圆锥曲线弦长公式教案资料

合集下载

《圆锥曲线》教学设计-精品教案

《圆锥曲线》教学设计-精品教案

圆锥曲线一、教学内容分析圆锥曲线的定义反映了圆锥曲线的本质属性,它是无数次实践后的高度抽象.恰当地利用定义解题,许多时候能以简驭繁.因此,在学习了椭圆、双曲线、抛物线的定义及标准方程、几何性质后,再一次强调定义,学会利用圆锥曲线定义来熟练的解题”。

二、学生学习情况分析我所任教班级的学生参与课堂教学活动的积极性强,思维活跃,但计算能力较差,推理能力较弱,使用数学语言的表达能力也略显不足。

三、设计思想由于这部分知识较为抽象,如果离开感性认识,容易使学生陷入困境,降低学习热情.在教学时,借助多媒体动画,引导学生主动发现问题、解决问题,主动参与教学,在轻松愉快的环境中发现、获取新知,提高教学效率.四、教学目标1.深刻理解并熟练掌握圆锥曲线的定义,能灵活应用定义解决问题;熟练掌握焦点坐标、顶点坐标、焦距、离心率、准线方程、渐近线、焦半径等概念和求法;能结合平面几何的基本知识求解圆锥曲线的方程。

2.通过对练习,强化对圆锥曲线定义的理解,提高分析、解决问题的能力;通过对问题的不断引申,精心设问,引导学生学习解题的一般方法。

3.借助多媒体辅助教学,激发学习数学的兴趣.五、教学重点与难点:教学重点1.对圆锥曲线定义的理解2.利用圆锥曲线的定义求“最值”3.“定义法”求轨迹方程教学难点:巧用圆锥曲线定义解题六、教学过程设计【设计思路】(一)开门见山,提出问题一上课,我就直截了当地给出——例题1:(1) 已知A(-2,0),B(2,0)动点M满足|MA|+|MB|=2,则点M的轨迹是( )。

(A)椭圆(B)双曲线(C)线段(D)不存在(2)已知动点M(x,y)满足(x1)2(y2)2|3x4y|,则点M的轨迹是( )。

(A)椭圆(B)双曲线(C)抛物线(D)两条相交直线【设计意图】定义是揭示概念内涵的逻辑方法,熟悉不同概念的不同定义方式,是学习和研究数学的一个必备条件,而通过一个阶段的学习之后,学生们对圆锥曲线的定义已有了一定的认识,他们是否能真正掌握它们的本质,是我本节课首先要弄清楚的问题。

