围岩的松动压力计算
煤矿巷道围岩松动圈测定
内蒙古北联电能源开发有限责任公司高头窑煤矿巷道围岩松动圈测定中国矿业大学(北京)北联电能源开发有限责任公司2009年5月目录一、巷道围岩松动圈概念 (1)二、围岩松动圈测试原理 (1)三、测试仪器 (2)四、测试方法 (2)五、数据分析 (3)六、总结 (9)一、巷道围岩松动圈概念围岩松动圈是围岩应力对围岩作用的一种结果,是反映围岩应力岩石强度的一个综合性指标。
实践证明,松动圈的大小与巷道的稳定性及支护的难易程度密切相关。
测出松动圈的大小对选择合理的支护方式和支护参数,减少矿井维护费用,修订井巷设计,指导现场施工,都具有重要的现实意义。
自然状态下的地壳煤岩层,通常处于应力平衡状态,巷道开挖后,就改变了它的边界条件,破坏了其相对平衡状态,在巷道周围一定范围内应力将重新分布,以达到新的应力平衡。
一是切向应力增加,并产生应力集中;二是径向应力降低,巷道周边处应力达到零;三是围岩受力状态由三向变成近似二向,岩石强度降低许多,如果集中应力值小于下降后的岩石强度,围岩将处于弹塑性状态,围岩可自稳,不存在巷道支护问题。
相反的,如果集中应力值等于下降后的岩石强度,围岩将发生破裂,这种破裂将从周边开始逐渐向深部扩展,直至达到另一新的三向应力平衡状态为止,此时围岩中出现一个破裂带,这个破裂带称为围岩松动圈。
弹性区,塑性区,破裂区(三区)的力学行为与岩石全应力应变曲线中的相应段是对应的,其中巷道围岩弹性区,塑性区对应与全应力应变曲线峰前段弹性,塑性变形段,破裂区(围岩松动圈)对应于峰后“软化”段和“残余强度”如图1所示。
图1松动圈巷道围岩分区1.弹性区;2.塑性区;3.松动圈(软化区);4. 松动圈(残余强度区)在现场,可用声波仪,多点位移计或探地雷达等探测出围岩中的这个破裂带的厚度,称其为松动圈值,记为Lp。
二、围岩松动圈测试原理基于松动圈测试的检测原理,相应的测试方法有渗流法、深基点位移计量测方法、地震声学法和超声波测试法。
公路隧道围岩压力
其中Kc为支护结构的刚度系数。
导论
➢塑性应力状态下应力与位移分布
在塑性应力状态下,当坑道周边有径向支护阻力pa时,其应力值和塑性区范围也有所变化。
当λ=1时,塑性区的应力为
塑性区内的应力值与初始应力状态无关,
p
pa
c cot
a
1
c cot
pa
a
1
Rc
1
a
1
1
仅与围岩的物理力学性质、开挖半径及 支护提供的阻力有关。
当λ=1.0时,坑道周边的σφ=2σz,σρ=0,隧道周边岩体
是否进入塑性状态的判据为:2 z Rc
上述的分析是建立在坑道周边出现塑性区后岩性没有变化,即c、φ值不变的前提下。实际上岩石 在开挖后由于爆破、应力重分布等影响已被破坏,其c、 φ值皆有变化。建议以岩体的残余粘聚力 和残余内摩擦角表示改变后的岩体特性。
1 2 q2 1 2 q2
导论
➢弹性应力状态下应力与位移分布
把径向阻力pa作为释放荷载的反向作用力作用在洞周,再叠加上初始应力状态引起的洞周应力 即可。
z 2
1 2 1 1 4 2 3 4 1 cos2 pa 2
z 2
1 2 1 1 3 4 1 cos2 pa 2
1
1 sin , c cot Rc
1 sin
1
决定塑性区边界的半径为
1
1sin
r0
a
2 1
z
1
Rc
Rc
1
a1
sin
c
cot c cot
z
2 sin
导论
➢坑道开挖后形成塑性区的二次应 力状态
✓侧压力系数对塑性区的影响 ✓埋深、坑道形状等对塑性区的影响
围岩正应力计算公式
先说Kv值的计算,Kv值指围岩的完整性系数,是表现围岩完整性的定量指标之一。
Kv=(Vpm/Vpr)^2,其中Vpm是岩体内的弹性波速,Vpr是岩石的弹性波速。
围岩越完整,岩体内裂隙越少,其比值约接近1。
这个值还真得要通过对代表性的点或段进行声波测试才能得出。
就目前国内计算围岩压力的方法,是将坑道开挖的松弛围岩质量作为荷载加在支护结构上。
但松弛荷载的几种计算方法,一种是经验公式,是根据单线铁路施工塌方的统计资料得到的经验公式,目前铁路、公路的隧道设计规范仍沿用了这个公式。
另外是基于太沙基或普氏理论的出的公式。
具体可以查阅《公路隧道设计规范》《铁路隧道设计规范》。
由于围岩压力计算跟具体的洞室形状、施工方法、时间效应等相关度太大,规范中的计算参数过于经验化,应该来说客观性比较缺乏。
比如根据塌方的到的经验公式,其针对的情况是跨度5-10m的马蹄形断面,就目前动辄15m以上的跨度,扁平率较大的隧道而言,取值是不甚合理的。
