中考数学研究三角形问题

合集下载

二次函数背景下的相似三角形存在性问题

二次函数背景下的相似三角形存在性问题

二次函数背景下的相似三角形存在性问题
二次函数背景下的相似三角形存在性问题是中考数学常考的题型,在考试中一般出现在压轴题的位置,综合性强,难度略大。

这篇文章主要来讨论下二次函数背景下的相似三角形存在性问题的解题思路方法及应用举例。

【模型解读】
在坐标系中确定点,使得由该点及其他点构成的三角形与其他三角形相似,即为“相似三角形存在性问题”.
【相似判定】
判定1:三边对应成比例的两个三角形是相似三角形;
判定2:两边对应成比例且夹角相等的两个三角形是相似三角形;
判定3:有两组角对应相等的三角形是相似三角形.
以上也是坐标系中相似三角形存在性问题的方法来源,根据题目给的已知条件选择恰当的判定方法,解决问题.
【题型分析】
通常相似的两三角形有一个是已知的,而另一三角形中有1或2个动点,即可分为“单动点”类、“双动点”两类问题.
【思路总结】
根据相似三角形的做题经验,可以发现,判定1基本是不会用的,这里也一样不怎么用,对比判定2、3可以发现,都有角相等!
所以,要证相似的两个三角形必然有相等角,关键点也是先找到一组相等角.
然后再找:
思路1:两相等角的两边对应成比例;
思路2:还存在另一组角相等.
事实上,坐标系中在已知点的情况下,线段长度比角的大小更容易表示,因此选择方法可优先考虑思路1.
一、如何得到相等角?
二、如何构造两边成比例或者得到第二组角?
搞定这两个问题就可以了.
【例题】
【分析】
综上所述,点P的坐标为(3,2)或(3,9).
【总结】
【练习】
声明:文章图文来源网络,意在分享,仅限交流学习使用,如有分享不当或侵权,请联系删除。

中考数学二次函数问题中三角形面积最值问题解题策略

中考数学二次函数问题中三角形面积最值问题解题策略

中考数学二次函数问题中三角形面积最值问题解题策略考点分析:二次函数与三角形的综合解答题一般涉及到这样几个方面:1.三角形面积最值问题2.特殊三角形的存在问题包括等腰等边和直角三角形。

这类题目一般出现在压轴题最后两道上,对知识的综合运用要求比较高。

解决此类题目的基本步骤与思路:1.抓住目标三角形,根据动点设点坐标2.根据所设未知数去表示三角形的底和高,一般常用割补法去求解三角形的面积从而得出面积的关系式3. 根据二次函数性质求出最大值.4.特殊三角形问题首先要画出三角形的大概形状,分类讨论的去研究。

例如等腰三角形要弄清楚以哪两条边为要,直角三角形需要搞清楚哪个角作为直角都需要我们去分类讨论。

注意事项:1.简单的直角三角形可以直接利用底乘高进行面积的表示2.复杂的利用“补”的方法构造矩形或者大三角形,整体减去部分的思想.3.利用“割”的方法时,一般选用横割或者竖割,也就是做坐标轴的垂线。

4.利用点坐标表示线段长度时注意要用大的减去小的。

5.围绕不同的直角进行分类讨论,注意检验答案是否符合要求。

6.在勾股定理计算复杂的情况下,灵活的构造K字形相似去处理。

原题:在(1)中的抛物线上的第二象限是否存在一点P,使△PBC的面积最大?若存在,求出P点的坐标及△PBC的面积最大值,若没有,请说明理由。

考试题型,大多类似于此。

求面积最大值的动点坐标,并求出面积最大值。

一般解题思路和步骤是,设动点P的坐标,然后用代数式表达各线段的长。

通过公式计算,得出二次函数顶点式,则坐标和最值,即出。

解法一:补形,割形法。

方法要点是,把所求图像的面积适当的割补,转化成有利于面积表达的常规几何图形。

请看解题步骤。

解法二:铅锤定理,面积=铅锤高度×水平宽度÷2。

这是三角形面积表达方法的一种非常重要的定理。

铅锤定理,在教材上没有,但是大多数数学老师都会作为重点,在课堂上讲解。

因为,铅锤定理,在很多地方都用的到。

这里,也有铅锤定理的简单推导,建议大家认真体会。

沪科版九年级数学上册解直角三角形的应用中考题汇编(含答案)

沪科版九年级数学上册解直角三角形的应用中考题汇编(含答案)

如果别人思考数学的真理像我一样深入持久,他也会找到我的发现。

——高斯沪科版九年级数学上册解直角三角形的应用中考题汇编(含答案)一、选择题1. (2018·宜昌)如图,要测量小河两岸相对的两点P,A的距离,可以在小河边取P A的垂线PB上的一点C,测得PC=100 m,∠PCA=35°,则P,A两点的距离为()A. 100 sin 35° mB. 100 sin 55° mC. 100 tan 35° mD. 100 tan 55° m第1题第2题2. (2018·金华)如图,两根竹竿AB和AD斜靠在墙CE上,量得∠ABC=α,∠ADC=β,则竹竿AB与AD 的长度之比为()A. tan αtan β B.sin βsin α C.sin αsin β D.cos βcos α3. (2018·益阳)如图,小刚从山脚A出发,沿坡角为α的山坡向上走了300 m到达点B,则小刚上升的高度为()A. 300 sin α mB. 300 cos α mC. 300 tan α mD. 300 tan αm第3题第4题4. (2018·长春)如图,某地修建高速公路,要从A地向B地修一条隧道(点A,B在同一水平面上).为了测量A,B两地之间的距离,一架直升飞机从A地出发,垂直上升800 m到达C处,在C处观察B地的俯角为α,则A,B两地之间的距离为()A. 800 sin α mB. 800 tan α mC. 800sin αm D.800tan αm5. (2018·淄博)一辆小车沿着如图所示的斜坡向上行了100米,其铅直高度上升了15米. 在用科学计算器求坡角α的度数时,具体按键顺序是()第5题A. 2ndF sin0.15)=B. sin0.15)2ndF=C. 2ndF cos0.15)=D. tan0.15)2ndF=6. (2018·苏州)如图,某海监船以20海里/时的速度在某海域执行巡航任务.当海监船由西向东航行至A处时,测得岛屿P恰好在其正北方向,继续向东航行1小时到达B处,测得岛屿P在其北偏西30°方向,保持航向不变又航行2小时到达C处,此时海监船与岛屿P之间的距离(即PC的长)为()A. 40海里B. 60海里C. 203海里D. 403海里第6题 第8题7. (2018·绵阳)一艘在南北航线上的测量船,于点A 处测得海岛B 在点A 的南偏东30°方向,继续向南航行30海里到达点C 时,测得海岛B 在点C 的北偏东15°方向,则海岛B 离此航线的最近距离是(结果精确到0.01海里,参考数据:3≈1.732,2≈1.414)( )A. 4.64海里B. 5.49海里C. 6.12海里D. 6.21海里8. (2018·重庆)如图,旗杆及升旗台的剖面和教学楼的剖面在同一平面上,旗杆与地面垂直,在教学楼底部点E 处测得旗杆顶端的仰角∠AED =58°,升旗台底部到教学楼底部的距离DE =7 m ,升旗台坡面CD 的坡度i =1∶0.75,坡长CD =2 m .若旗杆底部到坡面CD 的水平距离BC =1 m ,则旗杆AB 的高度约为(参考数据:sin 58°≈0.85,cos 58°≈0.53,tan 58°≈1.6) ( )A. 12.6 mB. 13.1 mC. 14.7 mD. 16.3 m9. (2018·重庆)如图,AB 是一垂直于水平面的建筑物,某同学从建筑物底端B 出发,先沿水平方向向右行走20 m 到达点C ,再经过一段坡度为i =1∶0.75、坡长为10 m 的斜坡CD 到达点D ,然后沿水平方向向右行走40 m 到达点E (点A ,B ,C ,D ,E 在同一平面内).在E 处测得建筑物顶端A 的仰角为24°,则建筑物AB 的高度约为(参考数据:sin 24°≈0.41,cos 24°≈0.91,tan 24°≈0.45)( )A. 21.7 mB. 22.4 mC. 27.4 mD. 28.8 m第9题 第10题10. (2018·威海)如图,将一个小球从斜坡的点O 处抛出,小球的抛出路线可以用二次函数y =4x -12x 2刻画,斜坡可以用一次函数y =12x 刻画,下列结论错误的是( ) A. 当小球抛出高度达到7.5 m 时,小球距点O 水平距离为3 mB. 小球距点O 水平距离超过4 m 呈下降趋势C. 小球落地点距点O 的水平距离为7 mD. 斜坡的坡度为1∶2二、 填空题11. (2018·广州)如图,旗杆高AB =8 m ,某一时刻,旗杆影子长BC =16 m ,则tan C 的值为________.第11题 第12题12. (2018·枣庄)如图,某商店营业大厅自动扶梯AB 的倾斜角为31°,AB 的长为12 m ,则大厅两层之间的高度BC 为________m .(结果精确到0.1 m ,参考数据:sin 31°≈0.515,cos 31°≈0.857,tan31°≈0.60)13. (2018·阜新)如图,在点B 处测得塔顶A 的仰角为30°,点B 到塔底C 的水平距离BC 是30 m ,那么塔AC 的高度为________m .(结果保留根号)第13题 第14题14. (2018·大连)如图,小明为了测量校园里旗杆AB 的高度,将测角仪CD 竖直放在距旗杆底部B 6 m 的位置,在D处测得旗杆顶端A的仰角为53°.若测角仪的高度是1.5 m,则旗杆AB的高度约为________m.(结果精确到0.1 m,参考数据:sin 53°≈0.80,cos 53°≈0.60,tan 53°≈1.33)15. (2018·广西)如图,从甲楼底部A处测得乙楼顶部C处的仰角是30°,从甲楼顶部B处测得乙楼底部D 处的俯角是45°.已知甲楼的高AB是120 m,则乙楼的高CD是________m.(结果保留根号)第15题第16题16. (2018·荆州)如图,荆州市滨江公园旁的万寿宝塔始建于明嘉靖年间,周边风景秀丽.现在塔底低于地面约7 m,某校学生测得古塔的整体高度约为40 m.其测量塔顶相对地面高度的过程如下:先在地面A处测得塔顶的仰角为30°,再向古塔方向行进a m后到达B处,在B处测得塔顶的仰角为45°,那么a的值约为________.(结果精确到0.1,参考数据:3≈1.73)17. (2018·黄石)如图,无人机在空中C处测得地面A,B两点的俯角分别为60°,45°.如果无人机距地面高度CD为100 3 m,点A,D,B在同一水平直线上,那么A,B两点间的距离是________m.(结果保留根号)第17题第18题18. (2018·葫芦岛)如图,某景区的两个景点A,B处于同一水平地面上,一架无人机在空中沿MN方向水平飞行进行航拍作业,MN与AB在同一铅直平面内.当无人机飞行至C处时,测得景点A的俯角为45°,景点B的俯角为30°,此时C到地面的距离CD为100 m,则两景点A,B间的距离为________m.(结果保留根号)19. (2018·咸宁)如图,航拍无人机从A处测得一幢建筑物顶部B的仰角为45°,测得底部C的俯角为60°,此时航拍无人机与该建筑物的水平距离AD为110 m,那么该建筑物的高度BC约为________m.(结果保留整数,3≈1.73)第19题第20题20. (2018·宁夏)如图,一艘货轮以18 2 km/h的速度在海面上沿正东方向航行,当行驶至A处时,发现它的东南方向有一灯塔B,货轮继续向东航行30 min后到达C处,发现灯塔B在它的南偏东15°方向,则此时货轮与灯塔B的距离是________km.21. (2018·济宁)如图,在笔直的海岸线l上有相距2 km的A,B两个观测站,B站在A站的正东方向上,从A站测得船C在北偏东60°的方向上,从B站测得船C在北偏东30°的方向上,则船C到海岸线l的距离是________km.(结果保留根号)第21题第22题第23题22. (2018·天门)我国海域辽阔,渔业资源丰富.如图,现有渔船B在海岛A,C附近捕鱼作业,已知海岛C位于海岛A的北偏东45°方向上.在渔船B上测得海岛A位于渔船B的北偏西30°的方向上,此时海岛C 恰好位于渔船B的正北方向18(1+3)n mile处,则海岛A,C之间的距离为________n mile.(结果保留根号)23. (2018·潍坊)如图,一艘渔船以60海里/时的速度向正东方向航行,在A处测得岛礁P在东北方向上,继续航行1.5小时后到达B处,此时测得岛礁P在北偏东30°方向,同时测得岛礁P正东方向上的避风港M在北偏东60°方向.为了在台风到来之前用最短时间到达M处,渔船立刻加速以75海里/时的速度继续航行________小时即可到达.(结果保留根号)三、解答题24. (2018·遵义)如图,吊车在水平地面上吊起货物时,吊绳BC与地面保持垂直,吊臂AB与水平线的夹角为64°,吊臂底部A距地面1.5 m.(计算结果精确到0.1 m,参考数据:sin 64°≈0.90,cos 64°≈0.44,tan 64°≈2.05)(1) 当吊臂底部A与货物的水平距离AC为5 m时,吊臂AB的长为________m;(2) 如果该吊车吊臂的最大长度AD为20 m,那么从地面上吊起货物的最大高度是多少?(吊钩的长度与货物的高度忽略不计)第24题25.(2018·常州)京杭大运河是世界文化遗产.综合实践活动小组为了测出某段运河的河宽(岸沿是平行的),如图,在岸边分别选定了点A,B和点C,D,先用卷尺量得AB=160 m,CD=40 m,再用测角仪测得∠CAB =30°,∠DBA=60°,求该段运河的河宽(即CH的长).第25题26. (2018·长沙)为加快城乡对接,建设全域美丽乡村,某地区对A,B两地间的公路进行改建.如图,A,B两地之间有一座山,汽车原来从A地到B地需途径C地沿折线A-C-B行驶,现开通隧道后,汽车可直接沿直线AB行驶.已知BC=80 km,∠A=45°,∠B=30°.(结果精确到0.1 km,参考数据:2≈1.41,3≈1.73)(1) 开通隧道前,汽车从A地到B地大约要走多少千米?(2) 开通隧道后,汽车从A地到B地大约可以少走多少千米?第26题27.(2018·常德)如图①是一商场的推拉门,已知门的宽度AD=2 m,且两扇门的大小相同(即AB=CD).将左边的门ABB1A1绕门轴AA1向里面旋转37°,将右边的门CDD1C1绕门轴DD1向外面旋转45°,其示意图如图②,求此时B与C之间的距离.(结果精确到0.1 m,参考数据:sin 37°≈0.6,cos 37°≈0.8,2≈1.4)28. (2018·徐州)如图,1号楼在2号楼的南侧,两楼高度均为90 m,楼间距为AB.冬至日正午,太阳光线与水平面所成的角为32.3°,1号楼在2号楼墙面上的影高为CA;春分日正午,太阳光线与水平面所成的角为55.7°,1号楼在2号楼墙面上的影高为DA.已知CD=42 m.(参考数据:sin 32.3°≈0.53,cos 32.3°≈0.85,tan 32.3°≈0.63,sin 55.7°≈0.83,cos 55.7°≈0.56,tan 55.7°≈1.47)(1) 求楼间距AB;(2) 若2号楼共30层,层高均为3 m,则点C位于第几层?第28题29. (2018·泸州)如图,甲建筑物AD,乙建筑物BC的水平距离AB为90 m,且乙建筑物的高度是甲建筑物高度的6倍,从点E(点A,E,B在同一水平线上)测得点D的仰角为30°,测得点C的仰角为60°,求这两座建筑物顶端C,D间的距离.第29题30. (2018·郴州)小亮在某桥附近试飞无人机,如图,为了测量无人机飞行的高度AD,小亮通过操控无人机指令测得桥头B,C的俯角分别为∠EAB=60°,∠EAC=30°,且D,B,C在同一水平线上.已知桥BC =30 m,求无人机飞行的高度AD.(精确到0.01 m.参考数据:2≈1.414,3≈1.732)第30题31.(2018·宜宾)某游乐场一转角滑梯如图所示,滑梯立柱AB,CD均垂直于地面,点E在线段BD上,在点C测得点A的仰角为30°,点E的俯角也为30°,测得点B,E间距离为10 m,立柱AB高30 m.求立柱CD的高.(结果保留根号)第31题32. (2018·宿迁)如图,为了测量山坡上一棵树PQ的高度,小明在点A处利用测角仪测得树顶P的仰角为45°,然后他沿着正对树PQ的方向前进10 m到达点B处,此时测得树顶P和树底Q的仰角分别是60°和30°,设PQ垂直于AB,且垂足为C.求:(1) ∠BPQ的度数;(2) 树PQ的高度.(结果精确到0.1 m,3≈1.73)第32题33. (2018·镇江)如图,校园内有两幢高度相同的教学楼AB,CD,大楼的底部B,D在同一平面上,两幢楼之间的距离BD长为24 m,小明在点E(点B,E,D在一条直线上)处测得教学楼AB顶部的仰角为45°,然后沿EB方向前进8 m到达点G处,测得教学楼CD顶部的仰角为30°.已知小明的两个观测点F,H距离地面的高度均为1.6 m,求教学楼AB的高度.(精确到0.1 m,参考数据:2≈1.41,3≈1.73)第33题34. (2018·黄冈)如图,在大楼AB正前方有一斜坡CD,坡角∠DCE=30°,楼高AB=60 m,在斜坡下的点C处测得楼顶B的仰角为60°,在斜坡上的点D处测得楼顶B的仰角为45°,其中点A,C,E在同一条直线上.求:(1) 斜坡下的点C处到大楼的距离;(2) 斜坡CD的长度第34题35. (2018·大庆)如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向的B处,求此时轮船所在的B处与灯塔P的距离.(参考数据:6≈2.449,结果保留整数)第35题36. (2018·桂林)如图,在某海域,一艘指挥船在C处收到渔船在B处发出的求救信号.经确定,遇险抛锚的渔船所在的B处位于C处的南偏西45°方向上,且BC=60 n mile;经指挥船搜索发现,在C处的南偏西60°方向上有一艘海监船A,恰好位于B处的正西方向.于是命令海监船A前往搜救,已知海监船A的航行速度为30 n mile/h,问渔船在B处需要等待多长时间才能得到海监船A的救援?(参考数据:2≈1.41,3≈1.73,6≈2.45,结果精确到0.1 h)第36题37. (2018·淮安)如图,某数学兴趣小组为了计算湖中小岛上凉亭P到岸边公路l的距离,在公路l上的点A 处,测得凉亭P在北偏东60°的方向上;从A处向正东方向行走200米,到达公路l上的点B处,再次测得凉亭P在北偏东45°的方向上.求凉亭P到公路l的距离.(结果保留整数,参考数据:2≈1.414,3≈1.732)第37题38. (2018·青岛)如图是某区域平面示意图,点O 在河的一侧,AC 和BC 表示两条互相垂直的公路.甲勘测员在A 处测得点O 位于北偏东45°,乙勘测员在B 处测得点O 位于南偏西73.7°,测得AC =840 m ,BC =500 m .请求出点O 到BC 的距离.(参考数据:sin 73.7°≈2425,cos 73.7°≈725,tan 73.7°≈247)第38题39. (2018·眉山)知识改变世界,科技改变生活.导航装备的不断更新极大方便了人们的出行.如图,某校组织学生乘车到黑龙滩(用C 地表示)开展社会实践活动,车到达A 地后,发现C 地恰好在A 地的正北方向,且距离A 地13 km ,导航显示车辆应沿北偏东60°方向行驶至B 地,再沿北偏西37°方向行驶一段距离才能到达C 地,求B ,C 两地的距离.(结果保留根号,参考数据:sin 53°≈45,cos 53°≈35,tan 53°≈43)第39题40. (2018·泰州)日照间距系数反映了房屋日照情况.如图①,当前后房屋都朝向正南时,日照间距系数=L ∶(H -H 1),其中L 为楼间水平距离,H 为南侧楼房高度,H 1为北侧楼房底层窗台至地面高度.如图②,山坡EF 朝北,EF 长为15 m ,坡度为i =1∶0.75,山坡顶部平地EM 上有一高为22.5 m 的楼房AB ,底部A 到E 处的距离为4 m.(1) 求山坡EF 的水平宽度FH ;(2) 欲在AB 楼正北侧山脚的平地FN 上建一楼房CD ,已知该楼底层窗台P 处至地面C 处的高度为0.9 m ,要使该楼的日照间距系数不低于1.25,底部C 距F 处至少多远?第40题41. (2018·遂宁)如图,某测量小组为了测量山BC的高度,在地面A处测得山顶B的仰角为45°,然后沿着坡度为1∶3的坡面AD走了200 m达到D处,此时在D处测得山顶B的仰角为60°,求山BC的高度.第41题42. (2018·连云港)如图①,水坝的横截面是梯形ABCD(DC∥AB),∠ABC=37°,坝顶DC=3 m,背水坡AD的坡度i为1∶0.5,坝底AB=14 m.(1) 求坝高;(2) 如图②,为了提高堤坝的防洪抗洪能力,防汛指挥部决定在背水坡将坝顶和坝底同时拓宽加固,使得AE=2DF,EF⊥BF,求DF的长.(参考数据:sin 37°≈35,cos 37°≈45,tan 37°≈34)第42题参考答案一、1.C 2.B 3.A 4.D 5.A 6.D 7.B 8.B 9.A 10.A二、11.1212.6.2 13.103 14.9.5 15.403 16.24.1 17.100(1+3) 18.100(1+3) 19.300 20.18 21.3 22.182 23.18+635三、24. (1) 11.4 点拨:∵在Rt △ABC 中,∠BAC =64°,AC =5m ,∴AB =AC cos64°≈50.44≈11.4(m). (2) 如图,过点D 作DH ⊥地面于点H ,交水平线AC 于点E ,则EH =1.5m ,DE ⊥AE .∵在Rt △ADE 中,AD =20m ,∠DAE =64°,∴DE =AD ·sin64°≈20×0.90=18.0(m).∴DH =DE +EH =18.0+1.5=19.5(m).答:如果该吊车吊臂的最大长度AD 为20m ,那么从地面上吊起货物的最大高度是19.5m第24题 第25题25.如图,过点D 作DE ⊥AB 于点E ,则易得四边形CHED 为矩形.∴HE =CD =40m .设CH =DE =x m .∵在Rt △BDE 中,∠DBA =60°,∴BE =DE tan60°=33x m .∵在Rt △ACH 中,∠BAC =30°,∴AH =CH tan30°=3x m .又∵AH +HE +EB =AB =160m ,∴3x +40+33x =160,解得x =30 3.∴CH =303m .答:该段运河的河宽为303m 26. (1) 如图,过点C 作CD ⊥AB ,垂足为D.∵在Rt △BDC 中,sin B =CD BC,BC =80km ,∴CD =BC ·sin30°=80×12=40(km).∵在Rt △ADC 中,sin A =CD AC ,∴AC =CD sin45°=40÷22=402(km).此时AC +BC =402+80≈40×1.41+80=136.4(km).答:开通隧道前,汽车从A 地到B 地大约要走136.4km(2) ∵在Rt △BDC 中,cos B =BD BC ,BC =80km ,∴BD =BC ·cos30°=80×32=403(km).∵在Rt △ADC 中,tan A =CD AD ,CD =40km ,∴AD =CD tan45°=401=40(km).∴AB =AD +BD =40+403≈40+40×1.73=109.2(km).∴AC +BC -AB =136.4-109.2=27.2(km).答:汽车从A 地到B 地大约可以少走27.2km第26题第27题 27.如图,过点B 作BE ⊥AD 于点E ,过点C 作CF ⊥AD 于点F ,延长FC 到点M ,使得CM =BE ,连接BC ,EM.∵在题图①中,AB =CD ,AB +CD =AD =2m ,∴AB =CD =1m .在Rt △ABE 中,∵AB =1m ,∠A =37°,∴BE =AB ·sin A ≈0.6m ,AE =AB ·cos A ≈0.8m .在Rt △CDF 中,∵CD =1m ,∠D =45°,∴CF =CD ·sin D ≈0.7m ,DF =CD ·cos D ≈0.7m .∵BE ⊥AD ,CF ⊥AD ,∴BE ∥CM .又∵BE =CM ,∴四边形BEMC 为平行四边形.∴BC =EM .在Rt △MEF 中,∵EF =AD -AE -DF =0.5m ,FM =CF +CM =CF +BE =1.3m ,∴EM =EF 2+FM 2≈1.4m .答:B 与C 之间的距离约为1.4m28. (1) 如图,过点C 作CE ⊥PB ,垂足为E ,过点D 作DF ⊥PB ,垂足为F ,则∠CEP =∠PFD =90°,CE =DF =AB ,CD =EF =42m .设AB =x m .∵在Rt △PCE 中,tan32.3°=PE x,∴PE =x ·tan32.3°m .∵在Rt △PDF 中,tan55.7°=PF x,∴PF =x ·tan55.7°m .由PF -PE =EF ,得x ·tan55.7°-x ·tan32.3°=42,解得x ≈50.答:楼间距AB 为50m (2) 由(1),得PE =50×tan32.3°≈31.5(m),∴CA =EB =90-31.5=58.5(m).由于2号楼层高均为3m ,且3×19<58.5<3×20,∴点C 位于第20层第28题29.由题意,得∠DAB =∠ABC =90°,BC =6AD ,AE +BE =AB =90m .设AD =x m ,则BC =6x m .∵在Rt △ADE 中,tan30°=AD AE ,sin30°=AD DE ,∴AE =3x m ,DE =2x m .∵在Rt △BCE 中,tan60°=BC BE,sin60°=BC CE,∴BE =23x m ,CE =43x m .由AE +BE =90m ,得3x +23x =90,解得x =103,∴DE =203m ,CE =120m .∵∠DEA +∠DEC +∠CEB =180°,∠DEA =30°,∠CEB =60°,∴∠DEC =90°.∴CD =DE 2+CE 2=(203)2+1202=15600=2039(m).答:这两座建筑物顶端C ,D 间的距离为2039m 30.∵∠EAB =60°,∠EAC =30°,∴∠CAD =60°,∠BAD =30°.∴在Rt △ADC 中,CD =AD ·tan ∠CAD =3AD ;在Rt △ADB 中,BD =AD ·tan ∠BAD =33AD .∵BC =CD -BD =30m ,∴3AD -33AD =30m ,解得AD =153≈25.98(m).答:无人机飞行的高度AD 为25.98m31.如图,过点C 作CH ⊥AB 于点H ,易得四边形HBDC 为矩形.∴BH =CD ,BD =CH ,BD ∥CH.∴∠HCE =∠CED.由题意,得∠ACH =30°,∠HCE =30°,∴∠CED =30°.设CD =x m ,则AH =AB -BH =AB -CD=(30-x )m.∵在Rt △AHC 中,tan ∠ACH =AH HC ,∴HC =30-x tan30°=3(30-x )m.∴BD =3(30-x )m.∵在Rt △CDE 中,tan ∠CED =CD DE ,∴DE =x tan30°=3x m .∵BE =BD -DE =10m ,∴3(30-x )-3x =10,解得x =15-53 3.答:立柱CD 的高为(15-533)m 第31题 第33题32. (1) 由题意,得PC ⊥AC ,∠PBC =60°,∴在Rt △PCB 中,∠BPQ =90°-60°=30° (2) 由题意,得∠P AC =45°,∠QBC =30°,AB =10m .设CQ =x m .在Rt △QCB 中,BQ =CQ sin30°=2x m ,BC =CQ tan30°=3x m .∵∠PBQ =∠PBC -∠QBC =30°,∠BPQ =30°,∴∠PBQ =∠BPQ .∴PQ =BQ =2x m .∴PC =PQ +CQ =3x m .在Rt △PCA 中,AC =PC tan45°=PC =3x m .由AC -BC =AB ,得3x -3x =10,解得x =(5+533)m ,∴PQ =2x =10+1033≈15.8(m).答:树PQ 的高度约为15.8m 33.如图,延长HF 交CD 于点N ,延长FH 交AB 于点M.由题意,得MB =HG =FE =ND =1.6m ,HF =GE=8m ,MF =BE ,HN =GD ,MN =BD =24m .设AM =x m ,则CN =x m .在Rt △AMF 中,MF =AM tan45°=x m ,在Rt △CNH 中,HN =CN tan30°=3x m .由HF =MF +HN -MN ,得8=x +3x -24,解得x =163-16,∴AB =AM +BM =163-16+1.6≈13.3(m).答:教学楼AB 的高度为13.3m34. (1) ∵在Rt △ABC 中,∠BAC =90°,∠BCA =60°,AB =60m ,∴AC =AB tan60°=603=203(m).答:斜坡下的点C 处到大楼的距离是203m (2) 如图,过点D 作DF ⊥AB 于点F ,易得四边形AEDF 为矩形.∴DF=AE ,DE =AF .设CD =2x m.∵在Rt △CED 中,∠DCE =30°,∴DE =12CD =x m ,CE =CD ·cos30°=3x m .∴BF =AB -AF =AB -DE =(60-x )m.∵在Rt △BFD 中,∠FDB =45°,∴DF =BF tan45°=(60-x )m.由DF =AE ,得60-x =203+3x ,解得x =403-60,∴CD =(803-120)m.答:斜坡CD 的长度为(803-120)m第34题第35题 35.由题意,得PA =80海里.如图,过点P 作PC ⊥AB 于点C ,则∠APC =90°-60°=30°,∠BPC =90°-45°=45°.∵在Rt △ACP 中,cos ∠APC =PC P A,∴PC =P A ·cos ∠APC =80×cos30°=403(海里).∵在Rt △PCB 中,cos ∠BPC =PC PB ,∴PB =PC cos ∠BPC =403cos45°=406≈98(海里).答:此时轮船所在的B 处与灯塔P 的距离是98海里36.由题意,得点A 在点B 的正西方,∴如图,延长AB 交南北轴于点D ,则AB ⊥CD.∵∠BCD =45°,∴∠CBD=45°=∠BCD .∴BD =CD .在Rt △BDC 中,由sin ∠BCD =BD BC,BC =60nmile ,得BD =60×sin45°=302(nmile),CD =BD =302nmile.在Rt △ADC 中,由tan ∠ACD =AD CD,得AD =302×tan60°=306(nmile).∴AB =AD -BD =(306-302)nmile.∵海监船A 的航行速度为30nmile/h ,∴渔船在B 处需要等待的时间为AB 30=6-2≈2.45-1.41≈1.0(h).答:渔船在B 处需要等待1.0h 才能得到海监船A 的救援 第36题第38题 37.过点P 作PD ⊥l ,垂足为D.设BD =x 米,则AD =(x +200)米.由题意,得∠PAB =90°-60°=30°,∠PBD=90°-45°=45°.在Rt △ADP 中,tan30°=PD AD ,∴PD =AD ·tan30°=33(x +200)米.在Rt △PDB 中,tan45°=PD BD ,∴PD =BD ·tan45°=x 米.∴33(200+x )=x ,解得x =2003-1≈273.∴PD =273米.答:凉亭P 到公路l 的距离为273米38.如图,过点O 分别作OM ⊥BC 于点M ,ON ⊥AC 于点N ,易得四边形ONCM 为矩形.∴ON =MC ,OM =NC.设OM =xm ,则NC =x m ,AN =(840-x )m.在Rt △ANO 中,∵∠OAN =45°,∴易得ON =AN =(840-x )m.∴MC =ON =(840-x )m.在Rt △BOM 中,BM =OM tan ∠OBM ≈x 247=724x (m),由BM +MC =BC =500m ,得724x +840-x =500,解得x =480.答:点O 到BC 的距离为480m 39.如图,过点B 作BD ⊥AC 于点D ,则∠BAD =60°,∠DBC =90°-37°=53°.设AD =x km.在Rt △ADB中,BD =AD ·tan60°=3x km ,在Rt △BDC 中,CD =BD ·tan53°≈3x ·43=433x (km).由AC =AD +CD ,可得x +433x =13,解得x =43-3,此时BD =3x =(12-33)km.∴在Rt △BDC 中,BC =BD cos53°≈(12-33)×53=(20-53)km.答:B ,C 两地的距离为(20-53)km 第39题第41题40. (1) ∵在Rt △EFH 中,∠H =90°,∴tan ∠EFH =i =1∶0.75=43=EH FH.∴设EH =4x (x >0)m.则FH =3x m ,EF =EH 2+FH 2=5x m .∵EF =15m ,∴5x =15,解得x =3.∴FH =9m .答:山坡EF 的水平宽度FH 为9m (2) 由(1),得EH =12m .设CF =y m .∵L =CF +FH +EA =y +9+4=(y +13)m ,H =AB +EH =22.5+12=34.5(m),H 1=0.9m ,∴日照间距系数=L ∶(H -H 1)=y +1334.5-0.9=y +1333.6.∵该楼的日照间距系数不低于1.25,∴y +1333.6≥1.25,∴y ≥29,即CF ≥29m .答:要使该楼的日照间距系数不低于1.25,底部C 距F 处至少29m 远41.根据题意,得AC ⊥BC ,DE ⊥BC ,∠BAC =45°,AD =200m ,∠BDE =60°.如图,过点D 作DF ⊥AC ,垂足为F .∵i AD =1∶3,∴在Rt △ADF 中DF ∶AF =1∶3,即tan ∠DAF =33.∴∠DAF =30°.∴∠BAD =∠BAC -∠DAF =45°-30°=15°.∵在Rt △AFD 中,AD =200m ,∴DF =12AD =100m .∵AC ⊥BC ,DE ⊥BC ,DF ⊥AC ,∴∠DEC =∠BCA =∠DFC =90°,∴四边形DECF 是矩形.∴EC =DF =100m .∵在Rt △DEB 中,∠DBE =90°-∠BDE =30°,在Rt △ACB 中,∠ABC =90°-∠BAC =45°,∴∠ABD =∠ABC -∠DBE=45°-30°=15°.∴∠ABD =∠BAD .∴AD =BD =200m .∵在Rt △BDE 中,sin ∠BDE =BE BD,∴BE =BD ·sin60°=200×32=1003(m).∴BC =BE +EC =(100+1003)m.答:山BC 的高度为(100+1003)m 42. (1) 如图①,分别过点D ,C 作DM ⊥AB ,CN ⊥AB ,垂足分别为M ,N.∵背水坡AD 的坡度i 为1∶0.5,∴在Rt △ADM 中,tan ∠DAB =DM AM=2.∴设AM =x (x >0)m ,则DM =2x m .根据题意,易得四边形DMNC 是矩形,∴DC =MN =3m ,DM =CN =2x m .∵在Rt △BNC 中,tan ∠ABC =CN BN ,即tan37°=2x BN ≈34,∴BN ≈2x ·43=83x m .由x +3+83x =14,得x =3,∴DM =6m .答:坝高为6m (2) 如图②,过点F 作FH ⊥AB ,垂足为H ,DM ⊥AB ,垂足为M .由(1),得FH =DM =6m ,FD =HM .设FD =y m ,则AE =2y m .∵AM =3m ,∴EH =3+2y -y =(3+y )m ,BH =14+2y -(3+y )=(11+y )m.由EF ⊥BF ,FH ⊥AB ,得∠EHF =∠FHB =90°,∴∠E +∠EFH =∠EFH +∠HFB =90°.∴∠E =∠HFB .∴△EFH ∽△FBH .∴FH BH =EH FH,即FH 2=BH ·EH .∴62=(11+y )(3+y ),即y 2+14y -3=0.解得y 1=-7+213,y 2=-7-213(不合题意,舍去).∴DF =(213-7)m.答:DF 的长为(213-7)m第42题 一天,毕达哥拉斯应邀到朋友家做客。