圆锥曲线学生公开课教案教学设计课件资料

圆锥曲线学生公开课教案教学设计课件资料

圆锥曲线学生公开课教案教学设计课件资料一、教学目标1. 知识与技能:理解圆锥曲线的概念和性质。

掌握圆锥曲线的标准方程及其求法。

学会运用圆锥曲线解决实际问题。

2. 过程与方法:培养学生的观察、分析和解决问题的能力。

培养学生的逻辑思维能力和数学美感。

培养学生的合作交流和表达能力。

3. 情感态度与价值观:激发学生对圆锥曲线的兴趣和好奇心。

培养学生对数学美的感知和欣赏能力。

培养学生勇于探索和创新的思维精神。

二、教学内容1. 圆锥曲线的概念与性质引导学生通过观察圆锥的切割和展开,理解圆锥曲线的形成过程。

引导学生探究圆锥曲线的几何性质,如曲率、渐近线等。

2. 圆锥曲线的标准方程引导学生利用圆锥曲线的性质推导出标准方程。

引导学生理解不同类型的圆锥曲线(如椭圆、双曲线、抛物线)的标准方程及其特点。

3. 圆锥曲线的应用引导学生运用圆锥曲线解决实际问题,如测量问题、轨迹问题等。

引导学生运用圆锥曲线方程进行优化问题求解。

三、教学过程1. 导入通过展示圆锥曲线在现实生活中的应用实例,引发学生对圆锥曲线的兴趣。

引导学生回顾之前的数学知识,为新课的学习做好铺垫。

2. 知识讲解利用多媒体课件,生动形象地展示圆锥曲线的形成过程。

引导学生通过合作交流,探究圆锥曲线的几何性质。

利用数学软件,动态展示圆锥曲线的变化,增强学生对圆锥曲线的理解。

3. 例题讲解与练习讲解典型例题,引导学生掌握解题方法。

安排适量练习题,巩固所学知识。

4. 课堂小结总结本节课的主要内容和知识点。

强调圆锥曲线在实际生活中的应用价值。

四、教学评价1. 课堂表现评价:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。

2. 练习题评价:通过学生完成的练习题,评估学生对圆锥曲线知识点的掌握程度。

3. 小组讨论评价:评估学生在合作交流中的表现,如观点阐述、团队协作等。

五、教学资源1. 多媒体课件:展示圆锥曲线的形成过程、几何性质和应用实例。

2. 数学软件:动态展示圆锥曲线的变化,增强学生直观感受。

圆锥曲线教案

圆锥曲线教案

及圆锥曲线有关的几种典型题一、教学目标(一)知识教学点使学生掌握及圆锥曲线有关的几种典型题,如圆锥曲线的弦长求法、及圆锥曲线有关的最值(极值)问题、及圆锥曲线有关的证明问题以及圆锥曲线及圆锥曲线相交问题等.(二)能力训练点通过对圆锥曲线有关的几种典型题的教学,培养学生综合运用圆锥曲线知识的能力.(三)学科渗透点通过及圆锥曲线有关的几种典型题的教学,使学生掌握一些相关学科中的类似问题的处理方法.二、教材分析1.重点:圆锥曲线的弦长求法、及圆锥曲线有关的最值(极值)问题、及圆锥曲线有关的证明问题.(解决办法:先介绍基础知识,再讲解应用.)2.难点:双圆锥曲线的相交问题.(解决办法:要提醒学生注意,除了要用一元二次方程的判别式,还要结合图形分析.)3.疑点:及圆锥曲线有关的证明问题.(解决办法:因为这类问题涉及到线段相等、角相等、直线平行、垂直的证明方法,以及定点、定值问题的判断方法,所以比较灵活,只能通过一些例题予以示范.)三、活动设计演板、讲解、练习、分析、提问.四、教学过程(一)引入及圆锥曲线有关的几种典型题,如圆锥曲线的弦长求法、及圆锥曲线有关的最值(极值)问题、及圆锥曲线有关的证明问题以及圆锥曲线及圆锥曲线有关的证明问题等,在圆锥曲线的综合应用中经常见到,为了让大家对这方面的知识有一个比较系统的了解,今天来讲一下“及圆锥曲线有关的几种典型题”.(二)及圆锥曲线有关的几种典型题1.圆锥曲线的弦长求法设圆锥曲线C∶f(x,y)=0及直线l∶y=kx+b相交于A(x1,y1)、B(x2,y2)两点,则弦长|AB|为:(2)若弦AB过圆锥曲线的焦点F,则可用焦半径求弦长,|AB|=|AF|+|BF|.A、B两点,旦|AB|=8,求倾斜角α.分析一:由弦长公式易解.由学生演板完成.解答为:∵抛物线方程为x2=-4y,∴焦点为(0,-1).设直线l的方程为y-(-1)=k(x-0),即y=kx-1.将此式代入x2=-4y中得:x2+4kx-4=0.∴x1+x2=-4,x1+x2=-4k.∴ k=±1.∴|AB|=-(y1+y2)+p=-[(kx1-1)+(kx2-1)]+p=-k(x1+x2)+2+p.由上述解法易求得结果,由学生课外完成.2.及圆锥曲线有关的最值(极值)的问题在解析几何中求最值,关键是建立所求量关于自变量的函数关系,再利用代数方法求出相应的最值.注意点是要考虑曲线上点坐标(x,y)的取值范围.例2 已知x2+4(y-1)2=4,求:(1)x2+y2的最大值及最小值;(2)x+y的最大值及最小值.解(1):将x2+4(y-1)2=4代入得:x2+y2=4-4(y-1)2+y2=-3y2+8y由点(x,y)满足x2+4(y-1)2=4知:4(y-1)2≤4 即|y-1|≤1.∴0≤y≤2.当y=0时,(x2+y2)min=0.解(2):分析:显然采用(1)中方法行不通.如果令u=x+y,则将此代入x2+4(y-1)2=4中得关于y的一元二次方程,借助于判别式可求得最值.令x+y=u,则有x=u-y.代入x2+4(y-1)2=4得:5y2-(2u+8)y+u2=0.又∵0≤y≤2,(由(1)可知)∴[-(2u+8)]2-4×5×u2≥0.3.及圆锥曲线有关的证明问题它涉及到线段相等、角相等、直线平行、垂直的证明方法,以及定点、定值问题的判断方法.例3 在抛物线x2=4y上有两点A(x1,y1)和B(x2,y2)且满足|AB|=y1+y2+2,求证:(1)A、B和这抛物线的焦点三点共线;证明:(1)∵抛物线的焦点为F(0,1),准线方程为y=-1.∴ A、B到准线的距离分别d1=y1+1,d2=y2+1(如图2-46所示).由抛物线的定义:|AF|=d1=y1+1,|BF|=d2=y2+1.∴|AF|+|BF|=y1+y2+2=|AB|.即A、B、F三点共线.(2)如图2-46,设∠AFK=θ.∵|AF|=|AA1|=|AK|+2=|AF|sinθ+2,又|BF|=|BB1|=2-|BF|sinθ.小结:及圆锥曲线有关的证明问题解决的关键是要灵活运用圆锥曲线的定义和几何性质.4.圆锥曲线及圆锥曲线的相交问题直线及圆锥曲线相交问题,一般可用两个方程联立后,用△≥0来处理.但用△≥0来判断双圆锥曲线相交问题是不可靠的.解决这类问题:方法1,由“△≥0”及直观图形相结合;方法2,由“△≥0”及根及系数关系相结合;方法3,转换参数法(以后再讲).实数a的取值范围.可得:y2=2(1-a)y+a2-4=0.∵△=4(1-a)2-4(a2-4)≥0,如图2-47,可知:(三)巩固练习(用一小黑板事先写出.)2.已知圆(x-1)2+y2=1及抛物线y2=2px有三个公共点,求P的取值范围.顶点.请三个学生演板,其他同学作课堂练习,教师巡视.解答为:1.设P的坐标为(x,y),则2.由两曲线方程消去y得:x2-(2-2P)x=0.解得:x1=0,x2=2-2P.∵0<x<2,∴0<2-2P<2,即0<P<1.故P的取值范围为(0,1).四个交点为A(4,1),B(4,-1),C(-4,-1),D(-4,1).所以A、B、C、D是矩形的四个顶点.五、布置作业1.一条定抛物线C1∶y2=1-x及动圆C2∶(x-a)2+y2=1没有公共点,求a的范围.2.求抛线y=x2上到直线y=2x-4的距离为最小的点P的坐标.3.证明:从双曲线的一个焦点到一条渐近线的距离等于虚半轴长.作业答案:1.当x≤1时,由C1、C2的方程中消去y,得x2-(2a+1)x+a2=0,离为d,则似证明.六、板书设计。

直线与圆锥曲线自家用稿(弦长公式与中点弦)

直线与圆锥曲线自家用稿(弦长公式与中点弦)

题型二:弦长公式
练习2:已知斜率为2的直线 l 与抛物线 A、B两点,若
y 4 x 相交于
2
,求直线 l AB 5
的方程; P70 A2
( x1, y1 ) A
解:设直线 l : y 2 x b,点A( x1, y1 )B( x2 , y2 )
y 2 x b代入y 2 4 x,得 4 x2 (4b 4) x b2 0 x1 x2 b b2 x1 x2 4
a 0, b 0
y 2 2 px
p0
把直线方程代入圆锥曲线方程
得到一元一次方程
抛物线, 直线与 对称轴平行 或重合
得到一元二次方程 计算判别式
双曲线, 直线与 渐近线平行
>0
相交
=0
相切
<0
相离
相交1
相交1
2
1
0
二、新课讲授:
题型二:直线与圆锥曲线弦长问题
例1.已知斜率为 2的直线经过椭圆 4 x 2 5 y 2 20的右焦点 F2, 与椭圆交于A,B两点,求弦长AB的长及AB中点的坐标。
解: (2)将y x m代入椭圆 5x 2 2mx m2 1 0 y 1 2
-2m m -1 则 x1+x2= ,x1x2= . 5 5
B
1 2
A
O
由弦长公式得: 2m 2 2 2 1 1 ( ) 4( m 1) | AB | 5
x
4m2 20(m2 1) 2 2 5 4m 2 2 5 5 2 10 此时,直线方程为 yx 当m 0时, | AB |max 5
(3)证明:设 OM,ON 的斜率分别为 k1,k2, y1 y2 则 k1= ,k2= , x1 x2 由(2)知,y1y2=-4,x1x2=4, -4 ∴k1· k2= =-1,即 OM⊥ON. 4

弦长公式(高二版椭圆)

弦长公式(高二版椭圆)

3
(7)三点共线,长度之比尽量使用相似三角形 转化为坐标之比,利用韦达定理。
例 1.(2007 山东卷)已知椭圆的中心在坐标原点 O,焦点在 x 轴上,椭圆的短轴端点和焦点所组 成的四边形为正方形,两准线(注:左右准线方
程为 x a2 )间的距离为 4 c (Ⅰ)求椭圆的方程;(Ⅱ)直线 l 过点 P(0,2)且与
,证明:
x02 3
y02 2
1 ;(Ⅱ)求四边
5
形 ABCD的面积的最小值. 例 2:解:(Ⅰ)椭圆的半焦距c 3 2 1,由 AC⊥BD 知点 P 在以线段 F1F2 为直径的圆上,故 x02 y02 1,所 以 (处理方法一) . x22 y02 ≤ x02 y02 1 1
3 2 2 22
弦长公式(高二版椭圆)
圆锥曲线综合问题
1. 直线方程的处理:若直线方程未给出,应先 假设。
(1)若已知直线过点 (x0, y0) ,则假设方程为 ; y y0 k(x x0 )
(2)若已知直线的斜率 k ,则假设方程为 y kx m ;
(3)若仅仅知道是直线,则假设方程为 y kx m 【注】以上三种假设方式都要注意
2
,
x1
x2
6 1 2k2
解法 1: = S
AOB
1 2
| OD | |
y1
y2
|
1 2
|
2 k
| | kx1 2 kx2
2|
| x1 x2 |
法一.
. 下 同 解
(x2 x2 )2 4x1x2
16k 2 24 2 2 2k 2 3
1 2k 2
1 2k 2
解法 2: = 。 S
此时 .所求 Smax

圆锥曲线焦点弦长公式(极坐标全参数方程)

圆锥曲线焦点弦长公式(极坐标全参数方程)

圆锥曲线焦点弦长公式(极坐标参数方程)圆锥曲线的焦点弦问题是高考命题的大热点,主要是在解答题中,全国文科一般为压轴题的第22题,理科和各省市一般为第21题或者第20题,几乎每一年都有考察。

