高三数学一轮总复习第十章算法统计与概率第二节统计初步第二课时用样本估计总体课件理
2022版高考数学一轮复习第10章统计第2讲用样本估计总体课件
某商家因店面需重新装修,现需租赁一家新店面进行周转,合约期 一年.新店面只需安装该品牌节能灯5支(同种型号)即可正常营业.经了 解,A型20瓦和B型55瓦的两种节能灯照明效果相当,都适合安装.已 知A型和B型节能灯每支的价格分别为120元、25元,当地商业电价为 0.75元/千瓦时.假定该店面一年周转期的照明时间为3 600小时,若正常 营业期间灯坏了立即购买同型灯管更换(用频率估计概率).
直径落在区间[5.43,5.47)内的个数为 ( )
A.10
B.18
C.20
D.36
第二十三页,编辑于星期六:四点 五分。
(2)(2019年新课标Ⅲ)为了解甲、乙两种离子在小鼠体内的残留程度, 进行如下试验:将200只小鼠随机分成A,B两组,每组100只,其中给A 组小鼠服甲离子溶液,给B组小鼠服乙离子溶液,给每只小鼠服的溶液 体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留 在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:
若 选 择 B 型 节 能 灯 , 一 年 共 需 花 费 (5 + 4)×25 + 3 600×5×55×0.75×10-3=967.5(元).
因为967.5>870,所以该商家应选择A型节能灯.
第三十二页,编辑于星期六:四点 五分。
扇形图、折线图的应用 (1)某地区经过一年的新农村建设,经济收入增加了一倍, 实现翻番.为更好地了解该地区的经济收入变化情况,现统计了该地区 新农村建设前后的经济收入构成比例,得到如下扇形图:
第十一页,编辑于星期六:四点 五分。
1.(2019年长春期末)10名学生在一次数学考试中的成绩分别为x1,
x2,…,x10,要研究这10名学生成绩的平均波动情况,则最能说明问题
高考数学一轮复习-第十章 统计与统计案例 第二节 用样本估计总体课件 理
(3)某地政府调查了工薪阶层 1 000 人的月工资收入,并根据 调查结果画出如图所示的频率分布直方图,为了了解工薪阶层对 月工资收入的满意程度,要用分层抽样的方法从调查的 1 000 人 中抽出 100 人做电话询访,则(30,35](百元)月工资收入段应抽出 ________人.
A.逐年比较,2008 年减少二氧化硫排放量的效果最显著 B.2007 年我国治理二氧化硫排放显现成效 C.2006 年以来我国二氧化硫年排放量呈减少趋势 D.2006 年以来我国二氧化硫年排放量与年份正相关
(2)(2015·湖北高考)某电子商务公司对 10 000 名网络购物者 2014 年度的消费情况进行统计,发现消费金额(单位:万元)都在区间 [0.3,0.9]内,其频率分布直方图如图所示.
(2) ① 由 0.1×1.5 + 0.1×2.5 + 0.1a + 0.1×2.0 + 0.1×0.8 + 0.1×0.2=1,解得 a=3.
②区间[0.3,0.5)内的频率为 0.1×1.5+0.1×2.5=0.4,故 [0.5,0.9]内的频率为 1-0.4=0.6.
因 此 , 消 费 金 额 在 区 间 [0.5,0.9] 内 的 购 物 者 的 人 数 为 0.6×10 000=6 000.
答案:(1)A
在使用茎叶图时,一定要观察所有的样本数据,弄清楚这个 图中数字的特点,不要漏掉了数据,也不要混淆茎叶图中茎与叶 的含义.
1.如图是 2015 年某大学自主招生面试环节中,七位评 委为某考生打出的分数的茎叶统计图,去掉一个最高分和一 个最低分后,所剩数据的平均数和众数依次为( )
高考数学一轮总复习第十章算法初步统计与统计案例10.3用样本估计总体课件理
16+24+x+y+16+14=200, 解:(1)根据题意有1y+6+162+4+14x=32, 解得xy==8500,. ∴p=0.4,q=0.25. 补全频率分布直方图如图所示:
第二十九页,共47页。
(2)根据题意,网购金额在(1,2]内的人数为242+416×5=3(人),记为:a,b,c. 网购金额在(4,5]内的人数为241+616×5=2(人),记为 A,B. 则从这 5 人中随机选取 2 人的选法为(a,b),(a,c),(a,A),(a,B),(b,c), (b,A),(b,B),(c,A),(c,B),(A,B)共 10 种. 记 2 人来自不同群体的事件为 M,则 M 中含有(a,A),(a,B),(b,A),(b,B), (c,A),(c,B)共 6 种. ∴P(M)=160=35.
若将运动员按成绩由好到差编为 1~35 号,再用系统抽样方法从中抽取 7 人 , 则其中成绩在区间[139,151]上的运动员人数是________.
解析:35÷7=5,因此可将编号为 1~35 的 35 个数据分成 7 组,每组有 5 个数据, 在区间[139,151]上共有 20 个数据,分在 4 个小组中,每组取 1 人,共取 4 人.
概念
优点与缺点
众数通常用于描述变量的值出现
众数
一组数据中重复出 次数最多的数.但显然它对其他 现次数 最多 的数 数据信息的忽视使它无法客观地
反映总体特征
第九页,共47页。
把一组数据按从 小到大的 中位数等分样本数据所占频
率,它不受少数几个极端值的 顺序排列,处在 中间(z位hō置ngj的iān)
频率(pínlǜ)分布直方图
[典 例 导 引]
某网络营销部门随机抽查了某市 200 名网友在 2017 年 11 月 11 日的网
高考数学一轮复习 第十章 算法初步、统计与统计案例 10.3 用样本估计总体学案(文,含解析)新人
学习资料
10.3用样本估计总体
必备知识预案自诊
知识梳理
1.统计图表
(1)频率分布直方图的画法步骤
①求极差(即一组数据中与的差);
②决定与;
③将数据;
④列;
⑤画。
(2)频率分布折线图和总体密度曲线
①频率分布折线图:连接频率分布直方图中各小长方形上端的,就得到频率分布折线图.
②总体密度曲线:随着样本容量的增加,作图时增加,减小,相应的频率折线图会越来越接近于一条光滑曲线,统计中称这条光滑曲线为总体密度曲线.总体密度曲线反映了总体在各个范围内取值的百分比,它能提供更加精细的信息。
(3)茎叶图:茎叶图中茎是指的一列数,叶是从茎的生长出来的数。
当样本数据较少时,用茎叶图表示数据的效果较好,它不但可以保留所有信息,而且可以随时记录,给数据的记录和表示都带来方便.
(4)茎叶图的画法步骤
第一步:将每个数据分为茎(高位)和叶(低位)两部分;
第二步:将最小茎与最大茎之间的数按大小次序排成一列;
第三步:将各个数据的叶依次写在其茎的两侧。
2.样本的数字特征。
高三数学一轮复习第十篇统计与统计案例第2节用样本估计总体理
反映了各个样本数据聚集
标准差是样本数据到平均数的一种平均 于样本平均数周围的程
标 距离,即 s= 准
度.标准差越小,表明各个 样本数据在样本平均数周
差
1 n
[( x1
x)2
( x2
x)2
...
( xn
x)2 ]
围越集中;标准差越大,表 明各个样本数据在样本平
均数的两边越分散
标准差的平方,即 方 差 s2= 1 [(x1- x )2+(x2- x )2+…+(xn- x )2]
优缺点
用茎叶图表示数据的优点是(1)所有的信息都可以从茎叶图 中得到;(2)便于记录和读取,能够展示数据的分布情况.缺 点是当样本数据较多或数据位数较多时,茎叶图就显得不太 方便
4.样本的数字特征
数字 特征 众数
中位数
定义
在一组数据中出现 次数最多的数据 将一组数据按大小 顺序依次排列,处在 最中间位置的一个 数据(或最中间两个 数据的平均数)
第2节 用样本估计总体
最新考纲 1.了解分布的意义和作用,能根据列 频率分布表,会画频率分布直方图、 频率折线图、茎叶图,体会它们各自 的特点. 2.理解样本数据标准差的意义和作 用,会计算数据标准差. 3.能从样本数据中提取基本的数字 特征(如平均数、标准差),并做出合
理的解释. 4.会用样本的频率分布估计总体分 布,会用样本的基本数字特征估计总 体的基本数字特征,理解用样本估计 总体的思想. 5.会用随机抽样的基本方法和样本 估计总体的思想解决一些简单的实 际问题.
