两个钉子就可以把木条钉在墙上,其依据是.12.(3分)若a是绝对值最小的数,b是最大的负整数,则a﹣b=.13.(3分)已知A,B,C是数轴上的三个点,点A,B表示的数分别是1,3,点C在点B的右侧,如图,若BC=2AB,则点C表示的数是.14.(3分)一个立方体的表面展开图如图所示,将其折叠成立方体后,“你”字对面,对面的字是.15.(3分)若代数式2m2﹣4m﹣3的值为5,则m2﹣2m+1的值为.16.(3分)关于x的方程3x﹣2k=1的解与方程2x+6=0的解相同,则k的值是.17.(3分)如图,O为直线AB上一点,OC平分∠AOD,∠AOC=53°17′,则∠BOD 的度数为.18.(3分)一个两位数,个位数字比十位数字的2倍多1,如果个位与十位的数字交换位置,得到一个新的两位数,新的两位数比原来两位数的2倍少1,则原两位数为.三、解答题(本题共6小题,共46分)19.(7分)(1)计算:(﹣1)2018﹣8÷(﹣2)3+4×(﹣)3;(2)先化简,再求值:3(a2b﹣2ab2)﹣(3a2b﹣2ab2),其中|a﹣1|+(b+)2=0.20.(7分)(1)解方程:x﹣2(5﹣x)=3(2x﹣1);(2)解方程:﹣1=.21.(6分)尺规作图:如图,已知线段a、b,作一条线段,使它等于2a﹣b.(保留作图痕迹)22.(8分)如图,C,D为线段AB上的亮点,M,N分别是线段AC,BD的中点.(1)如果CD=5cm,MN=8cm,求AB的长;(2)如果AB=a,MN=b,求CD的长.23.(8分)某地区居民生活用电,规定按以下标准收取电费:(1)某户七月份用电123千瓦时,共交电费57.2元,求a;(2)若该用户八月份的平均电费为0.45元,则八月份共用多少千瓦时?应交电费多少元?24.(10分)已知∠AOB=130°,∠COD=80°,OM,ON分别是∠AOB和∠COD的平分线.(1)如果OA,OC重合,且OD在∠AOB的内部,如图1,求∠MON的度数;(2)如果将图1中的∠COD绕点O点顺时针旋转n°(0<n<155),如图2,①∠MON与旋转度数n°有怎样的数量关系?说明理由;②当n为多少时,∠MON为直角?(3)如果∠AOB的位置和大小不变,∠COD的边OD的位置不变,改变∠COD 的大小;将图1中的OA绕着O点顺时针旋转m°(0<m<100),如图3,∠MON 与旋转度数m°有怎样的数量关系?说明理由.2017-2018学年山东省济宁市邹城市七年级(上)期末数学试卷参考答案一、选择题(共10个小题,每小题3分,共30分.在每小题列出的四个选项中,选出符合题目要求的一项,请把答案填在下表相应的位置上)1.A;2.D;3.C;4.B;5.A;6.A;7.B;8.C;9.A;10.C;二、填空题(共8个小题,每小题3分,共24分)11.两点确定一条直线;12.1;13.7;14.顺;15.5;16.﹣5;17.73°26′;18.37;三、解答题(本题共6小题,共46分)19.;20.;21.;22.;23.;24.;。
2017-2018学年度七年级数学第一学期期末试题(含答案)
2017-2018学年度七年级数学第一学期期末试题注意事项:1、本试卷共三个大题,满分100分,考试时间120分钟;2、请用黑色水性笔或钢笔在答题卡上作答,所有试题在试卷上作答均无效;3、选择题在答题卡用2B 铅笔作答。
一、选择题(每题2分,共20分) 1.−12 的绝对值是( )A.2B.-2C. 12D. −122.在-6,0,3,8这四个数中,最小的数是( ) A .-6 B .0 C .3 D .8 3.下列运算中,正确的是( )A. a +2a =3a B .4m −m =3 C.2as +as =3as D. d 2+d 3=d 5 4.下列判断中正确的是( ) A .单项式 −2ab 23的系数是-2 B .单项式 −23 的次数是1C .多项式 2x 2−3x 2y 2−y 的次数是2D .多项式 1+2ab +ab 2 是三次三项式 5.如图所示的几何体是由五个小正方体搭建而成的,则从正面看,得到的平面图形是( )6.已知关于x 的方程 2x =5−a 的解为x=3,则a 的值为( ) A .1 B . 2 C . 5 D .-l 7.下列说法正确的是( )A .近似数3.6与3.60精确度相同B .数2.9954精确到百分位为3.00C .近似数1.3×104精确到十分位D .近似数3.61万精确到百分位 8.下列图形中,线段PQ 的长表示点P 到直线MN 的距离是( )9.如右图,射线OA 的方向是北偏西60°,射线OB 的方向是南偏东25°,则∠AOB 的度数为( )A. 120°B. 145°C. 115°D. 130°10.轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时,若船速为26千米/时,水速为2千米/时,求A港和B港相距多少千米.设A港和B港相距x千米,根据题意,可列出的方程是( )A.x28=x24−3 B. x26=x+326C.x28=x24+3 D. x30=x22−3二、填空题(每题3分,共30分)11.如果+15表示高出标准水位15米,那么-4表示 .12.我国南海海域面积约为3500000 k m2,用科学记数法表示数3500000为 .13.下列说法:①-a是负数;②一个数的绝对值一定是正数;③一个有理数不是正数就是负数;④平方等于本身的数是0和1.其中正确的是 .14.已知23x3m−1y3与−14x5y2n+1是同类项,则 5m+3n 的值是 .15.若x,y互为相反数,a、b互为倒数,则2x+2y−3ab代数式的值为 . 16.在直线上顺次取A、B、C三点,使得AB=5cm, BC=3cm.如果O是线段AC的中点,那么线段OC的长度是____.17.若|3a+6|+(b−3)2,则a b=____.18.如图,我们可以把弯曲的河道改直,这样做的数学依据是 .改直后.A、B丙地间的河道长度会 .(填“变短”,“变长”或“不变”),其原因是 .19.下列式子按一定规律排列 a2,a 34,a 56,a 78……则第2017个式子是 . 20.在正方形ABCD 中,E 为DC 边上的一点,沿线段BE 对折后,若∠ABF 比∠EBF 大15°,则∠EBF 的度数为: .三、解答题(共50分) 21.(共10分,每小题5分)(1)计算 −33÷(−3)2+3×(−2)+|−4| (2)解方程x−32−4x+15=122.(6分)已知x-2y=l ,求5x −3y − (x +y)一2(3x −4y)的值. 23. (6分)一个角的补角比它的余角的3倍少20°,求这个角的度数.24. (8分)有理数a ,b ,c 在数轴上的位置如图所示,且表示数a 的点、数b 的点到原点的距离相等.(1)用“>”“=”“<”填空:b 0,a+b 0,a-c 0,b-c 0;(4分)(2)化简|a+b|+|c−a|−|b|.(4分)25.(10分)如图所示,点0为直线AB上一点,∠AOC=50°,OD平分∠AOC,∠DOE=90°.(1)请你数一数,图中有多少个小于平角的角:(2分)(2)求出∠BOD的度数;(3分)(3)试判断OE是否平分∠BOC,并说明理由.(5分)26.(10分)小明用的练习本可以到甲商店购买,也可以到乙商店购买,已知两商店的标价都是每本1元,甲商店的优惠条件是:购买10本以上,从第11本开始按标价的70%卖;乙商店的优惠条件是:每本按标价的80%卖.(1)小明要买20本时,到哪个商店较省钱?(3分)( 2)买多少本时到两个商店付的钱一样?(3分)(3)小明现有32元钱,最多可买多少本?(4分)2017—2018学年第一学期七年级期末考试数学试卷答案一、选择题(每题2分,共20分) 1 2 3 4 5 6 7 8 9 10 C ACDCDBABA二、填空题(每题3分,共30分) 11. 低于标准水位4米 12.13. ④ 14. 13 15. -316. 4 cm 17. -8 18. 两点确定一条直线,变短, 两点间线段最短 19.40334034a 20.25°三、解答题(共50分) 21. (共10分,每小题5分)(1)解:原式=-27÷9-6+4……………(3分) =-3-6+4……………(4分) =-5……………(5分) (2)解:去分母得:……………(2分)去括号得:……………(4分)移项合并得:系数化为1得:……………(5分)22. (6分)解:5x-3y-(x+y)-2(3x-4y) =5x-3y-x-y-6x+8y ……………(2分) =-2x+4y ……………(3分) =-2(x-2y) ……………(5分) 因为x-2y=1所以原式=-2×1=-2……………(6分)23.(6分)解:设这个角为x 度,……………(1分) 则180°-x=3(90°-x )-20°,……………(3分) 解得:x=35°.……………(5分)答:这个角的度数是35°.……………(6分)24.(8分)解:(1) <,=, >, <……………(4分) (2)原式=……………(2分)=a-c+b ……………(4分)25.(10分)解:(1)共有9个小于平角的角;……………(2分)(2)因为OD 平分∠AOC ,所以∠AOD =12∠AOC =25°, 所以∠BOD =180°-25°=155°;……………(3分) (3)解OE 平分∠BOC. ……………(1分)理由如下:因为∠DOE =90°,∠COD =25°,所以∠COE =90°-25°=65°. 因为∠AOC =50°,所以∠BOC =180°-50°=130°. ……………(2分)所以∠COE =21∠BOC ,所以OE 是否平分∠BOC. ……………(2分)26. (10分)解:(1)甲店需付款10+10×0.7=17元;(1分) 乙店需付款20×0.8=16元,……………(2分) 所以到乙商店省钱. ……………(3分) (2)设买x 本时到两个商店付的钱一样。