由于题目的综合性很高的,运算量很大,属于高难度题目,考试的得分率极低。

本文介绍的焦点弦长公式是圆锥曲线(椭圆、双曲线和抛物线)的通用公式,它是解决这类问题的金钥匙,利用这个公式使得极其复杂的问题变得简单明了,中等学习程度的学生完全能够得心应手!?定理 已知圆锥曲线(椭圆、双曲线或者抛物线)的对称轴为坐标轴(或平行于坐标轴),焦点为F ,设倾斜角为α的直线l 经过F ,且与圆锥曲线交于A 、B 两点,记圆锥曲线的离心率为e ,通径长为H ,则(1)当焦点在x 轴上时,弦AB 的长|cos 1|||22αe HAB -=; (2)当焦点在y 轴上时,弦AB 的长|sin 1|||22αe HAB -=.推论:(1)焦点在x 轴上,当A 、B 在椭圆、抛物线或双曲线的一支上时,α22cos 1||e HAB -=;当A 、B 不在双曲线的一支上时,1cos ||22-=αe HAB ;当圆锥曲线是抛物线时,α2sin ||HAB =. (2)焦点在y 轴上,当A 、B 在椭圆、抛物线或双曲线的一支上时,α22sin 1||e HAB -=;当A 、B 不在双曲线的一支上时,1sin ||22-=αe HAB ;当圆锥曲线是抛物线时,α2cos ||HAB =.典题妙解下面以部分高考题为例说明上述结论在解题中的妙用.例1(06湖南文第21题)已知椭圆134221=+y x C :,抛物线px m y 22=-)((p >0),且1C 、2C 的公共弦AB 过椭圆1C 的右焦点.(Ⅰ)当x AB ⊥轴时,求p ,m 的值,并判断抛物线2C 的焦点是否在直线AB 上; (Ⅱ)若34=p 且抛物线2C 的焦点在直线AB 上,求m 的值及直线AB 的方程.2FOABxy例2(07全国Ⅰ文第22题)已知椭圆12322=+y x 的左、右焦点分别为1F 、2F ,过1F 的直线交椭圆于B 、D 两点,过2F 的直线交椭圆于A 、C 两点,且BD AC ⊥,垂足为P.(1)设P 点的坐标为),(00y x ,证明:232020yx +<1. (2)求四边形ABCD 的面积的最小值.2FABCD Oxy 1F P例3(08全国Ⅰ理第21题文第22题)双曲线的中心为原点O ,焦点在x 上,两条渐近线分别为1l 、2l ,经过右焦点F 垂直于1l 的直线分别交1l 、2l 于A 、B 两点. 已知||OA 、||AB 、||OB 成等差数列,且BF 与FA 同向.(Ⅰ)求双曲线的离心率;(Ⅱ)设AB 被双曲线所截得的线段的长为4,求双曲线的方程.A ByO F x1l2lN M金指点睛1. 已知斜率为1的直线l 过椭圆1422=+x y 的上焦点F 交椭圆于A 、B 两点,则||AB =_________.2. 过双曲线1322=-y x 的左焦点F 作倾斜角为6π的直线l 交双曲线于A 、B 两点,则||AB =_________.3. 已知椭圆02222=-+y x ,过左焦点F 作直线l 交A 、B 两点,O 为坐标原点,求△AOB 的最大面积.B O xy AF4. 已知抛物线px y 42=(p >0),弦AB 过焦点F ,设m AB =||,△AOB 的面积为S ,求证:mS 2为定值.yO F x AB5.(05全国Ⅱ文第22题)P 、Q 、M 、N 四点都在椭圆1222=+y x 上,F 为椭圆在y 轴正半轴上的焦点. 已知PF 与FQ 共线,MF 与FN 共线,且0=⋅MF PF .求四边形PQMN 的面积的最大值和最小值.O xNPy MQF6. (07重庆文第22题)如图,倾斜角为α的直线经过抛物线x y 82=的焦点F ,且与抛物线交于A 、B 两点.(Ⅰ)求抛物线的焦点F 的坐标及准线l 的方程;(Ⅱ)若α为锐角,作线段AB 的垂直平分线m 交x 轴于点P ,证明α2cos ||||FP FP -为定值,并求此定值.yO F xA BDEC lαm P7. 点M 与点)2,0(F 的距离比它到直线03:=+y l 的距离小1.(1)求点M 的轨迹方程;(2)经过点F 且互相垂直的两条直线与轨迹相交于A 、B ;C 、D. 求四边形ACBD 的最小面积.FO xA BD C y8. 已知双曲线的左右焦点1F 、2F 与椭圆1522=+y x 的焦点相同,且以抛物线x y 22-=的准线为其中一条准线. (1)求双曲线的方程;(2)若经过焦点2F 且互相垂直的两条直线与双曲线相交于A 、B ;C 、D. 求四边形ACBD的面积的最小值.y2FAO x1l2l B CD参考答案:证明:设双曲线方程为12222=-by a x (a >0,b >0),通径a b H 22=,离心率a ce =,弦AB 所在的直线l 的方程为)(c x k y +=(其中αtan =k ,α为直线l 的倾斜角),其参数方程为为参数)(,t t y t c x ⎩⎨⎧=+-=.sin cos αα. 代入双曲线方程并整理得:0cos 2cos sin 4222222=-⋅+⋅-b t c b t b a ααα)(. 由t 的几何意义可得:|cos 1|2|cos 1|2|cos sin |2cos sin 4cos sin cos 24||||22222222222222222222222122121αααααααααe a b e a b b a ab b a b b a c b t t t t t t AB -=-=-=-----=-+=-=)()(.|cos 1|22αe H-=例1.解:(Ⅰ)当x AB ⊥轴时,点A 、B 关于x 轴对称,0=∴m ,直线AB 的方程为1=x . 从而点A 的坐标为),(231或),(231-. 点A 在抛物线2C 上,.249p =∴即.89=p此时抛物线2C 的焦点坐标为),(0169,该焦点不在直线AB 上. (Ⅱ)设直线AB 的倾斜角为α,由(Ⅰ)知2πα≠.则直线AB 的方程为)(1tan -⋅=x y α.抛物线2C 的对称轴m y =平行于x 轴,焦点在AB 上,通径382==p H ,离心率1=e ,于是有又 AB 过椭圆1C 的右焦点,通径322==a b H ,离心率21=e . ∴.cos 412|cos 1|||222αα-=-=e H AB∴)(α2cos 138-.cos 4122α-= 解之得:6tan 71cos 2±==αα,.抛物线2C 的焦点),(m F 32在直线)(1tan -⋅=x y α上, ∴αtan 31-=m ,从而36±=m . 当36=m 时,直线AB 的方程为066=-+y x ; 当36-=m 时,直线AB 的方程为066=--y x 例2.(1)证明:在12322=+y x 中,123===c b a ,,. ,︒=∠9021PF F O 是1F 2F 的中点,.1||21||21===∴c F F OP 得.12020=+y x ∴点P 在圆122=+y x 上.显然,圆122=+y x 在椭圆12322=+y x 的内部. 故232020yx +<1.(2)解:如图,设直线BD 的倾斜角为α,由BD AC ⊥可知,直线AC 的倾斜角απ+2..cos 138sin ||22)(αα-==H AB 2FOABxy通径33422==a b H ,离心率33=e . 又 BD 、AC 分别过椭圆的左、右焦点1F 、2F ,于是.sin 3342cos 1||cos 334cos 1||222222ααπαα-=+-=-=-=)(,e H AC e H BD ∴四边形ABCD 的面积.2sin 2496sin 334cos 33421||||21222ααα+=-⋅-⋅=⋅=AC BD S [)]10[2sin 02,,,∈∴∈απα . ⎥⎦⎤⎢⎣⎡∈∴42596,S .故四边形ABCD 面积的最小值为2596. 