2024年中考数学几何模型归纳(全国通用)22 解直角三角形模型之实际应用模型(教师版)

2024年中考数学几何模型归纳(全国通用)22 解直角三角形模型之实际应用模型(教师版)

专题22解直角三角形模型之实际应用模型解直角三角形是中考的重要内容之一,直角三角形边、角关系的知识是解直角三角形的基础。

将实际问题转化为数学问题是关键,通常是通过作高线或垂线转化为解直角三角形问题,在解直角三角形时要注意三角函数的选取,避免计算复杂。

在解题中,若求解的边、角不在直角三角形中,应先添加辅助线,构造直角三角形。

为了提高解题和得分能力,本专题重点讲解解直角三角形的实际应用模型。

模型1、背靠背模型图1图2图3【模型解读】若三角形中有已知角时,则通过在三角形内作高CD,构造出两个直角三角形求解,其中公共边(高)CD是解题的关键.【重要关系】如图1,CD为公共边,AD+BD=AB;如图2,CE=DA,CD=EA,CE+BD=AB;如图3,CD=EF,CE=DF,AD+CE+BF=AB。

【答案】该建筑物BC【分析】由题意可知,【点睛】本题考查的是解直角三角形函数,熟练掌握直角三角形的特征关键.例2.(2023湖南省衡阳市中考数学真题)随着科技的发展,无人机已广泛应用于生产生活,如代替人们在高空测量距离和高度.圆圆要测量教学楼学楼底部243米的C30 ,CD长为49.6米.已知目高(1)求教学楼AB的高度.(2)若无人机保持现有高度沿平行于行,求经过多少秒时,无人机刚好离开圆圆的视线【答案】(1)教学楼AB的高度为【分析】(1)过点B作BG DC通过证明四边形GCAB为矩形,之间的和差关系可得CG【点睛】本题主要考查了解直角三角形的实际应用,解题的关键是正确画出辅助线,构造直角三角形,熟练掌握解直角三角形的方法和步骤.例3.(2023年湖北中考数学真题)为了防洪需要,某地决定新建一座拦水坝,如图,拦水坝的横断面为梯形ABCD,斜面坡度3:i,求斜坡AB的长.18C【答案】斜坡AB的长约为10米【分析】过点D作DE BC于点E,在Rt△在Rt DEC △中,2018CD C ,,sin 20sin18200.31 6.2DE CD C ∵34AF BF ,∴在Rt ABF 中,2AB AF 【答案】大楼的高度BC 为303m 【分析】如图,过P 作PH AB 于QH BC ,BH CQ ,求解PH 704030CQ BH ,PQ CQ 【详解】解:如图,过P 作PH则四边形CQHB 是矩形,∴由题意可得:80AP ,PAH ∴3sin 60802PH AP ∴704030CQ BH ,∴∴403103BC QH模型2、母子模型图1图2图3图4【模型解读】若三角形中有已知角,通过在三角形外作高BC,构造有公共直角的两个三角形求解,其中公共边BC是解题的关键。

中考数学高频考点三角形动点问题

中考数学高频考点三角形动点问题

中考九年级数学高频考点专题训练--三角形-动点问题一、单选题1.如图,正方形ABCD和等腰直角三角形EFG,斜边EF与AD在一条直线上,AB=6,EG=4,△EFG沿射线DA方向运动(点E从点D出发),设ED=x,△EFG与正方形ABCD重叠部分的面积为y.若y=7,则x的值为()A.3√2或4√2B.3√2或6+√2C.6+√2或6−√2D.3√2或6−√22.如图,在等边△ABC中,AB=2 √3,点D在△ABC内或其边上,AD=2,以AD为边向右作等边△ADE,连接CD,CE.设CE的最小值为m;当ED的延长线经过点B时,∠DEC=n∘,则m,n的值分别为()A.√3,55B.√3,60C.2 √3-2,55D.2 √3-2,603.如图,Rt△ABC中,∠C=90°,∠A=30°,AB=20,点P是AC边上的一个动点,将线段BP绕点B顺时针旋转60°得到线段BQ,连接CQ,则在点P运动过程中,线段CQ的最小值为()A.5B.10C.20D.25 4.如图,在等边△ABC中,AB=12,点D在AB边上,AD=4,E为AC中点,P为△ABC内一点,且∠BPD=90°,则线段PE的最小值为()A.3 √3﹣2B.4√3−2C.2 √13﹣4D.4 √13﹣85.如图,线段AB的长为8,点D在AB上,ΔACD是边长为3的等边三角形,过点D作与CD垂直的射线DP,过DP上一动点G(不与D重合)作矩形CDGH,记矩形CDGH的对角线交点为O,连接OB,则线段BO的最小值为()A.5B.4C.4√3D.5√3 6.如图,在△ABC中,AB=BC=3,∠ABC=30°,点P为△ABC内一点,连接PA、PB、PC,求PA+PB+PC的最小值()A.3√2B.3+ √2C.3√3D.3+ √3 7.如图,直角三角形ABC中,AC=BC,AD是△ABC的角平分线,动点M、N同时从A点出发,以相同的速度分别沿A→C→B和A一B→C方向运动,并在边BC上的点E相遇,连接AE,①AE平分△ABC的周长,②AE是△ABD的角平分线,③AE是△ABD的中线.以上结论正确的有()A.①②B.①③C.②③D.①②③8.正方形ABCD的边长为8,点E、F分别在边AD、BC上,将正方形沿EF折叠,使点A 落在A′处,点B落在B′处,A′B′交BC于G.下列结论错误的是()A.当A′为CD中点时,则tan∠DA′E=34B.当A′D:DE:A′E=3:4:5时,则A′C=163C.连接AA′,则AA′=EFD.当A′(点A′不与C、D重合)在CD上移动时,△A′CG周长随着A′位置变化而变化二、填空题9.如图,△ABC中.AC=BC,∠ACB=100°,点D在线段AB上运动(D不与A、B重合),连接CD,作∠CDE=30°,DE交BC于点E,若△BDE是等腰三角形,则∠ADC的度数是.10.如图,在Rt△ABC中,∠ACB=90°,∠BAC=30°,BC=2,边AB上有一动点P,将△ABC绕点C逆时针旋转90°得△DEC,点P的对应点为P′,连接PP′,则PP′长的最小值为.11.如图,在Rt△ABC中,∠ACB=90°,∠A=3∠B,AB=20cm,点D是AB中点,点M从点A出发,沿线段AB运动到点B,点P始终是线段CM的中点.对于下列结论:①CD=10cm;②∠CDA=60°;③线段CM长度的最小值是5 √2cm;④点P运动路径的长度是10cm.其中正确的结论是(写出所有正确结论的序号).12.如图,在平面直角坐标系中,直线l:y= √33x﹣√33与x轴交于点B1,以OB1为边长作等边三角形A1OB1,过点A1作A1B2平行于x轴,交直线l于点B2,以A1B2为边长作等边三角形A2A1B22作A2B3平行于x轴,交直线l于点B3,以A2B3为边长作等边三角形A3A2B3,…,则点A2017的横坐标是.13.如图,在△ABC中,∠BAC=90°,点D是BC的中点,点E、F分别是AB、AC 上的动点,∠EDF=90°,M、N分别是EF、AC的中点,连接AM、MN,若AC=6,AB=5,则AM﹣MN的最大值为.14.如图,在Rt△ABC中,∠C=90°,AC=4,AB=12,AD平分∠BAC交BC于点D,过点D作DE⊥AD交AB于点E,P是DE上的动点,Q是BD上的动点,则BP+PQ的最小值为.三、综合题15.如图1,在直角坐标系中,O是坐标原点,点A在y轴正半轴上,二次函数y=ax2+16x+c的图象F交x轴于B、C两点,交y轴于M点,其中B(﹣3,0),M (0,﹣1).已知AM=BC.(1)求二次函数的解析式;(2)证明:在抛物线F上存在点D,使A、B、C、D四点连接而成的四边形恰好是平行四边形,并请求出直线BD的解析式;(3)在(2)的条件下,设直线l过D且l⊥BD,分别交直线BA、BC于不同的P、Q两点,AC、BD相交于N,求1BP+1BQ的值;16.在直线上顺次取A,B,C三点,分别以AB,BC为边长在直线的同侧作正三角形,作得两个正三角形的另一顶点分别为D,E.(1)如图①,连结CD,AE,求证:CD=AE;(2)如图②,若AB=1,BC=2,求DE的长;(3)如图③,将图②中的正三角形BEC绕B点作适当的旋转,连结AE,若有DE2+BE2=AE2,试求∠DEB的度数.17.如图,△ABC中,AB =BC=AC =6cm,现有两点M、N分别从点A、点B同时出发,沿三角形的边顺时针运动,已知点M的速度为1cm/s,点N的速度为2cm/s.当点N第一次到达B点时,M、N同时停止运动.(1)点M、N运动几秒后,M、N两点重合?(2)点M、N运动时,能否得到以MN为底边的等腰三角形AMN?如存在,请求出此时M、N运动的时间.(3)点M、N运动几秒后,可得到直角三角形△BMN?18.在△ABC中,∠ACB=90°,AC=BC,点A、C分别是x轴和y轴上的一动点.(1)如图1.若点B的横坐标为﹣4,求点C的坐标;(2)如图2,BC交x轴于点D,若点B的纵坐标为3,A(5,0),求点C的坐标;(3)如图3,当A(5,0),C(0,﹣2)时,以AC为直角边作等腰直角△ACE,(﹣2,0)为F点坐标,连接EF交y轴于点M,当点E在第一象限时,求S△CEM:S△ACO的值.19.已知ΔABC是边长为8cm的等边三角形,动点P,Q同时出发,分别在三角形的边或延长线上运动,他们的运动时间为t(s).(1)如图1,若P点由A向B运动,Q点由C向A运动,他们的速度都是1cm/s,连接PQ.则AP=,AQ=,(用含t式子表示);(2)在(1)的条件下,是否存在某一时刻,使得ΔAPQ为直角三角形?若存在,请求出t的值,若不存在,请说明理由;(3)如图2,若P点由A出发,沿射线AB方向运动,Q点由C出发,沿射线AC方向运动,P的速度为3cm/s,Q的速度为.acm/s是否存在某个a的值,使得在运动过程中ΔBPO恒为以BP为底的等腰三角形?如果存在,请求出这个值,如果不存在,请说明理由.20.如图,在△ABC中,AD⊥BC于点D,AD=4,BD=3,DC=8,点P是BC边上一点(不与点B、D、C重合),过点P作PQ⊥BC交AB或AC于点Q,作点Q关于直线AD的对称点M,连结QM,过点M作MN⊥BC交直线BC 于点N.设BP=x,矩形PQMN与△ABC重叠部分图形的周长为y.(1)直接写出PQ的长(用含x的代数式表示).(2)求矩形PQMN成为正方形时x的值.(3)求y与x的函数关系式.(4)当过点C和点M的直线平分△ADC的面积时,直接写出x的值.答案解析部分1.【答案】B 2.【答案】D 3.【答案】A 4.【答案】C 5.【答案】B 6.【答案】A 7.【答案】B 8.【答案】D9.【答案】50º或80º或110º 10.【答案】√6 11.【答案】①③④ 12.【答案】22017−1213.【答案】251214.【答案】815.【答案】(1)解:∵二次函数y=ax 2+16x+c 的图象经过点B (-3,0),M (0,-1),∴{9a +16×(−3)+c =0c =−1, 解得a=16,c=-1. ∴二次函数的解析式为:y=16x 2+16x-1.(2)证明:∵二次函数的解析式为:y=16x 2+16x-1,令y=0,得0=16x 2+16x-1,解得x 1=-3,x 2=2, ∴C (2,0), ∴BC=5; 令x=0,得y=-1, ∴M (0,-1),OM=1. 又AM=BC , ∴OA=AM-OM=4, ∴A (0,4).设AD ∥x 轴,交抛物线于点D ,如图1所示, 则y D =16x 2+16x −1=OA =4,解得x 1=5,x 2=-6(位于第二象限,舍去) ∴D 点坐标为(5,4). ∴AD=BC=5, 又∵AD ∥BC ,∴四边形ABCD 为平行四边形.即在抛物线F 上存在点D ,使A 、B 、C 、D 四点连接而成的四边形恰好是平行四边形.设直线BD 解析式为:y=kx+b , ∵B (3,0),D (5,4),∴{−3k +b =05k +b =4, 解得:k=12,b=32,∴直线BD 解析式为:y=12x+32.(3)解:在Rt △AOB 中,AB =√OA 2+OB 2=5, 又AD=BC=5, ∴▱ABCD 是菱形.①若直线l ∥BD ,如图1所示. ∵四边形ABCD 是菱形, ∴AC ⊥BD , ∴AC ∥直线l ,∴BA BP =BC BQ =BN BD =12,∵BA=BC=5, ∴BP=BQ=10,∴1BP +1BQ =110+110=15.16.【答案】(1)证明:∵△ABD 是等边三角形,∴AB=BD ,∵△BCE 是等边三角形, ∴BC=BE ,∵∠ABD=∠CBE=60°, ∴∠ABE=∠CBD , ∴△ABE ≌△DBC (SAS ), ∴CD=AE ;(2)解: 取BE 的中点F ,连接DF ,∵BD=BF=1,∠DBF=60°,∴△BDF为等边三角形,∴DF=1,∴FD=FE=FB=1,∴△BED为直角三角形,即∠BDE=90°,∴DE=√BE2−BD2=√3;(3)解:如图,连接DC,∵△ABD和△ECB都是等边三角形,∴AD=AB=BD,BC=BE=EC,∠ABD=∠EBC= 60°,∴∠ABE=∠DBC,∴AB=BD,在△ABE和△DBC中,AB=AD,∠ABE =∠DBC,BE=BC,∴△ABE≌△DBC ( SAS) ,∴AE=DC,∴DE2+BE2=AE2,BE=CE ,∴DE2+CE2=CD2 ,∴∠DEC=90° ,∴∠BEC=60° ,∴∠DEB=∠DEC-∠BEC=30° .17.【答案】(1)解:设M、N运动t秒后,M、N两点重合,依题可得,t×1+6=2t,解得:t=6.答:点M、N运动6秒后,M、N两点重合.(2)能得到以MN为底边的等腰△AMN,①当点M在AC上,点N在AB上,如图①所示:设运动时间为t秒,依题可得,AM=t,AN=6-2t,∵△AMN是以MN为底边的等腰三角形,∴AM=AN,∴t=6-2t,解得:t=2;②当点M、N都在BC上时,如图②所示:设运动时间为t秒,依题可得,CM=t-6,BN=18-2t,∵△AMN是以MN为底边的等腰三角形,∴AM=AN,∴∠AMN=∠ANM,∴∠AMC=∠ANB,∵△ABC是正三角形,∴∠B=∠C,AC=AB,在△ACM和△ABN中,{∠AMC=∠ANB∠C=∠BAC=AB,∴△ACM≌△ABN(AAS),∴CM=BN,即t-6=18-2t,解得:t=8;综上所述:能得到以MN为底边的等腰三角形AMN,此时,M、N的运动时间为2秒或8秒.(3)解:①当∠BNM=90°时,如图所示:设M、N运动时间是t秒,依题可得:BN=2t,AN=6-2t,AM=t,∵△ABC为等边三角形,∴∠A=60°,∴∠AMN=30°,∴AM=2AN,即t=2(6-2t),解得:t=2.4;②当点M、N都在AC上时,当∠BNM=90°时,如图所示:设M、N运动时间是t秒,依题可得:AN=2t-6,∴CN=6-AN=12-2t,∵△ABC为等边三角形,∴∠C=60°,∴∠CBN=30°,∴BC=2CN,即6=2(12-2t),解得:t=4.5;③当点M、N都在AC上时,当∠BMN=90°时,如图所示:设M、N运动时间是t秒,依题可得:AM=t,∴CM=6-AM=6-t,∵△ABC为等边三角形,∴∠C=60°,∴∠CBM=30°,∴BC=2CM,即6=2(6-t),解得:t=3;综上所述:当点M、N运动2.4秒或3秒或4.5秒时,可得到直角△BMN. 18.【答案】(1)解:如图1中,作BH⊥y轴于H.∵∠BHC=∠BCA=∠AOC=90°,∴∠BCH+∠ACO=90°,∠ACO+∠OAC=90°,∴∠BCH=∠OAC,∵BC=AC,∴△BHC≌△COA(AAS),∴OC=BH,∵点B的横坐标为−4,∴BH=4,∴OC=4,∴C(0,−4);(2)解:如图2中,作BH⊥y轴于H.由(1)可知△BHC≌△COA∴OC=BH,OA=CH,∵若点B的纵坐标为3,A(5,0),∴OA=CH=5,OH=3,∴BH=OC=2,∴C(0,−2);(3)解:如图3中,由题意点E在第一象限,作EH⊥OA于H.同法可证:△AHE≌△COA(AAS),∴AH =OC ,AO =EH , ∵A (5,0),C (0,−2), ∴EH =OA =5,OC =AH =2, ∴E (3,5),设直线 FE 的解析式为: y =kx +b , 则 {0=−2k +b 5=3k +b ,解得 {k =1b =2 ,∴直线 FE 的解析式为: y =x +2 , 令 x =0 ,则 y =2 , ∴OM =2,∴S △CEM :S △ACO = (12×4×3):(12×2×5)=6:5 .19.【答案】(1)tcm ;(6-t )cm(2)解:存在 t =83s 或16s时,使得 ΔAPQ 为直角三角形,理由是①当 PA ⊥AB 时,由题意有 2t =8−t ,解得 t =83s②当 PQ ⊥AC 时,由题意有 t =2(8−t), 解得 t =163s∴ 综上所述,存在 t =83s 或16s时,使得 ΔAPQ 为直角三角形(3)解:存在 a =3cm/s 时, ΔBPQ 恒为以 BP 为底的等腰三角形,理由是: 作 QM ⊥BP 于M ,如图2所示由题意得: AP =3t,CQ =at ,则 AQ =8+at,BP =|8−3t|∵PQ =BQ,QM ⊥BP ∴PM =BM =12BP∵ΔABC 是等边三角形,∴∠A =60° ∴∠AQM =30° ∴AQ =2AM ,①当 t ≤83 时,由题意有 2(3t +8−3t2)=8+at ,解得 a =3cm/s ,②当 t ≥83 时,由题意有 2(3t −3t−82)=8+at ,解得 a =3cm/s ,∴ 综上所述,存在 a =3cm/s 时, ΔBPQ 恒为以 BP 为底的等腰三角形.20.【答案】(1)解:①当PQ 交AB 于点Q 时,0<x<3,∵AD ⊥BC ,AD=4,BD=3,∴tan ∠B= 43,∵PQ ⊥BC , ∴PQ BP =43, ∴当0<x<3时,PQ= 43x ;②当PQ 交AC 于点Q 时,3<x<11, ∵AD ⊥BC ,AD=4,CD=8, ∴tan ∠C= 12 ,∵PQ ⊥BC ,∴PQ PC =12,PC=11-x , ∴当3<x<11时,PQ= 11−x 2;(2)解:①当PQ 交AB 于点Q 时,0<x<3, ∵四边形PQMN 为正方形, ∴PQ=QM=MN=NP , ∵QM=2(3-x ), ∴43x=2(3-x ), 解得x= 95;②当PQ 交AC 于点Q 时,3<x<11, ∵四边形PQMN 为正方形,∴PQ=QM=MN=NP , ∵QM=2(x-3), ∴(11−x)2=2(x-3),解得x= 235(3)解:y=PQ+MN+QM+PN , =2× 43x+2×2(3-x ),=12- 43x ;(4)解:如图,连接CM 交AD 于O ,由题可知: AE =DE =12AD =2 ,∵QP =ED =43x ,∴OE =OD −DE =2−43x , EM =QE =PD =3−x ,∵QM ∥BC , ∴△OME ∼△OCD , ∴EO DO =EM DC, ∴2−43x 2=3−x 8, 化简得: 4(2−43x)=3−x ,∴x =1513.。

中考数学:以三角形为载体的几何压轴问题真题+模拟(原卷版北京专用)

中考数学:以三角形为载体的几何压轴问题真题+模拟(原卷版北京专用)