而通过有限元的方法计算,还有一些计算公式,但计算的前提大部分是假定围岩是理想弹塑性介质,与实际的岩土材料应力-应变性质不尽相同。
尤其对于破裂的岩体而言,问题更为突出。
而就大多数需要计算的地下结构而言,往往是处于软岩或破碎岩体之中。
比较能反应实际隧道压力情况情况的办法当然是通过直接测定,但无论是通过压力盒直接测定或形变间接推算或通过监控信息进行反演计算,都还比较困难。
对于围岩松动圈的具体测定我个人比较认可通过钻孔进行超声波探测。
就个人经验而已,双车道隧道的松弛半径大概在1.5倍的开挖洞径,围岩荷载按0.5-1倍洞径计算比较合适。
隧道围岩分级与围岩压力计算
好
差
R < 0.25 很差
(四)组合多种因素的分级方法
代表: 岩体质量分级法 巴顿等人提出的“岩体质量—Q”分级法。表达如下:
Q RQD J r J w J h J a SRF
组合了6个参数: 岩石质量指标、节理组数目、节理粗糙度、 节理蚀变值、节理含水折减系数、应力折减系数。
(五)我国铁路与公路隧道的围岩分级方法
围岩级别的工程作用:
①判断围岩稳定性。 ②判断施工难易程度,投资依据。 ③结构分析计算的依据
4.2.2 影响围岩稳定性的因素
⑴地质因素~客观因素 ⑵人为因素~主观因素、工程因素
1、地质因素
从5个方面来分析:
⑴ 岩体结构特征 ⑵ 结构面性质和空间的组合 ⑶ 岩石的力学性质 ⑷ 地下水的影响 ⑸ 围岩的初始应力状态
问题:围岩流变特性对隧道的影响?
图4-2 岩体的流变
2、岩体强度
岩石强度:通过试件获得。
岩体强度:抗压强度:由结构面特征决定低于岩石强 度,约为岩石强度的70~80%。
抗剪强度:主要由结构面特征决定。
4.2 围岩的稳定性
4.2.1 研究围岩稳定性的意义 围岩的稳定性:隧道开挖后,在不支护条件下围岩的 稳定性。 问题:什么是隧道工程的头等大事? 研究围岩的稳定性,如何促使围岩稳定。
⑵ 分级的理论基础
●以围岩的稳定性判断为基础。
属于“以岩体构造和岩性特征为代表”的分级方法。
●主要考虑4种因素:
①岩石坚硬程度 ②围岩完整状态
基本分级
③地下水
④围岩初始地应力
修正基本分级
基本分级 修正基本分级 最终分级
⑶ 基本分级
依据:围岩主要工程地质条件,由两条组成: ①岩石坚硬程度
围岩压力计算
1围岩压力计算深埋和浅埋情况下围岩压力的计算方式不同,深埋和浅埋的分界按荷载等效高度值,并结合地质条件、施工方法等因素综合判断。
按等效荷载高度计算公式如下:HP =(~)qh式中: Hp——隧道深浅埋的分界高度;hq ——等效荷载高度,qh=qγ;q——垂直均布压力(kN/m2);γ——围岩垂直重度(kN/m3)。
二次衬砌承受围岩压力的百分比按下表取值:表复合式衬砌初期支护与二次衬砌的支护承载比例浅埋隧道围岩压力的计算方法隧道的埋深H大于hq而小于Hp时,垂直压力QB Bt tqH==γH(1-λθ)浅浅tan。
表各级围岩的θ值及φ值2(tan 1)tan tan tan c cc ϕ+ϕβϕ+ϕ-θc tan =tan侧压力系数()tan tan tan tan tan tan tan tan cc c β-ϕλ=β1+βϕ-θ+ϕθ⎡⎤⎣⎦作用在支护结构两侧的水平侧压力为:e 1=γh λ ; e 2=γ(h+Ht)λ 侧压力视为均布压力时:Ⅴ级围岩的等效荷载高度hq=×24×[1+×(10-5)]= Hp==27m,H<Hq,故为浅埋。
取φ0=45°,θ=φ0=27°,h=20m ,tan β=,λ=,tan θ=, 计算简图:()212+1e =e e垂直压力q=19×20×20×10)=mPg=πdγ=π××25=m地基反力P=me1=γhλ=19×20×=e2=γ(h+Ht)λ=19×(20+×=水平均布松动压力e=(e1+e2)/2=mⅤ级围岩二衬按承受50%围岩压力进行计算,则垂直压力为q×50%=m地基反力为P×50%=m水平压力为e×50%=m2衬砌结构内力计算表等效节点荷载表轴力、剪力、弯矩详细数据50+0557********51+05409972930652+05240502556953+052115954+0517015内力图分析(1)轴力:由ANSYS建模分析围岩衬砌内力得出轴力图如图,最大轴力出现在仰拱段,其值为。
巷道围岩松动圈理论
围岩松动圈的理论一、隧道围岩的松动圈的形成及物理状态假设在地表下H深处有一个小岩石单元(图1),在空间开挖前,这一单元处于三向应力完好稳定状态。