例3,解:(Ⅰ)设双曲线的方程为12222=-by a x (a >0,b >0).||OA 、||AB 、||OB 成等差数列,设m AB =||,公差为d ,则d m OA -=||,d m OB +=||,∴222)()(d m m d m +=+-. 即2222222d dm m m d dm m ++=++-. ∴4m d =. 从而43||m OA =,45||mOB =. 又设直线1l 的倾斜角为α,则α2=∠AOB . 1l 的方程为x aby =. ∴.tan ab=α 而.34||||tan 2tan ==∠=OA AB AOB α 2FABCD Oxy 1F P∴34)(12tan 1tan 222=-⨯=-ab a bαα. 解之得:.21=a b∴.25)(12=+=a b e (Ⅱ)设过焦点F 的直线AB 的倾斜角为θ, 则απθ+=2.∴αθsin cos -=. 而.51)21(1)21(tan 1tan sin 22222=+=+=ααα∴51cos 2=θ.通径b abb a b H =⨯==222. 又设直线AB 与双曲线的交点为M 、N. 于是有:4cos 1||22=-=θe HMN .即451)25(12=⨯-b .解得3=b ,从而6=a .∴所求的椭圆方程为193622=-y x .1. 解:3,1,2===c b a ,离心率23==a c e ,通径122==ab H ,直线l 的倾斜角4πα=.∴58)22()23(11sin 1||2222=⋅-=-=αe HAB . 2. 解:2,3,1===c b a ,离心率2==ace ,通径622==a b H ,直线的倾斜角6πα=. A ByO F x1l2lN M∴3|)23(21|6|cos 1|||2222=⋅-=-=αe HAB .3. 解:1222=+y x ,1,1,2===c b a ,左焦点)0,1(-F ,离心率22==a c e ,通径222==ab H .当直线l 的斜率不存在时,x l ⊥轴,这时22||2===ab H AB ,高1||==c OF ,△AOB 的面积221221=⨯⨯=S . 当直线l 的斜率存在时,设直线l 的倾斜角为α,则其方程为)1(tan +⋅=x y α,即tan tan =+-⋅ααy x ,原点O 到直线AB 的距离ααααααs i n|s e c ||t a n|1t a n |t a n 0ta n 0|2==++-⨯=d . αααα222222sin 122cos 222cos )22(12cos 1||+=-=⋅-=-=e HAB . ∴△AOB 的面积αα2sin 1sin 2||21+=⨯⨯=d AB S . 0<α<π,∴αsin >0. 从而ααsin 2sin 12≥+. ∴22sin 2sin 2=≤ααS .当且仅当1sin =α,即2πα=时,“=”号成立. 故△AOB 的最大面积为22. 4. 解:焦点为)0,(p F ,通径p H 4=.当直线AB 的斜率不存在时,x AB ⊥轴,这时p m AB 4||==,高p OF =||,△AOBBO xy AF的面积22||||21p OF AB S =⨯⨯=. ∴3442444p pp m p m S ===,是定值.当直线AB 的斜率存在时,设直线的倾斜角为α,则其方程为)(tan p x y -⋅=α,即tan tan =+-⋅ααp y x ,原点O 到直线AB 的距离αααααs i n |s e c ||t a n|1t a n |t a n |2p p p d ==+=. αα22sin 4sin ||pH AB ==. ∴△AOB 的面积αsin 2||212p d AB S =⨯⨯=.∴32242424sin sin 41sin 4p pp m p m S =⨯=⨯=ααα. ∴不论直线AB 在什么位置,均有32p m S =(3p 为定值).5. 解:在椭圆1222=+y x 中,.112===c b a ,, 由已知条件,MN 和PQ 是椭圆的两条弦,相交于焦点),(10F ,且PQ MN ⊥. 如图,设直线PQ 的倾斜角为α,则直线MN 的倾斜角απ+2.通径222==ab H ,离心率22=e .于是有.sin 222sin 1||cos 222)2(sin 1||222222ααααπ-=-=-=+-=e H PQ e HMN ,∴四边形PQMN 的面积O xNPy MQFyO F x AB.2sin 816sin 222cos 22221||||21222ααα+=-⋅-⋅=⋅=PQ MN S [)]10[2sin 02,,,∈∴∈απα . ⎥⎦⎤⎢⎣⎡∈∴2916,S .故四边形PQMN 面积的最小值和最大值分别为916和2. 6.(Ⅰ)解:4,82==p p ,∴抛物线的焦点F 的坐标为)2,0(, 准线l 的方程为2-=x .(Ⅱ)证明:作l AC ⊥于C ,AC FD ⊥于D. 通径82==p H . 则ααααcos ||||,cos ||||,sin 8sin ||22AF AD FP EF H AB ====.∴4cos ||||||||+=+==αAF p AD AC AF .∴αcos 14||-=AF .∴αααα22sin cos 4sin 4cos 14||21||||||||=--=-=-=AB AF AE AF EF , 从而αα2sin 4cos ||||==EF FP . ∴8sin 2sin 4)2cos 1(||2cos ||||22=⋅=-=-ααααFP FP FP . 故α2cos ||||FP FP -为定值,此定值为8.7. 解:(1)根据题意,点M 与点)2,0(F 的距离与它到直线2:-=y l 的距离相等,∴点M 的轨迹是抛物线,点)2,0(F 是它的焦点,直线2:-=y l 是它的准线.从而22=p,∴4=p . ∴所求的点M 的轨迹方程是y x 82=.(2) 两条互相垂直的直线与抛物线均有两个交点, ∴它们的斜率都存在. 如图,设直线AB 的倾斜角为α, 则直线CD 的倾斜角为α+︒90.y O F xA BDEClαm P BDy抛物线的通径82==p H ,于是有:αααα2222sin 8)90(cos ||,cos 8cos ||=+︒===H CD H AB .∴四边形ACBD 的面积.2sin 128sin 8cos 821||||21222ααα=⋅⋅=⋅=CD AB S 当且仅当α2sin 2取得最大值1时,128min =S ,这时︒=︒=45,902αα.∴四边形ACBD 的最小面积为128.8. 解:(1)在椭圆1522=+y x 中,2,1,522=-===b a c b a ,∴其焦点为)0,2(1-F 、)0,2(2F .在抛物线x y 22-=中,1=p ,∴其准线方程为212==p x . 在双曲线中,21,22==c a c ,∴3,122=-==a c b a . ∴所求的双曲线的方程为1322=-y x .(2) 两条互相垂直的直线与双曲线均有两个交点,∴它们的斜率都存在. 如图,设直线AB 的倾斜角为α,则直线CD 的倾斜角为α+︒90.双曲线的通径622==a b H ,离心率2==a ce . 于是有: αααα222222sin 416)90(cos 1||,cos 416cos 1||-=+︒-=-=-=e H CD e H AB .∴四边形ACBD 的面积.2sin 4318sin 416cos 41621||||21222ααα+-=-⋅-⋅=⋅=CD AB S =18 y2FAO x1l2l B CD当且仅当α2sin 2取得最大值1时,18min =S ,这时︒=︒=45,902αα.∴四边形ACBD 的最小面积为18.。