2017--2018学年度上学期人教版七年级数学期末试卷(含答案)
2017--2018学年度上学期人教版七年级数期末试卷一、选择题(本题共12个小题,每小题3分,共36分.)1、如果向东走3米,记作+3米,那么向西走4米,记作( )A 、1米B 、7米C 、—4米D 、—72、下列判断正确的个数是( )①带正号的数是正数,带符号的数是负数。
②任何一个正数,前面加上“—”,就是一个负数。
③0是最小的正数。
④大于0的数是正数。
⑤字母a 可能既是正数,又是负数。
A 、1B 、2C 、3D 、43.下列方程为一元一次方程的是( ) A .y +3= 0 B .x +2y =3C .x 2=2xD .21=+y y4.下列各组数中,互为相反数的是( )A .)1(--与1B .(-1)2与1C .1-与1D .-12与1 5.下列各组单项式中,为同类项的是( ) A .a 3与a 2 B .12a 2与2a 2 C .2xy 与2x D .-3与a6.如图,数轴A 、B 上两点分别对应实数a 、b ,则下列结论正确的是( )A .a +b>0B .ab >0C .110a b -<D .110a b +>7.下列各图中,可以是一个正方体的平面展开图的是( )8.把两块三角板按如图所示那样拼在一起,则∠ABC 等于( ) A .70° B .90°C .105° D .120°ABCD第8题图9.在灯塔O 处观测到轮船A 位于北偏西54°的方向,同时轮船B 在南偏东15°的方向,那么∠AOB 的大小为 ( )A .69°B .111°C .141°D .159°10.一件夹克衫先按成本提高50%标价,再以8折(标价的80%)出售,结果获 利28元,若设这件夹克衫的成本是x 元,根据题意,可得到的方程是( ) A .(1+50%)x×80%=x -28 B .(1+50%)x×80%=x +28 C .(1+50%x)×80%=x -28 D .(1+50%x)×80%=x +2811.轮船沿江从A 港顺流行驶到B 港,比从B 港返回A 港少用3小时,若船速为26千米/时,水速为2千米/时,求A 港和B 港相距多少千米.设A 港和B 港相距x 千米.根据题意,可列出的方程是( ) A .32428-=x x B .32428+=x x C .3262262+-=+x x D .3262262-+=-x x12.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m 的值应是( )A .110B .158C .168D .178二、填空题(本大题共8个小题;每小题3分,共24分.把答案写在题中横线上) 13.-3的倒数是________.6222 4 20 4 884446……A第9题图14.单项式12xy 2的系数是_________.15.若x =2是方程8-2x =ax 的解,则a =_________. 16.计算:15°37′+42°51′=_________.17.青藏高原是世界上海拔最高的高原,它的面积约为2 500 000平方千米.将2 500000用科学记数法表示应为_________________平方千米. 18.已知,a -b =2,那么2a -2b +5=_________.19.已知y 1=x +3,y 2=2-x ,当x =_________时,y 1比y 2大5.20.根据图中提供的信息,可知一个杯子的价格是________元.三、解答题(本大题共8个小题;共60分) 21.(本小题满分6分)计算:(-1)3-14×[2-(-3)2] .22.(本小题满分6分)一个角的余角比这个角的21少30°,请你计算出这个角的大小.共43元共94元23.(本小题满分7分) 先化简,再求值:41(-4x 2+2x -8)-(21x -1),其中x =21.24.(本小题满分7分) 解方程:513x +-216x -=1.25.(本小题满分7分)一点A 从数轴上表示+2的点开始移动,第一次先向左移动1个单位,再向右移动2个单位;第二次先向左移动3个单位,再向右移动4个单位;第三次先向左移动5个单位,再向右移动6个单位……(1)写出第一次移动后这个点在数轴上表示的数为;(2)写出第二次移动结果这个点在数轴上表示的数为;(3)写出第五次移动后这个点在数轴上表示的数为;(4)写出第n次移动结果这个点在数轴上表示的数为;(5)如果第m次移动后这个点在数轴上表示的数为56,求m的值.26.(本小题满分8分)Array如图,∠AOB=∠COD=90°,OC平分∠AOB,∠BOD=3∠DOE.求:∠COE的度数.27.(本小题满分8分)如图,已知线段AB和CD的公共部分BD=13AB=14CD,线段AB、CD的中点E、F之间距离是10cm,求AB、CD的长.A E DB F C28.(本小题满分11分)某中学为了表彰在书法比赛中成绩突出的学生,购买了钢笔30支,毛笔45支,共用了1755元,其中每支毛笔比钢笔贵4元.(1)求钢笔和毛笔的单价各为多少元?(2)①学校仍需要购买上面的两种笔共105支(每种笔的单价不变).陈老师做完预算后,向财务处王老师说:“我这次买这两种笔需支领2447元.”王老师算了一下,说:“如果你用这些钱只买这两种笔,那么帐肯定算错了.”请你用学过的方程知识....解释王老师为什么说他用这些钱只买这两种笔的帐算错了. ②陈老师突然想起,所做的预算中还包括校长让他买的一支签字笔.如果签字笔的单价为小于10元的整数,请通过计算,直接..写出签字笔的单价可能为元.数学试题参考答案一、选择题(每小题3分,共36分)1.C ;2.B ;3.A ;4.D ;5.B ;6. D ;7.C ;8.D ;9.C ;10. B ;11.A ;12.B . 二、填空题(每题3分,共24分)13.31-;14.21-;15.2;16.58°28′;17.2.5×106;18.9;19.2;20.8.三、解答题(共60分)21.解:原式=-1-14×(2-9)…3分 =-1+ 47…5分 =43…6分22.解:设这个角的度数为x . ………1分由题意得:30)90(21=--x x …3分 解得:x =80……5分答:这个角的度数是80° ………6分23.解:原式 =1212212+--+-x x x ……3分 =12--x …4分 把x =21代入原式: 原式=12--x =1)21(2--…5分 =45- 7分24.解:6)12()15(2=--+x x . …2分612210=+-+x x .……4分8x =3. ……6分 83=x .……7分 |25.解:(1)第一次移动后这个点在数轴上表示的数是3; ………1分 (2)第二次移动后这个点在数轴上表示的数是4;…………2分(3)第五次移动后这个点在数轴上表示的数是7;……………3分(4)第n次移动后这个点在数轴上表示的数是n+2;…………5分(5)54. ………………………………7分26.解:∵∠AOB=90°,OC平分∠AOB∴∠BOC=12∠AOB=45°,…2分∵∠BOD=∠COD-∠BOC=90°-45°=45°,……4分∠BOD=3∠DOE∴∠DOE=15,……7分∴∠COE=∠COD-∠DOE=90°-15°=75°………8分27.解:设BD=x cm,则AB=3x cm,CD=4x cm,AC=6x cm.………1分∵点E、点F分别为AB、CD的中点,∴AE=12AB=1.5x cm,CF=12CD=2x cm.……3分∴EF=AC-AE-CF=2.5x cm.……4分∵EF=10cm,∴2.5x=10,解得:x=4.……6分∴AB=12c,CD=16cm.……………8分28.解:(1)设钢笔的单价为x元,则毛笔的单价为(x+4)元. ……1分由题意得:30x+45(x+4)=1755 ……3分解得:x=21 则x+4=25. ………4分答:钢笔的单价为21元,毛笔的单价为25元. ……………5分(2)设单价为21元的钢笔为y支,所以单价为25元的毛笔则为(105-y)支. …6分根据题意,得21y+25(105-y)=2447.…7分解之得:y=44.5 (不符合题意) .…8分所以王老师肯定搞错了.…9分(3)2或6. …………11分(答对1个给1分,答错1个倒扣1分,扣到0分为止)28、(3)解法提示:设单价为21元的钢笔为z支,签字笔的单价为a元则根据题意,得21z+25(105-z)=2447-a.即:4z=178+a,因为a、z都是整数,且178+a应被4整除,所以a为偶数,又因为a为小于10元的整数,所以a可能为2、4、6、8.当a=2时,4z=180,z=45,符合题意;当a=4时,4z=182,z=45.5,不符合题意;当a=6时,4z=184,z=46,符合题意;当a=8时,4z=186,z=46.5,不符合题意.所以笔记本的单价可能2元或6元.(本题也可由①问结果,通过讨论钢笔单价得到答案)。
