生物化学课后习题解答[1]

合集下载

生物化学第四版课后参考答案

生物化学第四版课后参考答案

1 绪论1.生物化学研究的对象与内容就是什么?解答:生物化学主要研究:(1)生物机体的化学组成、生物分子的结构、性质及功能;(2)生物分子分解与合成及反应过程中的能量变化;(3)生物遗传信息的储存、传递与表达;(4)生物体新陈代谢的调节与控制。

2.您已经学过的课程中哪些内容与生物化学有关。

提示:生物化学就是生命科学的基础学科,注意从不同的角度,去理解并运用生物化学的知识。

3.说明生物分子的元素组成与分子组成有哪些相似的规侓。

解答:生物大分子在元素组成上有相似的规侓性。

碳、氢、氧、氮、磷、硫等6种就是蛋白质、核酸、糖与脂的主要组成元素。

碳原子具有特殊的成键性质,即碳原子最外层的4个电子可使碳与自身形成共价单键、共价双键与共价三键,碳还可与氮、氧与氢原子形成共价键。

碳与被键合原子形成4个共价键的性质,使得碳骨架可形成线性、分支以及环状的多种多性的化合物。

特殊的成键性质适应了生物大分子多样性的需要。

氮、氧、硫、磷元素构成了生物分子碳骨架上的氨基(-NH2)、羟基(-OH)、羰基()、羧基(-COOH)、巯基(-SH)、磷酸基(-PO4 )等功能基团。

这些功能基团因氮、硫与磷有着可变的氧化数及氮与氧有着较强的电负性而与生命物质的许多关键作用密切相关。

生物大分子在结构上也有着共同的规律性。

生物大分子均由相同类型的构件通过一定的共价键聚合成链状,其主链骨架呈现周期性重复。

构成蛋白质的构件就是20种基本氨基酸。

氨基酸之间通过肽键相连。

肽链具有方向性(N 端→C端),蛋白质主链骨架呈"肽单位"重复;核酸的构件就是核苷酸,核苷酸通过3′, 5′-磷酸二酯键相连,核酸链也具有方向性(5′、→3′),核酸的主链骨架呈"磷酸-核糖(或脱氧核糖)"重复;构成脂质的构件就是甘油、脂肪酸与胆碱,其非极性烃长链也就是一种重复结构;构成多糖的构件就是单糖,单糖间通过糖苷键相连,淀粉、纤维素、糖原的糖链骨架均呈葡萄糖基的重复。

生物化学课后习题答案

生物化学课后习题答案

第二章糖类1、判断对错,如果认为错误,请说明原因。

(1)所有单糖都具有旋光性。

答:错。

二羟酮糖没有手性中心。

(2)凡具有旋光性的物质一定具有变旋性,而具有变旋性的物质也一定具有旋光性。

答:凡具有旋光性的物质一定具有变旋性:错。

手性碳原子的构型在溶液中发生了改变。

大多数的具有旋光性的物质的溶液不会发生变旋现象。

具有变旋性的物质也一定具有旋光性:对。

(3)所有的单糖和寡糖都是还原糖。

答:错。

有些寡糖的两个半缩醛羟基同时脱水缩合成苷。

如:果糖。

(4)自然界中存在的单糖主要为D-型。

答:对。

(5)如果用化学法测出某种来源的支链淀粉有57 个非还原端,则这种分子有56 个分支。

答:对。

2、戊醛糖和戊酮糖各有多少个旋光异构体(包括α-异构体、β-异构体)?请写出戊醛糖的开链结构式(注明构型和名称)。

答:戊醛糖:有3 个不对称碳原子,故有2 3 =8 种开链的旋光异构体。

如果包括α-异构体、β-异构体,则又要乘以2=16 种。

戊酮糖:有2 个不对称碳原子,故有2 2 =4 种开链的旋光异构体。

没有环状所以没有α-异构体、β-异构体。

3、乳糖是葡萄糖苷还是半乳糖苷,是α-苷还是β-苷?蔗糖是什么糖苷,是α-苷还是β-苷?两分子的D-吡喃葡萄糖可以形成多少种不同的二糖?答:乳糖的结构是4-O-(β-D-吡喃半乳糖基)D-吡喃葡萄糖[β-1,4]或者半乳糖β(1→4)葡萄糖苷,为β-D-吡喃半乳糖基的半缩醛羟基形成的苷因此是β-苷。

蔗糖的结构是葡萄糖α(1→2)果糖苷或者果糖β(2→1)葡萄糖,是α-D-葡萄糖的半缩醛的羟基和β- D -果糖的半缩醛的羟基缩合形成的苷,因此既是α苷又是β苷。

两分子的D-吡喃葡萄糖可以形成19 种不同的二糖。

4 种连接方式α→α,α→β,β→α,β→β,每个5 种,共20 种-1 种(α→β,β→α的1 位相连)=19。

4、某种α-D-甘露糖和β-D-甘露糖平衡混合物的[α]25D 为+ 14.5°,求该平衡混合物中α-D-甘露糖和β-D-甘露糖的比率(纯α-D-甘露糖的[α]25D 为+ 29.3°,纯β-D-甘露糖的[α]25D 为-16.3°);解:设α-D-甘露糖的含量为x,则29.3x- 16.3(1-x)= 14.5X=67.5%该平衡混合物中α-D-甘露糖和β-D-甘露糖的比率:67.5/32.5=2.085、请写出龙胆三糖[β-D-吡喃葡萄糖(1→6)α-D-吡喃葡萄糖(1→2)β-D-呋喃果糖] 的结构式。

生物化学第三版课后习题答案

生物化学第三版课后习题答案

1. 举例说明化学与生物化学之间的关系。

提示:生物化学是应用化学的理论和方法来研究生命现象,在分子水平上解释和阐明生命现象化学本质的一门学科.化学和生物化学关系密切,相互渗透、相互促进和相互融合。

一方面,生物化学的发展依赖于化学理论和技术的进步,另一方面,生物化学的发展又推动着化学学科的不断进步和创新。

举例:略。

2.试解释生物大分子和小分子化合物之间的相同和不同之处。

提示:生物大分子一般由结构比较简单的小分子,即结构单元分子组合而成,通常具有特定的空间结构。

常见的生物大分子包括蛋白质、核酸、脂类和糖类。

生物大分子与小分子化合物相同之处在丁: 1) 共价键是维系它们结构的最主要的键; 2)有一定的立休形象和空间大小; 3)化学和|物理性质主要决定于分子中存在的官能团。