当在其左侧开挖一空间后,水图1 隧道围岩的物理状态平应力H1解除,单元变成二向受力。
这时这个单元的应力产生两个方面变化:一是由于三向应力变成二向应力状态,单元强度发生下降;二是由于应力的转移,所开挖的空间周边附近应力集中,使单元上受力增加。
如果单元所受应力超过其强度,单元1将发生破坏,使其承载能力变低,发生应力向深部转移。
这样相邻单元2开始面临单元1相似的情况,有一点不同的是单元2的水平应力H2,由于单元1的存在将不为零,但数值很小,所以单元2的强度略高。
如果这时单元2上作用的应力仍大于其强度,则单元2又将发生破坏,使应力再次问深部转移。
单元破坏应力转移,其应力集中程度有所减弱,而径向应力有所增加,最后到单元n时,其单元上所受应力小于其三向应力极限强度,则单元只产生弹塑性变形而不发生破坏。
这样的变化结果,使得在单元1至单元(n-1)之间的岩石处于破坏状态,而从单元n开始向外,岩石处于弹塑性变形的原岩完好状态。
这样的情况同样发生于所开挖空间的各个方向,所以,在这个空间的周围形成了一个破裂区。
围绕开挖空间的这一破坏区域一般为环状;对于塑性岩石,在破裂区外应力接近岩石的强度,但小于岩石强度,围岩处于塑性状态;再往外应力低于岩石的塑性屈服应力,围岩处于弹性状态,形成了一般所说的围岩中的四个区(图2)。
对于煤矿煤系的岩石,多数的全应力——应变曲线塑性段并不明显.即没有明显的塑性区。
从外向隧道内,对应于岩石的全应力——应变曲线,可把围岩分成三个区:弹性区、破裂膨胀剧烈区、破裂膨胀稳定区。
图2 隧道围岩的典型物理力学状态处于弹性状态的围岩,由于其仍然具有承载能力,所以可以保持自稳。
而处于破裂状态的围岩,由于发生了碎胀破裂,其表面将丧失自承能力,如不进行支护将会产生失稳,所以,破裂区是支护的直接对象,是解决支护问题的关键所在。
围岩对支护结构施加的接触压力
坑道开挖后围岩由形变到坍塌成拱的整个 变形过程,如图所示。
(1)隧道开挖后,在围岩应力重分布过程中, 顶板开始沉陷,并出现拉断裂纹(图(a)),可视为 变形阶段;
(2)顶板的裂纹继续发展并且张开,由于结 构面切割等原因,逐渐转变为松动(图(b)),可视 为松动阶段;
(3)顶板岩体视其强度的不同而逐步塌落(图(c)), 可视为塌落阶段; (4)顶板塌落停止,达到新的平衡,此时其界面 形成一近似的拱形(图(d)),可视为成拱阶段。
表达式为: hk bt f
式中 hk——自然拱高度; bt——自然拱的半跨度。
在坚硬的岩体中,坑道侧壁较稳定,自然拱 的跨度即为坑道的跨度,如图(a)所示。
bt=b b——坑道的净跨之半。
在松散和破碎岩体中,坑道的侧壁受到扰动 而产生滑移,自然拱的跨度也相应加大,如图(b) 所示。此时的bt值为
(2)普氏理论
普氏认为,所有的岩体都不同程度被节理、
裂隙所切割,因此可视为散粒体。但岩体又不同
于一般的散粒体,其结构面上存在着不同程度的
粘结力。
岩体的抗剪强度 tg c 现将岩体视为散
粒体,但又要保证其抗剪强度不变,则 f 。
所以:
f
tg
c
tg
c
2b V d V 2b V 2 V tg0 dh 2b dh 0
展开后,得
d V
dh 0
V tg0
b
解上述微分方程,并引进边界条件,得洞 顶岩层中任意点的垂直压力为来自Vb tg0
K
1
e
Ktg
0
h b
1.深埋隧道围岩松动压力的确定方法
隧道围岩分级及围岩压力
1. 围岩的结构特征和完整状态
围岩体通常是被各种结构面切割成大小不等、形
态各异、种类不同的岩石单元体(即结构体),围岩 结构特征是指结构面和结构体的特征。
第二十四页,编辑于星期三:十二点 十五分。
地坑院出入口
下一张
第十六页,编辑于星期三:十二点 十五分。
地坑院出入口
下一张
第十七页,编辑于星期三:十二点 十五分。
地坑院室内
返回
第十八页,编辑于星期三:十二点 十五分。
2.以岩石物理性质为指标的分级法:前苏联的
普氏分级法(也称 f 值分级法),“ f ”值是一个
综合的物性指标,它代表岩石的相对坚固性。如:
下一张
第三十三页,编辑于星期三:十二点 十五分。
五道岭隧道内衬砌
返回
第三十四页,编辑于星期三:十二点 十五分。
二、坑道开挖前后围岩应力状态 (一)坑道开挖前围岩应力状态(初始应力状态)
坑道开挖前,地层是处于相对静止的状态。因为
地层中任何一处的土石都受到上、下、左、右、前、 后土石的挤压,保持着相对的平衡,称为原始应力状
式中: ? —泊松比,视地层性质不同 ? 值在