中考数学以三角形为载体的几何压轴问题【方法归纳】北京市中考的倒数第二道大题多数是已三角形为载体的几何综合问题,主要涉及特殊的三角形及相似三角形,这类问题的解决要熟知知各种图形的性质与判定,并且这类题目的解决有时还需要全等三角形和相似三角形、勾股定理、方程思想与分类讨论的相关知识,因此能熟练应用各种知识是解决此类问题的关键.常用到的三角形的知识有:(1)涉及全等问题解题要领:①探求两个三角形全等的条件:SSS,SAS,ASA,AAS及HL,注意挖掘问题中的隐含等量关系,防止误用“SSA”;②掌握并记忆一些基本构成图形中的等量关系;③把握问题中的关键,通过关键条件,发现并添加辅助线.(2)涉及到计算边的关系解题要领:①线段的垂直平分线常常用于构造等腰三角形;②在直角三角形中求边的长度,常常要用到勾股定理;③根据三角形的三边长度,利用勾股定理的逆定理可判断其为直角三角形;④已知直角三角形斜边的中点,考虑运用直角三角形斜边上中线的性质;⑤直角三角形斜边上中线的性质存在逆定理.(3)涉及角平分线问题的解题要领:①已知角的平分线及角平分线上的点到角一边的垂线段,考虑用角平分线的性质;②角平分线的性质常常与三角形的面积相结合.解题要领:(4)涉及到直角三角形方面的解题要领:①已知直角三角形及其锐角求线段长度时,运用锐角三角函数是最常用的方法;②通过等腰三角形的性质,特殊平行四边形的性质及圆的性质构建直角三角形,再运用锐角三角函数求解;③熟记特殊直角三角形的三边关系:30°角的直角三角形的三边的比为1∶∶2,等腰直角三角形的三边关系为1∶1∶;④锐角三角函数也常常作为相似三角形中,求对应边的比值的补充.【典例剖析】【例1】(2021·北京·中考真题)如图,在△ABC中,AB=AC,∠BAC=α,M为BC的中点,点D在MC上,以点A为中心,将线段AD顺时针旋转α得到线段AE,连接BE,DE.(1)比较∠BAE与∠CAD的大小;用等式表示线段BE,BM,MD之间的数量关系,并证明;(2)过点M作AB的垂线,交DE于点N,用等式表示线段NE与ND的数量关系,并证明.6.(2022·北京·中考真题)在△ABC中,∠ACB=90∘,D为△ABC内一点,连接BD,DC,延长DC到点E,使得CE=DC.(1)如图1,延长BC到点F,使得CF=BC,连接AF,EF,若AF⊥EF,求证:BD⊥AF;(2)连接AE,交BD的延长线于点H,连接CH,依题意补全图2,若AB2=AE2+BD2,用等式表示线段CD与CH的数量关系,并证明.【真题再现】1.(2013·北京·中考真题)在△ABC中,AB=AC,∠BAC=α(0°<α<60°),将线段BC绕点B逆时针旋转60°得到线段BD.(1)如图1,直接写出∠ABD的大小(用含α的式子表示);(2)如图2,∠BCE=150°,∠ABE=60°,判断△ABE的形状并加以证明;(3)在(2)的条件下,连接DE,若∠DEC=45°,求α的值.2.(2017·北京·中考真题)在等腰直角△ABC中,∠ACB=90°,P是线段BC上一动点(与点B、C不重合),连接AP,延长BC至点Q,使得CQ=CP,过点Q作QH⊥AP于点H,交AB于点M.(1)若∠P AC=α,求∠AMQ的大小(用含α的式子表示).(2)用等式表示线段MB与PQ之间的数量关系,并证明.3.(2019·北京·中考真题)已知∠AOB=30°,H为射线OA上一定点,OH=√3+1,P为射线OB上一点,M为线段OH上一动点,连接PM,满足∠OMP为钝角,以点P为中心,将线段PM顺时针旋转150°,得到线段PN,连接ON.(1)依题意补全图1;(2)求证:∠OMP=∠OPN;(3)点M关于点H的对称点为Q,连接QP.写出一个OP的值,使得对于任意的点M总有ON=QP,并证明.4.(2020·北京·中考真题)在△ABC中,∠C=90°,AC>BC,D是AB的中点.E为直线上一动点,连接DE,过点D作DF⊥DE,交直线BC于点F,连接EF.(1)如图1,当E是线段AC的中点时,设AE=a,BF=b,求EF的长(用含a,b的式子表示);(2)当点E在线段CA的延长线上时,依题意补全图2,用等式表示线段AE,EF,BF之间的数量关系,并证明.【模拟精练】一、解答题1.(2022·北京市广渠门中学模拟预测)如图,等腰Rt△ABC中,∠BAC=90°,AB=AC,点P为射线BC上一动点(不与点B、C重合),以点P为中心,将线段PC逆时针旋转α角,得到线段PQ,连接AP、BQ、M为线段BQ的中点.(1)若点P在线段BC上,且M恰好也为AP的中点,的值;①依题意在图1中补全图形:②求出此时α的值和BPPC(2)写出一个α的值,使得对于任意线段BC延长线上的点P,总有AP的值为定值,并证明;PM2.(2022·北京房山·二模)如图1,在四边形ABCD中,∠ABC=∠BCD,过点A作AE∥DC交BC边于点E,过点E作EF∥AB交CD边于点F,连接AF,过点C作CH∥AF交AE于点H,连接BH.(1)求证:△ABH≌△EAF;(2)如图2,若BH的延长线经过AF的中点M,求BE的值.EC3.(2022·北京东城·二模)如图,在△ABC中,AB=AC,∠CAB=2α,在△ABC的外侧作直线AP(90°−a<∠PAC<180°−2a),作点C关于直线AP的对称点D,连接AD,BD,BD交直线AP于点E.(1)依题意补全图形;(2)连接CE,求证:∠ACE=∠ABE;(3)过点A作AF⊥CE于点F,用等式表示线段BE,2EF,DE之间的数量关系,并证明.4.(2022·北京·二模)在Rt△ABC中,∠ACB=90°,CD是AB边的中线,DE⊥BC于E,连接CD,点P在射线CB上(与B,C不重合)(1)如果∠A=30°①如图1,DE与BE之间的数量关系是______②如图2,点P在线段CB上,连接DP,将线段DP绕点D逆时针旋转60°,得到线段DF,连接BF,补全图2猜想CP、BF之间的数量关系,并证明你的结论.(2)如图3,若点P在线段CB的延长线上,且∠A=α(0°<α<90°),连接DP,将线段DP 绕点逆时针旋转2α得到线段DF,连接BF,请直接写出DE、BF、BP三者的数量关系(不需证明).5.(2022·北京密云·二模)如图,在等边△ABC中,点D在BA的延长线上,点P是BC边上的一个动点(点P不与点B重合),将线段PD绕点P逆时针旋转60°得到线段PE,连接BE和DE.(1)依据题意,补全图形;(2)比较∠BDE与∠BPE的大小,并证明;(3)用等式表示线段BE、BP与BD之间的数量关系,并证明.6.(2022·北京西城·二模)在△ABC中,AB=AC,过点C作射线CB′,使∠ACB′=∠ACB(点B′与点B在直线AC的异侧)点D是射线CB′上一动点(不与点C重合),点E在线段BC上,且∠DAE+∠ACD=90°.(1)如图1,当点E与点C重合时,AD 与CB′的位置关系是______,若BC=a,则CD的长为______;(用含a的式子表示)(2)如图2,当点E与点C不重合时,连接DE.①用等式表示∠BAC与∠DAE之间的数量关系,并证明;②用等式表示线段BE,CD,DE之间的数量关系,并证明.7.(2022·北京门头沟·二模)如图,在△ABC中,∠ACB = 90°,D是BC的中点,过点C作CE⊥AD,交AD于点E,交AB于点F,作点E关于直线AC的对称点G,连接AG和GC,过点B作BM⊥GC交GC的延长线于点M.(1)①根据题意,补全图形;②比较∠BCF与∠BCM的大小,并证明.(2)过点B作BN⊥CF交CF的延长线于点N,用等式表示线段AG,EN与BM的数量关系,并证明.8.(2022·北京顺义·二模)如图,在△ABC中,∠ACB=90°,AC=BC,P,D为射线AB上两点(点D在点P的左侧),且PD=BC,连接CP.以P为中心,将线段PD逆时针旋转n°(0<n<180)得线段PE.(1)如图1,当四边形ACPE是平行四边形时,画出图形,并直接写出n的值;(2)当n=135°时,M为线段AE的中点,连接PM.①在图2中依题意补全图形;②用等式表示线段CP与PM之间的数量关系,并证明.9.(2022·北京北京·二模)在△ABC中,∠ACB=90°,CA=CB,D是AB的中点,E为边AC上一动点(不与点A,C重合),连接DE,将线段BA绕点B逆时针旋转90°得到线段BF,过点F作FH⊥DE于点H,交射线BC于点G.(1)如图1,当AE<EC时,比较∠ADE与∠BFG的大小;用等式表示线段BG与AE的数量关系,并证明;(2)如图2,当AE>EC时,依题意补全图2,用等式表示线段DE,CG,AC之间的数量关系.10.(2022·北京四中模拟预测)已知,点B是射线AP上一动点,以AB为边作△ABC,∠BCA= 90°,∠A=60°,将射线BC绕点B顺时针旋转120°,得到射线BD,点E在射线BD上,BE+BC= m.(1)如图1,若BE=BC,求CE的长(用含m的式子表示);(2)如图2,点F在线段AB上,连接CF、EF.添加一个条件:AF、BC、BE满足的等量关系为______,使得EF=CF成立,补全图形并证明.11.(2022·北京昌平·二模)如图,已知∠MON=α(0°<α<90°),OP是∠MON的平分线,点A是射线OM上一点,点A关于OP对称点B在射线ON上,连接AB交OP于点C,过点A作ON 的垂线,分别交OP,ON于点D,E,作∠OAE的平分线AQ,射线AQ与OP,ON分别交于点F,G.(1)①依题意补全图形;②求∠BAE度数;(用含α的式子表示)(2)写出一个α的值,使得对于射线OM上任意的点A总有OD=√2AF(点A不与点O重合),并证明.12.(2022·北京海淀·二模)已知AB = BC,∠ABC = 90°,直线l是过点B的一条动直线(不与直线AB,BC重合),分别过点A,C作直线l的垂线,垂足为D,E.(1)如图1,当45°<∠ABD<90°时,①求证:CE +DE =AD;②连接AE,过点D作DH⊥AE于H,过点A作AF∥BC交DH的延长线于点F.依题意补全图形,用等式表示线段DF,BE,DE的数量关系,并证明;(2)在直线l运动的过程中,若DE的最大值为3,直接写出AB的长.13.(2022·北京市十一学校二模)如图,已知∠AOB=60°,点P为射线OA上的一个动点,过点P作PE⊥OB,交OB于点E,点D在∠AOB内,且满足∠DP A=∠OPE,DP+PE=5.(1)当DP=PE时,求DE的长;(2)在点P的运动过程中,请判断射线OA上是否存在一个定点M,使得DM的值不变?并证ME明你的判断.14.(2022·北京平谷·一模)如图,在△ABC中,∠ACB=90°,AC=BC,点D为AB边上一点(不与点A,B重合),作射线CD,过点A作AE⊥CD于E,在线段AE上截取EF=EC,连接BF交CD于G.(1)依题意补全图形;(2)求证:∠CAE=∠BCD;(3)判断线段BG与GF之间的数量关系,并证明.15.(2022·北京房山·一模)已知:等边△ABC,过点B作AC的平行线l.点P为射线AB上一个动点(不与点A,B重合),将射线PC绕点P顺时针旋转60°交直线l于点D.(1)如图1,点P在线段AB上时,依题意补全图形;①求证:∠BDP=∠PCB;②用等式表示线段BC,BD,BP之间的数里关系,并证明;(2)点P在线段AB的延长线上,直接写出线段BC,BD,BP之间的数量关系.16.(2022·北京市第一六一中学分校一模)已知点P为线段AB上一点,将线段AP绕点A 逆时针旋转60°,得到线段AC;再将线段BP绕点B逆时针旋转120°,得到线段BD;连接AD,取AD中点M,连接BM,CM.(1)如图1,当点P在线段CM上时,求证:PM//BD;(2)如图2,当点P不在线段CM上,写出线段BM与CM的数量关系与位置关系,并证明.17.(2022·北京·二模)如图,在等边ΔABC中,点D是边BC的中点,点E是直线BC上一动点,将线段AE绕点E逆时针旋转60°,得到线段EG,连接AG,BG.(1)如图1,当点E与点D重合时.①依题意补全图形;②判断AB与EG的位置关系;(2)如图2,取EG的中点F,写出直线DF与AB夹角的度数以及FD与EC的数量关系,并证明.18.(2022·北京朝阳·一模)在△ABC中,D是BC的中点,且∠BAD≠90°,将线段AB沿AD所在直线翻折,得到线段AB′,作CE∥AB交直线AB′于点E.(1)如图,若AB>AC,①依题意补全图形;②用等式表示线段AB,AE,CE之间的数量关系,并证明;(2)若AB<AC,上述结论是否仍然成立?若成立,简述理由:若不成立,直接用等式表示线段AB,AE,CE之间新的数量关系(不需证明).19.(2022·北京·中国人民大学附属中学分校一模)如图,正方形ABCD中,P为BD上一动点,过点P作PQ⊥AP交CD边于点Q.(1)求证:PA=PQ;(2)用等式表示PB、PD、AQ之间的数量关系,并证明;(3)点P从点B出发,沿BD方向移动,若移动的路径长为4,则AQ的中点M移动的路径长为(直接写出答案).20.(2022·北京·东直门中学模拟预测)在Rt△ABC中,∠ABC=90°,∠BAC=30°.D为边BC上一动点,点E在边AC上,CE=CD.点D关于点B的对称点为点F,连接AD,P 为AD的中点,连接PE,PF,EF.(1)如图1,当点D与点B重合时,写出线段PE与PF之间的位置关系与数量关系;(2)如图2,当点D与点B,C不重合时,判断(1)中所得的关系是否仍然成立?若成立,请给出证明,若不成立,请举出反例.21.(2022·北京西城·一模)已知正方形ABCD,将线段BA绕点B旋转α(0°<α<90°),得到线段BE,连接EA,EC.(1)如图1,当点E在正方形ABCD的内部时,若BE平分∠ABC,AB=4,则∠AEC=______°,四边形ABCE的面积为______;(2)当点E在正方形ABCD的外部时,①在图2中依题意补全图形,并求∠AEC的度数;②作∠EBC的平分线BF交EC于点G,交EA的延长线于点F,连接CF.用等式表示线段AE,FB,FC之间的数量关系,并证明.22.(2022·北京市三帆中学模拟预测)已知:如图所示△ABC绕点A逆时针旋转α得到△ADE (其中点B与点D对应).(1)如图1,点B关于直线AC的对称点为B′,求线段B′E与CD的数量关系;(2)当α=32°时,射线CB与射线ED交于点F,补全图2并求∠AFD.23.(2022·北京市第五中学分校模拟预测)如图,在△ABC中,AB=AC,∠BAC=40°,作射线CM,∠ACM=80°.D上,连接AD,E是AD的中点,C关于点E的对称点为F,连接DF.(1)依题意补全图形;(2)判断AB与DF的数量关系并证明;(3)平面内一点G,使得DG=DC,FG=FB,求∠CDG的值.24.(2022·北京朝阳·模拟预测)如图①,Rt△ABC和Rt△BDE重叠放置在一起,∠ABC=∠DBE=90°,且AB=2BC,BD=2BE.(1)观察猜想:图①中线段AD与CE的数量关系是,位置关系是;(2)探究证明:把△BDE绕点B顺时针旋转到图②的位置,连接AD,CE,判断线段AD与CE的数量关系和位置关系如何,并说明理由;(3)拓展延伸:若BC=√5,BE=1,当旋转角α=∠ACB时,请直接写出线段AD的长度.25.(2022·北京市师达中学模拟预测)四边形ABCD是正方形,将线段CD绕点C逆时针旋转2α(0°<α<45°),得到线段CE,连接DE,过点B作BF⊥DE交DE的延长线于F,连接BE.(1)依题意补全图1;(2)直接写出∠FBE的度数;(3)连接AF,用等式表示线段AF与DE的数量关系,并证明.26.(2012·北京顺义·中考模拟)如图1,在△ABC中,∠ACB为锐角,点D为射线BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.(1)如果AB=AC,∠BAC=90°.①当点D在线段BC上时(与点B不重合),如图2,线段CF、BD所在直线的位置关系为,线段CF、BD的数量关系为.②当点D在线段BC的延长线上时,如图3,①中的结论是否仍然成立?并说明理由;(2)如图4,如果AB≠AC,∠BAC是锐角,点D在线段BC上,当∠ACB满足什么条件时,CF⊥BC(点C、F不重合),并说明理由.27.(2015·北京·模拟预测)(1)问题发现如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.填空:①∠AEB的度数为;②线段AD,BE之间的数量关系为.(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由.(3)解决问题如图3,在正方形ABCD中,CD=√2,若点P满足PD=1,且∠BPD=90°,请直接写出点A到BP的距离.28.(2021·北京·二模)在等腰三角形ABC中,AB=AC,∠BAC=α (0°<α<60°).点P是△ABC内一动点,连接AP,BP,将△APB绕点A逆时针旋转α,使AB边与AC重合,得到△ADC,射线BP与CD或CD延长线交于点M(点M与点D不重合).(1)依题意补全图1和图2;由作图知,∠BAP与∠CAD的数量关系为;(2)探究∠ADM与∠APM的数量关系为;(3)如图1,若DP平分∠ADC,用等式表示线段BM,AP,CD之间的数量关系,并证明.。

中考数学“特殊三角形的存在性问题”题型解析

中考数学“特殊三角形的存在性问题”题型解析

中考数学“特殊三角形的存在性问题”题型解析二次函数与特殊三角形的存在性问题主要分为两类:一类是静态的特殊三角形的存在性问题;一类是动态的特殊三角形的存在性问题 .静态的特殊三角形的存在性问题难度相对较小,可根据抛物线的对称性以及三角形的特点为切入点来解决;动态的特殊三角形的存在性问题难度相对较大,解决此类问题的关键是根据题意分析出动点在动的过程一些不变的量以及不变的关系 .本节主要来讨论下关于动态的特殊三角形的存在性问题 .类型一:等腰三角形存在性问题【例题1】如图,已知抛物线y = -1/4 x^2 - 1/2 x + 2 与x 轴交于A , B 两点,与y 轴交于点C . (1)求点A , B , C 的坐标;(2)此抛物线的对称轴上是否存在点M,使得△ACM 是等腰三角形?若存在请求出点M 的坐标;若不存在,请说明理由 .【分析】(1)分别令y = 0 , x = 0 , 即可解决问题;(2)分A、C、M 为顶点三种情形讨论,分别求解即可 . 【解析】(1)令y = 0 , 得-1/4 x^2 - 1/2 x + 2 = 0 ,∴x^2 + 2x - 8 = 0 ,∴x = - 4(舍)或2 ,∴点A 坐标(2,0),点B 坐标(-4,0),令x = 0 , 得y = 2 ,∴点C 的坐标(0,2).(2)如图所示,①当C 为顶点时,CM1 = CA , CM2 = CA , 作M1N⊥OC 于N , 在Rt△CM1N 中,∴点M1 坐标(-1,2+√7),点M2 坐标(-1 , 2-√7).②点M3 为顶点时,∵直线AC 解析式为y = -x + 2 , 线段AC 的垂直平分线为y = x , ∴点M3 坐标为(-1,-1).③当点A 为顶点的等腰三角形不存在 .综上所述M 坐标为(-1,-1)或(-1,2+√7)或(-1 , 2-√7).类型二:直角三角形存在性问题【例题2】如图,△OAB 的一边OB 在x 轴的正半轴上,点A 的坐标为(6,8),OA = OB,点P 在线段OB 上,点Q 在y 轴的正半轴上,OP = 2OQ,过点Q 作x 轴的平行线分别交OA,AB 于点E , F .(1)求直线AB 的解析式;(2)是否存在点P,使△PEF 为直角三角形?若存在,请直接写出点P 的坐标;若不存在,请说明理由 .【分析】(1)由点A 的坐标可确定出OA 的长,即为OB 的长,从而可确定出B 点坐标,利用待定系数法即可求出直线AB 的解析式;(2)分三种情况来考虑:若∠PEF = 90°;若∠PFE = 90°,若∠EPF = 90°,过点E , F 分别作x 轴垂线,垂足分别为G、H,分别求出t 的值,确定出满足题意P 坐标即可 .【解题策略】此类问题主要考查特殊三角形的存在性问题:首先运用特殊三角形的性质画出相应的图形,确定动点问题的位置;其次借助特殊三角形的性质找到动点与已知点的位置关系和数量关系;最后结合已知列出方程求解即可 .要注意分类讨论时考虑全面所有可能的情形 .。

初三数学13 相似三角形-2024年中考数学真题分项汇编(全国通用)(解析版)

初三数学13 相似三角形-2024年中考数学真题分项汇编(全国通用)(解析版)