2017-2018学年七年级(上)期末数学试卷及答案
2017-2018学年七年级(上)期末数学试卷一、选择题(本大题共6小题,每小题3分,共18分)1.﹣3的相反数是()A.3 B.﹣3 C.D.﹣2.运用等式性质进行的变形,正确的是()A.如果a=b,则a+c=b﹣c B.如果a2=3a,那么a=3C.如果a=b,则=D.如果=,则a=b3.直四棱柱、长方体和正方体之间的包含关系是()A.B.C.D.4.下列说法中,错误的是()A.﹣2a2b与ba2是同类项B.对顶角相等C.过一点有且只有一条直线与已知直线平行D.垂线段最短5.如图,直线a、b与直线c相交,给出下列条件:①∠1=∠2;②∠3=∠6;③∠4+∠7=180°;④∠5+∠8=180°,其中能判断a∥b的条件有()A.1个 B.2个 C.3个 D.4个6.一根竹竿插入到池塘中,插入池塘淤泥中的部分占全长的,水中部分是淤泥中部分的2倍少1米,露出水面的竹竿长1米.设竹竿的长度为x米,则可列出方程()A.x=1 B.x+1=xC.x﹣1+1=x D.x+1+1=x二、填空题(本大题共10小题,每小题3分,共30分)7.请写出一个负无理数.8.今年某市参加中考的考生共约11万人,用科学记数法表示11万人是人.9.若2x|m|﹣1=5是一元一次方程,则m的值为.10.某几何体的三视图如图所示,则这个几何体的名称是.11.多项式2a2﹣4a+1与多项式﹣3a2+2a﹣5的差是.12.小明根据方程5x+2=6x﹣8编写了一道应用题,请你把空缺的部分补充完整.某手工小组计划教师节前做一批手工品赠给老师,如果每人做5个,那么就比计划少2个;,请问手工小组有几人?(设手工小组有x人)13.如图是一个正方体展开图,把展开图折叠成正方体后,“我”字一面的相对面上的字是.14.如图,B处在A处的南偏西45°方向,C处在A处的南偏东15°方向,C处在B处的北偏东85°方向,则∠ACB的度数为.15.如图,将△ABE向右平移2cm得到△DCF,如果△ABE的周长是16cm,那么四边形ABFD的周长是.16.按下面的程序计算,若开始输入的值x为正数,最后输出的结果为11,则满足条件的x的不同值分别为.三、解答题(本大题共12小题,共102分)17.计算:(1)[﹣5﹣(﹣11)]÷(﹣÷);(2)﹣22﹣×2+(﹣2)3÷(﹣).18.解方程:(1)6+2x=14﹣3x(写出检验过程);(2)=1.19.如图,点B在线段AD上,C是线段BD的中点,AD=10,BC=3.求线段CD、AB的长度.20.一个角的补角加上10°后,等于这个角的余角的3倍,求这个角以及它的余角和补角的度数.21.化简求值:(3ab2﹣a2b)﹣2(2ab2﹣a2b),其中a=1,b=﹣2.22.证明:多项式16+a﹣{8a﹣[a﹣9﹣3(1﹣2a)]}的值与字母a的取值无关.23.如图,EF⊥BC,AD⊥BC,∠1=∠2,∠B=30°.求∠GDB的度数.请将求∠GDB度数的过程填写完整.解:因为EF⊥BC,AD⊥BC,所以∠BFE=90°,∠BDA=90°,理由是,即∠BFE=∠BDA,所以EF∥,理由是,所以∠2=,理由是.因为∠1=∠2,所以∠1=∠3,所以AB∥,理由是,所以∠B+ =180°,理由是.又因为∠B=30°,所以∠GDB=.24.如图,点P是∠AOB的边OB上的一点过点P画OB的垂线,交OA于点C;(1)过点P画OA的垂线,垂足为H;(2)线段PH的长度是点P到的距离,是点C到直线OB的距离.线段PC、PH、OC这三条线段大小关系是(用“<”号连接)25.周末小明陪爸爸去陶瓷商城购买一些茶壶和茶杯,了解情况后发现甲、乙两家商店都在出售两种同样品牌的茶壶和茶杯,定价相同:茶壶每把定价30元,茶杯每只定价5元.两家都有优惠:甲店买一送一大酬宾(买一把茶壶赠送茶杯一只);乙店全场9折优惠.小明爸爸需茶壶5把,茶杯x只(x不小于5).(1)若在甲店购买,则总共需要付元;若在乙店购买,则总共需要付元.(用含x的代数式表示并化简.)(2)当需购买15只茶杯时,请你去办这件事,你打算去哪家商店购买?为什么?26.某数学兴趣小组研究我国古代《算法统宗》里这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的意思是:如果每一间客房住7人,那么有7人无房可住;如果每一间客房住9人,那么就空出一间房.(1)求该店有客房多少间?房客多少人?(2)假设店主李三公将客房进行改造后,房间数大大增加.每间客房收费20钱,且每间客房最多入住4人,一次性定客房18间以上(含18间),房费按8折优惠.若诗中“众客”再次一起入住,他们如何订房更合算?请写出你作出这种决策的理由.27.(1)观察思考如图,线段AB上有两个点C、D,请分别写出以点A、B、C、D为端点的线段,并计算图中共有多少条线段;(2)模型构建如果线段上有m个点(包括线段的两个端点),则该线段上共有多少条线段?请说明你结论的正确性;(3)拓展应用8位同学参加班上组织的象棋比赛,比赛采用单循环制(即每两位同学之间都要进行一场比赛),那么一共要进行多少场比赛?请将这个问题转化为上述模型,并直接应用上述模型的结论解决问题.28.如图,OB、OC是∠AOD的两条射线,OM和ON分别是∠AOB和∠COD内部的一条射线,且∠AOD=α,∠MON=β.(1)当∠AOM=∠BOM,∠DON=∠CON时,试用含α和β的代数式表示∠BOC;(2)①当∠AOM=2∠BOM,∠DON=2∠CON时,∠BOC等于多少?(用含α和β的代数式表示)②当∠AOM=3∠BOM,∠DON=3∠CON时,∠BOC等于多少?(用含α和β的代数式表示)(3)根据上面的结果,请填空:当∠AOM=n∠BOM,∠DON=n∠CON时,∠BOC=.(n是正整数)(用含α和β的代数式表示).2017-2018学年七年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题3分,共18分)1.﹣3的相反数是()A.3 B.﹣3 C.D.﹣【考点】相反数.【分析】根据相反数的概念解答即可.【解答】解:﹣3的相反数是3,故选:A.2.运用等式性质进行的变形,正确的是()A.如果a=b,则a+c=b﹣c B.如果a2=3a,那么a=3C.如果a=b,则=D.如果=,则a=b【考点】等式的性质.【分析】根据等式的性质对每一项分别进行分析,即可得出正确答案.【解答】解:A、根据等式性质1,两边都加c,得到a+c=b+c,故A不正确;B、因为根据等式性质2,a≠0,所以不正确;C、因为c必需不为0,所以不正确;D、根据等式性质2,两边都乘以c,得到a=b,所以D成立;故选D.3.直四棱柱、长方体和正方体之间的包含关系是()A.B.C.D.【考点】认识立体图形.【分析】根据长方体与正方体的关系,可得答案.【解答】解:长方体是特殊的直四棱柱,正方体是特殊的长方体,故选:B.4.下列说法中,错误的是()A.﹣2a2b与ba2是同类项B.对顶角相等C.过一点有且只有一条直线与已知直线平行D.垂线段最短【考点】平行公理及推论;同类项;对顶角、邻补角;垂线段最短.【分析】A、根据同类项的定义进行判断;B、根据对顶角的性质进行判断;C、根据平行公理进行判断;D、根据垂线段的性质进行判断.【解答】解:A、﹣2a2b与ba2是同类项,故本选项错误;B、对顶角相等,故本选项错误;C、过直线外一点有且只有一条直线与已知直线平行,故本选项正确;D、从直线外一点到这条直线所作的垂线段最短,故本选项错误;故选:C.5.如图,直线a、b与直线c相交,给出下列条件:①∠1=∠2;②∠3=∠6;③∠4+∠7=180°;④∠5+∠8=180°,其中能判断a∥b的条件有()A.1个 B.2个 C.3个 D.4个【考点】平行线的判定.【分析】根据平行线的判定方法:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行进行分析即可.【解答】解:①∠1=∠2可根据同位角相等,两直线平行得到a∥b;②∠3=∠6可根据内错角相等,两直线平行得到a∥b;③∠4+∠7=180°可得∠6+∠7=180°,可根据同旁内角互补,两直线平行得到a∥b;④∠5+∠8=180°可得∠3+∠2=180°,可根据同旁内角互补,两直线平行得到a∥b;故选:D.6.