生物大分子与小分子化合物不同之处在于: (1) 生物大分子的分子量要比小分子化合物大得多,分子的粒径大小差异很大; (2) 生物大分子的空间结构婴复杂得多,维系空间结构的力主要是各种非共价作用力; (3) 生物大分子特征的空间结构使其具有小分子化合物所不具有的专性识别和结合位点,这些位点通过与相应的配体特异性结合,能形成超分子,这种特性是许多重要生理现象的分子基础。

3. 生物大分子的手性特征有何意义?提示:生物大分子都是手性分子,这种结构特点在生物大分子的分子识别及其特殊的生理功能方面意义重大。

主要表现在: (1) 分子识别是产生生理现象的重要基础,特异性识别对于产生特定生物效应出关重要; (2) 生物大分了通过特征的三维手性空间环境能特异性识别前手性的小分子配体,产生专一性的相互作用。

4.指出取代物的构型:6.举例说明分子识别的概念及其意义。

提示: :分子识别是指分子间发生特异性结合的相互作用,如tRNA分子与氨酰tRNA合成醉的相互作用,抗体与抗原之间的相互作用等。

分子识别是生命体产生各种生理现象的化学本质,是保证生命活动有序地进行的分子基础。

《生物化学》课后习题答案

《生物化学》课后习题答案

生物化学(第三版)课后习题详细解答第三章氨基酸提要α-氨基酸是蛋白质的构件分子,当用酸、碱或蛋白酶水解蛋白质时可获得它们。

蛋白质中的氨基酸都是L型的。

但碱水解得到的氨基酸是D型和L型的消旋混合物。

参与蛋白质组成的基本氨基酸只有20种。

此外还有若干种氨基酸在某些蛋白质中存在,但它们都是在蛋白质生物合成后由相应是基本氨基酸(残基)经化学修饰而成。

除参与蛋白质组成的氨基酸外,还有很多种其他氨基酸存在与各种组织和细胞中,有的是β-、γ-或δ-氨基酸,有些是D型氨基酸。

氨基酸是两性电解质。

当pH接近1时,氨基酸的可解离基团全部质子化,当pH在13左右时,则全部去质子化。

在这中间的某一pH(因不同氨基酸而异),氨基酸以等电的兼性离子(H3N+CHRCOO-)状态存在。

某一氨基酸处于净电荷为零的兼性离子状态时的介质pH称为该氨基酸的等电点,用pI 表示。

所有的α-氨基酸都能与茚三酮发生颜色反应。

α-NH2与2,4-二硝基氟苯(DNFB)作用产生相应的DNP-氨基酸(Sanger反应);α-NH2与苯乙硫氰酸酯(PITC)作用形成相应氨基酸的苯胺基硫甲酰衍生物( Edman反应)。

胱氨酸中的二硫键可用氧化剂(如过甲酸)或还原剂(如巯基乙醇)断裂。

半胱氨酸的SH基在空气中氧化则成二硫键。

这几个反应在氨基酸荷蛋白质化学中占有重要地位。

除甘氨酸外α-氨基酸的α-碳是一个手性碳原子,因此α-氨基酸具有光学活性。

比旋是α-氨基酸的物理常数之一,它是鉴别各种氨基酸的一种根据。

参与蛋白质组成的氨基酸中色氨酸、酪氨酸和苯丙氨酸在紫外区有光吸收,这是紫外吸收法定量蛋白质的依据。

核磁共振(NMR)波谱技术在氨基酸和蛋白质的化学表征方面起重要作用。

氨基酸分析分离方法主要是基于氨基酸的酸碱性质和极性大小。

常用方法有离子交换柱层析、高效液相层析(HPLC)等。

习题1.写出下列氨基酸的单字母和三字母的缩写符号:精氨酸、天冬氨酸、谷氨酰氨、谷氨酸、苯丙氨酸、色氨酸和酪氨酸。

生物化学习题集及答案

生物化学习题集及答案

生物化学习题集及答案
1. 问题:细胞膜的主要组成成分是什么?
答案:细胞膜的主要组成成分是磷脂双分子层。

2. 问题:DNA是由哪些基本组成单元构成的?
答案:DNA由核苷酸组成,核苷酸由糖、碱基和磷酸组成。

3. 问题:什么是酶?它在生物化学中的作用是什么?
答案:酶是一种催化剂,它能够加速化学反应的速率。

它在生物化学中起到调节代谢和合成物质的作用。

4. 问题:光合作用是什么过程?它发生在哪个细胞器中?
答案:光合作用是植物和一些微生物利用光能将二氧化碳和水转化为有机物和氧气的过程。

它发生在叶绿体中。

5. 问题:ATP是什么分子?它在细胞中的作用是什么?
答案:ATP是腺苷三磷酸,它是一种细胞内常见的能量储存和传递的分子。

它在细胞中用于能量供应和驱动各种生化过程。

以上是本份生物化研究题集及答案的一部分。

希望对您的研究有所帮助!如需更多题,请继续阅读下一页。

请注意:
本文档中的内容仅供参考,如有需要,请自行查证相关资料确认。

生物化学第三版课后习题答案

生物化学第三版课后习题答案

1.举例说明化学与生物化学之间的关系。

提示:生物化学是应用化学的理论和方法来研究生命现象,在分子水平上解释和阐明生命现象化学本质的一门学科.化学和生物化学关系密切,相互渗透、相互促进和相互融合。

一方面,生物化学的发展依赖于化学理论和技术的进步,另一方面,生物化学的发展又推动着化学学科的不断进步和创新。

举例:略。

2.试解释生物大分子和小分子化合物之间的相同和不同之处。

提示:生物大分子一般由结构比较简单的小分子,即结构单元分子组合而成,通常具有特定的空间结构。

常见的生物大分子包括蛋白质、核酸、脂类和糖类。

生物大分子与小分子化合物相同之处在丁:1)共价键是维系它们结构的最主要的键;2)有一定的立休形象和空间大小;3)化学和|物理性质主要决定于分子中存在的官能团。

生物大分子与小分子化合物不同之处在于:(1)生物大分子的分子量要比小分子化合物大得多,分子的粒径大小差异很大;(2)生物大分子的空间结构婴复杂得多,维系空间结构的力主要是各种非共价作用力;(3)生物大分子特征的空间结构使其具有小分子化合物所不具有的专性识别和结合位点,这些位点通过与相应的配体特异性结合,能形成超分子,这种特性是许多重要生理现象的分子基础。