专题13 相似三角形一.选择题1.(2022·黑龙江哈尔滨)如图,,,AB CD AC BD ∥相交于点E ,1,2,3AE EC DE ===,则BD 的长为( )A .32B .4C .92D .6【答案】C【分析】根据相似三角形对应边长成比例可求得BE 的长,即可求得BD 的长.【详解】∵//AB CD ∴ABE CDE ∽ ∴AE BE EC DE= ∵1,2,3AE EC DE ===,∴32BE =∵BD BE ED =+ ∴92BD = 故选:C .【点睛】本题考查了相似三角形的对应边长成比例,解题的关键在于找到对应边长.2.(2022·广西贺州)如图,在ABC 中,25DE BC DE BC ==∥,,,则:ADE ABC S S 的值是( )A .325B .425C .25D .35【答案】B【分析】根据相似三角形的判定定理得到ADE ABC ,根据相似三角形的面积比等于相似比的平方计算,得到答案.【详解】解:25DE BC DE BC ==∥,,∴ADE ABC ,∴2224525ADE ABC S DE S BC ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭ ,故选:B .【点睛】此题考查相似三角形的判定和性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.3.(2022·广西梧州)如图,以点O 为位似中心,作四边形ABCD 的位似图形''''A B C D ﹐已知'13OA OA =,若四边形ABCD 的面积是2,则四边形''''A B C D 的面积是( )A .4B .6C .16D .18【答案】D 【分析】两图形位似必相似,再由相似的图形面积比等于相似比的平方即可求解.【详解】解:由题意可知,四边形ABCD 与四边形''''A B C D 相似,由两图形相似面积比等于相似比的平方可知:''''22'1139ABCD A B C D S OA S OA ⎛⎫⎛⎫= ⎪= ⎪= ⎪ ⎪⎝⎭⎝⎭,又四边形ABCD 的面积是2,∴四边形''''A B C D 的面积为18,故选:D .【点睛】本题考察相似多边形的性质,属于基础题,熟练掌握相似图形的性质是解决本题的关键.4.(2022·四川雅安)如图,在△ABC 中,D ,E 分别是AB 和AC 上的点,DE ∥BC ,若AD BD =21,那么DE BC =( )A .49B .12C .13D .23【答案】D【分析】先求解2,3AD AB =再证明,ADE ABC ∽可得2.3DE AD BC AB ==【详解】解: AD BD =21,2,3AD AB ∴= DE ∥BC ,,ADE ABC ∴ ∽ 2,3DE AD BC AB ∴== 故选D 【点睛】本题考查的是相似三角形的判定与性质,证明ADE ABC △△∽是解本题的关键.5.(2022·内蒙古包头)如图,在边长为1的小正方形组成的网格中,A ,B ,C ,D 四个点均在格点上,AC 与BD 相交于点E ,连接,AB CD ,则ABE △与CDE △的周长比为( )A .1:4B .4:1C .1:2D .2:1【答案】D 【分析】运用网格图中隐藏的条件证明四边形DCBM 为平行四边形,接着证明ABE CDE ∽,最后利相似三角形周长的比等于相似比即可求出.【详解】如图:由题意可知,3DM =,3BC =, ∴DM BC =,而DM BC ∥,∴四边形DCBM 为平行四边形,∴AB DC ∥,∴BAE DCE ∠=∠,ABE CDE ∠=∠,∴ABE CDE ∽,∴21ABE CDE C AB C CD ===△△.故选:D .【点睛】本题考查了平行四边形的判定与性质、相似三角形的判定与性质及勾股定理,熟练掌握相关知识并正确计算是解题关键.6.(2022·黑龙江绥化)如图,在矩形ABCD 中,P 是边AD 上的一个动点,连接BP ,CP ,过点B 作射线,交线段CP 的延长线于点E ,交边AD 于点M ,且使得ABE CBP =∠∠,如果2AB =,5BC =,AP x =,PM y =,其中25x < .则下列结论中,正确的个数为( )(1)y 与x 的关系式为4y x x =-;(2)当4AP =时,ABP DPC ∽;(3)当4AP =时,3tan 5EBP ∠=.A .0个B .1个C .2个D .3个【答案】C 【分析】(1)证明ABM APB ∽,得AB AM AP AB=,将2AB =,AP x =,PM y =代入,即可得y 与x 的关系式;(2)利用两组对应边成比例且夹角相等,判定ABP DPC ∽;(3)过点M 作MF BP ⊥垂足为F ,在Rt APB △中,由勾股定理得BP 的长,证明FPM APB ∽,求出MF ,PF ,BF 的长,在Rt BMF △中,求出tan EBP ∠的值即可.【详解】解:(1)∵在矩形ABCD 中,∴AD BC ∥,90A D ∠=∠=︒,5BC AD ==,2AB DC ==,∴APB CBP ∠=∠,∵ABE CBP =∠∠,∴ABE APB ∠=∠,∴ABM APB ∽,∴AB AM AP AB=,∵2AB =,AP x =,PM y =,∴22x y x -=,解得:4y x x=-,故(1)正确;(2)当4AP =时,541DP AD AP =-=-=,∴12DC DP AP AB ==,又∵90A D ∠=∠=︒,∴ABP DPC ∽,故(2)正确;(3)过点M 作MF BP ⊥垂足为F ,∴90A MFP MFB ∠=∠=∠=︒,∵当4AP =时,此时4x =,4413y x x =-=-=,∴3PM =,在Rt APB 中,由勾股定理得:222BP AP AB =+,∴BP ===,∵FPM APB ∠=∠,∴FPM APB ∽,∴MF PF PM AB AP PB ==,∴24MF PF ==∴MF =PF =∴BF BP PF =-=∴3tan 4MF EBP BF ∠===故(3)不正确;故选:C .【点睛】本题主要考查相似三角形的判定和性质,勾股定理的应用,矩形的性质,正确找出相似三角形是解答本题的关键.7.(2022·湖北鄂州)如图,定直线MN ∥PQ ,点B 、C 分别为MN 、PQ 上的动点,且BC =12,BC 在两直线间运动过程中始终有∠BCQ =60°.点A 是MN 上方一定点,点D 是PQ 下方一定点,且AE ∥BC ∥DF ,AE =4,DF =8,ADBC 在平移过程中,AB +CD 的最小值为()A .B .C .D .【答案】C 【分析】如图所示,过点F 作FH CD ∥交BC 于H ,连接EH ,可证明四边形CDFH 是平行四边形,得到CH =DF =8,CD =FH ,则BH =4,从而可证四边形ABHE 是平行四边形,得到AB =HE ,即可推出当E 、F 、H 三点共线时,EH +HF 有最小值EF 即AB +CD 有最小值EF ,延长AE 交PQ 于G ,过点E 作ET ⊥PQ 于T ,过点A 作AL ⊥PQ 于L ,过点D 作DK ⊥PQ 于K ,证明四边形BEGC 是平行四边形,∠EGT =∠BCQ =60°,得到EG =BC =12,然后通过勾股定理和解直角三角形求出ET 和TF 的长即可得到答案.【详解】解:如图所示,过点F 作FH CD ∥交BC 于H ,连接EH ,∵BC DF FH CD ∥∥,,∴四边形CDFH 是平行四边形,∴CH =DF =8,CD =FH ,∴BH =4,∴BH =AE =4,又∵AE BC ∥,∴四边形ABHE 是平行四边形,∴AB =HE ,∵EH FH EF +≥,∴当E 、F 、H 三点共线时,EH +HF 有最小值EF 即AB +CD 有最小值EF ,延长AE 交PQ 于G ,过点E 作ET ⊥PQ 于T ,过点A 作AL ⊥PQ 于L ,过点D 作DK ⊥PQ 于K ,∵MN PQ BC AE ∥∥,,∴四边形BEGC 是平行四边形,∠EGT =∠BCQ =60°,∴EG =BC =12,∴=cos =6=sin GT GE EGT ET GE EGT ⋅⋅∠,∠,同理可求得8GL AL ==,,4KF DK ==,,∴2TL =,∵AL ⊥PQ ,DK ⊥PQ ,∴AL DK ∥,∴△ALO ∽△DKO ,∴2AL AO DK DO==,∴2133AO AD DO AD ====∴24OL OK ===,,∴42TF TL OL OK KF =+++=,∴EF ==故选C .【点睛】本题主要考查了平行四边形的性质与判定,相似三角形的性质与判定,勾股定理,解直角三角形,正确作出辅助线推出当E 、F 、H 三点共线时,EH +HF 有最小值EF 即AB +CD 有最小值EF 是解题的关键.8.(2022·广西贵港)如图,在边长为1的菱形ABCD 中,60ABC ∠=︒,动点E 在AB 边上(与点A 、B 均不重合),点F 在对角线AC 上,CE 与BF 相交于点G ,连接,AG DF ,若AF BE =,则下列结论错误的是( )A .DF CE =B .120BGC ∠=︒C .2AF EG EC =⋅D .AG【答案】D【分析】先证明△BAF ≌△DAF ≌CBE ,△ABC 是等边三角形,得DF =CE ,判断A 项答案正确,由∠GCB +∠GBC =60゜,得∠BGC =120゜,判断B 项答案正确,证△BEG ∽△CEB 得BE CE GE BE= ,即可判断C 项答案正确,由120BGC ∠=︒,BC =1,得点G 在以线段BC 为弦的弧BC 上,易得当点G 在等边△ABC 的内心处时,AG 取最小值,由勾股定理求得AG D 项错误.【详解】解:∵四边形ABCD 是菱形,60ABC ∠=︒,∴AB =AD =BC =CD ,∠BAC =∠DAC =12∠BAD =12(180)ABC ⨯︒-∠=60ABC ︒=∠,∴△BAF ≌△DAF ≌CBE ,△ABC 是等边三角形,∴DF =CE ,故A 项答案正确,∠ABF =∠BCE ,∵∠ABC =∠ABF +∠CBF =60゜,∴∠GCB +∠GBC =60゜,∴∠BGC =180゜-60゜=180゜-(∠GCB +∠GBC )=120゜,故B 项答案正确,∵∠ABF =∠BCE ,∠BEG =∠CEB ,∴△BEG ∽△CEB ,∴BE CE GE BE = ,∴2BE GE CE = ,∵AF BE =,∴2AF GE CE = ,故C 项答案正确,∵120BGC ∠=︒,BC =1,点G 在以线段BC 为弦的弧BC 上,∴当点G 在等边△ABC 的内心处时,AG 取最小值,如下图,∵△ABC 是等边三角形,BC =1,∴BF AC ⊥,AF =12AC =12,∠GAF =30゜,∴AG =2GF ,AG 2=GF 2+AF 2,∴2221122AG AG ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭, 解得AG D 项错误,故应选:D【点睛】本题主要考查了菱形的基本性质、等边三角形的判定及性质、圆周角定理,熟练掌握菱形的性质是解题的关键.9.(2022·贵州贵阳)如图,在ABC 中,D 是AB 边上的点,B ACD ∠=∠,:1:2AC AB =,则ADC 与ACB △的周长比是( )A .B .1:2C .1:3D .1:4【答案】B 【分析】先证明△ACD ∽△ABC ,即有12AC AD CD AB AC BC ===,则可得12AC AD CD AB AC BC ++=++,问题得解.【详解】∵∠B =∠ACD ,∠A =∠A ,∴△ACD ∽△ABC ,∴AC AD CD AB AC BC ==,∵12AC AB =,∴12AC AD CD AB AC BC ===,∴12AC AD CD AC AD CD AB AC BC AB AC BC ++====++,∴△ADC 与△ACB 的周长比1:2,故选:B .【点睛】本题主要考查了相似三角形的判定与性质,证明△ACD ∽△ABC 是解答本题的关键.10.(2022·广西)已知△ABC 与△A 1B 1C 1是位似图形,位似比是1:3,则△ABC 与△A 1B 1C 1的面积比( )A .1 :3B .1:6C .1:9D .3:1【答案】C【分析】根据位似图形的面积比等于位似比的平方,即可得到答案.【详解】∵△ABC 与△A 1B 1C 1是位似图形,位似比是1:3,∴△ABC 与△A 1B 1C 1的面积比为1:9,故选:C .【点睛】本题考查位似图形的性质,熟练掌握位似图形的面积比等于位似比的平方是解题的关键.11.(2022·山东临沂)如图,在ABC 中,∥DE BC ,23AD DB =,若6AC =,则EC =( )A .65B .125C .185D .245【答案】C【分析】由∥DE BC ,23AD DB =,可得2,3AD AE DB EC ==再建立方程即可.【详解】解: ∥DE BC ,23AD DB =,2,3AD AE DB EC ∴== 6AC =,62,3CE CE -∴= 解得:18.5CE =经检验符合题意故选C 【点睛】本题考查的是平行线分线段成比例,证明“23AD AE DB EC ==”是解本题的关键.12.(2022·山东威海)由12个有公共顶点O 的直角三角形拼成如图所示的图形,∠AOB =∠BOC =∠COD =…=∠LOM =30°.若S △AOB =1,则图中与△AOB 位似的三角形的面积为( )A .(43)3B .(43)7C .(43)6D .(34)6【答案】C【分析】根据题意得出A 、O 、G 在同一直线上,B 、O 、H 在同一直线上,确定与△AOB 位似的三角形为△GOH ,利用锐角三角函数找出相应规律得出OG=6x ,再由相似三角形的性质求解即可.【详解】解:∵∠AOB =∠BOC =∠COD =…=∠LOM =30°∴∠AOG =180°,∠BOH =180°,∴A 、O 、G 在同一直线上,B 、O 、H 在同一直线上,∴与△AOB 位似的三角形为△GOH ,设OA =x ,则OB=1cos30OA x ==︒,∴OC=24cos303OB x x ==︒,∴OD=3cos30OC x ==︒,…∴OG=6x ,∴6OG OA =,∴12643GOH AOB S S ⎛⎫== ⎪⎝⎭ ,∵1AOB S = ,∴643GOH S ⎛⎫= ⎪⎝⎭ ,故选:C .【点睛】题目主要考查利用锐角三角函数解三角形,找规律问题,相似三角形的性质等,理解题意,找出相应边的比值规律是解题关键.二.填空题13.(2022·贵州黔东南)如图,折叠边长为4cm 的正方形纸片ABCD ,折痕是DM ,点C 落在点E 处,分别延长ME 、DE 交AB 于点F 、G ,若点M 是BC 边的中点,则FG =______cm.【答案】53【分析】根据折叠的性质可得DE =DC =4,EM =CM =2,连接DF ,设FE =x ,由勾股定理得BF ,DF ,从而求出x 的值,得出FB ,再证明FEG FBM ∆∆ ,利用相似三角形对应边成比例可求出FG .【详解】解:连接,DF 如图,∵四边形ABCD 是正方形,∴4,90.AB BC CD DA A B C CDA ︒====∠=∠=∠=∠=∵点M 为BC 的中点,∴114222BM CM BC ===⨯=由折叠得,2,4,ME CM DE DC ====∠90,DEM C ︒=∠=∴∠90DEF ︒=,90,FEG ∠=︒设,FE x =则有222DF DE EF =+∴2224DF x =+又在Rt FMB ∆中,2,2FM x BM =+=,∵222FM FB BM =+∴FB ==∴4AF AB FB =-=在Rt DAF ∆中,222,DA AF DF +=∴2224(44,x +=+解得,124,83x x ==-(舍去)∴4,3FE =∴410233FM FE ME =+=+=∴83FB ==∵∠90DEM ︒=∴∠90FEG ︒=∴∠,FEG B =∠又∠.GFE MFB =∠∴△FEG FBM∆ ∴,FG FE FM FB=即4310833FG =∴5,3FG =故答案为:53【点睛】本题主要考查了正方形的性质,折叠的性质,勾股定理,相似三角形的判定与性质,正确作出辅助线是解答本题的关键.14.(2022·上海)如图,在△ABC 中,∠A =30°,∠B =90°,D 为AB 中点,E 在线段AC 上,AD DE AB BC=,则AE AC =_____.【答案】12或14【分析】由题意可求出12DE BC =,取AC 中点E 1,连接DE 1,则DE 1是△ABC 的中位线,满足112DE BC =,进而可求此时112AE AC =,然后在AC 上取一点E 2,使得DE 1=DE 2,则212DE BC =,证明△DE1E2是等边三角形,求出E1E2=14AC ,即可得到214AE AC =,问题得解.【详解】解:∵D 为AB中点,∴12AD DE AB BC ==,即12DE BC =,取AC 中点E 1,连接DE 1,则DE 1是△ABC 的中位线,此时DE 1∥BC ,112DE BC =,∴112AE AD AC AB ==,在AC 上取一点E 2,使得DE 1=DE 2,则212DE BC =,∵∠A =30°,∠B =90°,∴∠C =60°,BC =12AC ,∵DE 1∥BC ,∴∠DE1E2=60°,∴△DE1E2是等边三角形,∴DE 1=DE 2=E1E2=12BC ,∴E1E2=14AC ,∵112AE AC =,∴214AE AC =,即214AE AC =,综上,AE AC 的值为:12或14,故答案为:12或14.【点睛】本题考查了三角形中位线的性质,平行线分线段成比例,等边三角形的判定和性质以及含30°角的直角三角形的性质等,根据12DE BC =进行分情况求解是解题的关键.15.(2022·北京)如图,在矩形ABCD 中,若13,5,4AF AB AC FC ===,则AE 的长为_______.【答案】1【分析】根据勾股定理求出BC ,以及平行线分线段成比例进行解答即可.【详解】解:在矩形ABCD 中:AD BC ∥,90ABC ∠=︒,∴14AE AF BC FC ==,4BC =,∴144AE =,∴1AE =,故答案为:1.【点睛】此题考查了勾股定理以及平行线分线段成比例,掌握平行线分线段成比例是解题的关键.16.(2022·江苏常州)如图,在Rt ABC △中,90C ∠=︒,9AC =,12BC =.在Rt DEF 中,90F ∠=︒,3DF =,4EF =.用一条始终绷直的弹性染色线连接CF ,Rt DEF 从起始位置(点D 与点B 重合)平移至终止位置(点E 与点A 重合),且斜边DE 始终在线段AB 上,则Rt ABC △的外部被染色的区域面积是______.【答案】28【分析】过点F 作AB 的垂线交于G ,同时在图上标出,,M N F '如图,需要知道的是Rt ABC 的被染色的区域面积是MNF F S '梯形,所以需要利用勾股定理,相似三角形、平行四边形的判定及性质,求出相应边长,即可求解.【详解】解:过点F 作AB 的垂线交于G ,同时在图上标出,,M N F '如下图:90C ∠=︒ ,9AC =,12BC =,15AB ∴==,在Rt DEF 中,90F ∠=︒,3DF =,4EF =.5DE ∴==,15510AE AB DE =-=-= ,//,EF AF EF AF ''= ,∴四边形AEFF '为平行四边形,10AE FF '∴==,11622DEF S DF EF DE GF =⋅=⋅= ,解得:125GF =, //DF AC ,,DFM ACM FDM CAM ∴∠=∠∠=∠,DFM ACM ∴ ∽,13DM DF AM AC ∴==,1115344DM AM AB ∴===,//BC AF ' ,同理可证:ANF DNC ' ∽,13AF AN BC DN '∴==,345344DN AN AB ∴===,451530444MN DN DM ∴=-=-=,Rt ABC 的外部被染色的区域面积为130121028245MNF F S '⎛⎫=⨯+⨯= ⎪⎝⎭梯形,故答案为:28.【点睛】本题考查了直角三角形,相似三角形的判定及性质、勾股定理、平行四边形的判定及性质,解题的关键是把问题转化为求梯形的面积.17.(2022·广西)数学兴趣小组通过测量旗杆的影长来求旗杆的高度,他们在某一时刻测得高为2米的标杆影长为1.2米,此时旗杆影长为7.2米,则旗杆的高度为______米.【答案】12【分析】根据同时、同地物高和影长的比不变,构造相似三角形,然后根据相似三角形的性质解答.【详解】解:设旗杆为AB ,如图所示:根据题意得:ABC DEF ∆∆ ,∴DE EF AB BC= ∵2DE =米, 1.2EF =米,7.2BC =米,∴2 1.2=7.2AB 解得:AB =12米.故答案为:12.【点睛】本题考查了中心投影、相似三角形性质的应用,解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.18.(2022·广东深圳)已知ABC 是直角三角形,90,3,5,B AB BC AE ∠=︒===连接CE 以CE 为底作直角三角形CDE 且,CD DE =F 是AE 边上的一点,连接BD 和,BF BD 且45,FBD ∠=︒则AF 长为______.【分析】将线段BD 绕点D 顺时针旋转90︒,得到线段HD ,连接BH ,HE ,利用SAS 证明EDH CDB ∆≅∆,得5EH CB ==,90HED BCD ∠=∠=︒,从而得出////HE DC AB ,则ABF EHF ∆∆∽,即可解决问题.【详解】解:将线段BD 绕点D 顺时针旋转90︒,得到线段HD ,连接BH ,HE ,BDH ∴∆是等腰直角三角形,又EDC ∆ 是等腰直角三角形,HD BD ∴=,EDH CDB ∠=∠,ED CD =,()EDH CDB SAS ∴∆≅∆,5EH CB ∴==,90HED BCD ∠=∠=︒,90EDC ∠=︒ ,90ABC ∠=︒,////HE DC AB ∴,,ABF EHF BAF HEF ∴∠=∠∠=∠,ABF EHF ∴∆∆∽,∴==-AB AF AF EH EF AE AF ,AE =∴35=AF ∴=,【点睛】本题主要考查了等腰直角三角形的性质,全等三角形的判定与性质,相似三角形的判定与性质等知识,解题的关键是作辅助线构造全等三角形.19.(2022·广西河池)如图,把边长为1:2的矩形ABCD 沿长边BC ,AD 的中点E ,F 对折,得到四边形ABEF ,点G ,H 分别在BE ,EF 上,且BG =EH =25BE =2,AG 与BH 交于点O ,N 为AF 的中点,连接ON ,作OM ⊥ON 交AB 于点M ,连接MN ,则tan ∠AMN =_____.【答案】58##0.625【分析】先判断出四边形ABEF 是正方形,进而判断出△ABG ≌△BEH ,得出∠BAG =∠EBH ,进而求出∠AOB =90°,再判断出△AOB ~△ABG ,求出OA OB ==△OBM ~△OAN ,求出BM =1,即可求出答案.【详解】解:∵点E ,F 分别是BC ,AD 的中点,∴11,22AF AD BE BC ==,∵四边形ABCD 是矩形,∴∠A =90°,AD ∥BC ,AD =BC ,∴12AF BE AD ==,∴四边形ABEF 是矩形,由题意知,AD =2AB ,∴AF =AB ,∴矩形ABEF 是正方形,∴AB =BE ,∠ABE =∠BEF =90°,∵BG =EH ,∴△ABG≌△BEH(SAS),∴∠BAG=∠EBH,∴∠BAG+∠ABO=∠EBH+∠ABO=∠ABG=90°,∴∠AOB=90°,∵BG=EH=25BE=2,∴BE=5,∴AF=5,∴AG==∵∠OAB=∠BAG,∠AOB=∠ABG,∴△AOB∽△ABG,∴OA OB ABAB BG AG==,即52OA OB==∴OA OB==∵OM⊥ON,∴∠MON=90°=∠AOB,∴∠BOM=∠AON,∵∠BAG+∠FAG=90°,∠ABO+∠EBH=90°,∠BAG=∠EBH,∴∠OBM=∠OAN,∴△OBM~△OAN,∴OB BM OA AN=,∵点N是AF的中点,∴1522AN AF==,52BM=,解得:BM=1,∴AM=AB-BM=4,∴552tan48ANAMNAM∠===.故答案为:5 8【点睛】此题主要考查了矩形性质,正方形性质和判定,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,求出BM 是解本题的关键.20.(2022·内蒙古赤峰)如图,为了测量校园内旗杆AB 的高度,九年级数学应用实践小组,根据光的反射定律,利用镜子、皮尺和测角仪等工具,按以下方式进行测量:把镜子放在点O 处,然后观测者沿着水平直线BO 后退到点D ,这时恰好能在镜子里看到旗杆顶点A ,此时测得观测者观看镜子的俯角α=60°,观测者眼睛与地面距离CD =1.7m ,BD =11m ,则旗杆AB 的高度约为_________m . 1.7≈)【答案】17【分析】如图容易知道CD ⊥BD ,AB ⊥BD ,即∠CDO =∠ABO =90°.由光的反射原理可知∠COD =∠AOB =60°,这样可以得到△COD ∽△AOB ,然后利用对应边成比例就可以求出AB .【详解】解:由题意知∠COD =∠AOB =60°,∠CDE =∠ABE =90°,∵CD =1.7m ,∴OD =60CD tan =︒≈1(m),∴OB =11-1=10(m),∴△COD ∽△AOB .∴CD OD AB OB =,即1.7110AB =,∴AB =17(m),答:旗杆AB 的高度约为17m .故答案为:17.【点睛】本题考查了解直角三角形的应用,相似三角形的应用,本题只要是把实际问题抽象到相似三角形中,利用相似三角形的性质就可以求出结果.21.(2022·湖北鄂州)如图,在边长为6的等边△ABC 中,D 、E 分别为边BC 、AC 上的点,AD 与BE 相交于点P ,若BD =CE =2,则△ABP 的周长为 _____.【答案】6+【分析】如图所示,过点E 作EF ⊥AB 于F ,先解直角三角形求出AF ,EF ,从而求出BF ,利用勾股定理求出BE 的长,证明△ABD ≌△BCE 得到∠BAD =∠CBE ,AD =BE ,再证明△BDP ∽△ADB ,得到62BP PD==,即可求出BP ,PD ,从而求出AP ,由此即可得到答案.【详解】解:如图所示,过点E 作EF ⊥AB 于F ,∵△ABC 是等边三角形,∴AB =BC ,∠ABD =∠BAC =∠BCE =60°,∵CE =BD =2,AB =AC =6,∴AE =4,∴cos 2sin AF AE EAF EF AE EAF =⋅∠==⋅∠=,,∴BF =4,∴BE =又∵BD =CE ,∴△ABD ≌△BCE (SAS ),∴∠BAD =∠CBE ,AD =BE ,又∵∠BDP =∠ADB ,∴△BDP ∽△ADB ,∴BD BP DP AD AB BD==,62BP PD==,∴BP PD =∴AP AD AP =-=,∴△ABP 的周长=6AB BP AP ++=故答案为:6+【点睛】本题主要考查了等边三角形的性质,解直角三角形,勾股定理,相似三角形的性质与判定,全等三角形的性质与判定,正确作出辅助线是解题的关键.22.(2022·山东潍坊)《墨子·天文志》记载:“执规矩,以度天下之方圆.”度方知圆,感悟数学之美.如图,正方形ABCD 的面积为4,以它的对角线的交点为位似中心,作它的位似图形A B C D '''',若:2:1A B AB ='',则四边形A B C D ''''的外接圆的周长为___________.【答案】【分析】根据正方形ABCD 的面积为4,求出2AB =,根据位似比求出4A B ''=,周长即可得出;【详解】解: 正方形ABCD 的面积为4,∴2AB =,:2:1A B AB ''=,∴4A B ''=,∴A C ''==所求周长=;故答案为:.【点睛】本题考查位似图形,涉及知识点:正方形的面积,正方形的对角线,圆的周长,解题关键求出正方形ABCD 的边长.23.(2022·内蒙古包头)如图,在Rt ABC 中,90ACB ∠=︒,3AC BC ==,D 为AB 边上一点,且BD BC =,连接CD ,以点D 为圆心,DC 的长为半径作弧,交BC 于点E (异于点C ),连接DE ,则BE的长为___________.【答案】3##3-+【分析】过点D 作DF ⊥BC 于点F ,根据题意得出DC DE =,根据等腰三角形性质得出CF EF =,根据90ACB ∠=︒,3AC BC ==,得出AB =CF x =,则3BF x =-,证明DF AC ,得出BF BDCF AD=,列出关于x 的方程,解方程得出x 的值,即可得出3BE =.【详解】解:过点D 作DF ⊥BC 于点F ,如图所示:根据作图可知,DC DE =,∵DF ⊥BC ,∴CF EF =,∵90ACB ∠=︒,3AC BC ==,∴AB ===∵3BD BC ==,∴3AD =,设CF x =,则3BF x =-,∵90ACB ∠=︒,∴AC BC ⊥,∵DF BC ⊥,∴DF AC ,∴BF BDCF AD =,即3x x -=,解得:x =,∴226CE x ===-,∴3363BE CE =-=-+=.故答案为:3.【点睛】本题主要考查了等腰三角形的性质和判定,勾股定理,平行线分线段成比例定理,平行线的判定,作出辅助线,根据题意求出CF 的长,是解题的关键.24.(2022·江苏泰州)如图上,Δ,90,8,6,ABC C AC BC ∠=== 中O 为内心,过点O 的直线分别与AC 、AB 相交于D 、E ,若DE=CD+BE ,则线段CD 的长为__________.【答案】2或12##12或2【分析】分析判断出符合题意的DE 的情况,并求解即可;【详解】解:①如图,作//DE BC ,OF BC OG AB ⊥⊥,,连接OB ,则OD ⊥AC ,∵//DE BC ,∴OBF BOE ∠=∠∵O 为ABC ∆的内心,∴OBF OBE ∠=∠,∴BOE OBE ∠=∠∴BE OE =,同理,CD OD =,∴DE=CD+BE ,10AB ===∵O 为ABC ∆的内心,∴OF OD OG CD ===,∴BF BG AD AG==,∴6810AB BG AG BC CD AC CD CD CD =+=-+-=-+-=∴2CD =②如图,作DE AB ⊥,由①知,4BE =,6AE =,∵ACB AED CAB EAD ∠=∠∠=∠,∴ABC ADE ∆∆ ∴AB ADAC AE=∴1061582AB AE AD AC ⋅⨯===∴151822CD AC AD =-=-=∵92DE ===∴19422DE BE CD =+=+=∴12CD =故答案为:2或12.【点睛】本题主要考查三角形内心的性质、勾股定理、三角形的相似,根据题意正确分析出符合题意的情况并应用性质定理进行求解是解题的关键.25.(2022·黑龙江绥化)如图,60AOB ∠=︒,点1P 在射线OA 上,且11OP =,过点1P 作11PK OA ⊥交射线OB 于1K ,在射线OA 上截取12PP ,使1211PPPK =;过点2P 作22P K OA ⊥交射线OB 于2K ,在射线OA 上截取23P P ,使2322P P P K =.按照此规律,线段20232023P K 的长为________.20221【分析】解直角三角形分别求得11PK ,22P K ,33P K ,……,探究出规律,利用规律即可解决问题.【详解】解:11PK OA ⊥ ,11OPK ∴△是直角三角形,在11Rt OPK 中,60AOB ∠=︒,11OP =,12111tan 60PP PK OP ∴==⋅︒=11PK OA ⊥ ,22P K OA ⊥,1122PK P K ∴∥,2211OP K OPK ∴△∽△,222111P K OP PK OP ∴=,=221P K ∴,同理可得:2331P K =+,3441P K =,……,11n n n P K -∴=,2022202320231P K ∴=,20221.【点睛】本题考查了图形的规律,解直角三角形,平行线的判定,相似三角形的判定与性质,解题的关键是学会探究规律的方法.26.(2022·黑龙江)如图,在平面直角坐标系中,点1A ,2A ,3A ,4A ……在x 轴上且11OA =,212OA OA =,322OA OA =,432OA OA =……按此规律,过点1A ,2A ,3A ,4A ……作x轴的垂线分别与直线y =交于点1B ,2B ,3B ,4B ……记11OA B ,22OA B △,33 OA B ,44 OA B ……的面积分别为1S ,2S ,3S ,4S ……,则2022S =______.【答案】2【分析】先求出11A B =,可得11OA B S =112233n n A B A B A B A B ⋯⋯∥∥∥∥,从而得到11OA B ∽22OA B △∽33 OA B ∽44 OA B ∽……∽n n OA B △,再利用相似三角形的性质,可得11OA B S ∶22OA B S ∶33OA B S ∶44OA B S ∶……∶n n OA B S =()()()2222231:2:2:2::2n ,即可求解.【详解】解:当x =1时,y =,∴点(1B ,∴11A B =∴11112OA B S =⨯= ,∵根据题意得:112233n n A B A B A B A B ⋯⋯∥∥∥∥,∴11OA B ∽22OA B △∽33 OA B ∽44 OA B ∽……∽n n OA B △,∴11OA B S ∶22OA B S ∶33OA B S ∶44OA B S :……∶n n OA B S = OA 12∶OA 22∶OA 32∶……∶OAn 2,∵11OA =,212OA OA =,322OA OA =,432OA OA =,……,∴22OA =,2342OA ==,3482OA ==,……,12n n OA -=,∴11OA B S ∶22OA B S ∶33OA B S ∶44OA B S ∶……∶n n OA B S =()()()2222231246221:2:2:2::21:2:2:2::2n n --= ,∴11222n n n OA B OA B S S -= ,∴220222202222S ⨯-==故答案为:2【点睛】本题主要考查了图形与坐标的规律题,相似三角形的判定和性质,明确题意,准确得到规律,是解题的关键.27.(2022·广西)如图,在正方形ABCD 中,AB =,对角线,AC BD 相交于点O .点E 是对角线AC 上一点,连接BE ,过点E 作EF BE ⊥,分别交,CD BD 于点F 、G ,连接BF ,交AC 于点H ,将EFH △沿EF 翻折,点H 的对应点H '恰好落在BD 上,得到EFH '△若点F 为CD 的中点,则EGH '△的周长是_________.【答案】5+【分析】过点E 作PQ //AD 交AB 于点P ,交DC 于点Q ,得到BP =CQ ,从而证得BPE ≌EQF △,得到BE =EF ,再利用BC =F 为中点,求得BF ==BE EF ===,再求出2EO ==,再利用AB //FC ,求出ABH CFH △∽△21AH CH ==,求得216833AH =⨯=,18833CH =⨯=,从而得到EH =AH -AE =1610233-=,再求得EOB GOE △∽△得到21242OG ===,求得EG OG =1, 过点F 作FM ⊥AC 于点M ,作FN ⊥OD 于点N ,求得FM =2,MH =23,FN =2,证得Rt FH N '△≌Rt FMH 得到23H N MH '==,从而得到ON =2,NG =1,25133GH '=+=,从而得到答案.【详解】解:过点E 作PQ //AD 交AB 于点P ,交DC 于点Q ,∵AD //PQ ,∴AP =DQ ,BPQ CQE ∠=∠,∴BP =CQ ,∵45ACD ∠=︒,∴BP =CQ =EQ ,∵EF ⊥BE ,∴90PEB FEQ ∠+∠=︒∵90PBE PEB ∠+∠=︒∴PBE FEQ ∠=∠,在BPE 与EQF △中BPQ FQE PB EQPBE FEQ ∠=∠⎧⎪=⎨⎪∠=∠⎩∴BPE ≌EQF △,∴BE =EF ,又∵BC AB ==F 为中点,∴CF =∴BF ==∴BE EF ===,又∵4BO ==,∴2EO ==,∴AE =AO -EO =4-2=2,∵AB //FC ,∴ABH CFH △∽△,∴AB AH CF CH=,21AH CH ==,∵8AC ==, ∴216833AH =⨯=,18833CH =⨯=,∴EH =AH -AE =1610233-=,∵90BEO FEO ∠+∠=︒,+90BEO EBO ∠∠=︒,∴FEO EBO ∠=∠,又∵90EOB EOG ∠=∠=︒,∴EOB GOE△∽△∴EG OG OE BE OE OB==,21242OG ===,∴EG OG =1,过点F 作FM ⊥AC 于点M ,∴FM=MC 2=,∴MH =CH -MC =82233-=, 作FN ⊥OD 于点N ,2,FN ==,在Rt FH N '△与Rt FMH 中FH FH FN FM'=⎧⎨=⎩∴Rt FH N '△≌Rt FHM∴23H N MH '==,∴ON =2,NG =1,∴25133GH '=+=,∴10533EGH C EH EG GH EH EG GH '''=++=++=△,故答案为:【点睛】本题考查了正方形的性质应用,重点是与三角形相似和三角形全等的结合,熟练掌握做辅助线是解题的关键.28.(2022·辽宁)如图,在正方形ABCD 中,E 为AD 的中点,连接BE 交AC 于点F .若6AB =,则AEF 的面积为___________.【答案】3【分析】由正方形的性质可知1113222AE AD AB BC ====,//AD BC ,则有AEF CBF ∽△△,然后可得12EF AE BF BC ==,进而问题可求解.【详解】解:∵四边形ABCD 是正方形,6AB =,∴6AD BC AB ===,//AD BC ,∴AEF CBF ∽△△,∴EF AE BF BC=,∵E 为AD 的中点,∴1113222AE AD AB BC ====,∴12EF AE BF BC ==,192ABE S AE AB =⋅= ,∴13EF BE =,∴133AEF ABE S S == ;故答案为3.【点睛】本题主要考查正方形的性质及相似三角形的性质与判定,熟练掌握正方形的性质及相似三角形的性质与判定是解题的关键.29.(2022·贵州贵阳)如图,在四边形ABCD 中,对角线AC ,BD 相交于点E ,6cm AC BC ==,90ACB ADB ∠=∠=︒.若2BE AD =,则ABE △的面积是_______2cm ,AEB ∠=_______度.【答案】 36-36- 112.5【分析】通过证明ADE BCE ,利用相似三角形的性质求出23m AE =,263m CE =-,再利用勾股定理求出其长度,即可求三角形ABE 的面积,过点E 作EF ⊥AB ,垂足为F ,证明AEF 是等腰直角三角形,再求出AE CE =,继而证明()Rt BCE Rt BFE HL ≅ ,可知122.52EBF EBC ABC ∠=∠=∠=︒,利用外角的性质即可求解.【详解】90,ACB ADB AED BEC ∠=∠=︒∠=∠ ,ADE BCE ∴ ,AD AE BC BE∴=,6,2BC AC BE AD === ,设,2AD m BE m ==,62m AE m∴=,23m AE ∴=,263m CE ∴=-,在Rt BCE 中,由勾股定理得222BC CE BE +=,22226(6)(2)2m m ∴+-=,解得236m =-或236m =+ 对角线AC ,BD 相交于点E ,236m ∴=-,12AE ∴=-,6CE ∴=,∴(2111263622ABE S AE BC =⋅⋅=⨯-⨯=- ,过点E 作EF ⊥AB ,垂足为F ,90,ACB AC BC ∠=︒= ,45BAC ABC AEF ∴∠=∠=︒=∠,6AE AF AE CE ∴====,BE BE = ,()Rt BCE Rt BFE HL ∴≅ ,122.52EBF EBC ABC ∴∠=∠=∠=︒,112.5AEB ACB EBC ∴∠=∠+∠=︒,故答案为:36-,112.5.【点睛】本题考查了相似三角形的判定和性质,勾股定理,等腰直角三角形的判定和性质,全等三角形的判定和性质及三角形外角的性质,熟练掌握知识点是解题的关键.三.解答题30.(2022·河北)如图,某水渠的横断面是以AB 为直径的半圆O ,其中水面截线MN AB ∥.嘉琪在A 处测得垂直站立于B 处的爸爸头顶C 的仰角为14°,点M 的俯角为7°.已知爸爸的身高为1.7m .(1)求∠C 的大小及AB 的长;(2)请在图中画出线段DH ,用其长度表示最大水深(不说理由),并求最大水深约为多少米(结果保留小数点后一位).(参考数据:tan 76︒取4 4.1)【答案】(1)=76C ∠︒, 6.8(m)AB =(2)见详解,约6.0米【分析】(1)由水面截线MN AB ∥可得BC AB ⊥,从而可求得76C ∠=︒,利用锐角三角形的正切值即可求解.(2)过点O 作O H M N ⊥,交MN 于D 点,交半圆于H 点,连接OM ,过点M 作MG ⊥OB 于G ,水面截线MN AB ∥,即可得DH 即为所求,由圆周角定理可得14BOM ∠=︒,进而可得ABC OGM ,利用相似三角形的性质可得4OG GM =,利用勾股定理即可求得GM 的值,从而可求解.(1)解:∵水面截线MN AB∥BC AB ∴⊥,90ABC ∴∠=︒,90=76C CAB ∴∠=︒-∠︒,在t R ABC 中,90ABC ∠=︒, 1.7BC =,tan 76 1.7AB AB BC ∴︒==,解得 6.8(m)AB ≈.(2)过点O 作O H M N ⊥,交MN 于D 点,交半圆于H 点,连接OM ,过点M 作MG ⊥OB 于G ,如图所示:水面截线MN AB ∥,OH AB ⊥,DH MN ∴⊥,GM OD =,DH ∴为最大水深,7BAM ∠=︒ ,214BOM BAM ∴∠=∠=︒,90ABC OGM ∠=∠=︒ ,且14BAC ∠=︒,ABC OGM ∴ ,OG MG AB CB ∴=,即6.8 1.7OG MG =,即4OG GM =,在Rt OGM △中,90OGM ∠=︒, 3.42AB OM =≈,222OG GM OM ∴+=,即2224(3.4)GM GM +=(),解得0.8GM ≈,= 6.80.86DH OH OD ∴-=-≈,∴最大水深约为6.0米.【点睛】本题考查了解直角三角形,主要考查了锐角三角函数的正切值、圆周角定理、相似三角形的判定及性质、平行线的性质和勾股定理,熟练掌握解直角三角形的相关知识是解题的关键.31.(2022·吉林)下面是王倩同学的作业及自主探究笔记,请认真阅读并补充完整.【作业】如图①,直线12l l ∥,ABC 与DBC △的面积相等吗?为什么?解:相等.理由如下:设1l 与2l 之间的距离为h ,则12ABC S BC h =⋅ ,12DBC S BC h =⋅△.∴ABC DBC S S = .【探究】(1)如图②,当点D 在1l ,2l 之间时,设点A ,D 到直线2l 的距离分别为h ,h ',则ABC DBC S h S h ='△△.证明:∵ABC S(2)如图③,当点D 在1l ,2l 之间时,连接AD 并延长交2l 于点M ,则ABC DBC S AM S DM =△△.证明:过点A 作AE BM ⊥,垂足为E ,过点D 作DF BM ⊥,垂足为F ,则90AEM DFM ∠=∠=︒,∴AE ∥ .∴AEM △∽ .∴AE AM DF DM =.由【探究】(1)可知ABC DBC S S =△△ ,∴ABC DBC S AM S DM =△△.(3)如图④,当点D 在2l 下方时,连接AD 交2l 于点E .若点A ,E ,D 所对应的刻度值分别为5,1.5,0,ABC DBC S S △△的值为 .【答案】(1)证明见解析(2)证明见解析(3)73【分析】(1)根据三角形的面积公式可得11,22ABC DBC S S BC h BC h '=⋅=⋅ ,由此即可得证;(2)过点A 作AE BM ⊥,垂足为E ,过点D 作DF BM ⊥,垂足为F ,先根据平行线的判定可得AE DF ,再根据相似三角形的判定可证AEM DFM ~ ,根据相似三角形的性质可得AE AM DF DM=,然后结合【探究】(1)的结论即可得证;(3)过点A 作AM BC ⊥于点M ,过点D 作DN BC ⊥于点N ,先根据相似三角形的判定证出AME DNE ~ ,再根据相似三角形的性质可得73AM AE DN DE ==,然后根据三角形的面积公式可得12ABC S BC AM =⋅ ,12DBC S BC DN =⋅ ,由此即可得出答案.(1)证明:12ABC S BC h =⋅ ,12DBC BC h S '=⋅ ,ABC DBC S h S h ∴='.(2)证明:过点A 作AE BM ⊥,垂足为E ,过点D 作DF BM ⊥,垂足为F ,则90AEM DFM ∠=∠=︒,AE DF ∴∥.AEM DFM ~∴ .AE AM DF DM∴=.由【探究】(1)可知ABC DBC S AE S DF= ,ABC DBC S AM S DM ∴= .(3)解:过点A 作AM BC ⊥于点M ,过点D 作DN BC ⊥于点N ,则90AME DNE ∠=∠=︒,AM DN ∴ ,AME DNE ∴~ ,AM AE DN DE∴=, 点,,A E D 所对应的刻度值分别为5,1.5,0,5 1.5 3.5AE ∴=-=, 1.5DE =,3.571.53AM DN ∴==,又12ABC S BC AM =⋅ ,12DBC S BC DN =⋅ ,73ABCDBC S AM S DN =∴= ,故答案为:73.【点睛】本题考查了相似三角形的判定与性质、平行线的判定、三角形的面积等知识点,熟练掌握相似三角形的判定与性质是解题关键.32.(2022·山东青岛)如图,在Rt ABC △中,90,5cm,3cm ACB AB BC ∠=︒==,将ABC 绕点A 按逆时针方向旋转90︒得到ADE ,连接CD .点P 从点B 出发,沿BA 方向匀速运动,速度为1cm/s ;同时,点Q 从点A 出发,沿AD 方向匀速运动,速度为1cm/s .PQ 交AC 于点F ,连接,CP EQ .设运动时间为(s)(05)t t <<.解答下列问题:(1)当EQ AD ⊥时,求t 的值;(2)设四边形PCDQ 的面积为()2cm S ,求S 与t 之间的函数关系式;(3)是否存在某一时刻t ,使PQ CD ∥?若存在,求出t 的值;若不存在,请说明理由.【答案】(1)16s 5(2)213714210S t t =-+(3)存在,65s 29t =【分析】(1)利用AQE AED △∽△得AQ AE AE AD =,即445t =,进而求解;(2)分别过点C ,P 作,CM AD PN BC ⊥⊥,垂足分别为M ,N ,证ABC CAM △∽△得,AB BC AC CA AM CM ==,求得121655AM CM ==,再证BPN BAC △∽△得BP PN BA AC=,得出45PN t =,根据ABC ACD APQ BPC PCDQ S S S S S S ==+-- 四边形即可求出表达式;(3)当PQ CD ∥时AQP ADC ∠=∠,易证APQ MCD △∽△,得出AP AQ MC MD =,则5161355t t -=,进而求出t 值.(1)解:在Rt ABC △中,由勾股定理得,4AC ===∵ABC 绕点A 按逆时针方向旋转90︒得到ADE。