一根竹竿插入到池塘中,插入池塘淤泥中的部分占全长的,水中部分是淤泥中部分的2倍少1米,露出水面的竹竿长1米.设竹竿的长度为x米,则可列出方程()A.x=1 B.x+1=xC.x﹣1+1=x D.x+1+1=x【考点】由实际问题抽象出一元一次方程.【分析】根据题意可以列出相应的方程,从而可以解答本题.【解答】解:由题意可得,,故选C.二、填空题(本大题共10小题,每小题3分,共30分)7.请写出一个负无理数﹣(答案不唯一).【考点】无理数.【分析】根据无理数是无限不循环小数进行解答即可.【解答】解:由无理数的定义可知,﹣、﹣…是负无理数.故答案为:﹣(答案不唯一).8.今年某市参加中考的考生共约11万人,用科学记数法表示11万人是 1.1×105人.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:11万=11 0000=1.1×105,故答案为:1.1×105.9.若2x|m|﹣1=5是一元一次方程,则m的值为±2.【考点】一元一次方程的定义.【分析】利用一元一次方程的定义判断即可.【解答】解:∵2x|m|﹣1=5是一元一次方程,∴|m|﹣1=1,即|m|=2,解得:m=±2,故答案为:±210.某几何体的三视图如图所示,则这个几何体的名称是圆柱.【考点】由三视图判断几何体.【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.【解答】解:根据主视图和左视图为长方形判断出是柱体,根据俯视图是圆形可判断出这个几何体应该是圆柱,故答案为:圆柱.11.多项式2a2﹣4a+1与多项式﹣3a2+2a﹣5的差是5a2﹣6a+6.【考点】整式的加减.【分析】根据题意列出关系式,去括号合并即可得到结果.【解答】解:(2a2﹣4a+1)﹣(﹣3a2+2a﹣5)=2a2﹣4a+1+3a2﹣2a+5=5a2﹣6a+6.故答案为5a2﹣6a+6.12.小明根据方程5x+2=6x﹣8编写了一道应用题,请你把空缺的部分补充完整.某手工小组计划教师节前做一批手工品赠给老师,如果每人做5个,那么就比计划少2个;如果每人做6个,那么就比计划多8个,请问手工小组有几人?(设手工小组有x人)【考点】一元一次方程的应用.【分析】根据等号左边的式子可以看出,表示实际需要礼物个数,仿照所给题意的前半部分写出所缺部分.【解答】解:等号左边5x+2,表示实际需要礼物个数,那么等号右边也应表示实际需要礼物个数,则6x﹣8表示:如果每人做6个,那么就比计划多8个.13.如图是一个正方体展开图,把展开图折叠成正方体后,“我”字一面的相对面上的字是梦.【考点】专题:正方体相对两个面上的文字.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“我”与“梦”是相对面,“们”与“中”是相对面,“的”与“国”是相对面.故答案为:梦.14.如图,B处在A处的南偏西45°方向,C处在A处的南偏东15°方向,C处在B处的北偏东85°方向,则∠ACB的度数为80°.【考点】方向角.【分析】根据方向角,可得∠1,∠2,∠3的度数,根据平行线的性质,可得∠5,的度数,根据角的和差,可得∠2,4的度数,根据三角形的内角和定理,可得答案.、【解答】解:如图:,B处在A处的南偏西45°方向,C处在A处的南偏东15°方向,C处在B处的北偏东85°方向,∴∠1=45°∠2=85°,∠3=15°,由平行线的性质得∠5=∠1=45°.由角的和差得∠6=∠2﹣∠5=85°﹣45°=40°,∠4=∠1+∠3=45°+15°=60°,由三角形的内角和定理得∠ACB=180°﹣∠6﹣∠4=180°﹣40°﹣60°=80°,故答案为:80°.15.如图,将△ABE向右平移2cm得到△DCF,如果△ABE的周长是16cm,那么四边形ABFD的周长是20cm.【考点】平移的性质.【分析】根据平移的性质可得DF=AE,然后判断出四边形ABFD的周长=△ABE的周长+AD+EF,然后代入数据计算即可得解.【解答】解:∵△ABE向右平移2cm得到△DCF,∴DF=AE,∴四边形ABFD的周长=AB+BE+DF+AD+EF,=AB+BE+AE+AD+EF,=△ABE的周长+AD+EF,∵平移距离为2cm,∴AD=EF=2cm,∵△ABE的周长是16cm,∴四边形ABFD的周长=16+2+2=20cm.故答案为:20cm.16.按下面的程序计算,若开始输入的值x为正数,最后输出的结果为11,则满足条件的x的不同值分别为5,2,0.5.【考点】代数式求值.【分析】解答本题的关键就是弄清楚题图给出的计算程序.由于代入x计算出y 的值是11>10,符合要求,所以x=5即也可以理解成y=5,把y=5代入继续计算,得x=2,依此类推就可求出5,2,0.5.【解答】解:依题可列,y=2x+1,把y=11代入可得:x=5,即也可以理解成y=5,把y=5代入继续计算可得:x=2,把y=2代入继续计算可得:x=0.5,把y=0.5代入继续计算可得:x<0,不符合题意,舍去.∴满足条件的x的不同值分别为5,2,0.5.三、解答题(本大题共12小题,共102分)17.计算:(1)[﹣5﹣(﹣11)]÷(﹣÷);(2)﹣22﹣×2+(﹣2)3÷(﹣).【考点】有理数的混合运算.【分析】(1)原式先计算括号中的运算,再计算除法运算即可得到结果;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=6÷(﹣×4)=6÷(﹣6)=﹣1;(2)原式=﹣4﹣3+(﹣8)÷(﹣)=﹣4﹣3+16=9.18.解方程:(1)6+2x=14﹣3x(写出检验过程);(2)=1.【考点】解一元一次方程.【分析】(1)方程移项合并,把x系数化为1,求出解,检验即可;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)移项得:3x+2x=14﹣6,合并得:5x=8,解得:x=1.6,当x=1.6时,左边=6+3.2=9.2,右边=14﹣4.8=9.2,∵左边=右边,∴x=1.6是方程的解;(2)去分母得:3(x+2)﹣2(2x﹣3)=12,去括号得:3x+6﹣4x+6=12,解得:x=0.19.如图,点B在线段AD上,C是线段BD的中点,AD=10,BC=3.求线段CD、AB的长度.【考点】两点间的距离.【分析】根据线段中点的定义可得BC=CD;再根据AB=AD﹣BC﹣CD,代入数据进行计算即可得解.【解答】解:∵C是线段BD的中点,∴BC=CD,∵BC=3,∴CD=3;由图形可知,AB=AD﹣BC﹣CD,∵AD=10,BC=3,∴AB=10﹣3﹣3=4.20.一个角的补角加上10°后,等于这个角的余角的3倍,求这个角以及它的余角和补角的度数.【考点】余角和补角.【分析】设这个角为x°,则得出方程180﹣x+10=3(90﹣x),求出即可.【解答】解:设这个角为x°,则180﹣x+10=3(90﹣x),解得:x=40.即这个角的余角是50°,补角是140°.21.化简求值:(3ab2﹣a2b)﹣2(2ab2﹣a2b),其中a=1,b=﹣2.【考点】整式的加减—化简求值.【分析】先化简,然后将a与b的值代入即可求出答案.【解答】解:原式=3ab2﹣a2b﹣4ab2+2a2b=﹣ab2+a2b,当a=1,b=﹣2时,原式=﹣1×1×4+1×(﹣2)=﹣6;22.证明:多项式16+a﹣{8a﹣[a﹣9﹣3(1﹣2a)]}的值与字母a的取值无关.【考点】整式的加减.【分析】先将多项式16+a﹣{8a﹣[a﹣9﹣3(1﹣2a)]}进行化简,化简时去括号,然后合并同类项,以此来判断是否与a的取值无关.【解答】证明:16+a﹣{8a﹣[a﹣9﹣3(1﹣2a)]}=16+a﹣{8a﹣[a﹣9﹣3+6a]}=16+a﹣{8a﹣a+9+3+6a}=16+a﹣8a+a﹣9﹣3+6a=4.故多项式的值与a的值无关.23.如图,EF⊥BC,AD⊥BC,∠1=∠2,∠B=30°.求∠GDB的度数.请将求∠GDB度数的过程填写完整.解:因为EF⊥BC,AD⊥BC,所以∠BFE=90°,∠BDA=90°,理由是垂直的定义,即∠BFE=∠BDA,所以EF∥AD,理由是同位角相等,两直线平行,所以∠2=∠3,理由是两直线平行,同位角相等.因为∠1=∠2,所以∠1=∠3,所以AB∥DG,理由是内错角相等,两直线平行,所以∠B+ ∠GDB=180°,理由是两直线平行,同旁内角互补.又因为∠B=30°,所以∠GDB=150°.【考点】平行线的判定与性质.【分析】先根据垂直的定义得出∠BFE=90°,∠BDA=90°,故可得出EF∥AD,再由平行线的性质得出∠2=∠3,利用等量代换得出∠1=∠3,故AB∥DG,再由∠B=30°即可得出结论.