夯基自测
1.在样本频率分布直方图中,共有 11 个小长方形,若中间一个小长方形的面 积等于其他 10 个小长方形面积和的 1 ,且样本容量为 160,则中间一组的频
高考一轮复习第10章统计统计案例第2讲用样本估计总体
第二讲 用样本估计总体知识梳理·双基自测 知识梳理知识点一 用样本的频率分布估计总体分布 (1)频率分布表与频率分布直方图频率分布表和频率分布直方图,是从各个小组数据在样本容量中所占比例大小的角度,来表示数据分布规律,从中可以看到整个样本数据的频率分布情况.绘制频率分布直方图的步骤为:①_求极差__;②_决定组距与组数__;③_将数据分组__;④_列频率分布表__;⑤_画频率分布直方图__.(2)频率分布折线图顺次连接频率分布直方图中_各小长方形上端的中点__,就得到频率分布折线图. (3)总体密度曲线总体密度曲线反映了总体在各个范围内取值的百分比,它能提供更加精细的信息. 知识点二 茎叶图(1)茎叶图中茎是指_中间__的一列数,叶是从茎的_旁边__生长出来的数.(2)茎叶图的优点是可以_保留__原始数据,而且可以_随时__记录,这对数据的记录和表示都能带来方便.知识点三 样本的数字特征(1)众数:一组数据中出现次数最多的数.(2)中位数:将数据从小到大排列,若有奇数个数,则最中间的数是中位数;若有偶数个数,则中间两数的平均数是中位数.(3)平均数:x =_x 1+x 2+…+x nn__,反映了一组数据的平均水平.(4)标准差: s =_1n[x 1-x2+x 2-x2+…+x n -x2]__,反映了样本数据的离散程度.(5)方差:s 2=_1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2]__,反映了样本数据的离散程度.重要结论(1)若一组数据x i (i =1,2,…,n)的平均数为x -,方差为s 2,则数据组ax i +b(i =1,2,…,n ,a ,b 为常数)的平均数为a x -+b ,方差为a 2·s 2.(2)频率分布直方图与众数、中位数与平均数的关系 ①最高的小长方形底边中点的横坐标即是众数.②中位数左边和右边的小长方形的面积和是相等的,均为12.③平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.双基自测题组一 走出误区1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)平均数、众数与中位数从不同的角度描述了一组数据的集中趋势.( √ ) (2)一组数据的众数可以是一个或几个,那么中位数也具有相同的结论.( × )(3)从频率分布直方图得不出原始的数据内容,把数据表示成直方图后,原有的具体数据信息就被抹掉了.( √ )(4)茎叶图一般左侧的叶按从大到小的顺序写,右侧的叶按从小到大的顺序写,相同的数据可以只记一次.( × )(5)在频率分布直方图中,最高的小长方形底边中点的横坐标是众数.( √ ) (6)在频率分布直方图中,众数左边和右边的小长方形的面积和是相等的.( × ) 题组二 走进教材2.(P 81A 组T1改编)已知某班级部分同学一次测验的成绩统计如图,则其中位数和众数分别为( B )A .95,94B .92,86C .99,86D .95,91[解析]由茎叶图可知,此组数据由小到大排列依次76,79,81,83,86,86,87,91,92,94,95,96,98,99,101,103,114,共17个,故92为中位数,出现次数最多的为众数,故众数为86,故选B .3.(P 7T1)如图是100位居民月均用水量的频率分布直方图,则月均用水量为[2,2.5)范围内的居民有_25__人.[解析]100×(0.5×0.5)=25(人).题组三走向高考4.(2020·新课标Ⅲ)设一组样本数据x1,x2,…,x n的方差为0.01,则数据10x1,10x2,…,10x n的方差为( C )A.0.01 B.0.1C.1 D.10[解析]∵样本数据x1,x2,…,x n的方差为0.01,∴根据任何一组数据同时扩大几倍方差将变为平方倍增长,∴数据10x1,10x2,…,10x n的方差为:100×0.01=1,故选C.5.(2020·天津)从一批零件中抽取80个,测量其直径(单位:mm),将所得数据分为9组:[5.31,5.33),[5.33,5.35),…,[5.45,5.47),[5.47,5.49],并整理得到如下频率分布直方图,则在被抽取的零件中,直径落在区间[5.43,5.47)内的个数为( B )A.10 B.18C.20 D.36[解析]直径落在区间[5.43,5.47)的频率为(6.25+5)×0.02= 0.225,则被抽取的零件中,直径落在区间[5.43,5.47)内的个数为0.225×80 =18个,故选B.考点突破·互动探究考点一频率分布直方图——自主练透例1 (1)(2021·江西赣州十四县联考)中央电视台播出《中国诗词大会》火遍全国,下面是组委会在选拔赛时随机抽取的100名选手的成绩,按成绩分组,得到的频率分布表如下所示:组号分组频数频率第1组[160,165) 0.100笫2组[165,170) ①第3组[170,175) 20 ②第4组[175,180) 20 0.200第5组[180,185) 10 0.100合计100 1.00(ⅰ)请先求出频率分布表中①、②位置的相应数据,再完成频率分布直方图(用阴影表示).(ⅱ)为了能选拔出最优秀的选手,组委会决定在笔试成绩高的第3,4,5组中用分层抽样抽取5名选手进入第二轮面试,则第3,4,5组每组各抽取多少名选手进入第二轮面试?(ⅲ)在(ⅱ)的前提下,组委会决定在5名选手中随机抽取2名选手接受考官A面试,求第4组至少有一名选手被考官A面试的概率.(2)(2021·福建漳州质检)2018年9月的台风“山竹”对我国多个省市的财产造成重大损害,据统计直接经济损失达52亿元.某青年志愿者组织调查了某地区的50个农户在该次台风中造成的直接经济损失,将收集的损失数据分成五组:[0,2 000],(2 000,4 000],(4 000,6 000],(6 000,8 000],(8 000,10 000](单位:元),得到如图所示的频率分布直方图.(ⅰ)试根据频率分布直方图估计该地区每个农户的损失(同一组中的数据用该区间的中点值代表);(ⅱ)台风后该青年志愿者与当地政府向社会发出倡议,为该地区的农户捐款帮扶,现从这50户损失超过4 000元的农户中随机抽取2户进行重点帮扶,设抽出损失超过8 000元的农户数为X,求X的分布列和数学期望.[解析](1)(ⅰ)第1组的频数为100×0.100=10,所以①处应填的数为100-(10+20+20+10)=40, 从而第2组的频率为40100=0.400.②处应填的数为1-(0.1+0.4+0.2+0.1)=0.200. 频率分布直方图如图所示.(ⅱ)因为第3,4,5组共有50名选手,所以利用分层抽样在50名选手中抽取5名选手进入第二轮面试时,每组抽取的人数分别为:第3组:2050×5=2,第4组:2050×5=2,第5组:1050×5=1,所以第3,4,5组分别抽取2人,2人,1人进入第二轮面试. (ⅲ)记“第4组至少有一名选手被考官A 面试”为事件A , 则P(A)=C 12C 13+C 22C 25=710. ⎝ ⎛⎭⎪⎫或P A =1-P A -=1-C 23C 25=710 (2)(ⅰ)记每个农户的平均损失为x -元,则x -=1 000×0.3+3 000×0.4+5 000×0.18+7 000×0.06+9 000×0.06=33 601;(ⅱ)由频率分布直方图,可得损失超过 4 000元的农户共有(0.000 09+0.000 03+0.000 03)×2 000×50=15(户),损失超过8 000元的农户共有0.000 03×2 000×50=3(户),随机抽取2户,则X 的可能取值为0,1,2; 计算P(X =0)=C 212C 215=2235,P(X =1)=C 112C 13C 215=1235,P(X =2)=C 23C 215=135.