中考数学-全等三角形问题中常见的8种辅助线的作法

中考数学-全等三角形问题中常见的8种辅助线的作法

全等三角形问题中常见的辅助线的作法(有答案)总论:全等三角形问题最主要的是构造全等三角形,构造二条边之间的相等,构造二个角之间的相等【三角形辅助线做法】图中有角平分线,可向两边作垂线。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。

要证线段倍与半,延长缩短可试验。

三角形中两中点,连接则成中位线。

三角形中有中线,延长中线等中线。

1.等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题2.倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形3.角平分线在三种添辅助线4.垂直平分线联结线段两端5.用“截长法”或“补短法”:遇到有二条线段长之和等于第三条线段的长,6.图形补全法:有一个角为60度或120度的把该角添线后构成等边三角形7.角度数为30、60度的作垂线法:遇到三角形中的一个角为30度或60度,可以从角一边上一点向角的另一边作垂线,目的是构成30-60-90的特殊直角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。

从而为证明全等三角形创造边、角之间的相等条件。

8.计算数值法:遇到等腰直角三角形,正方形时,或30-60-90的特殊直角三角形,或40-60-80的特殊直角三角形,常计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角,从而为证明全等三角形创造边、角之间的相等条件。

常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。

1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变D C BAED F CB A换中的“对折”法构造全等三角形.2)遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”法构造全等三角形.3)遇到角平分线在三种添辅助线的方法,(1)可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.(2)可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。

专题09 三角形问题-2022中考数学压轴题精讲(解析版)

专题09 三角形问题-2022中考数学压轴题精讲(解析版)

一、单选题1.如图,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm速度向点A运动,点Q从点A 同时出发以每秒2cm速度向点C运动,其中一个动点到达端点,另一个动点也随之停止,当△APQ是以PQ为底的等腰三角形时,运动的时间是( )秒A.2.5 B.3 C.3.5 D.4【答案】D【关键点拨】此题主要考查学生对等腰三角形的性质这一知识点的理解和掌握,此题涉及到动点,有一定的拔高难度,属于中档题.2.已知等边△ABC中,在射线BA上有一点D,连接CD,并以CD为边向上作等边△CDE,连接BE和AE.试判断下列结论:①AE=BD;②AE与AB所夹锐夹角为60°;③当D在线段AB或BA延长线上时,总有∠BDE-∠AED=2∠BDC;④∠BCD=90°时,CE2+AD2=AC2+DE2 .正确的序号有()A.①② B.①②③ C.①②④ D.①②③④【答案】C【解析】∵∠BCA=∠DCE=60°,∴∠BCA+∠ACD=∠DCE+∠ACD,∴∠BCD=∠ACE,学科*网又∵AC=BC,CE=CD,∴△BCD≌△ACE,∴AE=BD,∠CBA=∠CAE=60°,∠AEC=∠BDC,①正确,∴∠BAE=120°,∴∠EAD=60°,②正确,∵∠BCD=90°,∠BCA=60°,∴∠ACD=∠ADC=30°,∴AC=AD,∵CE=DE,∴CE2+AD2=AC2+DE2,④正确,当D点在BA延长线上时,∠BDE-∠BDC=60°,∵∠AEC=∠BDC,∴∠BDC+∠AED=∠AEC+∠AED=∠CED=60°,∴∠BDE-∠BDC=∠BDC+∠AED∴∠BDE-∠AED=2∠BDC,故正确的结论有①②④,故选C.学科*网【关键点拨】此题主要考查等边三角形的性质和全等三角形的判定与性质等知识点的理解和掌握3.如图,在△ABC中,AB=AC,∠BAC=120°,D,E是BC上的两点,且∠DAE=30°,将△AEC绕点A 顺时针旋转120°后,得到△AFB,连接DF.下列结论中正确的个数有()①∠FBD=60°;②△ABE∽△DCA;③AE平分∠CAD;④△AFD是等腰直角三角形.A.1个 B.2个 C.3个 D.4个【答案】B∴∠BAD+∠EAC=120°−∠DAE=90°,∴∠ABC+∠BAD<90°,∴∠ADC<90°,∴∠DAC>60°,∴∠EAC>30°,即∠DAE≠∠EAC,∴③错误;∵将△AEC绕点A顺时针旋转120°后,得到△AFB,∴AF=AE,∠EAC=∠BAF,∵∠BAC=120°,∠DAE=30°,∴∠BAD+∠EAC=90°,∴∠DAB+∠BAF=90°,【关键点拨】本题考查了旋转的性质,等腰三角形的性质和判定,三角形的外角性质,全等三角形的性质和判定的应用,主要考查学生综合运用性质进行推理的能力,题目比较典型,但是有一定的难度.4.如图,在等边三角形ABC中,在AC边上取两点M、N,使∠MBN=30°.若AM=m,MN=x,CN=n,则以x,m,n为边长的三角形的形状为()A.锐角三角形 B.直角三角形C.钝角三角形 D.随x,m,n的值而定【答案】C【解析】将△ABM绕点B顺时针旋转60°得到△CBH.连接HN.【关键点拨】本题考查了等边三角形的性质、全等三角形的判定和性质、旋转的性质等知识,解题的关键是学会利用旋转法添加辅助线,构造全等三角形解决问题,属于中考常考题型.5.如图,在等腰直角△ABC中,∠C=90°,点O是AB的中点,且AB=,将一块直角三角板的直角顶点放在点O处,始终保持该直角三角板的两直角边分别与AC、BC相交,交点分别为D、E,则CD+CE=()A. B. C.2 D.【答案】A【解析】6.如图,在△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F,H是BC边的中点,连结DH、BE与相交于点G,以下结论中正确的结论有()(1)△ABC是等腰三角形;(2)BF=AC;(3)BH:BD:BC=1::;(4)GE2+CE2=BG2.A.1个 B.2个 C.3个 D.4个【答案】C【解析】(1)∵BE平分∠ABC,∴∠ABE=∠CBE,∵CD⊥AB,学*科网∴∠ABE+∠A=90°,∠CBE+∠ACB=90°,∴∠A=∠BCA,∴AB=BC,∴△ABC是等腰三角形;故(1)正确;,∴△BDF≌△CDA(AAS),∴BF=AC;故(2)正确;(3)∵在△BCD中,∠CDB=90°,∠DBC=45°,∴∠DCB=45°,∴BD=CD,BC=BD.由点H是BC的中点,∴DH=BH=CH=BC,∴BD=BH,∴BH:BD:BC=BH: BH:2BH=1::2.故(3)错误;学*科网(4)由(2)知:BF=AC,∵BF平分∠DBC,∴∠ABE=∠CBE,又∵BE⊥AC,∴∠AEB=∠CEB,在△ABE与△CBE中,【关键点拨】本题考查全等三角形的判定与性质,等腰直角三角形的判定与性质,直角三角形斜边上的中线等于斜边的一半的性质,平行线的性质,勾股定理,熟练掌握三角形全等的判定方法并作辅助线构造出全等三角形是解题的关键.学&科网7.如图,∠AOB=30°,OC为∠AOB内部一条射线,点P为射线OC上一点,OP=4,点M、N分别为OA、OB 边上动点,则△MNP周长的最小值为( )A.2 B.4 C. D.【答案】B【解析】【关键点拨】本题考查了等边三角形的性质和判定,轴对称-最短路线问题的应用,正确作出辅助线,确定M、N的位置,证明△OP1P2是等边三角形是解题关键.8.如图,,,,点D、E为BC边上的两点,且,连接EF、BF则下列结论:≌;≌;;,其中正确的有( )个.A.1 B.2 C.3 D.4【答案】D②∵△AED≌△AEF,∴AF=AD,∵,∴∠FAB=∠CAD,∵AB=AC,∴≌,②正确;③∵∠BAC=∠DAF=90°,∴∠BAC-∠BAD=∠DAF-∠BAD,即∠CAD=∠BAF.在△ACD与△ABF中,学科*网,∴△ACD≌△ABF(SAS),∴CD=BF,由①知△AED≌△AEF,∴DE=EF.在△BEF中,∵BE+BF>EF,∴BE+DC>DE,③正确;④由③知△ACD≌△ABF,∴∠C=∠ABF=45°,∵∠ABE=45°,∴∠EBF=∠ABE+∠ABF=90°.④正确.故答案为D.【关键点拨】本题考查了勾股定理,全等三角形的判定与性质,等腰直角直角三角形的性质,三角形三边关系定理,相似三角形的判定,此题涉及的知识面比较广,解题时要注意仔细分析,有一定难度.9.如图,四边形ABCD中,∠A、∠B、∠C、∠D的角平分线恰相交于一点P,记△APD、△APB、△BPC、△DPC的面积分别为S1、S2、S3、S4,则有()A. B. C. D.【答案】A【关键点拨】本题考查了角平分线性质定理,作高线和理解角平分线性质定理是解题关键.10.如图,已知AD为△ABC的高线,AD=BC,以AB为底边作等腰Rt△ABE,连接ED,EC,延长CE交AD于F点,下列结论:①△ADE≌△BCE;②CE⊥DE;③BD=AF;④S△BDE=S△ACE,其中正确的有()A.①③ B.①②④ C.①②③④ D.①③④【答案】C③∵∠BDE=∠ADB+∠ADE,∠AFE=∠ADC+∠ECD,∴∠BDE=∠AFE.∵∠BED+∠BEF=∠AEF+∠BEF=90°,∴∠BED=∠AEF.在△AEF和△BED中,∵,∴△AEF≌△BED(AAS),∴BD=AF;故③正确;④∵AD=BC,BD=AF,∴CD=DF.学科&网∵AD⊥BC,∴△FDC是等腰直角三角形.∵DE⊥CE,∴EF=CE,∴S△AEF=S△ACE.∵△AEF≌△BED,∴S△AEF=S△BED,∴S△BDE=S△ACE.故④正确.故选C.【关键点拨】本题考查了全等三角形的判定与性质,本题中求证△BFE≌△CDE是解题的关键.11.如图,等边三角形ABC边长是定值,点O是它的外心,过点O任意作一条直线分别交AB,BC于点D,E.将△BDE沿直线DE折叠,得到△B′DE,若B′D,B′E分别交AC于点F,G,连接OF,OG,则下列判断错误的是()A.△ADF≌△CGEB.△B′FG的周长是一个定值C.四边形FOEC的面积是一个定值D.四边形OGB'F的面积是一个定值【答案】D【解析】A、连接OA、OC,由折叠得:∠BDE=∠ODF=(∠DAF+∠AFD),∴∠OFD+∠ODF=(∠FAD+∠ADF+∠DAF+∠AFD)=120°,∴∠DOF=60°,同理可得∠EOG=60°,∴∠FOG=60°=∠DOF=∠EOG,∴△DOF≌△GOF≌△GOE,∴OD=OG,OE=OF,∠OGF=∠ODF=∠ODB,∠OFG=∠OEG=∠OEB,∴△OAD≌△OCG,△OAF≌△OCE,∴AD=CG,AF=CE,∴△ADF≌△CGE,故选项A正确;B、∵△DOF≌△GOF≌△GOE,∴DF=GF=GE,【关键点拨】本题考查了等边三角形的性质、三角形全等的性质和判定、角平分线的性质和判定、三角形和四边形面积及周长的确定以及折叠的性质,有难度,本题全等的三角形比较多,要注意利用数形结合,并熟练掌握三角形全等的判定,还要熟练掌握角平分线的逆定理的运用,证明FO平分∠DFG是本题的关键. 12.如图,点 D 是等腰直角△ABC 腰 BC 上的中点,点B 、B′ 关于 AD 对称,且BB′ 交AD 于 F,交 AC 于 E,连接 FC 、AB′,下列说法:①∠BAD=30°;②∠BFC=135°;③AF=2B′ C;正确的个数是()A.1 B.2 C.3 D.4【答案】B【解析】∵点D是等腰直角△ABC腰BC上的中点,∴BD=BC=AB,∴tan∠BAD=,∴∠BAD≠30°,故①错误;如图,连接B'D,∴BF=CB'=B'F,∴△FCB'是等腰直角三角形,∴∠CFB'=45°,即∠BFC=135°,故②正确;由△ABF≌△BCB',可得AF=BB'=2BF=2B'C,故③正确;∵AF>BF=B'C,∴△AEF与△CEB'不全等,∴AE≠CE,学&科网∴S△AFE≠S△FCE,故④错误;故选B.【关键点拨】本题主要考查了轴对称的性质以及全等三角形的判定与性质的运用,如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.13.如图,点E在△DBC的边DB上,点A在△DBC内部,∠DAE=∠BAC=90°,AD=AE,AB=AC.给出下列结论:①BD=CE;②∠ABD+∠ECB=45°;③BD⊥CE;④BE2=2(AD2+AB2)﹣CD2.其中正确的是()A.①②③④ B.②④ C.①②③ D.①③④【答案】A【关键点拨】本题考查全等三角形的判定和性质、勾股定理、等腰直角三角形的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考选择题中的压轴题.14.如图,在△ABC中,P是BC上的点,作PQ∥AC交AB于点Q,分别作PR⊥AB,PS⊥AC,垂足分别是R,S,若PR=PS,则下面三个结论:①AS=AR;②AQ=PQ;③△PQR≌△CPS;④AC﹣AQ=2SC,其中正确的是()A.②③④ B.①② C.①④ D.①②③④【答案】B【解析】如图【关键点拨】本题主要考查三角形全等及三角形全等的性质.15.如图,AB=AC,BD⊥AC于D,CE⊥AB于E,BD、CE交于O,连结AO,则图中共有全等三角形的对数为()A.2对 B.3对 C.4对 D.5对【答案】C∴△AOE≌△AOD(HL),∴∠OAC=∠OAB,∵∠B=∠C,AB=AC,∠OAC=∠OAB,∴△AOC≌△AOB.(ASA)∵∠B=∠C,BE=CD,∠ODC=∠OEB=90°,∴△BOE≌△COD(ASA).综上:共有4对全等三角形,故选C.学科*网【关键点拨】本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:SSS、SAS、ASA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.做题时要从已知条件开始结合全等的判定方法逐一验证,由易到难,不重不漏.二、填空题16.如图所示,已知:点A(0,0),B(,0),C(0,1)在△ABC内依次作等边三角形,使一边在x 轴上,另一个顶点在BC边上,作出的等边三角形分别是第1个△AA1B1,第2个△B1A2B2,第3个△B2A3B3,…,则第个等边三角形的边长等于__________.【答案】【关键点拨】本题主要考查等边三角形的性质及解直角三角形,从而归纳出边长的规律.17.如图,∠MON=30°,点B1在边OM上,且OB1=2,过点B1作B1A1⊥OM交ON于点A1,以A1B1为边在A1B1右侧作等边三角形A1B1C1;过点C1作OM的垂线分别交OM、ON于点B2、A2,以A2B2为边在A2B2的右侧作等边三角形A2B2C2;过点C2作OM的垂线分别交OM、ON于点B3、A3,以A3B3为边在A3B3的右侧作等边三角形A3B3C3,…;按此规律进行下去,则△A n B n+1C n的面积为__.(用含正整数n的代数式表示)【答案】()2n﹣2×…,△A n B n+1C n的边长为()n﹣1×,∴△A n B n+1C n的面积为×[()n﹣1×]2=()2n﹣2×,故答案为:()2n﹣2×.【关键点拨】本题考查了含30度角的直角三角形的性质、等边三角形的面积公式、解直角三角形等知识,熟练掌握相关性质得出等边三角形的边长的规律是解题的关键.18.如图,已知等边△ABC的边长是2,以BC边上的高AB1为边作等边三角形,得到第一个等边△AB1C1;再以等边△AB1C1的B1C1边上的高AB2为边作等边三角形,得到第二个等边△AB2C2;再以等边△AB2C2的B2C2边上的高AB3为边作等边三角形,得到第三个等边△AB3C3;…,记△B1CB2的面积为S1,△B2C1B3的面积为S2,△B3C2B4的面积为S3,如此下去,则S n=_____.【答案】【关键点拨】本题考查了规律题,涉及等边三角形的性质,含30度角的直角三角形的性质、勾股定理等,有一定难度,熟练掌握并灵活运用等边三角形的性质、勾股定理等解本题的关键.19.如图,直线与x轴、y轴分别交于A,B两点,C是OB的中点,D是AB上一点,四边形OEDC是菱形,则△OAE的面积为________.【答案】∴A(,0);∴OA=,设D(x,) ,∴E(x,- x+2),延长DE交OA于点F,∴EF=-x+2,OF=x,在Rt△OEF中利用勾股定理得:,解得:x1=0(舍),x2=;学*科网∴EF=1,∴S△AOE=·OA·EF=2.故答案为:.【关键点拨】本题考查了一次函数图象上点的坐标特征:一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线.它与x轴的交点坐标是(-,0);与y轴的交点坐标是(0,b).直线上任意一点的坐标都满足函数关系式y=kx+b.也考查了菱形的性质.20.如图,等腰△ABC中,CA=CB=4,∠ACB=120°,点D在线段AB上运动(不与A、B重合),将△CAD 与△CBD分别沿直线CA、CB翻折得到△CAP与△CBQ,给出下列结论:①CD=CP=CQ;②∠PCQ的大小不变;③△PCQ面积的最小值为;④当点D在AB的中点时,△PDQ是等边三角形,其中所有正确结论的序号是.【答案】①②④.③如图,过点Q作QE⊥PC交PC延长线于E,∵∠PCQ=120°,∴∠QCE=60°,在Rt△QCE中,tan∠QCE=,∴QE=CQ×tan∠QCE=CQ×tan60°=CQ,∵CP=CD=CQ,∴S△PCQ=CP×QE=CP×CQ=,∴CD最短时,S△PCQ最小,即:CD⊥AB时,CD最短,过点C作CF⊥AB,此时CF就是最短的CD,∵AC=BC=4,∠ACB=120°,∴∠ABC=30°,∴CF=BC=2,即:CD最短为2,∴S△PCQ最小===,∴③错误;④∵将△CAD与△CBD分别沿直线CA、CB翻折得到△CAP与△CBQ,∴AD=AP,∠DAC=∠PAC,∵∠DAC=30°,∴∠APD=60°,∴△APD是等边三角形,∴PD=AD,∠ADP=60°,同理:△BDQ是等边三角形,∴DQ=BD,∠BDQ=60°,∴∠PDQ=60°,∵当点D在AB的中点,∴AD=BD,∴PD=DQ,∴△DPQ是等边三角形,∴④正确,故答案为:①②④.21.如图1,△ABC中,沿∠BAC的平分线AB1折叠,剪掉重叠部分;将余下部分沿∠B1A1C的平分线A1B2折叠,剪掉重叠部分;…;将余下部分沿∠B n A n C的平分线A n B n+1折叠,点B n与点C重合,无论折叠多少次,只要最后一次恰好重合,我们就称∠BAC是△ABC的好角.(1)如图2,在△ABC中,∠B>∠C,若经过两次折叠,∠BAC是△ABC的好角,则∠B与∠C的等量关系是_______;(2)如果一个三角形的最小角是20°,则此三角形的最大角为______时,该三角形的三个角均是此三角形的好角。

中考数学复习考点知识专题讲解10---三角形的综合问题

中考数学复习考点知识专题讲解10---三角形的综合问题

中考数学复习考点知识专题讲解中考数学复习考点知识专题讲解三角形的综合问题专题10三角形的综合问题】方法指导】【方法指导1.全等三角形解决问题的常见技巧:(1)全等三角形的判定方法有SSS、SAS、ASA、AAS、HL(适用于直角三角形).(2)作辅助线构造全等三角形①把三角形一边的中线延长,把分散条件集中到同一个三角形中是解决中线问题的基本规律.②证明一条线段等于两条线段的和,可采用“截长法”或“补短法”,这些问题经常用到全等三角形来证明.2.等腰三角形解题技巧:(1)等腰三角形提供了好多相等的线段和相等的角,判定三角形是等腰三角形是证明线段相等、角相等的重要手段.(2)在等腰三角形有关问题中,会遇到一些添加辅助线的问题,其顶角平分线、底边上的高、底边上的中线是常见的辅助线,虽然“三线合一”,但添加辅助线时,有时作哪条线都可以,有时不同的做法引起解决问题的复杂程度不同,需要具体问题具体分析.3.等边三角形常用方法与思路:(1)等边三角形是一个非常特殊的几何图形,它的角的特殊性给有关角的计算奠定了基础,它的边角性质为证明线段、角相等提供了便利条件.同是等边三角形又是特殊的等腰三角形,同样具备三线合一的性质,解题时要善于挖掘图形中的隐含条件广泛应用.(2)等边三角形的特性如:三边相等、有三条对称轴、一边上的高可以把等边三角形分成含有30°角的直角三角形、连接三边中点可以把等边三角形分成四个全等的小等边三角形等.(3)等边三角形判定最复杂,在应用时要抓住已知条件的特点,选取恰当的判定方法,一般地,若从一般三角形出发可以通过三条边相等判定、通过三个角相等判定;若从等腰三角形出发,则想法获取一个60°的角判定.【题型剖析题型剖析】】【类型1】三角形有关角的综合计算三角形有关角的综合计算【例1】(2019•泉山区模拟)如图,点A 、B 分别在射线OM 、ON 上运动(不与点O 重合).(1)如图1,若90MON ∠=°,OBA ∠、OAB ∠的平分线交于点C ,则ACB ∠= °;(2)如图2,若MON n ∠=°,OBA ∠、OAB ∠的平分线交于点C ,求ACB ∠的度数;(3)如图2,若MON n ∠=°,AOB ∆的外角ABN ∠、BAM ∠的平分线交于点D ,求ACB ∠与ADB ∠之间的数量关系,并求出ADB ∠的度数;(4)如图3,若80MON ∠=°,BC 是ABN ∠的平分线,BC 的反向延长线与OAB ∠的平分线交于点E .试问:随着点A 、B 的运动,E ∠的大小会变吗?如果不会,求E ∠的度数;如果会,请说明理由.【变式1-1】(2019•沭阳县模拟)探究与发现: 如图1所示的图形,像我们常见的学习用品−−圆规.我们不妨把这样图形叫做“规形图”,那么在这一个简单的图形中,到底隐藏了哪些数学知识呢?下面就请你发挥你的聪明才智,解决以下问题:(1)观察“规形图”,试探究BDC ∠与A ∠、B ∠、C ∠之间的关系,并说明理由;(2)请你直接利用以上结论,解决以下三个问题:①如图2,把一块三角尺XYZ 放置在ABC ∆上,使三角尺的两条直角边XY 、XZ 恰好经过点B 、C ,若50A ∠=°,则ABX ACX ∠+∠= 40 °;②如图3,DC 平分ADB ∠,EC 平分AEB ∠,若50DAE ∠=°,130DBE ∠=°,求DCE ∠的度数; ③如图4,ABD ∠,ACD ∠的10等分线相交于点1G 、2G …、9G ,若140BDC ∠=°,177BG C ∠=°,求A ∠的度数.【变式1-2】(2019春•海安市期末)如图,已知BE 是ABC ∆的角平分线,CP 是ABC ∆的外角ACD ∠的平分线.延长BE ,BA 分别交CP 于点F ,P(1)求证:12BFC BAC ∠=∠;(2)小智同学探究后提出等式:BAC ABC P ∠=∠+∠.请通过推理演算判断“小智发现”是否正确?(3)若2180BEC P ∠−∠=°,求ACB ∠的度数.【变式1-3】(2019春•高淳区校级模拟)ABC ∆中,三个内角的平分线交于点O ,过点O 作OD OB ⊥,交边AB 于点D .(1)如图1,①若40ABC ∠=°,则AOC ∠= ,ADO ∠= ;②猜想AOC ∠与ADO ∠的关系,并说明你的理由;(2)如图2,作ABC ∠外角ABE ∠的平分线交CO 的延长线于点F .若105AOC ∠=°,32F ∠=°,则AOD ∠= _______°.【类型2】全等三角形的判定与性质全等三角形的判定与性质【例2】(2019•如皋市一模)如图,A 、B 、C 是直线l 上的三个点,DAB DBE ECB a ∠=∠=∠=,且BD BE =.(1)求证:AC AD CE =+;(2)若120a =°,点F 在直线l 的上方,BEF ∆为等边三角形,补全图形,请判断ACF ∆的形状,并说明理由.【变式2-1】(2019•碑林区校级模拟)如图,四边形ABCD 中,//AD BC ,90A ∠=°,CE BD ⊥,垂足为E ,BE DA =.(1)求证:ABD ECB ∆≅∆;(2)若45DBC ∠=°,1BE =,求DE 的长(结果精确到0.01, 1.414≈ 1.732)≈【变式2-2】(2019•灌南县校级模拟)如图,在四边形ABCD 中,//AD BC ,AD BC =,点F 是AB 的中点,点E 是BC 边上的点,DE AD BE =+,DEF ∆的周长为l .(1)求证:DF 平分ADE ∠;(2)若FD FC =,2AB =,3AD =,求l 的值.【类型3】等腰三角形的有关计算与证明等腰三角形的有关计算与证明【例3】(2018秋•灌云县期末)如图,已知D 是ABC ∆的边BC 上的一点,CD AB =,(1)若BDA BAD ∠=∠,60B ∠=°,求C ∠的大小;(2)若AE 既是ABD ∆的高又是角平分线,54B ∠=°,求C ∠的大小.【变式3-1】(2018秋•泗阳县期末)已知,在ABC ∆中,点D 在BC 上,点E 在BC 的延长线上,且BD BA =,CE CA =.(1)如图1,若90BAC ∠=°,45B ∠=°,试求DAE ∠的度数;(2)若90BAC ∠=°,60B ∠=°,则DAE ∠的度数为 (直接写出结果);(3)如图2,若90BAC ∠>°,其余条件不变,探究DAE ∠与BAC ∠之间有怎样的数量关系?【变式3-2】(2018秋•秦淮区期末)如图,在ABC ∆中,AB AD =,CB CE =.(1)当90ABC ∠=°时(如图①),EBD ∠= °;(2)当(90)ABC n n ∠=°≠时(如图②),求EBD ∠的度数(用含n 的式子表示).【类型4】等边三角形的有关计算与证明等边三角形的有关计算与证明【例4】(2019春•鼓楼区校级模拟)已知,ABC ∆为等边三角形,点D 为AC 上的一个动点,点E 为BC 延长线上一点,且BD DE =.(1)如图1,若点D 在边AC 上,猜想线段AD 与CE 之间的关系,并说明理由;(2)如图2,若点D 在AC 的延长线上,(1)中的结论是否成立,请说明理由.【变式4-1】(2018秋•泰兴市月考)如图,ABC ∆是等边三角形,BD 是中线,延长BC 至点E ,使CE CD =.取BE 中点F ,连接DF .(1)求证:BD DE =;(2)延长ED 交边AB 于点G ,试说明:DG DF =.【变式4-2】(2019•淮阴区模拟)如图,ABC ∆中,90ACB ∠=°,以AC 为边在ABC ∆外作等边三角形ACD ,过点D 作AC 的垂线,垂足为F ,与AB 相交于点E ,连接CE .(1)说明:AE CE BE ==;(2)若15AB cm =,P 是直线DE 上的一点.则当P 在何处时,PB PC +最小,并求出此时PB PC +的值.【类型5】直角三角形的综合问题直角三角形的综合问题【例5】(2019 •溧水校级模拟)已知ABC ∆中,90A ∠=°,AB AC =,D 为BC 的中点. (1)如图,若E 、F 分别是AB 、AC 上的点,且BE AF =.求证:DEF ∆为等腰直角三角形;(2)若E ,F 分别为AB ,CA 延长线上的点,仍有BE AF =,其他条件不变,那么DEF ∆是否仍为等腰直角三角形?证明你的结论.【变式5-1】(2018秋•常熟市期末)如图,在Rt ABC ∆中,90ACB ∠=°,AC BC =.点D 是边AC 上一点,DE AB ⊥,垂足为E .点F 是BD 的中点,连接CF ,EF .(1)求证:CF EF =;(2)判断CF 与EF 的位置关系,并说明理由;(3)若30DBE ∠=°,连接AF ,求AFE ∠的度数.【变式5-2】(2019•江都区校级模拟)如图所示,已知ABC ∆是等腰直角三角形,90ABC ∠=°,10AB =,D 为ABC ∆外的一点,连结AD 、BD ,过D 作DH AB ⊥,垂足为H ,DH 的延长线交AC 于E .(1)如图1,若BD AB =,且34HB HD =,求AD 的长; (2)如图2,若ABD ∆是等边三角形,求DE 的长.【达标检测达标检测】】一.选择题选择题((共4小题小题))1.(2019•徐州)下列长度的三条线段,能组成三角形的是( )A.2,2,4 B.5,6,12 C.5,7,2 D.6,8,102.(2019•扬州)已知n是正整数,若一个三角形的3边长分别是n+2、n+8、3n,则满足条件的n的值有( )A.4个B.5个C.6个D.7个3.(2019•盐城)如图,点D、E分别是△ABC边BA、BC的中点,AC=3,则DE的长为( )A.2 B.C.3 D.4.(2018•南通)如图,Rt△ABC中,∠ACB=90°,CD平分∠ACB交AB于点D,按下列步骤作图:步骤1:分别以点C和点D为圆心,大于CD的长为半径作弧,两弧相交于M,N两点;步骤2:作直线MN,分别交AC,BC于点E,F;步骤3:连接DE,DF.若AC=4,BC=2,则线段DE的长为( )A.B.C.D.)小题)二.填空题(共4小题填空题(5.(2019•南通)如图,△ABC中,AB=BC,∠ABC=90°,F为AB延长线上一点,点E 在BC上,且AE=CF,若∠BAE=25°,则∠ACF= 度.6.(2019•苏州)如图,扇形OAB中,∠AOB=90°.P为弧AB上的一点,过点P作PC⊥OA,垂足为C,PC与AB交于点D.若PD=2,CD=1,则该扇形的半径长为 .7.(2019•南京)在△ABC中,AB=4,∠C=60°,∠A>∠B,则BC的长的取值范围是 .8.(2019•南京)无盖圆柱形杯子的展开图如图所示.将一根长为20cm的细木筷斜放在该杯子内,木筷露在杯子外面的部分至少有 cm.)小题)(共8小题三.解答题解答题(9.(2019•南通)如图,有一池塘,要测池塘两端A,B的距离,可先在平地上取一个点C,从点C不经过池塘可以直接到达点A和B.连接AC并延长到点D,使CD=CA.连接BC 并延长到点E,使CE=CB.连接DE,那么量出DE的长就是A,B的距离.为什么?10.(2019•镇江)如图,四边形ABCD中,AD∥BC,点E、F分别在AD、BC上,AE=CF,过点A、C分别作EF的垂线,垂足为G、H.(1)求证:△AGE≌△CHF;(2)连接AC,线段GH与AC是否互相平分?请说明理由.11.(2019•无锡)如图,在△ABC中,AB=AC,点D、E分别在AB、AC上,BD=CE,BE、CD相交于点O.(1)求证:△DBC≌△ECB;(2)求证:OB=OC.12.(2018•无锡)如图,在△ABC中,∠ACB=90°,AC=m,BC=n,m>n,点P是边AB上一点,连结CP,将△ACP沿CP翻折得到△QCP.(1)若m=4,n=3,且PQ⊥AB,求BP的长;(2)连结BQ,若四边形BCPQ是平行四边形,求m与n之间的关系式.13.(2018•徐州)如图,将等腰直角三角形纸片ABC对折,折痕为CD.展平后,再将点B 折叠在边AC上(不与A、C重合),折痕为EF,点B在AC上的对应点为M,设CD与EM交于点P,连接PF.已知BC=4.(1)若M为AC的中点,求CF的长;(2)随着点M在边AC上取不同的位置,①△PFM的形状是否发生变化?请说明理由;②求△PFM的周长的取值范围.14.(2019•扬州)如图,平面内的两条直线l1、l2,点A,B在直线l1上,点C、D在直线l2上,过A、B两点分别作直线l2的垂线,垂足分別为A1,B1,我们把线段A1B1叫做线段AB在直线l 2上的正投影,其长度可记作T(AB,CD)或T,特别地线段AC在直线l2上的正投影就是线段A1C.请依据上述定义解决如下问题:=3,则T(BC,AB)= ;(1)如图1,在锐角△ABC中,AB=5,T(AC,AB)=4,T(BC,AB)═9,求△ABC的面(2)如图2,在Rt△ABC中,∠ACB=90°,T(AC,AB)积;(3)如图3,在钝角△ABC中,∠A=60°,点D在AB边上,∠ACD=90°,T(AD,AC)=6,求T(BC,CD),=2,T(BC,AB)。