【解答】解:∵EF⊥BC,AD⊥BC,∴∠BFE=90°,∠BDA=90°(垂直的定义),即∠BFE=∠BDA,∴EF∥AD(同位角相等,两直线平行),∴∠2=∠3(两直线平行,同位角相等).又∵∠1=∠2,∴∠1=∠3,∴AB∥DG(内错角相等,两直线平行)∴∠B+∠GDB=180°(两直线平行,同旁内角互补).又∵∠B=30°,∴∠GDB=150°.故答案为:垂直的定义,AD,同位角相等,两直线平行,∠3,两直线平行,同位角相等,DG,内错角相等,两直线平行,∠GDB,两直线平行,同旁内角互补,150°.24.如图,点P是∠AOB的边OB上的一点过点P画OB的垂线,交OA于点C;(1)过点P画OA的垂线,垂足为H;(2)线段PH的长度是点P到OA的距离,线段CP的长度是点C到直线OB的距离.线段PC、PH、OC这三条线段大小关系是PH<PC<OC(用“<”号连接)【考点】点到直线的距离;垂线段最短.【分析】(1)过点P画OA的垂线,即过点P画∠PHO=90°即可,(2)利用点到直线的距离可以判断线段PH的长度是点P到OA的距离,PC是点C到直线OB的距离,线段PC、PH、OC这三条线段大小关系是PH<PC<OC.【解答】解:(1)如图:(2)线段PH的长度是点P到直线OA的距离,线段CP的长度是点C到直线OB的距离,根据垂线段最短可得:PH<PC<OC,故答案为:OA,线段CP,PH<PC<OC.25.周末小明陪爸爸去陶瓷商城购买一些茶壶和茶杯,了解情况后发现甲、乙两家商店都在出售两种同样品牌的茶壶和茶杯,定价相同:茶壶每把定价30元,茶杯每只定价5元.两家都有优惠:甲店买一送一大酬宾(买一把茶壶赠送茶杯一只);乙店全场9折优惠.小明爸爸需茶壶5把,茶杯x只(x不小于5).(1)若在甲店购买,则总共需要付5x+125元;若在乙店购买,则总共需要付 4.5x+135元.(用含x的代数式表示并化简.)(2)当需购买15只茶杯时,请你去办这件事,你打算去哪家商店购买?为什么?【考点】列代数式.【分析】(1)由题意可知,在甲店买一把茶壶赠送茶杯一只,故需付5只茶壶的钱和x﹣5只茶杯的钱,已知茶壶和茶杯的钱,可列出付款关于x的式子;在乙店购买全场9折优惠,同理也可列出付款关于x的式子;(2)计算后判断即可.【解答】解:(1)设购买茶杯x只,在甲店买一把茶壶赠送茶杯一只,且茶壶每把定价30元、茶杯每只定价5元,故在甲店购买需付:5×30+5×(x﹣5)=5x+125;在乙店购买全场9折优惠,故在乙店购买需付:30×0.9×5+5×0.9×x=4.5x+135;(2)选择甲店购买,理由:到甲店购买需要200元,到乙店购买需要202.5元.∵200<202.5,∴选择甲店购买,故答案为:(1)(5x+125),(4.5x+135)26.某数学兴趣小组研究我国古代《算法统宗》里这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的意思是:如果每一间客房住7人,那么有7人无房可住;如果每一间客房住9人,那么就空出一间房.(1)求该店有客房多少间?房客多少人?(2)假设店主李三公将客房进行改造后,房间数大大增加.每间客房收费20钱,且每间客房最多入住4人,一次性定客房18间以上(含18间),房费按8折优惠.若诗中“众客”再次一起入住,他们如何订房更合算?请写出你作出这种决策的理由.【考点】一元一次方程的应用.【分析】(1)根据题意设出房间数,进而表示出总人数得出等式方程求出即可;(2)根据已知条件分别列出两种住房方法所用的钱数,进而比较即可.【解答】解:(1)设客房有x间,则根据题意可得:7x+7=9x﹣9,解得x=8;即客人有7×8+7=63(人);答:客人有63人.(2)如果每4人一个房间,需要63÷4=15,需要16间客房,总费用为16×20=320(钱),如果定18间,其中有四个人一起住,有三个人一起住,则总费用=18×20×0.8=288(钱)<320钱,所以他们再次入住定18间房时更合算.答:他们再次入住定18间房时更合算.27.(1)观察思考如图,线段AB上有两个点C、D,请分别写出以点A、B、C、D为端点的线段,并计算图中共有多少条线段;(2)模型构建如果线段上有m个点(包括线段的两个端点),则该线段上共有多少条线段?请说明你结论的正确性;(3)拓展应用8位同学参加班上组织的象棋比赛,比赛采用单循环制(即每两位同学之间都要进行一场比赛),那么一共要进行多少场比赛?请将这个问题转化为上述模型,并直接应用上述模型的结论解决问题.【考点】直线、射线、线段.【分析】(1)从左向右依次固定一个端点A,C,D找出线段,最后求和即可;(2)根据数线段的特点列出式子化简即可;(3)将实际问题转化成(2)的模型,借助(2)的结论即可得出结论.【解答】解:(1)∵以点A为左端点向右的线段有:线段AB、AC、AD,以点C为左端点向右的线段有线段CD、CB,以点D为左端点的线段有线段DB,∴共有3+2+1=6条线段;(2),理由:设线段上有m个点,该线段上共有线段x条,则x=(m﹣1)+(m﹣2)+(m﹣3)+…+3+2+1,∴倒序排列有x=1+2+3+…+(m﹣3)+(m﹣2)+(m﹣1),∴2x==m(m﹣1),∴x=;(3)把8位同学看作直线上的8个点,每两位同学之间的一场比赛看作为一条线段,直线上8个点所构成的线段条数就等于比赛的场数,因此一共要进行=28场比赛.28.如图,OB、OC是∠AOD的两条射线,OM和ON分别是∠AOB和∠COD内部的一条射线,且∠AOD=α,∠MON=β.(1)当∠AOM=∠BOM,∠DON=∠CON时,试用含α和β的代数式表示∠BOC;(2)①当∠AOM=2∠BOM,∠DON=2∠CON时,∠BOC等于多少?(用含α和β的代数式表示)②当∠AOM=3∠BOM,∠DON=3∠CON时,∠BOC等于多少?(用含α和β的代数式表示)(3)根据上面的结果,请填空:当∠AOM=n∠BOM,∠DON=n∠CON时,∠BOC=β﹣α.(n是正整数)(用含α和β的代数式表示).【考点】角的计算.【分析】(1)根据∠BOC=∠MON﹣∠BOM﹣∠CON,等量代换即可表示出∠BOC的大小;(2)①当∠AOM=2∠BOM,∠DON=2∠CON时,等量代换即可表示出∠BOC的大小;②当∠AOM=3∠BOM,∠DON=3∠CON时,等量代换即可表示出∠BOC 的大小;(3)当∠AOM=n∠BOM,∠DON=n∠CON时,等量代换即可表示出∠BOC的大小;【解答】(1)∵∠AOM=∠BOM=∠AOB,∠CON=∠DON=∠COD,∵∠BOC=∠MON﹣∠BOM﹣∠CON=∠MON﹣∠AOB﹣∠COD=∠MON﹣(∠AOB+∠COD)=∠MON﹣(∠AOD﹣∠BOC)=β﹣(α﹣∠BOC)=β﹣α+∠BOC,则∠BOC=2β﹣α.(2)①当∠AOM=2∠BOM,∠DON=2∠CON时,∵∠BOM+∠CON=(∠AOM+∠DON)=(α﹣β),∴∠BOC=∠MON﹣(∠BOM+∠CON)=β﹣(α﹣β)=β﹣α;②当∠AOM=3∠BOM,∠DON=3∠CON时,∵∠BOM+∠CON=(∠AOM+∠DON)=(α﹣β),∴∠BOC=∠MON﹣(∠BOM+∠CON)=β﹣(α﹣β)=β﹣α;(3)当∠AOM=n∠BOM,∠DON=n∠CON时,∵∠BOM+∠CON=(∠AOM+∠DON)=(α﹣β),∴∠BOC=∠MON﹣(∠BOM+∠CON)=β﹣(α﹣β)=β﹣α;故答案为:β﹣α.。
2017-2018学年七上期末数学参考答案
2017-2018学年度(上)初一期末调研测试卷数学试题参考答案与评分标准说明:本评分标准每题给出了一种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.11.2 12.-0.5 13.②④14.20 15.016.106.2517.±1,±618.3269三、解答题(本大题共10小题,共96分) 19.(本小题满分10分)(1)解:原式=4-4-0.5 ············································································ 3分=-0.5. ··············································································· 5分(2)解:原式=18+32÷(-8)-16×5 ························································ 9分=18-4-80 =-66. ·············································································· 10分20.