3.生物大分子的手性特征有何意义?提示:生物大分子都是手性分子,这种结构特点在生物大分子的分子识别及其特殊的生理功能方面意义重大。

主要表现在:(1)分子识别是产生生理现象的重要基础,特异性识别对于产生特定生物效应出关重要;(2)生物大分了通过特征的三维手性空间环境能特异性识别前手性的小分子配体,产生专一性的相互作用。

4.指出取代物的构型:6.举例说明分子识别的概念及其意义。

提示::分子识别是指分子间发生特异性结合的相互作用,如tRNA分子与氨酰tRNA合成醉的相互作用,抗体与抗原之间的相互作用等。

分子识别是生命体产生各种生理现象的化学本质,是保证生命活动有序地进行的分子基础。

7.什么是超分子?说明拆分超分子的方法和原理。

生物化学课后习题答案-第九章xt9

生物化学课后习题答案-第九章xt9

第九、 十章 氨基酸代谢和核苷酸代谢一、课后习题1.名词解释:转氨基作用、嘌呤核苷酸的从头合成、嘧啶核苷酸的补救合成。

2.试列表比较两种氨基甲酰磷酸合成酶。

3.给动物喂食15N标记的天冬氨酸,很快就有许多带标记的氨基酸出现,试解释此现象。

4.简述鸟氨酸循环的功能和特点。

5.简述PRPP在核苷酸合成代谢中的作用。

6.试述1分子天冬氨酸在肝脏测定氧化分解成水、CO2 和尿素的代谢过程中并计算可净生成多少分子的ATP?参考答案:1.(1)是指在转氨酶的催化下,α-氨基酸的α-氨基转移到α-酮酸的酮基上,,使酮酸生产相应的α-氨基酸,而原来的氨基酸失去氨基变成相应的α-酮酸。

(2)嘌呤核苷酸的合成是核糖与磷酸先合成磷酸核糖,然后逐步由谷氨酰胺、甘氨酸、一碳集团、CO2及天门冬氨酸掺入碳原子或氮原子形成嘧啶环,最后合成嘧啶核苷酸。

(3)尿嘧啶在尿核苷磷酸化酶催化下,可与核糖-1-磷酸结合成尿嘧啶核苷。

尿嘧啶核苷在ATP参与下,由尿核苷激酶催化,生产UMP。

尿嘧啶也可与PRPP作用生成UMP,此反应由尿核苷-5-磷酸焦磷酸酶催化。

2. 两种氨基甲酰磷酸合成酶(CPS)性质和功能的比较如下:酶名称 存在位置 参与反应类型 激活剂参与 供氮氮源生理意义CPS-1 肝脏线粒体参与尿素合成 需N-乙酰谷氨酸(AGA)和Mg2+参与游离NH3活性作为肝细胞分化程度指标CPS-2 真核细胞胞质 参与嘧啶核苷酸的从头合成不需AGA激活 谷氨酰胺活性作为细胞增殖程度指标3. 机体中存在谷草转氨酶和谷丙转氨酶,天冬氨酸通过联合脱氨基作用和转氨基到其他α-酮酸,从而生成对应得氨基酸。

4. 特点:(1)肝脏中合成尿素;(2)能量消耗3个ATP;(4个高能键);(3)尿素中各原子的来源(酰基——CO2、氨基——一个游离的NH3、一个来自Asp);(4)尿素循环中的限速酶——氨基甲酰磷酸合成酶І。

5. PRPP在核苷酸合成代谢中的作用具有重要作用.(1)在嘌呤核苷酸的从头合成途径中具有起始引物的作用;在补救途径中, 可以PRPP和嘌呤碱基为原料合成嘌呤核苷酸。

生物化学第三版课后习题答案

生物化学第三版课后习题答案

生物化学第三版课后习题答案生物化学第三版课后习题答案生物化学是研究生物体内化学反应的科学,它研究了生物体内各种生物大分子的结构、性质和功能,以及生物体内化学反应的机制和调控。

生物化学的课后习题对于学生的学习和理解非常重要,通过解答习题,可以帮助学生巩固所学知识,提高问题解决能力。

下面是生物化学第三版课后习题的答案。

第一章:绪论1. 生物化学的研究对象是什么?答:生物化学的研究对象是生物体内的化学物质,包括蛋白质、核酸、碳水化合物、脂类等。

2. 生物化学的研究方法有哪些?答:生物化学的研究方法包括分离纯化、鉴定结构、测定性质、研究功能、探索机制等。

第二章:氨基酸和蛋白质1. 什么是氨基酸?答:氨基酸是构成蛋白质的基本单位,它由氨基、羧基和侧链组成。

2. 氨基酸的分类有哪些?答:氨基酸可以根据侧链的性质分为非极性氨基酸、极性氨基酸和带电氨基酸。

第三章:核酸1. 核酸的组成单位是什么?答:核酸的组成单位是核苷酸,它由糖、碱基和磷酸组成。

2. 核酸的功能有哪些?答:核酸的功能包括存储遗传信息、传递遗传信息和参与蛋白质合成等。

第四章:碳水化合物1. 碳水化合物的分类有哪些?答:碳水化合物可以根据分子中含有的糖单位数目分为单糖、双糖和多糖。

2. 碳水化合物的功能有哪些?答:碳水化合物的功能包括提供能量、构建细胞壁和参与细胞信号传导等。

第五章:脂类1. 脂类的分类有哪些?答:脂类可以根据分子中含有的酯键数目和酸基的性质分为简单脂类、复合脂类和衍生脂类。

2. 脂类的功能有哪些?答:脂类的功能包括提供能量、构建细胞膜和参与信号传导等。

第六章:酶1. 酶的特点是什么?答:酶是生物体内的催化剂,具有高效、高选择性和高度专一性的特点。

2. 酶的分类有哪些?答:酶可以根据催化反应类型分为氧化还原酶、转移酶、水解酶和合成酶等。

通过解答以上习题,可以帮助学生巩固对生物化学知识的理解和掌握。

同时,习题的答案也为学生提供了参考,帮助他们更好地完成学习任务。

生物化学课后习题答案-第十三章xt13

生物化学课后习题答案-第十三章xt13

第十三章 蛋白质的生物合成一、课后习题1.在蛋白质分子中,通常含量较高的是Ser和Leu,其次是His和Cys,含量最少的是Met和Trp。

一种氨基酸在蛋白质分子中出现的频率与它的密码子数量有什么关系?这种关系得选择其优点如何?2.AUG和UAG是蛋白合成中特定的起始和终止密码,序列同5’-UUAUGAAUGUACCGUGGUAGUU-3’的mRNA中什么样的开放阅读框才能编码一个短肽?写出该短肽的氨基酸序列。