2023年中考数学重难点专题复习-特殊三角形问题(二次函数综合)【有答案】

2023年中考数学重难点专题复习-特殊三角形问题(二次函数综合)【有答案】

2023年中考数学重难点专题复习-特殊三角形问题(二次函数综合)1.综合与探究如图,抛物线2y ax bx c =++经过()1,0A -,()3,0B ,()0,3C 三点,与y 轴交于点C ,作直线BC .(1)求抛物线和直线BC 的函数解析式.(2)D 是直线BC 上方抛物线上一点,求BDC 面积的最大值及此时点D 的坐标.(3)在抛物线对称轴上是否存在一点P ,使得以点P ,B ,C 为顶点的三角形是等腰三角形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.2.如图,在平面直角坐标系中,抛物线2y ax x m =++(a ≠0)的图象与x 轴交于A 、C 两点,与y 轴交于点B ,其中点B 坐标为(0,-4),点C 坐标为(2,0).(1)求此抛物线的函数解析式.(2)点D 是直线AB 下方抛物线上一个动点,连接AD 、BD ,探究是否存在点D ,使得△ABD 的面积最大?若存在,请求出点D 的坐标;若不存在,请说明理由.(3)点P 为该抛物线对称轴上的动点,使得△P AB 为直角三角形,请求出点P 的坐标.3.已知,如图,抛物线2y x bx c =-++经过直线3y x =-+与坐标轴的两个交点A ,B ,此抛物线与x 轴的另一个交点为C ,抛物线的顶点为D .(1)求此抛物线的解析式;(2)设点Q 是线段AB 上的动点,作QM x ⊥轴交抛物线于点M ,求线段QM 长度的最大值;(3)在x 轴上是否存在点N 使ADN △为直角三角形?若存在,确定点N 的坐标;若不存在,请说明理由.4.已知抛物线2y ax bx c =++与x 轴交于()2,0A -、()6,0B 两点,与y 轴交于点()0,3C -.(1)求抛物线的表达式;(2)点P 在直线BC 下方的抛物线上,连接AP 交BC 于点M ,过点P 作x 轴的垂线l ,垂线l 交BC 于点E ,AD ∥垂线l ,求证ADM PEM ∽;当PM AM 最大时,求点P 的坐标及PM AM的最大值; (3)在(2)的条件下,在l 上是否存在点D ,使BCD 是直角三角形,若存在,请直接写出点D 的坐标;若不存在,请说明理由.5.如图,已知抛物线2y x bx c =++与x 轴交于点1,0A 和点()3,0B -.(1)求此抛物线的解析式;(2)点M 在抛物线的对称轴上,点Q 在x 轴下方的抛物线上,当MAQ 是以AQ 为斜边的等腰直角三角形时,求点M 的坐标.6.如图,抛物线223y ax x =++与x 轴的一个交点是()3,0A ,与y 轴交于B 点,点P 在拋物线上.(1)求a 的值;(2)过点P 作x 轴的垂线交直线AB 于点E ,设点P 的横坐标为(03)m m <<,PE l =,求l 关于m 的函数关系式;(3)当PAB 是直角三角形时,求点P 的坐标.7.如图1,在平面直角坐标系中,抛物线2143y x bx =-++经过()13A -,,与y 轴交于点C ,经过点C 的直线与抛物线交于另一点()6,E m ,点M 为抛物线的顶点,抛物线的对称轴与x 轴交于点D .(1)求直线CE的解析式;(2)如图2,点P为直线CE上方抛物线上一动点,连接PC,PE,当PCE的面积最大时,求点P的坐标以及PCE 面积的最大值;(3)如图3,将点D右移一个单位到点N,连接AN,将(1)中抛物线沿射线NA平移得到新抛物线y',y'经过点N,y'的顶点为点G,在新抛物线y'的对称轴上是否存在点H,使得MGH是等腰三角形?若存在,请直接写出点H 的坐标:若不存在,请说明理由.30,,8.如图,在平面直角坐标系中,二次函数2=-++的图象与坐标轴相交于A、B、C三点,其中A点坐标为()y x bx cB 点坐标为10,,连接AC、BC.动点P从点A出发,在线段AC个单位长度向点C做匀速运动;同时,动点Q从点B出发,在线段BA上以每秒1个单位长度向点A做匀速运动,当其中一点到达终点时,另一点随之停止运动,连接PQ,设运动时间为t秒.(1)求b、c的值.(2)在P、Q运动的过程中,当t为何值时,四边形BCPQ的面积最小,最小值为多少?(3)在线段AC上方的抛物线上是否存在点M,使MPQ是以点P为直角顶点的等腰直角三角形?若存在,请求出点9.如图,已知直线y =x +3与x 轴交于点A ,与y 轴交于点B ,抛物线2y x bx c =-++经过A 、B 两点,与x 轴交于另一个点C ,对称轴与直线AB 交于点E ,抛物线顶点为D .(1)点A 的坐标为 ,点B 的坐标为 .(2)①求抛物线的解析式;② 点M 是抛物线在第二象限图象上的动点,是否存在点M ,使得△MAB 的面积最大?若存在,请求这个最大值并求出点M 的坐标;若不存在,请说明理由;(3)点P 从点D 出发,沿对称轴向下以每秒1个单位长度的速度匀速运动,设运动的时间为t 秒,当t 为何值时,以P 、B 、C 为顶点的三角形是等腰三角形?直接写出所有符合条件的t 值.10.如图,抛物线1C :()2120y ax ax a =+>与x 轴交于点A ,顶点为点P .(1)直接写出抛物线1C 的对称轴是______,用含a 的代数式表示顶点P 的坐标______;(2)把抛物线1C 绕点(),0M m 旋转180°得到抛物线2C (其中0m >),抛物线2C 与x 轴右侧的交点为点B ,顶点为点Q .②在①的条件下,是否存在ABP 为等腰三角形,若存在请求出a 的值,若不存在,请说明理由.11.如图,关于x 的二次函数y =x 2+bx +c 的图象与x 轴交于点A (1,0)和点B ,与y 轴交于点C (0,3),抛物线的对称轴与x 轴交于点D .(1)求二次函数的解析式.(2)有一个点M 从点A 出发,以每秒1个单位的速度在AB 上向点B 运动,另一个点N 从点D 与点M 同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M 到达点B 时,点M 、N 同时停止运动,问点M 、N 运动到何处时,△MNB 面积最大,试求出最大面积.(3)在y 轴上是否存在一点P ,使△PBC 为等腰三角形?若存在,请直接写出点P 的坐标,若不存在请说明理由.12.如图,抛物线212y ax x c =-+的图象与x 轴交点为A 和B ,与y 轴交点为()0,3D ,与直线23y x =--交点为A 和C .(1)求抛物线的解析式;(2)在直线23y x =--上是否存在一点M ,使得ABM 是等腰直角三角形,如果存在,求出点M 的坐标,如果不存在请说明理由.(3)若点E 是x 轴上一个动点,把点E 向下平移4个单位长度得到点F ,点F 向右平移4个单位长度得到点G ,点G 向上平移4个单位长度得到点H ,若四边形EFGH 与抛物线有公共点,请直接写出点E 的横坐标E x 的取值范围.。

中考数学点对点-相似三角形问题(解析版)

中考数学点对点-相似三角形问题(解析版)
∴△FEC∽△EDC,
∴ ,
∵EC= = =3 ,
∴ ,
∴FE=2
【对点练习】2019黑龙江省龙东地区)一张直角三角形纸片ABC,∠ACB=90°,AB=10,AC=6,点D为BC边上的任一点,沿过点D的直线折叠,使直角顶点C落在斜边AB上的点E处,当△BDE是直角三角形时,则CD的长为________.
2.黄金分割:用一点P将一条线段AB分割成大小两条线段,若小段与大段的长度之比等于大段与全长之比,则可得出这一比值等于0·618…。这种分割称为黄金分割,分割点P叫做线段AB的黄金分割点,较长线段叫做较短线段与全线段的比例中项。
3.平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例。
3.三角形相似的判定方法
(1)定义法:对应角相等,对应边成比例的两个三角形相似。
(2)平行法:平行于三角形一边的直线和其他两边(或两边延长线)相交,构成的三角形与原三角形相似。
(3)两个三角形相似的判定定理
判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似,可简述为两角对应相等,两三角形相似。
(3)相似三角形周长的比等于相似比
(4)相似三角形面积的比等于相似比的平方。
例题解析与对点练习
【例题1】(2020•河北)在如图所示的网格中,以点O为位似中心,四边形ABCD的位似图形是( )
A.四边形NPMQB.四边形NPMRC.四边形NHMQD.四边形NHMR
【答案】A
【分析】由以点O为位似中心,确定出点C对应点M,设网格中每个小方格的边长为1,则OC ,OM=2 ,OD ,OB ,OA ,OR ,OQ=2 ,OP=2 ,OH=3 ,ON=2 ,由 2,得点D对应点Q,点B对应点P,点A对应点N,即可得出结果.

中考数学压轴题揭秘-三角形问题(Word版+答案)

中考数学压轴题揭秘-三角形问题(Word版+答案)