(本小题满分10分)(1)解:原式=2a -b -2b +3a -2a +4b ··························································· 3分=3a +b . ··············································································· 5分(2)解:原式=223472x x x x +-+- ···························································· 8分=3332--x x .··································································· 10分21.(本小题满分10分) (1)解:2x +6=5x ··················································································· 3分3x =6 ······················································································ 4分 x =2. ··················································································· 5分(2)解:2y +2-4=8+2-y ········································································ 8分3y =12 ················································································ 9分 y=4. ············································································ 10分22.(本小题满分8分)解:(1)··································································································· 6分(2)3. ··································································································· 8分主视图 俯视图23.(本小题满分8分)解:(1)如图所示.··································································································· 2分 (2)当点F 在射线OM 上时, ∵OE ⊥AB ,∴∠AOE =90°.即∠EOF +∠AOM =90°. ∵OM ⊥CD ,∴∠MOC =90°.即∠AOC +∠AOM =90°. ∴∠EOF =∠AOC =35°. ····································································· 5分 当点在F 射线ON 上时,∠EO F=180°-35°=145°.综上,∠EOF 的度数为35°或145°. ··················································· 8分24.(本小题满分8分)解:当x =2,y =-4时,得()2018842123=+-⨯+⨯b a . ···························································· 2分 8a -2b +8=2018.8a -2b =2010 . 4a -b =1005. ················································································· 4分 当x =-4,y =21-时, 原式=()62124433+⎪⎭⎫⎝⎛---⨯b a ······························································ 6分 =-12a +3b +6 =-3(4a -b ) +6 =-3×1005+6 =-3009. ···················································································· 8分25.(本小题满分8分)解:(1)①∵∠COD 是直角,∴∠COD =90°. ················································································ 2分 ∵∠DOE =25°, ∴∠COE =90°-25°=65°. ∵OE 平分∠BOC ,∴∠BOC =2∠COE =130°. ∴∠AOC =180°-∠BOC =180°-130=50°. ··········································· 3分②∠COD =2α. ·················································································· 5分(第23题)A B C D EO M N(2)∵∠COD 是直角,∴∠COD =90°. ∴∠COE =90°-∠DOE . ········································································ 6分 ∵OE 平分∠BOC , ∴∠BOC =2∠COE . ·············································································· 7分 ∴∠AOC =180°-∠BOC=180°-(180°-2∠DOE ) =2∠DOE . ·············································································· 8分26.(本小题满分10分)解:(1)300÷0.9=270.因为234<270,所以小李第一次所购商品的总价超过100元,不超过300元.··········································································· 2分234÷0.9=260.所以小李第一次购物所购商品的总价是260元. ··································· 4分 (2)小李第二次购物付款94.5元,可以分为两种情况:①如果没有享受优惠,那么两次购物总价为260+94.5=354.5. 实际付款300×0.9+54.5×0.8=313.6. ··········································· 6分 (234+94.5)-313.6=14.9 ··························································· 7分 ②如果已经享受了优惠, 94.5÷0.9=105.那么两次购物总价为260+105=365. 实际付款300×0.9+65×0.8=322. ···················································· 9分 (234+94.5)-322=6.5.综上,小张可以比小李节约14.9元或6.5元. ····································· 10分27.(本小题满分10分)解:∠FDE =∠DEB . ·················································································· 1分 理由:∵∠AED =∠ACB ,∴DE ∥BC . ················································································· 3分 ∴∠ADE =∠ABC . ········································································· 4分 ∵DF ,BE 分别平分∠ADE ,∠ABC ,∴ADE ADF ∠=∠21,ABC ABE ∠=∠21. ····································· 6分 ∴∠ADF =∠ABE . ········································································· 7分∴DF ∥BE . ················································································· 8分 ∴∠FDE =∠DEB . ······································································· 10分28.