专题16 圆锥曲线焦点弦 微点3 圆锥曲线焦点弦长公式及其应用

专题16  圆锥曲线焦点弦  微点3  圆锥曲线焦点弦长公式及其应用
15.过双曲线 的右焦点F作倾斜角为 的直线,交双曲线于P、Q两点,则 的值为__________.
16.过双曲线 的右焦点 作倾斜角为 的直线,交双曲线于 两点,则 的值为________.
17.过抛物线 的焦点 作倾角为 的直线,与抛物线分别交于 、 两点( 在 轴左侧),则 _______________________.
注意:夹角不是直线的倾斜角,而是直线与焦点所在轴的夹角,这样就不需要区的右焦点F作倾斜角为 的直线,交双曲线于 两点,求弦长 .
三、圆锥曲线坐标式焦点弦长公式
1.椭圆的坐标式焦点弦长公式
例9
9.已知椭圆 ,若过左焦点的直线交椭圆于 两点,求 .
【结论6】椭圆的坐标式焦点弦长公式:
我们有如下结论:
【结论6】双曲线的坐标式焦点弦长公式:
(1)双曲线 的焦点弦长公式:
同支弦 ;异支弦 ,统一为: ;
(2)双曲线 的焦点弦长公式:
同支弦 ;异支弦 ,统一为: .
3.抛物线的坐标式焦点弦长公式
由抛物线的定义易得
【结论7】抛物线的坐标式焦点弦长公式:
(1)抛物线 的焦点弦长公式: ;
(2)抛物线 的焦点弦长公式: ;
说明:特殊情形,当倾斜角为 时,即为椭圆的通径,通径长 .
2.双曲线的倾斜角式焦点弦长公式
例2
2.设双曲线 ,其中两焦点坐标为 ,过 的直线 的倾斜角为 ,交双曲线于 , 两点,求弦长 .
可得如下结论2:
【结论2】双曲线的倾斜角式焦点弦长公式:
(1) 为双曲线 的左、右焦点,过 倾斜角为 的直线 与双曲线 交于 两点,则 .
专题16 圆锥曲线焦点弦 微点3 圆锥曲线焦点弦长公式及其应用
专题16圆锥曲线焦点弦

圆锥曲线中的弦长问题学案

圆锥曲线中的弦长问题学案

圆锥曲线中的弦长问题【学习目标】1、 熟练掌握直线与圆锥曲线位置关系的判断方法;2、 能解决有关直线与圆锥曲线相交时的有关弦长等问题。

【重点难点】直线与圆锥曲线相交时弦长问题的处理方法。

教学过程: 一、基本知识考查:__________________为 圆锥曲线的轴时,弦 ;当焦点弦垂直于 当弦过焦点时,为了弦。

相交于两点时,就产生1、当直线与圆锥曲线()()__________2____________________________0____________________,,,2212211px x AB ②d k d k ①d y x y x k =++=====⎪⎪⎪⎭⎫⎝⎛ 抛物线的弦长公式 时:存在且不为 当 存在时:当 直线的倾斜角为弦长为,,,交点坐标为直线的斜率为、弦长公式α二、我试试,我理解 1、自主探究2、能力提高()()()()()()、 不确定 、 、  、 的最小值为的所有焦点弦中,弦长4、抛物线、 、 、 、 8 等于,那么 两点,如果、于的焦点作直线交抛物线、过抛物线、 9 、 、 3 、 5 等于两点,则、与 的直线与双曲线交轴与过其右焦点作一条垂直-、 已知双曲线方程为、 、 5、 、 2 等于相交于A、B两点,则与椭圆1、直线D p C p B p A p px y D C B A AB x x y x B y x A x y D C B A AB B A x yx D C B A AB y xx y 42)0(246106,,434,1542510851045414221221122222>==+===+=()()()为双曲线的右焦点的周长2 1求: ,的弦6作倾斜角为的左焦点例1、过双曲线212213FABC AB AB F yx ∆=-π?所在的直线斜率为3呢想:弦AB两点呢?、 圆于过椭圆的左焦点且交椭为:直线拓展:若把第一句话改B A l长的取值范围呢?线段改为求的长不小于短轴的长,深度拓展:若把线段AB AB的取值范围。

新版高中数学圆锥曲线教案

新版高中数学圆锥曲线教案

新版高中数学圆锥曲线教案一、教学目标:1. 熟练掌握圆锥曲线的基本概念和性质;2. 能够理解常见圆锥曲线方程的几何意义;3. 能够运用圆锥曲线解决实际问题。

二、教学重点:1. 圆锥曲线的定义和分类;2. 圆锥曲线的方程及性质;3. 圆锥曲线的应用实例。

三、教学内容:1. 圆锥曲线的基本概念:椭圆、双曲线、抛物线;2. 圆锥曲线的方程:椭圆方程、双曲线方程、抛物线方程;3. 圆锥曲线的性质:焦点、准线、离心率等;4. 圆锥曲线的应用:求解实际问题。

四、教学步骤:1. 引入:通过生活实例引入圆锥曲线的概念,引发学生兴趣;2. 讲解:介绍圆锥曲线的定义、分类、方程和性质;3. 练习:让学生进行练习,巩固所学内容;4. 应用:通过应用题,让学生运用所学知识解决实际问题;5. 总结:对本节课所学内容进行总结,强化记忆。

五、教学工具:1. 讲义、教材:提供相关知识点及例题;2. 幻灯片:辅助讲解,呈现图形与方程对应关系;3. 黑板、彩色粉笔:展示解题过程;4. 习题册、练习册:让学生进行巩固练习。

六、教学评价:1. 课堂表现:学生是否积极参与讨论、思维活跃;2. 作业情况:学生对作业的完成情况及正确率;3. 考试成绩:检验学生掌握情况。

七、教学反馈:1. 整理学生反馈意见,根据学生反馈调整教学方式;2. 总结本节课教学经验,为下一节课改进教学方法做准备。

八、教学延伸:1. 给学生留下更多实例让学生探究,提高学生学习兴趣;2. 引导学生自主进行拓展探索,培养学生解决问题的能力。

以上是本节课的教案范本,希望能够对教学工作有所帮助,祝教学顺利!。

圆锥曲线弦长公式讲课教案

圆锥曲线弦长公式讲课教案

圆锥曲线弦长公式关于直线与圆锥曲线相交求弦长,通用方法是将直线代入曲线方程,化为关于x的一元二次方程,设出交点坐标,利用韦达定理及弦长公式求出弦长,这种整体代换,设而不求的思想方法对于求直线与曲线相交弦长是十分有效的,然而对于过焦点的圆锥曲线弦长求解利用这种方法相比较而言有点繁琐,利用圆锥曲线定义及有关定理导出各种曲线的焦点弦长公式就更为简捷。

. 椭圆的焦点弦长若椭圆方程为,半焦距为,焦点,设过的直线的倾斜角为交椭圆于A、B两点,求弦长。

解:连结,设,由椭圆定义得,由余弦定理得,整理可得,同理可求得,则弦长同理可求得焦点在y轴上的过焦点弦长为(a为长半轴,b为短半轴,c为半焦距)结论:椭圆过焦点弦长公式:二. 双曲线的焦点弦长设双曲线,其中两焦点坐标为,过的直线的倾斜角为,交双曲线于A、B两点,求弦长|AB|。

解:(1)当时,(如图2)直线与双曲线的两个交点A、B在同一交点上,连,设,由双曲线定义可得,由余弦定理可得整理可得,同理,则可求得弦长(2)当或时,如图3,直线l与双曲线交点A、B在两支上,连,设,则,,由余弦定理可得,整理可得,则因此焦点在x轴的焦点弦长为同理可得焦点在y轴上的焦点弦长公式三其中a为实半轴,b为虚半轴,c为半焦距,为AB的倾斜角。

. 抛物线的焦点弦长若抛物线与过焦点的直线相交于A、B两点,若的倾斜角为,求弦长|AB|?(图4)解:过A、B两点分别向x轴作垂线为垂足,设,,则点A的横坐标为,点B横坐标为,由抛物线定义可得即则同理的焦点弦长为的焦点弦长为,所以抛物线的焦点弦长为由以上三种情况可知利用直线倾斜角求过焦点的弦长,非常简单明确,应予以掌握。