所以X 的分布列为:X0 1 2P2235 1235 135数学期望为E(X)=0×2235+1×1235+2×135=25.名师点拨应用频率分布直方图时的注意事项用频率分布直方图解决相关问题时,应正确理解图表中各个量的意义,识图掌握信息是解决该类问题的关键.频率分布直方图有以下几个要点:(1)纵轴表示频率/组距;(2)频率分布直方图中各长方形高的比也就是其频率之比;(3)频率分布直方图中每一个矩形的面积是样本数据落在这个区间上的频率,所有的小矩形的面积之和等于1,即频率之和为1.〔变式训练1〕(1)(2021·安徽“皖南八校”摸底)某校高三年级有400名学生,在一次数学测试中,成绩都在[80,130](单位:分)内,其频率分布直方图如图,则这次测试数学成绩不低于100分的人数为_220__.(2)(2021·山西适应性考试)某病毒引起的肺炎的潜伏期平均为7天左右,短的约2~3天,长的约10~14天,甚至有20余天.某医疗机构对400名确诊患者的潜伏期进行统计,整理得到以下频率分布直方图.根据该直方图估计:要使90%的患者显现出明显病状,需隔离观察的天数至少是( C )A .12B .13C .14D .15[解析] (1)根据频率分布直方图知: (2a +0.04+0.03+0.02)×10=1⇒a =0.005; 计算出数学成绩不低于100分的频率为: (0.03+0.02+0.005)×10=0.55;所以这次测试数学成绩不低于100分的人数为0.55×400=220人.(2)由题可知,第一,二,三,四,五组的频率分别为0.16,0.4,0.32,0.08,0.04. 因为前三组的频率和为0.88, 故要使90%的患者显现出明显病状,则需隔离观察的天数至少是:13+0.9-0.880.02=14,故选C .考点二 茎叶图——师生共研例2 (多选题)(2021·四川省乐山市调研改编)胡萝卜中含有大量的β-胡萝卜素,摄入人体消化器官后,可以转化为维生素A ,现从a ,b 两个品种的胡萝卜所含的β-胡萝卜素(单位mg)得到茎叶图如图所示,则下列说法正确的是( ABD )A .x a <x bB .a 的方差大于b 的方差C .b 品种的众数为3.31D .a 品种的中位数为3.27 [解析] 由茎叶图得:b 品种所含β-胡萝卜素普遍高于a 品种, ∴x a <x b ,故A 正确;a 品种的数据波动比b 品种的数据波动大, ∴a 的方差大于b 的方差,故B 正确; b 品种的众数为3.31与3.41,故C 错误; a 品种的数据的中位数为:3.23+3.312=3.27,故D 正确.名师点拨茎叶图的绘制及应用(1)茎叶图的绘制需注意:①“叶”的位置只有一个数字,而“茎”的位置的数字位数一般不需要统一;②重复出现的数据要重复记录,不能遗漏,特别是“叶”的位置上的数据.(2)茎叶图通常用来记录两位数的数据,可以用来分析单组数据,也可以用来比较两组数据.通过茎叶图可以确定数据的中位数,数据大致集中在哪个茎,数据是否关于该茎对称,数据分布是否均匀等.〔变式训练2〕(2019·山东)如图所示的茎叶图记录了甲,乙两组各5名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则x 与y 的值分别为( A )A .3,5B .5,5C .3,7D .5,7[解析] 甲组数据的中位数为65,由甲、乙两组数据的中位数相等,得y =5.又甲、乙两组数据的平均值相等,∴15×(56+65+62+74+70+x)=15×(59+61+67+65+78),∴x =3.故选A . 考点三 样本数字特征——多维探究 角度1 样本数字特征与频率分布直方图例3 (1)如图所示是一样本的频率分布直方图,则由图形中的数据,可以估计众数与中位数分别是( B )A .12.5,12.5B .12.5,13C .13,12.5D .13,13[解析] 由频率分布直方图可知,众数为10+152=12.5,因为0.04×5=0.2,0.1×5=0.5,在频率分布直方图中,中位数左边和右边的面积相等,所以中位数在区间[10,15)内.设中位数为x ,则(x -10)×0.1=0.5-0.2,解得x =13.角度2 样本数字特征与茎叶图(2)将某选手的9个得分去掉1个最高分,去掉1个最低分,7个剩余分数的平均分为91,现场作的9个分数的茎叶图后来有1个数据模糊,无法辨认,在图中以x 表示:⎪⎪⎪897 74 0 1 0 x 9 1则7个剩余分数的方差为_367__.[解析] 由图可知去掉的两个数是87,99,所以87+90×2+91×2+94+90+x =91×7,解得x =4,∴s 2=17[(87-91)2+(90-91)2×2+(91-91)2×2+(94-91)2×2]=367.角度3 样本数字特征的计算(3)(2021·湖北武汉、襄阳、荆门、宜昌四地六校考试联盟联考)已知某7个数据的平均数为5,方差为4,现又加入一个新数据5,此时这8个数的方差s 2为( C )A .52B .3C .72D .4[解析] 设某7个数据分别为a 1,a 2,…,a 7, 则由题意得a 1+a 2+…+a 7=5×7=35, (a 1-5)2+(a 2-5)2+…+(a 7-5)2=4×7=28, 加入新数据5后的平均数x -=35+58=5,方差s 2=a 1-52+a 2-52+…+a 7-52+5-528=288=72.故选C .名师点拨平均数与方差都是重要的数字特征,是对总体的一种简明的描述,它们所反映的情况有着重要的实际意义,平均数,中位数,众数描述其集中趋势,方差和标准差描述其波动大小.〔变式训练3〕(1)(角度1)某小区共有1 000户居民,现对他们的用电情况进行调查,得到频率分布直方图如图所示,则该小区居民用电量的中位数为_155__,平均数为_156.8__.(2)(角度2)(2021·陕西西安八校联考)在一次技能比赛中,共有12人参加,他们的得分(百分制)茎叶图如图,则他们得分的中位数和方差分别为( B )A .89 54.5B .89 53.5C .87 53.5D .89 54(3)高铁、扫码支付、共享单车、网购并称中国“新四大发明”,近日对全国100个城市的共享单车和扫码支付的使用人数进行大数据分析,其中共享单车使用的人数分别为x 1,x 2,x 3,…,x 100,它们的平均数为x -,方差为s 2:其中扫码支付使用的人数分别为3x 1+2,3x 2+2,3x 3+2,…,3x 100+2,它们的平均数为x -′,方差为s′2,则x -′,s′2分别为( C )A .3x -+2,3s 2+2 B .3x -,3s 2C .3x -+2,9s 2D .3x -+2,9s 2+2[解析] (1)中位数为:150+(170-150)×0.10.02×20=155.该组数据的平均数为x =0.005×20×120+0.015×20×140+0.020×20×160+0.005×20×180+0.003×20×200+0.002×20×220=156.8.(2)由题可知,中位数为:87+912=89,先求平均数:x -=78+79+84+86+87+87+91+94+98+98+99+9912=90,S 2=112[(-12)2+(-11)2+(-6)2+(-4)2+(-3)2+(-3)2+12+42+82+82+92+92]=53.5,故中位数为:89,方差为53.5,故选:B .(3)显然x -′=3x -+2,而每个数据上都加上或减去相同数不影响方差,但每个数据都乘以a ,则方差变为原方差的a 2倍,故选C .