(本小题满分14分) (1)①12. ································································································ 2分②-10. ····························································································· 4分 ③设运动时间为x 秒,当相遇前相距4个单位, (6-2)x =12-4x =2. ························································································· 6分 当相遇后相距4个单位, (6-2)x =12+4x =4.综上,点P 出发2秒或者4秒后,与点Q 之间相距4个单位长度. ········ 8分 (2)设经过y 秒后有MP =MQ , 当相遇前有MP =MQ , y +(4-2y )=8-(y +6y )32=y . ···················································································· 10分 当相遇时有MP =MQ , (2y +6y )=1223=y . ···················································································· 12分 当相遇后有MP =MQ , 2y -(4+y ) =6y -(8-y )32=y (不合题意,舍去) . 综上,经过32或23秒后,有MP =MQ . ············································· 14分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017-2018学年山东省济宁市邹城市七年级(上)期末数学试卷一、选择题(共10个小题,每小题3分,共30分.在每小题列出的四个选项中,选出符合题目要求的一项,请把答案填在下表相应的位置上)1.(3分)在﹣3,﹣1,0,1四个数中,比﹣2小的数是()A.﹣3 B.﹣1 C.0 D.12.(3分)下列各式中运算正确的是()A.3a﹣2a=1 B.x2+x2=x4C.2a2b﹣3ab2=﹣ab D.2x3+3x3=5x33.(3分)中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4400000000,4400000000这个数用科学记数法表示为()A.44×108 B.4.4×108C.4.4×109D.0.44×10104.(3分)已知x﹣4与2﹣3x互为相反数,则x=()A.1 B.﹣1 C.D.﹣5.(3分)若一个角的余角是50°,则它的补角是()A.140°B.40°C.130° D.160°6.(3分)在解方程时,去分母正确的是()A.3(x﹣1)﹣2(2x+3)=6 B.3(x﹣1)﹣2(2x+3)=1 C.2(x﹣1)﹣2(2x+3)=6 D.3(x﹣1)﹣2(2x+3)=37.(3分)如图,两轮船同时从O点出发,一艘沿北偏西50°方向直线行驶,另一艘沿南偏东25°方向直线行驶,2小时后分别到达A,B点,则此时两轮船行进路线的夹角∠AOB的度数是()A.165°B.155°C.115° D.105°8.(3分)程大位《直指算法统宗》:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完.试问大、小和尚各多少人?设大和尚有x人,依题意列方程得()A.+3(100﹣x)=100 B.﹣3(100﹣x)=100C.3x+=100 D.3x﹣=1009.(3分)延长线AB到C,使得BC=AB,若线段AC=8,点D为线段AC的中点,则线段BD的长为()A.2 B.3 C.4 D.510.(3分)如图所示,每个小立方体的棱长为1,按如图所示的视线方向看,图1中共有1个1立方体,其中1个看得见,0个看不见;图2中共有8个立方体,其中7个看得见,1个看不见;图3中共有27个小立方体,其中19个看得见,8个看不见;…,则第11个图形中,其中看得见的小立方体个数是()A.271 B.272 C.331 D.332二、填空题(共8个小题,每小题3分,共24分)11.(3分)用两个钉子就可以把木条钉在墙上,其依据是.12.(3分)若a是绝对值最小的数,b是最大的负整数,则a﹣b=.13.(3分)已知A,B,C是数轴上的三个点,点A,B表示的数分别是1,3,点C在点B的右侧,如图,若BC=2AB,则点C表示的数是.14.(3分)一个立方体的表面展开图如图所示,将其折叠成立方体后,“你”字对面,对面的字是.15.(3分)若代数式2m2﹣4m﹣3的值为5,则m2﹣2m+1的值为.16.(3分)关于x的方程3x﹣2k=1的解与方程2x+6=0的解相同,则k的值是.17.(3分)如图,O为直线AB上一点,OC平分∠AOD,∠AOC=53°17′,则∠BOD 的度数为.18.(3分)一个两位数,个位数字比十位数字的2倍多1,如果个位与十位的数字交换位置,得到一个新的两位数,新的两位数比原来两位数的2倍少1,则原两位数为.三、解答题(本题共6小题,共46分)19.(7分)(1)计算:(﹣1)2018﹣8÷(﹣2)3+4×(﹣)3;(2)先化简,再求值:3(a2b﹣2ab2)﹣(3a2b﹣2ab2),其中|a﹣1|+(b+)2=0.20.(7分)(1)解方程:x﹣2(5﹣x)=3(2x﹣1);(2)解方程:﹣1=.21.(6分)尺规作图:如图,已知线段a、b,作一条线段,使它等于2a﹣b.(保留作图痕迹)22.(8分)如图,C,D为线段AB上的亮点,M,N分别是线段AC,BD的中点.(1)如果CD=5cm,MN=8cm,求AB的长;(2)如果AB=a,MN=b,求CD的长.23.(8分)某地区居民生活用电,规定按以下标准收取电费:用电量(千瓦时)/月单价(元/千瓦时)基本用电量a0.50超过a超过部分基本电价的80%收费(1)某户七月份用电123千瓦时,共交电费57.2元,求a;(2)若该用户八月份的平均电费为0.45元,则八月份共用多少千瓦时?应交电费多少元?24.(10分)已知∠AOB=130°,∠COD=80°,OM,ON分别是∠AOB和∠COD的平分线.(1)如果OA,OC重合,且OD在∠AOB的内部,如图1,求∠MON的度数;(2)如果将图1中的∠COD绕点O点顺时针旋转n°(0<n<155),如图2,①∠MON与旋转度数n°有怎样的数量关系?说明理由;②当n为多少时,∠MON为直角?(3)如果∠AOB的位置和大小不变,∠COD的边OD的位置不变,改变∠COD 的大小;将图1中的OA绕着O点顺时针旋转m°(0<m<100),如图3,∠MON 与旋转度数m°有怎样的数量关系?说明理由.2017-2018学年山东省济宁市邹城市七年级(上)期末数学试卷参考答案与试题解析一、选择题(共10个小题,每小题3分,共30分.在每小题列出的四个选项中,选出符合题目要求的一项,请把答案填在下表相应的位置上)1.(3分)在﹣3,﹣1,0,1四个数中,比﹣2小的数是()A.﹣3 B.﹣1 C.0 D.1【解答】解:∵|﹣3|=3,|﹣2|=2,∴比﹣2小的数是:﹣3.故选:A.2.(3分)下列各式中运算正确的是()A.3a﹣2a=1 B.x2+x2=x4C.2a2b﹣3ab2=﹣ab D.2x3+3x3=5x3【解答】解:A、3a﹣2a=a,故此选项错误;B、x2+x2=2x2,故此选项错误;C、2a2b﹣3ab2无法计算,故此选项错误;D、2x3+3x3=5x3,故此选项正确;故选:D.3.(3分)中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4400000000,4400000000这个数用科学记数法表示为()A.44×108 B.4.4×108C.4.4×109D.0.44×1010【解答】解:4 400 000 000=4.4×109,故选:C.4.(3分)已知x﹣4与2﹣3x互为相反数,则x=()A.1 B.﹣1 C.D.﹣【解答】解:由题意得:x﹣4+2﹣3x=0,移项合并得:﹣2x=2,解得:x=﹣1,故选:B.5.