3.细菌的基因组通常含有多少个rRNA基因拷贝,他们能迅速地转录以生产大量rRNA装配成核糖体相对对比而言,编码核糖体蛋白的基因只有一份拷贝,试解释rRNA基因和核糖体蛋白基因数量的差别。

4.DNA中的点突变(一个碱基被另一个碱基取代)可能导致一个氨基酸被另一个氨基酸替换。

但在某些情况下,由于密码子的简并性,基因编码的氨基酸序列也可能不会改变。

一种细菌生产的胞外蛋白酶在其活性位点上(—Gly-Leu-Cys-Arg—)有一个半胱氨酸残基。

紫外线照射过后,分离得到两个突变菌株。

菌株1生产以Ser取代活性部位Cys的无活性酶(—Gly-Leu-Ser-Arg—);而在菌株2内,合成了一条C末端结束在活性部位内的以—Gly-Leu—COO-结尾的截断了的肽链,指出在每一种菌株中可能发生的突变。

5.一双螺旋DNA的模板链中一段序列如下:CTTAACACCCCTGACTTCGCGCCGTCG(1)写出转录出的mRNA核苷酸序列?(2)写出5’开始的该转录mRNA序列所对应得多肽的氨基酸序列?(3)假设此DNA的另一条链被转录和翻译,所得的氨基酸序列会与(2)中的一样吗?(2)与(3)得出的答案在生物学上有什么意义?6.假设反应从游离氨基酸、tRNA、氨酰tRNA合成酶、mRNA、80S核糖体以及翻译因子开始,那么翻译一分子牛胰核糖酸酶要用掉多少个高能磷酸键?翻译一分子肌红蛋白需要消耗多少个高能磷酸键?7.噬菌体T4 DNA的相对分子质量为1.3×108(双链),假定全部核苷酸均用于编码氨基酸,试问:(1)T4 DNA可为多少氨基酸编码?(2)T4 DNA可为多少相对分子质量等于35000的不同蛋白质编码?(核苷酸对的相对分子质量按618计,氨基酸平均相对分子质量按120计)8.核糖体的基本结构和功能有哪些?9.在蛋白质定向运输时,多肽本身有何作用?高尔基体的功能是什么?参考答案:1.在蛋白质分子中,一种氨基酸出现的频率与它密码子的数量具有一定的正向关系,如:亮氨酸,苏氨酸都有6个密码子,通常在蛋白质分子中出现的几率也最高;而甲硫氨酸和色氨酸只有一个密码子,在蛋白质中出现的频率相对小一些。

生物化学(第三版)课后习题详细解答

生物化学(第三版)课后习题详细解答

生物化学(第三版)课后习题详细解答第一章糖类提要糖类是四大类生物分子之一,广泛存在于生物界,特别是植物界。

糖类在生物体内不仅作为结构成分和主要能源,复合糖中的糖链作为细胞识别的信息分子参与许多生命过程,并因此出现一门新的学科,糖生物学。

多数糖类具有(CH2O)n的实验式,其化学本质是多羟醛、多羟酮及其衍生物。

糖类按其聚合度分为单糖,1个单体;寡糖,含2-20个单体;多糖,含20个以上单体。

同多糖是指仅含一种单糖或单糖衍生物的多糖,杂多糖指含一种以上单糖或加单糖衍生物的多糖。

糖类与蛋白质或脂质共价结合形成的结合物称复合糖或糖复合物。

单糖,除二羟丙酮外,都含有不对称碳原子(C*)或称手性碳原子,含C*的单糖都是不对称分子,当然也是手性分子,因而都具有旋光性,一个C*有两种构型D-和L-型或R-和S-型。

因此含n个C*的单糖有2n个旋光异构体,组成2n-1对不同的对映体。

任一旋光异构体只有一个对映体,其他旋光异构体是它的非对映体,仅有一个C*的构型不同的两个旋光异构体称为差向异构体。

单糖的构型是指离羧基碳最远的那个C*的构型,如果与D-甘油醛构型相同,则属D系糖,反之属L系糖,大多数天然糖是D系糖Fischer E论证了己醛糖旋光异构体的立体化学,并提出了在纸面上表示单糖链状立体结构的Fischer投影式。

许多单糖在水溶液中有变旋现象,这是因为开涟的单糖分子内醇基与醛基或酮基发生可逆亲核加成形成环状半缩醛或半缩酮的缘故。

这种反应经常发生在C5羟基和C1醛基之间,而形成六元环砒喃糖(如砒喃葡糖)或C5经基和C2酮基之间形成五元环呋喃糖(如呋喃果糖)。

成环时由于羰基碳成为新的不对称中心,出现两个异头差向异构体,称α和β异头物,它们通过开链形式发生互变并处于平衡中。

在标准定位的Hsworth式中D-单糖异头碳的羟基在氧环面下方的为α异头物,上方的为β异头物,实际上不像Haworth式所示的那样氧环面上的所有原子都处在同一个平面,吡喃糖环一般采取椅式构象,呋喃糖环采取信封式构象。

生物化学课后习题

生物化学课后习题

1、在能量储存和传递中,哪些物质起着重要作用?答:在能量储存和传递中,ATP (腺苷三磷酸)、GTP (鸟苷三磷酸)、UTP (尿苷三磷酸)以及CTP (胞苷三磷酸)等起着重要作用。