考点四 折线图——师生共研例4 (多选题)(2021·河南顶级名校模拟改编)如图是某地某月1日至15日的日平均温度变化的折线图,根据该折线图,下列结论不正确的是( BCD )A .连续三天日平均温度的方差最大的是7日,8日,9日三天B .这15天日平均温度的极差为15 ℃C .由折线图能预测16日温度要低于19 ℃D .由折线图能预测本月温度小于25 ℃的天数少于温度大于25 ℃的天数[解析] A 选项,日平均温度的方差的大小取决于日平均温度的波动的大小,7,8,9三日的日平均温度的波动最大,故日平均温度的方差最大,正确;B 选项,这15天日平均温度的极差为18 ℃,B 错;C 选项,由折线图无法预测16日温度是否低于19 ℃,故C 错误;D 选项,由折线图无法预测本月温度小于25 ℃的天数是否少于温度大于25 ℃的天数,故D 错误.故选B 、C 、D .名师点拨折线图可以显示随时间(根据常用比例放置)而变化的连续数据,因此非常适用于显示在相等时间间隔下数据的趋势.〔变式训练4〕(多选题)甲乙两名同学在本学期的六次考试成绩统计如图,甲乙两组数据的平均值分别为x -甲、x -乙,则( BC )A .每次考试甲的成绩都比乙的成绩高B .甲的成绩比乙稳定C .x -甲一定大于x -乙D .甲的成绩的极差大于乙的成绩的极差[解析] 第二次考试甲的成绩比乙低,A 错;由图可知甲的成绩比乙的成绩波动小,B 正确,D 错;甲的平均成绩显然比乙的平均成绩高,C 正确;故选B 、C .名师讲坛·素养提升 高考与频率分布直方图例5 (2021·安徽省池州市期末)高三年级某班50名学生期中考试数学成绩的频率分布直方图如图所示,成绩分组区间为:[80,90),[90,100),[100,110),[110,120),[120,130),[130,140),[140,150].其中a ,b ,c 成等差数列且c =2a ,物理成绩统计如表.(说明:数学满分150分,物理满分100分)分组 [50,60) [60,70) [70,80) [80,90) [90,100]频数6920105(1)根据频率分布直方图,请估计数学成绩的平均分; (2)根据物理成绩统计表,请估计物理成绩的中位数;(3)若数学成绩不低于140分的为“优”,物理成绩不低于90分的为“优”,已知本班中至少有一个“优”同学总数为6人,从此6人中随机抽取3人.记X 为抽到两个“优”的学生人数,求X 的分布列和期望值.[解析] (1)根据频率分布直方图得, (a +b +2c +0.024+0.020+0.004)×10 =1, 又因a +c =2b ,c =2a ,解得a =0.008,b =0.012,c =0.016, 故数学成绩的平均分x -=85×0.04+95×0.12+105×0.16+115×0.2+125×0.24 +135×0.16+145×0.08=117.8(分),(2)总人数50分,由物理成绩统计表知,中位数在成绩区间[70,80), 所以物理成绩的中位数为75分.(3)数学成绩为“优”的同学有4人,物理成绩为“优”有5人,因为至少有一个“优”的同学总数为6名同学,故两科均为“优”的人数为3人,故X 的取值为0、1、2、3.P(X =0)=C 33C 36=120,P(X =1)=C 13C 23C 36=920,P(X =2)=C 23C 13C 36=920,P(X =3)=C 33C 36=120,所以分布列为:X 0 1 2 3 P120920920120∴期望值为E(X)=0×120+1×920+2×920+3×120=32.名师点拨(1)通过统计图可以很清楚地表示出各部分数量同总数之间的关系. (2)准确理解频率分布直方图的数据特点是解题关键. 〔变式训练5〕(2019·高考全国Ⅲ卷)为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A ,B 两组,每组100只,其中A 组小鼠给服甲离子溶液,B 组小鼠给服乙离子溶液,每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P(C)的估计值为0.70.(1)求乙离子残留百分比直方图中a,b的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).[解析](1)由已知得0.70=a+0.20+0.15,故a=0.35.b=1-0.05-0.15-0.70=0.10.(2)甲离子残留百分比的平均值的估计值为2×0.15+3×0.20+4×0.30+5×0.20+6×0.10+7×0.05=4.05,乙离子残留百分比的平均值的估计值为3×0.05+4×0.10+5×0.15+6×0.35+7×0.20+8×0.15=6.00.。
高三数学一轮总复习 第十章 算法、统计与概率 第二节 统计初步 第二课时 用样本估计总体课件 理
2.甲、乙两个体能康复训练小组各有 10 名组员,经 过一段时间训练后,某项体能测试结果的茎叶图 如图所示,则这两个小组中体能测试平均成绩较 高的是________组.
解析:由茎叶图所给数据依次确定两组体能测试的平均成 绩分别为 x 甲=63+65+66+71+77+ 1077+79+81+84+92=75.5, x 乙=58+68+69+74+75+ 1078+79+80+82+91=75.4, 故平均成绩较高的是甲组. 答案:甲
处在_中__间__位置的 的影响,这在某些情况下是
一个数据(或两个数 优点,但它对极端值的不敏
据的平均数)
感有时也会成为缺点
平均数
如xn=2,果个x…1有数+,n的xx2个+n平n,数…均那据+数么xx这-1nx,平关样均响均,本数较数可数受大与以据数,每反全据使一映体中平个出的的均样更信极数本多息端在数的,值估据关但的计有于平影总 体时可靠性降低
[小题纠偏] 1.在样本的频率分布直方图中,共有 7 个小长方形,若中
间一个小长方形的面积等于其他 6 个小长方形的面积的 和的14,且样本容量为 80,则中间一组的频数为________. 解析:设中间一组的频数为 x, 依题意有8x0=141-8x0,解得 x=16. 答案:16
2.(2016·苏州模拟)如果数据 x1,x2,…,xn 的平均数 是 x ,方差是 s2,则 3x1+2,3x2+2,…,3xn+2 的 平均数是______,方差是________. 解析:3x1+2,3x2+2,…,3xn+2 的平均数是 3 x +2, 由于数据 x1,x2,…,xn 的方差为 s2, 所以 3x1+2,3x2+2,…,3xn+2 的方差为 9s2. 答案:3 x +2 9s2
北师版高考总复习一轮数学精品课件 第10章统计与成对数据的统计分析 第2节用样本估计总体
解析 对于A,因为一队每场比赛平均失球数是1.5,二队每场比赛平均失球
数是2.1,所以平均来说一队比二队防守技术好,故A正确;对于B,因为二队
每场比赛平均失球数是2.1,全年比赛失球个数的标准差为0.4,所以二队经
常失球,故B错误;对于C,因为一队全年比赛失球个数的标准差为1.1,二队全
年比赛失球个数的标准差为0.4,所以一队有时表现很差,有时表现又非常
2+3
解析 由频率分布直方图可知众数为
=2.5,即x1=2.5,平均数
2
x2=0.2×1.5+0.24×2.5+0.2×3.5+0.16×4.5+0.12×5.5+0.04×6.5+0.04×
7.5=3.54,
显然25%分位数位于[2,3)之间,则0.2+(x3-2)×0.24=0.25,解得x3≈2.208,所以
位数为x,则0.35+0.03(x-70)=0.5,解得x=75,所以中位数的估计值为75分,故
C正确;
样本平均数的估计值为45×(10×0.005)+55×(10×0.020)+
65×(10×0.010)+75×(10×0.030)+85×(10×0.025)+95×(10×0.010)=73
(分),故D错误.