三角形问题【典例分析】【考点1】三角形基础知识【例1】(2019·浙江中考真题)若长度分别为,3,5a 的三条线段能组成一个三角形,则a 的值可以是( ) A .1 B .2 C .3 D .8【变式1-1】(2019·北京中考真题)如图,已知△ABC ,通过测量、计算得△ABC 的面积约为____cm 2.(结果保留一位小数)【变式1-2】(2019·山东中考真题)把一块含有45︒角的直角三角板与两条长边平行的直尺如图放置(直角顶点在直尺的一条长边上).若123∠=︒,则2∠=_______︒.【考点2】全等三角形的判定与性质的应用【例2】(2019·山东中考真题)在ABC ∆中,90BAC ∠=︒,AB AC =,AD BC ⊥于点D .(1)如图1,点M ,N 分别在AD ,AB 上,且90BMN ∠=︒,当30AMN =︒∠,2AB =时,求线段AM 的长;(2)如图2,点E ,F 分别在AB ,AC 上,且90EDF ∠=︒,求证:BE AF =;(3)如图3,点M 在AD 的延长线上,点N 在AC 上,且90BMN ∠=︒,求证:2AB AN AM +=.【变式2-1】(2019·贵州中考真题)(1)如图①,在四边形ABCD 中,AB CD ∥,点E 是BC 的中点,若AE 是BAD ∠的平分线,试判断AB ,AD ,DC 之间的等量关系.解决此问题可以用如下方法:延长AE 交DC 的延长线于点F ,易证AEB FEC ∆∆≌得到AB FC =,从而把AB ,AD ,DC 转化在一个三角形中即可判断.AB ,AD ,DC 之间的等量关系________;(2)问题探究:如图②,在四边形ABCD 中,AB CD ∥,AF 与DC 的延长线交于点F ,点E 是BC 的中点,若AE 是BAF ∠的平分线,试探究AB ,AF ,CF 之间的等量关系,并证明你的结论.【变式2-2】(2019·广西中考真题)如图,,AB AD BC DC ==,点E 在AC 上.(1)求证:AC 平分BAD ∠;(2)求证:BE DE =.【考点3】等腰三角形与等边三角形的判定与性质的应用【例3】(2019·浙江中考真题)如图,在ABC △中,AC AB BC <<.⑴已知线段AB 的垂直平分线与BC 边交于点P ,连结AP ,求证:2APC B ??;⑵以点B 为圆心,线段AB 的长为半径画弧,与BC 边交于点Q ,连结AQ ,若3AQC B ??,求B Ð的度数.【变式3-1】(2019·辽宁中考真题)如图,ABC ∆是等边三角形,延长BC 到点D ,使CD AC =,连接AD .若2AB =,则AD 的长为_____.【变式3-2】(2019·辽宁中考真题)如图,把三角形纸片折叠,使点A 、点C 都与点B 重合,折痕分别为EF ,DG ,得到60BDE ︒∠=,90BED ︒∠=,若2DE =,则FG 的长为_____.【考点4】直角三角形的性质【例4】(2019·宁夏中考真题)如图,在Rt ABC ∆中,090C ∠=,以顶点B 为圆心,适当长度为半径画弧,分别交,AB BC 于点,M N ,再分别以点,M N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,作射线BP 交AC 于点D .若30A ∠=o,则BCD ABD S S ∆∆=_____.【变式4-1】(2019·黑龙江中考真题)一张直角三角形纸片ABC ,90ACB ∠=o ,10AB =,6AC =,点D 为BC 边上的任一点,沿过点D 的直线折叠,使直角顶点C 落在斜边AB 上的点E 处,当BDE ∆是直角三角形时,则CD 的长为_____.【变式4-2】(2019·河北中考真题)勘测队按实际需要构建了平面直角坐标系,并标示了A ,B ,C 三地的坐标,数据如图(单位:km ).笔直铁路经过A ,B 两地.(1)A ,B 间的距离为______km ;(2)计划修一条从C 到铁路AB 的最短公路l ,并在l 上建一个维修站D ,使D 到A ,C 的距离相等,则C ,D 间的距离为______km .【考点5】相似三角形的判定与性质的应用【例5】(2019·四川中考真题)如图,90ABD BCD ︒∠=∠=,DB 平分∠ADC ,过点B 作BM CD ‖交AD 于M .连接CM 交DB 于N .(1)求证:2BD AD CD =⋅;(2)若68CD AD ==,,求MN 的长.【变式5-1】(2019·全国初三课时练习)如图,在△ABC 中,AB=AC ,点P 、D 分别是BC 、AC 边上的点,且∠APD=∠B,(1)求证:AC•CD=CP•BP ;(2)若AB=10,BC=12,当PD ∥AB 时,求BP 的长.【变式5-2】(2019·陕西中考模拟)大唐芙蓉园是中国第一个全方位展示盛唐风貌的大型皇家园林式文化主题公园,全园标志性建筑一紫云楼为代表,展示了“形神升腾紫云景,天下臣服帝王心”的唐代帝王风范(如图①).小风和小花等同学想用一些测量工具和所学的几何知识测量“紫云楼”的高度,来检验自己掌握知识和运用知识的能力,他们经过研究需要两次测量:首先,在阳光下,小风在紫云楼影子的末端C 点处竖立一根标杆CD ,此时,小花测得标杆CD 的影长CE =2米,CD =2米;然后,小风从C 点沿BC 方向走了5.4米,到达G 处,在G 处竖立标杆FG ,接着沿BG 后退到点M 处时,恰好看见紫云楼顶端A ,标杆顶端F 在一条直线上,此时,小花测得GM =0.6米,小风的眼睛到地面的距离HM =1.5米,FG =2米.如图②,已知AB ⊥BM ,CD ⊥BM ,FG ⊥BM ,HM ⊥BM ,请你根据题中提供的相关信息,求出紫云楼的高AB .【考点6】锐角三角函数及其应用【例6】(2019·贵州中考真题)三角板是我们学习数学的好帮手.将一对直角三角板如图放置,点C 在FD 的延长线上,点B 在ED 上,AB ∥CF ,∠F =∠ACB =90°,∠E =45°,∠A =60°,AC =10,则CD 的长度是_____.【变式6-1】(2019·山东中考真题)自开展“全民健身运动”以来,喜欢户外步行健身的人越来越多,为方便群众步行健身,某地政府决定对一段如图1所示的坡路进行改造.如图2所示,改造前的斜坡200AB =米,坡度为1:3;将斜坡AB 的高度AE 降低20AC =米后,斜坡AB 改造为斜坡CD ,其坡度为1:4.求斜坡CD 的长.(结果保留根号)【变式6-2】(2019·海南中考真题)如图是某区域的平面示意图,码头A 在观测站B 的正东方向,码头A 的北偏西60︒方向上有一小岛C ,小岛C 在观测站B 的北偏西15︒方向上,码头A 到小岛C 的距离AC 为10海里.(1)填空:BAC ∠= 度,C ∠= 度;(2)求观测站B 到AC 的距离BP (结果保留根号).【达标训练】1.(2019·河北中考真题)根据圆规作图的痕迹,可用直尺成功找到三角形外心的是( )A .B .C .D .2.(2019·江苏中考真题)已知n 正整数,若一个三角形的三边长分别是n+2、n+8、3n ,则满足条件的n 的值有( )A .4个B .5个C .6个D .7个3.(2019·浙江中考真题)如图,已知在四边形ABCD 中,90BCD ∠=︒,BD 平分ABC ∠,6AB =,9BC =,4CD =,则四边形ABCD 的面积是( )A .24B .30C .36D .424.(2019·湖北中考真题)通过如下尺规作图,能确定点D 是BC 边中点的是( )A .B .C .D .5.(2019·广东中考真题)如图,矩形ABCD 中,对角线AC 的垂直平分线EF 分别交BC ,AD 于点E ,F ,若BE=3,AF=5,则AC 的长为( )A .45B .43C .10D .86.(2019·湖南中考真题)已知M 、N 是线段AB 上的两点,AM =MN =2,NB =1,以点A 为圆心,AN 长为半径画弧;再以点B 为圆心,BM 长为半径画弧,两弧交于点C ,连接AC ,BC ,则△ABC 一定是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰三角形7.(2019·黑龙江中考真题)如图,在△ABC 中,BE 是∠ABC 的平分线,CE 是外角∠ACM 的平分线,BE 与CE 相交于点E ,若∠A =60°,则∠BEC 是( )A .15°B .30°C .45°D .60°8.(2019·海南中考真题)如图,在Rt ABC ∆中,90︒∠=C ,5AB =,4BC =.点P 是边AC 上一动点,过点P 作PQ AB ∥交BC 于点Q ,D 为线段PQ 的中点,当BD 平分ABC ∠时,AP 的长度为( )A .813B .1513C .2513D .32139.(2019·辽宁中考真题)如图,在CEF △中,80E ∠=︒,50F ∠=︒,AB CF P ,AD CE P ,连接BC ,CD ,则A ∠的度数是( )A .45°B .50°C .55°D .80°10.(2019·四川中考真题)如图,四边形ABCD 是边长为1的正方形,BPC ∆是等边三角形,连接DP 并延长交CB 的延长线于点H ,连接BD 交PC 于点Q ,下列结论:①135BPD ︒∠=;②BDP HDB ∆∆∽;③:1:2DQ BQ =;④314BDP S ∆-=. 其中正确的有( )A .①②③B .②③④C .①③④D .①②④11.(2019·辽宁中考真题)如图,AD 是△ABC 的外角∠EAC 的平分线,AD ∥BC ,∠B =32°,则∠C 的度数是( )A .64°B .32°C .30°D .40°12.(2019·青海中考真题)如图,////AD BE CF ,直线12l l 、与这三条平行线分别交于点、、A B C 和点D E F 、、.已知AB =1,BC =3,DE =1.2,则DF 的长为( )A .3.6B .4.8C .5D .5.213.(2019·辽宁中考真题)如图,在△ABC 中,∠C =90°,DE 是AB 的垂直平分线,AD 恰好平分∠BAC .若DE =1,则BC 的长是_____.14.(2019·广西中考真题)如图,在ABC ∆中,1sin 3B =,2tan 2C =,3AB =,则AC 的长为_____.15.(2019·山东中考真题)如图,一架长为6米的梯子AB 斜靠在一竖直的墙AO 上,这时测得70ABO ∠=︒,如果梯子的底端B 外移到D ,则梯子顶端A 下移到C ,这时又测得50CDO ∠=︒,那么AC 的长度约为______米.(sin700.94︒≈,sin500.77︒≈,cos700.34︒≈,cos500.64︒≈)16.(2019·山东中考真题)把两个同样大小含45︒角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个三角尺的直角顶点重合于点A ,且另外三个锐角顶点,,B C D 在同一直线上.若2AB =,则CD =____.17.(2019·湖北中考真题)如图,已知ABC DCB ∠=∠,添加下列条件中的一个:①A D ∠=∠,②AC DB =,③AB DC =,其中不能确定ABC ∆≌△DCB ∆的是_____(只填序号).18.(2019·贵州中考真题)如图,在Rt ABC ∆中,90BAC ∠=︒,且3BA =,4AC =,点D 是斜边BC 上的一个动点,过点D 分别作DM AB ⊥于点M ,DN AC ⊥于点N ,连接MN ,则线段MN 的最小值为________.19.(2019·青海中考真题)如图,是矗立在高速公路水平地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,则警示牌的高CD 为_______米(结果保留根号).20.(2019·山西中考真题)如图,在△ABC 中,∠BAC=90°,AB=AC=10cm ,点D 为△ABC 内一点,∠BAD=15°,AD=6cm ,连接BD ,将△ABD 绕点A 逆时针方向旋转,使AB 与AC 重合,点D 的对应点E ,连接DE ,DE 交AC 于点F ,则CF 的长为________cm.21.(2019·北京中考真题)如图所示的网格是正方形网格,则PAB PBA ∠∠+=_____°(点A ,B ,P 是网格线交点).22.(2019·江苏中考真题)如图,△ABC 中,AB=BC ,∠ABC=90°,F 为AB 延长线上一点,点E 在BC 上,且AE=CF ,若∠BAE=25°,则∠ACF=__________度.23.(2019·江苏中考真题)无盖圆柱形杯子的展开图如图所示.将一根长为20cm 的细木筷斜放在该杯子内,木筷露在杯子外面的部分至少有__________cm .24.(2019·湖南中考真题)已知∠AOB =60°,OC 是∠AOB 的平分线,点D 为OC 上一点,过D 作直线DE ⊥OA ,垂足为点E ,且直线DE 交OB 于点F ,如图所示.若DE =2,则DF =_____.25.(2019·山东中考真题)小圆同学对图形旋转前后的线段之间、角之间的关系进行了拓展探究.(一)猜测探究在ABC ∆中,AB AC =,M 是平面内任意一点,将线段AM 绕点A 按顺时针方向旋转与BAC ∠相等的角度,得到线段AN ,连接NB .(1)如图1,若M 是线段BC 上的任意一点,请直接写出NAB ∠与MAC ∠的数量关系是 ,NB 与MC 的数量关系是 ;(2)如图2,点E 是AB 延长线上点,若M 是CBE ∠内部射线BD 上任意一点,连接MC ,(1)中结论是否仍然成立?若成立,请给予证明,若不成立,请说明理由. (二)拓展应用如图3,在111A B C ∆中,118A B =,11160A B C ∠=o ,11175B A C ∠=o,P 是11B C 上的任意点,连接1A P ,将1A P 绕点1A 按顺时针方向旋转75o ,得到线段1A Q ,连接1B Q .求线段1B Q 长度的最小值.26.(2019·四川中考真题)在△ABC 中,已知D 是BC 边的中点,G 是△ABC 的重心,过G 点的直线分别交AB 、AC 于点E 、F .(1)如图1,当EF ∥BC 时,求证:1BE CFAE AF+=; (2)如图2,当EF 和BC 不平行,且点E 、F 分别在线段AB 、AC 上时,(1)中的结论是否成立?如果成立,请给出证明;如果不成立,请说明理由.(3)如图3,当点E 在AB 的延长线上或点F 在AC 的延长线上时,(1)中的结论是否成立?如果成立,请给出证明;如果不成立,请说明理由.27.(2019·辽宁中考真题)思维启迪:(1)如图1,A ,B 两点分别位于一个池塘的两端,小亮想用绳子测量A ,B 间的距离,但绳子不够长,聪明的小亮想出一个办法:先在地上取一个可以直接到达B 点的点C ,连接BC ,取BC 的中点P (点P 可以直接到达A 点),利用工具过点C 作CD ∥AB 交AP 的延长线于点D ,此时测得CD =200米,那么A ,B 间的距离是 米.思维探索:(2)在△ABC 和△ADE 中,AC =BC ,AE =DE ,且AE <AC ,∠ACB =∠AED =90°,将△ADE 绕点A 顺时针方向旋转,把点E 在AC 边上时△ADE 的位置作为起始位置(此时点B 和点D 位于AC 的两侧),设旋转角为α,连接BD ,点P 是线段BD 的中点,连接PC ,PE .①如图2,当△ADE 在起始位置时,猜想:PC 与PE 的数量关系和位置关系分别是 ;②如图3,当α=90°时,点D 落在AB 边上,请判断PC 与PE 的数量关系和位置关系,并证明你的结论; ③当α=150°时,若BC =3,DE =l ,请直接写出PC 2的值. 28.(2019·湖北中考真题)在ABC ∆中,90ABC ∠=︒,ABn BC=,M 是BC 上一点,连接AM (1)如图1,若1n =,N 是AB 延长线上一点,CN 与AM 垂直,求证:BM BN =(2)过点B 作BP AM ⊥,P 为垂足,连接CP 并延长交AB 于点Q .①如图2,若1n =,求证:CP BMPQ BQ=②如图3,若M 是BC 的中点,直接写出tan BPQ ∠的值(用含n 的式子表示)29.(2019·江苏中考真题)如图,已知等边△ABC 的边长为8,点P 是AB 边上的一个动点(与点A 、B 不重合),直线l 是经过点P 的一条直线,把△ABC 沿直线l 折叠,点B 的对应点是点B’. (1)如图1,当PB=4时,若点B’恰好在AC 边上,则AB’的长度为_____; (2)如图2,当PB=5时,若直线l //AC ,则BB’的长度为 ;(3)如图3,点P 在AB 边上运动过程中,若直线l 始终垂直于AC ,△ACB’的面积是否变化?若变化,说明理由;若不变化,求出面积;(4)当PB=6时,在直线l 变化过程中,求△ACB’面积的最大值.30.(2019·四川中考真题)如图,某数学兴趣小组为测量一颗古树BH 和教学楼CG 的高,先在A 处用高1.5米的测角仪AF 测得古树顶端H 的仰角HFE ∠为45︒,此时教学楼顶端G 恰好在视线FH 上,再向前走10米到达B 处,又测得教学楼顶端G 的仰角GED ∠为60︒,点A 、B 、C 三点在同一水平线上.(1)求古树BH 的高;(2)求教学楼CG 的高.(参考数据:2 1.4,3 1.7==) 31.(2019·江苏中考真题)如图,ABC ∆中,90C =o ∠,4AC =,8BC =.(1)用直尺和圆规作AB 的垂直平分线;(保留作图痕迹,不要求写作法) (2)若(1)中所作的垂直平分线交BC 于点D ,求BD 的长.32.(2019·湖南中考真题)如图,在平行四边形ABCD 中,连接对角线AC ,延长AB 至点E ,使BE AB =,连接DE ,分别交BC ,AC 交于点F ,G . (1)求证:BF CF =;(2)若6BC =,4DG =,求FG 的长.33.(2019·吉林中考真题)墙壁及淋浴花洒截面如图所示,已知花洒底座A 与地面的距离AB 为170cm ,花洒AC 的长为30cm ,与墙壁的夹角CAD ∠为43°.求花洒顶端C 到地面的距离CE (结果精确到1cm )(参考数据:0sin 430.68=,0cos430.73=,0tan 430.93=)34.(2019·陕西中考真题)如图,点A ,E ,F 在直线l 上,AE=BF ,AC//BD ,且AC=BD ,求证:CF=DE35.(2019·辽宁中考真题)如图,A ,B 两市相距150km ,国家级风景区中心C 位于A 市北偏东60︒方向上,位于B 市北偏西45︒方向上.已知风景区是以点C 为圆心、50km 为半径的圆形区域.为了促进旅游经济发展,有关部门计划修建连接A ,B 两市的高速公路,高速公路AB 是否穿过风景区?通过计算加以说明.(参考数据:3 1.73≈)36.(2019·重庆中考真题)如图,在ABC ∆中,AB AC =,AD BC ⊥于点D . (1)若42C ︒∠=,求BAD ∠的度数;(2)若点E 在边AB 上,EF AC P 交AD 的延长线于点F .求证:AE FE =.三角形问题【典例分析】【考点1】三角形基础知识【例1】(2019·浙江中考真题)若长度分别为,3,5a的三条线段能组成一个三角形,则a的值可以是()A.1 B.2 C.3 D.8【答案】C【解析】【分析】根据三角形三边关系可得5﹣3<a<5+3,解不等式即可求解.【详解】由三角形三边关系定理得:5﹣3<a<5+3,即2<a<8,由此可得,符合条件的只有选项C,故选C.【点睛】本题考查了三角形三边关系,能根据三角形的三边关系定理得出5﹣3<a<5+3是解此题的关键,注意:三角形的两边之和大于第三边,三角形的两边之差小于第三边.【变式1-1】(2019·北京中考真题)如图,已知△ABC,通过测量、计算得△ABC的面积约为____cm2.(结果保留一位小数)【答案】1.9【解析】【分析】过点C作CD⊥AB的延长线于点D,测量出AB,CD的长,再利用三角形的面积公式即可求出△ABC的面积. 【详解】解:过点C 作CD ⊥AB 的延长线于点D ,如图所示.经过测量,AB=2.2cm ,CD=1.7cm ,112.2 1.7 1.922∆∴=⋅=⨯⨯≈ABC S AB CD (cm 2). 故答案为:1.9. 【点睛】本题考查了三角形的面积,牢记三角形的面积等于底边长与高线乘积的一半是解题的关键.【变式1-2】(2019·山东中考真题)把一块含有45︒角的直角三角板与两条长边平行的直尺如图放置(直角顶点在直尺的一条长边上).若123∠=︒,则2∠=_______︒.【答案】68 【解析】 【分析】由等腰直角三角形的性质得出∠A=∠C=45°,由三角形的外角性质得出∠AGB=68°,再由平行线的性质即可得出∠2的度数. 【详解】 如图,∵ABC ∆是含有45︒角的直角三角板,∴45A C ∠=∠=︒, ∵123∠=︒,∴168AGB C ∠=∠+∠=︒, ∵EF BD P , ∴268AGB ∠=∠=︒; 故答案为68. 【点睛】此题主要考查了等腰直角三角形的性质、平行线的性质以及三角形的外角性质,关键是掌握两直线平行,同位角相等.【考点2】全等三角形的判定与性质的应用【例2】(2019·山东中考真题)在ABC ∆中,90BAC ∠=︒,AB AC =,AD BC ⊥于点D .(1)如图1,点M ,N 分别在AD ,AB 上,且90BMN ∠=︒,当30AMN =︒∠,2AB =时,求线段AM 的长;(2)如图2,点E ,F 分别在AB ,AC 上,且90EDF ∠=︒,求证:BE AF =;(3)如图3,点M 在AD 的延长线上,点N 在AC 上,且90BMN ∠=︒,求证:2AB AN AM +=.【答案】(1) 323AM =;(2)见解析;(3)见解析. 【解析】 【分析】(1)根据等腰三角形的性质、直角三角形的性质得到 AD =BD =DC = 2 ,求出 ∠MBD =30°,根据勾股定理计算即可;(2)证明△BDE ≌△ADF ,根据全等三角形的性质证明;(3)过点 M 作 ME ∥BC 交 AB 的延长线于 E ,证明△BME ≌△AMN ,根据全等三角形的性质得到 BE =AN ,根据等腰直角三角形的性质、勾股定理证明结论.【详解】(1)解:90BAC ∠=︒Q ,AB AC =,AD BC ⊥,AD BD DC ∴==,45ABC ACB ∠=∠=︒,45BAD CAD ∠=∠=︒,2AB =Q ,AD BD DC ∴===,30AMN ∠=︒Q ,180903060BMD ∴∠=︒-︒-︒=︒, 30BMD ∴∠=︒, 2BM DM ∴=,由勾股定理得,222BM DM BD -=,即222(2)DM DM -=,解得,DM =3AM AD DM ∴=-= (2)证明:AD BC ⊥Q ,90EDF ∠=︒,BDE ADF ∴∠=∠,在BDE ∆和ADF ∆中,{B DAF DB DA BDE ADF∠=∠=∠=∠, ()BDE ADF ASA ≌∴∆∆BE AF ∴=;(3)证明:过点M 作//ME BC 交AB 的延长线于E ,90AME ∴∠=︒,则AE =,45E ∠=︒,ME MA ∴=,90AME ∠=︒∵,90BMN ∠=︒,BME AMN ∴∠=∠,在BME ∆和AMN ∆中,{E MANME MA BME AMN∠=∠=∠=∠,()BME AMN ASA ∴∆∆≌,BE AN ∴=, 2AB AN AB BE AE AM ∴+=+==.【点睛】本题考查的是等腰直角三角形的性质、全等三角形的判定和性质、直角三角形的性质,掌握全等三角形的判定定理和性质定理是解题的关键.【变式2-1】(2019·贵州中考真题)(1)如图①,在四边形ABCD 中,AB CD ∥,点E 是BC 的中点,若AE 是BAD ∠的平分线,试判断AB ,AD ,DC 之间的等量关系.解决此问题可以用如下方法:延长AE 交DC 的延长线于点F ,易证AEB FEC ∆∆≌得到AB FC =,从而把AB ,AD ,DC 转化在一个三角形中即可判断.AB ,AD ,DC 之间的等量关系________;(2)问题探究:如图②,在四边形ABCD 中,AB CD ∥,AF 与DC 的延长线交于点F ,点E是BC 的中点,若AE 是BAF ∠的平分线,试探究AB ,AF ,CF 之间的等量关系,并证明你的结论.【答案】(1)AD AB DC =+;(2)AB AF CF =+,理由详见解析.【解析】【分析】(1)先根据角平分线的定义和平行线的性质证得AD DF =,再根据AAS 证得CEF ∆≌BEA ∆,于是AB CF =,进一步即得结论;(2)延长AE 交DF 的延长线于点G ,如图②,先根据AAS 证明AEB ∆≌GEC ∆,可得AB CG =,再根据角平分线的定义和平行线的性质证得FA FG =,进而得出结论.【详解】解:(1)AD AB DC =+.理由如下:如图①,∵AE 是BAD ∠的平分线,∴DAE BAE ∠=∠∵AB DC P ,∴F BAE ∠=∠,∴DAF F ∠=∠,∴AD DF =.∵点E 是BC 的中点,∴CE BE =,又∵F BAE ∠=∠,AEB CEF ∠=∠∴CEF ∆≌BEA ∆(AAS ),∴AB CF =.∴AD CD CF CD AB =+=+.故答案为:AD AB DC =+.(2)AB AF CF =+.理由如下:如图②,延长AE 交DF 的延长线于点G .∵AB DC P ,∴BAE G ∠=∠,又∵BE CE =,AEB GEC ∠=∠,∴AEB ∆≌GEC ∆(AAS ),∴AB GC =,∵AE 是BAF ∠的平分线,∴BAG FAG ∠=∠,∵BAG G ∠=∠,∴FAG G ∠=∠,∴FA FG =,∵CG CF FG =+,∴AB AF CF =+.【点睛】本题考查了全等三角形的判定和性质、平行线的性质、角平分线的定义和等角对等边等知识,添加恰当辅助线构造全等三角形是解本题的关键.【变式2-2】(2019·广西中考真题)如图,,AB AD BC DC ==,点E 在AC 上.(1)求证:AC 平分BAD ∠;(2)求证:BE DE =.【答案】(1)见解析;(2)见解析.【解析】【分析】(1)由题中条件易知:△ABC ≌△ADC ,可得AC 平分∠BAD ;(2)利用(1)的结论,可得△BAE ≌△DAE ,得出BE=DE .【详解】解:(1)在ABC ∆与ADC ∆中,AB AD AC AC BC DC =⎧⎪=⎨⎪=⎩∴()ABC ADC SSS ∆∆≌∴BAC DAC ∠=∠即AC 平分BAD ∠;(2)由(1)BAE DAE ∠=∠在BAE ∆与DAE ∆中,得BA DA BAE DAE AE AE =⎧⎪∠=∠⎨⎪=⎩∴()BAE DAE SAS ∆∆≌∴BE DE =【点睛】熟练运用三角形全等的判定,得出三角形全等,转化边角关系是解题关键.【考点3】等腰三角形与等边三角形的判定与性质的应用【例3】(2019·浙江中考真题)如图,在ABC △中,AC AB BC <<.⑴已知线段AB 的垂直平分线与BC 边交于点P ,连结AP ,求证:2APC B ??;⑵以点B 为圆心,线段AB 的长为半径画弧,与BC 边交于点Q ,连结AQ ,若3AQC B ??,求B Ð的度数.【答案】(1)见解析;(2)∠B=36°. 【解析】【分析】(1)根据垂直平分线的性质,得到PA=PB ,再由等腰三角形的性质得到∠PAB=∠B ,从而得到答案; (2)根据等腰三角形的性质得到∠BAQ=∠BQA ,设∠B=x ,由题意得到等式∠AQC=∠B+∠BAQ=3x ,即可得到答案.【详解】(1)证明:因为点P 在AB 的垂直平分线上,所以PA=PB ,所以∠PAB=∠B ,所以∠APC=∠PAB+∠B=2∠B.(2)根据题意,得BQ=BA ,所以∠BAQ=∠BQA ,设∠B=x ,所以∠AQC=∠B+∠BAQ=3x ,所以∠BAQ=∠BQA=2x ,在△ABQ 中,x+2x+2x=180°,解得x=36°,即∠B=36°. 【点睛】本题考查垂直平分线的性质、等腰三角形的性质,解题的关键是掌握垂直平分线的性质、等腰三角形的性质.【变式3-1】(2019·辽宁中考真题)如图,ABC ∆是等边三角形,延长BC 到点D ,使CD AC =,连接AD .若2AB =,则AD 的长为_____.【答案】3【解析】【分析】AB=AC=BC=CD ,即可求出∠BAD=90°,∠D=30°,解直角三角形即可求得.【详解】解:∵ABC ∆是等边三角形,∴60B BAC ACB ︒∠=∠=∠=,∵CD AC =,∴CAD D ∠=∠,∵60ACB CAD D ∠=∠+∠=o ,∴30CAD D ∠=∠=o ,∴90BAD o ∠=, ∴AB 23tan 303AD ︒=== 故答案为3【点睛】本题考查了等边三角形的性质,等腰三角形的性质以及解直角三角形等,证得△ABD 是含30°角的直角三角形是解题的关键.【变式3-2】(2019·辽宁中考真题)如图,把三角形纸片折叠,使点A 、点C 都与点B 重合,折痕分别为EF ,DG ,得到60BDE ︒∠=,90BED ︒∠=,若2DE =,则FG 的长为_____.【答案】33.【解析】【分析】根据折叠的性质可得:FG 是△ABC 的中位线,AC 的长即为△BDE 的周长.在Rt △BDE 中,根据30°角的直角三角形的性质和勾股定理可分别求出BD 与BE 的长,从而可得AC 的长,再根据三角形的中位线定理即得答案.【详解】解:∵把三角形纸片折叠,使点A 、点C 都与点B 重合,∴AF BF =,AE BE =,BG CG =,DC DB =, ∴12FG AC =, ∵60BDE ︒∠=,90BED ︒∠=,∴30EBD ︒∠=,∴24DB DE ==, ∴22224223BE DB DE =-=-= ∴23AE BE ==,4DC DB ==, ∴2324623AC AE DE DC =++=+=+, ∴1332FG AC ==+ 故答案为:33【点睛】本题考查了折叠的性质、三角形中位线定理、30°角的直角三角形的性质和勾股定理等知识,根据折叠的性质得出FG 是△ABC 的中位线,AC 的长即为△BDE 的周长是解本题的关键.【考点4】直角三角形的性质【例4】(2019·宁夏中考真题)如图,在Rt ABC ∆中,090C ∠=,以顶点B 为圆心,适当长度为半径画弧,分别交,AB BC 于点,M N ,再分别以点,M N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,作射线BP 交AC 于点D .若30A ∠=o ,则BCD ABDS S ∆∆=_____.【答案】12. 【解析】【分析】 利用基本作图得BD 平分ABC ∠,再计算出30ABD CBD ∠=∠=o ,所以DA DB =,利用2BD CD =得到2AD CD =,然后根据三角形面积公式可得到BCD ABDS S V V 的值. 【详解】解:由作法得BD 平分ABC ∠,∵90C =o ∠,30A ∠=o ,∴60ABC ︒∠=,∴30ABD CBD ︒∠=∠=,∴DA DB =,在Rt BCD ∆中,2BD CD =,∴2AD CD =,∴12BCD ABD S S ∆∆=. 故答案为12. 【点睛】 本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).【变式4-1】(2019·黑龙江中考真题)一张直角三角形纸片ABC ,90ACB ∠=o ,10AB =,6AC =,点D 为BC 边上的任一点,沿过点D 的直线折叠,使直角顶点C 落在斜边AB 上的点E 处,当BDE ∆是直角三角形时,则CD 的长为_____.【答案】3或247【解析】【分析】依据沿过点D 的直线折叠,使直角顶点C 落在斜边AB 上的点E 处,当△BDE 是直角三角形时,分两种情况讨论:∠DEB=90°或∠BDE=90°,分别依据勾股定理或者相似三角形的性质,即可得到CD 的长【详解】分两种情况:①若90DEB ∠=o ,则90AED C ∠==∠o , CD ED =,连接AD ,则()Rt ACD Rt AEAD HL ∆≅∆,6AE AC ∴==,1064BE =-=,设CD DE x ==,则8BD x =-,Rt BDE ∆Q 中,222DE BE BD +=2224(8)x x ∴+=-,解得3x =,3CD ∴=;②若90BDE ∠=o ,则90CDE DEF C ∠=∠=∠=o ,CD DE =,∴四边形CDEF 是正方形,90AFE EDB ∴∠=∠=o ,AEF B ∠=∠,~AEF EBD ∴∆∆, AF EF ED BD ∴=, 设CD x =,则EF DF x ==,6AF x =-,8BD x =-,68x x x x-∴=-, 解得247x =, 247CD ∴=, 综上所述,CD 的长为3或247, 故答案为:3或247. 【点睛】此题考查折叠的性质,勾股定理,全等三角形的判定与性质,解题关键在于画出图形 【变式4-2】(2019·河北中考真题)勘测队按实际需要构建了平面直角坐标系,并标示了A ,B ,C 三地的坐标,数据如图(单位:km ).笔直铁路经过A ,B 两地.(1)A ,B 间的距离为______km ;(2)计划修一条从C 到铁路AB 的最短公路l ,并在l 上建一个维修站D ,使D 到A ,C 的距离相等,则C ,D 间的距离为______km .【答案】20 13【解析】【分析】(1)由垂线段最短以及根据两点的纵坐标相同即可求出AB 的长度;(2)根据A 、B 、C 三点的坐标可求出CE 与AE 的长度,设CD =x ,根据勾股定理即可求出x 的值.【详解】(1)由A 、B 两点的纵坐标相同可知:AB ∥x 轴,∴AB =12﹣(﹣8)=20;(2)过点C 作l ⊥AB 于点E ,连接AC ,作AC 的垂直平分线交直线l 于点D ,由(1)可知:CE =1﹣(﹣17)=18,AE =12,设CD =x ,∴AD =CD =x ,由勾股定理可知:x 2=(18﹣x )2+122,∴解得:x =13,∴CD =13. 故答案为:(1)20;(2)13.【点睛】本题考查了勾股定理,解题的关键是根据A 、B 、C 三点的坐标求出相关线段的长度,本题属于中等题型.【考点5】相似三角形的判定与性质的应用【例5】(2019·四川中考真题)如图,90ABD BCD ︒∠=∠=,DB 平分∠ADC ,过点B 作BM CD ‖交AD 于M .连接CM 交DB 于N .(1)求证:2BD AD CD =⋅;(2)若68CD AD ==,,求MN 的长.【答案】(1)见解析;(2)475MN =【解析】【分析】(1)通过证明ABD BCD ∆∆∽,可得AD BDBD CD=,可得结论; (2)由平行线的性质可证MBD BDC ∠∠=,即可证4AM MD MB ===,由2BD AD CD ⋅=和勾股定理可求MC 的长,通过证明MNB CND ∆∆∽,可得23BM MN CD CN ==,即可求MN 的长. 【详解】证明:(1)∵DB 平分ADC ∠,ADB CDB ∴∠∠=,且90ABD BCD ∠∠︒==,ABD BCD ∴∆∆∽AD BDBD CD∴=2BD AD CD ∴⋅=(2)//BM CD QMBD BDC ∴∠∠=ADB MBD ∴∠∠=,且90ABD ∠︒=BM MD MAB MBA ∴∠∠=,=4BM MD AM ∴===2BD AD CD ⋅Q =,且68CD AD =,=, 248BD ∴=,22212BC BD CD ∴=﹣=22228MC MB BC ∴+==MC ∴=//BM CD Q MNB CND ∴∆∆∽23BM MN CD CN ∴==且MC =MN ∴=【点睛】考查了相似三角形的判定和性质,勾股定理,直角三角形的性质,求MC的长度是本题的关键.【变式5-1】(2019·全国初三课时练习)如图,在△ABC中,AB=AC,点P、D分别是BC、AC边上的点,且∠APD=∠B,(1)求证:AC•CD=CP•BP;(2)若AB=10,BC=12,当PD∥AB时,求BP的长.【答案】(1)证明见解析;(2)25 3.【解析】(2)易证∠APD=∠B=∠C,从而可证到△ABP∽△PCD,即可得到BP ABCD CP=,即AB•CD=CP•BP,由AB=AC即可得到AC•CD=CP•BP;(2)由PD∥AB可得∠APD=∠BAP,即可得到∠BAP=∠C,从而可证到△BAP∽△BCA,然后运用相似三角形的性质即可求出BP的长.解:(1)∵AB=AC,∴∠B=∠C.∵∠APD=∠B,∴∠APD=∠B=∠C.∵∠APC=∠BAP+∠B,∠APC=∠APD+∠DPC,∴∠BAP=∠DPC,∴△ABP∽△PCD,∴BP AB CD CP=,∴AB•CD=CP•BP.∵AB=AC,∴AC•CD=CP•BP;(2)∵PD∥AB,∴∠APD=∠BAP.∵∠APD=∠C,∴∠BAP=∠C.∵∠B=∠B,∴△BAP∽△BCA,∴BA BP BC BA=.∵AB=10,BC=12,∴101210BP=,∴BP=253.“点睛”本题主要考查了相似三角形的判定与性质、等腰三角形的性质、平行线的性质、三角形外角的性质等知识,把证明AC•CD=CP•BP转化为证明AB•CD=CP•BP是解决第(1)小题的关键,证到∠BAP=∠C进而得到△BAP∽△BCA是解决第(2)小题的关键.【变式5-2】(2019·陕西中考模拟)大唐芙蓉园是中国第一个全方位展示盛唐风貌的大型皇家园林式文化主题公园,全园标志性建筑一紫云楼为代表,展示了“形神升腾紫云景,天下臣服帝王心”的唐代帝王风范(如图①).小风和小花等同学想用一些测量工具和所学的几何知识测量“紫云楼”的高度,来检验自己掌握知识和运用知识的能力,他们经过研究需要两次测量:首先,在阳光下,小风在紫云楼影子的末端C点处竖立一根标杆CD,此时,小花测得标杆CD的影长CE=2米,CD=2米;然后,小风从C点沿BC方向走了5.4米,到达G处,在G处竖立标杆FG,接着沿BG后退到点M处时,恰好看见紫云楼顶端A,标杆顶端F在一条直线上,此时,小花测得GM=0.6米,小风的眼睛到地面的距离HM=1.5米,FG=2米.如图②,已知AB⊥BM,CD⊥BM,FG⊥BM,HM⊥BM,请你根据题中提供的相关信息,求出紫云楼的高AB.【答案】紫云楼的高AB为39米.【解析】【分析】根据已知条件得到AB=BC,过H作HN⊥AB于N,交FG于P,设AB=BC=x,则HN=BM=x+5.4+0.6=x+6,AN=x﹣1.5,FP=0.5,PH=GM=0.6,根据相似三角形的性质即可得到结论.【详解】解:∵CD⊥BM,FG⊥BM,CE=2,CD=2,∴AB=BC,过H作HN⊥AB于N,交FG于P,设AB=BC=x,则HN=BM=x+5.4+0.6=x+6,AN=x﹣1.5,FP=0.5,PH=GM=0.6,∵∠ANH=∠FPH=90°,∠AHN=∠FHP,∴△ANH∽△FPH,∴AN NHPF PH=,即1.560.50.6x x-+=,∴x=39,∴紫云楼的高AB为39米.【点睛】本题考查了相似三角形的应用,正确的识别图形是解题的关键.【考点6】锐角三角函数及其应用【例6】(2019·贵州中考真题)三角板是我们学习数学的好帮手.将一对直角三角板如图放置,点C在FD 的延长线上,点B在ED上,AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC=10,则CD的长度是_____.。

2023年中考数学高频考点突破——解直角三角形的实际应用

2023年中考数学高频考点突破——解直角三角形的实际应用

2023年中考数学高频考点突破——解直角三角形的实际应用1.在修建某高速公路的线路中需要经过一座小山.如图,施工方计划从小山的一侧C处沿AC方向开挖隧道到小山的另一侧D(A,C,D三点在同一直线上)处.为了计算隧道CD的长,现另取一点B,测得∠CAB=30°,∠ABD=105°,AC=1km,AB=4km.求隧道CD的长.2.如图,小明家在A处,门前有一口池塘,隔着池塘有一条公路l,AB是A到l的小路.现新修一条路AC到公路l.小明测量出∠ACD=31°,∠ABD=45°,BC=50m.请你帮小明计算他家到公路l的距离AD的长度?(精确到0.1m;参考数据tan31°≈0.60,sin31°≈0.51,cos31°≈0.86).3.如图为住宅区内的两幢楼,它们的高AB=CD=30m,两楼间的距离AC=24m,现需了解甲楼对乙楼采光的影响情况.当太阳光与水平线的夹角为30°时,求甲楼的影子在乙楼上有多高?4.如图,在两面墙之间有一个底端在A点的梯子,当它靠在一侧墙上时,梯子的顶端在B 点;当它靠在另一侧墙上时,梯子的顶端在D点.已知∠BAC=60°,∠DAE=45°,点D到地面的垂直距离DE=3米.求点B到地面的垂直距离BC.5.如图,身高1.6m的小丽用一个两锐角分别为30°和60°的三角尺测量一棵树的高度,已知她与树之间的距离为6m,那么这棵树高大约高多少米?(结果精确到0.1m,其中小丽眼睛距离地面高度近似为身高)6.如图,同学们利用所学知识去测量三江源某河段某处的宽度.小宇同学在A处观测对岸点C,测得∠CAD=45°,小英同学在距点A处60米远的B点测得∠CBD=30°,请根据这些数据算出河宽(精确到0.01米,≈1.414,≈1.732).7.小明想利用所学数学知识测量学校旗杆高度,如图,旗杆的顶端垂下一绳子,将绳子拉直钉在地上,末端恰好在C处且与地面成60°角,小明拿起绳子末端,后退至E处,并拉直绳子,此时绳子末端D距离地面1.6m且绳子与水平方向成45°角.求旗杆AB 的高度和小明后退的距离EC.(参考数据:≈1.41,≈1.73,结果精确到0.1m)8.给窗户装遮阳棚,其目的为最大限度的遮挡夏天炎热的阳光,又能最大限度的使冬天温暖的阳光射入室内,现请你为我校新建成的高中部教学楼朝南的窗户设计一个直角形遮阳篷BCD,如图,已知窗户AB高度为h=2米,本地冬至日正午时刻太阳光与地面的最小夹角α=32°,夏至日正午时刻太阳光与地面的最大夹角β=79°,请分别计算直角形遮阳篷BCD中BC、CD的长(结果精确到0.1米,tan32°≈0.62,tan79°≈5.14)9.如图,秋千链子AB的长度为3m,静止时的秋千踏板(厚度忽略不计)距地面DE为0.5m,秋千向两边摆动时,若最大摆角(摆角指秋千链子与铅垂线的夹角)约为53°,求秋千踏板与地面的最大距离.(sin53°≈0.80,cos53°≈0.60)10.如图分别是某型号跑步机的实物图和示意图,已知踏板CD长为2米,支架AC长为0.8米,CD与地面的夹角为12°,∠ACD=80°,(AB∥ED),求手柄的一端A离地的高度h.(精确到0.1米,参考数据:sin12°=cos78°≈0.21,sin68°=cos22°≈0.93,tan68°≈2.48)11.如图,厂房屋顶人字架的跨度BC=10m.D为BC的中点,上弦AB=AC,∠B=36°,求中柱AD和上弦AB的长(结果保留小数点后一位).参考数据:sin36°≈0.59,cos36°≈0.81,tan36°≈0.73.12.如图,一条河的两岸l1,l2互相平行,在一次综合实践活动中,小颖去测量这条河的宽度,先在对岸l1上选取一个点,然后在河岸l2时选择点B,使得AB与河岸垂直,接着沿河岸l2走到点C处,测得BC=60米,∠BCA=62°,请你帮小颖算出河宽AB (结果精确到1米).(参考数据:sin62°≈0.88,cos62°≈0.47,tan62°≈1.88)13.为解决江北学校学生上学过河难的问题,乡政府决定修建一座桥,建桥过程中需测量河的宽度(即两平行河岸AB与MN之间的距离).在测量时,选定河对岸MN上的点C处为桥的一端,在河岸点A处,测得∠CAB=30°,沿河岸AB前行30米后到达B处,在B处测得∠CBA=60°,请你根据以上测量数据求出河的宽度.(参考数据:≈1.41,≈1.73,结果保留整数)14.2015年4月25日14时11分,尼泊尔发生8.1级地震,震源深度20千米.中国救援队火速赶往灾区救援,探测出某建筑物废墟下方点C处有生命迹象.在废墟一侧某面上选两探测点A、B,AB相距2米,探测线与该面的夹角分别是30°和45°(如图).试确定生命所在点C与探测面的距离.(参考数据≈1.41,≈1.73)15CD的高度为2米,支架BC的长为4米,且与地面成30°角,吊绳AB与支架BC的夹角为80°,吊臂AC与地面成70°角,求吊车的吊臂顶端A点距地面的高度是多少米?(精确到0.1米)(参考数据:sin10°=cos80°=0.17,cos10°=sin80°=0.98,sin20°=cos70°=0.34,tan70°=2.75,sin70°=0.94)16.如图是某儿童乐园为小朋友设计的滑梯平面图.已知BC=4米,AB=6米,中间平台宽度DE=1米,EN、DM、CB为三根垂直于AB的支柱,垂足分别为N、M、B,∠EAB=31°,DF⊥BC于F,∠CDF=45°.求DM和BC的水平距离BM的长度.(结果精确到0.1米,参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60)17.如图1,滨海广场装有风能、太阳能发电的风光互补环保路灯,灯杆顶端装有风力发电机,中间装有太阳能板,下端装有路灯.该系统工作过程中某一时刻的截面图如图2,已知太阳能板的支架BC垂直于灯杆OF,路灯顶端E距离地面6米,DE=1.8米,∠CDE=60°.且根据我市的地理位置设定太阳能板AB的倾斜角为43°.AB=1.5米,CD=1米,为保证长为1米的风力发电机叶片无障碍安全旋转,对叶片与太阳能板顶端A的最近距离不得少于0.5米,求灯杆OF至少要多高?(利用科学计算器可求得sin43°≈0.6820,cos43°≈0.7314,tan43°≈0.9325,结果保留两位小数)18.北京时间2015年04月25日14时11分,尼泊尔发生8.1级强烈地震,我国积极组织抢险队赴地震灾区参与抢险工作.如图,某探测队在地面A、B两处均探测出建筑物下方C处有生命迹象,已知探测线与地面的夹角分别是25°和60°,且AB=4米,求该生命迹象所在位置C的深度.(结果精确到1米.参考数据:sin25°≈0.4,cos25°≈0.9,tan25°≈0.5,≈1.7)19.如图所示,我市某中学课外活动小组的同学利用所学知识去测量釜溪河沙湾段的宽度.小宇同学在A处观测对岸C点,测得∠CAD=45°,小英同学在距A处50米远的B处测得∠CBD=30°,请你根据这些数据算出河宽.(精确到0.01米,参考数据≈1.414,≈1.732)20.如图,这是一把可调节座椅的侧面示意图,已知头枕上的点A到调节器点O处的距离为80cm,AO与地面垂直,现调整靠背,把OA绕点O旋转35°到OA′处,求调整后点A′比调整前点A的高度降低了多少厘米(结果取整数)?(参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70)参考答案与试题解析1.【解答】解:过点B作BE⊥AD于点E,如图所示:在Rt△ABE中,AB=4km,∠CAB=30°,∠AEB=90°,∴BE=AB=2km,AE===2km,∠ABE=180°﹣30°﹣90°=60°,∴∠DBE=∠ABD﹣∠ABE=105°﹣60°=45°.在Rt△BDE中,∠BED=90°,∠DBE=45°,∴DE=BE=2km,∴AD=AE+DE=(2+2)km,∴CD=AD﹣AC=2+2﹣1=(2+1)km.答:隧道CD的长为(2+1)km.2.【解答】解:∵∠2=45°∠3=90°∴∠4=45°∴∠2=∠4即BD=AD设BD=AD=xm,∵AC=50m∴CD=(x+50)m,在Pt△ACD中tan C=,10x=6x+3004x=300x≈75.0.答:AD的长度为75.0m.3.【解答】解:过点B作BF交CD于F,过点F作FE⊥AB于点E,∵太阳光与水平线的夹角为30°,∴∠BFE=30°,∵AC=EF=24m,∴BE=EF•tan30°=24×=8(m),∴CD﹣BE=(30﹣8)m.答:甲楼的影子在乙楼上的高度约为(30﹣8)m.4.【解答】解:在Rt△DAE中,∵∠DAE=45°,∴∠ADE=∠DAE=45°,AE=DE=3.∴AD2=AE2+DE2=(3)2+(3)2=36,∴AD=6,即梯子的总长为6米.∴AB=AD=6.在Rt△ABC中,∵∠BAC=60°,∴∠ABC=30°,∴AC=AB=3,∴BC2=AB2﹣AC2=62﹣32=27,∴BC==3m,∴点B到地面的垂直距离BC=3m.5.【解答】解:由题意得:AD=6m,在Rt△ACD中,tan A==∴CD=2(m),又AB=1.6m∴CE=CD+DE=CD+AB=2+1.6≈5.1(m).答:树的高度约为5.1米.6.【解答】解:过C作CE⊥AB于E,设CE=x米,在Rt△AEC中:∠CAE=45°,AE=CE=x在Rt△BCE中:∠CBE=30°,BE=CE=x,∴x=x+60解之得:x=30+30≈81.96.答:河宽约为81.96米.7.【解答】解:设绳子AC的长为x米;在△ABC中,AB=AC•sin60°,过D作DF⊥AB于F,如图:∵∠ADF=45°,∴△ADF是等腰直角三角形,∴AF=DF=x•sin45°,∵AB﹣AF=BF=1.6,则x•°﹣x•sin45°=1.6,解得:x=10,∴AB=10×sin60°≈8.7(m),EC=EB﹣CB=x•cos45°﹣x•cos60°=10×﹣10×≈2.1(m)答:旗杆AB的高度为8.7m,小明后退的距离为2.1m.8.【解答】解:根据内错角相等可知,∠BDC=α,∠ADC=β.在Rt△BCD中,tanα=.①在Rt△ADC中,tanβ=.②由①、②可得:.把h=2,tan32°≈0.62,tan79°≈5.14代入上式,得BC≈0.3(米),CD≈0.4(米).所以直角遮阳篷BCD中BC与CD的长分别是0.3米和0.4米.9.【解答】解:设秋千链子的上端固定于A处,秋千踏板摆动到最高位置时踏板位于B 处.过点A,B的铅垂线分别为AD,BE,点D,E在地面上,过B作BC⊥AD于点C.在Rt△ABC中,AB=3,∠CAB=53°,∵cos53°=,∴AC=3cos53°≈3×0.6=1.8(),∴CD≈3+0.5﹣1.8=1.7(m),∴BE=CD≈1.7(m),答:秋千摆动时踏板与地面的最大距离约为1.7m.10.【解答】解:过C点作FG⊥AB于F,交DE于G.∵CD与地面DE的夹角∠CDE为12°,∠ACD为80°,∴∠ACF=∠FCD﹣∠ACD=∠CGD+∠CDE﹣∠ACD=90°+12°﹣80°=22°,∴∠CAF=68°,在Rt△ACF中,CF=AC•sin∠CAF≈0.744m,在Rt△CDG中,CG=CD•sin∠CDE≈0.42m,∴h=0.42+0.74=1.156≈1.2(米),答:手柄的一端A离地的高度h约为1.2m.11.【解答】解:∵AB=AC,D为BC的中点,BC=10米,∴DC=BD=5米,∵AB=AC,D为BC的中点,∴AD⊥BC.在Rt△ADB中,∠B=36°,∴tan36°=,即AD=BD•tan36°≈3.7(米).cos36°=,即AB=≈6.2(米).答:中柱AD(D为底边BC的中点)为3.7米和上弦AB的长为6.2米.12.【解答】解:在Rt△ABC中,BC=60米,∠BCA=62°,可得tan∠BCA=,即AB=BC•tan∠BCA=60×1.88≈113(米),则河宽AB为113米.13.【解答】解:如图,过点C作CD⊥AB于点D,设CD=x米.∵在直角△ACD中,∠CAD=30°,∴AD==x.同理,在直角△BCD中,BD==x.又∵AB=30米,∴AD+BD=30米,即x+x=10.解得x=13.答:河的宽度的13米.14.【解答】解:过C作CD⊥,设CD=x米,∵∠ABE=45°,∴∠CBD=45°,∴DB=CD=x米,∵∠CAD=30°,∴AD=CD=x米,∵AB相距2米,∴x﹣x=2,解得:x=+1≈2.73,答:命所在点C与探测面的距离2.73米.15.【解答】解:由题可知:如图,BH⊥HE,AE⊥HE,CD=2米,BC=4米,∠BCH=30°,∠ABC=80°,∠ACE=70°∵∠BCH+∠ACB+∠ACE=180°∴∠ACB=80°∵∠ABC=80°∴∠ABC=∠ACB∴AB=AC过点A作AM⊥BC于M,∴CM=BM=2(米),∵在Rt△ACM中,CM=2米,∠ACB=80°∴∠ACB=cos80°≈0.17∴AC==(米),∵在Rt△ACE中,AC=米,∠ACE=70°∴∠ACE=sin70°≈0.94∴AE=×0.94=≈11.1(米),∴AE+CD=13.1(米),故可得点A到地面的距离为13.1米.16.【解答】解:设BM=x米.∵∠CDF=45°,∠CFD=90°,∴CF=DF=x米,∴BF=BC﹣CF=(4﹣x)米.∴EN=DM=BF=(4﹣x)米.∵AB=6米,DE=1米,BM=DF=x米,∴AN=AB﹣MN﹣BM=(5﹣x)米.在△AEN中,∠ANE=90°,∠EAN=31°,∴EN=AN•tan31°.即4﹣x=(5﹣x)×0.6,∴x=2.5,答:DM和BC的水平距离BM的长度为2.5米.17.【解答】解:过E作EG⊥地面于G,过D作DH⊥EG于H,∴DF=HG,在R t△ABC中,AC=AB•sin∠B=1.5×sin43°=1.5×0.682≈1.023米,∵∠CDE=60°,∴∠EDH=30°,∴EH=DE=0.9米,∴DF=GH=EG﹣EH=6﹣0.9=5.1米,∴OF=OA+AC+CD+DF=1.5+1.023+1+5.1=8.623m.答:灯杆OF至少要8.63m.18.【解答】解:作CD⊥AB交AB延长线于D,设CD=x米.Rt△ADC中,∠DAC=25°,所以tan25°==0.5,所以AD==2x.Rt△BDC中,∠DBC=60°,由tan60°==,解得:x≈3.所以生命迹象所在位置C的深度约为3米.19.【解答】解:过C作CE⊥AB于E,设CE=x米,在Rt△AEC中:∠CAE=45°,AE=CE=x在Rt△BCE中:∠CBE=30°,BE=CE=x,∴x=x+50解之得:x=25+25≈68.10.答:河宽为68.30米.20.【解答】解:如图,根据题意OA=OA′=80cm,∠AOA′=35°,作A′B⊥AO于B,∴OB=OA′•cos35°=80×0.82≈65.6cm,∴AB=OA﹣OB=80﹣65.6=14.4cm.答:调整后点A′比调整前点A的高度降低了14厘米.。