2、怎样可以判断一个化学反应可以自发进行?答:只有自由能变化为负值的化学反应,才能自发进行。

3、什么是氧化--还原电势?怎样计算氧化一还原电势?答:还原剂失掉电子的倾向(氧化剂得到电子的倾向)称为氧化--还原电势。

氧化一还原电势等于正极的电势减去负极的电势。

4、在电子传递链中各个成员的排列顺序根据什么原则?答:电子从氧化还原势较低的成员转移到氧化还原势较高的成员的原则。

5、电子传递链和氧化磷酸化之间有什么关系?答:生物氧化亦称细胞呼吸,指各类有机物质在生物活细胞里进行氧化分解,最终生成CO2 和H2O,同时释放大量能量(ATP)的过程。

包括TCA循环、电子传递和氧化磷酸化三个步骤,分别是在线粒体的不同部位进行的。

其中电子传递链和氧化磷酸化之间关系密切,电子传递和氧化磷酸化偶联在一起。

根据化学渗透学说,在电子传递过程中所释放的能量转化成了跨膜的氢离子浓度梯度的势能,这种势能驱动氧化磷酸化反应,合成ATP。

即葡萄糖等在TCA循环中产生的NADH和FADH2只有通过电子传递链,才能氧化磷酸化,将氧化产生的能量以ATP的形式贮藏起来。

6、什么是磷氧比,测定磷氧比有何意义?答:呼吸过程中无机磷酸(Pi)消耗量和氧消耗量的比值称为磷氧比。

意义是可以知道不同呼吸链氧化磷酸化的活力。

7、为什么用蔗糖保存食品而不用葡萄糖?答:绝大多数微生物都具有利用糖酵解分解葡萄糖的能力,而蔗糖是一种非还原性二糖,许多微生物不能将其直接分解,因此,可以利用蔗糖的高渗透压来抑制食品中细菌等有害微生物的生长。

8、总结一下在糖酵解过程中磷酸基团参与了哪些反应,他所参与的反应有何意义?答:在糖酵解过程中磷酸基团参与了5步反应。

(1)葡萄糖在己糖激酶的催化下,消耗一分子ATP,生成葡萄糖-6-磷酸;(2)果糖-6-磷酸在磷酸果糖激酶的催化下,消耗一分子ATP,生成果糖-1,6-二磷酸;(3)甘油醛-3-磷酸在甘油醛-3-磷酸脱氢酶催化下,氧化为1,3-二磷酸甘油酸;(4)1,3-二磷酸甘油酸在3-磷酸甘油酸激酶催化下,生成3-磷酸甘油酸和1分子ATP;(5)2-磷酸甘油酸脱水生成磷酸烯醇式丙酮酸并在丙酮酸激酶催化下,生成丙酮酸和一份子ATP。

生物化学(第三版)课后习题解答

生物化学(第三版)课后习题解答

生物化学(第三版)课后习题解答第一章糖类提要糖类是四大类生物分子之一,广泛存在于生物界,特别是植物界。

糖类在生物体内不仅作为结构成分和主要能源,复合糖中的糖链作为细胞识别的信息分子参与许多生命过程,并因此出现一门新的学科,糖生物学。

多数糖类具有(CHO)n的实验式,其化学本质是多2羟醛、多羟酮及其衍生物。

糖类按其聚合度分为单糖,1个单体;寡糖,含2-20个单体;多糖,含20个以上单体。

同多糖是指仅含一种单糖或单糖衍生物的多糖,杂多糖指含一种以上单糖或加单糖衍生物的多糖。

糖类与蛋白质或脂质共价结合形成的结合物称复合糖或糖复合物。

单糖,除二羟丙酮外,都含有不对称碳原子(C*)或称手性碳原子,含C*的单糖都是不对称分子,当然也是手性分子,因而都具有旋光性,一个C*有两种构型D-和L-型或R-和S-型。

因此含n个C*的单糖有2n个旋光异构体,组成2n-1对不同的对映体。

任一旋光异构体只有一个对映体,其他旋光异构体是它的非对映体,仅有一个C*的构型不同的两个旋光异构体称为差向异构体。

单糖的构型是指离羧基碳最远的那个C*的构型,如果与D-甘油醛构型相同,则属D系糖,反之属L系糖,大多数天然糖是D系糖Fischer E论证了己醛糖旋光异构体的立体化学,并提出了在纸面上表示单糖链状立体结构的Fischer投影式。

许多单糖在水溶液中有变旋现象,这是因为开涟的单糖分子内醇基与醛基或酮基发生可逆亲核加成形成环状半缩醛或半缩酮的缘故。

这种反应经常发生在C5羟基和C1醛基之间,而形成六元环砒喃糖(如砒喃葡糖)或C5经基和C2酮基之间形成五元环呋喃糖(如呋喃果糖)。

成环时由于羰基碳成为新的不对称中心,出现两个异头差向异构体,称α和β异头物,它们通过开链形式发生互变并处于平衡中。

在标准定位的Hsworth式中D-单糖异头碳的羟基在氧环面下方的为α异头物,上方的为β异头物,实际上不像Haworth式所示的那样氧环面上的所有原子都处在同一个平面,吡喃糖环一般采取椅式构象,呋喃糖环采取信封式构象。

生物化学第三版课后习题答案

生物化学第三版课后习题答案

第一章1. 举例说明化学与生物化学之间的关系。

提示:生物化学是应用化学的理论和方法来研究生命现象,在分子水平上解释和阐明生命现象化学本质的一门学科.化学和生物化学关系密切,相互渗透、相互促进和相互融合。

一方面,生物化学的发展依赖于化学理论和技术的进步,另一方面,生物化学的发展又推动着化学学科的不断进步和创新。

举例:略。

2.试解释生物大分子和小分子化合物之间的相同和不同之处。

提示:生物大分子一般由结构比较简单的小分子,即结构单元分子组合而成,通常具有特定的空间结构。

常见的生物大分子包括蛋白质、核酸、脂类和糖类。

生物大分子与小分子化合物相同之处在丁: 1) 共价键是维系它们结构的最主要的键;2)有一定的立休形象和空间大小; 3)化学和|物理性质主要决定于分子中存在的官能团。