[对点训练2]
(1)(2024·山东烟台模拟)某组样本数据的频率分布直方图如图所示,设该组
样本数据的众数、平均数、25%分位数分别为x1,x2,x3,则x1,x2,x3的大小
关系是(注:同一组中数据用该组区间中点值近似代替)( A )
A.x3<x1<x2
B.x2<x1<x3
高考数学一轮复习 第十章 统计 10.2 用样本估计总体
【步步高】(江苏专用)2017版高考数学一轮复习第十章统计 10.2用样本估计总体文1.作频率分布直方图的步骤(1)求极差(即一组数据中最大值与最小值的差).(2)决定组距与组数.(3)将数据分组.(4)列频率分布表.(5)画频率分布直方图.2.频率分布折线图和总体分布的密度曲线(1)频率分布折线图:将频率分布直方图中各个相邻的矩形的上底边的中点顺次连结起来,就得到频率分布折线图.(2)总体分布的密度曲线:将样本容量取得足够大,分组的组距取得足够小,那么相应的频率折线图趋于一条光滑曲线,称这条光滑曲线为总体分布的密度曲线. 3.茎叶图统计中还有一种被用来表示数据的图叫做茎叶图,茎是指中间的一列数,叶是从茎的旁边生长出来的数. 4.标准差和方差(1)标准差是样本数据到平均数的一种平均距离. (2)标准差:s =1n[x 1-x2+x 2-x2+…+x n -x2].(3)方差:s 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2](x n 是样本数据,n 是样本容量,x是样本平均数). 【知识拓展】1.频率分布直方图的特点(1)频率分布直方图中相邻两横坐标之差表示组距,纵坐标表示频率组距,频率=组距×频率组距.(2)频率分布直方图中各小长方形的面积之和为1,因为在频率分布直方图中组距是一个固定值,所以各小长方形高的比也就是频率比.(3)频率分布表和频率分布直方图是一组数据频率分布的两种形式,前者准确,后者直观. 2.平均数、方差的公式推广(1)若数据x 1,x 2,…,x n 的平均数为x ,那么mx 1+a ,mx 2+a ,mx 3+a ,…,mx n +a 的平均数是m x +a .(2)数据x 1,x 2,…,x n 的方差为s 2.①数据x 1+a ,x 2+a ,…,x n +a 的方差也为s 2; ②数据ax 1,ax 2,…,ax n 的方差为a 2s 2. 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)平均数、众数与中位数从不同的角度描述了一组数据的集中趋势.( √ ) (2)一组数据的众数可以是一个或几个,那么中位数也具有相同的结论.( × ) (3)从频率分布直方图得不出原始的数据内容,把数据表示成直方图后,原有的具体数据信息就被抹掉了.( √ )(4)茎叶图一般左侧的叶按从大到小的顺序写,右侧的叶按从小到大的顺序写,相同的数据可以只记一次.( × )(5)在频率分布直方图中,最高的小长方形底边中点的横坐标是众数.( √)(6)在频率分布直方图中,众数左边和右边的小长方形的面积和是相等的.( ×)1.(2015·陕西改编)某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为________.答案137解析由题干扇形统计图可得该校女教师人数为:110×70%+150×(1-60%)=137.2.若某校高一年级8个班参加合唱比赛的得分茎叶图如图所示,则这组数据的中位数和平均数分别是__________.答案91.5和91.5解析∵这组数据由小到大排列为87,89,90,91,92,93,94,96,∴中位数为12×(91+92)=91.5.平均数为18×(87+89+90+91+92+93+94+96)=91.5.3.在“世界读书日”前夕,为了了解某地 5 000名居民某天的阅读时间,从中抽取了200名居民的阅读时间进行统计分析.在这个问题中,5 000名居民的阅读时间的全体是________. 答案 总体解析 调查的目的是“了解某地5 000名居民某天的阅读时间”,所以“5 000名居民的阅读时间的全体”是调查的总体.4.(教材改编)某赛季,甲、乙两名篮球运动员都参加了11场比赛,他们每场比赛得分的情况用如图所示的茎叶图表示,则甲、乙两名运动员得分的中位数分别为________.答案 19,135.(教材改编)甲、乙两人在相同条件下各射靶10次,每次命中环数如下: 甲 4 7 10 9 5 6 8 6 8 8 乙 7 8 6 8 6 7 8 7 5 9 试问10次射靶的情况较稳定的是________. 答案 乙解析 x 甲=4+7+10+9+5+6+8+6+8+810=7.1,x 乙=7+8+6+8+6+7+8+7+5+910=7.1.s 2甲=110[(4-7.1)2+(7-7.1)2+…+(8-7.1)2]=3.09, s 2乙=110[(7-7.1)2+(8-7.1)2+…+(9-7.1)2]=1.29. s 2甲>s 2乙,∴乙较稳定.题型一频率分布直方图的绘制与应用例1 (2015·课标全国Ⅱ)某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得到A地区用户满意度评分的频率分布直方图和B地区用户满意度评分的频数分布表.A地区用户满意度评分的频率分布直方图图①B地区用户满意度评分的频数分布表(1)评分的平均值及分散程度(不要求计算出具体值,给出结论即可).B地区用户满意度评分的频率分布直方图图②(2)根据用户满意度评分,将用户的满意度分为三个等级:解(1)如图所示.通过两地区用户满意度评分的频率分布直方图可以看出,B地区用户满意度评分的平均值高于A地区用户满意度评分的平均值;B地区用户满意度评分比较集中,而A地区用户满意度评分比较分散.(2)A地区用户的满意度等级为不满意的概率大.记C A表示事件:“A地区用户的满意度等级为不满意”;C B表示事件:“B地区用户的满意度等级为不满意”.由直方图得P(C A)的估计值为(0.01+0.02+0.03)×10=0.6,P(C B)的估计值为(0.005+0.02)×10=0.25.所以A地区用户的满意度等级为不满意的概率大.思维升华(1)明确频率分布直方图的意义,即图中的每一个小矩形的面积是数据落在该区间上的频率,所有小矩形的面积和为1.(2)对于统计图表类题目,最重要的是认真观察图表,从中提炼有用的信息和数据.(1)(2014·山东改编)为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,…,第五组,如图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为________.答案12解析志愿者的总人数为200.16+0.24×1=50,所以第三组人数为50×0.36=18,有疗效的人数为18-6=12.(2)某校从参加高一年级期中考试的学生中随机抽出60名学生,将其物理成绩(均为整数)分成六段[40,50),[50,60),…,[90,100]后得到如图所示的频率分布直方图,观察图形的信息,回答下列问题:①求分数在[70,80)内的频率,并补全这个频率分布直方图;②统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计本次考试中的平均分.解①设分数在[70,80)内的频率为x,根据频率分布直方图,有(0.010+0.015×2+0.025+0.005)×10+x=1,可得x=0.3,所以频率分布直方图如图所示.②平均分:45×0.1+55×0.15+65×0.15+75×0.3+85×0.25+95×0.05=71(分).题型二 茎叶图的应用例2 (1)(2015·山东)为比较甲、乙两地某月14时的气温情况,随机选取该月中的5天,将这5天中14时的气温数据(单位:℃)制成如图所示的茎叶图.考虑以下结论:①甲地该月14时的平均气温低于乙地该月14时的平均气温; ②甲地该月14时的平均气温高于乙地该月14时的平均气温; ③甲地该月14时的气温的标准差小于乙地该月14时的气温的标准差; ④甲地该月14时的气温的标准差大于乙地该月14时的气温的标准差. 其中根据茎叶图能得到的统计结论的编号为________.(2)以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x ,y 的值分别为__________. 答案 (1)①④ (2)5,8解析 (1)甲地5天的气温为:26,28,29,31,31, 其平均数为x 甲=26+28+29+31+315=29;方差为s 2甲=15[(26-29)2+(28-29)2+(29-29)2+(31-29)2+(31-29)2]=3.6;标准差为s 甲= 3.6.乙地5天的气温为:28,29,30,31,32, 其平均数为x 乙=28+29+30+31+325=30;方差为s 2乙=15[(28-30)2+(29-30)2+(30-30)2+(31-30)2+(32-30)2]=2;标准差为s 乙= 2. ∴x 甲<x 乙,s 甲>s 乙.(2)由茎叶图及已知得x =5,又乙组数据的平均数为16.8,即9+15+10+y +18+245=16.8,解得y =8. 引申探究1.本例(2)中条件不变,试比较甲、乙两组哪组成绩较好. 解 由原题可知x =5,则甲组平均分为9+12+15+24+275=17.4.而乙组平均分为16.8,所以甲组成绩较好.2.在本例(2)条件下:①求乙组数据的中位数、众数;②求乙组数据的方差. 解 ①由茎叶图知,乙组中五名学生的成绩为9,15,18,18,24. 故中位数为18,众数为18.