(3分)若一个角的余角是50°,则它的补角是()A.140°B.40°C.130° D.160°【解答】解:∵一个角的余角是50°,∴这个角=90°﹣50°=40°,则它的补角为180°﹣40°=140°,故选:A.6.(3分)在解方程时,去分母正确的是()A.3(x﹣1)﹣2(2x+3)=6 B.3(x﹣1)﹣2(2x+3)=1 C.2(x﹣1)﹣2(2x+3)=6 D.3(x﹣1)﹣2(2x+3)=3【解答】解:方程左右两边同时乘以6得:3(x﹣1)﹣2(2x+3)=6.故选:A.7.(3分)如图,两轮船同时从O点出发,一艘沿北偏西50°方向直线行驶,另一艘沿南偏东25°方向直线行驶,2小时后分别到达A,B点,则此时两轮船行进路线的夹角∠AOB的度数是()A.165°B.155°C.115° D.105°【解答】解:由题意得:∠1=50°,∠2=25°,∴∠AOB=90°﹣∠1+90°+25°=40°+90°+25°=155°,故选:B.8.(3分)程大位《直指算法统宗》:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完.试问大、小和尚各多少人?设大和尚有x人,依题意列方程得()A.+3(100﹣x)=100 B.﹣3(100﹣x)=100C.3x+=100 D.3x﹣=100【解答】解:设大和尚有x人,则小和尚有(100﹣x)人,根据题意得:3x+=100;故选:C.9.(3分)延长线AB到C,使得BC=AB,若线段AC=8,点D为线段AC的中点,则线段BD的长为()A.2 B.3 C.4 D.5【解答】解:∵BC=AB,AC=8,∴BC=2,∵D为线段AC的中点,∴DC=4,∴BD=DC﹣BC=4﹣2=2;故选:A.10.(3分)如图所示,每个小立方体的棱长为1,按如图所示的视线方向看,图1中共有1个1立方体,其中1个看得见,0个看不见;图2中共有8个立方体,其中7个看得见,1个看不见;图3中共有27个小立方体,其中19个看得见,8个看不见;…,则第11个图形中,其中看得见的小立方体个数是()A.271 B.272 C.331 D.332【解答】解:图1中,共有1个小立方体,其中1个看得见,0=(1﹣1)3个看不见;图2中,共有8个小立方体,其中7个看得见,1=(2﹣1)3个看不见;图3中,共有27个小立方体,其中19个看得见,8=(3﹣1)3个看不见;…,第n个图中,一切看不见的棱长为1的小立方体的个数为(n﹣1)3,看见立方体的个数为n3﹣(n﹣1)3,所以则第19个图形中,其中看得见的小立方体有193﹣183=331个.故选:C.二、填空题(共8个小题,每小题3分,共24分)11.(3分)用两个钉子就可以把木条钉在墙上,其依据是两点确定一条直线.【解答】解:用两个钉子把木条钉在墙上时,木条就被固定住,其依据是两点确定一条直线.故答案为:两点确定一条直线.12.(3分)若a是绝对值最小的数,b是最大的负整数,则a﹣b=1.【解答】解:若a是绝对值最小的数,b是最大的负整数,则a=0,b=﹣1,a﹣b=0﹣(﹣1)=1.故答案为:1.13.(3分)已知A,B,C是数轴上的三个点,点A,B表示的数分别是1,3,点C在点B的右侧,如图,若BC=2AB,则点C表示的数是7.【解答】解:∵点A,B表示的数分别是1,3,∴AB=3﹣1=2,∵BC=2AB=4,∴OC=OA+AB+BC=1+2+4=7,∴点C表示的数是7.故答案为7.14.(3分)一个立方体的表面展开图如图所示,将其折叠成立方体后,“你”字对面,对面的字是顺.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“你”与“顺”是相对面,“考”与“利”是相对面,“祝”与“试”是相对面,故答案为:顺15.(3分)若代数式2m2﹣4m﹣3的值为5,则m2﹣2m+1的值为5.【解答】解:根据题意得:2m2﹣4m﹣3=5,2m2﹣4m=8,m2﹣2m=4,所以m2﹣2m+1=4+1=5,故答案为:5.16.(3分)关于x的方程3x﹣2k=1的解与方程2x+6=0的解相同,则k的值是﹣5.【解答】解:解方程2x+6=0,可得:x=﹣3,把x=﹣3代入方程3x﹣2k=1,可得:﹣9﹣2k=1,解得:k=﹣5,故答案为:﹣517.(3分)如图,O为直线AB上一点,OC平分∠AOD,∠AOC=53°17′,则∠BOD 的度数为73°26′.【解答】解:∵OC平分∠AOD,∠AOC=53°17′,∴∠AOD=2∠AOC=2×53°17′=106°34′,∴∠BOD=180°﹣∠AOD=180°﹣106°34′=73°26′,故答案为:73°26′.18.(3分)一个两位数,个位数字比十位数字的2倍多1,如果个位与十位的数字交换位置,得到一个新的两位数,新的两位数比原来两位数的2倍少1,则原两位数为37.【解答】解:设原两位数十位数数字为x,则个位数字为2x+1,根据题意得:2(10x+2x+1)﹣1=10(2x+1)+x,解得:x=3,∴2x+1=7.答:原两位数为37.故答案为:37.三、解答题(本题共6小题,共46分)19.(7分)(1)计算:(﹣1)2018﹣8÷(﹣2)3+4×(﹣)3;(2)先化简,再求值:3(a2b﹣2ab2)﹣(3a2b﹣2ab2),其中|a﹣1|+(b+)2=0.【解答】解:(1)(﹣1)2018﹣8÷(﹣2)3+4×(﹣)3 =1﹣8÷(﹣8)+4×(﹣)=1+1﹣=;(2)3(a2b﹣2ab2)﹣(3a2b﹣2ab2)=3a2b﹣6ab2﹣3a2b+2ab2=﹣4ab2,∵|a﹣1|+(b+)2=0,∴a=1,b=﹣,原式=﹣4×1×(﹣)2=﹣1.20.(7分)(1)解方程:x﹣2(5﹣x)=3(2x﹣1);(2)解方程:﹣1=.【解答】解:(1)x﹣2(5﹣x)=3(2x﹣1)去括号,得x﹣10+2x=6x﹣3移项及合并同类项,得﹣3x=7系数化为1,得x=﹣;(2)﹣1=去分母,得3(2x+1)﹣15=5(x﹣2)去括号,得6x+3﹣15=5x﹣10移项及合并同类项,得x=2.21.(6分)尺规作图:如图,已知线段a、b,作一条线段,使它等于2a﹣b.(保留作图痕迹)【解答】解:如图,线段AD即为所求22.(8分)如图,C,D为线段AB上的亮点,M,N分别是线段AC,BD的中点.(1)如果CD=5cm,MN=8cm,求AB的长;(2)如果AB=a,MN=b,求CD的长.【解答】解:(1)M、N分别是线段AC,BD的中点,∴MC=AC,DN=BD,∵MC+CD+DN=MN=8cm,∴MC+DN=8﹣5=3cm∴AC+BD=2MC+2DN=2×3=6cm,∴AB=AC+CD+BD=AC+BD+CD=6+5=11(cm),即线段AB的长为11cm.(2)M、N分别是线段AC,BD的中点,∴CM=AM=AC,BN=DN=BD,∵AM+BN=MC+DN=AB﹣MN,∴MC+DN=a﹣b,∴CD=MN﹣(MC+DN)=b﹣(a﹣b)=2b﹣a.23.(8分)某地区居民生活用电,规定按以下标准收取电费:用电量(千瓦时)/月单价(元/千瓦时)基本用电量a0.50超过a超过部分基本电价的80%收费(1)某户七月份用电123千瓦时,共交电费57.2元,求a;(2)若该用户八月份的平均电费为0.45元,则八月份共用多少千瓦时?应交电费多少元?【解答】解:(1)∵123×0.5=61.5(元)>57.2元,∴该户七月份用电超出基本用电量.根据题意得:0.5a+0.5×80%×(123﹣a)=57.2,解得:a=80.(2)设八月份共用电x千瓦时,根据题意得:0.5×80+(x﹣80)×0.5×80%=0.45x,解得:x=160,∴0.45x=0.45×160=72.答:八月份共用电160千瓦时,应交电费72元.24.(10分)已知∠AOB=130°,∠COD=80°,OM,ON分别是∠AOB和∠COD的平分线.(1)如果OA,OC重合,且OD在∠AOB的内部,如图1,求∠MON的度数;(2)如果将图1中的∠COD绕点O点顺时针旋转n°(0<n<155),如图2,①∠MON与旋转度数n°有怎样的数量关系?说明理由;②当n为多少时,∠MON为直角?(3)如果∠AOB的位置和大小不变,∠COD的边OD的位置不变,改变∠COD 的大小;将图1中的OA绕着O点顺时针旋转m°(0<m<100),如图3,∠MON 与旋转度数m°有怎样的数量关系?说明理由.【解答】解:(1)如图1,∵OM平分∠AOB,∠AOB=130°,∴∠AOM=∠AOB=×130°=65°,∵ON平分∠COD,∠COD=80°,∴∠AON=∠COD=×80°=40°,∴∠MON=∠AOM﹣∠AON=65°﹣40°=25°;(2)①如图2中,∠MON=∠COM﹣∠NOC=65°+n°﹣40°=n°+25°.②当∠MON=90°时,n°+25°=90°,∴n=65°.(3)如图3中,∠MON=∠COM﹣∠CON=65°+m°﹣(80°+m°)=m°+25°.附赠:数学考试技巧一、心理准备细心+认真=成功!1、知己知彼,百战百胜。