中考数学复习指导:相似三角形的探索性问题

中考数学复习指导:相似三角形的探索性问题

相似三角形的探索性问题探索性问题一般没有明确的结论,没有固定的形式和方法,要求学生通过自己的观察、分析、比较、概括,得出结论,形成方法和思路的数学问题,这类题是考查学生分析问题和解决问题的重要题型,它可以分为三类:一、条件探索性问题条件探索性问题是指所给问题中结论明确,而需要完备使结论成立的条件的题目,这类问题大致分为两种类型:一是问题中的条件未知或不足需要探求,二是条件多余或有错,要求排除或修正.例1:如图1,已知△ABC ,P 是AB 边上的一点,连结CP .要使△APC ∽△ACB ,则应添加一个条件是_______.分析:⑴∠ACP =∠B (或∠APC =∠ACB )时,可得到△APC ∽△ACB ;⑵即△APC ∽△ACB方法探究:在△APC 和△ACB 中,已有一角对应相等,因此添加的条件应从“有两个角对应相等,两个三角形相似”和“两边对应成比例,且夹角相等的两个三角形形似”两个途径进行思考,本题是一个条件探究题,这类问题一般解法是把结论当作已知反溯条件.二、结论探索性问题它是指题目结论不确定,不唯一,或题目结论需要通过类比引申推广,或题目给出特例,要通过归纳总结出一般结论.例2:已知:如图2, △ABC 中,点D.E 分别在边AB.AC 上,连结DE 并延长交BC 的延长线于点F ,连结DC.BE .若∠BDE +∠BCE =180°.(1)写出图中三对相似三角形(注意:不得加字母和线);(2)请在你所找出的相似三角形中选取一对,说明他们相似的理由.分析: 先由角的关系入手,由∠BDE +∠BCE =180°和图形中∠BDE +∠ADE =∠BCE +∠ECF =180°, 可得∠BDE =∠ECF , ∠ADE =∠BCE , 易得△ADE ∽△ACB (∠A 为公共角)、 △ECF ∽△BDF (∠F 为公共角), 其次,由△ECF ∽△BDF 得 可得△FDC ∽△FBE (∠F 为公共角).图2A图1PCB解:⑴△ADE ∽△ACB ,△ECF ∽△BDF ,△FDC ∽△FBE .⑵①△ADE ∽△ACB . 证明如下:∵∠BDE +∠BCE =180°.又∵∠BDE +∠ADE =180°,∴∠ADE =∠BCE . ∵∠A =∠A ,∴△ADE ∽△ACB 。

中考数学解直角三角形

中考数学解直角三角形

中考数学解直角三角形一、定义:在一个直角三角形中,斜边上的高分两个直角三角形,其中一个与原三角形相似,另一个与原三角形轴对称。

二、解直角三角形的步骤:1、判断三角形的形状:在一个三角形中,最大的角是90°,所以只要有一个角是90°的三角形就是直角三角形。

2、已知直角边a和斜边c,求另一条直角边b:公式: a2 + b2 = c2或 b = √c2 – a2 (在实数范围内进行运算)。

3、已知直角三角形的一个锐角α和斜边c,求另一直角边b:公式: sinα = a / c或 a = c × sinα,求b: tanα = a / b 或 b = a / tanα。

4、判断一个三角形是否是直角三角形的方法:①有一个角是90°的三角形是直角三角形;②两边的平方和等于第三边的平方的三角形是直角三角形;③一边的中线等于这条中线的二分之一的三角形是直角三角形。

解直角三角形中考题在平面几何中,解直角三角形是中考必考知识点之一,也是初中数学的重点内容之一。

下面从以下几个方面来探讨解直角三角形在中考中的常见题型和解法。

一、锐角三角函数锐角三角函数是解直角三角形的基础知识,主要考查学生对三角函数的掌握程度。

一般题型为:已知一个锐角,求其它锐角的三角函数值。

例题:在Rt△ABC中,∠C=90°,BC=3,AC=4,则sinA=____,cosA=____,tanA=____。

解析:根据勾股定理可求得AB=5,再根据锐角三角函数的定义可求得答案。

二、解直角三角形解直角三角形是解直角三角形中最重要的题型,主要考查学生对勾股定理、锐角三角函数的掌握以及应用能力。

一般题型为:已知一直角三角形中的两个边长或一个边长和另一个角的三角函数值,求未知边的长度。

例题:在Rt△ABC中,∠C=90°,BC=3,sinA=0.6,求AC的长。

解析:根据已知条件可求得∠B的三角函数值,再利用勾股定理可求得AC的长。

中考数学微专题6 等腰三角形、直角三角形形存在性问题

中考数学微专题6 等腰三角形、直角三角形形存在性问题

如图 4,当∠BDC=90°时, 线段 BC 的中点 T3,-32,BC=3 5, 设 D(3,m),∵DT=21BC, ∴|m+23|=3 2 5, ∴m=325-32或 m=-325-23, ∴D3,325-32或 D3,-325-23; 综上所述:△BCD 是直角三角形时,D 点坐标为(3,6)或(3,-9)或3,-325-32或3,325-32.
解:(1)对直线 y=-34x+3,当 x=0 时,y=3,当 y=0 时,x=4, ∴点 B(4,0),C(0,3), ∵抛物线过点 A(-2,0),点 B(4,0), ∴抛物线为 y=a(x+2)(x-4), 将点 C(0,3)代入得:-8a=3, ∵a=-38,
∴抛物线为:y=-38(x+2)(x-4)=-38x2+34x+3, ∵x=4-2 2=1 时,y=287.
∴DBHG=CBGH,即33=B6G, ∴BG=6,∴D(3,6);
如图 3,当∠BCD=90°, 过点 D 作 DK⊥y 轴交于点 K, ∵∠KCD+∠OCB=90°,∠KCD+∠CDK=90°, ∴∠CDK=∠OCB, ∴△OBC∽△KCD, ∴KOCB=OKCD,即K6C=33, ∴KC=6,∴D(3,-9);
解:(1)∵抛物线C:y=(x-2)2向下平移6个单位 长度得到抛物线C1, ∴C1∶y=(x-2)2-6, ∵将抛物线C1向左平移2个单位长度得到抛物线C2. ∴C2∶y=(x-2+2)2-6,即y=x2-6;
(2)过点A作AC⊥x轴于点C,过B作BD⊥AC于点D, 设A(a,(a-2)2-6),则BD=a-2,AC=|(a-2)2-6|, ∵∠BAO=∠ACO=90°, ∴∠BAD+∠OAC=∠OAC+∠AOC=90°, ∴∠BAD=∠AOC, ∵AB=OA,∠ADB=∠OCA, ∴△ABD≌△OAC(AAS), ∴BD=AC, ∴a-2=|(a-2)2-6|, 解得,a=4或a=-1(舍),或a=0(舍),或a=5, ∴A(4,-2)或(5,3);
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

广东省各市2015年中考数学试题分类解析汇编(20专题)专题10:三角形问题1. (2015广东)如图,直线a ∥b ,∠1=75°,∠2=35°,则∠3的度数是( )A. 75°B. 55°C. 40°D. 35° 解析 如答图,∵a ∥b ,∴∠1=∠4.∵∠1=75°,∴∠4=75°.根据“三角形的一个外角等于与它不相邻的两个内角之和”得∠4=∠2+∠3, ∵∠2=35°,∴∠3=40°. 故选C.2. (2015广东梅州)如图,AB 是⊙O 的弦,AC 是⊙O 的切线,A 为切点,BC 经过圆心. 若∠B =20°,则∠C 的大小等于( )A. 20°B. 25°C. 40D. 50° 解析 如答图,连接AO ,∵,20AO BO B =∠=︒ ,∴40AOC ∠=︒.∵AC 是⊙O 的切线,∴AC AO ⊥,即90OAC ∠=︒. ∴50C ∠=︒. 故选D.3. (2015广东佛山)下列给出5个命题: ①对角线互相垂直且相等的四边形是正方形; ②六边形的内角和等于720°; ③相等的圆心角所对的弧相等;④顺次连结菱形各边中点所得的四边形是矩形; ⑤三角形的内心到三角形三个顶点的距离相等. 其中正确命题的个数是( )A. 2个B. 3个C. 4个D. 5个 解析 根据相关知识对各选项进行分析,判作出断:①对角线互相垂直且相等的平行四边形才是正方形,命题不正确.②根据多边形内角和公式,得六边形的内角和等于()62180720-⨯︒=︒,命题正确. ③同圆或等圆满中,相等的圆心角所对的弧才相等,命题不正确.④根据三角形中位线定理、菱形的性质和矩形的判定可知:顺次连结菱形各边中点所得的四边形是矩形,命题正确.⑤三角形的内心到三角形三边的距离相等,命题不正确. 其中正确命题的个数是2个. 故选A.4. (2015广东广州)已知圆的半径是23,则该圆的内接正六边形的面积是( )A. 33B. 93C. 183D. 363 解析 如答图,圆的内接正六边形可分割为六个全等的等边三角形,∵023,60OA OAB =∠= ,∴3sin 233OH OA OAB =⋅∠=⋅=. ∴112333322OAB S AB OH ∆=⋅⋅=⋅⋅=. ∴6633183OAB S S ∆==⋅=正六边形. 故选C.5. (2015广东广州)已知2是关于x 的方程2230x mx m -+=的一个根,并且这个方程的两个根恰好是等腰三角形ABC 的两条边长,则三角形ABC 的周长为( )A. 10B. 14C. 10或14D. 8或10解析∵2是关于x 的方程2230x mx m -+=的一个根,∴4430m m -+=,解得4m =.∴方程为28120x x -+=,解得122,6x x == .∵这个方程的两个根恰好是等腰三角形ABC 的两条边长, ∴根据三角形三边关系,只能是6,6,2. ∴三角形ABC 的周长为14. 故选B.6. (2015广东)如图,已知正△ABC 的边长为2,E ,F ,G 分别是AB ,BC ,CA 上的点,且AE =BF =CG ,设△EFG 的面积为y ,AE 的长为x ,则y 关于x 的函数图象大致是( )A. B. C. D.解析 根据题意,有AE =BF =CG ,且正三角形ABC 的边长为2,∴2===-BE CF AG x . ∴△AEG 、△BEF 、△CFG 三个三角形全等. 在△AEG 中,2==-,AE x AG x ,∴()1322=⋅⋅⋅=-AEGSAE AG sinA x x . ∴()2333333323442=-=⋅-=-+ABCAEGy SSx x x x ∴其图象为开口向上的二次函数.故选D.1. (2015广东梅州)已知:△ABC 中,点E 是AB 边的中点,点F 在AC 边上,若以A 、E 、F 为顶点的三角形与△ABC 相似,则需要增加的一个条件是 .(写出一个即可)解析 △ABC 中,点E 是AB 边的中点,点F 在AC 边上,若以A 、E 、F 为顶点的三角形与△ABC 相似,则根据三角形中位线定理和相似三角形的判定需要增加的一个条件可以是:F 是AC 的中点或EF ∥BC 或∠AEF =∠B 或∠AEF =∠C 或∠AFE =∠B 或∠AFE =∠C ,等,答案不唯一.2. (2015广东佛山)如图,在Rt △ABC 中,AB =BC ,∠B =90°,AC =102,四边形BDEF 是△ABC 的内接正方形(点D 、E 、F 在三角形的边上).则此正方形的面积是 .解析 ∵在Rt △ABC 中,AB =BC ,∠B =90°,AC =102,∴AB =BC =10,45A ∠=︒.∵四边形BDEF 是正方形,∴AEF ∆是等腰直角三角形. ∴5BF EF AF ===.∴此正方形的面积25.3. (2015广东汕尾)如图,在□ABCD 中,BE 平分∠ABC ,BC = 6,DE = 2,则□ABCD 周长等于 .解析∵四边形ABCD 是平行四边形,∴,//AD BC AD BC = .∴AEB EBC ∠=∠.∵BC = 6,DE = 2,∴6,4AD AE == .∵BE 平分∠ABC ,即ABE EBC ∠=∠.∴AEB ABE ∠=∠.∴4AB AE ==.4. (2015广东广州)如图,ABC ∆中,DE 是BC 的垂直平分线,DE 交AC 于点E ,连接BE ,若BE =9,BC =12,则cosC = .解析∵DE 是BC 的垂直平分线,∴0,,90BD CD BE CE EDC ==∠= .∵BE =9,BC =12,∴6,9CD CE == . ∴6293CD cosC CE ===. 5. (2015广东广州)如图,四边形ABCD 中,∠A =90°,33AB =,AD =3,点M ,N 分别为线段BC ,AB 上的动点(含端点,但点M 不与点B 重合),点E ,F 分别为DM ,MN 的中点,则EF 长度的最大值为 .解析 如答图,连接DN ,∵点E ,F 分别为DM ,MN 的中点,∴12EF DN =. ∴要使EF 最大,只要DN 最大即可.根据题意,知当点N 到达点B 与B 重合时,DN 最大. ∵∠A =90°,33AB =,AD =3, ∴()223336DN DB ==+=,此时,132EF DN ==.6 (2015广东深圳)如图,已知点A 在反比例函数(0)ky x x=<上,作Rt ABC ∆,点D 为斜边AC 的中点,连DB 并延长交y 轴于点E ,若BCE ∆的面积为8,则k = .解析 由题意,182BCE S BC OE ∆=⋅⋅=,∴16BC OE ⋅=. ∵点D 为斜边AC 的中点,∴BD DC =. ∴DBC DCB EBO ∠=∠=∠. 又∵ABC EOB ∠=∠,∴ABC EOB ∆∆∽. ∴BC ABOB OE=. ∴16k OB AB BC OE =⋅=⋅=.7. (2015广东)如图,△ABC 三边的中线AD ,BE ,CF 的公共点G ,若12ABC S =△,则图中阴影部分面积是 .解析如答图,各三角形面积分别记为①②③④⑤⑥,∵△ABC 三边的中线AD ,BE ,CF 的公共点G ,∴AG =2GD . ∴①=②,③=⑥,④=⑤,①+②=2③,④+⑤=2⑥. ∵12=△ABC S ,∴12=①+②+③+④+⑤+⑥. ∴1222=①+②④+⑤①+②++④+⑤+, ∴()12312422=⇒+=⇒+=2②2⑤2②++2⑤+②⑤②⑤,即图中阴影部分面积是4. ∴□ABCD 周长等于()220AB BC +=.8. (2015广东珠海)如图,在111A B C 中,已知,,111111745A B B C A C ,依次连接111A B C 的三边中点,得222A B C ,再依次连接222A B C 的三边中点得333A B C ,…,则555A B C 的周长为.解析 ∵A B C 222的三顶点在A B C 111的三边中点,∴A B C 222的周长是A B C 111周长的12;∵A B C 333的三顶点在A B C 222的三边中点,∴A B C 333的周长是A B C 222周长的12,是A B C 111周长的212; ∵A B C 444的三顶点在A B C 333的三边中点,∴A B C 444的周长是A B C 333周长的12,是A B C 111周长的312; ∵A B C 555的三顶点在A B C 444的三边中点,∴A B C 555的周长是A B C 444周长的12,是A B C 111周长的412. 又∵,,A B B C A C 111111745,∴A B C 555的周长为A B B C AC 111114117451216.1. (2015广东佛山)如图,在水平底面上树立着一面墙AB ,墙外有一盏路灯D .光线DC 恰好通过墙的最高点B ,且与地面形成37°角.墙在灯光下的影子为线段AC ,并测得AC =5.5米(1)求墙AB 的高度(结果精确到0.1米)(参考数据:tan37°≈0.75, sin37°≈0.60,cos37°≈0.80) (2)如果要缩短影子AC 的长度,同时不能改变墙的高度和位置,请你写出两种不同的方法.解析 :(1)∵tan ABACB AC∠=, ∴tan 5.5tan37 5.50.75 4.125 4.1AB AC ACB =⋅∠=⋅︒≈⨯=≈.答:墙AB 的高度为4.1米.(2)如果要缩短影子AC 的长度,同时不改变墙的高度和位置,可以将路灯的电线杆加长或将路灯的电线杆向墙边靠近。

2. (2015广东广州)如图,正方形ABCD 中,点E 、F 分别在AD ,CD 上,且AE DF =,连接BE ,AF . 求证:BE AF =.解析 证明:∵四边形ABCD 是正方形,∴0,90AD AB D EAB =∠=∠= .又∵AE DF =,∴()EAB FDA SAS ∆∆≌. ∴BE AF =.3. (2015广东广州)如图,AC 是⊙O 的直径,点B 在⊙O 上,∠ACB =30°.(1)利用尺规作∠ABC 的平分线BD ,交AC 于点E ,交⊙O 于点D ,连接CD (保留作图痕迹,不写作法); (2)在(1)所作的图形中,求ABE ∆与CDE ∆的面积之比.解析:(1)作图如下:(2)如答图2,过点B 作BM AC ⊥于点M ,过点C 作AN BD ⊥于点N ,设AB a =,∵AC 是⊙O 的直径,∴90ABC ∠=︒.∵∠ACB =30°,∴33,2BC a BM a ==. ∵BD 是∠ABC 的平分线,∴45ABD CBD ∠=∠=︒.∴62CN a =.∴312622aBM CN a ==. 又∵,BAE CDE ABE DCE ∠=∠∠=∠ ,∴ABE CDE ∆∆∽.∴221122ABE CDE S BM S CN ∆∆⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭. 4. (2015广东深圳)小丽为了测旗杆AB 的高度,小丽眼睛距地图1.5米,小丽站在C 点,测出旗杆A 的仰角为30o ,小丽向前走了10米到达点E ,此时的仰角为60o ,求旗杆的高度.解析:由题意,030,60,10ADG AFG DF ∠=∠== ,∴030DAF AFG ADG ∠=∠-∠=.∴FAD FDA ∠=∠.∴10DF AF ==. ∴3sin 10532AG AF AFG =⋅∠=⨯=. ∵ 1.5BG CD ==,∴3532AB AG BG =+=+. 5 (2015广东)如图,已知锐角△AB C.(1)过点A 作BC 边的垂线MN ,交BC 于点D (用尺规作图法,保留作图痕迹,不要求写作法); (2)在(1)条件下,若BC =5,AD =4,tan ∠BAD =34,求DC 的长.解析:(1)作图如答图所示,AD 为所作.(2)在Rt △ABD 中,AD =4,tan ∠BAD =34=BD AD , ∴344=BD ,解得BD =3. ∵BC =5,∴DC =AD ﹣BD =5﹣3=2.6. (2015广东佛山)如图,在ABCD 中,对角线AC 、BD 相交于点O ,点E 、F 是AD 上的点,且AE EF FD ==. 连结BE 、BF ,使它们分别与AO 相交于点G 、H . (1)求 : EG BG 的值; (2)求证:AG OG =;(3)设 ,AG a GH b HO c ===,,求 : : a b c 的值.解析:(1)∵AE EF FD ==,∴13AE AD =. ∵四边形ABCD 是平行四边形,∴//AD BC .∴AEG CBG ∆∆∽.∴13EG AE BG AD ==,即1: 3EG BG =. (2)证明:由(1)AEG CBG ∆∆∽,∴13AG CG =.∵四边形ABCD 是平行四边形,∴AO OC =. ∴2CG AO AG =-. ∴123AG AO AG =-,即12AG AO =.∴AG OG =.(3)如答图,过点F 作//FM AC 交BD 于点M ,∵AE EF FD ==,∴13DM DF DO DA ==.∴16DM BD =,56BM BD =. ∵12BO BD =.∴35BO BM =.∵//FM AC ,∴BOH BMF ∆∆∽.∴35HO BO FM BM ==,即35HO FM =.∵//FM AC ,∴DFM DAO ∆∆∽.∴13FM DF AO DA ==,即13FM AO =.∴33115535HO FM AO AO ==⋅=.由(2)得12AG AO =,∴1132510GH AO AG HO AO AO AO AO =--=--=.∵ ,AG a GH b HO c ===,, ∴131532: : : : : : 5 : 3 : 22105101010a b c AO AO AO ===. 7. (2015广东珠海)如图,某塔观光层的最外沿点E 为蹦极项目的起跳点.已知点E 离塔的中轴线AB 的距离OE 为10米,塔高AB 为123米(AB 垂直地面BC ),在地面C 处测得点E 的仰角45α从C 沿CB 方向前行40米到达D 点,在D 处测得塔尖A 的仰角为60β,求点E 离地面的高度EF .(结果精确到1米,参考数据21.4,3 1.7 )解析:在Rt ADB 中,0tan tan 60AB DB β,即1233DB ,∴4133DB .∴413104030413CFDB FB CD .在中,∵45α,∴30413100EFCF.答:点E 离地面的高度EF 为100米.8. (2015广东珠海)已知,ABC AB AC ,将ABC 沿BC 方向平移得到DEF .(1)如图1,连接,BD AF ,则BD AF (填“>”,“<”或“=”号);(2)如图2,M 为AB 边上一点,过M 作BC 的平行线MN 分别交边,,AC DE DF 于点,,G H N ,连接,BH GF . 求证:BHGF .解析:(1)=.(2)证明: ∵将ABC 沿BC 方向平移得到DEF ,MN ∥AB ,∴根据平移的性质,得,,MG HN GCNF MGCHNF .∵ABAC ,∴ABC ACB .又∵MN ∥AB ,∴四边形BCGM 是等腰梯形.∴,MB GC GMBMGC .∴,MBMF GMB HNF .又∵MG HN ,∴MH GN .在BMH 和FNG 中,∵,,MB MF HMBGNF MHNG ,∴BMH ≌FNG SAS .∴BH GF .9 (2015广东珠海)五边形ABCDE 中,90,EAB ABC BC AB D BC ,且满足以点B 为圆心,AB 长为半径的圆弧AC 与边DE 相切与点F ,连接,BE BD . (1)如图1,求EBD 的度数;(2)如图2,连接AC ,分别与,BE BD 相交于点,G H ,若115,D AB BC ,求AG HC 的值.解析:(1)如答图1,连接BF ,∵圆弧AC 与边DE 相切与点F ,∴BF DE .在Rt BAE 和Rt BEF 中,∵,BA BF BE BE ,∴RtBAE ≌Rt BEF HL .∴12.同理,34. ∵90ABC,∴2345,即45EBD .(2)如答图2,连接BF 并延长交CD 的延长线于点P ,∵415,∴由(1)知,3415,即30PBC . ∵90ABC ,12,∴1230.在RtABE 中,∵1,130AB ,∴323,33AEBE . 在ABE 和CBP 中,13090PBC AB CBBAE BCP ,∴ABE ≌CBP ASA .∴233BP BE.∴2313PF . ∵60P,∴23DF .∴23CDDF .∵45,75EAG DCH AGE BDC,∴AEG∽CHD.∴AG AECD CH.∴AG CH CD AE.∴323323AG CH。

相关文档
最新文档