②s 2=15[(9-16.8)2+(15-16.8)2+(18-16.8)2×2+(24-16.8)2]=23.76.思维升华 茎叶图的优缺点由茎叶图可以清晰地看到数据的分布情况,这一点同频率分布直方图类似.它优于频率分布直方图的第一点是从茎叶图中能看到原始数据,没有任何信息损失,第二点是茎叶图便于记录和表示.其缺点是当样本容量较大时,作图较烦琐.(2014·课标全国Ⅱ)某市为了考核甲,乙两部门的工作情况,随机访问了50位市民.根据这50位市民对这两部门的评分(评分越高表明市民的评价越高),绘制茎叶图如下:(1)分别估计该市的市民对甲,乙两部门评分的中位数; (2)分别估计该市的市民对甲,乙两部门的评分高于90的概率; (3)根据茎叶图分析该市的市民对甲,乙两部门的评价.解 (1)由所给茎叶图知,50位市民对甲部门的评分由小到大排序,排在第25,26位的是75,75,故样本中位数为75,所以该市的市民对甲部门评分的中位数的估计值是75. 50位市民对乙部门的评分由小到大排序,排在第25,26位的是66,68,故样本中位数为66+682=67,所以该市的市民对乙部门评分的中位数的估计值是67.(2)由所给茎叶图知,50位市民对甲,乙部门的评分高于90的比率分别为550=0.1,850=0.16,故该市的市民对甲,乙部门的评分高于90的概率的估计值分别为0.1,0.16.(3)由所给茎叶图知,市民对甲部门的评分的中位数高于对乙部门的评分的中位数,而且由茎叶图可以大致看出对甲部门的评分的标准差要小于对乙部门的评分的标准差,说明该市市民对甲部门的评价较高、评价较为一致,对乙部门的评价较低、评价差异较大.(注:考生利用其他统计量进行分析,结论合理的同样给分.) 题型三 用样本的数字特征估计总体的数字特征例3 甲、乙二人参加某体育项目训练,近期的五次测试成绩得分情况如图.(1)分别求出两人得分的平均数与方差;(2)根据图和上面算得的结果,对两人的训练成绩作出评价. 解 (1)由题图象可得甲、乙两人五次测试的成绩分别为 甲:10分,13分,12分,14分,16分; 乙:13分,14分,12分,12分,14分.x 甲=10+13+12+14+165=13;x 乙=13+14+12+12+145=13,s 2甲=15[(10-13)2+(13-13)2+(12-13)2+(14-13)2+(16-13)2]=4;s 2乙=15[(13-13)2+(14-13)2+(12-13)2+(12-13)2+(14-13)2]=0.8.(2)由s 2甲>s 2乙可知乙的成绩较稳定.从折线图看,甲的成绩基本呈上升状态,而乙的成绩上下波动,可知甲的成绩在不断提高,而乙的成绩则无明显提高.思维升华 平均数与方差都是重要的数字特征,是对总体的一种简明的描述,它们所反映的情况有着重要的实际意义,平均数、中位数、众数描述其集中趋势,方差和标准差描述其波动大小.(2015·广东)某工厂36名工人的年龄数据如下表.(1)年龄数据为44,列出样本的年龄数据; (2)计算(1)中样本的均值x 和方差s 2;(3)36名工人中年龄在x -s 与x +s 之间的有多少人?所占的百分比是多少(精确到0.01%)?解 (1)44,40,36,43,36,37,44,43,37.(2)x =44+40+36+43+36+37+44+43+379=40.s 2=19[(44-40)2+(40-40)2+(36-40)2+(43-40)2+(36-40)2+(37-40)2+(44-40)2+(43-40)2+(37-40)2]=1009.(3)40-103=1103,40+103=1303在⎝ ⎛⎭⎪⎫1103,1303的有23个,占63.89%.9.高考中频率分布直方图的应用典例 (14分)(2015·广东)某城市100户居民的月平均用电量(单位:度),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分组的频率分布直方图如图.(1)求直方图中x 的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为[220,240),[240,260),[260,280),[280,300]的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[220,240)的用户中应抽取多少户? 规范解答解 (1)由(0.002+0.009 5+0.011+0.012 5+x +0.005+0.002 5)×20=1得:x =0.007 5, 所以直方图中x 的值是0.007 5.[3分](2)月平均用电量的众数是220+2402=230.[4分]因为(0.002+0.009 5+0.011)×20=0.45<0.5,所以月平均用电量的中位数在[220,240)内,设中位数为a ,由(0.002+0.009 5+0.011)×20+0.012 5×(a -220)=0.5得:a =224,所以月平均用电量的中位数是224.[8分](3)月平均用电量为[220,240)的用户有0.012 5×20×100=25(户),月平均用电量为[240,260)的用户有0.007 5×20×100=15(户),月平均用电量为[260,280)的用户有0.005×20×100=10(户),月平均用电量为[280,300]的用户有0.002 5×20×100=5(户),抽取比例=1125+15+10+5=15,所以月平均用电量在[220,240)的用户中应抽取25×15=5(户).[14分]温馨提醒本题的难点是对频率分布直方图意义的理解以及利用这个图提供的数据对所提问题的计算,频率分布直方图中纵轴上的数据是频率除以组距,组距越大该数据越小,在解答这类问题时要特别注意.[方法与技巧]1.用样本频率分布来估计总体分布的重点是频率分布表和频率分布直方图的绘制及用样本频率分布估计总体分布;难点是频率分布表和频率分布直方图的理解及应用.在计数和计算时一定要准确,在绘制小矩形时,宽窄要一致.通过频率分布表和频率分布直方图可以对总体作出估计.2.茎叶图、频率分布表和频率分布直方图都是用来描述样本数据的分布情况的.茎叶图由所有样本数据构成,没有损失任何样本信息,可以随时记录;而频率分布表和频率分布直方图则损失了样本的一些信息,必须在完成抽样后才能制作.3.若取值x1,x2,…,x n的频率分别为p1,p2,…,p n,则其平均值为x1p1+x2p2+…+x n p n;若x1,x2,…,x n的平均数为x,方差为s2,则ax1+b,ax2+b,…,ax n+b的平均数为a x +b,方差为a2s2.[失误与防范]频率分布直方图的纵坐标为频率/组距,每一个小长方形的面积表示样本个体落在该区间内的频率;条形图的纵坐标为频数或频率,把直方图视为条形图是常见的错误.A组专项基础训练(时间:40分钟)1.下图是某公司10个销售店某月销售某产品数量(单位:台)的茎叶图,则数据落在区间[22,30)内的频率为____________.答案0.4解析10个数据落在区间[22,30)内的数据有22,22,27,29,共4个,因此,所求的频率为410=0.4.2.(2014·陕西改编)某公司10位员工的月工资(单位:元)为x1,x2,…,x10,其均值和方差分别为x和s2,若从下月起每位员工的月工资增加100元,则这10位员工下月工资的均值和方差分别为____________.答案x+100,s2解析x1+x2+…+x1010=x,y i=x i+100,所以y1,y2,…,y10的均值为x+100,方差不变.3.某班的全体学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次为[20,40),[40,60),[60,80),[80,100].若低于60分的人数是15,则该班的学生人数是________.答案50解析由频率分布直方图,知低于60分的频率为(0.01+0.005)×20=0.3.∴该班学生人数n=150.3=50.4.在某次测量中得到的A样本数据如下:42,43,46,52,42,50,若B样本数据恰好是A样本数据每个都减5后所得数据,则A,B两样本的数字特征对应相同的是__________.答案标准差解析利用平均数、标准差、众数、中位数等统计特征数的概念求解.由B样本数据恰好是A样本数据每个都减5后所得数据,可得平均数、众数、中位数分别是原来结果减去5,即与A样本不相同,标准差不变.5.如图是某青年歌手大奖赛上七位评委为甲、乙两名选手打出的分数的茎叶图(其中m为数字0~9中的一个),去掉一个最高分和一个最低分后,甲、乙两名选手得分的平均数分别为a1、a2,则一定有________.①a 1>a 2 ②a 2>a 1 ③a 1=a 2④a 1,a 2的大小与m 的值有关 答案 ②解析 去掉一个最高分和一个最低分后,甲选手叶上的数字之和是20,乙选手叶上的数字之和是25,故a 2>a 1.6.样本中共有五个个体,其值分别为a,0,1,2,3.若该样本的平均值为1,则样本方差为________________. 答案 2解析 由题意可知样本的平均值为1,所以a +0+1+2+35=1,解得a =-1,所以样本的方差为15[(-1-1)2+(0-1)2+(1-1)2+(2-1)2+(3-1)2]=2.7.将某选手的9个得分去掉1个最高分,去掉1个最低分,7个剩余分数的平均分为91.现场作的9个分数的茎叶图后来有1个数据模糊,无法辨认,在图中以x 表示:则7个剩余分数的方差为________. 答案367解析 由题意知87+94+90+91+90+90+x +917=91,解得x =4.