一。

圆锥曲线学生公开课教案教学设计课件资料

圆锥曲线学生公开课教案教学设计课件资料

圆锥曲线学生公开课教案教学设计课件资料一、教学目标1. 知识与技能:(1)理解圆锥曲线的定义及其基本性质;(2)掌握圆锥曲线的标准方程及其求法;(3)能够运用圆锥曲线解决实际问题。

2. 过程与方法:(1)通过观察、分析、归纳圆锥曲线的性质,培养学生的逻辑思维能力;(2)运用数形结合的方法,引导学生感受圆锥曲线的美妙与神奇;(3)培养学生运用数学知识解决实际问题的能力。

3. 情感态度与价值观:(1)激发学生对圆锥曲线的兴趣,培养对数学的美感;(2)培养学生勇于探索、积极思考的科学精神;(3)引导学生认识数学在生活中的重要性,提高学生的数学素养。

二、教学内容1. 圆锥曲线的定义及其基本性质2. 圆锥曲线的标准方程及其求法3. 圆锥曲线的基本性质与应用4. 圆锥曲线在实际问题中的应用5. 圆锥曲线的历史与发展三、教学重点与难点1. 重点:圆锥曲线的定义、标准方程及其求法;圆锥曲线的基本性质与应用。

2. 难点:圆锥曲线的标准方程求法;圆锥曲线在实际问题中的应用。

四、教学方法1. 采用问题驱动法,引导学生主动探究圆锥曲线的性质;2. 利用数形结合法,直观展示圆锥曲线的特点;3. 通过实例分析,让学生学会运用圆锥曲线解决实际问题;4. 鼓励学生参与讨论、交流,提高学生的合作能力。

五、教学过程1. 导入:(1)回顾椭圆、双曲线、抛物线的定义及其性质;(2)引导学生思考:这些曲线之间有什么联系和区别?2. 新课讲解:(1)讲解圆锥曲线的定义及其基本性质;(2)引导学生探究圆锥曲线的标准方程及其求法;(3)讲解圆锥曲线的基本性质与应用。

3. 实例分析:(1)分析圆锥曲线在实际问题中的应用;(2)让学生尝试解决相关问题,巩固所学知识。

4. 课堂练习:(1)设计一些有关圆锥曲线的练习题,让学生独立完成;(2)对学生的练习情况进行点评,解答疑难问题。

5. 课堂小结:(1)总结本节课所学的主要内容;(2)强调圆锥曲线在实际问题中的应用价值。

高中数学同步讲义(人教A版选择性必修一):圆锥曲线的方程(弦长问题)(教师版)

高中数学同步讲义(人教A版选择性必修一):圆锥曲线的方程(弦长问题)(教师版)

【典例2】(2023春·广西·高二校联考阶段练习)在直角坐标系动点,且直线PA和直线PB(1)求曲线C的方程;(2)若直线l与曲线C相交于(法二)易知直线斜率存在,设直线方程为联立方程组221255x yy kx b,消去y整理得2222Δ1004(51)(525)500 k b k b则210525,kb bx x x x(1)求椭圆1C的方程;(2)如图,以椭圆1C的长轴为直径作圆B,若直线AB与椭圆1C交于不同的两点【答案】(1)221 42x y;(2)||[2,4)CD .【详解】(1)设半焦距为c,由使得动点P到焦点1F的距离的最大值为2所以椭圆1C的方程是221 42x y.因为直线AT 为切线,故10y ,否则直线若10x ,则11OA y k x ,故11AT x k y ,故直线AT 的方程为: 111x y y y 整理得到:2211114x x y y x y ;当10x 时,若(0,2)A ,直线AT 的方程为:满足114x x y y .故直线AT 的方程为114x x y y ,同理直线【典例2】(2023春圆 2222:1x y C a a b (1)求椭圆C 的方程;(2)若斜率为k 的直线8则211mk ,得221m k ,联立22142y kx m x y 得 2221k x 则 2222164212k m k m【变式1】(2023春·上海浦东新·高二统考期末)椭圆(1)求椭圆C的离心率;【变式3】(2023春·四川内江22221(0)x y a b a b,短轴长为(1)求椭圆E 的方程;(2)若直线l :(0)y kx m k 与圆的方程.)设椭圆方程为22221x ym n,则2m故椭圆方程为22194x y,联立方程222 648036288016t t t(1)求C 的方程;(2)若P 为直线:2l x 上的一动点,过F 作AB 的垂线交l 于点N ,当【答案】(1)24y x(2)4703【详解】(1)由题知,2p C 的方程为24y x .(2)抛物线2:4C y x 的焦点设 2,P t ,过P 点的抛物线242y x x m y t 消去x 得:y 2Δ161620m mt 即此时①可化为2244y my m 设直线 1:2PA x m y t ,直线则12,m m 为方程②的两根,故且122,2A B y m y m ,可得A 由②知,2211220,m tm m 则直线AB 方程为:22t x y 因为直线NF 与直线AB 垂直,则直线NF 方程为: 2t y x故832,,2,2M N t t,(1)求证:A ,M ,B 三点的横坐标成等差数列;(2)已知当M 点的坐标为【答案】(1)证明见解析(2)22x y 或24x y【详解】(1)证明:由题意设。

最新人教高中数学圆锥曲线教案

最新人教高中数学圆锥曲线教案

最新人教高中数学圆锥曲线教案作为一名数学老师,你会写数学教案吗?数学教案对你的教学工作有积极的帮助。

不妨和我们分享你的数学教案吧。

下面是小编为大家收集有关于人教高中数学圆锥曲线教案,希望你喜欢。

#xxxx人教高中数学圆锥曲线教案1一、教材分析1.教材所处的地位和作用在学习了随机事件、频率、概率的意义和性质及用概率解决实际问题和古典概型的概念后,进一步体会用频率估计概率思想。

它是对古典概型问题的一种模拟,也是对古典概型知识的深化,同时它也是为了更广泛、高效地解决一些实际问题、体现信息技术的优越性而新增的内容。

2.教学的重点和难点重点:正确理解随机数的概念,并能应用计算器或计算机产生随机数。

难点:建立概率模型,应用计算器或计算机来模拟试验的方法近似计算概率,解决一些较简单的现实问题。

二、教学目标分析1、知识与技能:(1)了解随机数的概念;(2)利用计算机产生随机数,并能直接统计出频数与频率。

2、过程与方法:(1)通过对现实生活中具体的概率问题的探究,感知应用数学解决问题的方法,体会数学知识与现实世界的联系,培养逻辑推理能力;(2)通过模拟试验,感知应用数字解决问题的方法,自觉养成动手、动脑的良好习惯3、情感态度与价值观:通过数学与探究活动,体会理论来源于实践并应用于实践的辩证唯物主义观点.三、教学方法与手段分析1、教学方法:本节课我主要采用启发探究式的教学模式。

2、教学手段:利用多媒体技术优化课堂教学四、教学过程分析㈠创设情境、引入新课情境1:假设你作为一名食品卫生工作人员,要对某超市内的80袋小包装饼干中抽取10袋进行卫生达标检验,你打算如何操作?预设学生回答:⑴采用简单随机抽样方法(抽签法)⑵采用简单随机抽样方法(随机数表法)教师总结得出:随机数就是在一定范围内随机产生的数,并且得到这个范围内每一数的机会一样。

