多元统计分析课程论文

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

多元统计分析课程论文 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

《应用多元统计分析》期末

论文

农村居民生活消费分析

——2014年我国农村居民消费分析

目录

农村居民生活消费分析

——2014年我国农村居民消费分析

摘要:本文综合了因子分析与聚类分析,先进行因子分析, 再用因子分析的结果进行聚类分析。在2014 年农村居民消费结构的数据基础上, 本文较多运用了31个省份的因子得分,计算出单因子情况下31个省份的得分和31个省份在八项消费产生的3个因子上的综合得分, 再把该得分作为31个省份的属性, 采用离差平方和(ward)方法进行聚类, 最后将城市分为三层,对整体进行综合评价和说明。

关键词:因子分析;聚类分析;综合评价

2014年我国农村居民消费分析

一、引言

由于我国国土辽阔,自然条件差异很大,经济发展极不平衡,一些地区、一些乡村、一些居民群体的生活目前与小康指标仍有差距,有的甚至还没有解决温饱问题。我国现有65%的人口在农村,农村居民的生活问题是全面建设小康社会的主要问题。因此,笔者就我国农村居民生活消费结构进行因子分析和聚类分析,以期对农村居民生活消费的问题作一研究,并以此寻求合理的解决思路。

二、因子分析法

、统计思想

因子分析的基本思想是通过对变量相关系数矩阵内部结构的研究,找出能控制所以变量的少数几个随机变量去描述多个变量之间的相关关系,并依据相关性的大小将变量分组,使得同组内的变量之间相关性较高,不同组的变量相关性较低。每组代表一个基本结构,这个基本结构成为公共因子。对于所研究的问题试图用最小个数的不可观测的所谓公共因子的线性函数与特殊因子之和来描述原来可观测的每一个变量。

、因子的确定

利用2014年各地区农村居民家庭平均每人生活消费支出资料。摘自《中国统计年鉴(2015)》做因子相关性分析得:

表一、相关矩阵表

因子相关相关矩阵反映我国农村居民消费结构的各指标之间存在较高的相关性,而变量间存在较为明显的相关关系是应用因子分析提取主因子,并以此为依据构造评价体系的基础。因此存在可以采用因子分析进行分析的可能。

分析过程

共同度描述的是变量Xi(i=1,2,,m)对m个因子的依赖程度,也就是用m个因子描述变量的有效性。本文用因子分析法,选取特征值r>1的变量作为主因子并计算其共同度。

表二、公因子方差表

由表二可以看出,主因子对每个变量指标有很强的解释力。

表三、解释的总方差表

从衡量每个公因子F i(i=1、2.....n)对m个变量解释能力的方差贡献率指标来看,累计方差贡献率达到%,说明主因子对变量能够起到较好的概括作用,其中第一主因子起到了尤其重要的作用,其旋转后的方差贡献率达到%。

因子载荷矩阵的元素ai代表了变量Xi与因子F i线性联系的紧密程度,而第j列的因子载荷量a1、a2.....ai,则说明了第j个因子F i与各变量的联系程度,在实际中,常常根据该列载荷中绝对值较大的载荷所对应的变量来说明这个因子的意义。

表四、旋转成分矩阵表

由表四可知:第一主因子在食品、居住、家庭设备及服务、交通和通讯以及其他商品和服务等5个指标上的系数比较大,其主要反应的是生活消费水平的提高;第二主因子在衣着、医疗保健2个指标上的系数比较大,其主要反映的是日常生活中最基本的消费情况;第三主因子在文教娱乐用品及服务指标上的系数比较大,其主要反映的是生活消费水平进一步提高的情况。3个主因子从不同的侧面反映了居民的生活质量,从整体来看,则反映了农村居民从生存型消费、数量型消费向发展型消费、质量型消费的发

展方向。第一主因子可以解释原始数据全部方差的%,第二主因子可以解释原始数据全部方差的%,第三主因子可以解释原始数据全部方差的%。由此看出,我国现阶段农村居民消费的刚性支出是维护基本生活的吃、必要的的交通、通讯和商品及服务。

因子得分是利用因子分析法对原始数据进行评价的依据。以2014年各地区农村居民家庭平均每人生活消费支出资料为依据,我们得到因子得分系数矩阵和因子得分。

表五、成分得分系数矩阵表

表六、因子得分表

以主因子对原始数据的贡献率为权数加权,得出个城市的综合得分F,即F=((F1*+F2*+F3*)/

表七、因子综合得分表

可以看出,第一主因子的前10位排名依次为上海、北京、天津、福建、浙江、广东、江苏、四川、海南、湖南;第二主因子的前10位排名依次为上海、青海、天津、新疆、北京、内蒙古、浙江、黑龙江、辽宁、河北;第三主因子前10位排名依次为内蒙古、浙江、湖南、吉林、辽宁、湖北、江苏、黑龙江、陕西、山西。综合因子前10位排名与第一主因子大致相同,这就进一步说明,我国农村居民的整体消费水平由第一类地区的消费水平所决定。考虑到不同地区的消费习惯和物价水平的影响,因子分析排名基本符合实际情况。第二主因子的排名与第一主因子、第三主因子相差较大。

三、聚类分析法

系统聚类法的思想

首先,将N个样品看成N类,然后将性质最近的两类合并成一个新类,我们得到N-1类,再从中找出最近的两类合并变成N-2类,如此下去,最后所有样品归为一类。

系统聚类

离差平方和 Ward方法的思想来源于方差分析,如果分类正确,同样品的离差平方和应当较小,类与类之间的离差平方和应当较大。对表中综合因子得分运用统计分析软件SPSS进行聚类分析的WARD(离差平方和)法进行最优分割,把我国31个省、直辖市、自治区的农村居民生活消费情况归来为3大类。

图一、系统聚类图

表八、聚类图中数字代表的省市

由上图知第东部沿海地区农村居民在科技教育、居住、服务方面的消费普遍较高;西部、北部地区农村居民在科技教育、居住、服务方面的消费普

相关文档
最新文档