所以s 2=17[(87-91)2+(94-91)2+(90-91)2+(91-91)2+(90-91)2+(94-91)2+(91-91)2] =17(16+9+1+0+1+9+0)=367. 8.从某小学随机抽取100名学生,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图).由图中数据可知a =____________.若要从身高在[120,130),[130,140),[140,150]三组内的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140,150]内的学生中选取的人数应为________.答案 0.030 3解析 ∵小矩形的面积等于频率,∴除[120,130)外的频率和为0.700,∴a =1-0.70010=0.030.由题意知,身高在[120,130),[130,140),[140,150]内的学生分别为30人,20人,10人,∴由分层抽样可知抽样比为1860=310,∴在[140,150]中选取的学生应为3人.9.某校高一某班的某次数学测试成绩(满分为100分)的茎叶图和频率分布直方图都受了不同程度的破坏,但可见部分如图,据此解答下列问题:(1)求分数在[50,60]的频率及全班人数;(2)求分数在[80,90]之间的频数,并计算频率分布直方图中[80,90]间的矩形的高.解(1)分数在[50,60]的频率为0.008×10=0.08.由茎叶图知,分数在[50,60]之间的频数为2,所以全班人数为20.08=25.(2)分数在[80,90]之间的频数为25-2-7-10-2=4,频率分布直方图中[80,90]间的矩形的高为425÷10=0.016.10.某工厂对一批产品进行了抽样检测.如图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是[96,106],样本数据分组为[96,98),[98,100),[100,102),[102,104),[104,106],已知样本中产品净重小于100克的个数是36.(1)求样本容量及样本中净重大于或等于98克并且小于104克的产品的个数;(2)已知这批产品中每个产品的利润y (单位:元)与产品净重x (单位:克)的关系式为y =⎩⎪⎨⎪⎧3,96≤x <98,5,98≤x <104,4,104≤x ≤106,求这批产品平均每个的利润.解 (1)产品净重小于100克的频率为(0.050+0.100)×2=0.300.设样本容量为n . ∵样本中产品净重小于100克的个数是36, ∴36n=0.300,∴n =120.∵样本中净重大于或等于98克并且小于104克的产品的频率为(0.100+0.150+0.125)×2=0.750,∴样本中净重大于或等于98克并且小于104克的产品的个数是120×0.750=90.(2)产品净重在[96,98),[98,104),[104,106]内的频率分别为0.050×2=0.100,(0.100+0.150+0.125)×2=0.750,0.075×2=0.150,∴其相应的频数分别为120×0.100=12,120×0.750=90,120×0.150=18, ∴这批产品平均每个的利润为1120×(3×12+5×90+4×18)=4.65(元). B 组 专项能力提升 (时间:30分钟)11.某学校随机抽取20个班,调查各班中有网上购物经历的人数,所得数据的茎叶图如图所示,以组距为5将数据分组成[0,5),[5,10),…,[30,35),[35,40]时,所作的频率分布直方图是________.答案①解析由于频率分布直方图的组距为5,排除③、④,又[0,5),[5,10)两组各一人,排除②,①符合条件,故①正确.12.(2014·江苏)为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位:cm),所得数据均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有________株树木的底部周长小于100 cm.答案24解析底部周长在[80,90)的频率为0.015×10=0.15,底部周长在[90,100)的频率为0.025×10=0.25,样本容量为60,所以树木的底部周长小于100 cm的株数为(0.15+0.25)×60=24. 13.(2015·湖北)某电子商务公司对10 000名网络购物者2014年度的消费情况进行统计,发现消费金额(单位:万元)都在区间[0.3,0.9]内,其频率分布直方图如图所示.(1)直方图中的a=________;(2)在这些购物者中,消费金额在区间[0.5,0.9]内的购物者的人数为________.答案(1)3 (2)6 000解析由频率分布直方图及频率和等于1可得0.2×0.1+0.8×0.1+1.5×0.1+2×0.1+2.5×0.1+a×0.1=1,解得a=3.于是消费金额在区间[0.5,0.9]内频率为0.2×0.1+0.8×0.1+2×0.1+3×0.1=0.6,所以消费金额在区间[0.5,0.9]内的购物者的人数为:0.6×10 000=6 000,故应填3,6 000.14.若某产品的直径长与标准值的差的绝对值不超过1 mm 时,则视为合格品,否则视为不合格品.在近期一次产品抽样检查中,从某厂生产的此种产品中,随机抽取5 000件进行检测,结果发现有50件不合格品.计算这50件不合格品的直径长与标准值的差(单位:mm),将所得数据分组,得到如下频率分布表:(1)(2)估计该厂生产的此种产品中,不合格品的直径长与标准值的差落在区间(1,3]内的概率; (3)现对该厂这种产品的某个批次进行检查,结果发现有20件不合格品.据此估算这批产品中的合格品的件数.解 (1)如下表所示频率分布表.(2)由频率分布表知,(1,3]内的概率约为 0.50+0.20=0.70.(3)设这批产品中的合格品数为x 件, 依题意505 000=20x +20,解得x =5 000×2050-20=1 980.所以该批产品的合格品件数是1 980.15.(2014·广东)某车间20名工人年龄数据如下表:年龄(岁)19282930313240工人数(人)133543 1(1)求这20(2)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图;(3)求这20名工人年龄的方差.解(1)这20名工人年龄的众数为:30;这20名工人年龄的极差为:40-19=21.(2)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图如下:(3)这20名工人年龄的平均数为:(19+28×3+29×3+30×5+31×4+32×3+40)÷20=30;所以这20名工人年龄的方差为:1 20(30-19)2+320(30-28)2+320(30-29)2+520(30-30)2+420(30-31)2+320(30-32)2+120(30-40)2=12.6.。
高中数学 高三一轮 第十章统计、统计案例及算法初步 10.2用样本估计总体【素材】
用样本估计总体一、频率分布的概念1、概念:频率分布是指一个样本数据在各个小范围内所占比例的大小.一般用频率分布直方图反映样本的频率分布。
其一般步骤为:(1)计算一组数据中最大值与最小值的差,即求极差(2)决定组距与组数(3)将数据分组(4)列频率分布表(5)画频率分布直方图2、频率分布直方图的特征:(1)从频率分布直方图可以清楚的看出数据分布的总体趋势。
(2)从频率分布直方图得不出原始的数据内容,把数据表示成直方图后,原有的具体数据信息就被抹掉了。
注;(1)直方图中各小长方形的面积之和为1.(2)直方图中纵轴表示错误!,故每组样本的频率为组距×错误!,即矩形的面积.(3)直方图中每组样本的频数为频率×总体数.3、频率分布折线图、总体密度曲线(1)频率分布折线图的定义:连接频率分布直方图中各小长方形上端的中点,就得到频率分布折线图。
(2)总体密度曲线的定义:在样本频率分布直方图中,样本容量越大,所分组数越多,相应的频率折线图会越来越接近于一条光滑曲线,统计中称这条光滑曲线为总体密度曲线.4、样本的数字特征错误!将一组数据按大小依次排列,把处在最中间位置的一个数据或最中间两个数据的平均数叫做这组数据的中位数,在频率分布直方图中,中位数左边和右边的直方图的面积相等二、茎叶图当数据是两位有效数字时,用中间的数字表示十位数,即第一个有效数字,两边的数字表示个位数,即第二个有效数字,它的中间部分像植物的茎,两边部分像植物茎上长出来的叶子,因此通常把这样的图叫做茎叶图。
1、茎叶图的特征:(1)用茎叶图表示数据有两个优点:一是在统计图上没有原始数据信息的损失,所有数据信息都可以从茎叶图中得到;二是茎叶图中的数据可以随时记录,随时添加,方便记录与表示.(2)茎叶图只便于表示两位有效数字的数据,而且茎叶图只方便记录两组的数据,两个以上的数据虽然能够记录,但是没有表示两个记录那么直观,清晰。
注意:1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
处在_中__间__位置的 的影响,这在某些情况下是
一个数据(或两个数 优点,但它对极端值的不敏
据的平均数)
感有时也会成为缺点
平均数
如xn=2,果个x…1有数+,n的xx2个+n平n,数…均那据+数么xx这-1nx,平关样均响均,数较本数可受大数与以数,据每反据使全一映中平体个出的均的样更极数信本多端在息数的值估,据关的计但有于影总平 体时可靠性降低
[谨记通法] 使用茎叶图时的 2 个注意点 (1)观察所有的样本数据,弄清图中数字的特点,注意 不要漏掉数据. (2)注意易混淆茎叶图中茎与叶的含义.