生物大分子与小分子化合物不同之处在于: (1) 生物大分子的分子量要比小分子化合物大得多,分子的粒径大小差异很大; (2) 生物大分子的空间结构婴复杂得多,维系空间结构的力主要是各种非共价作用力; (3) 生物大分子特征的空间结构使其具有小分子化合物所不具有的专性识别和结合位点,这些位点通过与相应的配体特异性结合,能形成超分子,这种特性是许多重要生理现象的分子基础。

3. 生物大分子的手性特征有何意义?提示:生物大分子都是手性分子,这种结构特点在生物大分子的分子识别及其特殊的生理功能方面意义重大。

主要表现在: (1) 分子识别是产生生理现象的重要基础,特异性识别对于产生特定生物效应出关重要; (2) 生物大分了通过特征的三维手性空间环境能特异性识别前手性的小分子配体,产生专一性的相互作用。

4.指出取代物的构型:6.举例说明分子识别的概念及其意义。

提示: :分子识别是指分子间发生特异性结合的相互作用,如tRNA分子与氨酰tRNA合成醉的相互作用,抗体与抗原之间的相互作用等。

分子识别是生命体产生各种生理现象的化学本质,是保证生命活动有序地进行的分子基础。

生物化学课后答案-张丽萍(1)

生物化学课后答案-张丽萍(1)

生物化学课后答案-张丽萍(1)9 糖代谢1.假设细胞匀浆中存在代谢所需要的酶和辅酶等必需条件,若葡萄糖的C-1处用14C标记,那么在下列代谢产物中能否找到14C标记。

(1)CO2;(2)乳酸;(3)丙氨酸。

解答:(1)能找到14C标记的CO2 葡萄糖→→丙酮酸(*C1) →氧化脱羧生成标记的CO2。

(2)能找到14C标记的乳酸丙酮酸(*C1)加NADH+H+还原成乳酸。

(3)能找到14C标记的丙氨酸丙酮酸(*C1) 加谷氨酸在谷丙转氨酶作用下生成14C标记的丙氨酸。

2.某糖原分子生成n 个葡糖-1-磷酸,该糖原可能有多少个分支及多少个α-(1—6)糖苷键(*设:糖原与磷酸化酶一次性作用生成)?如果从糖原开始计算,lmol葡萄糖彻底氧化为CO2和H2O,将净生成多少mol ATP?解答:经磷酸化酶作用于糖原的非还原末端产生n个葡萄糖-1-磷酸, 则该糖原可能有n+1个分支及n+1个α-(1—6)糖苷键。

如果从糖原开始计算,lmol葡萄糖彻底氧化为CO2和H2O, 将净生成33molATP。

3.试说明葡萄糖至丙酮酸的代谢途径,在有氧与无氧条件下有何主要区别?解答:(1) 葡萄糖至丙酮酸阶段,只有甘油醛-3-磷酸脱氢产生NADH+H+ 。

NADH+H+代谢去路不同, 在无氧条件下去还原丙酮酸; 在有氧条件下,进入呼吸链。

(2) 生成ATP的数量不同,净生成2mol ATP; 有氧条件下净生成7mol ATP。

葡萄糖至丙酮酸阶段,在无氧条件下,经底物磷酸化可生成4mol ATP(甘油酸-1,3-二磷酸生成甘油酸-3-磷酸,甘油酸-2-磷酸经烯醇丙酮酸磷酸生成丙酮酸),葡萄糖至葡糖-6-磷酸,果糖-6-磷酸至果糖1,6--二磷酸分别消耗了1mol ATP, 在无氧条件下净生成2mol ATP。

在有氧条件下,甘油醛-3-磷酸脱氢产生NADH+H+进入呼吸链将生成2×2.5mol ATP,所以净生成7mol ATP。

《生物化学原理》张洪渊主编 课后习题及答案(一)

《生物化学原理》张洪渊主编  课后习题及答案(一)

(1) DNFB 反应,得到 DNP-Val;
(2) 肼解后,再用 DNFB 反应,得到 DNP-Phe;
(3) 胰蛋白酶水解此六肽,得到三个片段,分别含有 1 个、2 个和 3 个氨基酸,后两
个片段呈坂口反应阳性。
(4) 溴化氢与此六肽反应,水解得到两个三肽,这两个三肽片断经 DNFB 反应分别得
蛋白质的三级结构指肽链在二级结构超二级结构结构域对分子较大由多个结构域的蛋白质而言基础上形成的完整空间结构一个三级结构单位通常由一条肽链组成但也有一些三级结构单位是由经二硫键连接的多条肽链组成的如胰岛素就是由两条肽链折叠成的1个三级结构单位
课 后 答 案 网
课后答案网,用心为你服务!
大学答案 --- 中学答案 --- 考研答案 --- 考试答案
4. Gly、His、Glu 和 Lys 分别在 pH1.9、6.0 和 7.6 三种缓冲液中的电泳行为如何?电泳完
毕后它们的排序如何?
5. 1.068g 的某种结晶α-氨基酸,其 pK1’和 pK2’值分别为 2.4 和 9.7,溶解于 100ml 的
0.1mol/LNaOH 溶液中时,其 pH 为 10.4。计算该氨基酸的相对分子量,并提出可能的分
2. 已知 Lys 的ε-氨基的 pK’a 为 10.5,问 pH9.5 时,Lys 溶液中将有多少分数这种基团
www.khd课后a答w案.网com
给出质子(即[-NH3+]和[-NH2]各占多少)?
3. 在强酸性阳离子交换柱上 Asp、His、Gly 和 Leu 等几种氨基酸的洗脱顺序如何?为什么?
2.每个氨基酸可解离基团的 pKa 在生化书中可以查到(也可根据酸碱滴定曲线确定), 氨基酸的净电荷为零时溶液的 pH(即等电点,pI)在滴定曲线上位于两个相应基团 pKa 之 间的中点,在这两个 pKa 点上,它们的净电荷分别是+0.5 和-0.5。因此:(1)根据谷氨酸
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章糖类提要糖类是四大类生物分子之一,广泛存在于生物界,特别是植物界。