0.14~0.5 之间变化。 (二)坑道开挖后围岩应力状态(二次应力状态)
围岩应力重分布:坑道开挖之后,由于其周边 岩体的卸荷作用破坏了原有的平衡状态,使围岩的应 力状态发生了变化,同时产生了位移,促使应力重新 调整以达到新的平衡。
第三十八页,编辑于星期三:十二点 十五分。
第二十九页,编辑于星期三:十二点 十五分。
返回 第二节 围岩压力及成拱作用
围岩的松动压力计算
巷道围岩松动圈理论
围岩松动圈的理论一、隧道围岩的松动圈的形成及物理状态假设在地表下H深处有一个小岩石单元(图1),在空间开挖前,这一单元处于三向应力完好稳定状态。
当在其左侧开挖一空间后,水图1 隧道围岩的物理状态平应力H1解除,单元变成二向受力。
这时这个单元的应力产生两个方面变化:一是由于三向应力变成二向应力状态,单元强度发生下降;二是由于应力的转移,所开挖的空间周边附近应力集中,使单元上受力增加。
如果单元所受应力超过其强度,单元1将发生破坏,使其承载能力变低,发生应力向深部转移。
这样相邻单元2开始面临单元1相似的情况,有一点不同的是单元2的水平应力H2,由于单元1的存在将不为零,但数值很小,所以单元2的强度略高。
如果这时单元2上作用的应力仍大于其强度,则单元2又将发生破坏,使应力再次问深部转移。
单元破坏应力转移,其应力集中程度有所减弱,而径向应力有所增加,最后到单元n时,其单元上所受应力小于其三向应力极限强度,则单元只产生弹塑性变形而不发生破坏。
这样的变化结果,使得在单元1至单元(n-1)之间的岩石处于破坏状态,而从单元n开始向外,岩石处于弹塑性变形的原岩完好状态。
这样的情况同样发生于所开挖空间的各个方向,所以,在这个空间的周围形成了一个破裂区。
围绕开挖空间的这一破坏区域一般为环状;对于塑性岩石,在破裂区外应力接近岩石的强度,但小于岩石强度,围岩处于塑性状态;再往外应力低于岩石的塑性屈服应力,围岩处于弹性状态,形成了一般所说的围岩中的四个区(图2)。
对于煤矿煤系的岩石,多数的全应力——应变曲线塑性段并不明显.即没有明显的塑性区。
从外向隧道内,对应于岩石的全应力——应变曲线,可把围岩分成三个区:弹性区、破裂膨胀剧烈区、破裂膨胀稳定区。
图2 隧道围岩的典型物理力学状态处于弹性状态的围岩,由于其仍然具有承载能力,所以可以保持自稳。
而处于破裂状态的围岩,由于发生了碎胀破裂,其表面将丧失自承能力,如不进行支护将会产生失稳,所以,破裂区是支护的直接对象,是解决支护问题的关键所在。
6 围岩压力+结构力学计算
山岭隧道
4
一、围岩压力
2、围岩压力的种类
目前,根据形成围岩压力的成因不同,将围岩压力分 为四类,即形变压力、松动压力、冲击压力和膨胀压力。
应力集中→形成塑性区→发生向坑道内位移→塑性 区进一步扩大→坑道围岩松弛、崩塌、破坏等几个过程
H
tg 45
0
2
16
松动压力的计算 深埋隧道松动压力计算
② 普氏理论 天然拱高度的计算:
hh
b fm
围岩竖向的匀布松动压力,则为: q hh
围岩水平的匀布松动压力按郎金公式计算:
e q 1 H tg 2 45 0
山岭隧道
34
二、常用的计算模型和计算方法
与结构形式相适应的计算方法 —拱形结构
半拱结构:不考虑弹性反力 直墙式衬砌:假定弹性反力+弹性地基梁 曲墙式衬砌:假定弹性反力
山岭隧道
35
半拱形结构计算
半拱形结构的适用条件及计算模型
适用条件:①地质条件好,不需修边墙的山岭隧
道;
②大型落地拱结构,如飞机库;
r0
1 1
sin sin
c
c cot cot t pa
z min
2 sin
山岭隧道
1sin
R0 max
r0
(c
cot c
cot
z )(1 sin pa min
)
2 sin
11
松动压力的计算
隧道围岩分级及围岩压力
隧道围岩分级及围岩压力隧道所穿过的地层是千变方化的,可能遇到各种工程性质不同的围岩。
隧道围岩分级是评价隧道围岩稳定性的重要参数,也是隧道支护方案设计和施工工艺确定的主要依据。
分级的正确与否直接影响着隧道施工和运营安全,因此,正确划分隧道围岩分级就显得尤为重要。
在围岩分级确定的情况下,如何确定支护结构上的作用力(即围岩压力)就成为正确、合理设计隧道结构的关键。
4.1 围岩岩性与初始应力4.1.1 围岩岩性隧道工程围岩是指地壳中受开挖活动影响的那一部分岩土体。
这个范围在横断面上约为6~10倍的洞径。
围岩的工程性质,一般包括三个方面:物理性质、水理性质和力学性质。
而对围岩稳定性最有影响的是力学性质,即围岩抵抗变形和破坏的性能。
围岩既可以是岩体,也可以是土体。