(引入课题) 「设计意图」(1)回忆统计知识中利用随机抽样方法如抽签法、随机数表法等进行抽样的步骤和特征;(2)从具体试验中了解随机数的含义。

圆锥曲线-教案

圆锥曲线-教案

圆锥曲线1.椭圆的标准方程和几何性质标准方程x 2a2+y2b2=1(a>b>0)y2a2+x2b2=1(a>b>0)图形性质[来源: ZX XK ][ m]范围-a≤x≤a-b≤y≤b[来源:学#科#网Z#X#X#K]-b≤x≤b-a≤y≤a[来源:Z,xx,]对称性对称轴:坐标轴;对称中心:原点顶点A1(-a,0),A2(a,0)B1(0,-b),B2(0,b)A1(0,-a),A2(0,a)B1(-b,0),B2(b,0)轴长轴A1A2的长为2a;短轴B1B2的长为2b焦距|F1F2|=2c离心率e=ca∈(0,1)a,b,c的关系c2=a2-b22.双曲线的标准方程和几何性质标准方程x2a2-y2b2=1(a>0,b>0)y2a2-x2b2=1(a>0,b>0)图形性质范围x≥a或x≤-a,y∈R x∈R,y≤-a或y≥a对称性对称轴:坐标轴;对称中心:原点顶点A1(-a,0),A2(a,0) A1(0,-a),A2(0,a)渐近线y=±bax y=±abx离心率e=ca,e∈(1,+∞)实虚轴线段A1A2叫做双曲线的实轴,它的长|A1A2|=2a;线段B1B2叫做双曲线的虚轴,它的长|B1B2|=2b;a叫做双曲线的半实轴长,b叫做双曲线的半虚轴长a,b,c的关系c2=a2+b2(c>a>0,c>b>0)3.抛物线的标准方程与几何性质标准方程y 2=2px (p>0) y 2=-2px(p>0) x 2=2py(p>0)x 2=-2py(p>0)p 的几何意义:焦点F 到准线l 的距离图形顶点 O(0,0)对称轴y =0x =0 焦点F ⎝ ⎛⎭⎪⎫p 2,0F ⎝ ⎛⎭⎪⎫-p 2,0 F ⎝ ⎛⎭⎪⎫0,p 2 F ⎝⎛⎭⎪⎫0,-p 2 离心率e =1准线方程x =-p2x =p 2 y =-p 2y =p 2 范围 x ≥0,y ∈R x ≤0,y ∈R y ≥0,x ∈Ry ≤0,x ∈R 开口方向向右向左向上向下真题回顾1.(2019·全国1·文T10)双曲线C: 12222=-by a x =1(a>0,b>0)的一条渐近线的倾斜角为130°,则C 的离心率为( ) A.2sin 40°B.2cos 40°C.。

高中数学新课圆锥曲线方程教案

高中数学新课圆锥曲线方程教案

高中数学新课圆锥曲线方程教案一、教学目标1. 理解圆锥曲线的基本概念,掌握圆锥曲线的定义及其性质。

2. 学习圆锥曲线的标准方程及其求法。

3. 能够运用圆锥曲线方程解决实际问题,提高数学应用能力。

二、教学内容1. 圆锥曲线的定义与性质1.1 圆锥曲线的定义1.2 圆锥曲线的性质2. 圆锥曲线的标准方程2.1 椭圆的标准方程2.2 双曲线的标准方程2.3 抛物线的标准方程三、教学重点与难点1. 重点:圆锥曲线的定义、性质及标准方程的求法。

2. 难点:圆锥曲线标准方程的推导与应用。

四、教学方法1. 采用问题驱动法,引导学生主动探究圆锥曲线的定义与性质。

2. 利用图形演示,让学生直观理解圆锥曲线的特点。

3. 运用类比法,引导学生发现圆锥曲线标准方程的规律。

4. 注重实践操作,让学生在解决问题中巩固圆锥曲线方程的应用。

五、教学准备1. 教学课件:圆锥曲线的相关图片、图形演示等。

2. 教学素材:圆锥曲线的实例问题。

3. 学生用书:《高中数学》圆锥曲线相关章节。

教案篇幅有限,后续章节(六、七、八、九、十)将陆续提供。

请随时查阅。

六、教学过程1. 导入:通过展示生活中的圆锥曲线实例,如旋转的伞、地球卫星轨道等,引导学生关注圆锥曲线在现实世界中的应用。

2. 新课导入:介绍圆锥曲线的定义,引导学生理解圆锥曲线的形成过程。

3. 性质探讨:引导学生发现圆锥曲线的性质,如对称性、渐近线等。

4. 标准方程求法:讲解椭圆、双曲线、抛物线的标准方程求法。

5. 巩固练习:布置相关练习题,让学生巩固所学知识。

七、课堂互动1. 小组讨论:让学生分组讨论圆锥曲线的性质,分享各自的发现。

2. 提问环节:鼓励学生提问,解答学生关于圆锥曲线方程的疑问。

3. 案例分析:分析实际问题,引导学生运用圆锥曲线方程解决实际问题。

八、课后作业1. 完成学生用书上的课后练习题。

2. 选取一个实际问题,运用圆锥曲线方程进行解答。

九、教学反思2. 反思教学方法:观察学生对圆锥曲线方程的掌握情况,调整教学方法,提高教学效果。

高中苏教数学圆锥曲线教案

高中苏教数学圆锥曲线教案

高中苏教数学圆锥曲线教案课时:1课时教学目标:1. 了解圆锥曲线的定义与性质。

2. 能够绘制椭圆、双曲线和抛物线的基本形态。

3. 能够利用圆锥曲线的性质解决实际问题。

教学重点:1. 圆锥曲线的基本概念。

2. 椭圆、双曲线和抛物线的性质。

教学难点:1. 圆锥曲线的几何解释。

2. 圆锥曲线的公式推导。

教学准备:1. 教材《高中数学》(苏教版)。

2. 平面直角坐标系的绘制工具。

3. 圆锥曲线的示意图。

教学内容与过程:一、引入教师引导学生回顾平面直角坐标系的相关知识,提出问题:在平面直角坐标系中,什么是圆锥曲线?为什么称之为圆锥曲线?有哪些类型的圆锥曲线?二、讲解1. 圆锥曲线的定义:平面上点P(x,y)到两个固定点F1和F2的距离之比为常数e(离心率)的轨迹称为椭圆;平面上点P(x,y)到两个固定点F1和F2的距离之差的绝对值为常数ε的轨迹称为双曲线;平面上点P(x,y)到一个固定点F和一条直线L的距离之比为常数的轨迹称为抛物线。