糖类在生物体内不仅作为结构成分和主要能源,复合糖中的糖链作为细胞识别的信息分子参与许多生命过程,并因此出现一门新的学科,糖生物学。

多数糖类具有(CH2O)n的实验式,其化学本质是多羟醛、多羟酮及其衍生物。

糖类按其聚合度分为单糖,1个单体;寡糖,含2-20个单体;多糖,含20个以上单体。

同多糖是指仅含一种单糖或单糖衍生物的多糖,杂多糖指含一种以上单糖或加单糖衍生物的多糖。

糖类与蛋白质或脂质共价结合形成的结合物称复合糖或糖复合物。

单糖,除二羟丙酮外,都含有不对称碳原子(C*)或称手性碳原子,含C*的单糖都是不对称分子,当然也是手性分子,因而都具有旋光性,一个C*有两种构型D-和L-型或R-和S-型。

因此含n个C*的单糖有2n个旋光异构体,组成2n-1对不同的对映体。

任一旋光异构体只有一个对映体,其他旋光异构体是它的非对映体,仅有一个C*的构型不同的两个旋光异构体称为差向异构体。

单糖的构型是指离羧基碳最远的那个C*的构型,如果与D-甘油醛构型相同,则属D系糖,反之属L 系糖,大多数天然糖是D系糖Fischer E论证了己醛糖旋光异构体的立体化学,并提出了在纸面上表示单糖链状立体结构的Fischer投影式。

许多单糖在水溶液中有变旋现象,这是因为开涟的单糖分子内醇基与醛基或酮基发生可逆亲核加成形成环状半缩醛或半缩酮的缘故。

这种反应经常发生在C5羟基和C1醛基之间,而形成六元环砒喃糖(如砒喃葡糖)或C5经基和C2酮基之间形成五元环呋喃糖(如呋喃果糖)。

成环时由于羰基碳成为新的不对称中心,出现两个异头差向异构体,称α和β异头物,它们通过开链形式发生互变并处于平衡中。

在标准定位的Hsworth式中D-单糖异头碳的羟基在氧环面下方的为α异头物,上方的为β异头物,实际上不像Haworth式所示的那样氧环面上的所有原子都处在同一个平面,吡喃糖环一般采取椅式构象,呋喃糖环采取信封式构象。

单糖可以发生很多化学反应。

醛基或伯醇基或两者氧化成羧酸,羰基还原成醇;一般的羟基参与成脂、成醚、氨基化和脱氧等反应;异头羟基能通过糖苷键与醇和胺连接,形成糖苷化合物。

例如,在寡糖和多糖中单糖与另一单糖通过O-糖苷键相连,在核苷酸和核酸中戊糖经N-糖苷键与心嘧啶或嘌呤碱相连。

生物学上重要的单糖及其衍生物有Glc, Gal,Man, Fru,GlcNAc, GalNAc,L-Fuc,NeuNAc (Sia),GlcUA 等它们是寡糖和多糖的组分,许多单糖衍生物参与复合糖聚糖链的组成,此外单糖的磷酸脂,如6-磷酸葡糖,是重要的代谢中间物。

蔗糖、乳糖和麦芽糖是常见的二糖。

蔗糖是由α-Gla和β- Fru在两个异头碳之间通过糖苷键连接而成,它已无潜在的自由醛基,因而失去还原,成脎、变旋等性质,并称它为非还原糖。

乳糖的结构是Gal β(1-4)Glc,麦芽糖是Glcα(1-4)Glc,它们的末端葡萄搪残基仍有潜在的自由醛基,属还原糖。

环糊精由环糊精葡糖基转移酶作用于直链淀粉生成含6,7或8个葡萄糖残基,通过α-1,4糖苷键连接成环,属非还原糖,由于它的特殊结构被用作稳定剂、抗氧化剂和增溶剂等。

淀粉、糖原和纤维素是最常见的多糖,都是葡萄糖的聚合物。

淀粉是植物的贮存养料,属贮能多糖,是人类食物的主要成分之一。

糖原是人和动物体内的贮能多糖。

淀粉可分直链淀粉和支链淀粉。

直链淀粉分子只有α-1,4连键,支链淀粉和糖原除α-1,4连键外尚有α-1,6连键形成分支,糖原的分支程度比支链淀粉高。

纤维素与淀粉、糖原不同,它是由葡萄糖通过β糖苷键连接而成的,这一结构特点使纤维素具有适于作为结构成分的物理特性,它属于结构多糖。

肽聚糖是细菌细胞壁的成分,也属结构多糖。

它可看成由一种称胞壁肽的基本结构单位重复排列构成。

胞壁肽是一个含四有序侧链的二糖单位,G1cNAcβ(1-4)MurNAc,二糖单位问通过β-1,4连接成多糖,链相邻的多糖链通过转肽作用交联成一个大的囊状分子。

青霉素就是通过抑制转肽干扰新的细胞壁形成而起抑菌作用的。

磷壁酸是革兰氏阳性细菌细胞壁的特有成分;脂多糖是阴性细菌细胞壁的特有成分。

糖蛋白是一类复合糖或一类缀合蛋白质。

许多膜内在蛋白质加分泌蛋白质都是糖蛋白糖蛋白和糖脂中的寡糖链,序列多变,结构信息丰富,甚至超过核酸和蛋白质。

一个寡搪链中单糖种类、连接位置、异头碳构型和糖环类型的可能排列组合数目是一个天文数字。

糖蛋白中寡糖链的还原端残基与多肽链氨基酸残基之间的连接方式有:N-糖太键,如β- GlcNAc-Asn和O-糖肽链,如α-GalNAc-Thr/Ser, β-Gal-Hyl, β-L-Araf-Hyp,N-连接的寡糖链(N-糖链)都含有一个共同的结构花式称核心五糖或三甘露糖基核心,N-糖链可分为复杂型、高甘露糖型和杂合型三类,它们的区别王要在外周链,O-糖链的结构比N-糖链简单,但连接形式比N-糖链的多。