考点二 频率分布直方图重点保分型考点——师生共研 [典例引领]
(2016·苏北四市调研)某网络营销部门随机抽查了某市 200 名网
友在 2015 年 11 月 11 日的网购金额,所得数据如下表:
[小题纠偏] 1.在样本的频率分布直方图中,共有 7 个小长方形,若中
间一个小长方形的面积等于其他 6 个小长方形的面积的 和的14,且样本容量为 80,则中间一组的频数为________. 解析:设中间一组的频数为 x, 依题意有8x0=141-8x0,解得 x=16. 答案:16
2.(2016·苏州模拟)如果数据 x1,x2,…,xn 的平均数 是 x ,方差是 s2,则 3x1+2,3x2+2,…,3xn+2 的 平均数是______,方差是________. 解析:3x1+2,3x2+2,…,3xn+2 的平均数是 3 x +2, 由于数据 x1,x2,…,xn 的方差为 s2, 所以 3x1+2,3x2+2,…,3xn+2 的方差为 9s2. 答案:3 x +2 9s2
(2)标准差、方差 ①标准差:样本数据到平均数的一种平均距离,一般用 s 表示,s= n1[x1- x 2+x2- x 2+…+xn- x 2] .
②方差:标准差的平方 s2 s2= n1[(x1- x )2+(x2--x )2+…+(xn- x )2],其中 xi(i=
1,2,3,…,n)是样本数据,n 是样本容量,-x 是样__本__平__均__数__.
[小题体验] 1.如图是 100 位居民月均用水量的频率分布直方图,则月均
用水量为[2,2.5)范围内的居民数有________人.
答案:25
2.(教材习题改编)某赛季甲、乙两名篮球运动员每场比赛得 分记录用茎叶图表示,从茎叶图的分布情况看,______ 运动员的发挥更稳定.
答案:乙
3.(教材习题改编)两位射击运动员在一次射击测试中各射靶 10 次,每次命中的环数如下: 甲:7 8 7 9 5 4 9 10 7 4 乙:9 5 7 8 7 6 8 6 7 7 由此估计________的射击成绩更稳定.
网购金额(单位:千元)
人数
频率
(0,1]
16
0.08
(1,2]
24
0.12
(2,3]
x
p
(3,4]
y
q
(4,5]
16
0.08
(5,6]
14
0.07
合计
200
1.00
已知网购金额不超过 3 千元与超过 3 千元的人数比恰为 3∶2. (1)试确定 x,y,p,q 的值,并补全频率分布直方图(如图); (2)该营销部门为了了解该市网友的购物体验,从这 200 名网友 中,用分层抽样的方法从网购金额在(1,2]和(4,5]的两个群体中 确定 5 人中进行问卷调查,若需从这 5 人中随机选取 2 人继续 访谈,则此 2 人来自不同群体的概率是多少?
第二课时 用样本估计总体
1.作频率分布直方图的步骤
(1)求 全距 ; (2)决定 组距 与 组数 ; (3)将数据 分组 ; (4)列 频率分布表 ; (5)画 频率分布直方图 .
2.频率分布折线图 频率分布折线图:连结频率分布直方图中各个相邻的 矩形的上底边的 中点 ,就得到频率分布折线图.
3.茎叶图的优点 一是所有的 信息 都可以从这张茎叶图中得到,二是茎 叶图便于 记录 和表示. [提醒] 茎叶图中茎是指中间的一列数,叶是从茎的旁 边生长出来的数.
4.样本的数字特征 (1)众数、中位数、平均数
数字特 征
定义与求法
优点与缺点
众数通常用于描述变量的值出 一组数据中重复出 现次数最多的数.但显然它对 众数 现次数最多的数 其他数据信息的忽视使它无法
客观地反映总体特征
数字特征 定义与求法
优点与缺点
中位数
把一组数据按从小 中位数等分样本数据所占频
到大的顺序排列, 率,它不受少数几个极端值
2.甲、乙两个体能康复训练小组各有 10 名组员,经 过一段时间训练后,某项体能测试结果的茎叶图 如图所示,则这两个小组中体能测试平均成绩较 高的是________组.
解析:由茎叶图所给数据依次确定两组体能测试的平均成 绩分别为 x 甲=63+65+66+71+77+ 1077+79+81+84+92=75.5, x 乙=58+68+69+74+75+ 1078+79+80+82+91=75.4, 故平均成绩较高的是甲组. 答案:甲
答案:乙
1.易把直方图与条形图混淆 两者的区别在于条形图是离散随机变量,纵坐标刻度为频 数或频率,直方图是连续随机变量,连续随机变量在某一 点上是没有频率的. 频率
2.易忽视频率分布直方图中纵轴表示的应为组距. 3.在绘制茎叶图时,易遗漏重复出现的数据,重复出现的数
据要重复记录,同时不要混淆茎叶图中茎与叶的含义.
(2)根据题意,网购金1额6+在2(41+,2]x内+的y+人1数6+为14=200, 解24:2+4(11)6根×据5=题3意(人有),:记1y+6为+1:62+4a+,14xb=,32c,. 解网得购金xy==额58在00.,(4,5∴]内p=的0人.4数,为q=2401+.2651.6×5=2(人),记为: A,B.则从这 5 人中随机选取 2 人的选法为:(a,b), 补全频率分布直方图如图所示, (a,c),(a,A),(a,B),(b,c),(b,A),(b,B),(c, A),(c,B),(A,B)共 10 种.记 2 人来自不同群体的 事件为 M,则 M 中含有(a,A),(a,B),(b,A),(b, B),(c,A),(c,B)共 6 种.∴P(M)=160=35.
考点一 茎叶图 (基础送分型考点——自主练透) [题组练透]
1.如图所示的茎叶图记录了甲、 乙两组各五名学生在一次英语 听力测试中的成绩(单位:分), 已知甲组数据的中位数为 17, 乙组数据的平均数为 17.4,则 x,y 的值分别为____y=7, 乙的平均数为3×10+20+95+6+6+x+9=17.4, 解得 x=7. 答案:7,7