2. 椭圆、双曲线和抛物线的几何特征:椭圆是一个闭合曲线,双曲线有两个分支,抛物线只有一个分支。

3. 圆锥曲线的示意图:通过绘制特定的圆锥曲线示意图,展示椭圆、双曲线和抛物线的形态。

三、练习与讨论在平面直角坐标系中绘制椭圆、双曲线和抛物线的基本形态,并让学生讨论各类型圆锥曲线的性质和特点。

四、拓展应用利用圆锥曲线的性质解决实际问题,如焦点在x轴上的椭圆的方程为x²/16+y²/9=1,求离心率e和焦距。

五、总结与评价总结圆锥曲线的基本概念和性质,评价学生在绘制和讨论过程中的表现,强调圆锥曲线在几何和解析几何中的重要性。

六、作业布置布置作业:练习册上相关练习题,加深对圆锥曲线的理解。

教学反思:本节课通过引入、讲解、练习和拓展应用的方式,帮助学生理解圆锥曲线的基本概念和性质,引导学生在实践中应用所学知识解决问题。

在教学过程中要注重理论与实践相结合,激发学生的兴趣,提高学生的学习效果。

圆锥曲线的弦长公式及其推导过程

圆锥曲线的弦长公式及其推导过程

圆锥曲线的弦长公式及其推导过程(一)关于直线与圆锥曲线相交求弦长,通用方法是将直线b kx y +=代入曲线方程,化为关于x 的一元二次方程,设出交点坐标()(),,,,2211y x B y x A 利用韦达定理及弦长公式]4))[(1(212212x x x x k -++求出弦长,这种整体代换、设而不求的思想方法对于求直线与曲线相交弦长是十分有效的,然而对于过焦点的圆锥曲线弦长求解利用这种方法相比较而言有点繁琐,若利用圆锥曲线的定义及有关定理导出各种曲线的焦点弦长公式就更为简捷.一、椭圆的焦点弦长若椭圆方程为)0(12222>>=+b a b y a x ,半焦距为c>0,焦点)0,(),0,(21c F c F -,设过1F 的直线l 的倾斜角为l ,α交椭圆于两点()(),,,,2211y x B y x A 求弦长AB.解:连结B F A F 22,,设yB F x A F ==11,,由椭圆定义得ya B F x a A F -=-=2,222,由余弦定理得222)2(cos 22)2(x a c x c x -=⋅⋅-+α,整理可得αcos 2⋅-=c a b x ,同理可求得αcos 2⋅+=c a b y ,则ααα222222cos 2cos cos c a ab c a b c a b y x AB -=⋅++⋅-=+=;同理可求得焦点在y 轴上的过焦点弦长为α2222sin 2c a ab AB -=(a 为长半轴,b 为短半轴,c 为半焦距).结论:椭圆过焦点弦长公式:⎪⎪⎩⎪⎪⎨⎧⋅-⋅-=).(sin 2),(cos 222222222轴上焦点在轴上焦点在y c a ab x c a ab AB αα二、双曲线的焦点弦长设双曲线(),0,012222>>=-b a b y a x 其中两焦点坐标为)0,(),0,(21c F c F -,过F 1的直线l的倾斜角为α,交双曲线于两点()(),,,,2211y x B y x A 求弦长|AB|.解:(1)当a b a b arctanarctan -<<πα时,(如图2)直线l 与双曲线的两个交点A 、B 在同一支上,连B F A F 22,,设,,11y B F x A F ==,由双曲线定义可得ay B F a x A F 2,222+=+=,由余弦定理可得222222)2()cos(22)2(,)2(cos 22)2(a y c y c y a x c x c x +=-⋅⋅-++=⋅⋅-+απα整理可得αcos 2⋅+=c a b x ,αcos 2⋅-=c a b y ,则可求得弦长 ;cos 2cos cos 222222αααc a ab c a b c a b y x AB -=⋅-+⋅+=+=(2)时或当παπα<<-<≤a ba b arctan arctan 0,如图3,直线l 与双曲线交点()()2211,,,y x B y x A 在两支上,连F 2A,F 2B,设,,11y B F x A F ==则ay B F a x A F 2,222-=+=,由余弦定理可得222)2(cos 22)2(a x c x c x +=⋅⋅-+α,222)2(cos 22)2(a y c y c y -=⋅⋅-+α,整理可得,则,cos ,cos 22a c b y a c b x -⋅=+⋅=αα.cos 2cos cos 222222a c ab a c b a c b x y AB -⋅=+⋅--⋅=-=ααα因此焦点在x 轴的焦点弦长为⎪⎪⎩⎪⎪⎨⎧<<-<≤--<<-=).arctan arctan 0(cos 2),arctan (arctan cos 222222222παπααπααa b a b a c ab a ba b c a ab AB 或同理可得焦点在y 轴上的焦点弦长公式⎪⎪⎩⎪⎪⎨⎧-<<-<<-<≤-=).arctan (arctan sin 2),arctan arctan 0(sin 222222222a b a b a c ab a ba b c a ab AB πααπαπαα或其中a 为实半轴,b 为虚半轴,c 为半焦距,α为AB 的倾斜角.三、 抛物线的焦点弦长若抛物线)0(22>=p px y 与过焦点)0,2(pF 的直线l 相交于两点()()2211,,,y x B y x A ,若l 的倾斜角为α,求弦长|AB|.(图4)解:过A 、B 两点分别向x 轴作垂线AA 1、BB 1,A 1、B 1为垂足,yFB x FA ==,设,则点A 的横坐标为αcos 2⋅+x p,点B 横坐标为αcos 2⋅-y p ,由抛物线定,2cos 2,2cos 2y py p x p x p =+⋅-=+⋅+αα义知,cos 1,cos 1αα+=-=py p x即,sin 2cos 12cos 1cos 122ααααpp p p y x =-=++-=+则同理)0(22>-=p px y 的焦点弦长为,sin 22αpAB =)0(22>±=p py x 的焦点弦长为,cos 22αpAB =,所以抛物线的焦点弦长为⎪⎩⎪⎨⎧=).(cos 2)(sin 222轴上焦点在,轴上焦点在y px pAB αα由以上三种情况可知利用直线倾斜角求过焦点的弦长,非常简单明确,应予以掌握.圆锥曲线的弦长公式一、椭圆:设直线与椭圆交于P 1(x 1,y 1),P 2(x 2,y 2),且P 1P 2斜率为K ,则|P 1P 2|=|x 1-x 2|)K (12+或|P 1P 2|=|y 1-y 2|)1/K (12+{K=(y 2-y 1)/(x 2-x 1)} =]4))[(1(212212x x x x k -++ 二、双曲线:设直线与双曲线交于P 1(x 1,y 1),P 2(x 2,y 2),且P 1P 2斜率为K ,则|P 1P 2|=|x 1-x 2|)K (12+或|P 1P 2|=|y 1-y 2|)1/K (12+{K=(y 2-y 1)/(x 2-x 1)} =]4))[(1(212212x x x x k -++。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆锥曲线弦长公式
关于直线与圆锥曲线相交求弦长,通用方法是将直线代入曲线方程,化为关于x的一元二次方程,设出交点坐标,利用韦达定理及弦长公式
求出弦长,这种整体代换,设而不求的思想方法对于求直线与曲线相交弦长是十分有效的,然而对于过焦点的圆锥曲线弦长求解利用这种方法相比较而言有点繁琐,利用圆锥曲线定义及有关定理导出各种曲线的焦点弦长公式就更为简捷。

. 椭圆的焦点弦长若椭圆方程为
,半焦距为,焦点,设过的直线的倾斜角为交椭圆于A、B两点,求弦长。

解:连结,设,由椭圆定义得,由余弦定理得
,整理可得,同理可求得,则弦长
同理可求得焦点在y轴上的过焦点弦长为(a为长半轴,b
为短半轴,c为半焦距)
结论:椭圆过焦点弦长公式:

. 双曲线的焦点弦长
设双曲线,其中两焦点坐标为,过的直线的倾斜角为,交双曲线于A、B两点,求弦长|AB|。

解:(1)当时,(如图2)直线与双曲线的两个交点A、B在同一交点上,连,设,由双曲线定义可得,由余弦定理可得
整理可得,同理
,则可求得弦长
(2)当或时,如图3,直线l与双曲线交点A、B在两支上,连,设,则,
,由余弦定理可得,
整理可得,则
因此焦点在x轴的焦点弦长为
同理可得焦点在y轴上的焦点弦长公式

其中a为实半轴,b为虚半轴,c为半焦距,为AB的倾斜角。

. 抛物线的焦点弦长
若抛物线与过焦点的直线相交于A、B两点,若的
倾斜角为,求弦长|AB|?(图4)
解:过A、B两点分别向x轴作垂线为垂足,设,,则点A的横坐标为,点B横坐标为,由抛物线定义可得


同理的焦点弦长为
的焦点弦长为,所以抛物线的焦点弦长为
由以上三种情况可知利用直线倾斜角求过焦点的弦长,非常简单明确,应予以掌握。

一。

相关文档
最新文档