本书仅涉及岩体的力学性质。
岩体是在漫长的地质历史中形成的地质体,被许许多多不同方向、不同规模的断层面、层理面、节理面和裂隙面等各种地质界面切割为大小不等、形状各异的各种块体。
这些地质界面称为结构面或不连续面,这些块体称为结构体,岩体可以看作由结构面和结构体组合而成的具有结构特征的地质体。
所以,岩体的力学性质主要取决于岩体的结构特征、结构体岩石的特性及结构面的特性。
环境因素,尤其地下水和地应力对岩体的力学性质影响也很大。
在软弱围岩中,节理和裂隙比较发育,岩体被切割破碎,结构面对岩体的变形和破坏都不起主导作用,所以岩体的特性与结构体岩石的特性并无本质区别。
在完整而连续的岩体中亦是如此。
反之,在坚硬的块状岩体中,由于受软弱结构面切割,块体之间的联系减弱,此时,岩体的力学性质主要受结构面的性质及其在空间的组合所控制。
由此可见,岩体的力学性质必然是诸因素综合作用的结果。
岩体与岩石相比,两者有着很大的区别:与工程总体尺度相比,岩石几乎可以被认为是均质、连续和各向同性的介质;而岩体则具有明显的非均质性、不连续性和各向异性。
岩体抗拉变形能力差,因此,岩体受拉后很容易沿结构面发生断裂。
围岩压力计算例题
围岩压力计算例题题目:某隧道穿越岩层,其岩石的单轴抗压强度为50MPa,隧道开挖跨度为10m,高度为8m。
根据经验公式,隧道顶部垂直方向的围岩压力系数k取0.4,水平方向的围岩压力系数k'取0.25。
请计算隧道顶部的垂直围岩压力和两侧的水平围岩压力。
解题步骤:确定岩石的单轴抗压强度:题目已给出岩石的单轴抗压强度为50MPa。
计算隧道开挖跨度与高度的乘积:隧道开挖跨度B = 10m,高度H = 8m。
则B × H = 10m × 8m = 80m²。
计算垂直方向的围岩压力:根据经验公式,垂直方向的围岩压力P_v = k × (γ× H + σ_c),其中γ为岩石重度(此处未给出,通常需根据岩石种类查表得到,为简化计算,此处假设γ = 25kN/m³),σ_c为岩石的单轴抗压强度。
因此,P_v = 0.4 × (25kN/m³× 8m + 50MPa × 1000kN/m²× 8m)= 0.4 × (200kN/m + 4000kN/m)= 0.4 × 4200kN/m= 1680kN/m。
注意:这里的50MPa需要转换为kN/m²,即50MPa × 1000kN/m² = 50000kN/m²。
计算水平方向的围岩压力:水平方向的围岩压力P_h = k' × (γ× H + σ_c)。
因此,P_h = 0.25 × (25kN/m³× 8m + 50MPa × 1000kN/m²× 8m)= 0.25 × (200kN/m + 4000kN/m)= 0.25 × 4200kN/m= 1050kN/m。
解释:•围岩压力是由于隧道开挖后,周围岩石因失去支撑而产生的对隧道衬砌的压力。
隧道工程-围岩压力及计算
详细描述
数值模拟法是一种基于计算机技术的计算方法,通过建 立围岩和隧道的数值模型,模拟围岩的应力分布和变形 。这种方法可以综合考虑地质构造、岩石力学性质和施 工因素等对围岩压力的影响。通过反分析计算,可以得 出围岩压力的大小和分布情况。数值模拟法具有较高的 精度和灵活性,是现代隧道工程中常用的计算方法之一 。
根据监测数据的变化趋势, 预测围岩的稳定性,及时 发出安全预警。
施工指导
根据监测数据反馈,指导 隧道施工,调整施工方法、 进度和支护措施。
06
工程实例分析
工程背景介绍
工程名称
某山区高速公路隧道
工程地点
山区地势陡峭,地质条件复杂
工程规模
隧道长度约5公里,设计时速为80公里/小时
围岩压力计算与支护设计
04
隧道支护设计
隧道支护的类型
被动支护
仅在围岩产生显著变形时才起作 用,如混凝土衬砌、喷射混凝土 等。
复合支护
采用多种支护方式共同作用,以 增强支护效果。
01
02
主动支护
通过施加外部支撑力,主动控制 围岩变形,如钢拱架、锚杆等。
03
04
联合支护
结合主动和被动支护的优点,如 钢拱架与喷射混凝土联合使用。
围岩压力计算
根据地质勘察资料,采用数值模拟方法计算隧道围岩压力,为支护设计提供依 据。
支护设计
根据围岩压力计算结果,设计合理的初期支护和二次衬砌结构,确保隧道施工 安全和长期稳定性。
施工监测与反馈分析结果
施工监测
在隧道施工过程中,对围岩压力、支护结构变形等进行实时监测,及时发现异常 情况。
反馈分析
对监测数据进行整理和分析,评估支护结构的稳定性和安全性,为后续施工提供 指导。