糖蛋白中的寡糖链在细胞识别包括细胞粘着、淋巴细胞归巢和精卵识别等生物学过程中起重要作用。

在人红细胞表面上存在很多血型抗原决定簇,其中多数是寡糖链。

在ABO血型系统中A,B,O(H)三个抗原决定簇只差一个单糖残基,A型在寡糖基的非还原端有一个GalNAc,B型有一个Gal,O型这两个残基均无。

凝集素是一类非抗体的能与糖类专一结合的蛋白质或糖蛋白,伴刀豆凝集素A(ConA),花生凝集素等属植物凝集素;细菌和病毒也有凝集素,如流感病毒含红细胞凝集素。

作为各类白细胞CAM的选择蛋白家族也属于凝集素。

此家族中已知有L、E、P三种选择蛋白,它们通过细胞粘着产生多种生物学效应,如免疫应答、炎症反应、肿瘤转移等。

糖胺聚糖和蛋白聚糖是动物细胞外基质的重要成分。

糖胺聚糖是由己糖醛酸和己糖胺组成的二糖单位重复构成。

多数糖胺聚糖都不同程度地被硫酸化如4-硫酸软骨素、硫酸角质素等。

糖胺聚搪多以蛋白聚糖形式存在,但透明质酸是例外。

蛋白聚糖是一类特殊的糖蛋白,由一条或多条糖胺聚糖链和一个核心蛋白共价连接而成。

有的蛋白聚糖以聚集体(透明质酸分子为核心)形式存在。

它们是高度亲水的多价阴离子,在维持皮肤、关节、软骨等结缔组织的形态和功能方面起重要作用。

寡糖链结构分析的一般步骤是:分离提纯待测定的完整糖链,对获得的均一样品用GLC法测定单糖组成,根据高碘酸氧化或甲基化分析确定糖苷键的位置,用专一性糖苷酶确定糖苷键的构型。

糖链序列可采用外切糖苷酶连续断裂或FA B - MS等方法加以测定。

习题1.环状己醛糖有多少个可能的旋光异构体,为什么?[25=32]解:考虑到C1、C2、C3、C4、C5各有两种构象,故总的旋光异构体为25=32个。

2.含D-吡喃半乳糖和D-吡喃葡萄糖的双糖可能有多少个异构体(不包括异头物)?含同样残基的糖蛋白上的二糖链将有多少个异构体?[20;32]解:一个单糖的C1可以与另一单糖的C1、C2、C3、C4、C6形成糖苷键,于是α-D-吡喃半乳基-D-吡喃葡萄糖苷、β-D-吡喃半乳基-D-吡喃葡萄糖苷、α-D-吡喃葡萄糖基-D-吡喃半乳糖苷、β-D-吡喃葡萄糖基-D-吡喃半乳糖苷各有5种,共5×4=20个异构体。

糖蛋白上的二糖链其中一个单糖的C1用于连接多肽,C2、C3、C4、C6用于和另一单糖的C1形成糖苷键,算法同上,共有4×4=16个,考虑到二糖与多肽相连时的异头构象,异构体数目为16×2=32个。

3.写出β-D-脱氧核糖、α-D-半乳糖、β- L-山梨糖和β-D-N-乙酰神经氨酸(唾液酸)的Fischer投影式,Haworth式和构象式。

4.写出下面所示的(A).(B)两个单糖的正规名称(D/L,α/β,f/p),指出(C).(D)两个结构用RS系统表示的构型(R/S)[A、β- D-f-Fru;B、α-L- p-Glc; C、R; D、S]5. L7-葡萄糖的α和β异头物的比旋[αD20]分别为+°和+°。

当α-D-吡喃葡糖晶体样品溶于水时,比旋将由+°降至平衡值+°。

计算平衡混合液中α和β异头物的比率。

假设开链形式和呋喃形式可忽略。

[α异头物的比率为%,β异头物为%]解:设α异头物的比率为x,则有+(1-x)=,解得x=%,于是(1-x)= %。

6.将500 mg糖原样品用放射性氰化钾(K14CN)处理,被结合的14CN—正好是μmol,另一500 mg同一糖原样品,用含3% HCl的无水甲醇处理,使之形成还原末端的甲基葡糖苷。

然后用高碘酸处理这个还原端成为甲基葡糖苷的糖原,新产生的甲酸准确值是347μmol。

计算(a)糖原的平均相对分子质量.(b)分支的程度(分支点%)[(a)×106; (b)%]解:(a)Mr=×10-6)= ×106(b)347×10-6×163/=%7. D-葡萄糖在31℃水中平衡时,α-吡喃葡糖和β-吡喃葡糖的相对摩尔含量分别为 %和%。

计算D-葡萄糖在31℃时由α异头物转变为β异头物的标准自由能变化。

气体常数R为 /molK。

[ΔG0= -1. 31kJ /mol] 解:ΔG0= -RTln(c2/c1)=×300×ln= kJ /mol8.竹子系热带禾本科植物,在最适条件下竹子生长的速度达0.3 m/d高,假定竹茎几乎完全由纤维素纤维组成,纤维沿生长方向定位。

计算每秒钟酶促加入生长着的纤维素链的单糖残基数目。

纤维素分子中每一葡萄糖单位约长 nm。

[7800残基/s]解:[(24×3600)]/×10-9=7800残基/s9.经还原可生成山梨醇(D-葡萄醇)的单糖有哪些?[L-山梨糖;D-葡萄糖;L-古洛糖;D-果糖]10.写出麦芽糖(α型)、纤维二糖(β型)、龙胆糖和水苏糖的正规(系统)名称的简单形式,并指出其中哪些(个)是还原糖,哪些(个)是非还原糖。

解:麦芽糖(α型):Glcα(1→4)Glc纤维二糖(β型):Glcβ(1→4)Glc龙胆糖:Glcβ(1→6)Glc水苏糖:Galα(1→6)Galα(1→6)Glc(α1←→β2)Fru11.纤维素和糖原虽然在物理性质上有很大的不同,但这两种多糖都是1-4连接的D-葡萄糖聚合物,相对分子质量也相当,是什么结构特点造成它们在物理性质上的如此差别?解释它们各自性质的生物学优点。

12.革兰氏阳性细菌和阴性细菌的细胞壁在化学组成上有什么异同?肽聚糖中的糖肽键和糖蛋白中的糖肽键是否有区别?答:肽聚糖:革兰氏阳性细菌和阴性细菌共有;磷壁酸:革兰氏阳性细菌特有;脂多糖:革兰氏阴性细菌特有。

两种糖肽键有区别:肽聚糖中为NAM的C3羟基与D-Ala羧基相连;糖蛋白中是糖的C1羟基与多肽Asnγ-氨基N或Thr/Ser/Hyl/Hyp羟基O相连。

相关文档
最新文档