隧道工程课后习题答案 (2)
隧道工程【隧道按使用功能分类时有哪些交通隧道、水工隧道、市政隧道、矿山隧道按界面形式分为:圆形、马蹄形、矩形隧道交通隧道包括:公路隧道、铁路隧道、水底隧道、地下隧道、航运隧道、人行隧道交通山岭隧道的主要功能及特点功能:既可使线路顺直,避免许多无谓的展线,缩短线路,又可以减小坡度,使运营条件得以改善,从而提高牵引定数,多拉快跑。
特点1.克服高程障碍2.裁弯取直(缩短线路) 3.避开不良地质地段4.避开其他重要建筑或工程等第一章【克服地形条件带来的高程障碍:绕行方案路堑隧道【山岭隧道:越岭隧道河谷傍山隧道【地质条件选隧道位置:1.地质构造2.岩体强度3.水文地质条件4.不良地质【隧道工程勘察的基本内容是什么?地质调查后应提供的主要资料有哪些?基本内容:(1)隧道工程调查;(2)隧道线路确定;(3)洞口位置选择提供资料:概述;地形地质说明;应交付的图文(线路地形图、洞口附近地形图、地质平面图、地质纵断面图、洞口附近地质纵断面图及洞口附近地质横断面图若干、说明书)【越岭隧道选择位置时要考虑的主要因素是什么?(1)垭口位置的选定:从地形上考虑,隧道宜选在山体比较狭隘的鞍部即垭口附近的底部通过,因为垭口处的山体相对较薄,隧道的穿越长度较短,有利于降低工程投资,但地质条件对垭口位置影响也较大,应优先选择地质相对较好的垭口。
(2)隧道高程的确定:综合考虑工程造价和运营效率等要素对隧道进行比选,给出最佳方案。
【选择洞口位置时应遵循的原则是什么?其工程意义是什么?原则:早进晚出。
工程意义:在决定洞口位置时,为了施工及运营的安全,宁可早一点进洞,晚一点出洞,虽然使隧道长了些,但却较安全可靠。
应把握好合理的边、仰坡的坡率、和刷坡高度的衡量尺度,科学合理的选择洞口位置。
【能否解释隧道纵坡的形式、适用条件及限制坡度?纵坡的形式:单坡和人字坡。
适用条件:(1)单坡。
多用于线路的紧坡地段或是展线的地区及河谷隧道中,可以争取高程。
1围岩压力计算
1围岩压力计算1围岩压力计算深埋和浅埋情况下围岩压力的计算方式不同,深埋和浅埋的分界按荷载等效高度值,并结合地质条件、施工方法等因素综合判断。
按等效荷载高度计算公式如下:HP =(2~2.5)qh式中: Hp——隧道深浅埋的分界高度;hq ——等效荷载高度,qh=qγ;q——垂直均布压力(kN/m2);γ——围岩垂直重度(kN/m3)。
二次衬砌承受围岩压力的百分比按下表取值:表4.1 复合式衬砌初期支护与二次衬砌的支护承载比例围岩级别初期支护承载比例二次衬砌承载比例双车道隧道三车道隧道双车道隧道三车道隧道ⅠⅡ100 100 安全储备安全储备Ⅲ100 ≥80 安全储备≥20 Ⅳ≥70 ≥60 ≥30 ≥40 Ⅴ≥50 ≥40 ≥50 ≥60 Ⅵ≥30 ≥30 ≥80 ≥85浅埋地段≥50 ≥30~50≥60 ≥60~80垂直压力q=19×20(1-0.224×20×0.51/10)=293.18KN/mPg=πdγ=π×0.4×25=31.4KN/m地基反力P=324.58KN/me1=γhλ=19×20×0.224=85.12e2=γ(h+Ht)λ=19×(20+8.17)×0.224=119.89水平均布松动压力e=(e1+e2)/2=102.51KN/mⅤ级围岩二衬按承受50%围岩压力进行计算,则垂直压力为q×50%=146.59KN/m地基反力为P×50%=162.29KN/m水平压力为e×50%=51.255KN/m2衬砌结构内力计算表4.7 等效节点荷载节点号X Y Fx FY1 2072.742591 1544.439864 31304.66167 2146.3194733 2072.757146 1543.972843 26425.97397 4953.6865524 2072.800753 1543.507634 26256.11233 9886.1615315 2072.873244 1543.046044 25973.81825 14776.30132 2 2072.974338 1542.589864 24195.36508 23664.97654 7 2073.219875 1542.146273 20103.90754 40260.144586 2073.651412 1541.88012 14076.90744 57497.450139 2074.154041 1541.73685 8935.043764 69728.9710410 2074.661668 1541.61244 6853.524396 83279.0729311 2075.173585 1541.507065 5880.169138 84021.8174612 2075.689079 1541.42087 4898.834757 84650.5451413 2076.20743 1541.353977 3910.852859 85164.4039714 2076.727917 1541.306479 2917.564275 85562.6960915 2077.249814 1541.27844 1920.316498 85844.8859416 2077.772394 1541.269902 920.4626612 86010.5840317 2078.294929 1541.280875 80.64000409 86059.5712718 2078.81669 1541.311344 -1081.63324 85991.7746219 2079.33695 1541.361267 -2081.158789 85807.2914620 2079.854984 1541.430575 -3077.860187 85506.3814621 2080.37007 1541.51917 -4070.385072 85089.4259922 2080.88149 1541.626929 -5057.386718 84557.009323 2081.388532 1541.753702 -6037.525576 83909.86178 2081.890488 1541.899313 -7009.471578 83148.84332 25 2082.285648 1542.168245 -9244.515303 74199.42618 24 2082.510844 1542.589864 -14047.47015 52646.5891327 2082.611937 1543.046044 -19236.06506 36865.6479128 2082.684429 1543.507634 -23588.83673 22476.6373729 2082.728036 1543.972843 -25973.81825 14776.30132 26 2082.742591 1544.439864 -26256.11233 9886.16153130 2082.706135 1545.042547 -26425.97397 4953.68655231 2082.5973 1545.636442 -31304.66167 2146.31214432 2082.417672 1546.212888 -35817.57933 -13486.3166533 2082.169871 1546.76348 -34895.66231 -26741.8859834 2081.85751 1547.280188 -33376.67067 -39539.8892835 2081.485145 1547.755477 -31286.59479 -51661.3504136 2081.058204 1548.182418 -28661.19683 -62898.8811837 2080.582915 1548.554783 -25545.39795 -73060.1921438 2080.066207 1548.867144 -21992.50975 -81971.412939 2079.515615 1549.114945 -18063.32375 -89480.0825240 2078.939169 1549.294573 -13825.06958 -95457.7295441 2078.345274 1549.403408 -9350.264619 -99802.0707842 2077.742591 1549.439864 -4715.473839 -102438.770543 2077.139908 1549.403408 0 -103322.708244 2076.546013 1549.294573 4715.473839 -102438.763145 2075.969566 1549.114945 9350.264619 -99802.0707846 2075.418975 1548.867144 13825.06984 -95457.7368747 2074.902267 1548.554783 18063.324 -89480.0898548 2074.426978 1548.182418 21992.50975 -81971.412949 2074.000037 1547.755477 25545.39769 -73060.1848150 2073.627672 1547.280188 28661.19683 -62898.8811851 2073.315311 1546.76348 31286.59505 -51661.3504152 2073.06751 1546.212888 33376.67067 -39539.8819553 2072.887882 1545.636442 34895.66205 -26741.8859854 2072.779047 1545.042547 35817.57908 -13486.32398表4.8 轴力、剪力、弯矩详细数据节点号轴力弯矩剪力1 -8.92E+05 -13456 -109952 -8.83E+05 -8352.6 -638913 -8.73E+05 21398 -1.19E+054 -8.61E+05 76686 -1.72E+055 -8.69E+05 1.57E+05 -252076 -7.80E+05 1.69E+05 3.16E+057 -2.08E+06 7906.2 339838 -2.06E+06 -11168 325749 -2.05E+06 -29519 2963810 -2.04E+06 -46347 2539511 -2.03E+06 -60967 2007312 -2.02E+06 -72813 1390913 -2.02E+06 -81442 7144.714 -2.02E+06 -86540 26.68815 -2.02E+06 -87920 -7193.616 -2.02E+06 -85526 -1426717 -2.02E+06 -79433 -2094718 -2.03E+06 -69844 -2698819 -2.04E+06 -57093 -3214820 -2.05E+06 -41637 -3619121 -2.07E+06 -24058 -3889122 -2.08E+06 -5056.4 -4002923 -7.88E+05 14553 -3.07E+0524 -8.72E+05 1.60E+05 1869325 -8.67E+05 1.51E+05 1.61E+0526 -8.78E+05 75321 1.12E+0527 -8.89E+05 22802 6085928 -8.97E+05 -5736 1042929 -9.06E+05 -10643 -1582730 -9.04E+05 -976.56 -1884631 -8.96E+05 10731 -2262932 -8.82E+05 24936 -2597333 -8.61E+05 41366 -2494434 -8.33E+05 57370 -1258435 -7.99E+05 66092 2076436 -7.60E+05 54844 4538037 -7.22E+05 28879 5781438 -6.87E+05 -4468.5 5896639 -6.58E+05 -38409 5047240 -6.38E+05 -67143 3459441 -6.27E+05 -86237 1407042 -6.26E+05 -92913 -8065.143 -6.37E+05 -86224 -2867644 -6.57E+05 -67117 -4472845 -6.85E+05 -38371 -5348046 -7.19E+05 -4418.2 -5266647 -7.57E+05 28940 -4064448 -7.94E+05 54916 -1651049 -8.29E+05 66173 1653250 -8.56E+05 57316 2859051 -8.76E+05 40997 2930652 -8.90E+05 24050 2556953 -8.98E+05 9154.2 2115954 -8.99E+05 -3292.6 17015内力图分析(1)轴力:由ANSYS建模分析围岩衬砌内力得出轴力图如图,最大轴力出现在仰拱段,其值为626.383kN。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。